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Abstract

The chapter presents a general picture of parallel meta-heuristic search for
optimization. It recalls the main concepts and strategies in designing parallel
meta-heuristics, pointing to a number of contributions that instantiated them
for neighborhood- and population-based meta-heuristics, and identifies trends
and promising research directions. The focus is on cooperation-based strategies,
which display remarkable performances, in particular strategies based on asyn-
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chronous exchanges and the creation of new information out of exchanged data
to enhance the global guidance of the search.

Keywords
Parallel computation � Parallel meta-heuristics � Functional and data
decomposition � Independent multi-search � Synchronous and asynchronous
cooperative search � Integrative cooperative search

Introduction

Meta-heuristics often offer the only practical approach to addressing complex
problems of realistic dimensions and are thus widely acknowledged as essential
tools in numerous and diverse fields. Yet, even meta-heuristics may reach quite
rapidly the limits of what may be addressed in acceptable computing times for
many research and practice problem settings. Moreover, heuristics do not generally
guarantee optimality, performance often depending on the particular problem setting
and instance characteristics. Robustness is therefore a major objective in meta-
heuristic design, in the sense of offering a consistently high level of performance
over a wide variety of problem settings and instance characteristics.

Parallel meta-heuristics aim to address both issues. Their first goal is to solve
larger problem instances than what is achievable by sequential methods and to do it
in reasonable computing times. In appropriate settings, such as cooperative multi-
search strategies, parallel meta-heuristics also prove to be much more robust than
sequential versions in dealing with differences in problem types and characteristics.
They also require less extensive, and expensive, parameter-calibration efforts.

The objective of this chapter is to paint a general picture of the parallel optimiza-
tion meta-heuristic field. Following [40], it recalls the main concepts and strategies
in designing parallel meta-heuristics, pointing to a number of contributions that
instantiated them for neighborhood- and population-based meta-heuristics, and
identifies a number of trends and promising research directions. It focuses on
cooperation-based strategies, which display remarkable performances, reviewing in
somewhat more depth the recently introduced integrative cooperative search [96].
Notice that parallel meta-heuristic strategies are examined and discussed from the
conceptual, algorithmic design point of view, independent of implementation on
particular computer architectures.

The parallel meta-heuristic field is very broad, while the space available for this
chapter is limited. In addition to the references provided in the following sections,
the reader may consult a number of surveys, taxonomies, and syntheses of parallel
meta-heuristics, some addressing methods based on particular methodologies, while
others address the field in more comprehensive terms. Methodology-dedicated
syntheses may be found in [5, 84–86, 133] for parallel simulated annealing,
[20, 21, 107, 119, 147] for genetic-based evolutionary methods, [32, 43, 45, 82, 170]
for tabu search, [73] for scatter search, [18,62,92] for ant colony methods, and [116]
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for variable neighborhood search (VNS). Surveys and syntheses that address more
than one methodology may be found in [2, 4, 33, 36–38, 40, 50, 51, 90, 97, 125, 168].

The chapter is organized as follows. Section “Meta-heuristics and Parallelism”
is dedicated to a general discussion of the potential for parallel computing in
meta-heuristics, a brief description of performance indicators for parallel meta-
heuristics, and the taxonomy used to structure the presentation. Section “Low-Level
Parallelization Strategies” addresses strategies focusing on accelerating computing-
intensive tasks without modifying the basic algorithmic design. Methods based on
the decomposition of the search space are treated in section “Data Decomposition,”
while strategies based on the simultaneous exploration of the search space by several
independent meta-heuristics constitute the topic of section “Independent Multi-
-search.” Cooperation principles are discussed in section “Cooperative Search” and
are detailed in sections “Synchronous Cooperation,” “Asynchronous Cooperation,”
and “Advanced Cooperation Strategies: Creating New Knowledge.” We conclude in
section “Conclusions.”

Meta-heuristics and Parallelism

We start with a brief overview of the potential for parallel computing in meta-
heuristics and of performance indicators for parallel meta-heuristics, followed by
the criteria used to describe and characterize the parallelization strategies for meta-
heuristics described in the other sections of the chapter.

Sources of Parallelism

Addressing a given problem instance with a parallel solution method means that
several processes work simultaneously on several processors with the goal of
identifying the best solution for the instance. Parallelism thus follows from a
decomposition of the total work load and the distribution of the resulting tasks to
available processors. According to how “small” or “large” are the tasks in terms of
algorithm work or search space, the parallelization is denoted fine or coarse grained,
respectively.

The decomposition may concern the algorithm, the problem instance data, or
the problem structure. Functional parallelism identifies the first case, where some
computing-intensive components of the algorithm are separated into several tasks
(processes), possibly working on the “same” data, which are allocated to different
processors and run in parallel. The main source of functional parallelism for
meta-heuristics is the concurrent execution of their innermost loop iterations, e.g.,
evaluating neighbors, computing the fitness of individuals, or having ants forage
concurrently (section “Low-Level Parallelization Strategies”). This is often also
the only source of readily available parallelism in meta-heuristics, most other
steps being time dependent and requiring either the computation of the previous
steps to be completed or the synchronization of computations to enforce this
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time dependency. Consequently, functional parallelism is mainly interesting as a
low-level component of hierarchical parallelization strategies or when addressing
problem settings requiring a significant part of the computing effort to be spent in
the inner-loop algorithmic component.

Parallelism for meta-heuristics may further be found in the domain of the
problem addressed or the corresponding search space (for brevity reasons, the
term “search space” is used in the rest of the chapter). There are indeed no data
dependencies between the evaluation functions of different solutions, and, thus,
these may be computed in parallel. Moreover, theoretically, the parallelism in the
search space is as large as the space itself. Parallelism is then obtained by separating
the search space into components allocated to the available processors. In most
cases, these components are still too large for explicit enumeration, and an exact or
heuristic search method has to be associated to each to implicitly explore it. Space
separation is exploited in most of the strategies described in this chapter.

Space separation raises a number of issues with respect to defining an overall
meta-heuristic search strategy, in particular, (1) whether to define the separation
by partitioning the space, allowing components to partially overlap, or not, (2)
how to control an overall search conducted separately on several components of
the original space, (3) how to build a complete solution out of those obtained
while exploring the components, and (4) how to allocate computing resources for
an efficient exploration avoiding, for example, searching regions with poor-quality
solutions.

Two main approaches are used to perform the search-space separation: domain
decomposition (also called data parallelism) and multi-search (the name multiple
walks is also found in the literature). The former explicitly separates the search
space (section “Data Decomposition”) and then addresses the initial problem
instantiated on each of the resulting restricted regions, before combining the
corresponding partial solutions into complete ones.

Multi-search strategies implicitly divide the search space through concurrent
explorations by several methods, named solvers in the following. These meta-
heuristic or exact solvers may address either the complete problem at hand or
explore partial problems defined by decomposing the initial problem through
mathematical programming or attribute-based heuristic approaches. In the former
case, the decomposition method implicitly defines how a complete solution is built
out of partial ones. In the latter case, some processors work on the partial problems
corresponding to the particular sets of attributes defined in the decomposition,
while others combine the resulting partial solutions into complete solutions to the
original problem. Multi-search strategies, particularly those based on cooperation
principles, are at the core of most successful developments in parallel meta-
heuristics and the object of the largest number of recent publications in the field.
Sections “Independent Multi-search,” “Cooperative Search,” “Synchronous Co-
operation,” “Asynchronous Cooperation,” and “Advanced Cooperation Strategies:
Creating New Knowledge” describe multi-search meta-heuristics.

We complete this subsection with a few notes on the performance evaluation of
parallel meta-heuristic strategies and resulting algorithms.
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The traditional goal when designing parallel solution methods is to reduce the
time required to “solve,” exactly or heuristically, given problem instances or to
address larger instances without increasing the computational effort. For solution
methods that run until the provable optimal solution is obtained, this translates into
the well-known speedup performance measure, computed as the ratio between the
wall-clock time required to solve the problem instance in parallel with p processors
and the corresponding solution time of the best-known sequential algorithm. A
somewhat less restrictive measure replaces the latter with the time of the parallel
algorithm run on a single processor. See [9] for a detailed discussion of this issue,
including additional performance measures.

Speedup measures are more difficult to interpret when the optimal solution
is not guaranteed or the exact method is stopped before optimality is reached.
Moreover, most parallelization strategies design parallel meta-heuristics that yield
solutions that are different in value, composition, or both from those obtained by the
sequential counterpart. Thus, equally important performance measures for parallel
heuristics evaluate by how much they outperform their sequential counterparts
in (relative) terms of solution quality and, ideally, the computational efficiency.
Simply put, the parallel method should not require a higher overall computation
effort than the sequential method or should justify the extra effort by higher-quality
solutions.

Search robustness is another characteristic expected of parallel heuristics. Ro-
bustness with respect to a problem setting is meant here in the sense of providing
“equally” good solutions to a large and varied set of problem instances, without
excessive calibration, neither during the initial development nor when addressing
new problem instances.

Multi-search methods, particularly those based on cooperation, generally offer
enhanced performances compared to sequential methods and other parallelization
strategies. They display behaviors different from those of the sequential methods
involved and can be seen as proper meta-heuristics [2], usually finding better-quality
solutions and enhancing the robustness of the meta-heuristic search. See [37,38] for
a discussion of these issues.

Characterizing Parallel Meta-heuristic Strategies

Several strategies may be defined based on each one of the sources of parallelism
discussed above. The classification of Crainic and Hail [36], generalizing that of
Crainic, Toulouse, and Gendreau [43] ([168] and [51] present classifications that
proceed of the same spirit), is used in this chapter to characterize these strategies.

The three dimensions of the classification focus on the control of the global
problem-solving process, the information exchanged among processes, and the
diversity of the search, respectively. The first dimension, search control cardinality,
thus specifies whether the global search is controlled by a single process or by
several processes that may collaborate or not. The two alternatives are identified
as 1-control (1C) and p-control (pC), respectively.
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The second dimension addresses the issue of information exchanges and the
utilization of the exchanged information to control or guide the search, hence the
search control and communications name. Communications may proceed either
synchronously or asynchronously. In the former case, processes stop and engage
in some form of communication and information exchange at moments (number of
iterations, time intervals, specified algorithmic stages, etc.) exogenously planned,
either hard-coded or determined by a control (master) process. In the asynchronous
communication case, each process is in charge of its own search, as well as of
establishing communications with other processes, and the global search terminates
once all individual searches stop. Four classes are defined within this dimension to
reflect the quantity and quality of the information exchanged and shared, as well
as the additional knowledge derived from these exchanges (if any): rigid (RS) and
knowledge synchronization (KS) and, symmetrically, collegial (C) and knowledge
collegial (KC).

More than one solution method or variant (e.g., with different parameter settings)
may be involved in a parallel meta-heuristic. The third dimension thus indicates
the search differentiation or diversity: do solvers start from the same or different
solutions and do they make use of the same or different search strategies? The four
classes are same initial point/population, same search strategy (SPSS); same initial
point/population, different search strategies (SPDS); multiple initial points/pop-
ulations, same search strategies (MPSS); and multiple initial points/populations,
different search strategies (MPDS). Obviously, one uses “point” for neighborhood-
based methods, while “population” is used for genetic-based evolutionary methods,
scatter search, and swarm methods.

Low-Level Parallelization Strategies

Functional-parallelism-based strategies, exploiting the potential for task decom-
position within the inner-loop computations of meta-heuristics, are often labeled
“low level” because they modify neither the algorithmic logic nor the search space.
They aim solely to accelerate the search and generally do not modify the search
behavior of the sequential meta-heuristic. Typically, the exploration is initialized
from a single solution or population and proceeds according to the sequential meta-
heuristic logic, while a number of computing-intensive steps are decomposed and
simultaneously performed by several processors.

Most low-level parallel strategies belong to the 1C/RS/SPSS class and are usually
implemented according to the classical master-slave parallel programming model.
A “master” program executes the 1-control sequential meta-heuristic, separating

and dispatching computing-intensive tasks to be executed in parallel by “slave”
programs. Slaves perform evaluations and return the results to the master which,
once all the results are in, resumes the normal logic of the sequential meta-
heuristic. The complete control on the algorithm execution thus rests with the
master, which decides the work allocation for all other processors and initiates most
communications. No communications take place among slave programs.
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The neighborhood-evaluation procedure of the local search component
of neighborhood-based meta-heuristics (as well as of population-based ones
implementing advanced “schooling” for offspring) is generally targeted in
1C/RS/SPSS designs. The master groups the neighbors into tasks and sends them
to slaves. Each slave then executes the exploration/evaluation procedure on its
respective part of the neighborhood and sends back the best, or first improving,
neighbor found. The master waits for all slaves to terminate their computations,
selects the best move, and proceeds with the search. See, e.g., [70] and [129] for
applications of this strategy to tabu search meta-heuristics for the vehicle routing
problem with time window constraints (VRPTW) and the scheduling of dependent
tasks on heterogeneous processors, respectively.

The appropriate granularity of the decomposition, that is, the size of the tasks,
depends upon the particular problem and computer architecture but is generally
computationally sensitive to inter-processor communication times and workload
balancing. Thus, for example, [54] discusses several decomposition policies for the
permutation-based local search neighborhood applied to the scheduling of depen-
dent tasks on homogeneous processors and shows that the uniform partition usually
called upon in the literature is not appropriate in this context characterized by
neighborhoods of different sizes. The authors also show that a fixed coarse-grained
nonuniform decomposition, while offering superior results, requires calibration each
time the problem size or the number of processors varies.

The best performing strategy was called by the authors dynamic fine grained.
It defines each neighbor evaluation as a single task, the master dynamically
dispatching these on a first-available, first-served basis to slave processors as they
complete their tasks. The strategy partitions the neighborhood into a number of
components equal to the number of available processors but of unequal size with a
content dynamically determined at each iteration.

The dynamic fine-grained strategy provides maximum flexibility and good load
balancing, particularly when the evaluation of neighbors is of uneven length. The
uniform distribution appears more appropriate when the neighbor evaluations are
sensibly the same, or when the overhead cost of the dynamic strategy for creating
and exchanging tasks appears too high.

Similar observations may be made regarding population-based meta-heuristics.
In theory, all genetic-algorithm operators may be addressed through a 1C/RS/SPSS
design, and the degree of possible parallelism is equal to the population size.
In practice, the computations associated to most operators are not sufficiently
heavy to warrant parallelizing, while overhead costs may significantly reduce the
degree of parallelism and increase the granularity of the tasks. Consequently,
the fitness evaluation is often the only target of 1C/RS/SPSS parallelism for
genetic-evolutionary methods, the resulting parallel GA being implemented using
the master-slave model. Similarly to other 1-control low-level parallelizations,
a 1C/RS/SPSS genetic-evolutionary algorithm performs the same search as the
sequential program, only faster.

The 1C/RS/SPSS parallelism for ant colony and, more generally, swarm-based
methods lies at the level of the individual ants. Ants share information indirectly
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through the pheromone matrix, which is updated once all solutions have been con-
structed. There are no modifications of the pheromone matrix during a construction
cycle, and, thus, each individual ant performs its solution-construction procedure
without data dependencies on the progress of the other ants.

Most parallel ant colony methods implement some form of 1C/RS/SPSS strategy
according to the master-slave model, including [18, 59, 132, 134, 157]. The master
builds tasks consisting of one or several ants (each can be assimilated to a “small”
colony) and distributes them to the available processors. Slaves perform their
construction heuristic and return their solution(s) to the master, which updates
the pheromone matrix, returns it to the slaves, and so on. To further speed up
computation, the pheromone update can be partially computed at the level of each
slave, each slave computing the update associated to its solutions. The fine-grained
version with central matrix update has been the topic of most contributions so
far, and, in general, it outperformed the sequential version of the algorithm. It
is acknowledged, however, that it does not scale, and, similarly to other meta-
heuristics, this strategy is outperformed by more advanced multi-search methods.

Scatter search and path relinking implement different evolution strategies, where
a restricted number of elite solutions are combined, the result being enhanced
through a local search or a full-fledged meta-heuristic, usually neighborhood
based. Consequently, the 1C/RS/SPSS strategies discussed previously regarding the
parallelization of local search exploration apply straightforwardly to the present
context, as in [72–74] for the p-median and the feature selection problems.

A different 1C/RS/SPSS strategy for scatter search may be obtained by running
concurrently the combination and improvement operators on several subsets of the
reference set. Here, the master generates tasks by extracting a number of solution
subsets, which are sent to slaves. Each slave then combines and improves its
solutions, returning its results to the master for the global update of the reference
set. Each subset sent to a slave may contain exactly the number of solutions required
by the combination operator or a higher number. In the former case, the slave
performs an “iteration” of the scatter search algorithm [72–74]. In the latter, several
combination-improvement sequences could be executed, and solutions could be
returned to the master as they are found or all together at the end of all sequences.
This heavy load for slaves may conduct to very different computation times, and,
thus, load-balancing capabilities should be added to the master.

To conclude, low-level, 1-control parallel strategies are particularly attractive
when neighborhoods (populations) are large or neighbor (individual) evaluation
procedures are costly, and a significant gain in computing time may be obtained
(e.g., the parallel tabu searches of [23,25,150] for the quadratic assignment problem
(QAP), [24] for the traveling salesman problem (TSP), [128–130] and [54] for
the task-scheduling problem). More advanced multi-search strategies generally
outperform low-level strategies in most cases. Yet, when a sufficiently large number
of processors are available, it might prove worthy to combine a 1C/RS/SPSS
approach and more sophisticated strategies into hierarchical solution schemes (e.g.,
[136] were low-level parallelism accelerated the move evaluations of the individual
searches engaged into an independent multi-search procedure for the VRP).
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Data Decomposition

Domain or search-space decomposition constitutes an intuitively simple and ap-
pealing parallelization strategy, dividing the search space into smaller partial sets,
solving the resulting subproblems by applying the sequential meta-heuristic on each
set, collecting the respective partial solutions, and reconstructing an entire solution
out of the partial ones. This apparently simple idea may take several forms, however,
according to the type of division performed and the permitted links among the
resulting sets/subproblems.

The space may be partitioned, yielding disjoint partial sets, or a cover may
be defined allowing a certain amount of overlap among partial sets. Thus, for
example, the arc-design variables of a VRP may be partitioned into customer subsets
(including the depot in each subset), while a cover would allow “close by” customers
to belong to two subsets. The goal generally is to generate independent subproblems,
which allows to discard from each subproblem the variables and constraints not
directly involved in its definition. When this is not possible, e.g., the separated
activities share some resources, one may fix the variables not in the subproblem
definition (and thus project the corresponding constraints). One then still works on
a smaller subproblem, but considering the complete vector of decision variables.

The second element one must consider is the degree of exploration overlap
permitted among subproblems. One must thus decide whether the solution trans-
formations (e.g., neighborhood moves or individual crossovers) performed within
the partial set of a given subproblem are restricted to that partial set or may
involve variables in neighboring subspaces creating an indirect overlapping of
subsets. Strict partitioning strategies restrict the solvers to their subsets, resulting
in part of the search space being unreachable and the parallel meta-heuristic being
nonoptimal. Explicit or implicit overlapping partially addresses this issue. Only
partially because, to fully ensure that all potential solutions are reachable, one needs
to make overlapping cover the entire search space, which would negate the benefits
of decomposition.

Consequently, strict partitioning and very limited overlapping are the preferred
approaches found in the literature. A re-decomposition feature is generally included
to increase the thoroughness of the search and allow all potential solutions to be
examined. The decomposition is thus modified at regular intervals, and the search
is restarted using the new decomposition. This feature provides also the opportunity
to define a non-exhaustive decomposition, i.e., where the union of the subsets is
smaller than the complete search space. A complete solution reconstruction feature
is almost always part of the procedure.

This strategy is naturally implemented using master-slave 1C/RS schemes,
with MPSS or MPDS search differentiation. The master process determines the
decomposition and sends partial sets to slaves, synchronizes them and collects
their solutions, reconstructs solutions, modifies the decomposition, and determines
stopping conditions. Slaves concurrently and independently perform the search on
their assigned partial sets. Design issues one must address in this context are the
length of the exploration available to slaves and the reconstruction of global context
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information (e.g., global tabu list) out of the partial ones. The extreme case of
executing a full meta-heuristic on each partial set of the search space (this avoids
the context issue), periodically modifying the partition and restarting the search,
was actually generally used, particularly for problems for which a large number of
iterations can be performed in a relatively short time, and restarting the method with
a new decomposition does not require an unreasonable computational effort (e.g.,
[66] for the TSP, [95] for image filtering, and [80] for real-time ambulance fleet
management).

In a pC/KS strategy, with MPSS or MPDS search differentiation, the decomposi-
tion is collegially decided and modified through information exchange phases (e.g.,
round-robin or many-to-many exchanges) activated at given synchronization points.
Such an approach was proposed in [151] for the VRP, where the customer set was
partitioned, vehicles were allocated to the resulting regions, and each subproblem
was solved by an independent tabu search. All processors stopped after a number of
iterations that varied according to the total number of iterations already performed,
and the partition was modified by exchanging tours, undelivered cities, and empty
vehicles between adjacent processors (corresponding to neighboring regions). At
the time, this approach did allow to address successfully a number of problem
instances, but the synchronization inherent in the design of the strategy hindered
its performance. A parallel ant colony approach combining this decomposition idea
to a master-slave implementation was presented in [60] (parallelizing the algorithm
presented in [138]), where the master generates an initial solution, defines the
partition, and updates the global pheromone matrix, while slaves execute a savings-
based ant colony algorithm [137] for the resulting restricted VRP.

Data decomposition methods induce different search behavior and solution
quality compared to those of the sequential meta-heuristic. Such methods appear
increasingly needed as the dimensions of the contemplated problem instances
continue to grow. Given the increased complexity of the problem settings, work
is also required on how to best combine search-space decomposition and the
other parallelization strategies, cooperation in particular. The integrative cooperative
search of [96] is a step in this direction (see section “Advanced Cooperation
Strategies: Creating New Knowledge”).

Independent Multi-search

Independent multi-search was among the first parallelization strategies proposed in
the literature. It is also the most simple and straightforward p-control parallelization
strategy and generally offers very interesting performance.

Independent multi-search seeks to accelerate the exploration of the search space
toward a better solution (compared to sequential search) by initiating simultaneous
solvers from different initial points (with or without different search strategies). It
thus parallelizes the multi-start strategy by performing several searches simultane-
ously on the entire search space, starting from the same or from different initial
solutions, and selecting at the end the best among the best solutions obtained by all
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searches. Independent multi-search methods thus belong to the pC/RS class of the
taxonomy. No attempt is made to take advantage of the multiple solvers running
in parallel other than to identify the best overall solution at the synchronization
moment when all searches stop.

Independent multi-search turns out to be effective, simply because of the sheer
quantity of computing power it allows one to apply to a given problem. Formal
insights into the behavior of these strategies may be found in [11, 149, 152, 160].
Empirical efficiency was shown by many contributions that took advantage of
its simplicity of implementation and relatively good performance expectation.
pC/RS/MPSS parallelizations of neighborhood-based meta-heuristics were thus
proposed for, e.g., tabu search for the QAP [11], VRP [136,152,156] and production
planning [14]; GRASP for the QAP [105,124,126], the Steiner problem [110,111],
and the 2-path telecommunication network design [139–141]; simulated annealing
for graph partitioning [7, 8, 104] and the TSP [114]; and variable neighborhood
search for the p-median problem [71]. Independent multi-search pC/RS/MPSS
applications to nongenetic-evolutionary methods have been proposed for scatter
search [72,74], as well as for ant colony optimization for set covering [132], the TSP
[149], and the VRP [61]. Similar performance was observed for genetic methods
with full-sized populations [28, 29], which avoided the premature convergence
observed for pC/RS independent multi-search GA with small-sized populations
obtained by separating the initial population among the independent GA searches
(e.g., [88, 144]).

Independent multi-search offers an easy access to parallel meta-heuristic com-
putation, offering a tool when looking for a “good” solution without investment in
methodological development or actual coding. Independent multi-search methods
are generally outperformed by cooperative strategies, however, the latter integrating
mechanisms enabling the independent solvers to share, during the search, the
information their exploration generates. As explained in the following sections, this
sharing and the eventual creation of new information out of the shared one yield in
most cases a collective output of superior solutions compared to independent and
sequential search.

Cooperative Search

Cooperative multi-search has emerged as one of the most successful meta-heuristic
methodologies to address hard optimization problems (see, e.g., [2, 32, 33, 36,
39, 40, 155, 159]). Cooperative search is based on harnessing the capabilities of
several solution methods through cooperation mechanisms providing the means
to share information while addressing the same problem instance (and create new
information out of the exchanged data in advanced settings; see section “Advanced
Cooperation Strategies: Creating New Knowledge”).

Cooperative search strategies are thus defined by the solver components engaged
in cooperation, the nature of the information shared, and their interaction mech-
anism. The solvers define trajectories in the search space from possibly different
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initial points or populations, by using possibly different search strategies (including
the same method with different parameter settings or populations). The information-
sharing cooperation mechanism specifies how these independent solvers interact,
how the exchanged information is used globally (if at all), and how each process acts
on the received information, using it within its own search and, thus, transforming it
before passing it to other solvers. As further detailed in the following sections, var-
ious cooperation mechanisms have been proposed: diffusion among “neighboring”
solution methods arrayed in particular communication architectures, e.g., fine-
grained, cellular GA (e.g., [21,108]) and multilevel cooperative search [165]; direct
exchanges among processes as in coarse-grained, island GA [21, 108], A-teams
[158, 159], and collegial asynchronous strategies [42, 43]; and indirect exchanges
through a common data repository and management structure such as the adaptive
[6,12,142] and central memory [42,43,46,93,94,100] strategies. The global search
behavior of the cooperative parallel meta-heuristic then emerges from the local
interactions among the independent solvers, yielding a “new” meta-heuristic in its
own right [39]. The similarity between this behavior and that of systems where
decisions emerge from interactions among autonomous and equal “colleagues”
has inspired the name collegial associated to cooperative search strategies in the
taxonomy used in this chapter.

The exchanged information has to be meaningful and timely. The goals are
twofold. First is to enhance the performance of the receiving solvers. Second is
to create a global image of the status of the cooperative search as “complete”
as possible, which would provide the means to guide the global search toward
better performance in terms of computing time and solution quality than the
simple concatenation of the results of the individual solvers. Of course, one desires
to achieve these goals without excessive overhead. Toulouse, Crainic, and Gen-
dreau [162] proposed a list of fundamental issues to be addressed when designing
cooperative parallel strategies for meta-heuristics: What information is exchanged?
Between what processes is it exchanged? When is information exchanged? How
is it exchanged? How is the imported data used? Implicit in their taxonomy and
explicitly stated in later papers, the issue of whether the information is modified
during exchanges or whether new information is created completes this list.

“Good” solutions make up the most often exchanged type of information. This
usually takes the form of the local current best solution of a given solver or the
overall best. The question of when to send such solutions has to be carefully
addressed, however, particularly when the receiving process is supposed to act
momentarily on the incoming information. One should thus avoid sending all
local current best solutions, particularly when the solver is performing a series of
improving moves or generations, as successive solutions are generally “similar” and
the receiving solvers have no chance to actually act on the incoming information.
Sending the overall current best solution to all cooperating solvers should also be
avoided, as it rapidly decreases the diversity of the exploration and, thus, increases
the amount of worthless computational work (many solvers will search within the
same region) and brings an early “convergence” to a not-so-good solution. Sending
out local optima only, exchanging groups of solutions, implementing randomized
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selection procedures (generally biased toward good or good-and-diverse solutions)
of the solutions to share, and having the cooperating solvers treat differently the
received information are among the strategies aimed at addressing these issues.

Context information may also be profitably shared and integrated into the mecha-
nisms used to guide the overall search. Context information is routinely collected by
meta-heuristics during their search. It may consist in statistical information relative
to the presence of particular solution elements in improving solutions (e.g., the
medium- and long-term memories of tabu search), the impact of particular moves on
the search trajectory (e.g., the scores of the moves of large adaptive neighborhood
search), population diversity measures, individual resilience across generations, etc.
A limited number of studies indicate the interest of context information exchanges
(see section “Advanced Cooperation Strategies: Creating New Knowledge”), but
more research is needed on this topic.

Cooperating solvers may communicate and exchange information directly or
indirectly. Direct exchanges of information occur either when the concerned solvers
agree on a meeting point in time to share information or when a solver broadcasts
its information to one or several other solvers without prior mutual agreement. The
latter case is generally not performing well, except when solvers include costly
mechanisms to store such information without disturbing their own execution until
ready to consider it.

Indirect exchanges of information are performed through independent data
structures that become shared sources of information solvers may access according
to their own internal logic to post and retrieve information. Such data structures
are known under various names, e.g., blackboard in computer science and artificial
intelligence vocabulary and memory, pool, and data warehouse (the terms reference
and elite set are also sometimes used) in the parallel meta-heuristic literature. The
term memory is used in the following.

Centralized memory is the implementation of choice reported in the literature.
Distributed memory mechanisms may be contemplated, where a number of mem-
ories are interconnected, each servicing a number of solvers. Such hierarchical
structures, involving several layers of solvers and memories, appear interesting
when a large number of processors are to be involved, for integrative cooperation
strategies, or when computations are to take place on grids or loosely coupled
distributed systems. Issues related to data availability, redundancy, and integrity
must be then addressed, as well as questions relative to the balancing of workloads
and the volume of information exchanged. More research is needed on this topic.

The logical intercommunication network corresponding to the selected coop-
eration strategy takes the form of a communication graph. A node of the graph
represents a solver or a memory. Edges define the pairs of solvers or of a solver and
a memory that may communicate directly. The projection of the communication
graph on the physical interconnection topology of the parallel computer executing
the parallel program – complete graph, ring, grid, torus, and star are most often
encountered in the literature – is normally part of the implementation process.

When and how information is exchanged specifies how frequently coopera-
tion activities are initiated, by whom, and whether all concerned solvers must
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simultaneously engage in communications or not. Synchronous and asynchronous
communications are the two classes of communication exchanged and are discussed
in the following sections. The accumulated knowledge of the field indicates for both
classes that exchanges should not be too frequent to avoid excessive communication
overheads and premature “convergence” to local optima [42, 43, 162].

Three remarks complete this section. First, “simple” cooperation designs based,
for example, on synchronization or on exchanging current best solutions only
often appear biased toward intensifying the search in already-explored regions
where interesting solutions have been identified. Diversification capabilities, e.g.,
probabilistic or diversity-driven selection of exchanged solutions, are thus an
important component of cooperative p-control strategies.

One also observes that the main principles of cooperative parallel strategies
are the same for neighborhood- and population-based meta-heuristics, even though
denominations and implementation approaches may differ. The terms coarse- and
fine-grained island are thus used to identify the amplitude of the population (large or
small, down to single individual eventually, respectively) of participating solvers in
genetic-based cooperation. Similarly, multi-colony is the term generally used for
cooperation in the ant colony community. The next sections are thus structured
around classes of strategies rather than by meta-heuristic type.

Finally, one should notice that cooperation takes place at two different levels.
The first is the explicit information sharing specified by the design of cooperation
mechanism. Implicit cooperation makes up the second level, where information
spreads across the cooperating solvers through a diffusion process and correlated
interactions [163, 164, 166, 167]. Implicit cooperation is not specified explicitly in
the design of the algorithm. It is thus a bottom-up, global emergent phenomenon
produced by the correlated interactions among searches. Important research issues
and challenges are related to how to harness indirect cooperation to enhance the
optimization capabilities of cooperative search. For example, how should one select
solvers and direct cooperation mechanisms to yield a system-wide emergent behav-
ior providing an efficient exploration of the solution space from an optimization
point of view? Learning and dynamic self-adaptation, at the level of both individual
solvers and the cooperating meta-heuristic, appear to be part of the answer.
Several other areas of research study systems displaying emergent behaviors, e.g.,
decentralized autonomic computing, social robotics, swarm intelligence, clustering
logistics activities in supply chains, etc., and cross-fertilization appear promising.
Empirical and theoretical research in this area should yield design principles and
tools for more powerful (parallel) meta-heuristics.

Synchronous Cooperation

Synchronous cooperation follows a pC/KS scheme, with any of the SPDS, MPSS,
or MPDS search differentiation approaches, according to which the independent
cooperating meta-heuristics synchronize at particular moments to initiate an infor-
mation exchange phase. Synchronize here means that every solver but the last stops
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its activities and waits for all others to be ready. The synchronization moments may
be generated based on conditions external to all solvers (e.g., number of iterations
since the last synchronization) or detected by a specially designated solver. The
information exchange phase must be completed before any solver can restart its
exploration from the respective synchronization point.

Synchronization may use a complete communication graph or a more restricted,
less densely connected communication topology, e.g., a ring, torus, or grid graph.
Global exchanges of information among all solvers take place in the former case,
while information follows a diffusion process through direct local exchanges of
information among neighboring processes in the latter. In all cases, the objective is
to re-create a state of complete knowledge at particular moments in the global search
and, thus, to hopefully guide it toward a coordinated evolution to the desired solution
to the problem. This goal is rarely attained, however, and the price in computing-
time efficiency may be significant, as communications cannot be initiated before the
slowest solver is ready to proceed.

Global Information Exchanges
Many pC/KS cooperative search meta-heuristics in the literature implement the
strategy according to the master-slave model. The master process, which may
or may not include one of the participating solvers, initiates the other processes,
stops them at synchronization points, gathers the information to be shared, updates
the global data, decides on the termination of the search and, either effectively
terminates it or distributes the shared information (a good solution, generally, the
overall best solution in many cases) to the solvers for the continuation of the search.

The VNS pC/KS method for the p-median problem proposed in [71] followed
this idea, as well as the tabu search-based algorithms proposed for the TSP [109],
the VRP (using ejection chains) [135, 136], the QAP [55] and the task mapping
problem [56], the last two contributions attempting to overcome the limitations
of the master-slave implementation by allowing processes, on terminating their
local search phases, to synchronize and exchange best solutions with processes
running on neighboring processors (this idea represents a step toward a “true”
pC/KS design using a partial solution-diffusion process). This idea was also used
to implement coarse-grained island-based cooperating genetic methods [52, 148],
where the master stopped the cooperating meta-heuristics to initiate a migration
operator exchanging among the independent populations the best or a small subset
of the best individuals in each. Applied to ant colony systems [64], this strategy
divided the colony into several subcolonies, each assigned to a different processor.
Each independent ant colony meta-heuristic sent to the master its best solution once
its ants finished searching. The master updated the pheromone matrix and started a
new search phase. A more sophisticated pC/KS approach was proposed in [120]
for the 0–1 multidimensional knapsack problem, where the master dynamically
adjusted the parameters of the cooperating tabu searches according to the results
each had obtained so far. Computational results showed this dynamic adjustment to
be beneficial.
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Alternatively, pC/KS schemes can be implemented in “true” collegial fashion by
empowering each cooperating solver to initiate synchronization once it reaches a
predetermined status. It then broadcasts its data, followed by similar broadcasts
performed by the other solvers. Once all broadcasts are completed and information
is shared, each solver performs its own import procedures on the received data and
proceeds with its exploration of the search space until the next synchronization
event.

Such an approach, exchanging the current best solution or group of solutions,
was proposed for simulated annealing [58], where the solvers transmitted their
best solutions every n steps and restarted the search after updating their respective
best solutions (see also [101–104] for the graph partitioning problem). For tabu
search applied to location problems with balancing requirements [41, 42], solvers
synchronized after a number of iterations either predefined or dynamically deter-
mined. Most synchronous coarse-grained island genetic parallel methods applied
this strategy, migration operators being applied at regular intervals, e.g., [171] for
satisfiability problems (the best individual of each population migrated to replace
the worst of the receiving population), [67] for multi-objective telecommunication
network design with migration following each generation, and [27–29, 89, 107]
for graph partitioning, the latter implementing a hierarchical method, where the
fitness computation was performed at the second level (through a master-slave
implementation; the overhead due to the parallelization of the fitness became
significant for larger numbers of processors). A similar strategy was proposed for the
multi-ant colony algorithms [112, 113]. Each colony has its own pheromone matrix
and may (homogeneous) or may not (heterogeneous) use the same update rule.
Colonies synchronize after a fixed number of iterations to exchange elite solutions
that are used to update the pheromone matrix of the receiving colony.

Synchronization involved the exchange of not only good solutions but also
of important search parameters in the pC/RS/MPDS parallel iterated tabu search
proposed for the vehicle routing problem (VRP) [30]. The iterated tabu solvers
started from different initial solutions and used different search parameters. They
synchronized based on the number of consecutive iterations without improvement
used to determine the stopping moment of the individual improvement phases.
This provided the means to more equally distribute the work among cooperating
processes. The solvers exchanged their best solutions, each solver probabilistically
selecting the working solution for the next improvement phase among the received
ones and its own. This method proved to be both flexible and efficient for several
classes of routing problem settings with several depots, periodicity of demands, and
time windows.

Most studies cited above compared several parallel strategies for the meta-
heuristic and problem setting at hand [27–29,41,42,101–104,107]. They contributed
to show that synchronous pC/KS strategies with global information exchanges
outperform independent search approaches, as well as the respective sequential
version, particularly with respect to solution quality. These studies also pointed out,
however, the benefit of dynamically determined synchronization points, as well as
the superiority of asynchronous communications.
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Diffusion
The previous strategies are based on global exchanges of information, gathered at
synchronization points during the computation and distributed to all search threads.
The interest of global information-sharing strategies resides in the best information
available at the synchronization moment being available to all the solvers involved
in cooperation. The main drawback results from this same characteristic, however,
as solvers relying heavily on the same information (a set of best solutions in most
cases) tend to focus on the same regions of the search space. This generally results
in a search lacking in diversity that, more often than not, proves inefficient.

Synchronized cooperation strategies based on diffusion of information through
local exchanges among “neighboring” solvers have therefore been proposed. Such
approaches are defined on sparse communication graphs displaying particular
topologies, such as ring, torus, or grid graphs, where each node is directly linked
to only a few other nodes. A solver is then a neighbor of another solver if there is
a direct link between the two nodes on which they run, that is, if their nodes are
adjacent in the communication graph.

Synchronization still means that all solvers stop and exchange information, but
here they perform it with their neighbors exclusively. Consequently, the quantity of
information each solver processes and relies upon is significantly reduced, while
the exchanges between nonadjacent solvers are performed at the speed of diffusion
through possibly several chains of local exchanges and data modifications.

This idea has been much less explored compared to the global-exchange strat-
egy, even though synchronous cooperative mechanisms based on local exchanges
and diffusion have a less negative impact on the diversity of the search-space
exploration. A number of applications were proposed with good results for coarse-
grained [19,161] and fine-grained [3,63,68,69,117,118] genetic-based evolutionary
methods, as well as for ant colony optimization [113].

Cooperation based on asynchronous information sharing generally outperforms
synchronous methods, however, and is the topic of the next subsection.

Asynchronous Cooperation

Asynchronous strategies largely define the “state of the art” in parallel multi-search
meta-heuristics. Solvers initiate asynchronous cooperation activities according to
their own design logic and current internal state only, without coordination with
other solvers or memories. Information sharing then proceeds either by direct inter-
solver exchanges or through a data repository structure. These strategies belong
to either the pC/C, described in this section, or the pC/KC, described in the next
section, collegial classes of the taxonomy, the latter using the shared information to
generate new knowledge and global search guidance.

Two main benefits are obtained when relying on asynchronous communications.
First, this provides the means to build cooperation and information sharing among
solvers without incurring the overheads associated to synchronization. Second, it
increases the adaptability of cooperative meta-heuristics, as their capability to react
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and dynamically adapt to the exploration of the search space by the cooperating
solvers is significantly increased compared to the other parallelization strategies. Of
course, these benefits come with potential issues one must care for. For example, the
information gathered during the search will seldom, if ever, be completely available
when a process must decide. Also, too frequent data exchanges, combined to simple
acceptance rules for incoming information, may induce an erratic solver behavior,
the corresponding search trajectories becoming similar to random walks. Hence the
interest for applying information-sharing quality, meaningfulness, and parsimony
principles [42, 43, 162].

In the basic asynchronous strategies discussed in this section, the shared in-
formation generally corresponds to a locally improving solution or individual(s).
Most successful implementations have their cooperating solvers send out new local
optima only. This limits the quantity of information sent and received, as well as the
amount of work required to process it. Moreover, it avoids the case where a solver re-
orients its search based on one of a series of improving solutions and ends up devel-
oping a trajectory similar to the one followed by the solver that originated the data.

The abovementioned principles also explain the interest in diversifying the shared
information [42]. Thus, always selecting the best available solution out of an elite
set of good solutions, sent by potentially different solvers, proved less efficient in
terms of quality of the final solution than a strategy that randomly, biased by quality,
selected among the same elite set.

Finally, when to initiate cooperation activities and how to use incoming infor-
mation is particular to each type of meta-heuristic involved in the cooperation.
Yet, common to most strategies proposed in the literature is to perform jointly
the sending and requesting of information. There is no absolute need to do this,
however, even though it might decrease the amount of communication work.
It might thus be interesting for neighborhood-based methods to make available
right away their newly found local optima or improved overall solution and not
wait for the algorithmic step where examining external information is appropriate.
Similarly, population-based methods could migrate a number of individuals when a
significant improvement is observed in the quality and diversity of their elite group
of individuals.

With respect to when to request external information, the parsimony principle
implies selecting only moments when the status of the search changes significantly,
such as when the best solution or the elite subpopulation did not improve for a
number of iterations.

The solver then engages into a so-called search-diversification phase, e.g.,
diversification in tabu search, change of neighborhood in variable neighborhood
search, and complete or partial regeneration of population in population-based
meta-heuristics, involving the choice or modification of the solution to initiate the
new phase. Examining the contribution of external information is appropriate in
this context. Notice that it is always possible to use simply a prefixed number of
iterations to initiate communications, but this approach should be restricted to meta-
heuristics without search-diversification steps, e.g., tabu search based on continuous
diversification.
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Direct-exchange strategies are generally implemented over a complete commu-
nication graph, each solver sending out information to all other solvers or to a subset
of them; this subset may be predefined or selected dynamically during the search.
Particular communication graphs and information-diffusion processes could also
be used but, despite encouraging results, too few experiments have been reported
yet (e.g., [146] proposing VNS pC/C strategies over uni- and bidirectional ring
topologies). Each solver was executing the basic VNS steps and, on competing
them, was passing its solution to its next neighbor (uni) or its two neighbors (bi),
while receiving a solution from its predecessor neighbor (uni) or its two neighbors
(bi). The received solution was kept as initial solution of the next VNS run in the
unidirectional case, while the best of the two received ones and the local one was
kept in the bidirectional ring implementation. The latter strategy proved the most
successful.

Information exchanges within pC/C strategies based on indirect communications
are generally performed through a data repository structure, often called central
memory [32, 42, 43]. A solver involved in such a cooperation deposits (sends)
good solutions, local optima generally, into the central memory, from where, when
needed, it also retrieves information sent by the other cooperating solvers. The
central memory accepts incoming solutions for as long as it is not full, acceptance
becoming conditional to the relative interest of the incoming solution compared to
the “worst” solution in the memory, otherwise. Evaluation is performed using the
evaluation function for the global search space (or the objective function of the
original problem). Diversity criteria are increasingly considered is this evaluation, a
slightly worst solution being preferred if it increases the diversity of solutions in the
central memory. Population culling may also be performed (deleting, e.g., the worst
half the solutions in memory).

Both approaches may be applied to any meta-heuristic but, historically, most
pC/C genetic-based evolutionary asynchronous cooperative meta-heuristics im-
plemented a coarse-grained island model with direct inter-solver exchanges. An
early comparative study of coarse-grained parallel genetic methods for the graph
partitioning problem numerically showed the superiority of the pC/C strategy (with
migration toward a subset of populations) over synchronous approaches [107].

The indirect-exchange communication model is found at the core of most asyn-
chronous cooperative search strategies outside the genetic-evolutionary community,
including simulated annealing for graph partitioning [101–104] and the TSP [143]
and VNS applied to the VRPTW [127] and the p-median problem [44]. A master
process was associated to the central memory in the latter method, which kept,
updated, and communicated the current overall best solution (it also initiated and
terminated the algorithm). Individual solvers proceeded with the VNS exploration
for as long as the solution was improved. When this was no longer the case, the
current best was communicated to the master (if better than the one at the last
communication), and the overall best solution was requested from it. The best
solution between the local and imported ones was selected, and the search was then
continued in the current (local) neighborhood. Computational results on TSPLIB

problem instances with up to 11,849 customers showed that the cooperative strategy
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yielded significant gains in terms of computation time without losing on solution
quality.

Apparently, [42] proposed the first central memory asynchronous tabu search.
The tabu search solvers addressed a multicommodity location problem with bal-
ancing requirements. Each solver sent to the memory its local-best solution when
improved and imported a probabilistically selected (rank-biased) solution from the
memory before engaging in a diversification phase. This method outperformed in
terms of solution quality the sequential version, several synchronous variants, and a
broadcast-based asynchronous pC/C cooperative strategy. The same approach was
applied to the fixed cost, capacitated, multicommodity network design problem
with similar results [35]. Similar approaches were proposed for a broad range of
problem settings, including the partitioning of integrated circuits for logical testing
[1], two-dimensional cutting [13], the loading of containers [15], labor-constrained
scheduling [22], the VRPTW [99], and the capacitated VRP [93].

Solvers involved in pC/C strategies may not be restricted to a single meta-
heuristic. Thus, the solvers in the two-phase approach of [75–77,91] for the VRPTW
first applied an evolution strategy to reduce the number of vehicles, followed by a
tabu search to minimize the total distance traveled. A different version of the same
idea may be found in [10] for the Steiner problem, where each phase of the two
phase is designed as a pC/C asynchronous central memory strategy, only the change
from one phase to the next being synchronized. Solvers run reactive tabu search and
path relinking meta-heuristics in the first and second phases, respectively.

Multilevel cooperative search proposes a different pC/C asynchronous coopera-
tive strategy based on controlled diffusion of information [165]. Solvers are arrayed
in a linear, conceptually vertical, communication graph, and a local memory is
associated to each. Each solver works on the original problem but at a different
level of aggregation (the solver on the conceptually first level works on the complete
original problem) and communicates exclusively with the solvers directly above
and below, that is, at higher and lower aggregation levels, respectively. The local
memories are used to send information to the immediate neighbors and to access the
incoming data from the same, at moments dynamically determined according to the
internal logic of the respective solver. In the original implementation, solvers were
exchanging improved solutions, incoming solutions not being transmitted further
until modified locally for a number of iterations to enforce the controlled diffusion
of information. Excellent results have been obtained for various problem settings
including graph and hypergraph partitioning problems [122, 123], network design
[47], feature selection in biomedical data [121], and covering design [53]. It is
noteworthy that one can implement multilevel cooperative search using a central
memory by adequately defining the communication protocols. Although not yet
fully defined and tested, this idea is interesting as it opens the possibility of richer
exchange mechanisms combining controlled diffusion and general availability of
global information.

The central memory pC/C asynchronous cooperation strategy has proved worthy
by several criteria. It yields high-quality solutions and is computationally efficient
as no overhead is incurred for synchronization. It also helps to address the issue
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of “premature convergence” in cooperative search, by diversifying the information
received by the participating solvers through probabilistic selection from the
memory and by a somewhat large and diverse population of solutions in the central
memory (solvers may thus import different solutions even when their cooperation
activities are taking place within a short time span).

The performance of central memory cooperation and the availability of ex-
changed information (kept in the memory) have brought the question of whether
one could design more advanced cooperation mechanisms taking advantage of the
information exchanged among cooperating solvers. The pC/KC strategies described
in the next section are the result of this area of research.

Advanced Cooperation Strategies: Creating New Knowledge

Cooperation, in particular, memory-based asynchronous cooperation, offers a rich
framework to combine solvers of different meta-heuristic and exact types, together
with a population of elite solutions of continuously increased quality. But, is the
development effort worthwhile?

An interesting proof of concept is found in the study of Crainic and Gen-
dreau [34] combining a genetic-method solver and an asynchronous pC/C tabu
search for multicommodity location-allocation with balancing requirements [42].
The tabu search solvers were aggressively exploring the search space, building the
elite solution population in the central memory. The genetic method initialized its
population with the one in the central memory once it contained a certain number
of solutions. Its aim was to create new solutions to hopefully enrich the quality and
diversity of the solutions exchanged among the cooperating solvers. Asynchronous
migration transferred the best solution of the genetic population to the central mem-
ory, as well as solutions from the central memory toward the genetic population.
This strategy did perform well, especially on larger instances. Most importantly,
it showed that, while the overall best solution was never found by the genetic
solver, the GA-enhanced cooperation yielded higher-quality solutions compared to
the cooperation involving the tabu searches only. It appeared that the newly created
solutions offered a more diverse set of diversification opportunities to the tabu search
solvers, translating into a more diverse global search yielding better solutions.

The conclusion of that paper was not only that it is worthwhile to involve solvers
of different types in the cooperation but also that it is beneficial to create new
solutions out of the set of elite solutions in the central memory. The new solutions
are different from their parent solutions and are added to the central memory if they
improve compared to them. The process is thus doubly beneficial as better solutions
in the memory directly enhance the quality of the global search, while increasing the
diversity of solutions in memory provides the opportunity for cooperating solvers to
explore new regions of the search space.

A second idea on developing advanced cooperation mechanisms concerns the
information that may be extracted from the exchanged solutions, and the context
information, eventually. It has thus been observed that optimal or near-optimal
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solutions are often similar in the values taken by a large number of variables.
Moreover, it is well known in the meta-heuristic field that one can learn from the
characteristics of the solutions generated during the search, out of the best ones in
particular, and use this learning to guide the search (see, e.g., the studies on memory
and learning performed for tabu search [82]). Applied to cooperative search, it
appeared promising to apply these learning techniques to the elite solutions in the
population gradually built in the central memory and to use the resulting information
to guide the search performed by the cooperating solvers.

Asynchronous cooperative strategies that include mechanisms to create new
solutions and to extract information out of the exchanged solutions make up the
p-control knowledge collegial (pC/KC) class. In most developments in this field,
cooperating solvers work on the complete problem formulation and data. A recent
research trend addresses rich multi-attribute problem settings and proposes pC/KC
strategies where different solvers work on particular parts of the initial problem or on
integrating the resulting partial solutions into complete ones. The next subsections
describe these two cases.

pC/KC with Solvers Working on the Complete Problem

Two main classes of pC/KC cooperative mechanisms are found in the literature
differing in the information that is kept in memory. Adaptive memory methods
store partial elements of good solutions [142], while complete ones are kept in
central memory methods [32, 38, 42]. The latter method generalizes the former and
the vocabulary used in the various papers notwithstanding the two approaches is
becoming increasingly unified.

The adaptive memory terminology was coined by Rochat and Taillard [142] (see
also [81, 153, 154]). The method was targeting the VRP and the VRPTW, and it
marked a changing point in the state of the art at the time. The main idea was to keep
in the memory the individual components (vehicle routes in the initial application)
of the solutions produced by the cooperating solvers (tabu search methods in [142]).
Two types of information were recorded for each solution element kept in memory,
a frequency counter of its appearance in the best solutions encountered so far, and
its rank within the elite population in memory based on the characteristics (mainly
the objective function value) of the solution from which it was extracted. Solvers
constructed new complete solutions out of randomly (rank-biased) selected partial
elements, improved these new solutions, and returned the best ones to the memory.
The rank-biased random selection of elements assured that the new solution was
composed in most cases of routes from different elite solutions, thus inducing a
powerful diversification effect.

Several interesting developments were proposed, and conclusions were drawn
within the context of successful adaptive memory pC/KC algorithms. A set-covering
heuristic was thus proposed as selection mechanism for the elements (VRPTW
routes) used by solvers to generate new initial solutions [145]. This mechanism
proved very successful and has been used several times since (e.g., [87]). A
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two-level parallel scheme was proposed for the real-time vehicle routing and
dispatching [79]. A pC/KC/MPSS cooperating adaptive memory method made up
the first level, while the slave processors attached to each solver, a tabu search
method based on route decomposition [151], made up the second level. The
performance of this method is noteworthy also because, while many papers mention
the possibility of hierarchical parallel schemes, very few actual implementations
are found in the literature. Equally for the VRPTW, the adaptive memory approach
of [6] yielded a number of interesting findings relative to the implementation of
cooperative methods. Thus, when individual solvers are fast, as is generally the case
for routing problems, it is beneficial to run several solvers on the same processor
and group the exchanges with the central adaptive memory (avoiding or reducing
access bottlenecks to the latter). On the other hand, running the memory and solvers
on the same processor is to be avoided (the solver execution reduces the response
efficiency of the memory).

Solvers in central memory methods indirectly exchange complete elite solutions
and context information through the central memory data repository device. Solvers
may include constructive, improving, and post-optimization heuristics (e.g., [99,
100]), neighborhood (e.g., tabu search [57, 93, 94]) and population-based methods
(e.g., genetic algorithms [57, 99, 100], and path relinking [46]), as well as exact
solution methods, on restricted versions of the problem, eventually. The particular
solvers to include depend on the particular application. They should be efficient for
the problem at hand. They should also contribute to build and enhance solutions that
may contribute to improve both the quality and the diversity of the elite population
being built in the central memory.

The central memory keeps full solutions, solution attributes and context infor-
mation, both received from the solvers and newly created out of the exchanged
information. To more clearly distinguish between the data warehousing and the
information creating functions of central memory mechanisms, let the search
coordinator (SC) be the process in charge of the latter function. The simplest version
of the SC was used in the pC/C strategies of the previous section, where solutions
in memory were ordered (generally according to the value of the objective function)
and rank-biased randomly extracted to answer solver requests. The functions of
the SC in pC/KC methods include creating new solutions; extracting appropriate
solution elements; building statistics on the presence and performance of solutions,
solution elements, and solvers (these belong to the family of memories well known
in the meta-heuristic community); and creating the information to return when
answering solver requests (the latter are the so-called guidance mechanisms).

The cooperative meta-heuristic proposed by [99] for the VRPTW used a simple
pC/KC mechanism. Four solvers, two simple genetic algorithms with order and
edge recombination crossovers, respectively, and two tabu search methods that
perform well sequentially, the unified tabu [31] and TABUROUTE [78]. The solvers
sent their improved best solutions to the central memory and requested solutions
from the same when needed (the genetic algorithms for crossover operations, at
regular intervals for the unified tabu, and at diversification time for TABUROUTE).
Besides ordering and selecting the solutions to return, the SC was only performing
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post-optimization (2-opt, 3-opt, or-opt, and ejection-chain procedures to reduce
the number of vehicles and the total traveled distance) on the received solutions.
Without any calibration or tailoring, this algorithm proved to be competitive with
the best meta-heuristics of its day in linear speedups.

A more complete SC was proposed in [100] also for the VRPTW. The goal was
for a guidance mechanism that, first, extracted and returned to solvers meaningful
information in terms of individual guidance and global search performance and,
second, was independent of problem characteristics, routes in particular, and could
be broadly applied to network-based problem settings. To work toward the second
goal, the SC mechanism targeted an atomic element in network optimization, the
arc. The basic idea of the SC mechanism was that an arc that appears often in
good solutions and less frequently in bad solutions may be worthy of consideration
for inclusion in a tentative solution, and vice versa. To implement this idea, the
authors considered the evolution of the “appearance” of arcs in solutions of different
qualities. Appearance was measured by means of frequencies of inclusion of arcs in
the elite (e.g., the 10 % best), average (between the 10 % and 90 % best), and worst
(the last 10 %) groups of solutions in the central memory. Patterns of arcs were
then defined representing subsets of arcs (not necessarily adjacent) with similar
frequencies of inclusion in particular population groups. Guidance was obtained
by transmitting arc patterns to the individual solvers indicating whether the arcs
in the pattern should be “fixed” or “prohibited” to intensify or diversify the search,
respectively. The solvers accounted for the “fix” and “prohibit” instructions by using
the patterns to bias the selection of arcs for move or reproduction operations. A four-
phase fixed schedule (two phases of diversification at the beginning to broaden the
search, followed by two intensification phases to focus the search around promising
regions) was used (see [98] for a dynamic version of this mechanism). Excellent
performances in terms of solution quality and computing efficiency were observed
compared to the best performing methods of the day.

A different SC was proposed in [94] for the capacitated VRP with tabu search
solvers. Solvers periodically (after a number of iterations or when the solution has
not been improved for a number of iterations) sent best solutions to central memory,
and received a solution back from it, the search being resumed from the received
solution. The SC mechanism aimed to identify and extract information from the
solutions in memory to guide solvers toward intensification and diversification
phases. This was obtained by clustering solutions, dynamically when solutions
were received, according to the number of edges in common. Thus, solutions in
a given cluster have a certain number of edges in common, this cluster of edges
and solutions being assumed to represent a region of the search space. Search
history indicators were also associated to clusters giving the number of solutions
in the cluster and the quality of the solutions. This information was used to infer
how thoroughly the corresponding region had been explored and how promising it
appeared. Clusters were actually sorted according to the average solution value of
their feasible solutions. The cluster with the lowest average value, that is, with a
largest number of very good solutions, was selected for intensification, while the
solution with the lowest number of good solutions was selected for diversification.
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A solution was selected in the corresponding cluster, and it was sent to the
requesting solver. Excellent results were obtained in terms of solution quality and
computation effort (an almost linear speedup was observed up to 240 processors)
compared to the state-of-the-art methods of the day (including the parallel method
of [87]).

A pC/KC/MPDS method proposed in [87] for the VRP demonstrates how
specialized solvers may address different issues in a cooperative meta-heuristic,
including the generation of new knowledge. Two types of solvers were defined in
this scheme. The so-called heuristic solvers improved solutions received from the
SC associated to the central memory (called master in [87]), through a record-to-
record meta-heuristic [26, 83, 106]. On completing the task, solvers returned both
a number (50) of the best solutions found and the corresponding routes (a post-
optimization procedure was first run on each route). Simultaneously, set-covering
solvers aimed to identify new solutions by solving a series of set-covering problems
starting from a limited set of routes. Each time a set-covering problem was solved,
the solution was returned to the central memory and the set of the current ten best
solutions was retrieved for the next run. Set-covering solvers had also access to the
ordered list of best routes in memory, and they selected within to complete their
problems. The number of routes admitted to set up a set-covering problem was
dynamically modified during the search to control the corresponding computational
effort. The SC kept and ordered the received solutions and routes and selected the
solutions to make available to solvers (routes were always available; an efficient file
system was used to facilitate access to this data). The method performed very well,
both in terms of solution quality and computational effort (an almost linear speedup
was observed).

The contributions described in this section emphasize the interest of asyn-
chronous knowledge-generating cooperative meta-heuristics. The cooperation and
guidance mechanisms, as well as the role of learning and statistical performance
data, require additional and systematic studies, preferably on a broader range of
problem settings. The contributions aimed at addressing multi-attribute problem
settings are described in the next subsection.

pC/KC with Partial Solvers: The Integrative Cooperative Search

The versatility and flexibility of the central memory concept has raised the interest
in generalizing it to address so-called rich combinatorial optimization problems
displaying a large number of attributes characterizing their feasibility and optimality
structures. The general idea is to decompose the initial problem formulation along
sets of decision variables, called decision-set attribute decomposition in [96],
yielding simpler but meaningful problem settings, in the sense that efficient solvers,
can be “easily” obtained for these partial problems either by opportunistically using
existing high-performing methods or by developing new ones. The central memory
cooperative search framework then brings together these partial problems and their
associated solvers, together with integration mechanisms, reconstructing complete
solutions, and search-guidance mechanisms.
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The first effort in this direction is probably the work of [46] (see also [57]) for the
design of wireless networks, where seven attributes were considered simultaneously.
The proposed pC/KC/MPDS cooperative meta-heuristic had tabu search solvers
work on limited subsets of attributes only, while a genetic method amalgamated the
partial solutions sent by the tabu search solvers to the central memory, into complete
solutions to the initial problem.

The general method, called integrative cooperative search ICS) by its authors,
has been fully defined in [96] (see also [48,49]). The brief presentation that follows
describes ICS according to [96] through an application to the multi-depot periodic
vehicle routing problem (MDPVRP), which simultaneously decides on (1) selecting
a visit pattern for each customer, specifying the particular periods the customer is to
be visited over the multi-period planning horizon, and (2) assigning each customer
to a depot for each visit [115, 169].

The main components of ICS, which must be instantiated for each application,
are the (1) decomposition rule; (2) partial solver groups (PSGs) addressing the
partial problems resulting from the decomposition; (3) integrators, which select
partial solutions from PSGs, combine them to create complete ones, and send them
to the complete solver group (CSG); and (4) the CSG, which corresponds to the
central memory of ICS and has as prime function to manage the pool of complete
solutions and the context information received from the PSGs and integrators and
to extract out of these the information required to guide the partial and global
searches. Guidance is performed by the global search coordinator (GSC) associated
to the CSG. Notice that, in order to facilitate the cooperation, a unique solution
representation is used throughout ICS. This representation is obtained by fixing
rather than eliminating variables when defining partial problems.

The selection of the decision sets is specific to each application case, decision
variables being clustered to yield known or identifiable optimization problem
settings. An opportunistic selection decomposes the MDPVRP along the depot and
period decision sets to create two partial problems. Thus, fixing the customer-to-
depot assignments yields a periodic VRP (PVRP), while fixing the patterns for all
customers yields a multi-depot VRP (MDVRP). High-quality solvers exist in the
literature for both problems.

Two PSGs were defined for the partial problems, one for the PVRP and the other
for the MDVRP. Each PSG was organized according to the pC/KC paradigm and
was thus composed of a set of partial solvers, a central memory where elite solutions
were kept, and a local search coordinator (LSC) managing the central memory and
interfacing with the global search coordinator.

Two algorithms were used in the implementation described in [96] for both
complete and partial solvers, the HGSADC of [169] and GUTS, a generalized
version of the unified tabu search [31]. Briefly, HGSADC combines the exploration
capability of population-based evolutionary search, the aggressive-improvement
strength of neighborhood-based local search to enhance solutions newly created
by genetic operators, and a solution evaluation function driven by both solution
quality and contribution to the population diversity, which contributes to progress
toward diverse and good solutions. GUTS is a tabu search-based meta-heuristic



28 Parallel Metaheuristic Search 835

implementing advanced insertion neighborhoods and allowing the exploration of
unfeasible solutions by dynamically adjusting penalties on violations of vehicle
capacity and route duration constraints. Both methods use relaxation of vehicle
capacity and route duration constraints combined to penalization of infeasibilities in
the evaluation function. They also use well-known VRP local neighborhoods based
on pattern change, depot change, and inter- and intra-route movements.

Integrators build complete solutions by mixing partial solutions with promis-
ing features obtained within the PSGs. Integrators aim for solution quality, the
transmission of critical features extracted from the partial solutions, and compu-
tational efficiency. Several Integrators can be involved in an ICS implementation,
contributing to these goals and increasing the diversity of the population of complete
solutions.

The simplest integrator consists in selecting high-quality partial solutions (with
respect to solution value or the inclusion of particular decision combinations) and
passing them directly to the complete solver group. Meta-heuristics, population-
based methods in particular, e.g., genetic algorithms [169] and path relinking [131],
may also be used, having proved their flexibility and stability in combining solution
characteristics to yield high-quality solutions. Finally, a new methodology was
proposed recently [65]. It proceeds through particular optimization models that
preserve desired critical variables, defined as the variables whose values in the
respective solution represent desired attributes, present in the partial solutions.

Four integrators were included in the MDPVRP application, the simple one
passing good solutions to the CSG, and three others starting from pairs of partial
solutions randomly selected among the best 25 % of the solutions in the central
memories of the two PSGs. The second integrator applied the crossover operator of
HGSADC and enhanced the new solution through the local search education opera-
tor of the same method. The third and fourth integrators applied the methodology of
[65], the former aiming to transmit the attributes for which there was “consensus” in
the input solutions, while the latter “promoted” them only through penalties added
to the objective function.

The complete solver group (CSG) included a central memory, which included the
complete solution set, as well as the context information and the guiding solutions
built by the global search coordinator (GSC). The CSG received complete solutions
from integrators and, when solvers were included (e.g., GUTS and HGSADC in
the present case), enhanced them thus creating new ones. It was the global search
coordinator which (1) built the search contextual information (e.g., the frequency
of appearance of each (customer, depot, pattern) triplet in the complete solution
set, together with the cost of the best solution containing it), (2) built new guiding
solutions to orient the search toward promising features, and (3) monitored the status
of the solver groups, sending guiding instructions (solutions) when necessary.

Monitoring is performed by following the evolution of the PSGs by, e.g., inter-
rogating the central memories of the PSGs for the number of improving solutions
generated during a certain time period. Monitoring provides the means to detect
undesired situations, e.g., loss of diversity in the partial or complete populations,
stagnation in improving the quality of the current best solution, awareness that some
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zones of the solution space – defined by particular values for particular decision sets
– have been scarcely explored, if at all, and that the search should be diversified in
that direction, and so on. Whenever one of these criteria is not fulfilled, the GSC
sends guidance “instructions” to the particular PSG. The particular type of guidance
is application specific, but one may modify the values of the fixed attributes for
the PSG to orient its search toward a different area or, more rarely, change the
attribute subset under investigation (i.e., change the decomposition of the decision-
set attributes) or modify/replace the solution method in a partial solver or integrator.

In the present case, the GSC guided the search trajectory of a particular PSG
by sending three solutions, which were either randomly selected (equiprobably)
from the complete solution set, or were three guiding solutions built by the GSC.
The receiving PSG added directly these solutions to its own central memory, after
resetting its population, all solutions being replaced by new randomly generated
ones. Guiding solutions were continuously generated, and stored in a particular pool,
to reflect the current status and the history of the search represented by the context
information. The process proceeded by selecting promising triplets with respect to
the search history, that is, triplets that appeared in at least one complete solution
with a cost close (less than 3 % distant) to the current best solution. The promising
triplets were used to create feasible pattern and depot customer assignments, routes
being then generated by the local search of HGSADC to complete the solutions.
These solutions were then individually enhanced by a short execution of GUTS or
HGSADC.

Extensive experimental analyses were conducted to (1) assess the performance
of ICS when compared to state-of-the-art sequential methods and (2) investigate
a number of implementation alternatives. The general conclusions were that ICS
performed extremely well. It obtained very good results even when compared to
the state-of-the-art HGSADC meta-heuristic, obtaining several new best-known
solutions in shorter computing times. The experiments also indicated that (1) one
should use solvers displaying similar time performances in order to have all solvers
contributing reasonably equally to the cooperation; (2) when using genetic solvers in
a PSG, it is preferable for long runs to define a local population for each such solver
and reserve the central memory of the PSG for communications and guidance only,
while using the central memory as population for all cooperating genetic solvers
is better for short runs; and (3) embedding good solvers (HGSADC in the present
case) in the CSG enhances slightly the already excellent performance of the ICS
parallel meta-heuristic.

Conclusions

This chapter presented an overview and state-of-the-art survey of the main parallel
meta-heuristic ideas, discussing general concepts and algorithm design principles
and strategies. The presentation was structured along the lines of a taxonomy
of parallel meta-heuristics, which provided a rich framework for analyzing these
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design principles and strategies, reviewing the literature, and identifying trends and
promising research directions.

Four main classes of parallel meta-heuristics strategies may be identified: low-
level decomposition of computing-intensive tasks with no modification to the
original algorithm, decomposition of the search space, independent multi-search,
and cooperative (multi) search, the later encompassing synchronous, asynchronous
collegial, and knowledge-creating asynchronous collegial. It is noteworthy that this
series also reflects the historical sequence of the development of parallel meta-
heuristics. One should also note that, while the initial developments targeted genetic
methods, simulated annealing, and tabu search, research is not addressing the full
range of meta-heuristics. Furthermore, parallel meta-heuristics, cooperative search
in particular, are now acknowledged as making up their own class of meta-heuristics.

Many important research questions and challenges exist for parallel meta-
heuristics, in terms of general design methodology, instantiation to particular
meta-heuristic frameworks and problem settings, and implementation on various
computing architectures.

It is indeed noteworthy that despite the many years of research on these issues,
there are still many gaps in knowledge, as well as in the studied meta-heuristic
frameworks and problem classes. One may single out the many variants of swarm-
based optimization and nongenetic population-based methods, scatter search and
path relinking in particular. But one should not overlook the more classic meta-
heuristic classes, as one still misses systematic and comprehensive/comparative
studies of these issues. A large part of the studies present in the literature targeted
combinatorial optimization problems with relatively few attributes and a single
level of decision variables, e.g., vehicle routing problems. This is to be understood,
these problems being important for science and practice and displaying large search
spaces. Significant less research has been dedicated to multi-attribute problem
settings, like the rich VRPs one increasingly has to tackle, and formulations with
several levels of decisions like the single- and multilevel network design.

The community misses not only studies targeting particular meta-heuristic frame-
works and problem classes but also transversal studies comparing the behavior and
performance of particular parallel meta-heuristic strategies over different problem
classes and of different parallel strategies and implementations for the same problem
class. One increasingly finds such studies for sequential solution methods; we need
them for parallel methods.

With respect to the four strategy classes, one should not forget that each fulfills
a particular type of task and all are needed at some time. Thus, the idea that
everything seems to be known regarding low-level parallelization strategies is not
true. First, most studies on accelerating computing-intensive tasks targeted the
evaluation of a population or neighborhood in classic meta-heuristic frameworks.
These techniques should prove very valuable for swarm-based optimization, and
more research is required in this field. Second, as shown in recent studies, the
best strategy to accelerate a local search procedure may prove less effective when
the local search is embedded into a full meta-heuristics or hierarchical solution
methods. Third, the evolution of computing infrastructure opens up interesting but



838 T. G. Crainic

challenging perspectives. Let’s emphasize the possibilities offered by the graphic
processing units, which increase continuously in power and are present everywhere,
as surveyed in [16, 17].

Search-space decomposition also seems to have been thoroughly studied and has
been overlooked in the last years, maybe due to the rapid and phenomenal increase
in the memory available and the speed of access. Let’s not forget, however, that
most optimization problems of interest are complex and that the dimensions of
the instances one faces in practice keep increasing. Research challenges exist in
dynamic search-space decomposition and the combination of cooperative search and
search-space decomposition. The integrative cooperative search is a first answer in
this direction, but more research is needed.

Asynchronous cooperation, particularly when relaying on memories as inter-
solver communication mechanisms, provides a powerful, flexible, and adaptable
framework for parallel meta-heuristics that consistently achieved good results in
terms of computing efficiency and solution quality for many meta-heuristic and
problem classes. Other than the general research issues discussed above that are
of particular interest in this context, a number of additional research issues and
challenges are worth investigating.

A first issue concerns the exchange and utilization of context data locally
generated by the cooperating solvers, to infer an image of the status of the global
search and generate appropriate guiding instructions. Thus, contrasting the various
local context data may be used to identify regions of the search space that were
neglected or over explored. The information could also be used to evaluate the
relative performance of the solvers conducting, eventually, to adjust the search
parameters of particular solvers or even change the search strategy. So-called
“strategic” decision variables or parameters could thus be more easily identified,
which could prove very profitable in terms of search guidance.

A related issue concerns the learning processes and the creation of new in-
formation out of the shared data. Important questions concern the identification
of information that may be derived from the exchanged solutions and context
information and which is meaningful for, on the one hand, evaluating the status
of the global search and, on the other hand, sending to solvers to guide their own
search as part of the global optimization effort. Research in this direction is still at
the very beginning but has already proved its worth, in particular in the context of
the integrative cooperative methods.

A third broad issue concerns the cooperation of different types of meta-heuristics
and of these exact solution methods. The so-called hybrid and matheuristic methods,
representing the former and latter types of method combination, respectively, are
trendy in the sequential optimization field. Very few studies explicitly target parallel
methods. How different methods behave when involved in cooperative search and
how the latter behaves given various combinations of methods is an important
issue that should yield valuable insights into the design of parallel meta-heuristic
algorithms, integrative cooperative search in particular. Actually, more research is
required into ICS, both regarding its structure and components, and its application
to various problem settings. A particularly challenging but fascinating direction for
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cooperative search and ICS is represented by the multi-scenario representation of
stochastic optimization formulations, for which almost nothing beyond low-level
scenario decomposition has been proposed.

Finally, the issue of understanding cooperation on some fundamental level,
giving the means to formally define and analyze it in order to design better, more
efficient algorithms. As mentioned earlier, this work parallels efforts in many other
scientific domains addressing issues related to emerging decision and behavior
out of the decisions and behaviors or several independent entities. Theoretical
and empirical work is needed in order to address this fascinating and difficult
question.
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50. Crainic TG, Davidović T, Ramljak D (2014) Designing parallel meta-heuristic methods. In:
Despotovic-Zrakic M, Milutinovic V, Belic A (eds) High performance and cloud computing
in scientific research and education. IGI Global, Hershey, pp 260–280

51. Cung VD, Martins SL, Ribeiro CC, Roucairol C (2002) Strategies for the parallel implemen-
tations of metaheuristics. In: Ribeiro C, Hansen P (eds) Essays and surveys in metaheuristics.
Kluwer Academic, Norwell, pp 263–308

52. Czech ZJ (2000) A parallel genetic algorithm for the set partitioning problem. In: 8th
Euromicro workshop on parallel and distributed processing, Rhodos, pp 343–350

53. Dai C, Li B, Toulouse M (2009) A multilevel cooperative tabu search algorithm for the
covering design problem. J Comb Math Comb Comput 68:35–65
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