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Abstract

Memetic algorithms provide one of the most effective and flexible metaheuristic
approaches for tackling hard optimization problems. Memetic algorithms address
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the difficulty of developing high-performance universal heuristics by encourag-
ing the exploitation of multiple heuristics acting in concert, making use of all
available sources of information for a problem. This approach has resulted in
a rich arsenal of heuristic algorithms and metaheuristic frameworks for many
problems. This chapter discusses the philosophy of the memetic paradigm, lays
out the structure of a memetic algorithm, develops several example algorithms,
surveys recent work in the field, and discusses the possible future directions of
memetic algorithms.

Keywords
Evolutionary algorithms � Hybridization � Local search � Memetic
computing � Metaheuristics

Introduction

The effectiveness and efficiency of (meta)heuristics – and memetic algorithms
which may be viewed as particularly good heuristics in this sense – rests upon
their ability to explore the solution space thoroughly while avoiding exhaustive
or near-exhaustive searching. If polynomial-time computability is taken as an
approximation of tractability, then a polynomial-time algorithm can be viewed as
a very clever search procedure; in these cases there is a small search space, or
the search space can be reduced drastically. In dealing with intractable problems
however, reducing the search space to a reasonable size is a much more difficult task.
Most central is the problem of local versus global improvement; an improvement to
a solution does not give any guarantee of movement toward the optimum. Actually,
depending upon the problem under consideration, a local improvement may be a
move away from the global optimum (hence the notion of deception in search
algorithms [265]), or at the very least the solution may be getting closer to being
trapped in a nonoptimal configuration for which no simple modification can lead to
an improvement (i.e., a local optimum).

Thus, many (meta)heuristic methods include techniques for allowing non-
improving alterations to a solution or for nonlocal moves across the search space
in order to be able to escape from local optima [28]. Perhaps the most archetypical
example of such a metaheuristic is the genetic algorithm (GA) [99, 110]: inspired
by the principles of natural evolution, GAs maintain a population (i.e., a multiset)
of solutions that are subject to successive phases of selection, reproduction (via
recombination and mutation), and replacement. The use of a population of solutions
provides a better chance of avoiding local optima than maintaining a single solution:
on one hand, the search is driven by operators that (1) allow the search to take non-
improving steps, most notably in the case of mutations, and (2) allow the search to
move to significantly different portions of the search space, particularly by virtue
of recombination. On the other hand, selection and replacement typically work
on a global (population-wise) scale, meaning that non-improving solutions have
a chance of persisting for a nontrivial amount of time, hence allowing escape from
local optima. However, although this heuristic structure has proven quite effective, it
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relies almost entirely upon recombination mechanisms to improve solution quality,
and evolutionary processes are slow. In particular, they are also less capable of fine-
tuning solutions, that is, the progress toward a fully optimized solution once the
algorithm has located its basin of attraction (i.e., the region of the search space from
which a series of small – local – improvements can lead to a certain local optimum;
see [131,224]) is often sluggish. This is precisely in contrast to local search (single-
solution or trajectory-based) techniques which can readily locate local optima (and
hence are more sensitive to them).

To address this weakness, researchers began developing hybridized metaheuris-
tics [29, 31], that is, metaheuristics which combine ideas from different search
paradigms and/or different algorithms altogether. The underlying idea in such
approaches is obviously trying to achieve some synergetic behavior whereby the
deficiencies of a certain search technique are compensated by the combination with
other techniques and their advantages are boosted due to this very same combi-
nation. This strict interpretation of the term hybrid has been broadened with time
to encompass all forms of non-blind (i.e., not domain-independent) metaheuristics.
Under this broad interpretation, hybridization is the process of augmenting a generic
(problem-independent) metaheuristic with problem (or problem class, i.e., domain)
knowledge. Since this augmentation is often achieved via the blend of different
metaheuristic components, both interpretations are equivalent in most situations.
The broad interpretation has, in any case, the advantage of fitting better into
theoretical results such as those of Hart and Belew [107] and – most conspicuously –
those of Wolpert and Macready [267] in the so-called no-free-lunch theorem, which
states that search algorithms perform strictly in accordance with the amount and
quality of the problem knowledge they incorporate. While these results spurred
controversy in their time and have been refined [69, 70], the bottom line still holds.

Memetic algorithms (MAs) championed this philosophy. The denomination
memetic algorithm was coined in [175] to characterize and codify these hybrid
approaches. The term “memetic” was developed from Dawkin’s [62] notion of a
“meme” (from the Ancient Greek μ́ιμημα, meaning “imitated thing”) as a unit of
cultural inheritance (and hence cultural evolution) – the cultural analogue of a gene.
The use of the term meme was intended to capture the fact that information traits
in human culture are subject to periods of lifetime learning and therefore they are
different when transmitted to what they were when first acquired. This bears a strong
resemblance with the Lamarckian model of evolution, whereby traits acquired
during the lifetime of an individual are transmitted to its offspring. It is therefore not
surprising that MAs are sometimes disguised under other denominations featuring
the terms “Lamarckian” or “hybrid.”

While the initial conception of memetic search did not include the idea of
GAs or evolutionary algorithms (EAs) whatsoever [178], it turned out that these
techniques were ideal recipients for exploiting the metaphor of MAs, namely, having
a collection of “agents” alternating periods of self-improvement with phases of
cooperation and competition, cf. [177]. Indeed, early MAs mixed GAs and EAs
with simulated annealing and tabu search [180, 198], eventually developing the
idea that MAs are EAs endowed with some kind of local search (LS) technique,
leading to the restrictive definition MA = EA + LS [218]. Note however that the
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Algorithm 1: A generic memetic algorithm

1: parfor j WD 1 to � do F Initialise population Pop of search agents
2: popi WD new SearchAgent
3: end parfor
4: repeat
5: parfor j WD 1 to � do F individual learning phase
6: popi .learn()
7: end parfor
8: Pop.cooperate() F cooperation phase
9: Pop.compete() F competition phase

10: until Termination condition is true.

central concept of MAs is not to tie ourselves to a particular heuristic approach
or metaphor, but to provide a coherent structure for employing several heuristics
(including exact methods [30]) that deploy complementary heuristics exploiting
all available knowledge. Thus EA + LS � MA is a consequence of this broader
definition of MAs, cf. [50]. The next section will explore in more detail the structure
of an MA with particular emphasis on the classical characterization of the paradigm.

Structure of a Memetic Algorithm

As mentioned above, early definitions of MAs envisioned the paradigm as a prag-
matic integration of ideas from different metaheuristics. These were orchestrated
in terms of a collection of search agents carrying out individual explorations (i.e.,
lifetime learning) of the space of solutions and engaging in periodic phases of
cooperation and competition [198]. An abstract formulation of such an approach
is provided in Algorithm 1. This pseudocode matches the initial conception of MAs
as an inherently parallel approach whereby a collection of local searchers (simulated
annealing in early developments [178]) run either concurrently or physically in
parallel and establish synchronization points in which information was exchanged
among them. This said, this depiction of MAs is still generic enough to encompass
most actual incarnations of the paradigm as shown later, as it captures the essential
feature of MAs, namely, the carefully crafted interplay between global (population-
based) and local (individual-based) search. It must be noted that the terms global
and local are used in connection to the mechanics of the search rather than to the
ability of eventually (or asymptotically) finding the global optimum. It is certainly
the case that many local search approaches (simulated annealing, tabu search,
etc.) are capable of escaping from local optima and navigate the search space in
order to find the global optimum. The distinctive feature of these techniques (as
opposed to, e.g., genetic algorithms) is that they do this following a trajectory-based
approach.



20 Memetic Algorithms 611

Skeleton of a Classical Memetic Algorithm

Following early works in which the population-based aspects of MAs, namely, the
collection of agents and the synchronized stages of cooperation and competition,
were captured by a genetic algorithm [180], the classical memetic model coalesced.
The basic skeleton of such an MA is relatively straightforward, adding little addi-
tional complexity beyond that of a GA. Algorithm 2 gives a pseudocode sketch of
the salient structure, using local search as a placeholder for any particular individual
improvement heuristic including, for instance, a complete exact algorithm like
branch and bound, and others that guarantee optimality of the final solution obtained
when they stop. Although a small structural change to a typical GA, the inclusion of
the individual improvement phase can dramatically alter its performance. This mix
allows the metaheuristic to benefit from the solution diversity engendered by the
evolutionary approach, but to avoid the lethargic pace of improvement via more
directed optimization: instead of relying random processes subjected to fitness-
based selection alone, each individual solution is optimized before the evolutionary
mechanism is applied, significantly increasing the rate at which individual solutions
converge to an optima.

Algorithm 2: A local-search based memetic algorithm

1: Pop WD new Solution [popsize] F Create population Pop

2: for i 2 Pop do
3: i .initialise() F Generate initial solution
4: i .local-search() F Individual improvement. Comprises solution evaluation
5: end for
6: repeat
7: for j WD 1 to #recombinations do F Recombination phase
8: P arents WD Pop.select(numparents) F Select parent set

P arents � Pop

9: c WD P arents.recombine() F Recombine parents to create child c

10: c.local-search()
11: Pop.update(c) F Inserts new solution in the population
12: end for
13: for j WD 1 to #mutat ions do F Mutation phase
14: i WD Pop.select(1);
15: im WD i .mutate() F Mutate solution i

16: im.local-search()
17: Pop.update(im)
18: end for
19: if Pop.converged() then F Refresh population upon convergence
20: Pop.restart()
21: end if
22: until Termination condition is true.
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The structure of an MA is quite flexible, and the performance of the implemen-
tation, both in terms of solution quality and speed, can be affected by a number
of factors. As an evolutionary, population-based metaheuristic, the typical issues
regarding choice and implementation of mutation and recombination operators
are inherited from the GA paradigm. For those familiar with GAs however, it
should be readily apparent that the individual improvement phase is most likely
to be the computational bottleneck – the improvement of every individual and the
subsequence evaluation of every individual are inherently expensive simply because
they are done for every individual (as shown in [167], it can easily take up to
95% of the computational cost of the algorithm). The tradeoff is that with a good
choice of individual improvement heuristic, far fewer generations of mutation and
recombination are required. The careful reader will also notice that the local search
procedure (and, typically, any individual improvement heuristic) is highly amenable
to parallelization. This helps to ameliorate the cost of the individual improvement,
but more importantly lends the MA approach a high degree of scalability.

From the point of view of the different components into which a classical MA
can be dissected, all of which encapsulate some portion of problem knowledge.
Consider, for instance, recombination. This is the component that captures most ap-
propriately the idea of agent cooperation. Such a cooperation is typically established
between a pair of agents but can in general involve an arbitrary number of parents
[76] (notice nevertheless that in this case some forms of heuristic recombination can
be very complex [53]). The generic idea of a knowledge-augmented recombination
operator is to combine, in an intelligent way, pieces of information contained in
the parents. How these pieces are defined is a problem-dependent issue that arises
from the issue of representation in EAs. The underlying objective of an appropriate
representation would be to have solutions described by some structured collection
of objects whose values truly capture solution features of relevance (i.e., ultimately
responsible for determining whether a solution is good or not). Even from the
beginnings of MAs, the importance of developing a suitable representation – in
which evolution of the representation reflects the correlation of elements in the
fitness landscape – was identified [175]. This is a substantial topic for which the
interested reader is referred to, e.g., [226]. Focusing on the smart manipulation
of these information units (however they are defined), that is, processing them in
a problem-specific way instead of using domain-independent templates (such as
those in [217]), the goal is picking the right combination of such units from either
parent. Of course, this is easier said than done (and in fact, doing it is in general
provably hard for arbitrary problems and/or definitions of right combination –
see the discussion on the polynomial merger complexity class in [177, 179]), but
there are numerous heuristic ideas in the literature that can be used to this end.
In many cases – and following design advice already present in classical texts of
hybridization pioneers, e.g., [61] – these ideas are based on the use of problem-
specific heuristics such as greedy algorithms [132,185], backtracking [48], dynamic
programming [123], or branch and bound [55], just to mention a few.

Mutation is another classical operator, well known for its role of maintaining a
continuous supply of genetic diversity that can be subsequently exploited by the
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remaining operators. In certain EA models, such as evolutionary programming [86],
it actually bears sole responsibility for driving the search. Note that while this
latter philosophy can be also used in an MA context – see section “An Example
Memetic Algorithm for WEIGHTED CONSTRAINT SATISFACTION PROBLEMS” –
it is typically the case that MAs use sophisticated recombination operators such as
those described before. Thus, the criticism of recombination being just a disguised
form of macromutation would not apply to them. Moreover, due to the presence
of a local search stage in the main evolutionary cycle, one has to be careful to
pick a mutation operator whose effects on solutions cannot be trivially undone by
the local search, since that would defeat the very purpose of mutation. Following
this line, in some cases there are MAs that even refrain from using mutation, e.g.,
[163, 262]. While such a decision could be further vindicated by the fact that MAs
usually feature a population-restart procedure (see line 20 in Algorithm 2) and hence
premature convergence is not so troublesome, this is not the most common course
of action. An appropriate mutation operator (i.e., one using a sufficiently different
neighborhood to that used by the local searcher) is often utilized. In fact, it is not
unusual to have more than one such mutation operator, e.g., [152, 231], much like
in metaheuristic approaches such as variable neighborhood search [105] (VNS). In
some cases, these multiple mutation operators are used with the purpose of exerting
different degrees of perturbation (i.e., light and heavy mutations) depending on the
convergence of the population [87].

As to the local search component, it can take the form of any stand-alone
method such as hill climbing, simulated annealing, tabu search, variable neigh-
borhood search, etc. [199]. The choice of a particular technique must take into
account two major issues, namely, its parameterization and its interaction with
the remaining components of the algorithm. Regarding the latter, and in addi-
tion to the issues discussed above in connection to the mutation operator, one
has to consider the interplay between the local searcher and the recombination
operator. For example, a highly intensive local search procedure may be better
suited to interact with a more diversification-oriented recombination operator –
see, e.g., [88]. This heuristic recipe does not necessarily conflict with the use
of a powerful recombination operator (see, e.g., [91]) but underlines that the
knowledge embedded in either component, recombination operator and local
search heuristic, must be complementary in terms of the effect they produce
in the search dynamics (much as was discussed for the mutation operator). An
interesting analysis of these issues from the point of view of fitness landscapes
is provided in [170]. Whatever the definition of the neighborhood is (and notice
that it can be complex, even combining several simpler neighborhood schemes),
it is often crucial to be able to evaluate solutions incrementally for performance
reasons [106]. It is desirable to avoid having to resort to a full evaluation and
only recompute the fitness contribution of the solution components that were
modified. This may require the use of appropriate data structures and is normally
associated to discrete optimization (the high nonlinearity – and sometimes even
the lack of a closed fitness function – often makes this complicated in continuous
optimization).
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The parameterization of the local search heuristic is another complex issue. This
includes both high-level algorithmic aspects as well as low-level parameters. The
high-level aspects include factors such as when to apply local search, to which
solutions it should be applied and which local search operator to apply. The low-
level aspects include parameters such as the breadth (number of neighbors explored
in each iteration of the local search heuristic) and depth (how many iterations of
local search will be performed). Further discussion is given in [245]. Determining an
adequate setting for these parameters is crucial for the performance of the algorithm
since it has been shown theoretically that small parameter changes can turn a
problem from being polynomial-time solvable with high probability to requiring
super-polynomial (even exponential) time [144,244]. Unfortunately, a priori design
guidelines to provably avoid this kind of behavior are ruled out by intractability
results [245]. Thus, design by analogy and empirical testing seem to be the handiest
tools to approach this endeavor (although self-parameterization is an appealing
alternative that is increasingly gaining relevance – see section “Future-Generation
Memetic Algorithms”). In this regard, it has been, for example, shown in several
contexts that partial Lamarckism [112], that is, not applying local search to every
individual but just applying it some probability pLS , can produce notably better
results than a fully Lamarckian approach [49, 126] although the best value of this
parameter is problem dependent. On a related note with regard to the depth of the
local search, it has been also proposed in the literature to save the store of the local
search together with the solution it was applied to, so as to resume the process from
that point if required [173, 174].

The restarting procedure is another important element in an MA. The goal of
this procedure is to perform a warm reinitialization of the population when the
search is deemed stagnated (i.e., the population has converged to a suboptimal state).
Of course, that stagnation can be hindered by taking preventive measures such as
the light/heavy mutation scheme mentioned before, the use of spatial structure in
populations [250] (see also next subsection), or some other diversity-preservation
policy [236] – see also [188]. A more drastic measure may be eventually required
though. For that purpose, a common approach is to keep a certain percentage of
the current population and use the solution creation mechanism (the one used to
create the initial population – line 3 in Algorithm 2) to complete the new population.
Regarding the former, they constitute a seed that allows keeping a part of the search
momentum without having to start from scratch. As to the latter, notice that they
need not be purely random solutions but any available constructive heuristic can be
used for this purpose.

A Note on More Complicated Memetic Algorithms

Although Algorithms 1 and 2 lay out a basic MA framework, the structure can be
made significantly more complex. As the central motivation of MAs is to exploit
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all available information, the restriction of any particular component would be
antithetical. Apart from employing different heuristics, multiple heuristics can be
employed in concert. It is easy to combine different individual improvement heuris-
tics, applying them to different individuals and different populations, in parallel,
in sequence, or even in competition. Similarly the population-based heuristic can
employ multiple improvement techniques – such approaches are well known in the
GA community.

Moscato and Tinetti [181] demonstrate a more complicated MA that uses a
number of heuristics in concert and to achieve different goals within the algorithm.
The algorithm employs a tree-structured population where the population is divided
into subpopulations of size 4, composed in a ternary tree structure:

1. Each subpopulation is divided into a leader node and three supporters. The
supporters are stored one level below their leader.

2. The intermediate nodes in the tree hold an individual that is part of two
populations; it is the leader of the three supporters lower in the tree and a support
of its leader higher in the tree.

3. The number of subpopulations can be manipulated by adding levels to the tree.

Each individual can be optimized using a local search procedure that selects
from a variety of local optimization moves: approximate 2-OPT, One-City Insertion,
and Two-City Insertion [134,156]. Genetic recombination occurs “normally” within
each subpopulation. The leader individual represents the best tour in the subpopula-
tion. Note that the overlap of subpopulations ensures improvement propagates up the
tree. The small subpopulation size, however, can quickly lead to a lack of diversity,
in which case the recombination mechanism switches to an external recombination
procedure for the lowest level of the tree.

In this example a number of variations on the basic structure of an MA are
evident: multiple local search variants, a multipopulation variation of a GA which
itself employs multiple recombination procedures. Another example of a more
complex improvement strategy is given by Moscato [176], where a small population
of individuals is maintained (only 16 individuals, each a binary vector), with a tabu
search procedure for individual improvement. Again, in a small population, a loss of
diversity is a potential drawback. To combat this, each individual notes the 16 best
single-bit-flip moves available. When diversity falls below a given threshold, instead
of following a simple tabu search approach, individual i makes move i from its list
of best moves. This deliberate (potentially) nonoptimal has the effect of spreading
the individuals further across the configuration space, increasing diversity. Once
diversity is restored, the normal tabu search optimization is restored.

The continuation of these ideas has led to the development of what are now
called self-adaptive memetic algorithms, which allow the context-specific, dynamic
application of different heuristics or tuning of search parameters by the algorithm
itself. See section “Future-Generation Memetic Algorithms”.
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Memetic Algorithms in Practice

This section presents two extended examples of memetic algorithms for specific
problems – NETWORK ALIGNMENT and WEIGHTED CONSTRAINT SATISFACTION

PROBLEMS – and surveys recent interesting applications of memetic algorithms in
different fields.

An Example Memetic Algorithm for NETWORK ALIGNMENT

The optimization version of the basic NETWORK ALIGNMENT problem takes
as input two networks G1 and G2 and asks for an injective partial mapping
f W V .G1/ ! V .G2/ between the vertices of the two networks that maximizeP

u;v2V .G1/ �f .u; v/ where

�f D

(
1 if uv 2 E.G1/ and f .u/f .v/ 2 E.G2/

0 otherwise

It may be assumed that the mapping is total and bijective by adding “dummy”
vertices to the smaller network. Of course �f is open to variation as are the
precise details of f , leading to many variants of NETWORK ALIGNMENT. The
decision variant of NETWORK ALIGNMENT is NP-complete [138] and WŒ1�-
complete (Mathieson et al., 2015, Using network alignment to uncover topological
structure and identify consumer behaviour modelling constructs, unpublished
Manuscript), suggesting, subject to standard complexity assumptions, that no
suitably efficient exact algorithm for NETWORK ALIGNMENT exists, making it a
prime candidate for heuristic methods.

In developing a memetic algorithm for this (and any) problem, it is necessary
(at a minimum) to select an individual solution representation, mutation, and
recombination operators and an individual improvement heuristic and its attending
concerns.

For NETWORK ALIGNMENT, the most direct individual representation is the
mapping itself. Assuming any necessary dummy vertices have already been added,
the mapping can be represented by, for example, an array of size jV .G1/j storing
a permutation of V .G2/. For ease of representation, it is sufficient to assign each
vertex a unique integer in the range Œ0; jV .G1/j�. An alternative representation
suitable for NETWORK ALIGNMENT would be to store the alignment of the edges,
making computing the basic fitness function simple, but the individual could be
polynomially larger, impacting the efficiency of mutation, recombination, individual
improvement, and even evaluation. Moreover care would need to be taken as to how
to determine which vertices were aligned.

With this individual representation, a simple, reasonable mutation operator is that
of a random shuffle, where each element of an individual is randomly swapped with
another, randomly chosen element, with a given probability. A naïve recombination
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operator is, given two parent individuals, to select a linear segment of the individual
(i.e., a set of contiguous indices) and swap the mappings for those indices between
the parents (with adjustment to take care of duplication of elements), producing
two children. This recombination is commonly known as a partially matched
crossover [100]. However, considering the problem at hand, it is easy to see that
this choice may be somewhat inefficient. The NETWORK ALIGNMENT problem, in
essence, seeks to preserve as much topological structure (i.e., edge matchings) as
possible – in this sense it is a relaxed GRAPH ISOMORPHISM problem. Swapping a
set of arbitrarily chosen indices is unlikely to preserve interesting structure, contrary
to the goal of a recombination operator, which is to produce children of higher
quality than their parents by mixing the better parts of the parents, aiming to place
the child solution closer to the global optima. For NETWORK ALIGNMENT, it is
much more interesting to preserve neighborhoods of vertices in this regard. So a
better choice of recombination operator is to select a vertex and its 2-neighborhood
(all vertices at distance at most 2) as the set of indices which will be swapped.

To complete the GA component, a tournament selection process is employed
to choose the individuals included in the new generation and a restart mechanism
whereby the best solution is recorded and the population is restarted if no improve-
ment has been observed after a given number of generations.

For individual improvement, a local search heuristic is used, where the neighbor-
hood of each individual is the 2-swap neighborhood – the set of individuals obtained
by swapping any two elements. The search is implemented by selecting an element
in the individual and taking the optimal swap in the local neighborhood. If this is
not the identity mapping, the neighbors of the preimage of the swapped vertex are
placed into a list of vertices to swap. If no initial swap is found, the process is
repeated with a new starting point until a swap is found or all vertices have been
tested.

In combination with the skeletons given by Algorithms 1 and 2, these compo-
nents constitute an MA for NETWORK ALIGNMENT. The reader will notice that,
even without considering more complicated approaches, there are a number of
tunable parameters present. These include the probabilities and frequencies which
control mutation and recombination (as in GAs) and, more specifically for MAs,
the frequency and application régime of the individual improvement step. The
individual improvement may be applied, at essentially one extreme, regularly, to all
individuals, or at the other extreme, only when the evolutionary progress slows and
to a select few individuals, or of course in some intermediate régime. As discussed in
section “A Note on More Complicated Memetic Algorithms”, an adaptive approach
could also be taken, allowing the algorithm to adjust these parameters itself.

An Example Memetic Algorithm for WEIGHTED CONSTRAINT

SATISFACTION PROBLEMS

WEIGHTED CONSTRAINT SATISFACTION PROBLEMS (WCSPs) are a general class
of combinatorial problems in which (i) solutions are assignment of values to a
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collection of variables, each of them taken from a possibly different domain, (ii)
there are hard constraints making some particular combinations of variable values
infeasible, and (iii) there are some soft constraints establishing preferences among
solutions. For example, consider a school timetabling problem in which courses
have to be fit into different time slots: no two courses can use the same time slot
if they are taught by the same lecturer (a hard constraint), and lecturer preferences
(e.g., teaching in the morning or in the afternoon) have to be respected if possible.
In essence, both types of constraints can be represented by defining a collection
of integer functions fi , one for each constraint; these functions are used to weight
the fulfillment/violation of the corresponding constraint, and therefore an objective
function F (to be minimized, without loss of generality) can be built by summing
them. Thus, it will be typically the case that hard constraints have a much larger
weight (even infinite if violated) than soft constraints.

Formally, a WCSP can be characterized as a triplet hX ; D ; F /, where each xi 2

X , 1 6 i 6 n is a problem variable whose domain is Di 2 D . Each function
fj 2 F , 1 6 j 6 m has signature fj W Vj ! N, where Vj 2 2X is the subset of
variables involved in the j -th constraint. With this formulation, a naïve evolutionary
approach can be defined by using the Cartesian product S D D1�� � ��Dn as search
space, taking the fitness function to be F .x/ D

P
j

Ofj .x/ (where Ofi is a function
that picks from its argument the variables in Vj and feeds them to fj ), and utilizing
standard operations for recombination and mutation. Such an approach is however
going to perform poorly in general due to the lack of problem-specific knowledge. A
much more sensible approach can be built on the basis of (i) a smart recombination
operator and (ii) a powerful local search technique.

Regarding recombination, it is very easy to define a greedy recombination
mechanism for WCSPs: (1) start from a solution s with all variables unassigned,
(2) sort constraints in some particular order (arbitrary or heuristically selected)
j1; � � � ; jm, and (3) traverse this ordered list of constraints, checking for each jk

the variables in Vjk
that are still unassigned in s, constructing two (or as many

as parents) candidate sets using the assigned values in s plus the values that the
remaining variables in Vjk

take in either parent, and keeping the candidate set v

minimizing fjk
.v/ (which is subsequently used to expand the solution s). This

procedure has been used, for example, in [57] for the construction of Golomb rulers
and in [225] for the construction of balanced incomplete blocks, to cite just two
examples.

It is possible to define a more intensive recombination approach by taking ideas
from complete techniques [59]. More precisely, a complete technique can be used to
explore the set of potential solutions that can be created using a given collection of
parents, returning the best solution attainable. Different possibilities can be used
for this purpose such as branch and bound [55] or integer linear programming
techniques [164]. A more WCSP-specific approach can be found in the use of bucket
elimination (BE) [63]. BE can be regarded as a dynamic programming approach
based on the successive elimination of variables and the use of an auxiliary table
to store the best value of the fitness function for specific variable combinations.
More precisely, BE considers some ordering of the variables (again, arbitrarily or



20 Memetic Algorithms 619

heuristically selected – it must be noted that while the particular choice ordering is
irrelevant for correction purposes, it can have a huge impact in the computational
complexity of the algorithm though) i1; � � � ; in. Then, it traverses this sequence and
for each variable xik (1) determines the constraints C � F in which xik is involved;
(2) computes the bucket

Bik D
�
[fj 2C Vj

�
n fxik g;

namely, the collection of variables related to xik in any constraint; (3) determines
for each combination t of values for variables in Bik the value v�

t for xik such that
w D

P
fj 2C

Ofj .t �.xik D v// is minimal; and (4) removes C from F and adds a new

constraint f 0 with domain V 0 D Bik defined as f 0.t/ D
P

fj 2C
Ofj .t � .xik D v�

t //.
When all variables have been eliminated, the optimal cost w is found, and one only
has to trace back the process (using the auxiliary table) to determine the best variable
assignment [93]. This procedure has been used with great success in [91] for solving
the MAXIMUM DENSITY STILL LIFE PROBLEM in conduction with a local search
procedure based on tabu search.

A potential drawback of recombination schemes such as those defined above
is scalability: the use of an exact technique for recombination is less costly than
using it to solve the problem completely from scratch, but its cost will nevertheless
grow with the problem size until becoming impractical at some point. To alleviate
this problem, the granularity of the representation can be adjusted [54], that is,
grouping variables in larger chunks which are subsequently used as basic units
for the purposes of constructing solutions (hence reducing the number of potential
solutions attainable and therefore the computational cost of the exact technique).
In the context of the BE method described before, this approach is termed mini-
buckets [64] and can be readily applied to the recombination mechanism described
above [93]. Another source of difficulties is the existence of symmetries or partial
isomorphisms between solutions. This scenario is typical in many WCSPs in which
variables or groups thereof can be relabeled without altering the solution. In such a
situation, recombination can reduce to macromutation unless it is effectively capable
of identifying correspondences between variables in different parents. This is, for
instance, done with success in [171] in the context of clustering genomic data.
Of course, it may be very complex in general to find a perfect matching between
variables in an arbitrary WCSP with symmetries. In problems for which this is
deemed too complicated or time-consuming, it must be noted that a recombination-
less MA – essentially a population of local searchers subject to interleaved phases
of self-improvement and competition via selection/replacement, much in the line
of go-with-the-winner approaches [8] – can also provide acceptable results. This
is, for example, the case of the SOCIAL GOLFER PROBLEM, a WCSP with a large
degree of symmetry that was successfully attacked using a memetic evolutionary
programming approach [56] (an MA propelled by selection, mutation, and local
improvement).
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A Brief Survey of Recent Memetic Algorithm Applications

In recent years, MAs have become a significant part of the optimization toolkit and
have become particularly well used in recent years. As a rough gauge, the number
of academic papers (found via searching DBLP and ISI Web of Science for relevant
papers with the word “memetic” in their title, abstract, or keywords) published has
risen to over 300 per year since 2011, with thousands of academic publications in
total since 1998. Possibly the most interesting aspect of this expanding interest in
memetic algorithms is the diversity of techniques and application areas.

Memetic Algorithms in the Wild
While many algorithms developed in the areas of Computer Science and Optimiza-
tion are demonstrated via application to practical problems drawn from a variety of
areas, a more reliable indicator of the effectiveness of a technique is the adoption of
the technique as a tool within the communities from which the problems are drawn.
The following briefly surveys some of the areas in which memetic algorithms have
been successfully applied. Table 1 gives an overview of the breadth of application
areas for memetic algorithms, with recent references. Of course this table is far from
exhaustive, even within the application areas mentioned. As a matter of fact, in some
areas the number of memetic applications has deserved individualized treatment in
specialized surveys, e.g., scheduling and timetabling [50], engineering and design
[37], bioinformatics [24], etc. – see also [189] for a recent general application

Table 1 Some recent publications reporting on memetic algorithm applications by field of
application

Application area References

Biology [89, 90, 186, 187, 197, 201, 238–241, 269, 270]

Chemistry [77–80, 108, 194]

Chemical engineering [47, 75, 140, 141, 150, 158, 242, 253–257]

Data compression [146, 169, 246, 271, 275, 280]

Drug design [104, 109, 130, 161, 191, 192, 251, 252]

Electronic engineering [41, 46, 97, 98, 101, 113–118, 135, 200, 205–207, 210, 214, 272]

Finance [15, 45, 71, 243]

Geoscience [36, 258]

Image analysis [66, 127, 162, 228]

Materials science & engineering [14, 25, 124, 125, 222, 260]

Microarray analysis [12, 13, 19, 73, 94, 148, 167, 182, 208, 237, 278]

Computer networking [16, 215, 216, 248, 261, 276]

Oncology [1, 39, 74, 133, 166, 230, 251, 252, 279, 281]

Operations research [2,6,10,22,40,68,95,111,129,159,160,165,209,212,213,219,
227, 259, 266, 268, 274, 277]

Physics [5, 103, 139, 264, 273]

Power engineering [17, 18, 26, 67, 120, 121, 136, 147, 149, 151, 157, 168, 183, 195,
220, 223, 232]
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survey. The breadth of the application areas suggests a significant generality and
flexibility in the memetic paradigm.

Memetic Speciation
Along with a wide set of application areas, memetic algorithms have also embraced
many forms, employing a wide variety of combinations of population-based
heuristics and individual improvement heuristics. Table 2 lists some of the more
prominent combinations, with example references for each. Not only are different
combinations of population-based heuristic and individual improvement heuristic
extant, more exotic memetic algorithms that use heuristics of only one type, or
multiple heuristics of each type, exist. The adaptability of memetic algorithms
to parallel implementation also encourages the use of multiple different types of
heuristics simultaneously – the exploitation of all available knowledge is, after all,
the central idea of the memetic paradigm.

Table 2 Some varietal combinations of heuristics forming memetic algorithms

Population-based
heuristic

Individual improvement heuristic References

Ant colony
optimization

Local search [44, 72, 84, 154]

Bee colony
optimization

– [32, 34]

Random optimization [21]

Nelder-Mead simplex [85]

– Nelder-Mead simplex with bidirectional
random optimization

[4]

Binary differential
evolution

Tabu search [102]

Continuous
differential evolution

Pool of strategies [122, 249]

Hooke-Jeeves-like [211]

Stochastic local search [190]

Cross entropy Hill climbing, tabu search [11]

Genetic algorithm Local search [15, 22]

Tabu search [27, 33, 92, 153, 155, 263]

Mathematical programming [254]

Genetic algorithm
with particle swarm
optimization

– [26, 119]

Particle swarm
optimization

Local search [20, 35, 65, 121, 274]

Variable neighborhood search [9]

Sequential quadratic programming [221]

Particle swarm
optimization with
differential evolution

Nelder-Mead simplex with Rosenbrock
algorithm

[38]
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Future-Generation Memetic Algorithms

Back in the days when MAs were just a nascent approach for optimization, different
visions of what MAs would be in the future were foreseen. Among these, maybe the
one which has come closest to reality refers to the self-? capabilities [23] of the
paradigm and more precisely to self-generation properties. Early works envisioned
that the algorithm could work on two timescales, one in which solutions would
be optimized and another one in which the problem-solving strategies used to
optimize solutions would be themselves optimized [177]. In essence, this has been
a long-standing goal in metaheuristics. It is widely acknowledged that the design
of an effective problem-solving technique is in itself a hard task. Attempting to
transfer a part of this design effort to the actual metaheuristic is just the logical
course of action [58] – see, for example, the corpus of research in hyperheuristics
[42, 60]. This latter approach is actually related to what has been termed “meta-
Lamarckian” learning [202], a memetic approach in which a collection of local
searchers is available and there is a decision-maker that decides which of them
should be applied to specific solutions based on different criteria (e.g., the past
performance of each local searcher, the adequacy of the current solution for being
improved by a certain local searcher according to past experience, etc.). A much
more general approach was provided by multi-memetic or multimeme algorithms
[142, 143, 145]. In this approach an encoding of a local searcher (ranging from the
definition of the neighborhood or pivot rule used up to a full algorithmic description
of the procedure) is attached to each solution and evolves alongside it. Thus, the
algorithm not only looks for improved solutions but also for algorithmic structures
capable of improving the latter. The next natural step is detaching these memes
from the genes and have them evolve in separate populations [233–235], paving
the way for the emergence of complex structures of interacting memes [43]. An
overview of adaptation in MAs is provided in [203]. This view of memes as explicit
representations of problem-solving strategies that interact in a complex and dynamic
way within an evolutionary context for optimization purposes leads to the notion
of memetic computing [193, 204] – see [189] for a literature review on memetic
computing. A further iteration of this concept is to apply metaheuristic approaches
to develop worst-case instances of a problem, which can then be fed back into the
process of optimizing the algorithm. This technique has been explored in regard to
sorting [51] and the TRAVELLING SALESMAN PROBLEM [3].

Another dimension along which some early ideas (farfetched at their time) about
MAs may become a reality is parallel computing. The deployment of metaheuristics
in parallel and/or distributed environments is by no means new [7] and has been
extensively used since the late 1980s; see, for example, [184, 247]. However, the
continuous evolution of computational platforms is dragging these parallel modes
along, forcing them to adapt to new scenarios. Thus, whereas early works often
assumed dedicated local area networks, it is nowadays more common to have
emerging computational environments such as peer-to-peer networks [172] and
volunteer computing networks [229], which are much more pervasive, of a larger
scale and inherently dynamic. Coping with the complex, dynamic structure of the
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computational substrate is undoubtedly a challenge. Fortunately, population-based
metaheuristics have been shown to be intrinsically robust at a fine-grain scale [128]
and can be endowed with appropriate churn-aware strategies if required [196]. They
are therefore ripe for being deployed on these platforms to exploit the possibilities
they offer. In this line – and connected to the previous discussion on meme evolution
and interaction – some initial concepts revolving around “meme pools,” that is,
repositories of problem-solving methods to be used synergistically, acquire a new
scope more akin to service-oriented architectures [96]. Furthermore, to build on
the idea of automated self-design of the MA requires the ability to keep or gather
some sort of distributed knowledge about the state of the search and make design
decisions on its basis. Some ideas from multi-agent systems and epistemic logic
were proposed as potential tools for this purpose [52], but the concept still remains
largely unexplored.

There are also opportunities for the development of MAs (and GAs) at the small
scale. Any use of recombination operators is naturally limited by the expectation
that the recombination step will be performed many, many times during a run of
the algorithm. This leads to the requirement that a recombination operator must
be able to be implemented very efficiently. Traditionally this would mean at most
linear or close to linear time in the size of the individual (of course, ideally constant
time). This immediately rules out the possibility of optimal recombination strategies
for many problems, as typically such strategies would be NP-hard. Parameterized
complexity, for example, offers some opportunity to exploit the naturally arising
parameters in many recombination strategies. If such parameters are small, or can
be made small, then the complexity of optimal recombination may be effectively
reduced to polynomial time [53,81–83]. For further reading on the challenges raised
by evolutionary approaches to optimization, many of the problems posed in [52]
remain open.

Conclusion

Since their primordial conception in the late 1980s, memetic algorithms have de-
veloped to become one of the most adaptable and flexible metaheuristic approaches
available. While many heuristic techniques perform well for some problems, the
No-Free-Lunch theorem [267] guarantees that their performance falters on the
majority of problems. Memetic algorithms, with their insistence on adaptability and
utilitarianism (both on the part of the algorithm and the implementer), are free to
exploit the performance of multiple approaches and choose the best suited for the
problem at hand.

The adaptability, efficiency, and amenability to the current availability of large-
scale parallelism, including traditional parallel architectures along with GPU
computing and cloud- and peer-based approaches, along with a tendency toward
modularity in implementation, have led to their adoption across a broad range of
fields with excellent results. The field of memetic algorithms research has grown
dramatically since 1998. With over 2000 academic papers published at a current rate
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of over 300 per year, the field is vibrant and dynamic. The importance and influence
of memetic algorithms has grown such that Thomson Reuters selected it as one of
the top ten research fronts in Mathematics, Computer Science, and Engineering in
2013 [137]. To put it simply, memetic algorithms are one of the most flexible and
effective tools in the heuristic toolbox and a key technique for anyone involved in
combinatorial optimization to learn.

Cross-References
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172. Milojičić DS, Kalogeraki V, Lukose R, Nagaraja K, Pruyne J, Richard B, Rollins S, Xu Z
(2002) Peer-to-peer computing. Technical report HPL-2002-57, Hewlett-Packard Labs

173. Molina D, Lozano M, García-Martínez C, Herrera F (2010) Memetic algorithms for continu-
ous optimisation based on local search chains. Evol Comput 18(1):27–63

174. Molina D, Lozano M, Sánchez AM, Herrera F (2011) Memetic algorithms based on local
search chains for large scale continuous optimisation problems: MA-SSW-chains. Soft
Comput 15(11):2201–2220

175. Moscato P (1989) On evolution, search, optimization, genetic algorithms and martial arts:
towards memetic algorithms. Technical report 826, California Institute of Technology,
Pasadena

176. Moscato P (1993) An introduction to population approaches for optimization and hierarchical
objective functions: the role of tabu search. Ann Oper Res 41(1–4):85–121

177. Moscato P (1999) Memetic algorithms: a short introduction. In: Corne D, Dorigo M, Glover
F (eds) New Ideas in Optimization. McGraw-Hill, London, pp 219–234

178. Moscato P (2012) Memetic algorithms: the untold story. In: Neri F, Cotta C, Moscato P (eds)
Handbook of Memetic Algorithms. Studies in Computational Intelligence, vol 379. Springer,
Berlin/Heidelberg, pp 275–309

179. Moscato P, Cotta C (2003) A gentle introduction to memetic algorithms. In: Glover F,
Kochenberger G (eds) Handbook of Metaheuristics. Kluwer Academic Publishers, Boston,
pp 105–144

180. Moscato P, Norman MG (1992) A memetic approach for the traveling salesman problem
implementation of a computational ecology for combinatorial optimization on message-
passing systems. In: Valero M, Onate E, Jane M, Larriba JL, Suarez B (eds) Parallel
Computing and Transputer Applications. IOS Press, Amsterdam, pp 177–186

181. Moscato P, Tinetti F (1992) Blending heuristics with a population-based approach: a memetic
algorithm for the traveling salesman problem. Report 92–12, Universidad Nacional de La
Plata

182. Moscato P, Mendes A, Berretta R (2007) Benchmarking a memetic algorithm for ordering
microarray data. Biosystems 88(1–2):56–75

183. Mozaffari A, Chehresaz M, Azad NL (2013) Component sizing of a plug-in hybrid electric
vehicle powertrain, part a: coupling bio-inspired techniques to meshless variable-fidelity
surrogate models. Int J Bio-Inspired Comput 5(6):350–383

184. Mühlenbein H (1989) Parallel genetic algorithms, population genetics and combinatorial
optimization. In: Schaffer (ed) 3rd International Conference on Genetic Algorithms. Morgan
Kaufmann, San Mateo, pp 416–421

185. Nagata Y, Kobayashi S (1997) Edge assembly crossover: a high-power genetic algorithm for
the traveling salesman problem. In: Bäck T (ed) Seventh International Conference on Genetic
Algorithms. Morgan Kaufmann, San Mateo, pp 450–457



634 C. Cotta et al.

186. Nair SSK, Reddy NVS, Hareesha KS (2011) Exploiting heterogeneous features to improve
in silico prediction of peptide status – amyloidogenic or non-amyloidogenic. BMC Bioinf
12(13):S21

187. Nair SSK, Reddy NVS, Hareesha KS (2012) Machine learning study of classifiers trained
with biophysiochemical properties of amino acids to predict fibril forming peptide motifs.
Protein Pept Lett 19(9):917–923

188. Neri F (2012) Diversity management in memetic algorithms. In: Neri F, Cotta C, Moscato
P (eds) Handbook of Memetic Algorithms. Studies in Computational Intelligence, vol 379.
Springer, Berlin/Heidelberg, pp 153–165

189. Neri F, Cotta C (2012) Memetic algorithms and memetic computing optimization: a literature
review. Swarm Evol Comput 2:1–14

190. Neri F, Mininno E (2010) Memetic compact differential evolution for Cartesian robot control.
IEEE Comput Intell Mag 5(2):54–65

191. Neri F, Toivanen J, Cascella GL, Ong YS (2007) An adaptive multimeme algorithm for
designing HIV multidrug therapies. IEEE-ACM Trans Comput Biol Bioinform 4(2):264–278

192. Neri F, Toivanen J, Makinen RAE (2007) An adaptive evolutionary algorithm with intelligent
mutation local searchers for designing multidrug therapies for HIV. Appl Intell 27(3):219–235

193. Neri F, Cotta C, Moscato P (eds) (2012) Handbook of Memetic Algorithms. Studies in
Computational Intelligence, vol 379. Springer, Berlin/Heidelberg

194. Nguyen QC, Ong YS, Kuo JL (2009) A hierarchical approach to study the thermal behavior
of protonated water clusters H+(H2O)(n). J Chem Theory Comput 5(10):2629–2639

195. Nikzad M, Farahani SSS, Tabar MB, Tourang H, Yousefpour B (2012) A new optimization
method for pss design in New-England power system. Life Sci J Acta Zhengzhou Univ
Overseas Ed 9(4):5478–5483

196. Nogueras R, Cotta C (2015) Studying fault-tolerance in Island-based evolutionary and
multimemetic algorithms. J Grid Comput. https://doi.org/10.1007/s10723-014-9315-6

197. Noman N, Iba H (2007) Inferring gene regulatory networks using differential evolution with
local search heuristics. IEEE-ACM Trans Comput Biol Bioinform 4(4):634–647

198. Norman M, Moscato P (1989) A competitive and cooperative approach to complex com-
binatorial search. Technical report Caltech Concurrent Computation Program, Report. 790,
California Institute of Technology, Pasadena. Expanded version published at the 20th
Informatics and Operations Research Meeting, Buenos Aires (20th JAIIO), Aug 1991,
pp 3.15–3.29

199. Montes de Oca MA, Cotta C, Neri F (2012) Local search. In: Neri F, Cotta C, Moscato P (eds)
Handbook of Memetic Algorithms. Studies in Computational Intelligence, vol 379. Springer,
Berlin/Heidelberg, pp 29–41

200. Oliveri G, Lizzi L, Pastorino M, Massa A (2012) A nested multi-scaling inexact-Newton
iterative approach for microwave imaging. IEEE Trans Antennas Propag 60(2, 2):971–983

201. Olson BS, Shehu A (2012) Evolutionary-inspired probabilistic search for enhancing sampling
of local minima in the protein energy surface. Proteome Sci 10(1):S5

202. Ong YS, Keane A (2004) Meta-Lamarckian learning in memetic algorithms. IEEE Trans Evol
Comput 8(2):99–110

203. Ong YS, Lim MH, Zhu N, Wong KW (2006) Classification of adaptive memetic algorithms:
a comparative study. IEEE Trans Syst Man Cybern B: Cybern 36(1):141–152

204. Ong YS, Lim MH, Chen X (2010) Memetic computation-past, present and future. IEEE
Comput Intell Mag 5(2):24–31

205. Ortega JC, Gimenez D, Alvarez-Melcon A, Quesada FD (2013) Hybrid metaheuristics for the
design of coupled resonator filters. Appl Artif Intell 27(5):323–350

206. Pal S, Basak A, Das S, Abraham A (2009) Linear antenna array synthesis with invasive weed
optimization algorithm. In: Abraham A, Muda A, Herman N, Shamsuddin S, Huoy C (eds)
International Conference of Soft Computing and Pattern Recognition. IEEE, Malacca, pp
161–166

207. Pal S, Basak A, Das S (2011) Linear antenna array synthesis with modified invasive weed
optimisation algorithm. Int J Bio-Inspired Comput 3(4):238–251

https://doi.org/10.1007/s10723-014-9315-6


20 Memetic Algorithms 635

208. Palacios P, Pelta D, Blanco A (2006) Obtaining biclusters in microarrays with population-
based heuristics. In: Rothlauf F (ed) Proceedings of Applications of Evolutionary Computing.
Lecture Notes in Computer Science, vol 3907. Springer, Berlin/Budapest, pp 115–126

209. Pan QK, Dong Y (2014) An improved migrating birds optimisation for a hybrid flowshop
scheduling with total flowtime minimisation. Inform Sci 277:643–655

210. Perales-Gravan C, Lahoz-Beltra R (2008) An AM radio receiver designed with a genetic
algorithm based on a bacterial conjugation genetic operator. IEEE Trans Evol Comput
12(2):129–142

211. Poikolainen I, Neri F (2013) Differential evolution with concurrent fitness based local search.
In: Proceedings of the 2013 IEEE Congress on Evolutionary Computation. IEEE Press,
Cancun, pp 384–391

212. Prodhon C, Prins C (2014) A survey of recent research on location-routing problems. Eur J
Oper Res 238(1):1–17

213. Qin H, Zhang Z, Qi Z, Lim A (2014) The freight consolidation and containerization problem.
Eur J Oper Res 234(1):37–48

214. Quevedo-Teruel O, Rajo-Iglesias E, Oropesa-Garcia A (2007) Hybrid algorithms for elec-
tromagnetic problems and the no-free-lunch framework. IEEE Trans Antennas Propag 55(3,
1):742–749

215. Quintero A, Pierre S (2003) Evolutionary approach to optimize the assignment of cells to
switches in personal communication networks. Comput Commun 26(9):927–938

216. Quintero A, Pierre S (2003) Sequential and multi-population memetic algorithms for
assigning cells to switches in mobile networks. Comput Netw 43(3):247–261

217. Radcliffe N (1994) The algebra of genetic algorithms. Ann Math Artif Intell 10:339–384
218. Radcliffe NJ, Surry PD (1994) Formal memetic algorithms. In: Fogarty TC (ed) AISB

Workshop on Evolutionary Computing. Lecture Notes in Computer Science, vol 865.
Springer, Berlin/Heidelberg, pp 1–16

219. Rager M, Gahm C, Denz F (2015) Energy-oriented scheduling based on evolutionary
algorithms. Comput Oper Res 54:218–231

220. Rahiminejad A, Alimardani A, Vahidi B, Hosseinian SH (2014) Shuffled frog leaping
algorithm optimization for AC-DC optimal power flow dispatch. Turk J Electr Eng Comput
Sci 22(4):874–892

221. Raja MAZ, Ahmad SuI, Samar R (2014) Solution of the 2-dimensional bratu problem using
neural network, swarm intelligence and sequential quadratic programming. Neural Comput
Appl 25(7–8):1723–1739

222. Rao ARM, Lakshmi K (2012) Optimal design of stiffened laminate composite cylinder using
a hybrid sfl algorithm. J Compos Mater 46(24):3031–3055

223. Rao BS, Vaisakh K (2013) New variants/hybrid methods of memetic algorithm for solving
optimal power flow problem with load uncertainty. Int J Hybrid Intell Syst (IJHIS) 10(3):117–
128

224. Richter H, Engelbrecht A (2014) Recent Advances in the Theory and Application of Fitness
Landscapes, Emergence, Complexity and Computation, vol 6. Springer, Berlin/Heidelberg

225. Rodríguez Rueda D, Cotta C, Fernández Leiva AJ (2011) A memetic algorithm for designing
balanced incomplete blocks. Int J Comb Optim Probl Inform 2(1):14–22

226. Rothlauf F, Goldberg DE (2002) Representations for Genetic and Evolutionary Algorithms.
Physica-Verlag, Heidelberg

227. Salhi A, Rodriguez JAV (2014) Tailoring hyper-heuristics to specific instances of a scheduling
problem using affinity and competence functions. Memetic Comput 6(2):77–84

228. Santamaría J, Cordón O, Damas S, García-Torres JM, Quirin A (2009) Performance
evaluation of memetic approaches in 3D reconstruction of forensic object. Soft Comput 13(8–
9):883–904

229. Sarmenta LF (1998) Bayanihan: web-based volunteer computing using java. In: Ma-
sunaga Y, Katayama T, Tsukamoto M (eds) Worldwide Computing and Its Applications –
WWCA’98. Lecture Notes in Computer Science, vol 1368. Springer, Berlin/Heidelberg, pp
444–461



636 C. Cotta et al.

230. Schaefer G (2014) Aco classification of thermogram symmetry features for breast cancer
diagnosis. Memetic Comput (3):207–212

231. Sevaux M, Dauzère-Pérès S (2003) Genetic algorithms to minimize the weighted number of
late jobs on a single machine. Eur J Oper Res 151:296–306

232. Silva R, Berenguel M, Perez M, Fernandez-Garcia A (2014) Thermo-economic design
optimization of parabolic trough solar plants for industrial process heat applications with
memetic algorithms. Appl Energy 113(SI):603–614

233. Smith JE (2007) Coevolving memetic algorithms: a review and progress report. IEEE Trans
Syst Man Cybern B Cybern 37(1):6–17

234. Smith JE (2010) Meme fitness and memepool sizes in coevolutionary memetic algorithms.
In: 2010 IEEE Congress on Evolutionary Computation. IEEE Press, Barcelona, pp 1–8

235. Smith JE (2012) Self-Adaptative and Coevolving Memetic Algorithms. Studies in Computa-
tional Intelligence, vol 379. Springer, Berlin/Heidelberg, pp 167–188

236. Sörensen K, Sevaux M (2006) MA j PM: memetic algorithms with population management.
Comput OR 33:1214–1225

237. Speer N, Merz P, Spieth C, Zell A (2003) Clustering gene expression data with memetic algo-
rithms based on minimum spanning trees. In: IEEE Congress on Evolutionary Computation
(CEC 2003), Canberra, pp 1848–1855

238. Speer N, Spieth C, Zell A (2004) A memetic clustering algorithm for the functional partition
of genes based on the gene ontology. In: IEEE Symposium on Computational Intelligence in
Bioinformatics and Computational Biology, La Jolla, pp 252–259

239. Speer N, Spieth C, Zell A (2004) A memetic co-clustering algorithm for gene expression
profiles and biological annotation. In: Congress on Evolutionary Computation (CEC 2004).
IEEE, Portland, pp 1631–1638

240. Spieth C, Streichert F, Speer N, Zell A (2004) A memetic inference method for gene regu-
latory networks based on s-systems. In: 2004 IEEE Congress on Evolutionary Computation
(CEC 2004), Portland, pp 152–157

241. Spieth C, Streichert F, Supper J, Speer N, Zell A (2005) Feedback memetic algorithms for
modeling gene regulatory networks. In: IEEE Symposium on Computational Intelligence in
Bioinformatics and Computational Biology, La Jolla, pp 61–67

242. Steimel J, Engell S (2014) Conceptual design and optimisation of chemical processes under
uncertainty by two-stage programming. In: Eden M, Siirola J, Towler G (eds) 8th International
Conference on Foundations of Computer-Aided Process Design, vol 34. Elsevier Science BV,
Cle Elum, pp 435–440

243. Streichert F, Tanaka-Yamawaki M (2006) The effect of local search on the constrained
portfolio selection problem. In: IEEE Congress on Evolutionary Computation, Vancouver,
pp 2353–2359

244. Sudholt D (2009) The impact of parametrization in memetic evolutionary algorithms. Theor
Comput Sci 410(26):2511–2528

245. Sudholt D (2012) Parametrization and balancing local and global search. In: Neri F, Cotta C,
Moscato P (eds) Handbook of Memetic Algorithms. Studies in Computational Intelligence,
vol 379. Springer, Berlin/Heidelberg, pp 55–72

246. Sun X, Wang Z, Zhang D (2008) A watermarking algorithm based on MA and DWT. In: IEEE
International Symposium on Electronic Commerce and Security, Guangzhou, pp 916–919

247. Tanese R (1989) Distributed genetic algorithms. In: 3rd International Conference on Genetic
Algorithms. Morgan Kaufmann, San Francisco, pp 434–439

248. Ting CK, Liao CC (2010) A memetic algorithm for extending wireless sensor network
lifetime. Inform Sci 180(24):4818–4833

249. Tirronen V, Neri F, Kärkkäinen T, Majava K, Rossi T (2008) An enhanced memetic
differential evolution in filter design for defect detection in paper production. Evol Comput
16(4):529–555

250. Tomassini M (2005) Spatially Structured Evolutionary Algorithms. Natural Computing
Series. Springer, Berlin/New York



20 Memetic Algorithms 637

251. Tse S, Liang Y, Leung K, Lee K, Mok S (2005) Multi-drug cancer chemotherapy scheduling
by a new memetic optimization algorithm. In: IEEE Congress on Evolutionary Computation
(CEC 2005), Edinburgh, pp 699–706

252. Tse SM, Liang Y, Leung KS, Lee KH, Mok TSK (2007) A memetic algorithm for multiple-
drug cancer chemotherapy schedule optimization. IEEE Trans Syst Man Cybern B Cybern
37(1):84–91

253. Urselmann M, Engell S (2010) Optimization-based design of reactive distillation columns
using a memetic algorithm. In: Pierucci S, Ferraris B (eds) 20th European Symposium on
Computer Aided Process Engineering. Elsevier Science BV, Ischia, vol 28, pp 1243–1248

254. Urselmann M, Engell S (2015) Design of memetic algorithms for the efficient optimization of
chemical process synthesis problems with structural restrictions. Comput Chem Eng 72:87–
108

255. Urselmann M, Sand G, Engell S (2009) A memetic algorithm for global optimization in
chemical process synthesis. In: IEEE Congress on Evolutionary Computation (CEC 2009),
Trondheim, pp 1721–1728

256. Urselmann M, Barkmann S, Sand G, Engell S (2011) A memetic algorithm for global
optimization in chemical process synthesis problems. IEEE Trans Evol Comput 15(5,
SI):659–683

257. Urselmann M, Barkmann S, Sand G, Engell S (2011) Optimization-based design of reactive
distillation columns using a memetic algorithm. Comput Chem Eng 35(5):787–805

258. Vesselinov VV, Harp DR (2012) Adaptive hybrid optimization strategy for calibration and
parameter estimation of physical process models. Comput Geosci 49:10–20

259. Vidal T, Crainic TG, Gendreau M, Prins C (2014) A unified solution framework for multi-
attribute vehicle routing problems. Eur J Oper Res 234(3):658–673

260. Wang G, Wang J, Chen H (2014) Application of operator libraries on laminate strength
optimization of composites. In: Yang G (ed) International Conference on Materials Science,
Machinery and Energy Engineering (MSMEE 2013). Advanced Materials Research, vol 853.
Trans Tech Publications Ltd, Hong Kong, pp 686–692

261. Wang L, Liu J (2013) A scale-free based memetic algorithm for resource-constrained project
scheduling problems. In: Yin H, Tang K, Gao Y, Klawonn F, Lee M, Li B, Weise T, Yao X
(eds) 14th International Conference on Intelligent Data Engineering and Automated Learning
(IDEAL 2013). Lecture Notes in Computer Science, vol 8206. Springer, Hefei, pp 202–209

262. Wang L, Zheng DZ (2002) A modified genetic algorithm for job-shop scheduling. Int J Adv
Manuf Technol 20:72–76

263. Wang Y, Hao JK, Glover F, Lu Z (2014) A tabu search based memetic algorithm for the
maximum diversity problem. Eng Appl Artif Intell 27:103–114

264. Wanner EF, Guimaraes FG, Takahashi RHC, Lowther DA, Ramirez JA (2008) Multiobjective
memetic algorithms with quadratic approximation-based local search for expensive optimiza-
tion in electromagnetics. IEEE Trans Mag 44(6):1126–1129

265. Whitley LD (1991) Fundamental principles of deception in genetic search. In: Rawlins G (ed)
Foundations of Genetic Algorithms I. Morgan Kaufmann, San Mateo, pp 221–241

266. Widl M, Musliu N (2014) The break scheduling problem: complexity results and practical
algorithms. Memetic Comput 6(2):97–112

267. Wolpert D, Macready W (1997) No free lunch theorems for optimization. IEEE Trans Evol
Comput 1(1):67–82

268. Xu J, Yin Y, Cheng TCE, Wu CC, Gu S (2014) An improved memetic algorithm based on
a dynamic neighbourhood for the permutation flowshop scheduling problem. Int J Prod Res
52(4):1188–1199

269. Yang CH, Cheng YH, Chang HW, Chuang LY (2009) Primer design with specific PCr
product size using memetic algorithm. In: IEEE Conference on Soft Computing in Industrial
Applications (SMCIA 2008), Muroran, pp 332–337

270. Yang CH, Cheng YH, Chuang LY, Chang HW (2009) Specific PCr product primer design
using memetic algorithm. Biotechnol Prog 25(3):745–753



638 C. Cotta et al.

271. Yang S, Wang S, Liu Z, Wang M, Jiao L (2014) Improved bandelet with heuristic evolutionary
optimization for image compression. Eng Appl Artif Intell 31(SI):27–34

272. Yang SH, Kiang JF (2014) Optimization of asymmetrical difference pattern with memetic
algorithm. IEEE Trans Antennas Propag 62(4, 2):2297–2302

273. Zaman F, Qureshi IM, Munir F, Khan ZU (2014) Four-dimensional parameter estimation of
plane waves using swarming intelligence. Chin Phys B 23(7):078402

274. Zhao F, Tang J, Wang J, Jonrinaldi J (2014) An improved particle swarm optimization
with decline disturbance index (DDPSO) for multi-objective job-shop scheduling problem.
Comput Oper Res 45:38–50

275. Zhou J, Ji Z, Zhu Z, He S (2014) Compression of next-generation sequencing quality scores
using memetic algorithm. BMC Bioinform 15(15):S10

276. Zhou M, Liu J (2014) A memetic algorithm for enhancing the robustness of scale-free
networks against malicious attacks. Physica A-Stat Mech Appl 410:131–143

277. Zhu GY, Zhang WB (2014) An improved shuffled frog-leaping algorithm to optimize
component pick-and-place sequencing optimization problem. Expert Syst Appl 41(15):6818–
6829

278. Zhu Z, Ong YS (2007) Memetic algorithms for feature selection on microarray data. In:
Liu D, Fei S, Hou Z, Zhang H, Sun C (eds) 4th International Conference on Advances in
Neural Networks (ISNN 2007). Lecture Notes in Computer Science, vol 4491. Springer,
Berlin/Nanjing, pp 1327–1335

279. Zhu Z, Ong YS, Zurada JM (2010) Identification of full and partial class relevant genes.
IEEE-ACM Trans Comput Biol Bioinform 7(2):263–277

280. Zhu Z, Zhou J, Ji Z, Shi YH (2011) DNA sequence compression using adaptive particle swarm
optimization-based memetic algorithm. IEEE Trans Evol Comput 15(5, SI):643–658

281. Zibakhsh A, Abadeh MS (2013) Gene selection for cancer tumor detection using a novel
memetic algorithm with a multi-view fitness function. Eng Appl Artif Intell 26(4):1274–1281


	20 Memetic Algorithms
	Contents
	Introduction
	Structure of a Memetic Algorithm
	Skeleton of a Classical Memetic Algorithm
	A Note on More Complicated Memetic Algorithms

	Memetic Algorithms in Practice
	An Example Memetic Algorithm for Network Alignment
	An Example Memetic Algorithm for Weighted Constraint Satisfaction Problems
	A Brief Survey of Recent Memetic Algorithm Applications
	Memetic Algorithms in the Wild
	Memetic Speciation


	Future-Generation Memetic Algorithms
	Conclusion
	Cross-References
	References


