
8Restart Strategies

Oleg V. Shylo and Oleg A. Prokopyev

Contents

Introduction . 206
Basic Restart Strategies . 208
Restart Distribution and Optimal Restart Strategies . 210
Single Algorithm Portfolios of Restart Algorithms . 212
Mixed Algorithm Portfolios of Restart Algorithms . 217
Conclusions . 218
Cross-References . 219
References . 219

Abstract

This chapter is focused on restart strategies in optimization, which often provide
a substantial algorithmic acceleration for randomized optimization procedures.
Theoretical models that describe optimal restart strategies are presented along-
side with their relations to parallel computing implementations.

Keywords
Algorithm � Algorithm portoflio � Parallel optimization � Restart � Superlinear
speedup

O. V. Shylo (�)
University of Tennessee, Knoxville, TN, USA
e-mail: oshylo@utk.edu

O. A. Prokopyev
University of Pittsburgh, Pittsburgh, PA, USA
e-mail: droleg@pitt.edu

© Springer International Publishing AG, part of Springer Nature 2018
R. Martí et al. (eds.), Handbook of Heuristics,
https://doi.org/10.1007/978-3-319-07124-4_15

205

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-07124-4_15&domain=pdf
mailto:oshylo@utk.edu
mailto:droleg@pitt.edu
https://doi.org/10.1007/978-3-319-07124-4_15

206 O. V. Shylo and O. A. Prokopyev

Introduction

When evaluating performance of an optimization method, the most commonly
reported statistics are running time (or execution time) and solution quality.
Often these statistics are sensitive to initial conditions and algorithm parameters,
especially in randomized algorithms. To capture this variability when analyzing
computational performance, it is common to report a sequence of run-times and
the corresponding objective function values (or their averages and some measures
of dispersion) for different problem instances, initial conditions, and parameter
settings. In general, it is natural to consider a probability distribution of time that
an algorithm requires to obtain a solution of a given quality (e.g., an optimal
solution or a solution whose value is within factor ˛ from optimal). The variability
in run-times can often be attributed to randomized algorithmic steps, such as
randomized branching rules and column selection in branch-and-price methods,
arbitrarily resolved ties, stochastic initial solutions, and random local search moves
in metaheuristics.

In some applications, the distribution of the algorithm’s run-time has a large
spread, and there is a relatively high probability of having a run-time that is
far from the average run-time value [6]. Such peculiar distributions can be ex-
ploited to accelerate the search via multi-start strategy: each run has a limited
duration, and the algorithm is repeatedly restarted with different initial condi-
tions or random seeds. Importantly, such acceleration opportunity is not just a
mathematical curiosity, but it is commonly found in many real-life applications pro-
viding significant acceleration for the state-of-the-art optimization algorithms; see,
e.g., [6, 12, 16, 18].

If a probability distribution of an algorithm’s run-time admits such acceleration,
it is referred to as a restart distribution. In [18], the authors provide the formal defi-
nition of a restart distribution. The authors also establish the theoretical explanation
of the efficient restart strategies for enumeration algorithms. A search tree model is
described in [2] to provide a formal proof of heavy-tailed behavior in imbalanced
search trees.

Incorporating variability into deterministic methods may lead to faster algo-
rithms. Randomizing certain decision in the deterministic algorithms may also
induce restart distribution of run-times. This type of acceleration has been reported
for various applications of randomized backtracking search. In [6], random steps are
embedded in a complete search algorithm for the constraint satisfaction problem
and the propositional satisfiability problem, and it is shown that the proposed
randomization accelerates deterministic methods.

Finally, multi-start is a popular framework in many metaheuristics (see, e.g., [3,
13, 14, 16]). However, the impact of restart strategies on the computational per-
formance is often underestimated. One of the most successful metaheuristics –
tabu search – and its run-time distributions in the context of restart strategies are
discussed in [19].

8 Restart Strategies 207

Distribution of Run Time
40000

35000

30000

25000

20000

15000

10000

5000

0
0 1000000 2000000 3000000 4000000 5000000 6000000

Fig. 1 The distribution of run-time of a tabu search algorithm for an instance of the maximum cut
problem based on 80,000 runs

The following example of a restart distribution is based on a randomly generated
instance of the directed maximum cut problem [20] with 400 vertices, where every
possible edge between vertices is included in the graph with probability 1

2
(both

directions are considered separately). This random instance is repeatedly solved by a
simple version of the tabu search method [4] starting from different initial solutions,
terminating when the algorithm finds a solution whose objective is better than a
predefined threshold value. The implementation of the tabu search in this example
has a fixed tabu tenure of ten iterations, and it does not include any advanced
features, except for the cycle detection [4].

The distribution of the run-times is presented in Fig. 1. Markedly, it can be
observed that the probability of large computational times is rather high or,
in other words, the run-time has a heavy-tailed distribution (the tails are not
exponentially bounded). In order to accelerate the search, one can select a restart
parameter value and repeatedly restart the algorithm after the number of iterations
exceeds this predefined parameter. Figure 2 provides the average run times for
the tabu algorithm as a function of the number of iterations between restarts.
It is clear from the plot that certain values of the restart parameter guarantee
superior algorithmic performance, when compared to the original algorithm that
does not employ any restart strategy. In this context, an interesting question can
be stated: What is the best restart value for algorithm acceleration? The following
discussion provides an overview of the research that addresses this important
question.

208 O. V. Shylo and O. A. Prokopyev

450000

400000

350000

300000

250000

200000

150000

100000
0 100000800006000040000

Restart Parameter

T
im

e

20000

Fig. 2 The average run-time of a tabu search algorithm for an instance of the maximum cut
problem as a function of the restart parameter (the same instance as in Fig. 1)

Basic Restart Strategies

Unlike Monte Carlo algorithms, which are guaranteed to provide approximate
answers or solutions within a fixed time, the Las Vegas-type algorithms are defined
as algorithms that always find “correct solutions,” but the required computational
time is uncertain. To define the correctness of a solution, one can demand a proof
of optimality or comparison of the solution objective function to a predefined
threshold, in which case the “correct solution” is any solution with the objective
function better than the threshold.

In general, the run-time of an algorithm can be measured either in iterations or in
computational time. A restart strategy associated with a given algorithm is typically
defined (see, e.g., [10, 22]) as a sequence, S D ft1; t2; : : :g, that represents allocated
run-times between restarts. According to the strategy S , the first run continues for
t1 time units (iterations) or until the correct answer is found. The second run lasts t2
time units or until the correct answer is found and so on. The runs are independent
from each other, as no information is passed between different computational runs.
As briefly discussed in section “Introduction”, different restart strategies might lead
to different average run-times.

In [10], the authors consider integer run-times that represent the total number
of iterations until a desired outcome is achieved. They consider a wide domain
of restart strategies including strategies with random restart intervals and those
that enable suspension of algorithm execution in favor of another run with an
option to continue its execution later. It is shown that there always exists a uniform
restart strategy (i.e., t1 D t2 D : : : D t�) that is optimal. It is easy to see

8 Restart Strategies 209

that the same result holds if a run-time is determined using continuous time units
instead of iterations – for example, consider rounding continuous times to the
nearest integral values (number of seconds) and redefining the run-time distribution
accordingly.

To find an optimal restart period t�, a good estimate of the underlying run-time
distribution is required, which might be problematic in practice. If this information
is not available, the universal restart strategy introduced in [10] can provide a
decent performance guarantee. In this strategy, all run length are powers of 2 starting
with a run of length 20 (this sequence may be rescaled). Considering the duration
of the current run, if the number of previous runs with the same length is even,
then the next run duration is double of the current run duration. Otherwise, the
next run has the length equal to one. These rules define the following numerical
sequence:

Suniv D f1; 1; 2; 1; 1; 2; 4; 1; 1; 2; 1; 1; 2; 4; 8; 1; : : :g

When comparing Suniv to the optimal restart strategy, its performance is within
a logarithmic factor from optimality without any requirements on prior knowledge
of the run-time distribution [10]. Formally, if T univ denotes the expected run-time of
the algorithm that uses universal restart strategy and T opt denotes the expected run
time under the optimal restart strategy, then

T univ � 192 � T opt.log2.T opt/ C 5/:

Unfortunately, the difference between run-times of the universal and optimal
strategies may be large in practice, which limits the applicability of this important
theoretical result.

Restart strategies can be naturally extended to parallel optimization [9], where
copies of the same algorithm are executed in parallel. Note that due to randomness,
the search trajectories are in general different. As in the serial setting, a restart
strategy defines maximum run-times for each copy of the algorithm, i.e.,

S D

8
ˆ̂
<

ˆ̂
:

t 1
1 ; t 1

2 ; t 1
3 ; : : :

t 2
1 ; t 2

2 ; t 2
3 ; : : :

: : :

tn
1 ; tn

2 ; tn
3 ; : : :

(1)

In a uniform parallel restart strategy, each copy of the algorithm has the same
restart schedule (i.e., t i

j D t�). This strategy is no longer optimal as it was in the
serial case, but its performance is provably within a constant factor from optimality.
An example of nonuniform optimal strategy can be found in [9].

210 O. V. Shylo and O. A. Prokopyev

Restart Distribution and Optimal Restart Strategies

Next, we overview some formal characterizations of run-time distribution that can
be exploited to gain computational acceleration. Our discussion in this and the next
sections is mostly based on the results from [22].

Consider a randomized algorithm A for solving a problem instance P . The
execution time of A when solving P is a random variable, � . Based on the
algorithm A, one can define its uniform restart version, AR, which follows the same
algorithmic steps as A, but is restarted after R iterations or time units if the correct
solution is not found. Similarly to A, algorithm AR terminates as soon as the correct
solution is obtained. The positive parameter R is referred to as a restart period (or
a restart parameter) of AR.

The number of restarts before the first successful run of AR is a geometric random
variable, and the expected run-time, T .R/, of AR can be expressed as

T .R/ D R �
1 � P rf� � Rg

P rf� � Rg
C EŒ�j� � R� (2)

The first part of (2) is an expected number of restarts multiplied by the duration of
each run, while the second is an average duration of the run that produces the final
solution.

Definition 1. A probability distribution of a random variable � , P rf� � xg, is
called a restart distribution if there exists R > 0, such that

R �
1 � P rf� � Rg

P rf� � Rg
C EŒ�j� � R� < EŒ�� (3)

From (3), if a run-time of an algorithm follows a restart distribution, then the
algorithm has a restart version that outperforms the algorithm without restarts in
terms of its average run-time. Clearly, the properties of the run-time distribution
depend on the optimization problem and the algorithm itself. If, for example, an
optimization algorithm uses an optimal restart policy, then its run-time will no
longer follow a restart distribution.

A log-normal distribution is an example of a restart distribution. For example,
consider three log-normal random variables with the same location parameter,
� D 1. The scale parameters, � , are 2, 2.5, and 1.5. The expected values of
these random variables are 20.08, 61.86, and 8.37, respectively. If these variables
represented run-times of some algorithms, we would be able to achieve acceleration
by restarting after R units of run-time. Figure 3 illustrates this opportunity by
showing the expected run-time given by (2) as a function of restart period R. It
shows that restarting an algorithm allows us to achieve significant acceleration for
these run-time distributions. Furthermore, we can see that the larger variability in
run-times provides a better opportunity for acceleration by the restart mechanism.

The optimality conditions can be derived for continuous and differentiable
(first and second derivative) cumulative distribution functions (CDF) of run-times

8 Restart Strategies 211

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
1

2
3

4
5

Restart parameter

A
ve

ra
ge

 ru
n−

tim
e

Fig. 3 The average run-time as a function of the restart parameter, R, for log-normally distributed
run-times

(see [22] for more details). If this is not the case, then a continuous and differentiable
approximation of original CDF can be used instead.

Proposition 1. Let R� be an optimal restart period for AR. Then the expected run-
time of AR� is

T .R�/ D
1 � P rf� � R�g

dP rf��Rg
dR

ˇ
ˇ
ˇ
RDR�

(4)

Proof.

dT .R/

dR
D

1 � P rf� � Rg

P rf� � Rg
CR �

� dP rf��Rg

dR

P rf� � Rg
�

1 � P rf� � Rg

.P rf� � Rg/2
�

dP rf� � Rg

dR

!

CR �
dP rf� � Rg

dR

1

P rf� � Rg
C

� dP rf��Rg
dR

.P rf� � Rg/2

Z R

0

xf .x/dx

D
1 � P rf� � Rg

P rf� � Rg
�

dP rf��Rg
dR

P rf� � Rg

�

R �
1 � P rf� � Rg

P rf� � Rg
C EŒ�j� � R�

�

D
1 � P rf� � Rg

P rf� � Rg
�

dP rf��Rg
dR

P rf� � Rg
� T .R/

ut

212 O. V. Shylo and O. A. Prokopyev

The reciprocal of the expression in the right-hand side of (4) is known as a hazard
rate function, which is an important concept in reliability engineering [17]. The
hazard rate function, or failure rate, can be used to describe general properties of
restart distributions.

Proposition 2. A hazard rate function of a restart distribution is nonincreasing on
some interval containing an optimal restart period.

This property allows us to rule out the distribution that has an increasing hazard
rate functions [7]. The previous proposition shows, for example, that the following
distributions are not restart distributions:

• Weibull distributions with the shape parameter k > 1,
• Gamma distribution with the shape parameter k > 1,
• Uniform distribution,
• Normal distribution.

Single Algorithm Portfolios of Restart Algorithms

Algorithmic acceleration can be achieved by combining algorithms in portfolios that
are executed concurrently in a distributed manner. For example, a single algorithm
portfolio consists of different copies of the same algorithm that are deployed on
different processors. This simple parallelism can be extremely efficient in practical
applications that involve randomized algorithms. There are numerous reports of
superlinear speedup when using this type of parallelization (e.g., see [15]). By
superlinear speedup, we imply that the algorithm utilizes up to n processors and
on average is more than n time faster than the algorithm utilizing one processor.

The superlinear speedup can be related to the concept of restart distributions.
Consider a single restart algorithm portfolio: a parallel algorithm An

R that consists
of n independent copies of AR running in parallel (no communication), where, as
previously, AR is the restart version A with parameter R. The algorithm An

R halts
whenever one of n copies finds a correct solution. Let random variable �n

min denote
the run-time of An

R, while Tn.R/ denotes the expected run-time of An
R.

The expected run-time of the single algorithm portfolio with a uniform restart
strategy is given by

Tn.R/ D R �
.1 � P rf� � Rg/n

1 � .1 � P rf� � Rg/n
C EŒ�n

minj�n
min � R� (5)

An optimality condition similar to the serial case can be derived for parallel
restart algorithms (see [22]).

Proposition 3. Let R�
n be the optimal restart period for An

R; then the expected
running time of An

R is

8 Restart Strategies 213

Tn.R�
n / D

.1 � P rf� � R�
n g/

n � dP rf��Rg
dR

ˇ
ˇ
ˇ
RDR�

n

(6)

As mentioned earlier, the log-normal distribution is a restart distribution. We use
this distribution to illustrate some of the ideas, since we can easily calculate the
exact values for the conditional expectations in (5) without resorting to statistical
sampling. For example, we can use the log-normal run-time to provide an illustration
of the superlinear speedup.

Let � be a random variable with a log-normal distribution with parameters � D 2

and � D 1. We define a parallel speedup as a ratio between run-time of a serial
algorithm and run-time of its parallel version. Firstly, we consider the speedup for
the algorithm that does not apply any restart strategy. The data presented in Fig. 4
clearly indicates the superlinear average speedup relative to the run-time of the serial
algorithm.

The following proposition from [22] states that if the superlinear parallel speedup
is achieved by a single algorithm portfolio, then the underlying distribution of the
run-time is a restart distribution.

Proposition 4. If R� and R�
n are optimal restart periods for AR and An

R, respec-

tively, then T .R�/

Tn.R�

n /
� n.

0

500

1000

1500

2000

2500

3000

3500

4000

0 200 400 600 800 1000
Number of processors

Actual speedup
Linear speedup

Fig. 4 Speedup is obtained by comparing the serial no-restart version with the parallel no-
restart version [22]; � has log-normal distribution with � D 1 and � D 2

214 O. V. Shylo and O. A. Prokopyev

Simply speaking, Proposition 4 indicates that the superlinear parallel speedup
can be attributed to the inefficiencies of the serial algorithm, and these inefficiencies
can be alleviated by adopting an appropriate restart strategy.

Consider now the situation when both serial and parallel algorithms implement
optimal restart strategies. It is important to note that the optimal values in parallel
and serial cases are not necessarily the same. The following proposition relates the
number of processors to the value of the optimal restart parameter.

Proposition 5. If the hazard rate function of the run-time distribution is unimodal
and T .R�/

Tn.R�

n /
< n, then R� < R�

n .

Intuitively, it might seem that the best serial algorithm is the best candidate for
parallelizing. However, Proposition 5 shows that the optimal restart parameter for
the serial algorithm is not necessarily optimal when considering the performance
of the corresponding single algorithm portfolio. In other words, good average
performance in serial setting can often provide suboptimal parallel performance.

Suppose that the run-time of a serial algorithm follows the same log-normal
distribution as in the previous example. The optimality conditions (4) and (6)
for the optimal restart parameters provide the corresponding optima. Figure 5
illustrates the computational speedup achieved by the parallel algorithms with
optimal restart parameters and varying number of parallel processors compared to
the serial algorithm (for the log-normal run-times). The restart parameters of the
serial and parallel algorithms are different: in fact, it turns out that the optimal restart
parameter is monotonically increasing as a function of the number of processors.

0

200

400

600

800

1000

0 200 400 600 800 1000
Number of processors

Actual speedup
Linear speedup

Fig. 5 Speedup is obtained by comparing the optimal serial restart version with the optimal
parallel restart version [22]; � has log-normal distribution with � D 1 and � D 2

8 Restart Strategies 215

0.5

1

1.5

2

2.5

3

2 3 4 5 6 7 8 9 10
Number of processors

Average running time of the parallel algorithm with optimal restart
Average running time of the parallel algorithm without restart

Fig. 6 Comparison of the parallel algorithms with and without implementation of the optimal
restart strategy [22]; � has log-normal distribution with � D 1 and � D 2

The speedup is almost linear for the number of processors below 100. For large
numbers of processors, the speedup quickly becomes sublinear, and the single
algorithm portfolio parallelization becomes less effective.

Another interesting question that is important for practical applications is: what
is the value of knowing the optimal restart parameter? Figure 6 shows the value
of implementing optimal restart strategy with respect to the number of processors.
As the number of processors increases, the benefit of knowing the exact value
of optimal restart parameter is steadily decreasing. In some sense, the single
algorithm portfolio framework takes advantage of restart-distribution properties
without restarting the algorithm. The performance can be improved by applying an
effective restart strategy explicitly; however, the value of such improvement quickly
diminishes as the number of processes increases.

An optimal value of restart parameter is typically unknown in a realistic problem
setting. Furthermore, as mentioned previously, the value of the optimal restart
parameter may decrease as the number of processors grows. These observations
suggest that the main effort should be concentrated on developing and identifying
algorithms with run-times that follow restart distributions instead of focusing on the
methods that find optimal restart values. The potential for acceleration of run-times
that follow restart distributions can be automatically exploited via portfolio paral-
lelization. Furthermore, any errors in estimating the exact value of the optimal restart
sequence can degrade the performance with respect to adopting no-restart strategy.

We illustrate this idea by looking at different tenure parameters of tabu search.
Again we consider a random instance of the maximum directed cut problem with
400 vertices. The computational experiment is based on a simple tabu search with

216 O. V. Shylo and O. A. Prokopyev

Table 1 Average number of iterations for different number of processors

Number of processors Average number of iterations

Tabu tenure D 10 Tabu tenure D 30

1 192,216 26,073

2 19,950 13,264

4 1049 6996

8 434 3664

16 433 2003

32 325 1124

Fig. 7 Computational results for MAXDICUT problem using tabu search in a single algorithm
portfolio [19]

different values of tabu tenure that was mentioned in earlier examples. Table 1 shows
the results for two tabu algorithms with different tenure parameters. The algorithm
with tenure parameter 30 is significantly faster than the algorithm with tenure
parameter 10 when deployed on a single processor. However, the situation changes
when parallel implementation is considered: the parallel algorithm with tenure 10 is
much faster than its serial version. This example (see [19]) shows that if one uses the
average serial run-time as the main criterion for choosing an algorithm for parallel
implementation, the better parameter choices (or even algorithmic approaches) can
be dropped in favor of suboptimal choices.

Figure 7 highlights the value of knowing the optimal restart parameter. The tabu
algorithm with tenure 10 without restarts quickly converges to the performance of
the same tabu algorithm that uses an optimal restart strategy.

8 Restart Strategies 217

Mixed Algorithm Portfolios of Restart Algorithms

Instead of focusing on a single algorithm portfolio, one may consider a combination
of different algorithms. The diversity of mixed algorithms can improve the overall
performance with respect to a single algorithm portfolio. Suppose that we have a
set of available randomized algorithms and we want to select a subset of them to
include into a mixed algorithm portfolio of a given size. If the available algorithms
are simply different copies of the same algorithm, we call such selection a single
algorithm portfolio; otherwise, we will refer to it as a mixed algorithm portfolio.

There are a number of examples in the literature of mixed algorithm portfolios
that outperform single algorithm portfolios. In particular, the algorithm portfolio
approach for constraint satisfaction and mixed integer programming is presented
in [5]. The authors show that the mixed algorithm portfolio can outperform a
single algorithm portfolio and discuss intuition behind such situations. An efficient
algorithm portfolio approach using backtracking search for the graph-coloring
problems is considered in [8]. Extensive computational experiments with restart
strategies and algorithm portfolios for benchmark instances of network design
problem are also investigated in [1].

The mathematical model of mixed portfolios of restart algorithms can be outlined
as follows. Consider a set of m algorithms A1, : : :, Am with restart parameters R1,
: : :, Rm and random run-times �1, : : :, �m, respectively. Additionally, there are N

parallel processors that are available, and we need to select N algorithms to deploy
on each processor. Each processor should be used by a single algorithm, and the
same algorithm can be deployed on multiple processors. We assume that the run-
time of each algorithm is an integer multiple of its restart parameter. In other words,
even if an algorithm finds a solution in the beginning of the run, an actual run-time
will be rounded up to the next restart period.

Using this setup, there are m single algorithm portfolios that can be formed. Let
Ts denote the average run-time of the best single algorithm portfolio, which can be
easily defined using the properties of the geometric distribution:

Ts.A1; : : : ; Am; N / D min

�

R1

1

1 � pN
1

; : : : ; Rm

1

1 � pN
m

�

:

Let Tm.A1; n1; : : : ; Am; nm/ denote the expected run-time of the mixed algo-
rithm portfolio, which consists of n1 copies of A1, n2 copies of A2, and so on�Pm

iD1 ni D N
�
. The mixed algorithm portfolio terminates as soon as one of the

algorithms finds the target solution (e.g., a solution with objective below a certain
threshold).

To identify the computational benefit that can be achieved by mixing randomized
algorithms with different properties, we define the speedup ratio S as

S D
Ts.A1; : : : ; Am; n1 C : : : C nm/

Tm.A1; n1; : : : ; Am; nm/
: (7)

218 O. V. Shylo and O. A. Prokopyev

Unlike the serial case, in [9] the authors demonstrate that the best uniform
restart strategy repeated on every processor is not necessarily optimal; however,
its performance is within a constant factor of the optimal strategy. Furthermore, in
[21] and the subsequent work in [11], it is shown that the speedup ratio S of any
mixed algorithm portfolio satisfies

S �
1

1 � e�1
� 1:58: (8)

Therefore, if one has a full knowledge of run-time distributions, the best mixed
algorithm portfolio is less than two times faster than the best single algorithm
portfolio. However, a mixed algorithm portfolio can be viewed as a strategy
that can reduce risks associated with a nonoptimal algorithm selection for single
algorithm portfolios. Recall that by the definition in (7), the value of S compares
the performance of a mixed algorithm portfolio against the best possible algorithm
portfolio.

Moreover, it is interesting to note that according to the theoretical approach
described above (see derivation details of (8) in [11, 21]), the best performance of
a mixed algorithm portfolio is achieved when it consists of N algorithms that can
also be used as candidates to form the best single algorithm portfolio. Thus, the
expected performance of these algorithms in the case of a single algorithm portfolio
is the same. However, for the mixed algorithm portfolio, one should select N � 1

algorithms with a relatively short restart parameter and exactly one algorithm with
a long restart parameter. As all of these algorithms have the same performance in
the single portfolio setting, it also implies that each of the former N � 1 algorithms
is relatively unreliable within its short restart period (thus, these algorithms have
to be restarted a large number of times), while the remaining N -th algorithm,
despite its large restart parameter, is very reliable (i.e., the corresponding p is close
to one). Clearly, the existence of such algorithms is not necessarily guaranteed.
Nevertheless, the above result provides an intuitive characterization of effective
mixed algorithm portfolios. Namely, if there exists a trade-off that involves the
restart parameter value and the algorithm reliability, then it can be exploited within
a mixed algorithm portfolio.

Conclusions

In the discussion above, we only consider a setting with a single problem instance.
However, the same framework can be easily extended to the setting with multiple
problem instances. For example, optimization models of daily locomotive schedul-
ing remain constant, i.e., one needs to find optimal routes using existing railroad
network for a given demand. The particular demand patterns can vary substantially
from day to day producing different problem instances. We can form a training set
by selecting a set of problem instances from historical demands and use them for
construction of optimal restart strategies and/or algorithm portfolios. This is also

8 Restart Strategies 219

a typical approach for computational experiments. The researchers often test their
techniques on a small set of instances, tune the algorithms, and then conduct the
final experiment on a larger set of problems.

Cross-References

�Matheuristics
�Multi-start Methods
�Tabu Search

References

1. Chabrier A, Danna E, Pape CL, Perron L (2004) Solving a network design problem. Ann Oper
Res 130:217–239

2. Chen H, Gomes CP, Selman B (2001) Formal models of heavy-tailed behavior in combinatorial
search. In: CP ’01: proceedings of the 7th international conference on principles and practice
of constraint programming. Springer, London, pp 408–421

3. D’apuzzo MM, Migdalas A, Pardalos PM, Toraldo G (2006) Parallel computing in global
optimization. In: Kontoghiorghes E (ed) Handbook of parallel computing and statistics.
Chapman & Hall/CRC, Boca Raton, pp 225–258

4. Glover F, Laguna M (1997) Tabu Search. Kluwer Academic, Norwell
5. Gomes CP, Selman B (2001) Algorithm portfolios. Artif Intell 126(1–2):43–62
6. Gomes CP, Selman B, Kautz H (1998) Boosting combinatorial search through randomization.

In: Proceedings of the 15th national conference on artificial intelligence. AAAI Press, Madison,
pp 431–437

7. Gupta AK, Zeng WB, Wu Y, Gupta AK, Zeng WB, Wu Y (2010) Parametric families of
lifetime distributions. In: Gupta AK, Zeng W-B, Wu Y (eds) Probability and statistical models.
Birkhäuser, Boston, pp 71–86

8. Huberman BA, Lukose RM, Hogg T (1997) An economics approach to hard computational
problems. Science 275(5296):51–54

9. Luby M, Ertel W (1994) Optimal parallelization of Las Vegas algorithms. In: Proceedings of
the 11th annual symposium on theoretical aspects of computer science, STACS ’94. Springer,
London, pp 463–474

10. Luby M, Sinclair A, Zuckerman D (1993) Optimal speedup of Las Vegas algorithms. Inf
Process Lett 47:173–180

11. Mostovyi O, Prokopyev OA, Shylo OV (2013) On maximum speedup ratio of restart algorithm
portfolios. INFORMS J Comput 25(2):222–229. https://doi.org/10.1287/ijoc.1120.0497

12. Nowicki E, Smutnicki C (2005) An advanced tabu search algorithm for the job shop problem.
J Sched 8(2):145–159. https://doi.org/10.1007/s10951-005-6364-5

13. Nowicki E, Smutnicki C (2005) Some new ideas in TS for job shop scheduling. In: Operations
research/computer science interfaces series, vol 30, Part II. Springer, pp 165–190

14. Palubeckis G, Krivickiene V (2004) Application of multistart tabu search to the max-cut
problem. Inf Technol Control 31(2):29–35

15. Pardalos PM, Rodgers GP (1992) A branch and bound algorithm for the maximum clique
problem. Comput Oper Res 19:363–375

16. Resende MG, Ribeiro CC (2011) Restart strategies for grasp with path-relinking heuristics.
Optim Lett 5(3):467–478

17. Ross SM (1996) Stochastic processes. Wiley, New York

https://doi.org/10.1007/978-3-319-07124-4_14
https://doi.org/10.1007/978-3-319-07124-4_1
https://doi.org/10.1007/978-3-319-07124-4_24
https://doi.org/10.1287/ijoc.1120.0497
https://doi.org/10.1007/s10951-005-6364-5

220 O. V. Shylo and O. A. Prokopyev

18. Sergienko IV, Shilo VP, Roshchin VA (2000) Restart technology for solving discrete optimiza-
tion problems. Cybern Syst Anal 36(5):659–666

19. Sergienko IV, Shilo VP, Roshchin VA (2004) Optimization parallelizing for discrete program-
ming problems. Cybern Syst Anal 40(2):184–189

20. Shylo V, Shylo OV (2011) Path relinking scheme for the max-cut problem within global
equilibrium search. IJSIR 2(2):42–51

21. Shylo O, Prokopyev O, Rajgopal J (2011) On algorithm portfolios and restart strategies. Oper
Res Lett 39(1):49–52

22. Shylo OV, Middelkoop T, Pardalos PM (2011) Restart strategies in optimization: parallel and
serial cases. Parallel Comput 37:60–68

	8 Restart Strategies
	Contents
	Introduction
	Basic Restart Strategies
	Restart Distribution and Optimal Restart Strategies
	Single Algorithm Portfolios of Restart Algorithms
	Mixed Algorithm Portfolios of Restart Algorithms
	Conclusions
	Cross-References
	References

