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Abstract

For the last decades, metaheuristics have become ever more popular as a tool
to solve a large class of difficult optimization problems. However, determining
the best configuration of a metaheuristic, which includes the program flow and
the parameter settings, remains a difficult task. Adaptive metaheuristics (that
change their configuration during the search) and multilevel metaheuristics (that
change their configuration during the search by means of a metaheuristic) can
be a solution for this. This chapter intends to make a quick review of the latest
trends in adaptive metaheuristics and in multilevel metaheuristics.
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Introduction

Metaheuristics are flexible frameworks that can be used to design heuristics for
virtually any combinatorial optimization problem. This flexibility also comes at a
cost: many researchers in metaheuristics spend a large amount of time to properly
design and tune their algorithm in a trial-and-error fashion. As mentioned and
observed in many published papers, designing an efficient metaheuristic is an art,
requiring a lot of intuition on the part of the metaheuristic designer. There is no
doubt, however, that the parameters and the structure of the metaheuristic may
influence the performance of the solution approach and the quality of the results
in the end.

In the design of a metaheuristic, a large fraction of the time is usually spent on
determining the control flow, i.e., the order in which the different components of
the metaheuristic are used and the optimal levels of the various parameters of the
metaheuristic. A more structured approach than the one commonly used is wanted.
The purpose of this chapter is to discuss one of the ways to alleviate this problem,
through adaptive and multilevel metaheuristics.

Our overview is necessarily very short and cannot replace the many years of
research, the large number of books and papers that have tried to clarify the topic.
We encourage the reader to address the existing work that we point out and explore
the references that we may have missed here. This chapter is not a complete review
of all papers in the field of adaptive or multilevel metaheuristics but rather a set of
good practices that can be done when designing metaheuristics.

In a first section, we will attempt to clearly define some concepts to come to
a definition of the terms adaptive and multilevel (section “Definitions”). We will
also discuss the impact of heuristic parameters on the behavior of a metaheuristic
algorithm (section “Configuring a Metaheuristic”) and how we can reduce the
number of parameters or how we can automatically tune some parameters. Adaptive
metaheuristics are discussed in section “Adaptive Metaheuristics”, and multilevel
metaheuristics and hyper-heuristics in section “Multilevel Metaheuristics and Hy-
per-heuristics”. Section “Conclusion” will conclude the chapter.



1 Adaptive and Multilevel Metaheuristics 5

Definitions

The terms adaptive and multilevel do not have a single, generally accepted definition
within the metaheuristics community. The aim of this section is to develop clear
definitions for both. Both adaptive and multilevel refer to the evolution of the
configuration of a metaheuristic algorithm during the optimization process. We must
therefore first define the term configuration. Our definitions will be intuitive rather
than formal.

Each metaheuristic algorithm consists of several components, i.e., parts that form
a more or less logical and atomic unit. Examples are a local search operator in a
variable search algorithm, a tabu list in a tabu search algorithm, a crossover operator
or a selection operator in an evolutionary algorithm. Each of these components
can exist more or less independently of the rest of the metaheuristic algorithm,
which includes their use in a different metaheuristic algorithm for the same
problem. Within the same metaheuristics, components can often be rearranged in
the overall structure of the algorithm. For example, local search operators in a
variable neighborhood search algorithm can be executed in a specific order; an
evolutionary algorithm may use its selection operator before or after the crossover
operator (or both), etc. In programming, this is called the control flow, a term
we will adopt here. Clearly, not every control flow makes sense, but generally
speaking, a sizeable number of possibilities exists. Determining the control flow
of the algorithm, i.e., the order in which the components are executed is a task for
the algorithm designer.

Each component may have one or more parameters that determine its function-
ing. Such parameters may be numerical, such as the tabu tenure of a tabu list, the
number of iterations without improvement before a perturbation move is used, etc.
Other parameters may be nonnumerical, like the choice of a discrete set of move
strategies to use in a local search operator (steepest descent, mildest descent, random
improving, . . . ). The algorithm designer usually defines a finite set of potential (or
sensible) values, e.g., the restricted candidate list of a GRASP algorithm is defined
to be an integer number between 5 and 20. In some situations, a parameter might
also be a real number.

Using these concepts, we may now define the term configuration.

Definition 1. Given the set of components of a metaheuristic algorithm together
with the set of all potential control flow alternatives, as well as its parameters and
their potential values, the configuration of a metaheuristic algorithm defines the
specific control flow and the specific set of parameter values it uses.

For example, a local search-based metaheuristic like the most basic tabu search
method depicted in Algorithm 1 has one parameter, the tabu tenure (the length of the
tabu list), and needs one type of neighborhood. It also needs several functions such
as initialize or update memory. One specific tabu tenure, one type of neighborhood
and the set of necessary functions will be the configuration of the current search
method.
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Algorithm 1: Basic tabu search

1 initialise: find an initial solution x

2 repeat
3 neighbourhood search: find a solution x0 2 N �.x/

4 update memory: tabu list, frequency-based memory, aspiration level, . . .
5 move x  x0

6 until stopping criterion satisfied

For a simple variable neighborhood search heuristic presented in Algorithm 2,
the order in which neighborhoods are explored (or whether they are explored at
all), the way in which the starting solution in the current neighborhood is generated
and the local search method that is applied to improve the solution with the current
neighborhood, as well as the total number of iterations kmax, define the configuration
of the VNS.

Algorithm 2: Basic variable neighbourhood search

1 initialise: find an initial solution x, k 1
2 repeat
3 shake: generate a point x0 at random from the neighbourhood Nk.x/

4 local search: apply a local search procedure starting from the solution x0

to find a solution x00

5 if x00 is better than x then
6 x  x00 and k  1 (centre the search around x00 and search again

with neighbourhood 1)
7 else
8 k  k C 1 (enlarge the neighbourhood)

9 until k D kmax

We can now define the terms adaptive and multilevel in the context of meta-
heuristic algorithms.

Definition 2. A metaheuristic is adaptive when it includes a mechanism to modify
its configuration during its execution.

In other words, an adaptive heuristic includes a mechanism to modify either the
control flow or the parameter values (or both) of a heuristic, and, by doing so modify
the behavior of the metaheuristic. As an example, consider the basic tabu search
shown in Algorithm 1. A common adaptive mechanism might make some changes
to the update memory: the length of the tabu list, the aspiration level, etc.
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Even though the definition has been conceived to be as watertight as possible,
there is always room for interpretation. For example, considering the VNS heuristic
in Algorithm 2, the basic design of the heuristic is such that the order in which
the neighborhoods are searched depends on the instance being solved. Since the
heuristic will move to the next neighborhood once a local optimum has been reached
(and local optima are different for every instance), the control flow of the algorithm
will be different for every instance. Yet, most researchers would not call a simple
VNS heuristic adaptive.

The mechanism that does the actual adaptation can range from very simple
to complex. Essentially, the aim of the mechanism is to search for the best
configuration of the metaheuristic algorithm. This search can itself be seen as a
combinatorial optimization problem, and an optimization algorithm may be used to
solve it. When the adaptation mechanism itself is a metaheuristic algorithm, we call
the overall result a multilevel metaheuristic.

Definition 3. A multilevel metaheuristic algorithm is a metaheuristic algorithm for
which the configuration is altered by another metaheuristic algorithm.

Note that, since the algorithm doing the adapting is itself a heuristic, with
its own components and parameters, the road is paved for a recursive structure
in which the configuration of the lowest-level heuristic is adapted by a higher-
level metaheuristic; the configuration of which is adapted by an even higher-level
heuristic, the configuration of which is adapted by . . . , ad infinitum. However,
the complexity added by implementing a higher-level metaheuristic algorithm to
adapt the configuration of a lower-level metaheuristic is usually considerable, which
precludes the design of a multilevel heuristic having many levels.

For reasons of clarity, a hybrid metaheuristic, i.e., a metaheuristic algorithm
that combines ideas from several metaheuristic frameworks, for which the config-
uration remains unchanged throughout the search, is not considered a multilevel
metaheuristic in this chapter. Also, the term multilevel is often used to denote
optimization problems that can decompose into several (simpler) problems (e.g.,
a location–routing problem can often be decomposed into a location problem and a
routing problem). Each of the problems may be separately solved by a metaheuristic
algorithm. In this chapter, we do not use the term multilevel metaheuristics to
describe such approaches.

Configuring a Metaheuristic

An optimization method and especially a metaheuristic has several (potentially
hundreds) possible configurations. Among all of them, only a few will allow the
search to reach the optimal solution or the best possible solution, but not for all
instances and not at all time. The configuration may have a great influence on the
quality of the final solution or the effectiveness of the search method. This is the
reason why properly tuning the parameters or choosing the right configuration is
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a very important task. Because of the “no free lunch theorem” [35], we know that
there is no optimal configuration of a metaheuristic that will outperform all others
on all problems and all instances.

Despite this fact, it is necessary to find an initial configuration suitable to
solve the problem at hand. This initial part will be described in this section. If
the configuration is not satisfying, instead of starting again the resolution with
a new configuration, one can change the configuration during the search (see
section “Adaptive Metaheuristics”).

As noted by several researchers (e.g., [14]), the first step of setting up a
metaheuristic has to go through the configuration phase during which the control
flow is established and the parameters are tuned. This phase is sometimes called
“offline parameter initialization.” This is long and fastidious and usually done
with trial-and-error methods. Moreover, even when this step is completed, its
efficiency is often effective on a subset of instances (usually close to the instances
on which the parameters have been calibrated). In addition, as already mentioned
for metaheuristics, the parameters are not only numerical values but can be search
components, updating function, etc. [32].

As a general observation, tuning these parameters is often so difficult that the
designers change them one by one until they get the right configuration. And the
value of these parameters is obtained empirically. Hence, the final combination of
the parameters deduced from a sequential empirical adaptation of the parameters
cannot guarantee that the final configuration is optimal. Furthermore, by changing
the parameters one by one, it is impossible (or too difficult) to detect the possible
interactions between these parameters. Moreover, the parameters and the control
flow of a heuristic generally heavily influence each other, which makes the process
of determining both even more difficult.

Eiben et al. [17] clearly define the parameter tuning for evolutionary algorithms:
By parameter tuning we mean the commonly practiced approach that amounts to
finding good values for the parameters before the run of the algorithm and then
running the algorithm using these values, which remain fixed during the run.

Once this initial tuning phase is completed, most metaheuristic designers keep
the configuration as it is to run their solution approach on the set of instances studied.
This configuration remains the same (as cited above) until the designer believes that
it is not adapted anymore and should be reconfigured with the same process.

Among the potential methods for tuning the parameters before solving, one can
list:

• Manual tuning (usually from the experience of a metaheuristic designer),
• Parameter tuning on a subset of representative instances,
• Automatic parameter tuning by the use of an external method.

An experienced metaheuristic designer is often able to decide the value of a
large number of parameters beforehand. The rules of thumb prevail on every other
considerations. The reason for this is that after several years of practicing, one can
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know that some parameters need to have certain values, and the values that are close
to it will not make a big difference on the final effectiveness of the results.

The population of a genetic algorithm is a rather good example. A small
population will have a premature convergence because too many individuals will
be the same (clones), and to avoid this without a specific mechanism, it is important
to have a population of a large size. Many papers on genetic algorithms have a
population of 100 individuals, but none mentioned how they have obtained this
value, or the motivations to set it to this value. No analysis is done to see if 95
or 105 will give better results.

Only a few researchers report the difficulty of finding the right parameter settings
and the limitations of this kind of approach [34]. Moreover, the manual tuning,
without post-analysis experiments, has the drawback of not being applicable to
different instances than the one presented in the paper. This is even more the case
for transferring the method to any similar industrial application.

Whatever the technique used for tuning these parameters or configurations
beforehand, it is important to keep in mind that every metaheuristic should be well
balanced between intensification and diversification [31]. Hence, the tuning of the
parameters should take this into account for ensuring that the metaheuristic is not
converging too fast (too much intensification or exploitation) or is wandering in
the search space without converging (too much diversification or exploration). Of
course, for being able to detect this, one has to set up some indicators showing
the speed of convergence, the evolution of the solution quality, the evolution of the
solutions themselves, etc.

The best practice is to report the results as Prins [26] has done in his paper on
the vehicle routing problem. In that paper, the tables present at the same time the
results obtained on a set of instances with some “standard parameter settings” and
the results obtained with the “best parameter settings.” This is a fair comparison to
existing work. The only drawback is the missing information on the time needed to
set up the standard parameter settings as well as the best parameter settings. This
can be a long and fastidious task and the total computational time can be high.

Setting up the parameters of a metaheuristic based on preliminary experiments is
probably the most common technique used in designing metaheuristics. A subset of
representative instances is selected, and the parameters are tested on these instances
until they converge to stable results. Hence, they are applied to the whole set of
instances, and the results are reported. The subset of instances should be carefully
selected to be representative of the future experiments.

Usually, the designer selects one parameter at a time, adjusts its value to the best
one, and reiterates with the next parameter. Only a few reports that they practice a
full factorial design as stated by Hooker [19]. With such a design, authors may try to
understand the relative contribution of each parameter to the global effectiveness of
the metaheuristic and the possible influence of the parameters between them. One
of the best examples of the application of this type of parameter design is presented
by Xu and Kelly [38] on a tabu search algorithm. In their paper, they have selected a
small subset of seven instances to tune five components of the tabu search. A more
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general approach is presented by Xu et al. [39] but still based on the same factorial
analysis.

Another technique to find the right parameter settings is to let an external
method to tune the parameters for the metaheuristic designers. Very few studies
exist on that issue if they are not used intrinsically during the metaheuristic search.
Dean and Voss [10] in their book present a technique known as the response
surface methodology in statistics. This method has been effectively used in [1]. This
technique consists in running a local search method in the space of the parameters. A
specific metric measuring the distance between each pair of parameters is calculated
by running the metaheuristic. For a fixed setting of parameters (or a point in
the search space of the parameters), the neighbors are also explored. If no better
neighbor can be found, the value for the parameters is fixed, and the search stops;
otherwise, the search continues with the best neighbor and the new parameter
settings.

Of course, one cannot guarantee the optimality for all the parameters at once and
even at the end of the search. But usually, this technique is able to discover good
parameter settings. One important drawback is the definition of the metric that is
very sensitive, especially if an order cannot be defined on the variables.

For a more elaborate discussion on this topic, we refer the reader to [3] and to
section “Hyper-heuristics for Metaheuristic Configuration” in this chapter.

Adaptive Metaheuristics

As stated in the previous section, once a designer has the best parameter settings for
its metaheuristics, he is able to run it confidently on the set of targeted instances and
produce results. The question is: “Can it go further?” And the answer is yes. Yes,
there is always some space for improvement. A parameter setting that works very
well on one instance might work poorly on another one.

To overcome this difficulty, it is always possible to analyze the behavior of the
metaheuristic during the search and adapt it to obtain better results. This phase can
be named “online parameter tuning.” Based on indicators (e.g., convergence, solu-
tion quality, similarity of explored solutions), the configuration of the metaheuristic
is changed. This technique is particularly appealing when one has to solve only one
large instance, and the tuning of parameters cannot be done beforehand.

Simple Adaptive Mechanisms

Detecting why a metaheuristic is not giving satisfying results is not an easy
task. It largely depends on the type of metaheuristic itself. For example, identical
individuals (clones) in a genetic or memetic algorithm are one of the known
consequences of premature convergence. In a local search method, cycling in the
objective space or in the solution space is also a situation that needs to be avoided.
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The online parameter tuning can be simple as in [30] where a tabu search
procedure is having a cycle detection mechanism and increases the tabu tenure
along the search when cycles are detected. To really improve the behavior of a
metaheuristic algorithm, however, more elaborate methods can be used during the
search and exploited for a better efficiency.

Such a mechanism includes that of Boutillon et al. [5] that can be activated during
the search like retroactive loops where a simulated annealing temperature parameter
is controlled during the search to follow a predefined probability acceptance
decreasing scheme.

Reactive Search

Among all existing methods, the work of Battiti [2] had traced the path a long
time ago. In the most simple reactive search, the past history of the search is
intensely used for feedback-based parameter tuning and for automated balance
of diversification and intensification. In the former, the tuning of parameters is
automated, and decisions on the new values of parameters are made based on the
past events of the search. In the latter, the concept of balancing exploration vs.
exploitation is used to guide the search.

One of the simplest forms of reactive search is reactive tabu search. The main
idea is to change the length of the tabu list (i.e., the tabu tenure) based on the search
trajectory. Essentially, the tabu list is made longer if the search is not finding better
solutions, and shorter if it does.

Greedy Randomized Adaptive Search Procedure

GRASP (greedy randomized adaptive search procedure) is a constructive meta-
heuristic, the main idea of which is to balance greediness and randomness. Many
constructive heuristics are greedy, which means that, at every iteration, they pick
the best element from the set of potential solution elements. An example is the
nearest-neighbor heuristic for the TSP which starts from a given city and moves to
the closest unvisited city at every iteration. The drawback of a fully greedy heuristic
is that it only generates a single solution, which is most likely suboptimal. A wrong
decision early on in the constructive procedure may lead to bad solutions in the end.

GRASP attempts to overcome this drawback by introducing randomness into the
solution construction process. Instead of picking the best element at each iteration,
GRASP creates a restricted candidate list, i.e., a list of the ˛ best elements and picks
one element from this list at random (˛ represents a number of elements). By doing
this, GRASP generates a different solution at each iteration. After several iterations,
some solutions will likely have been found that are better than the one found by a
purely greedy heuristic.

In reactive GRASP, introduced by Prais and Ribeiro [25], the parameter ˛

is randomly chosen from a set of discrete value. Initially, each possible ˛i has
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the same probability of being chosen. The search remembers the quality of the
solutions found for each possible value of ˛i . After some iterations, the probabilities
of selecting ˛i are updated to reflect the quality of the solutions it produced.
The probabilities corresponding to ˛i ’s that have resulted in good solutions are
increased; the others are decreased.

The reactive GRASP by Delorme et al. [11], e.g., works as follows. A value �i

is defined for each ˛i . The probability of selecting ˛i , pi is calculated as follows:

pi D
�i

Pn
kD1 �k

;

supposing that n different ˛i ’s have been defined.
Whenever a good solution is found using a certain ˛i , this solution is added to

the pool Pi for this ˛i . Periodically, the values of �i (and hence pi ) are updated
according to the following formula:

�i D

�
meanx 2 Pi Œf .x/ � f .x/�

f .x/ � f .x/

�ı

;

where x and x are the worst and best solutions found so far and ı is a parameter
introduced to attenuate the update of the probabilities pi .

Adaptive Large Neighborhood Search

Large neighborhood search (LNS) is a constructive metaheuristic that works by
building solutions from their constituting elements. For this purpose, it relies on
a set of simple constructive procedures to build solutions and on a set of destructive
procedures to partially destroy these solutions so they can be rebuilt. For this reason,
LNS has also been called ruin-and-recreate. At each iteration, LNS selects a pair
consisting of one destructive heuristic and one constructive heuristic. Using this
pair, a new solution is obtained. Most LNS implementations use a probabilistic
mechanism to select both the destructive and the constructive heuristic at each
iteration. A (nonadaptive) LNS algorithm could, e.g., assign equal probabilities to
each constructive heuristic and to each destructive heuristic.

Adaptive large neighborhood search goes a step further by selecting the heuristic
pair with a probability determined by the previous performance of both the
constructive and the destructive heuristics. As a result, constructive and destructive
heuristics that perform well will have a higher probability of being selected, whereas
those that will not have a lower probability. Usually, however, the probabilities are
bounded by some values that ensure all heuristics have at least a tiny chance of being
selected.

An example of an ALNS adaptive constructive/destructive heuristic selection
mechanism is the following. Suppose an ALNS heuristic has n constructive and
m destructive heuristics. Initially, each constructive heuristic i (and each destructive
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heuristic j ) is assigned a value �c
i D 1 (�d

j D 1). Then, a constructive heuristic is
selected from the set of constructive heuristics with a probability p proportional to
its value:

pi D
�i

Pn
kD1 �k

Similarly, a destructive heuristic is selected according to an equivalent rule.
Using the pair of destructive and constructive heuristic, a new solution is

generated. The quality of the new solution is evaluated, and the values of the selected
constructive and destructive heuristic are updated.

˛ D

8
ˆ̂
<

ˆ̂
:

0:5 if the new solution is worse than the current solution

1:5 if the new solution is better than the current solution

2 if the new solution is better than the global best solution

�c
i;new D ��c

i C .1 � �/˛

�d
j;new D ��d

j C .1 � �/˛

where � is a parameter between 0 and 1.
Using the formulas above, the probabilities of selection for each constructive

and destructive heuristic will adapt to the problem at hand. Moreover, using the
formulas above, the values can never increase above 2 and never drop below
0.5. In other words, all constructive and destructive heuristics will keep having a
positive probability of being selected, even if they consistently fail to find improving
solutions.

Multilevel Metaheuristics and Hyper-heuristics

In the previous section, we have examined different techniques for adapting the
configuration of metaheuristics. In this section, we look at multilevel metaheuristics,
i.e., metaheuristic algorithms for evolving the configuration of a metaheuristic.
Much of the research in this area has used evolutionary algorithms to configure
metaheuristics with one of the earliest studies being that conducted by Bölte and
Thonemann [4] which uses genetic programming for generating annealing sched-
ules, which were previously manually created in a simulated annealing algorithm to
solve the quadratic assignment problem. Various evolutionary algorithms, namely,
genetic algorithms, evolutionary strategies, and estimation of distribution algo-
rithms, have been used for parameter tuning of evolutionary algorithms [16]. These
are referred to as meta-EAs and operate on the design level, while the EA solving
the problem at hand is considered to form the algorithm layer. Hyper-heuristics are
proving to be effective for the automatic configuration of metaheuristics, and we
provide an overview of the use of hyper-heuristics for this purpose.
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Hyper-heuristics

Hyper-heuristics were initially introduced as “heuristics to choose heuristics”
[6,28]. Hyper-heuristics aim at providing a more generalized solution for a problem
domain rather than producing the best solution for certain problem instances. This
is achieved by exploring a space of low-level heuristics rather than a solution space
directly. The low-level heuristics can be constructive or perturbative. Construc-
tive low-level heuristics are used to create an initial solution, while perturbative
heuristics are used to improve an existing candidate solution. The first generation
of hyper-heuristics was essentially selection hyper-heuristics which chose which
constructive or perturbative heuristics to use at a particular point in constructing or
improving a candidate solution, respectively.

Selection constructive hyper-heuristics are used to select the low-level construc-
tion heuristic at each stage in constructing a solution. Similarly, in the case of
selection perturbative hyper-heuristics, the hyper-heuristic chooses a perturbative
low-level heuristic at each stage of the improvement process. We use an application
of hyper-heuristics to the domain of examination timetabling to illustrate these
concepts. Low-level construction heuristics generally used to solve examination
timetabling problems are the graph coloring heuristics, namely, largest degree,
largest weighted degree, largest color degree, largest enrollment, and saturation
degree [27]. Each of these heuristics assesses the difficulty associated with allocat-
ing an examination to the timetable. For example, the saturation degree heuristic
is the number of timetable slots, given the current state of the timetable at the
particular point in construction, an examination can be allocated to without causing
hard constraint violations such as a student being scheduled to write more than one
examination at the same time. A selection hyper-heuristic chooses which of the low-
level heuristics to use to schedule each of the examinations. This has proven to be
effective as different low-level heuristics work well for different problem instances,
and more importantly, different low-level heuristics are more effective at different
points of solution construction. Metaheuristics such as simulated annealing, tabu
search, variable neighborhood search, and genetic algorithms have generally been
used to search the heuristic space [6, 9].

Examples of low-level perturbative heuristics for the examination timetabling do-
main include swapping examinations, swapping rows of the timetable, de-allocating
examinations, and allocating examinations. Selection perturbative hyper-heuristics
can perform a single point search or a multipoint search. In the case of the former,
the hyper-heuristic is comprised of a heuristic selection and move acceptance
component [9]. Different techniques are employed to for heuristic selection and
move acceptance. These techniques can be as simple as randomly selecting a low-
level heuristic and accepting on moves that results in improvement. Metaheuristics
can also be employed for heuristic selection and move acceptance, e.g., simu-
lated annealing and tabu search have previously been employed for this purpose.
Multipoint search selection perturbation hyper-heuristics employ population-based
methods such as evolutionary algorithms and particle swarm optimization to explore
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the heuristic space, with the population-based approach, by its nature, performing
both the heuristic selection and move acceptance.

As the field developed, the idea of creating new low-level heuristics emerged
resulting in a second category of hyper-heuristics, namely, generation hyper-
heuristics. Generation hyper-heuristics generate low-level constructive or perturba-
tive heuristics. Genetic programming has primarily been employed by generation
hyper-heuristics to create low-level heuristics [8, 9]. An example of a generation
hyper-heuristic is that implemented by Burke et al. [7] for the one-dimensional
bin-packing problem. Construction low-level heuristics, e.g., first-fit, best-first, and
next-fit, are used to choose which bin to allocate an item to. In this study, genetic
programming is used to evolve low-level heuristics to decide which bin to allocate
an item to. In the study conducted by Sabar et al. [29] grammatical evolution,
a variation of genetic programming is used to evolve new low-level perturbative
heuristics by combining mechanisms for heuristic selection and move acceptance.
Generated low-level heuristics can be reusable or disposable. In the case of reusable
heuristics, the generated low-level heuristic created to solve the problem for one
instance can be used to solve other problem instances without any regeneration.
Disposable low-level heuristics are generated for the specific problem instance and
cannot be reused.

Selection and generation hyper-heuristics have generally been used for the
automatic configuration of metaheuristic algorithms. In this case, the low-level
heuristics represent parameters or operators of the metaheuristic and are essentially
perturbative. The hyper-heuristic employs a metaheuristic to explore the space of
low-level heuristics. Selection hyper-heuristics are used to determine control flow
and for parameter tuning. In this case, the hyper-heuristic selects a component at
each point in the application of the algorithm to solve the problem. Furthermore,
generation hyper-heuristics are used to create new low-level heuristics; in this
context, these represent the components of the metaheuristic.

Hyper-heuristics for Metaheuristic Configuration

Control flow is achieved by producing a combination of low-level heuristics, each
is a component of the metaheuristic algorithms, i.e., the hyper-heuristic selects
which low-level heuristic to apply at each point in a metaheuristic algorithm.
The low-level heuristics are components of the metaheuristic algorithm. Lourenço
et al. [21] use grammatical evolution to evolve evolutionary algorithms for the
royal road functions. The aim is for the evolutionary algorithm to adapt itself
during the evolutionary process. Evaluating the evolutionary algorithm proved to
be a computationally intensive task, and hence, a limited number of runs were
performed. Grammatical evolution combines the different evolutionary algorithm
components, namely, mutation, crossover, and selection components and parameter
values for these components. The evolved evolutionary algorithms are applied to
a seeded initial population. One instance was used for training, and the evolved
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evolutionary algorithms were tested on the remaining four instances. Performance
was found to be similar to that of the standard evolutionary algorithm. The
evolved EA that performed better than the standard EA did not follow the standard
structure and contained two types of crossover. There are a number of early
initiatives that can be categorized as hyper-heuristics for inducing evolutionary
algorithms, although this is not explicitly stated in the papers. Oltean and Groşan
[24] use multigene expression programming to evolve an evolutionary algorithm
to induce Griewank’s function. Algorithms comprised of initialization, mutation,
and crossover components are evolved. The number of crossover, initialization,
and mutation components in the best individual was found to increase as the
evolution progressed. Linear genetic programming has also been used for purposes
of evolutionary algorithm induction [23]. Each algorithm evolved is a generational
evolutionary algorithm composed of selection, crossover, and mutation components
and is applied to an initial population of randomly generated elements. Evolutionary
algorithms are evolved for function optimization, the traveling salesman problem,
and quadratic assignment problem. For all three problems, the evolved algorithms
are trained on a problem instance and are able to generalize and solve other
problem instances. In later work, Dioşan and Oltean [13] use genetic algorithms
to evolve evolutionary algorithms for function optimization. Each chromosome
is comprised of a combination of selection, mutation, and crossover operations
as well as population altering strategies to place the newly created offspring
into the population. A different evolutionary algorithm was evolved to induce
each of the ten functions. As in previous studies, the crossover operator was
the most prevalent in evolved evolutionary algorithms producing the best re-
sults.

In some studies, the hyper-heuristic achieves both control flow and parameter
tuning. In this case, the hyper-heuristic selects the component of the metaheuristic
and the parameter value. Tavares and Pereira [33] employ grammatical evolution
to automatically configure ant colonization algorithms for solving the traveling
salesman problem. The architecture of the ant colonization algorithm including the
components of the algorithm, e.g., method for evaporation, and parameter values are
evolved. The evolved architecture was found to be effective when applied to problem
instances different from those used for training during evolution. The evolved
architectures producing the best results were found to be different from those of the
standard ant colonization algorithms. Lourenço et al. [22] use grammatical evolution
to design evolutionary algorithms to solve the knapsack problem. The evolved
evolutionary algorithms are applied to unseen instances. Each evolved evolutionary
algorithm specifies the type of selection, type of crossover, type of mutation, and
parameter values. Evolved evolutionary algorithms using binary swap mutation and
uniform crossover performed the best.

Generation hyper-heuristics go a step further, and instead of choosing a compo-
nent of a metaheuristic to decide the control flow, these hyper-heuristics create a
new component. In the study conducted by Hong et al. [18] a generative hyper-
heuristic, employing genetic programming is used to evolve mutation operators
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for evolutionary programming. The terminal set is comprised of random numbers
produced by a Gaussian random number generator, and the function set is comprised
of arithmetic operators. The approach was used to evolve ten function classes,
seven unimodal and three multimodal, and was found to require less processor
time than the man hours needed to design new mutation operators. A different
mutation operator was evolved for each function class using one instance of the
class. Woodward and Swan [37] use local search, namely, hill-climbing, to evolve
mutation operators for genetic algorithms. These mutation operators were found
to outperform human-created mutation operators. Register machines are used to
simulate the behavior of mutation operators. Seven function classes were used
to test the effectiveness of the evolved mutation operators. Different mutation
operators were created for each function class. Woodward and Swan [36] evaluate
a similar approach which uses random search to generate search heuristics for a
genetic algorithm. As in the previous study, register machines are used to emulate
the selection process. Selection is based on the fitness or rank of a bit string.
The evolved selection heuristics were tested for the mimicry problem set and
were found to perform better than the human-designed selection heuristics. In
the study conducted by Dioşan and Oltean [12], genetic programming induces
crossover operators for a genetic algorithm for function optimization. A different
crossover operator is evolved for each of the 11 function classes. The performance
of the evolved operators was found to be comparative to human-designed crossover
operators. Drake et al. [15] also employ grammatical evolution to design the
construction heuristic and move operators used by variable neighborhood search
to solve the vehicle routing problem. The move operators generated are ruined, and
insertion heuristics which are used to perform the shaking process in the variable
neighborhood searched. The variable neighborhood search produced results close
to the global optimum for all problem instances. Løkketangen and Olsson [20] use
the ADATE system to generate the move selection, tabu tenure, and the aspiration
criteria in a tabu search for solving the Boolean optimization problem (BOOP).
The authors describe ADATE as a generation hyper-heuristic that performs offline
learning. ADATE is an automatic programming system that produces functional
programs in metalanguage ML. The generated components were found to perform
better than manually designed components. One of the generated components
producing good results was found to give good moves a longer tabu tenure which is
not typical of human-designed tabu searches. This again emphasizes the advantage
of automatic generation of metaheuristic components.

Discussion

Multilevel metaheuristics can be categorized as selection or generation perturbative
hyper-heuristics. As previously outlined, designing a metaheuristic involves making
decisions regarding what parameter values to use, what operators to use, and the
control flow of the overall algorithm. From the survey presented above, it is evident
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that hyper-heuristics have been fairly effective in making these design decisions.
Selection perturbative hyper-heuristics are used to select numerical and discrete
parameter values. Hence, the hyper-heuristic explores the space of parameter values.
Evolutionary algorithms have chiefly been used for this purpose. The parameter
values can either be coevolved while solving the problem at hand or optimized
separately. In the latter case, the parameters can be determined offline during the
training phase. Selection perturbative hyper-heuristics can also be used to make
control flow decisions. This essentially involves selecting different operators at
different stages of solving the problem. Hence, the decision of which operator to
use can be made as part of the control flow decision. Evolutionary algorithms,
including linear genetic programming, genetic algorithms, multigene expression
programming, and grammatical evolution have been used for control flow design.
The decision regarding which operator to use may not be a matter of selecting an
existing operator but creating a new operator. Generation hyper-heuristics can be
used to generate new operators. This research has focused to a large extent on
selection, mutation, and crossover operators in evolutionary algorithms. Genetic
programming has primarily been used to generate new operators. Grammatical
evolution, local search, and random search have also been used for this purpose.
A hyper-heuristic can be used to make all three design decisions simultaneously.
This can be seen in the studies conducted by Lourenço et al. [21, 22] and Tavares
and Pereira [33] where grammatical evolution is used to make this decision for
the induction of an evolutionary and an ant colonization algorithm simultane-
ously.

In the case of all three design decisions, the parameter values, operators, and
algorithms induced by the hyper-heuristic can be reusable or disposable. In the
case of reusability, two phases are performed, a training phase and a testing phase.
During the training phase, one or a subset of problem instances are used. The
induced parameter values, operators, and algorithms are then used to solve unseen
instances. Disposable parameter values, operators, and algorithms are induced
for the particular problem instance, and hence, a training phase is not required.
Reusability has the advantage of the time required for design being reduced as
redesign is not needed for every new instance; however, there may be a limited
number of instances for which the generated design is applicable.

One of the challenges associated with using hyper-heuristics for the design
of metaheuristics is the processing time needed. Given the advances made in
multicore architectures and the availability of multicore architectures on a standard
desktop machine, distributed architectures can be designed for the implementation
of these hyper-heuristics. Most of the research conducted this far has focused on
the configuration of evolutionary algorithms. These ideas can be transferred to
the design of other metaheuristics. Evolutionary algorithms have primarily been
used for design purposes. These have ranged from genetic algorithms through to
grammatical evolution. A comparative study into the performance of the different
types of evolutionary algorithms and their contribution to the design process would
be interesting.
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Conclusion

A metaheuristic algorithm’s configuration is the combination of its control flow
and its parameter settings. Determining the best possible configuration for a
metaheuristic is a difficult task that is commonly done by trial and error and based
on the experience of the algorithm designer. For this reason, metaheuristics have
been developed that are able to adapt their configuration during the search (adaptive
metaheuristics), potentially using a higher-level metaheuristic (multilevel meta-
heuristics). In this chapter, we have surveyed the literature on this topic. The chapter
has also highlighted the effectiveness of (see �Chap. 17, “Hyper-heuristics”) as
multilevel metaheuristics. This serves as a starting point for researchers wanting
to use hyper-heuristics for the automated design of metaheuristics. Hyper-heuristics
have been fairly effective for the purpose of design, and in most cases, the generated
designs have produced better results than the manually designed metaheuristic, in
some experiments producing designs that have not previously been thought of. This
overview has also brought to light certain research questions and hence areas for
future research. Research thus far has highlighted the potential of hyper-heuristics
in the automated configuration of metaheuristics. This has now set the foundation
for wider application, including more complex problems.
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