
14Evolutionary Algorithms

David Corne and Michael A. Lones

Contents

Introduction . 410
Principal Algorithms . 412

Genetic Algorithms . 412
Evolution Strategies and Evolutionary Programming . 414
Estimation of Distribution Algorithms . 415
Differential Evolution . 415
Performance Comparisons . 416

Common Variants . 416
Alternative Representations . 417
Hybridization with Local Search . 418
Multimodal Optimization . 418
Multi-objective Optimization . 419
Dynamic Optimization . 421
Coevolving Solutions . 421

Applying Evolutionary Algorithms . 422
Choosing a Methodology . 422
Choosing Parameters . 422
Software Tools . 423

Case Studies . 424
Evolutionary Algorithms at Large . 424
Using Niching and Coevolution to Understand Gene Regulation . 424
Evolving Classifiers for Parkinson’s Disease Diagnosis . 426

Conclusion . 426
Cross-References . 427
References . 427

D. Corne (�) � M. A. Lones
Heriot-Watt University, Edinburgh, UK
e-mail: d.w.corne@hw.ac.uk; mal1@hw.ac.uk

© Springer International Publishing AG, part of Springer Nature 2018
R. Martí et al. (eds.), Handbook of Heuristics,
https://doi.org/10.1007/978-3-319-07124-4_27

409

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-07124-4_27&domain=pdf
mailto:d.w.corne@hw.ac.uk
mailto:mal1@hw.ac.uk
https://doi.org/10.1007/978-3-319-07124-4_27

410 D. Corne and M. A. Lones

Abstract

Evolutionary algorithms (EAs) are population-based metaheuristics, originally
inspired by aspects of natural evolution. Modern varieties incorporate a broad
mixture of search mechanisms, and tend to blend inspiration from nature with
pragmatic engineering concerns; however, all EAs essentially operate by main-
taining a population of potential solutions and in some way artificially ‘evolving’
that population over time. Particularly well-known categories of EAs include
genetic algorithms (GAs), Genetic Programming (GP), and Evolution Strategies
(ES). EAs have proven very successful in practical applications, particularly
those requiring solutions to combinatorial problems. EAs are highly flexible and
can be configured to address any optimization task, without the requirements for
reformulation and/or simplification that would be needed for other techniques.
However, this flexibility goes hand in hand with a cost: the tailoring of an EA’s
configuration and parameters, so as to provide robust performance for a given
class of tasks, is often a complex and time-consuming process. This tailoring
process is one of the many ongoing research areas associated with EAs.

Keywords
Population-based � Genetic algorithms � Evolutionary programming �

Evolution strategies

Introduction

Evolutionary algorithms (EAs) are population-based metaheuristics. Historically,
the design of EAs was motivated by observations about natural evolution in
biological populations. Recent varieties of EA tend to include a broad mixture
of influences in their design, although biological terminology is still in common
use. The term “EA” is also sometimes extended to algorithms that are motivated
by population-based aspects of EAs but which are not directly descended from
traditional EAs, such as scatter search. The term evolutionary computation is also
used to refer to EAs but usually as a generic term that includes optimization
algorithms motivated by other processes but which generally involve a population
of potential solutions adapting and improving over time. This includes algorithms
inspired by other natural processes, such as ant colony optimization (ACO –
inspired by the collective problem-solving behavior of social insects) and artificial
immune systems (AIS – inspired by the adaptive molecular processes involved in
the human immune system’s ability to recognize and destroy harmful agents). It also
includes algorithms inspired by social behavior, such as particle swarm optimization
(PSO); however, in recent years, the convention has shifted toward using the term
“swarm intelligence” to describe PSO, ACO, and other algorithms inspired more by
interaction than evolution. Although these algorithms often resemble EAs, this is

14 Evolutionary Algorithms 411

not always the case, and they will not generally be discussed in this chapter. For a
discussion of their commonalities and differences, the reader is referred to [1].

Over the years, EAs have become an extremely rich and diverse field of study. In
part this arises from their inherent design flexibility – there are innumerable ways
to specify an algorithm that operates according to the core concepts of evolution. In
part this also arises from the fact that their performance tends to be highly problem
dependent – an EA that works well on one task may well perform poorly on another,
even quite similar, task. Arising from these factors and others, the sheer number of
publications in this area is challenging for people new to the field. To address this,
this chapter aims to give a concise overview of EAs and their application, with an
emphasis on contemporary rather than historical usage.

The main classes of EA in contemporary usage are (in order of popularity)
genetic algorithms (GAs), evolution strategies (ESs), differential evolution (DE),
and estimation of distribution algorithms (EDAs). Multi-objective evolutionary
algorithms (MOEAs), which generalize EAs to the multiple objective case, and
memetic algorithms (MAs), which hybridize EAs with local search, are also
popular, particularly within applied work. Special-purpose EAs, such as genetic
programming (GP) and learning classifier systems (LCS), are also widely used.
These are all discussed in this chapter.

Although these algorithms differ from each other in a number of respects, they
are all based around the same core process. Each of them maintains a population of
search points (known variously as candidate solutions, individuals, chromosomes,
or agents). These are typically generated at random and are then iteratively evolved
over a series of generations by applying variation operators and selection. Variation
operators generate changes to members of the population, i.e., they carry out moves
through the search space. After each generation, the objective value (or fitness) of
each search point is calculated. Selection then removes the search points with the
lowest objective values, meaning that only the best search points are maintained,
and new search points are always derived from these. It is this combination of
maintaining a population of search points and carrying out selection between search
points that differentiates EAs from most other metaheuristics.

Each EA uses its own distinctive set of variation operators, which are sometimes
inspired by the mutative and recombinative processes that generate diversity in
biological evolution. The mutation operator resembles the generation of “moves”
in other optimization algorithms and involves sampling the neighborhood around
an existing search point in some fashion. A typical approach would be to randomly
change one component of a solution, though a particular EA may use more than one
kind of mutation operator. The recombination (or crossover) operator explores the
region between two or more search points, for example, by randomly reassembling
the components that make up two existing solutions. This process of searching the
region between existing search points is also a distinctive feature of EAs, though
its practical utility depends upon the structure of the search space. Some EAs,
particularly “evolutionary programming” and older varieties of evolution strategy,
do not use recombination at all.

412 D. Corne and M. A. Lones

Principal Algorithms

All EAs share certain common features, including in particular the broad concepts
of variation and selection, as introduced in section “Introduction”, operating over a
series of generations. More fundamentally, all EAs work by seeking the “best” (in
some sense) solutions they can find to a given optimization task. Put in another way,
an EA is almost always used to find the solution data-structure x which optimizes
a given function f.x/. For example, the task at hand may be straightforward
numerical function optimization, where the candidate solution data-structure is
a binary string that is interpreted as a list of real-valued parameters, and f.x/

is a mathematical function over those parameters whose result is a scalar value.
Alternatively, the task at hand may be to find an ideal schedule for a collection of
manufacturing tasks at a factory; in this case, the candidate solution data-structure
might be an ordered sequence of task identifiers, and f.x/would be a program that
simulates the schedule from the sequence, returning a vector of quality indicators
including cost, time, and risk. Whatever the nature of the underlying data-structure
being “evolved” and whatever the nature of f.x/, we can express a “canonical” EA
in pseudocode as follows:

Preliminaries: determine a suitable way to represent solutions as data-structures,
prepare the fitness function, and set g D 0.

Step 1: set g D 0, and generate and evaluate an initial population Sg of candidate
solutions;

Step 2: apply selection operators to produce a set of “parent” solutions P ;
Step 3: apply variation operators to P to produce a set of “chil” solutions C , and

evaluate the fitness of each one;
Step 4: apply population update operations to the union of Sg and C to produce

SgC1, and increment g

Step 5: if a termination criterion has not been reached, go to Step 2; otherwise,
finish and return the fittest member of the population.

In the above pseudocode, steps 2–5 constitute a “generation,” whose major
components are selection, variation, and then the “population update” step that leads
to renewal of the population, now ready to enter the next generation. Individual
EAs vary greatly in each of these steps, including the “preliminaries” step. In the
remainder of this section, we provide brief introductions to the principal classes
of EA that are in current use and then discuss existing understanding of their
performance and applicability.

Genetic Algorithms

Genetic algorithms, or GAs, are one of the earliest forms of EAs and remain widely
used. Candidate solutions, often referred to as chromosomes in the GA literature,
comprise a vector of decision variables. Nowadays, these variables tend to have a

14 Evolutionary Algorithms 413

direct mapping to an optimization domain, with each decision variable (or gene)
in the GA chromosome representing a value (or allele) that is to be optimized.
However, it should be noted that historically GAs worked with binary strings,
with real values encoded by multiple binary symbols, and that this practice is still
sometimes used. GA solution vectors are either fixed-length or variable-length, with
the former the more common of the two.

Given their long history, genetic algorithm implementations vary considerably.
However, it is fairly common to use a mutation operator that changes each decision
variable with a certain probability (values of 4–8% are typical, depending upon
the problem domain). When the solution vector is a binary string, the effect of
the mutation operator is simply to flip the value. More generally, if the solution
vector is a “k�ary” string, in which each position can take any of a discrete set
of k possible values, then the mutation operator is usually designed to choose a
random new value from the available alphabet. If the solution vector is a string of
real-valued parameters within a set range, the new value may be sampled from a
uniform distribution in that range, or it may be sampled from a nonuniform (e.g.,
Gaussian) probability distribution centered around the current value. The latter is
generally the preferred approach, since it leads to less disruptive change on average.
Recombination is typically implemented using two-point or uniform crossover.
Recombination tends to be applied at a high rate (e.g., 0.7, typically called the
crossover rate); this means, for example, that when a variation operator is to be
applied, the chance of this operator being a crossover operator will be 0.7; otherwise
(depending on the algorithm), the operator may be the application of mutation to a
single parent or simply copying a single parent. Two-point crossover chooses two
parent solutions and two crossover points within the solutions. The values of the
decision variables lying between these two points are then swapped to form two
child solutions. Historically, “one-point” crossover was popular, which produced
the first (second) child by copying the first (second) parent up to a randomly chosen
point and then copied the second (first) parent thereafter. However, though more
convenient for theoretical analyses, one-point crossover is rarely used in practice
these days. Meanwhile, in uniform crossover, crossover points are created at each
decision variable with a given probability. Other forms of crossover have also been
used in GAs. Examples include line crossover and multi-parent crossover. Other
variation operators, such as inversion, have been found useful for some problems.

Various forms of selection are used with GAs. Rank-based or tournament selec-
tion are generally preferred, since they maintain exploration better than the more
traditional fitness-proportionate selection (e.g., roulette-wheel selection). Note,
however, that the latter is still widely used. Rank-based selection involves ranking
the population in terms of objective value. Population members are then chosen
to become parents with a probability proportional to their rank. In tournament
selection, a small group of solutions (typically three or four) are uniformly sampled
from the population, and those with the highest objective value(s) become the
parent(s) of the next child solution that is created. Tournament selection allows
selective pressure to be easily varied by adjusting the tournament size.

414 D. Corne and M. A. Lones

Evolution Strategies and Evolutionary Programming

Evolutionary programming(EP) and evolution strategies (ES) also have a long
history, starting earlier than the development of GAs. First described in the 1960s
and 1970s, respectively (see [2] for a comprehensive account of the historical
development), early ES and EP used only single-parent operators in the variation
step (i.e., mutation). Meanwhile, EP was singular in focusing on using finite-state
machines as the evolving data-structures, while ES soon introduced a recombination
operator and championed the exploration of so-called “m C n” schemes, whereby a
population of m parents would generate n children and the best n of the combined
parents and children becomes the next generation of parents. In current research
and practice, modern formulations of EP focus on numerical optimization over
real-valued parameters and still eschew multi-parent operators in favor of paying
attention to careful design of the mutation operator(s). Of the two styles, however,
ES is more widely researched and deployed in practice, and particular variants of
ES have shown particular prowess in numerical function optimization. Modern ESs
incorporate strategies that carefully guide how the mutation operator is applied to
each decision variable. Unlike GAs, ESs mutate every decision variable at each
application of the operator and do so according to a set of strategy parameters
that determine the magnitude of these changes. Strategy parameters usually control
characteristics of probability distributions from which the new values of decision
variables are drawn.

It is standard practice to adapt strategy parameters over the course of an
ES run, the basic idea being that different types of move will be beneficial at
different stages of search. Various techniques have been used to achieve this
adaptation. Some of these involve applying a simple formula, e.g., the 1/5th rule,
which involves increasing or decreasing the magnitude of changes based on the
number of successful mutations that have recently been observed. Others are based
around the idea of self-adaptation, which involves encoding the strategy parameters
as additional decision variables and hence allowing evolution to come up with
appropriate values. However, the most widely used contemporary approach is
covariance matrix adaptation (CMA-ES), which uses a mechanism for estimating
the directions of productive gradients within the search space and then applying
moves in those directions. In this respect, CMA-ES has similarities with gradient-
based optimization methods.

ESs use different recombination operators to GAs and often use more than two
parents to create each child solution. For example, intermediate recombination gives
a child solution the average values of each decision variable in each of the parent
solutions. Weighted multi-recombination is similar but uses a weighted average,
based on the fitness of each parent. Also unlike GAs, ESs tend to use deterministic
rather than probabilistic selection mechanisms, whereby the best solutions in the
population are always used as parents of the next generation.

14 Evolutionary Algorithms 415

Estimation of Distribution Algorithms

Like ESs, estimation of distribution algorithms [3], or EDAs, make use of prob-
ability distributions. However, rather than using them to describe a distribution
of next moves, as an ES does, EDAs use them to describe a distribution of next
sample solutions. The basic mechanism is quite simple. As for most EAs, the
initial population of solutions is (typically) sampled from a uniform distribution.
Selection is then used to remove the poorer members of this population, and a
probability distribution is then constructed that attempts to model the statistics of the
relatively high-fitness sample solutions that remain in the population. Importantly,
this distribution is constructed in such a way that it “generalizes” the population
members suitably well. The next generation of solutions is then constructed by
sampling from this distribution. So, if the distribution was highly peaked around the
existing samples, for example, the next generation would explore very little beyond
the previous one. This pattern of building a distribution, sampling, and selection is
then iterated in the usual generational fashion, with the hope that the final probability
distribution will characterize solutions that are, or are close to, globally optimal.

While an EDA may be used with any kind of probability distribution, in practice,
it is necessary to choose a distribution that induces an appropriate trade-off between
efficiency and expressiveness. More expressive models, such as Bayesian networks
and Markov models, can capture dependencies between decision variables but can
be expensive to construct and sample from. Simple univariate distributions, by com-
parison, are cheap to build and sample from but are unable to capture dependencies
between variables. This trade-off is reflected in the range of EDAs in common use.
Population-based incremental learning (PBIL) and the compact genetic algorithm
(CGA) are both examples of computationally efficient EDAs that build simple
univariate models based on discrete variables. Because of their simplicity, they can
be applied to large problem instances. Bayesian optimization algorithms (BOAs) lie
at the other end of the spectrum: these can express dependencies between variables,
and certain varieties can be applied to both discrete and continuous variables, but
they are far more demanding of computational resources.

Differential Evolution

Differential evolution [4,5], or DE, is a relatively recent EA formulation which uses
a mechanism for adaptive search that does not make use of probability distributions.
While its basic mechanism is similar to a GA, its mutation operator is quite
different, using a geometric approach that is motivated by the moves performed
in the Nelder-Mead simplex search method. This involves selecting two existing
search points from the population, taking their vector difference, scaling this by a
constant F , and then adding this to a third search point, again sampled randomly

416 D. Corne and M. A. Lones

from the population. Following mutation, DE’s crossover operator recombines the
mutated search point (the mutant vector) with another existing search point (the
target vector), replacing it if the child solution (known as a trial vector) is of equal or
greater objective value. There are two standard forms of crossover [6]: exponential
crossover and binomial crossover, which closely resemble GA two-point crossover
and uniform crossover, respectively. The comparisons between target vector and
trial vector play the same role as the selection mechanism in a GA or ES. Since
DE requires each existing solution to be used once as a target vector, the whole
population is replaced in the course of applying crossover.

An advantage of using simplex-like mutations in DE is that the algorithm is
largely self-adapting, with moves automatically becoming smaller in each dimen-
sion as the population converges. More generally, the authors of the method have
claimed that this sort of self-adaptation means that the size and direction of moves
are automatically matched to the search landscape, a phenomenon they term contour
matching. When compared to CMA-ES, for example, this means that the algorithm
has few parameters and is relatively easy to implement.

Performance Comparisons

Fair comparisons of optimization algorithms are inherently challenging [7] and
arguably unachievable. Nevertheless, there have been some attempts to understand
the comparative performance of different EAs, particularly within the domain of
continuous optimization. In particular, a series of workshops held at two of the
largest annual EA conferences, CEC and GECCO, have sought to define benchmark
suites of real-valued function optimization problems suitable for comparing EAs
(and other optimizers) [8–10]. Using these benchmarks, a number of authors have
shown their algorithms to perform better than others, including variants of CMA-ES
and DE (see [4]). It should be borne in mind that these are not exhaustive studies,
either in terms of problems or approaches. The “no free lunch theorem”(NFLT)
[11] may also be considered when attempting to generalize these results to a wider
spectrum of problems, although, in itself, the NFLT does not apply in the case of
comparisons based on the standard suites of test problems (since those suites are not
closed under permutation [12]). A nice example of the perils of comparison study
in this field is shown by a recent study that showed how quite different conclusions
could be drawn from a comparative study by changing minimization problems into
maximization problems [13].

Common Variants

The general purpose EAs introduced in the last section are applicable to a wide range
of problems. However, over the course of EA history, algorithmic variants have been
developed to deal with the characteristics of particular categories of problem. Some
of these categories are quite broad, for example, problems with multiple solutions.

14 Evolutionary Algorithms 417

Others are more specific, such as discrete optimization problems. In this section, we
discuss a number of these EA variants, focusing on those which are commonly used
to solve real-world optimization problems.

Alternative Representations

In common with other optimization algorithms, most EAs are designed to work
with and optimize vectors (or, equivalently, lists or arrays) of decision variables.
Solutions to many kinds of problems can be represented, either directly or indirectly,
in this form. However, EAs are not limited to working with vectors, and there are
often advantages to working directly with representations that are more natural
for the problem domain: for example, matrices [14], trees [15], graphs [16],
rule sets, etc. The general approach is the same as for the EAs discussed in
the previous section, except that specialized initialization routines and variation
operators are used to randomly create, mutate, and recombine instances of the
appropriate solution representation. These variants are typically based around GAs
or ESs, since these two classes of EA can be readily adapted to use alternative
solution representations. Nevertheless, DE [17] and EDA [18] have also been used
successfully with other representations.

Genetic programming (GP) [15] is a well-known GA variant in which each
candidate solution is a program; in early GP this was invariably achieved by
encoding programs as tree-structures, in which each “node” in the tree corresponds
to a function whose input parameters are the results returned by its child-nodes and
which itself returns a result to its parent nodes (if any). GP is still mostly used to
optimize computer programs or mathematical expressions, often expressed as tree-
structures. However alternative ways to encode programs are now often explored in
GP, such as so-called linear GP, in which programs are represented as a sequence of
parameterized instructions interacting via registers. A particularly common current
use of GP is symbolic regression, which involves finding a mathematical expression
that fits a particular data set. Unlike standard mathematical approaches to regression,
such as curve fitting, GP makes relatively few assumptions about the function that
generated the data, allowing a wide exploration of the space of possible solutions.
GP is also widely used for solving classification problems. More generally, the GP
community is interested in automatic programming, i.e., finding computer programs
that solve a particular task, and there are many variants of GP that use particular
forms of program representation. See [19] and [20] for overviews.

Some EAs work with two different solution representations, using one of
these when creating and manipulating search points, the other when evaluating
search points, and a mapping process that converts the former into the latter [21].
Many of these approaches are motivated by biology, and hence this process is
known as a genotype-phenotype mapping, with the representation used during
search termed the genotype and the representation used for evaluation termed the
phenotype. This approach can be used when the natural representation for a domain
is not well suited to being evolved, i.e., where mutation and recombination do

418 D. Corne and M. A. Lones

not lead to productive solutions. This approach has also been widely used for
generating complex structures, such as large neural networks [22], where a genotype
representation can be chosen that compresses repetitive features such as symmetry
and modularity. This is arguably an area in which EAs benefit from their relationship
to biology, since biology provides a ready source of information on how to represent
complex structures in an evolvable way.

Hybridization with Local Search

EAs are often considered to be global search algorithms, since they explore a
relatively wide region of the search space and are relatively good at escaping
local optima. However, their convergence to optimal solutions can be relatively
slow when compared to local search algorithms. For this reason, EAs are often
hybridized with local search, using it to locally optimize members of the population
at regular intervals, hence speeding up convergence. Although the resulting hybrid
algorithms are known by various names, the term memetic algorithm [23] (MA)
has become popular in recent years. Memetic, in this case, refers to an analogy
between the role of local search in these algorithms and the role of within-generation
learning in biological systems, though the majority of memetic algorithms have no
particular biological justification beyond this. In principle, these algorithms may
involve hybridizing an EA with any or with multiple local search algorithms and
consequently are very diverse. For a recent review, see [24].

Beyond hastening convergence, MAs are also seen as a means of introducing
domain knowledge into EAs. This is done through the use of specialized local
search operators that are relevant to a particular domain. For example, this approach
underlies the success of MAs in the area of discrete optimization [25]. Related
to the idea of problem specialization in memetic algorithms is the concept of
hyper-heuristics in EAs, which has developed some traction in recent years [26].
Generally speaking, hyper-heuristics are applicable to domains in which a variety
of so-called low-level heuristics exist (or can be invented) to build quick, good
solutions. In the job shop scheduling problem, for example, “shortest-process-
time” and “earliest-available-machine” are two examples of low-level “dispatch”
heuristics that, when iterated, can build a single solution quickly. Hyper-heuristics
are essentially mechanisms used to explore combinations of such lower-level
heuristic strategies. The term hyper-heuristics is also used to describe the cases in
which an EA (often GP) both creates anew and combines such low-level heuristics.
In a nutshell, the broad idea of hyper-heuristics is to search a space of algorithms
that can solve a class of problems, rather than search the space of solutions directly
for a single problem instance.

Multimodal Optimization

An advantage of maintaining a population of search points is that EAs can be
readily applied to multimodal optimization problems in which there is more than one

14 Evolutionary Algorithms 419

solution of interest. However, effective multimodal optimization generally requires
some modification to the EA’s underlying behavior, since, although EAs explore
diverse areas of the search space, they eventually converge to fairly small areas.
This behavior can be mitigated, to an extent, by varying the global selection pressure
used when choosing parents; for example, in the case of tournament selection, the
tournament size can be made small, increasing the likelihood that less fit members
of the population will contribute to the next generation of search points. While
this increases exploration, it decreases exploitation: meaning that multiple solutions
may be found, but they are less likely to be optimal. Since EAs are stochastic, and
there is the potential for them to converge on different optima during different runs,
another simple approach to finding multiple solutions is to run an EA multiple times.
However, there is no guarantee that all optima will be explored, and algorithmic
biases (such as the manner in which the initial population is generated) may favor
some solutions over others.

A more effective approach is to use some kind of niching technique [27]. These
aim to preserve global diversity in the population, but without lowering local
selective pressure. Niching approaches are motivated by the biological concept
of evolutionary niches, in which species compete within a niche but not between
niches. In optimization terms, a niche is a local region within the search space that
contains a solution of interest, and the aim is for the population to be distributed
across all the relevant niches. Niching has been studied for some time in GAs, and
techniques include crowding [28], fitness sharing [29], spatial segregation [30], and
clustering [14]. For comparative studies, see [6] and [8]. A simple but effective
example of niching is probabilistic crowding [28]. This works at the operator level
and always replaces parent solutions with their children, meaning that search points
are usually replaced with nearby search points and the population remains spread
across the search space. Similar techniques have also been developed for use in
DE. Niching is less commonly used in ESs, in part due to their use of smaller
populations, though examples do exist [31]. It is also common to use multi-objective
evolutionary algorithms (see below) to solve multimodal problems, since these
algorithms often have effective mechanisms for preserving population diversity.

Multi-objective Optimization

Multi-objective EAs, or MOEAs, are used to solve problems which have multiple
and often conflicting objectives. A central concept for MOEAs, and multi-objective
optimization in general, is that of a non-dominated solution. This is a solution
which is no worse than any of the other solutions within the population when
all objectives are taken into account, and the aim of an MOEA is to build and
maintain a population of non-dominated solutions that cover all trade-offs between
the objectives. This is known as the Pareto optimal front. Exactly how this is
achieved varies between MOEAs. However, a well-known example is NSGA-II
(non-dominating sorting genetic algorithm) [32]. Prior to selection, NSGA-II ranks
all solutions in terms of dominance: those which are non-dominated are assigned

420 D. Corne and M. A. Lones

rank 1, those which are only dominated by rank 1 solutions are assigned rank 2, etc.
The population is then ordered by rank, and by a measure of crowding distance
within ranks, and the first half of the ordered population is copied directly into
the next generation. The remainder of the population is then filled by breeding,
with parents selected from the higher ranks. Hence, non-dominated solutions are
preserved between generations, and new solutions are explored via interbreeding,
resulting in a diverse set of non-dominated solutions that approximate the Pareto
optimal front.

The core challenge faced by multi-objective optimization (and absent from
single-objective optimization) is how to rank candidate solutions in a way that leads
to effective selection pressure, especially when the entire population (or most of it)
may be non-dominated. Another way in which multi-objective optimization differs
from single-objective optimization is in the nature of the “best-so-far solution.” In
single-objective optimization, the “best-so-far” solution is trivial to define and to
keep track of; in multi-objective optimization, the situation is vastly different: the
solution is, technically, the entire Pareto front, which is usually a set of solutions,
whose cardinality may vary from one to the entire search space. For MOEAs, this
leads to certain technical issues which are invariably addressed by maintaining an
archive of non-dominated solutions; this archive simply keeps track of the “best-
so-far” approximation to the Pareto front but is also often used as a reservoir for
selection of parents. Approaches to the main challenge – how to apply effective
selection pressure among the current population – are far more varied. While the
approach taken by NSGA-II, as detailed above, is a common and quite successful
one, many other styles of MOEA exist, which take different approaches to this
central question. In PAES [33], for example, there is only a single “current”
population member. Selection is consequently simplified; however, the challenge
shifts to the question of whether or not to update the current solution with a newly
generated one when the two are non-dominated; PAES makes this decision with
the aid of its archive, preferring to explore new areas of the search space than
to stay close to solutions already in the archive. Meanwhile, a different breed
of MOEAs in this respect is represented by MOEA/D [34]; bypassing the need
to distinguish between non-dominated solutions for selection purposes, MOEA/D
“decomposes” a multi-objective problem into many single-objective simplifications
of it, each involving a different weighting of the objectives. MOEA/D conducts these
single-objective searches in parallel (typically using a local search mechanism)
and organizes occasional communication between them, as well as bookkeeping
activities that build and maintain the archive. Effectively, each of MOEA/D’s single-
objective searches explores a different area of the Pareto front. There are many other
approaches, and MOEAs are becoming increasingly used as it becomes recognized
that real-world problems are almost invariably multi-objective in nature. Further
discussion of the latter point, as well as a first introduction to MOEAs, may be
found in [35], while an example of a fairly recent review of MOEAs may be found
in [36].

14 Evolutionary Algorithms 421

Dynamic Optimization

So far, our discussion of optimization has only considered problems in which the
search space remains fixed. In many real-world problems, this is not the case, and
various EA approaches are used to handle these situations. Dynamic optimization
is an area in which EAs might be expected to perform relatively well, since the
natural diversity present in their populations provides a recovery mechanism that
can respond to slow changes in the optimization landscape. This is especially
the case when diversity maintenance techniques are implemented, such as those
already discussed in the sections on multimodal and multi-objective optimization.
However, this diversity may be insufficient when the optimization targets change
rapidly or abruptly. A simple solution in this situation is to inject extra diversity into
the population when a change is detected, for instance, by adapting the variation
operators so that larger moves are made. Detection of change can be done by
reevaluating a proportion of the population, looking for significant changes in
fitness.

A variety of more elaborate approaches have been developed to handle dy-
namic optimization in EAs. An approach inspired by biological systems is to use
redundancy in the encoding of a solution. Rather than replacing components of
a solution when variation operators are applied, this allows old components to
become recessive, i.e., to remain present within the solution but not be expressed
during evaluation. Later in the evolutionary process, these components can become
reactivated, in effect providing a mechanism to backtrack to previous search points.
This is particularly useful when changes in the search space are cyclic. A well-
known example is the use of multiploidy in GAs [37], where each solution has
multiple chromosomes (only one of which is dominant) and variation operators
are able to move information between chromosomes. Other approaches to handling
dynamic search spaces include predicting change and using multiple populations;
see [38] for a recent review.

Coevolving Solutions

Coevolutionary algorithms [39] are motivated by the interactions that occur between
species during the course of biological evolution and the roles these interactions
are thought to play in the evolution of complex organisms. Most coevolutionary
algorithms use multiple populations, one per species. Coevolutionary relationships
in biology can be cooperative or competitive. The latter class are particularly well
known and are encapsulated in the idea of predator-prey patterns of evolution, where
an arms race between two species can lead to the rapid emergence of complex
adaptations. Similar ideas have been explored in EAs, the classic example being the
coevolution of sorting networks and sorting algorithms [40]: the discovery of harder
problems (the sorting networks in the first population) leads to selective pressure to

422 D. Corne and M. A. Lones

discover better solutions (the sorting algorithms in the second population), which
leads to selective pressure to discover harder problems and so on. Competitive
coevolution can be used to solve hard problems and is also useful in circumstances
where a fitness function cannot be defined. However, competitive coevolution is
known to be difficult to control, and pathological situations can lead to ineffective
search. See [39] for a review.

Cooperative coevolution, by comparison, is seen as a useful mechanism for
breaking down large problems into more tractable chunks [41]. The idea is that a so-
lution to a problem is divided into sub-components. Each of these sub-components is
then evolved in a separate population, with its objective value dependent upon how
compatible it is with sub-components being evolved in other populations. Following
this, the coadapted sub-components are then assembled to form a complete solution.
In [42], for example, the authors describe how a cooperative coevolutionary variant
of DE can be used to solve numerical optimization problems with up to 1000
variables. Cooperative coevolution can also take place within a single population.
An example of this is a Michigan-style learning classifier system (LCS), a form of
EA that coevolves a population of rules that can collectively solve difficult problems
in classification and machine learning [43].

Applying Evolutionary Algorithms

Choosing a Methodology

It can be difficult to choose which EA to use for a particular task, since there are
many different EAs in common use and relatively little in the way of objective
comparative guidance. In practice, it may be necessary to try out different EAs to
find out which is the best match to a problem, especially when the problem is poorly
understood. However, given whatever is known about the problem at hand, it might
be possible to leverage existing understanding of the strengths and weaknesses
of particular algorithm frameworks. Some guidance on this matter is available in
studies of comparative performance mentioned at the end of section “Introduction”.
It is hoped that section “Principal Algorithms” also provides useful pointers if the
problem is multimodal, multi-objective, dynamic, or unusually large and complex.
It is also notable that multi-objective and memetic algorithms, in particular, have
become popular for solving difficult real-world problems.

Choosing Parameters

EAs invariably have many parameters, and once an algorithm has been selected,
it is normal to carry out parameter tuning in order to obtain a better fit between
the algorithm and the problem. It can be challenging to obtain optimal parameter
settings, since parameters are typically both numerous and not independent of one
another. DE, for instance, is notable for having relatively few parameters, and this is

14 Evolutionary Algorithms 423

often portrayed as a strength of the method. However, EAs are relatively forgiving,
and good performance is likely to be possible with nonoptimal parameter settings.
Nevertheless, guidance is available for choosing the settings of certain parameters
[44], and a number of techniques have been developed for automating the choice of
parameter settings [45].

Software Tools

Tools support is an important issue for many practitioners, and a particular EA
methodology is likely to be more appealing if it has a mature supported implemen-
tation. Tools support is also important if it is necessary to handcraft a new algorithm
to solve a particular problem, and in this situation the language used by the tool
may also be a significant concern. Table 1 summarizes the features of some of the
better known EA tools. GAs are widely supported by all of these. ES support is also
widely available, though EvA2 stands out in this regard, with implementations of
a wide range of ES variants. DE and EDAs are more recent algorithms, and this
is reflected by fewer mature tools. However, EvA2 is again notable for having an
implementation of BOA and other EDAs. GP support is offered by a number of
these tools, with ECJ implementing a particularly wide range of GP variants. Most
also offer support for multimodal and multi-objective approaches, though MOEA
Framework stands out for the latter. All of these tools allow custom code to be
written. Most use Java or C C C, though DEAP is notable as a mature Python
implementation and HeuristicLab is available for C# users.

Table 1 Open-source EA frameworks

Tool Language Summary

DEAP https://code.google.
com/p/deap/

Python Distributed Evolutionary Algorithms in Python offers
good support for GAs and ESs. Also implements GP and
MOEAs

ECJ http://cs.gmu.edu/~
eclab/projects/ecj/

Java Continuously developed since 1998, Evolutionary
Computation in Java has particular strength in GP but
also implements GAs, DE, and MOEAs

EO http://eodev.sourceforge.
net

CCC Evolving Objects is an established general-purpose EA
library with implementations of GAs, GP, ESs, and
EDAs

EvA2 http://www.ra.cs.
uni-tuebingen.de/software/
JavaEvA/

Java EvA2 is a general-purpose EA framework but has partic-
ular strengths in ESs and EDAs, including BOA

HeuristicLab http://dev.
heuristiclab.com/

C# HeuristicLab implements many of the common EA vari-
eties and also has support for other population-based and
local search metaheuristics

MOEA framework http://
www.moeaframework.org/

Java A relatively new EA framework with considerable
strength in MOEAs and multi-objective variants of DE
and GP

OpenBEAGLE https://code.
google.com/p/beagle/

CCC A long established EA framework with good support for
GAs and ESs. Also implements GP and NSGA-II

https://code.google.com/p/deap/
https://code.google.com/p/deap/
http://cs.gmu.edu/~{}eclab/projects/ecj/
http://cs.gmu.edu/~{}eclab/projects/ecj/
http://eodev.sourceforge.net
http://eodev.sourceforge.net
http://www.ra.cs.uni-tuebingen.de/software/JavaEvA/
http://www.ra.cs.uni-tuebingen.de/software/JavaEvA/
http://www.ra.cs.uni-tuebingen.de/software/JavaEvA/
http://dev.heuristiclab.com/
http://dev.heuristiclab.com/
http://www.moeaframework.org/
http://www.moeaframework.org/
https://code.google.com/p/beagle/
https://code.google.com/p/beagle/

424 D. Corne and M. A. Lones

Case Studies

Evolutionary Algorithms at Large

Now more than half a century since the first appearance of “EA”-style algorithms in
the research literature (widely considered to be [46]), EAs have penetrated almost
every area of science and industry and are regularly used in solving an immense
range of optimization problems.

In terms of broad classes of problem, EAs have enabled practitioners and
researchers to make particular headway in combinatorial optimization which,
unlike numerical optimization, for example, was hitherto poorly served by classical
algorithms. In combinatorial optimization, the task is typically to find an ideal
permutation (or otherwise constrained arrangement) of a set of entities – such as a
sequence of customer visits for a delivery vehicle or a sequence of production tasks
for each of a set of machines in a factory. Before EAs, the primary approach used
to solve such problems was integer programming and constraint programming (and
variations thereon),which tend to require a complex (and often tortuous) problem
reformulation step. EAs, however, provide a far more accessible and flexible
approach to addressing such problems and are now commonly used in practice
for combinatorial tasks such as vehicle routing, job shop scheduling, and facility
allocation [47].

Meanwhile, beyond combinatorial optimization, the inherent flexibility of EAs
has led to their use, to at least some extent, in every conceivable area of science,
enterprise, and industry in which one or more important tasks can be formulated
in terms of optimization and/or design. To name just a few of the areas in which
EAs have had much impact, we can list aeronautical and automotive design [48],
bioinformatics and biotechnology [49], chemical engineering [50], creative pursuits
[51], finance and investment [52], manufacturing [53], and structural design [54].
To select a small number of case studies could not serve to characterize the true
diversity of applied EAs. We therefore duck that challenge and take the liberty of
concluding this chapter by providing two case studies from the authors’ recent work,
illustrating how some EA approaches are being applied to diverse and challenging
optimization problems in just one corner of science.

Using Niching and Coevolution to Understand Gene Regulation

Understanding gene expression is fundamental to understanding living processes.
The expression of each gene in an organism is determined by the binding of
special proteins, called transcription factors, within a region of DNA upstream
of its coding region. In higher organisms, such as humans, this regulatory region
typically contains around 5–10 transcription factor binding sites. Characterizing
these bindings sites, both individually and in combination, is a fundamental part

14 Evolutionary Algorithms 425

of reconstructing (and ultimately controlling) the genetic networks that underlie
biological function.

Identifying binding sites is often reduced to an optimization problem that
involves constructing a matrix model of the occurrence of each DNA base at each
position within a short region of DNA. Candidate solutions to this problem can
be evaluated by scanning them along the regulatory regions of groups of genes
which are known to be expressed at a certain time or within a certain cell type,
looking for matches to patterns embedded in the sequences. In most cases, this is
a multimodal problem, since multiple binding sites are likely to be relevant to a
particular regulatory context, and it is important to be able to identify these different
optima. However, these binding sites can vary quite considerably in their degree
of conservation, meaning that the objective values of different optima also vary
considerably.

Identifying and preserving different modes within a multimodal search space
is a challenging problem, especially when they have different relative finesses. In
section “Common Variants”, we discussed the idea of niching within the populations
of EAs as a means of addressing multimodal problems. In [14] we used an EA
furnished with a particular form of niching, termed population clustering, that uses
a clustering algorithm to identify and preserve the different modes present within an
evolving population of solutions. This allowed a number of different binding sites
to be characterized and preserved during a single run. Compared to other forms
of niching, it also had the benefit of explicitly identifying these different groups
of solutions, allowing the progress of search to be visualized and for clustering
parameters to be dynamically modified by an expert user. Even in the absence of
dynamic modification, however, this was effective at identifying the clusters of
binding sites within comparatively long regions of DNA.

Identifying binding sites is only one part of the problem. Another important
aim is to understand the interactions between different binding sites during gene
regulation. In [55], we used coevolution to explore solutions to this problem. This
involved coevolving two populations, the first containing matrix models of binding
sites and the second containing Boolean expressions describing their co-occurrence
within binding regions. Members of the binding site population were used as leaves
within the Boolean expressions. In essence, the problem of identifying binding
sites and their co-expression was decomposed into two problems which were then
solved in parallel, using coevolution to provide feedback between the populations.
In comparison to a more traditional approach, which would involve sequentially
learning binding sites and then learning their interactions, this allows search to be
directed toward solutions that interact well with other solutions during the course
of search. Such solutions, in turn, are more likely to be meaningful. This approach
proved effective for reverse engineering the regulatory rules underlying differential
gene expression within tissues. More surprisingly, it also provided a mechanism
for solving harder instances of the single binding site optimization problem, with
coevolution provided a means of implicitly decomposing the matrices associated
with these harder problems.

426 D. Corne and M. A. Lones

Evolving Classifiers for Parkinson’s Disease Diagnosis

This second case study concerns a problem in which the optimal representation for
solutions is not clear in advance, requiring experimentation with different kinds of
solution representation. As discussed earlier, EAs are entirely flexible in this regard.
The problem involves building diagnostic classifiers for Parkinson’s disease. These
are required to reach their decision based on time series movement data recorded
while patients and age-matched control were undergoing clinical assessments of
motor function. Motor aspects of Parkinson’s are incompletely understood, making
it unclear what kind of features of the data are important.

To address this, we used EAs to explore two different relatively unconstrained
classifier models. Initially we considered a GP-based approach, using it to discover
mathematical expressions that describe overrepresented patterns of movement
embedded in short segments of the time series data, i.e., a form of symbolic
regression [56]. An advantage of this approach is that the resulting expressions were
relatively interpretable, allowing us to gain insight into the basis of classifications
and then pass this information on to our clinical partners. In particular, analysis
of the evolved expressions identified specific aspects of the closing phase of a
“finger tap” movement as highly discriminatory of Parkinson’s disease patients
versus control. These factors alone were indeed more discriminatory than standard
metrics; however, overall classification performance was not quite as good as that
of trained clinicians.

We then considered a more unusual method of representing programs, artificial
biochemical networks [57]. These are abstract executable models of the networks of
biochemical interactions that underlie the function of biological cells. In a nutshell,
they attempt to capture the representation which biological evolution has selected to
optimize complex behaviors, with the hypothesis that this makes them particularly
suitable for use with EAs. Meanwhile, the use of an EA to search through the space
of possible artificial biochemical network classifiers represents, in itself, a major and
commonly understood strength of EAs: they can be tailored and deployed effectively
with relative ease despite the complexity and diversity of the structure they are being
used to evolve. By using this approach, we were now able to find classifiers that
produced comparable performance to that of trained clinicians [58]; with accuracy
at around 90% overall, accuracy was comparable to the diagnostic accuracies found
in clinical diagnosis, and significantly higher than those found in primary and non-
expert secondary care.

Conclusion

In this chapter we have provided a broad introduction to and overview of evolution-
ary algorithms, and the many varieties of them that appear in modern research and
practice. We have seen that there are a handful of key EA ‘families’, such as ‘genetic
algorithms’ and ‘differential evolution’; meanwhile, to some extent cutting across

14 Evolutionary Algorithms 427

the principal types of EAs, there are several algorithm features and variants (such
as co-evolution, or hybridisation with local search) that are often ‘grafted’ into an
EA, in order to boost performance on a particular class of problems (or perhaps just
for research purposes). Towards the end, we considered the real-world application
of EAs, reporting that they are generally highly successful, and are growing to be
common tools used for optimisation tasks in science and industry. However, for
someone new to EAs, an early question might well be: “There are so many types
and variants of EAs – which should I use?” In this chapter, we have effectively
promised that EAs are likely to be a successful approach to any given optimization
task – particularly if that task is not well served by other available schemes or
heuristics. However, we have not necessarily made it easy for a novice to deliver
on that promise. A common theme has been the very wide variety of EA designs
that have been developed, and this great variety can be a barrier for those new to the
field, who aim to understand the key aspects of EAs and how best to apply them to
any given task. In closing, we attempt to provide some support for the novice via
the following perspective: EAs should not be seen as a collection of algorithms;
instead, they are far more fruitfully viewed as an approach to the engineering
of problem-specific (or problem-class specific) optimization algorithms. The key
lesson for practitioners, from half a century of research and practice in EAs, is,
broadly speaking, that concepts from evolution (population, selection, variation) can
be very powerful tools in optimization; but to achieve ideal performance on a given
task, one must be pragmatic, and often creative, about the details.

Cross-References

�A History of Metaheuristics
�Evolution Strategies
�Evolutionary Algorithms for the Inverse Protein Folding Problem
�Genetic Algorithms
�Hyper-heuristics
�Memetic Algorithms
�Multi-objective Optimization
� Particle Swarm Methods

References

1. Lones MA (2014) Metaheuristics in nature-inspired algorithms. In: Proceedings of genetic
and evolutionary computation conference (GECCO 2014), workshop on metaheuristic design
patterns (MetaDeeP). ACM, pp 1419–1422

2. Fogel DB (1998) Evolutionary computation: the fossil record. Wiley-IEEE Press, Piscataway
3. Hauschild M, Pelikan M (2011) An introduction and survey of estimation of distribution

algorithms. Swarm Evol Comput 1(3):111–128. https://doi.org/10.1016/j.swevo.2011.08.003.
Available: http://www.sciencedirect.com/science/article/pii/S2210650211000435

https://doi.org/10.1007/978-3-319-07124-4_4
https://doi.org/10.1007/978-3-319-07124-4_13
https://doi.org/10.1007/978-3-319-07124-4_59
https://doi.org/10.1007/978-3-319-07124-4_28
https://doi.org/10.1007/978-3-319-07124-4_32
https://doi.org/10.1007/978-3-319-07124-4_29
https://doi.org/10.1007/978-3-319-07124-4_17
https://doi.org/10.1007/978-3-319-07124-4_22
https://doi.org/10.1016/j.swevo.2011.08.003
http://www.sciencedirect.com/science/article/pii/S2210650211000435

428 D. Corne and M. A. Lones

4. Das S, Suganthan PN (2011) Differential evolution: a survey of the state-of-the-art. IEEE Trans
Evol Comput 15(1):4–31. https://doi.org/10.1109/TEVC.2010.2059031. Available: http://
ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5601760&url=http%3A%2F%2Fieeexplore.
ieee.org%2Fxpls%2Fabs~all.jsp%3Farnumber%3D5601760

5. Storn R, Price K (1997) Differential evolution – a simple and efficient heuristic for
global optimization over continuous spaces. J Glob Optim 11(4):341–359. https://
doi.org/1008202821328. Available: http://link.springer.com/article/10.1023%2FA
%3A1008202821328#page-1.

6. Zaharie D (2009) Influence of crossover on the behavior of differential evolution algorithms.
Appl Soft Comput 9(3):1126–1138. https://doi.org/10.1016/j.asoc.2009.02.012. Available:
http://www.sciencedirect.com/science/article/pii/S1568494609000325

7. García S, Molina D, Lozano M, Herrera F (2009) A study on the use of non-parametric tests
for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 special
session on real parameter optimization. J Heuristics 15(6):617–644. https://doi.org/10.1007/
s10732-008-9080-4. Available: http://link.springer.com/article/10.1007/s10732-008-9080-4

8. Hansen N, Auger A, Finck S, Ros R (2010) Real-parameter black-box optimization bench-
marking 2010: experimental setup. INRIA research report No. 7215. INRIA

9. Liang J, Qu B, Suganthan P, Hernández-Díaz A (2013) Problem definitions and evaluation
criteria for the CEC 2013 special session on real-parameter optimization. Technical report
201212. Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou, China and
Nanyang Technological University, Singapore, pp 3–18

10. Tang K, Li X, Suganthan PN, Yang Z, Weise T (2009) Benchmark functions for the CEC’2010
special session and competition on large-scale global optimization. Technical report. Nature
Inspired Computation and Applications Laboratory, University of Science and Technology of
China

11. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans
Evol Comput 1(1):67–82. https://doi.org/10.1109/4235.585893. Available: http://ieeexplore.
ieee.org/xpls/abs~all.jsp?arnumber=585893

12. Igel C, Toussaint M (2003) On classes of functions for which no free lunch results hold. Inf
Process Lett 86(6):317–321

13. Piotrowski AP (2015) Regarding the rankings of optimization heuristics based on artificially-
constructed benchmark functions. Inf Sci 297:191–201. Available: http://www.sciencedirect.
com/science/article/pii/S0020025514010937

14. Lones MA, Tyrrell AM (2007) Regulatory motif discovery using a population clustering
evolutionary algorithm. IEEE/ACM Trans Comput Biol Bioinform 4(3):403–414. https://doi.
org/10.1109/tcbb.2007.1044. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=4288066

15. Koza J (1992) Genetic programming: on the programming of computers by means of natural
selection. MIT Press, Cambridge

16. Miller JF (2011) Cartesian genetic programming. https://doi.org/10.1007/978-3-642-17310-
3_2

17. Veenhuis CB (2009) Tree based differential evolution. Lect Notes Comput Sci 5481:208–219
18. Kim K, Shan Y, Nguyen X, McKay RI (2014) Probabilistic model building in genetic

programming: a critical review. Genet Program Evolvable Mach 15(2):115–167. https://doi.
org/10.1007/s10710-013-9205-x. Available: http://link.springer.com/article/10.1007/s10710-
013-9205-x

19. Poli R, Langdon W, McPhee NF (2008) A field guide to genetic programming. Published via
http://lulu.com

20. Luke S (2013) Essentials of metaheuristics. Published via http://lulu.com
21. Stanley KO, Miikkulainen R (2003) A taxonomy for artificial embryogeny. Artif Life 9(2):93–

130. https://doi.org/10.1162/106454603322221487. Available: http://www.mitpressjournals.
org/doi/abs/10.1162/106454603322221487 (pages 94 and 95)

https://doi.org/10.1109/TEVC.2010.2059031
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5601760&url=http{%}3A{%}2F{%}2Fieeexplore.ieee.org{%}2Fxpls{%}2Fabs~{}all.jsp{%}3Farnumber{%}3D5601760
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5601760&url=http{%}3A{%}2F{%}2Fieeexplore.ieee.org{%}2Fxpls{%}2Fabs~{}all.jsp{%}3Farnumber{%}3D5601760
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5601760&url=http{%}3A{%}2F{%}2Fieeexplore.ieee.org{%}2Fxpls{%}2Fabs~{}all.jsp{%}3Farnumber{%}3D5601760
https://doi.org/1008202821328
https://doi.org/1008202821328
http://springerlink.bibliotecabuap.elogim.com/article/10.1023{%}2FA{%}3A1008202821328{#}page-1
http://springerlink.bibliotecabuap.elogim.com/article/10.1023{%}2FA{%}3A1008202821328{#}page-1
https://doi.org/10.1016/j.asoc.2009.02.012
http://www.sciencedirect.com/science/article/pii/S1568494609000325
https://doi.org/10.1007/s10732-008-9080-4
https://doi.org/10.1007/s10732-008-9080-4
http://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10732-008-9080-4
https://doi.org/10.1109/4235.585893
http://ieeexplore.ieee.org/xpls/abs~{}all.jsp?arnumber=585893
http://ieeexplore.ieee.org/xpls/abs~{}all.jsp?arnumber=585893
http://www.sciencedirect.com/science/article/pii/S0020025514010937
http://www.sciencedirect.com/science/article/pii/S0020025514010937
https://doi.org/10.1109/tcbb.2007.1044
https://doi.org/10.1109/tcbb.2007.1044
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4288066
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4288066
https://doi.org/10.1007/978-3-642-17310-3_2
https://doi.org/10.1007/978-3-642-17310-3_2
https://doi.org/10.1007/s10710-013-9205-x
https://doi.org/10.1007/s10710-013-9205-x
http://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10710-013-9205-x
http://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10710-013-9205-x
http://lulu.com
http://lulu.com
https://doi.org/10.1162/106454603322221487
http://www.mitpressjournals.org/doi/abs/10.1162/106454603322221487
http://www.mitpressjournals.org/doi/abs/10.1162/106454603322221487

14 Evolutionary Algorithms 429

22. Floreano D, Dürr P, Mattiussi C (2008) Neuroevolution: from architectures to learning. Evol
Intell 1(1):47–62. https://doi.org/10.1007/s12065-007-0002-4. Available: http://link.springer.
com/article/10.1007/s12065-007-0002-4

23. Moscato P (1989) On evolution, search, optimization, genetic algorithms and martial arts:
towards memetic algorithms. Caltech concurrent computation program, C3P report 826

24. Neri F, Cotta C (2012) Memetic algorithms and memetic computing optimization: a literature
review. Swarm Evol Comput 2:1–14. https://doi.org/10.1016/j.swevo.2011.11.003. Available:
http://www.sciencedirect.com/science/article/pii/S2210650211000691

25. Hao J (2012) Memetic algorithms in discrete optimization. In: Neri F, Cotta C, Moscato P (eds)
Handbook of memetic algorithms. Springer, Berlin/Heidelberg. https://doi.org/10.1007/978-3-
642-23247-3_6

26. Ross P (2005) Hyper-heuristics. In: Search methodologies. Springer, Berlin, pp 529–556
27. Singh G, Deb K (2006) Comparison of multi-modal optimization algorithms based on

evolutionary algorithms. ACM, New York. https://doi.org/10.1145/1143997.1144200
28. Mengshoel OJ, Goldberg DE (2008) The crowding approach to niching in genetic algorithms.

Evol Comput 16(3):315–354. https://doi.org/10.1162/evco.2008.16.3.315. Available: http://
www.mitpressjournals.org/doi/abs/10.1162/evco.2008.16.3.315

29. Sareni B, Krahenbuhl L (1998) Fitness sharing and niching methods revisited. IEEE Trans
Evol Comput 2(3):97–106. https://doi.org/10.1109/4235.735432. Available: http://ieeexplore.
ieee.org/xpl/login.jsp?tp=&arnumber=735432&url=http%3A%2F%2Fieeexplore.ieee.org
%2Fiel4%2F4235%2F15834%2F00735432.pdf%3Farnumber%3D735432

30. Lim T (2014) Structured population genetic algorithms: a literature survey. Artif In-
tell Rev 41(3):385–399. https://doi.org/10.1007/s10462-012-9314-6. Available: http://link.
springer.com/article/10.1007%2Fs10462-012-9314-6

31. Shir OM, Back T (2005) Dynamic niching in evolution strategies with covariance matrix
adaptation. https://doi.org/10.1109/CEC.2005.1555018

32. Deb K, Pratap A, Agarwal S, Meyarivan TAMT (2002) A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197

33. Knowles J, Corne D (1999) The pareto archived evolution strategy: a new baseline algorithm
for paretomultiobjective optimisation. In: Proceedings of the 1999 congress on evolutionary
computation (CEC’99), vol 1. IEEE

34. Zhang Q, Li H (2007) MOEA/D: a multiobjective evolutionary algorithm based on decompo-
sition. IEEE Trans Evol Comput 11(6):712–731

35. Corne DW, Deb K, Fleming PJ, Knowles JD (2003) The good of the many outweighs the good
of the one: evolutionary multi-objective optimization. IEEE Connect Newslett 1(1):9–13

36. Zhou A, Qu B, Li H, Zhao S, Suganthan PN, Zhang Q (2011) Multiobjective evolutionary
algorithms: a survey of the state of the art. Swarm Evol Comput 1(1):32–49. https://doi.
org/10.1016/j.swevo.2011.03.001. Available: http://www.sciencedirect.com/science/article/
pii/S2210650211000058

37. Goldberg D, Smith R (1987) Nonstationary function optimization using genetic algorithm with
dominance and diploidy. In: Proceedings of the second international conference on genetic
algorithms and their application (ICGA). Laurence Erlbaum Associates, pp 59–68

38. Nguyen TT, Yang S, Branke J (2012) Evolutionary dynamic optimization: a survey of the
state of the art. Swarm Evol Comput 6:1–24. https://doi.org/10.1016/j.swevo.2012.05.001.
Available: http://www.sciencedirect.com/science/article/pii/S2210650212000363

39. Popovici E, Bucci A, Wiegand RP, De Jong ED (2012) Coevolutionary principles. In:
Rozenberg G, Bäck T, Kok JN (eds) Handbook of natural computing. Springer, Heidelberg.
https://doi.org/10.1007/978-3-540-92910-9_31

40. Hillis WD (1990) Co-evolving parasites improve simulated evolution as an opti-
mization procedure. Physica D Nonlinear Phenom 42(1–3):228–234. https://doi.org/
10.1016/0167-2789(90)90076-2. Available: http://www.sciencedirect.com/science/article/pii/
0167278990900762

https://doi.org/10.1007/s12065-007-0002-4
http://springerlink.bibliotecabuap.elogim.com/article/10.1007/s12065-007-0002-4
http://springerlink.bibliotecabuap.elogim.com/article/10.1007/s12065-007-0002-4
https://doi.org/ 10.1016/j.swevo.2011.11.003
http://www.sciencedirect.com/science/article/pii/S2210650211000691
https://doi.org/10.1007/978-3-642-23247-3_6
https://doi.org/10.1007/978-3-642-23247-3_6
https://doi.org/10.1145/1143997.1144200
https://doi.org/10.1162/evco.2008.16.3.315
http://www.mitpressjournals.org/doi/abs/10.1162/evco.2008.16.3.315
http://www.mitpressjournals.org/doi/abs/10.1162/evco.2008.16.3.315
https://doi.org/10.1109/4235.735432
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=735432&url=http{%}3A{%}2F{%}2Fieeexplore.ieee.org{%}2Fiel4{%}2F4235{%}2F15834{%}2F00735432.pdf{%}3Farnumber{%}3D735432
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=735432&url=http{%}3A{%}2F{%}2Fieeexplore.ieee.org{%}2Fiel4{%}2F4235{%}2F15834{%}2F00735432.pdf{%}3Farnumber{%}3D735432
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=735432&url=http{%}3A{%}2F{%}2Fieeexplore.ieee.org{%}2Fiel4{%}2F4235{%}2F15834{%}2F00735432.pdf{%}3Farnumber{%}3D735432
https://doi.org/10.1007/s10462-012-9314-6
http://springerlink.bibliotecabuap.elogim.com/article/10.1007{%}2Fs10462-012-9314-6
http://springerlink.bibliotecabuap.elogim.com/article/10.1007{%}2Fs10462-012-9314-6
https://doi.org/10.1109/CEC.2005.1555018
https://doi.org/10.1016/j.swevo.2011.03.001
https://doi.org/10.1016/j.swevo.2011.03.001
http://www.sciencedirect.com/science/article/pii/S2210650211000058
http://www.sciencedirect.com/science/article/pii/S2210650211000058
https://doi.org/10.1016/j.swevo.2012.05.001
http://www.sciencedirect.com/science/article/pii/S2210650212000363
https://doi.org/10.1007/978-3-540-92910-9_31
https://doi.org/10.1016/0167-2789(90)90076-2
https://doi.org/10.1016/0167-2789(90)90076-2
http://www.sciencedirect.com/science/article/pii/0167278990900762
http://www.sciencedirect.com/science/article/pii/0167278990900762

430 D. Corne and M. A. Lones

41. Potter MA, Jong KA (2000) Cooperative coevolution: an architecture for evolving coadapted
subcomponents. Evol Comput 8(1):1–29. https://doi.org/10.1162/106365600568086. Avail-
able: http://www.mitpressjournals.org/doi/abs/10.1162/106365600568086

42. Yang Z, Tang K, Yao X (2008) Large scale evolutionary optimization using cooperative
coevolution. Inf Sci 178(15):2985–2999. https://doi.org/10.1016/j.ins.2008.02.017. Available:
http://www.sciencedirect.com/science/article/pii/S002002550800073X

43. Urbanowicz RJ, Moore JH (2009) Learning classifier systems: a complete introduction, review,
and roadmap. J Artif Evol Appl 2009:1–25

44. Ochoa G, Harvey I, Buxton H (1999) On recombination and optimal mutation rates. In:
Proceedings of genetic and evolutionary computation conference, vol 1, pp 488–495. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.50.2369

45. Eiben AE, Smit SK (2011) Parameter tuning for configuring and analyzing evolutionary
algorithms. Swarm Evol Comput 1(1):19–31. https://doi.org/10.1016/j.swevo.2011.02.001.
Available: http://www.sciencedirect.com/science/article/pii/S2210650211000022

46. Fogel LJ (1962) Autonomous automata. Ind Res 4(2):14–19
47. Ochoa G, Blum C, Chicano F (2015) Evolutionary computation in combinatorial optimization.

Springer International Publishing: Imprint: Springer, Cham
48. Bajpai RP (ed) (2014) Innovative design, analysis and development practices in aerospace and

automotive engineering: I-Dad 2014, 22–24 Feb 2014. Springer Science & Business, Singapore
49. Gaurav A, Kumar V, Nigam D (2012) New applications of soft computing in bioinformatics: a

review. J Pure Appl Sci Tech 11(1):12–22
50. Gupta SK, Ramteke M (2014) Applications of genetic algorithms in chemical engineering

II: case studies. In: Applications of metaheuristics in process engineering. Springer, Cham,
pp 61–87

51. Bentley P, Corne D (2002) Creative evolutionary systems. Morgan Kaufmann, San Francisco
52. Chen SH (ed) (2012) Genetic algorithms and genetic programming in computational finance.

Springer Science & Business Media, New York
53. Gen M, Cheng R (1996) Genetic algorithms and manufacturing systems design, 1st edn. Wiley,

New York
54. Adeli H, Sarma KC (2006) Cost optimization of structures: fuzzy logic, genetic algorithms,

and parallel computing. Wiley, Chichester
55. Lones MA, Tyrrell AM (2007) A co-evolutionary framework for regulatory motif discovery.

https://doi.org/10.1109/CEC.2007.4424978
56. Lones M, Alty JE, Lacy SE, Jamieson DR, Possin KL, Schuff N, Smith SL (2013) Evolving

classifiers to inform clinical assessment of parkinson’s disease. In: 2013 IEEE symposium on
computational intelligence in healthcare and e-health (CICARE), pp. 76–82. IEEE

57. Lones M, Turner AP, Caves LS, Stepney S, Smith SL, Tyrrell AM (2014) Artificial biochemical
networks: evolving dynamical systems to control dynamical systems. IEEE Trans Evol Comput
18(2):145–166

58. Lones MA, Smith SL, Tyrrell AM, Alty JE, Jamieson DS (2013) Characterising neurological
time series data using biologically motivated networks of coupled discrete maps. BioSystems
112(2):94–101

https://doi.org/10.1162/106365600568086
http://www.mitpressjournals.org/doi/abs/10.1162/106365600568086
https://doi.org/10.1016/j.ins.2008.02.017
http://www.sciencedirect.com/science/article/pii/S002002550800073X
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.50.2369
https://doi.org/10.1016/j.swevo.2011.02.001
http://www.sciencedirect.com/science/article/pii/S2210650211000022
https://doi.org/10.1109/CEC.2007.4424978

	14 Evolutionary Algorithms
	Contents
	Introduction
	Principal Algorithms
	Genetic Algorithms
	Evolution Strategies and Evolutionary Programming
	Estimation of Distribution Algorithms
	Differential Evolution
	Performance Comparisons

	Common Variants
	Alternative Representations
	Hybridization with Local Search
	Multimodal Optimization
	Multi-objective Optimization
	Dynamic Optimization
	Coevolving Solutions

	Applying Evolutionary Algorithms
	Choosing a Methodology
	Choosing Parameters
	Software Tools

	Case Studies
	Evolutionary Algorithms at Large
	Using Niching and Coevolution to Understand Gene Regulation
	Evolving Classifiers for Parkinson's Disease Diagnosis

	Conclusion
	Cross-References
	References

