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Abstract

Iterated greedy is a search method that iterates through applications of con-
struction heuristics using the repeated execution of two main phases, the partial
destruction of a complete candidate solution and a subsequent reconstruction of
a complete candidate solution. Iterated greedy is based on a simple principle,
and methods based on this principle have been proposed and published several
times in the literature under different names such as simulated annealing, iterative
flattening, ruin-and-recreate, large neighborhood search, and others. Despite
its simplicity, iterated greedy has led to rather high-performing algorithms.
In combination with other heuristic optimization techniques such as a local
search, it has given place to state-of-the-art algorithms for various problems.
This paper reviews the main principles of iterated greedy algorithms, relates
the basic technique to the various proposals based on this principle, discusses
its relationship with other optimization techniques, and gives an overview of
problems to which iterated greedy has been successfully applied.

Keywords
Stochastic local search � Metaheuristics � Iterated greedy � Greedy methods �

Local search � Constructive search

Introduction

Many effective algorithms for NP-hard combinatorial optimization problems rely
on the efficient, repeated execution of some simple, underlying mechanisms. A com-
mon example is perturbative search methods that iterate over neighborhood searches
or iteratively apply underlying iterative improvement procedures. Examples of such
methods include simulated annealing, tabu search, iterated local search, memetic al-
gorithms, or dynamic local search [41,48]. In fact, simulated annealing, tabu search,
or dynamic local search at each step explore the neighborhood of a current solution,
while iterated local search and memetic algorithms can be seen as iterating across
repeated applications of improvement algorithms. Less frequently, stochastic local
search (SLS) methods make use of the iterative application of solution construction
algorithms. Examples for these latter methods are ant colony optimization (ACO)
[23, 24], greedy randomized adaptive search procedures (GRASP) [30, 31], or the
pilot and rollout method [11, 27].

In this chapter, we review another SLS method that relies on the iterative
application of solution construction procedures: iterated greedy. The method builds
a sequence of solutions by iterating through phases of (partial) solution destruction
and subsequent reconstruction of a complete candidate solution. A first complete
solution in this sequence is generated by some constructive method. Then the
following three steps are iteratively executed. First, components of a complete
candidate solution s are removed, resulting in a partial solution sp . Second, starting
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from sp , a complete candidate solution s0 is rebuilt. Third, an acceptance criterion
decides whether to continue this process from s or s0.

Iterated greedy has a clear underlying principle, and it is generally applicable to
any problem for which constructive methods can be conceived. As such, iterated
greedy is clearly a general-purpose method. Iterated greedy is a rather simple
method that needs typically only short development times, especially if already a
constructive heuristic is available. Iterated greedy provides also a rather simple way
of improving over the single application of a constructive method, and for various
problems very high-quality solutions are generated. Additionally, basic versions of
iterated greedy do only incur few main parameters, and their impact on the search
process is rather intuitive to understand. All these reasons make iterated greedy a
desirable technique for developers of heuristic algorithms.

Given the simple underlying principle, it is maybe also not surprising that the
method that we here call iterated greedy has been (re-)discovered and applied a large
number of times under different names by different authors (including ourselves).
Algorithms that rely to a significant extent on the same underlying principle have
been given names such as simulated annealing [50], evolutionary heuristic [62],
iterative flattening [17], ruin-and-recreate [95], iterative construction heuristic [86],
large neighborhood search [96], or, as here, iterated greedy [48, 92]. We will
review these different developments and other related procedures in section “IG
Applications: Historical Development.”

Despite the possible confusion that may arise for the reader due to the different
names and the in part different views on the method, we want to stress that the
really important aspect is the principle that underlies all these algorithms. In fact,
in all these proposals a repeated usage of constructive methods is made that start
from some intermediate, partial candidate solutions. This principle is a generic
one of a potential large utility, and it should be understood as one of the basic
principles that can be used to develop optimization algorithms. This basic principle
may also be only one of the principles that is used in the development of a
hybrid optimization algorithm that combines elements from different techniques.
For example, several algorithms that make use of the iterated greedy principle
include also a local search phase that may improve the solutions generated by the
constructive mechanisms [92].

The structure of the chapter is as follows. In section “Iterated Greedy” we
review the basic principles of iterated greedy algorithms. Next, in section “Some
Simple Examples of Iterated Greedy Algorithms,” we give some concrete examples
of iterated greedy algorithms. In section “Case Study: Iterated Greedy for Flow
Shop Scheduling” we give some results of an experimental study that discusses the
main trade-offs in the design of an iterated greedy algorithm for the permutation
flow shop problem. We then present other algorithms that make use of the
same principle as iterated greedy in section “IG Applications: Historical Devel-
opment.” The relationship of iterated greedy to some other methods is discussed
in section “Relationship to Other Approaches.” References to some noteworthy
applications of iterated greedy are given in section “Applications,” and we conclude
in section “Conclusions.”
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Iterated Greedy

Greedy Construction Heuristics

Constructive algorithms build candidate solutions to optimization or decision prob-
lems step by step, starting from an empty solution. At each step, they add a solution
component to the current partial solution and repeat these steps until a complete
candidate solution is obtained. Commonly, constructive algorithms use a heuristic
function that estimates for each solution component the benefit of including it into a
partial candidate solution. A baseline construction algorithm is formed by so-called
greedy (constructive) algorithms that at each step add a solution component for
which the value of the heuristic function is the best (see also Fig. 1). If more than
one solution component has the same best heuristic value, a tiebreaking criterion
is used to decide which solution component is actually added; in the simplest case,
this tiebreaking is done uniformly at random, but it also may be done by a secondary
heuristic function.

Greedy construction heuristics are frequently used when tackling combinatorial
optimization problems due to a number of reasons. First, greedy construction
heuristics are rather fast, and at the same time they generate solutions that are
usually much better than those generated uniformly at random or by a randomized
but heuristically biased construction. Second, these algorithms are often used to
seed (perturbative) local search methods such as iterative improvement algorithms;
more sophisticated SLS methods such as tabu search and simulated annealing; or
population-based methods such as memetic algorithms. In the latter case, typically
some members of the population are generated by greedy constructive methods,
while others may be randomly generated. Seeding perturbative local search methods
with solutions from greedy construction algorithms can incur advantages such as
improved quality of local optima, faster identification of local optima, and a better
trade-off between computation times and solution quality, that is, better anytime
behavior [114]. Third, sometimes one can prove guarantees on the quality of the
solutions that are generated in the worst case, leading to so-called approximation
algorithms. Often, the best provable guarantees that can be obtained even for more
complex SLS algorithms are the guarantees that directly stem from those of the
initial greedy construction. Fourth, for various polynomially solvable problems,
greedy algorithms are also guaranteed to generate optimal solutions, the Kruskal
algorithm for minimum spanning trees being a well-known example. However,
for NP-hard problems, this is not the case. Finally, they build the basis for a

Fig. 1 Algorithmic outline
of a greedy heuristic
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number of other methods such as GRASP [30, 31], ACO [23], or squeaky wheel
optimization [52].

One straightforward way to improve over the generation of a single greedy
solution is in some cases the repeated application of a greedy heuristic to generate a
variety of different candidate solutions and then to choose the best one. Obviously,
repetition in this sense is only reasonable if in the construction process different
solutions can be generated. For example, for the well-known nearest neighbor
heuristic for the traveling salesperson problem (TSP), n distinct nearest neighbor
tours may result (assuming no random tiebreaking is done); for each of the n

possible cities that may be chosen (randomly) as the initial city for the solution
construction, a different tour may result. However, in other cases where the greedy
construction is fully deterministic, additional randomization of the construction
process, as proposed in the semi-greedy heuristics [45] and in GRASP [30, 84],
may be required to generate different solutions.

Repeated construction of solutions also has inherent disadvantages. Constructing
a full solution is relatively time-consuming as especially the initial construction
steps require a large amount of computation when compared to later construction
steps. Furthermore, no information is taken from one solution construction to
another one, and thus such a repeated construction does not exploit knowledge
gained from previous solutions. A method that alleviates these problems and
that allows to invest, in principle, arbitrary computing times to generate different
solutions by constructive heuristics is iterated greedy.

Iterated Greedy Framework

The main principle of iterated greedy is to iterate over (greedy) construction
methods by first generating a complete candidate solution and then cycling through
a main loop that consists of two main steps. In the first step, some solution
components are removed from the current complete candidate solution s to result
in some intermediate partial candidate solution sp . We call this the destruction step.
In the next step, starting from sp , a construction heuristic is used to generate a
new complete solution s0. We call this step the construction step. An acceptance
test then decides from which of the two solutions, s or s0, the next destruction
step applies. While in the simplest case, the acceptance test may accept only
improved solutions, other choices may lead to more search diversification and, thus,
to possibly better results when many iterations of the iterated greedy algorithm are
done.

An algorithmic outline of an IG algorithm is given in Fig. 2. It starts by first
generating an initial candidate solution using a procedure GenerateInitialSolution
and then iterates through a main loop that consists of the application of the
three procedures Destruction, Construction, and AcceptanceCriterion. Note that the
construction procedures used in GenerateInitialSolution and Construction may be
different and, hence, may also use different greedy heuristics. In the simplest case,
however, they may be the same procedures.
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Fig. 2 Algorithmic outline
of Iterated Greedy (IG)

A simple default version of an iterated greedy algorithm could use the following
choices. As constructive heuristic one may take one that is either already available or
implement a known state-of-the-art constructive heuristic. The solution destruction
may delete some randomly chosen solution components, where the number d of
solution components to be removed is a parameter of the algorithm. As acceptance
criterion, one may force the cost to decrease by only accepting improved or equal
quality candidate solutions.

The iterative process around construction heuristics gives IG some specific
advantages when compared to the repeated construction of complete candidate
solution from scratch. In fact, by starting from a partial solution, one may reduce
significantly the time necessary to generate a new candidate solution as less
constructive steps need to be done, and the time per construction decision is also
reduced as the number of available solution components to choose from is smaller
the larger the partial solutions. In addition, through the potential bias exerted by the
acceptance criterion, the search process can more easily intensify around the best
solutions found in the search process.

When trying to develop a more performing version of an iterated greedy
algorithm, many different options for each of the specific operators may be taken
into account. Some of the main relevant issues to be considered will be discussed
in the following. Other ideas will be discussed also later when considering the
relationship of iterated greedy to other methods or when discussing applications
of iterated greedy algorithms.

Destruction There are a number of different possible choices for the solution
destruction. A first consideration concerns the number of solution components that
should be removed, as defined by a parameter d . The extreme settings would
correspond to removing only a single component, that is, d D 1 or all of them.
Even if one may argue that the resulting algorithms should be considered as iterated
greedy algorithms, these parameter settings would not correspond to the main
ideas underlying iterated greedy. The first case would be akin to a randomized
local search, while the latter be akin to a repeated application of a construction
heuristic. (We discuss these relationships in more depth in section “Relationship to
Other Approaches.”) Intermediate values of d result in a trade-off between search
intensification and diversification: removing a large number of solution components
allows to jump to rather distant solutions in the construction phase, while removing
few components leads to a more localized search.
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Another choice is whether to leave the number of solution components to be
removed fixed or variable during the algorithm run. In the case d is left variable,
a scheme of how to adapt its value is required. If the value of d is left fixed, it
requires proper tuning. Possibilities for varying the value of d could be to modify
this value randomly within some interval every few iterations, to choose the value
according to a scheme similar as those introduced for variable neighborhood search
[44] or to adapt the value of d at computation time, exploiting ideas of reactive
search [9].

Once it is known how many components are to be removed, which ones should
be chosen? There are a number of possible answers to this question. Intuitively,
a randomized destruction is preferable over deterministic choices to reduce the
danger of cycling. If a stochastic destruction is used, the simplest case is to choose
components uniformly at random. More involved could be choices that take into
account cost measures on the components or the partial solutions that remain, thus
introducing a bias in the choice. In that case, solution components that have a strong
contribution to the cost of a solution would then have a larger probability of being
removed than low cost components. Alternatively, one may use lower bounds on the
partial solutions resulting after having removed a component: the smaller the lower
bound, the higher the probability.

Construction One of the crucial ideas of IG is that restoring a fully specified
solution is done by some form of (greedily biased) constructive mechanism. Hence,
the usage of a constructive mechanism is essential. Using a random perturbation
(corresponding to a move to a random solution in a large neighborhood) is more in
the spirit of reduced variable neighborhood search than in the spirit of IG.

The naming iterated greedy suggests that the construction heuristics used in the
algorithm are greedy construction heuristics and typically deterministic (modulo
random tiebreaking). In fact, in many implementations of iterated greedy algo-
rithms, this is also the case. However, we want to emphasize here that this need not
necessarily be the case as, in principle, any suitable constructive mechanism that
starting from some partial candidate solution sp can generate a complete candidate
solution – be it deterministically greedy, probabilistically greedy, or else – may be
used as the underlying construction mechanism in an iterated greedy algorithm.

Among the construction rules, one may distinguish between adaptive heuristics
and static ones. In the first case, the heuristic value assigned to a particular
choice in the solution construction depends on the partial solution. Typically,
adaptive construction heuristics will result in better quality solutions than static
ones; however, this improved solution quality is often reached at the cost of higher
computation times.

In the simplest case, the solution construction is done following a deterministic
construction heuristic – deterministic except of maybe random tiebreaking. Depend-
ing on the construction mechanism, it is possible to apply a deterministic rule: by
applying stochastic destruction, either the order in which solution components are
added is modified or, if adaptive construction heuristics are used, their heuristic
evaluation.
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Such basic considerations about solution construction in iterated greedy algo-
rithms can be extended in many natural ways by adopting techniques that have been
proposed in other methods. One may take inspiration from other constructive meth-
ods and use randomized selection in candidate lists built at each construction step as
in GRASP algorithms, use biased constructive decisions exploiting past experience
such as the pheromone trails in ACO, or use prohibitions by avoiding adding again
solution components that have been removed in the solution destruction, taking
ideas from tabu search. Another option may be to choose among different possible
construction rules and use ideas from the hyperheuristics community for this task
[15]. In fact, all kind of methods and techniques that are compatible with the
idea of constructing solutions may be adopted within iterated greedy algorithms
if this seems promising, making iterated greedy in this sense also a very flexible
technique.

Acceptance criterion. The acceptance criterion has a strong influence on the
diversification/intensification behavior of an IG algorithm. On the extreme cases
are the possibilities of accepting any new solution independent of its solution
quality or to only accept solutions that improve over the previous one. There
are many intermediate choices such as occasionally accepting worse solutions or
allowing backtracks to previously seen solutions. A popular choice when accepting
worse solutions is to use acceptance criteria from simulated annealing such as the
Metropolis criterion: if a new solution is better or equal, it is accepted; otherwise
it is accepted with a probability expf.f .s/ � f .s0//=T g, where T is a parameter
called temperature. More elaborated approaches might probably make use of short-
term memory as in tabu search. The acceptance criterion, whatever it might be, does
not need to be applied at every iteration, i.e., a given incumbent solution can be
destructed and reconstructed a number of times before deciding on its value. For the
choice of the acceptance criterion, very much the same issues arise as in iterated
local search [82], and an appropriate choice may be crucial to an IG algorithm’s
performance.

Hybridization with local search. Iterated greedy algorithms can form directly the
basis of hybrid algorithms that combine various search mechanisms. In fact, for
constructive heuristics a natural extension is to improve the generated solutions by
the application of a (perturbative) local search method, in the simplest case this
being an iterative improvement algorithm. Such an extension is also straightforward
to be adopted in an iterated greedy algorithm and actually has been done in a number
of such approaches. This extension results in an outline of iterated greedy as given
in Fig. 3. With this additional local search phase, the IG algorithm also strongly
resembles iterated local search (ILS) algorithms [82]. In fact, the destruction and
construction phases implement a solution perturbation in the ILS sense. However, a
minor difference is that ILS often makes use of perturbations that are randomly
chosen from some large neighborhood, while in IG algorithms an underlying
constructive method is exploited. More importantly, IG can also reach very high
performance when used without the local search phase, which is not necessarily
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Fig. 3 Algorithmic outline
of an IG with an additional
local search step

true for ILS algorithms. More on relations of IG to other methods is given in
section “Relationship to Other Approaches.”

In any case, for an algorithm to qualify as an iterated greedy algorithm, it
is necessary that one can distinguish between a clearly available construction
mechanism and a clear destruction mechanism that are repeatedly applied in an
alternating order. An acceptance criterion may be used in an explicit way or in an
implicit way; the latter is the case, for example, if every new solution is accepted
and no mentioning of an acceptance criterion is done. In that case, the acceptance
criterion would correspond to a “random walk-type” acceptance criterion used
sometimes in ILS algorithms [82].

Some Simple Examples of Iterated Greedy Algorithms

Let us consider a few examples of constructive heuristics for basic combinatorial
problems that will serve throughout the chapter for illustrating various details of
IG algorithms. We consider here three examples for the traveling salesman problem
(TSP), the set covering problem (SCP), and the permutation flow shop problem
(PFSP). We first shortly introduce the problem and then describe a basic constructive
heuristic and basic IG algorithms.

TSP Example

Traveling salesman problem (TSP). The TSP is given a graph G D .N; E/ where N is the
set of n D jN j nodes and E is the set of edges that fully connects the nodes. To each edge
.i; j / is associated a distance dij . Here we assume that the distance matrix is symmetric,
that is, we have dij D dji for all .i; j / 2 E; this type of TSP instances are called symmetric
and are among the most widely studied types of TSP instances. The objective in the TSP
is to determine a Hamiltonian cycle of minimal length. Such a cycle can be represented
by a permutation � D h�.1/; : : : ; �.n/i, where �.i/ is the node index at position i . The
objective function to be minimized is

min
�2S

d�.n/�.1/ C

n�1X

iD1

d�.i/�.iC1/ (1)

where S is the search space consisting of the set of all permutations.
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Probably the best known constructive heuristic for the TSP is the nearest
neighbor heuristic. It chooses randomly a first node to start from to obtain a partial
tour h�.1/i. Then at each step it appends to the partial tour h�.1/ : : : �.l/i, a still
unvisited node that has minimum distance to �.l/. Once all nodes are visited,
the tour is completed by closing the tour and going back to �.1/. The nearest
neighbor heuristic usually contains subtours that may be close to optimal ones but
also contains long edges that are added often toward the end of the construction.
Empirically, for Euclidean two-dimensional TSP instances, the nearest neighbor
heuristic generates tours that are about 20–40% above optimal (see [51]).

One possibility to build an iterated greedy algorithm on top of the nearest
neighbor heuristic would be to remove a subtour of d consecutive cities of a tour,
resulting in one subtour of n � d cities and to restart the nearest neighbor heuristic
from it. Another possibility would be to remove randomly cities, reconnect the
remaining subtours, and then restart the nearest neighbor heuristic. However, it is
unclear what the performance of such an algorithm would be.

Another simple constructive heuristic for the TSP is the random insertion heuris-
tic (RIH). It starts by choosing randomly two nodes that are ordered arbitrarily.
At each construction step, a next node is chosen randomly and inserted into a
position in the current path such that the cost increase is minimum. The RIH is
one of simplest heuristics for the TSP; however, it is among the best performing
constructive algorithms for the TSP [51].

IG can be used on top of the RIH as follows. The first solution is constructed
by RIH. The procedure Destruct would remove l nodes that are chosen uniformly
at random. Next, Construct adds the removed nodes using again the same rules as
in the RIH. Finally, AcceptanceCriterion could be chosen to only accept improved
solutions. This means that the solution destruction would be applied to the best tour
found so far. Different choices for iterated greedy algorithms based on such steps
have also been experimentally examined by [95].

SCP Example

Set covering problem (SCP). The set covering problem (SCP) is given a set A D
fa1; : : : ; ang of items and a set B D fB1; : : : ; Bmg of subsets of elements of A that covers
A; in other words, we have that for each Bi � A and

Sm
iD1 D A. A set Bi covers an item

aj if aj 2 Bi . Each set Bi has a cost of ci . The objective in the SCP is to find a subset C

of the sets in B that covers each element in A and that is of minimal total cost.

For the SCP, constructive heuristics differ in the choice of the heuristic function
that is used. A standard heuristic function is to compute the cover value of the sets
in B , which is defined as �i D ci =bi , where bi is the number of items that would
be covered when adding subset Bi to a current partial cover. Note that when starting
with an empty solution, that is, none of the subsets Bi is chosen to be in the cover
C , we have that bi D jBi j. However, each time a subset is chosen, bi needs to
be updated taking into account the items already covered in a partial cover Cp .
The cover value is an example of an adaptive heuristic, where the heuristic values
depend on the partial solution already generated. Adaptive heuristics require higher
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computation times than their corresponding static heuristics, which do not update
heuristic values in dependence of the partial solution, but typically lead also to better
quality solutions. Once a complete cover is obtained, some of the subsets may have
become redundant if all the items they cover are also covered by other subsets;
removing such redundant subsets then improves the solution cost of the generated
cover. Note that the removal of redundant subsets is not yet a destruction step as
through the removal of redundant subsets the candidate solution remains a complete
cover. The destruction step then may remove a number of subsets from a complete
solution, resulting in a partial cover Cp , from which again the construction heuristic
starts.

A first IG algorithm for the SCP has been proposed by [50]. They construct
the first solution using a simple greedy construction heuristic [7] that at each step
first selects a random, not covered item and adds the least cost subset that covers
that item. Once a complete cover is found, redundant columns are removed. The
solution destruction removes k1 � jC j subsets that are chosen uniformly at random;
here 0 < k1 < 1 is a parameter, and jC j is the number of subsets on the cover and
the cover size. The solution construction uses the heuristic based on cover values
explained above. (The iterated greedy algorithm by [50] is, hence, a first example
where the constructive heuristics for generating the initial solution and for extending
partial solutions in the main loop differ.) However, the subsets to be considered are
limited to a candidate set that comprises all those subsets that have a cost less than
k2 � maxfci ji 2 C g, where k2 > 0 is a parameter that influences the size of the
candidate set and C is the current cover. At each step of the construction, a subset
with a minimum cover value is added to the current partial solution, breaking ties
uniformly at random. Once a complete cover is obtained, redundant columns are
removed as explained above. The acceptance criterion of a new cover C

0

is based on
the Metropolis condition that is frequently used in simulated annealing algorithms.
This simple IG algorithm for SCP obtained very high performance improving over
several earlier proposed SCP heuristics.

PFSP Example

Permutation flow shop scheduling problem (PFSP). In the PFSP, n jobs have to be
scheduled on m machines. All jobs visit the machines in the same order, each job having
an operation at each machine. Time pij denotes the nonnegative, known, and deterministic
processing time that job j needs on machine i . In the PFSP the same processing sequence
of the jobs is maintained throughout all machines, and hence the processing sequence is
obtained as a permutation of the jobs. The standard objective is to minimize the completion
time of the last job in this order, which is also known as makespan (Cmax). The PFSP arises
in many practical situations as it is common to have production lines where machines are
disposed in series. The PFSP is a thoroughly studied problem in the scheduling literature
with literally hundreds of papers published each year. The minimization of the makespan
is the most used criterion in the literature, but not so in practice [36]. Some reviews on the
PFSP are [35, 47, 91].

A popular and high performing constructive heuristic for the PFSP is the NEH
heuristic [68], named after the initials of the last names of the paper’s authors. NEH
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is an insertion heuristic, a kind of heuristics that iteratively extends a permutation
by inserting at each step one new element into the current partial solution. The NEH
heuristic first computes for each job j its sum of the processing time Pj D

Pn
iD1 pij

and then orders them according to nonincreasing Pj values, resulting in a sequence
�.1/ : : : �.n/. The first two jobs according to that order are taken, their two possible
sequences h�.1/�.2/i and h�.2/�.1/i are evaluated, and the better of the two is
adopted. Then at each step l , the job �.l/ is considered and tentatively inserted
in all possible l positions in the current partial solution �.1/ : : : �.l � 1/. Among
these tentative insertions, the one resulting in the least increase of the makespan is
taken. These steps are repeated until all jobs are inserted. Note that there might be
two levels of ties, both at the ordering of the Pj values and at the insertion phase.
The NEH heuristic has a computational complexity of O.n3m/ which is lowered
to O.n2m/ using the efficient implementation of [97]. There is a rich literature of
methods that propose variants of the NEH heuristic, mainly proposing mechanisms
to break ties or reinsertions. As shown by [91] and more recently by [32], the NEH
is a state-of-the-art constructive heuristic for the PFSP.

A simple IG algorithm for the PFSP has been proposed by [92]. It is based
on insertion heuristics such as NEH. In fact, this iterated greedy algorithm uses
NEH to construct an initial solution. At each destruction step, it removes a number
of jobs that are chosen uniformly at random from the current permutation. In the
construction step, these jobs are then reinserted in the same order in which they
have been removed. For the insertion of the jobs, the same procedure as described
for the NEH heuristic is followed. The acceptance criterion accepts a new candidate
solution using the Metropolis condition known from simulated annealing algorithms
but with the temperature T set to a constant value. The performance of this simple
IG algorithm was very good, outperforming many metaheuristic algorithms for
the PFSP. When combined with a local search phase, the proposed IG algorithm
was shown to be a new state-of-the-art algorithm for the PFSP [92]. The IG
implementation of [32] has given some further improvements of the above presented
iterated greedy algorithm. Currently, the top-performing iterated greedy algorithm
for the PFSP is the variant of [26], which additionally adds a local search on the
partial solution that is obtained after the destruction step. As a matter of fact, this
IG method has shown to outperform other more recent, and arguably much more
complex, approaches.

Case Study: Iterated Greedy for Flow Shop Scheduling

The development of an effective iterated greedy algorithm requires the algorithm
designer to choose which of the various possible implementation choices to take.
In this section, we exemplify the development of an iterated greedy algorithm for
the PFSP and study the impact specific alternative choices have on iterated greedy
performance. Here we examine the impact of various alternative choices for the
iterated greedy algorithm by [92] that we presented in the previous section.
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In particular, we consider the following design choices in our experimental
analysis.

Initial solution. It may seem advisable to start from an as good initial solution
as possible. For the PFSP, this would be the NEH heuristic [32, 91] using the
accelerations of [97]. However, at least for some instances, it is not clear whether
a random or heuristic initialization of iterated greedy provides the best results. In
fact, [81] study cases in which only for hard instances and in short CPU times it
is advisable to use NEH (or extensions of the NEH) to obtain competitive results.

Destruction strength. A first and foremost decision to be taken is how many
elements of a complete candidate solution should be removed. Here, we consider
different fixed values for this parameter d , although it may also be interesting to
consider schemes of how to vary the value of d at run-time.

Destruction type. The type of destruction determines which components of the
incumbent solution are removed. In the simplest case, one may remove compo-
nents of a solution uniformly at random. Alternatively, one may remove blocks
of consecutive elements. In this case, a random block of d jobs could be removed
from the sequence. Note that for a same solution � and a block-based destruction,
there are only n � d C 1 possible choices for the destruction move. These two
latter possibilities will be examined here.

However, one may consider a biased destruction, where components of the
incumbent solution may be chosen randomly but in a biased way. For the PFSP,
for example, jobs generating a large idle time at machines before or after their
processing might be disrupting the sequence and are therefore likely to have been
misplaced. We leave the study of such a destruction operator for future work.

Construction type. Similarly to the type of destruction move, different ways of
how to construct a solution could be examined. The default choice in the iterated
greedy algorithm is to insert jobs using the NEH heuristic. As an alternative,
we consider a random insertion of the removed jobs, which could be used if
no efficient greedy heuristic is available. However, in this case, the difference
between iterated greedy and ILS becomes somewhat blurry, especially when
additional local search is used.

Acceptance criterion. The acceptance criterion has a direct impact on the balance
between intensification and diversification of the search. A simple idea is
to accept only better quality solutions, while alternatively one may use the
Metropolis condition that occasionally also accepts worse candidate solutions.

Acceptance iterations. Instead of applying the acceptance criterion at each itera-
tion, one may apply an acceptance criterion only each l iterations. This would
correspond to accepting for a few iterations every new candidate solution that is
generated and only applying the acceptance test after each sequence of l steps.

Local search. Finally, it is well known that local search can have a tremendous
impact on the quality of the results achieved, even though iterated greedy
algorithms may reach high-quality solutions even without local search.
Hence, it may be worthwhile to test the impact of an additional local search
phase.
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Table 1 Summary of the factors and the levels studied in the experimental analysis

Factor Abbreviation Level one Level two

Initial solution Initialization NEH Random

Destruction strength Destruct 4 6

Destruction type Destruction_T Random Block

Construction Reconstruction_T NEH Random

Acceptance criterion Acceptance_C SA Descent

Acceptance iterations Iterations_Acc 1 5

Local search LS No Yes

In order to study the different design and implementation alternatives, we have
carried out a design of experiments (DOE) approach [67] where the previous factors
are analyzed. Seven factors are coded and tested at two levels each, as summarized
in Table 1. As a result, a total of 27 D 128 combinations are to be tested in a full
factorial experimental design. However, we use a half fractional design, which has
most of the power of a full factorial one but requires only half of the runs. We use a
27�1

VII design, which has a high resolution VII : interactions between four factors are
aliased (confounded) with interactions between three factors, interactions between
five factors aliased with interactions between two factors, and so on. As a result, we
can safely study the experimental data since it is highly unlikely that two high-level
interactions might be significant. More elaborated techniques for the analysis and
calibration of algorithms than the simple exploratory analysis we perform here have
been published elsewhere [8]. Each studied combination has been tested on 30 of
the hardest instances from Taillard’s benchmark (99). This benchmark is composed
of 12 groups of 10 instances, each ranging from 20 jobs and 5 machines to 500 jobs
and 20 machines. The instances of one particular group are denoted as n�m. For the
tests we pick three of the hardest groups, namely, 50 � 20, 100 � 20, and 200 � 20.
We are interested in these instances since for most of the remaining problems, the
optimum solution is already known, and today’s state-of-the-art methods are capable
of obtaining near optimum solutions.

Each combination is run five independent times (replicates) with each instance.
We also control the number of jobs (n) as a blocking factor with three levels in the
experiment. Therefore, the experimental design contains 27�1 � 3 D 192 treatments,
192 � 10 D 1 920 experimental units (for ten instances), and 1 920 � 5 D 9 600

experiments (for five replicates).
The basic iterated greedy algorithm along with all studied alternatives has been

implemented in Delphi language and run during a predefined CPU time which is
fixed to 30, 60, and 120 s for the instances of 50, 100, and 200 jobs, respectively.
The machine used for the tests is a Pentium IV PC/AT computer running at 3.2 GHz
with 2 GBytes of RAM memory. The performance measure and response variable of
the experimental design are the so-called relative percentage deviation (RPD) over
the optimum or best known solution (upper bound) for each tested instance:
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Relative percentage deviation .RPD/ D
Heusol � Bestsol

Bestsol
� 100 (2)

where Heusol is the solution given by any of the replicates of any iterated greedy
variation for a given instance and Bestsol is the optimum solution or the lowest
known upper bound for that specific Taillard’s instance as of November 2015. The
results are analyzed by means of the parametric ANOVA technique. Notice that in
this case, the three assumptions of this parametric test (normality, homoscedasticity,
and independence of the residual) have to be satisfied. In our experiment, the
factor LS results to be extremely significant, and it creates large differences in the
response variable. As expected, applying the local search results in a statistically
significant difference in the average RPD of 1.46 considering all results, compared
with the average RPD of 3.73 without local search. Such a large difference
generates normality problems. In order to avoid this situation, we study two separate
ANOVAs, one for each level of the LS factor.

Results of the Simple Iterated Greedy Without Local Search

All remaining factors after fixing the local search have p-values very close to zero in
the resulting ANOVA table. As a result, we focus on the F-Ratio, which is the ratio
between the variance generated by a given factor and the residual variance in the
studied two-level interaction linear model. The higher this ratio, the more significant
the factor or interaction is. Figure 4 shows the means plots for the remaining six
factors in order of importance.

From Fig. 4 we can observe how all six studied factors have levels and variants
that result in statistically significant differences. Observed differences in the average
performance of the iterated greedy when a factor has been set to a given level
or variant are depicted with nonoverlapping confidence intervals in the plots. The
importance of the F-Ratio is shown in Fig. 4 with the most significant factors to the
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Fig. 4 Means plot of the average relative percentage deviation (RPD) and 99% Tukey HSD
confidence intervals for the studied factors. Simple iterated greedy without local search
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left of the figure and the least significant to the right. As can be seen, without local
search, it is clearly preferable to greedily reconstruct the solution as the difference
in performance is extremely large. This is one of the main keys behind the iterated
greedy algorithm. A random reconstruction of jobs means that first the jobs are
randomly extracted and then randomly inserted. This is more or less a sequence of
insertion moves. Too many moves (and no local search) result in an algorithm that
is not performing well.

The second factor in importance is Destruct or d , the number of jobs to be
removed in the destruction phase. Following the previous discussion, six jobs
impose a rather large overall disruption, and removing only four jobs gives much
better results. Notice that a similar conclusion was reached by [92] in their
calibration of the iterated greedy for the PFSP. Although not shown here, removing
four jobs is better for all the studied instances with 50, 100, and 200 jobs.

The third most important factor results to be Iterations_Acc. Among the two
tested levels, applying the acceptance criterion at every iteration gives substantially
better results. The analysis is continued until all factors have been fixed through
the most important effects in the response variable. For example, the third most
significant effect in the ANOVA is not a single factor but the interaction between
factors Destruction_T and Reconstruction_T. It is shown in the fourth plot from the
left in Fig. 4. We see that both factors interact greatly. When Reconstruction_T is
set to random, the block destruction appears to be slightly better. However, when
Reconstruction_T is set to NEH, as in the original NEH method, the destruction
has to be done randomly as much better results are obtained. Initialization is best
set at NEH, but we observe that the difference in performance with the random
initialization is rather small. Finally, the acceptance criterion factor (Acceptance_C)
is also slightly better at SA, but the difference with descent is very small, even
though it is statistically significant. More specifically, the average RPD given by
the simple iterated greedy across all factors with a SA-like acceptance criterion is
3.69%, whereas for the descent criterion it is 3.77%. It is interesting to note that
most results confirm the choices made in previous studies as in [92].

Results of the Simple Iterated Greedy with a Local Search Step

Now we proceed with the analysis of the experimental data after focusing on
the results of the simple iterated greedy with the local search enabled. In this
experiment, the first interesting result is that the observed differences as regards
RPD among the levels of the factors are much smaller than in the previous one.
It is safe to say that the local search is capturing much of the variability of the
experiment. Figure 5 contains the means plots for the six factors, in order of
importance according to their F-Ratios.

As can be seen, the relative importance of the studied factor is not the same when
compared to the previous experiment without local search. The most important
factor is now Iterations_Acc. Similar to the previous experiment, applying the
acceptance criterion at each iteration improves results significantly. The next factor
in importance is Reconstruction_T. The plot is similar to the previous experiment
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and represents an important result. Considering that the algorithm already carries
out a local search step after reconstruction, it could be argued that a random
reconstruction might suffice. However, this is not the case. Carrying out a local
search step from a randomly reconstructed solution yields, on average, much worse
results than if the local search is carried out on a greedily (and therefore, of
higher quality) reconstructed solution. This supports the point that iterating over
greedy heuristics gives very good results. The remaining factors per importance are
Destruct and Acceptance_C. The last two remaining factors, Destruction_T and
Initialization, are not statistically significant at a 99% confidence level as it can be
seen by the fact that their corresponding means plots overlap. Hence, among the
two tested types of destruction, it is not important how the jobs are removed. This
is probably due to the fact that even though jobs are removed in blocks, they are
reinserted one by one. As for the initialization, the advantage gained by an NEH
initialization is nullified during the run of the iterated greedy algorithm, confirming
the observation of [81].

As a conclusion from this study, the most significant factor is the local search and
the NEH reconstruction. Most other factors have less importance. Iterated greedy
can even do without a full NEH initialization for the hardest instances of Taillard in
the PFSP problem.

IG Applications: Historical Development

Among the examples of iterated greedy algorithms in section “Some Simple Ex-
amples of Iterated Greedy Algorithms,” we had described an algorithm for the SCP
by [50] who have actually called their algorithm a simulated annealing algorithm.
This naming is probably due to the use of the Metropolis condition as an acceptance
criterion, which was also used in the first proposals of simulated annealing [56].
This algorithm has later been extended by the same authors [14]. Somehow related
is the more complex algorithm by Marchiori and Steenbeek [62] for the SCP; in
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this algorithm a construction starts from a partial solution following the steps of
the iterated greedy method; however, instead of obtaining the partial solution by
choosing the subsets to be removed, they use a mechanism to choose the subsets of
the best solution found so far that are maintained in the partial solution. Maybe
surprisingly, in that paper the proposed algorithm is viewed as an evolutionary
algorithm. This algorithm is preceded by another algorithm for the unweighted SCP
[61], which more directly follows the ideas of the iterated greedy method.

Interestingly, the abovementioned algorithms for the SCP are not the only ones
that are directly based on the same destruction–construction process that is the basis
of iterated greedy algorithms. In fact, a large number of other algorithms are based
on the same principle. However, different names have been used for the underlying
method or no specific name at all, which complicates the transfer of knowledge to
other researchers.

Probably the earliest techniques that use some mechanism akin to the
destructive–constructive moves of iterated greedy are found in the VLSI design
automation community and, in particular, in the routing step, where components are
connected by wires trying to obey design rules for integrated circuits. In the rip-up
and reroute approach [20, 90], some routes related to bottlenecks are removed, and
components are reconnected in a different order. The rip-up and reroute technique is
commonly used in the design automation community, but the principle underlying
this method seems not to have been generalized to the level of metaheuristic for
tackling a wide variety of other optimization problems.

The possible use of destructive–constructive moves has also been mentioned
earlier in the context of the type of techniques that have become known as strategic
oscillation [38–40]. These types of approaches are often embedded into algorithms
that make use of tabu search features to provide additional guidance to the search.
Some examples of such implementations that have also a clear component related
to the iterated greedy methodology are [42, 43, 59].

Among the first researchers to identify the potential of the principles underlying
iterated greedy and to formulate these as a general-purpose SLS method are [95].
They called their method ruin-and-recreate, where the ruin stands for the solution
destruction and the recreate for the reconstruction of a complete solution.1 In
their seminal article, they applied ruin-and-recreate to the symmetric TSP, the
vehicle routing problem with time windows, and to a network design problem,
reporting good overall performance of the method. Following this work, a number
of other papers have been published using the name ruin-and-recreate; however,
not all papers that use the name ruin-and-recreate should be considered as iterated
greedy algorithms; for example, [65, 66] essentially uses a random mutation of a
current solution instead of a clearly separable destruction phase and greedy solution
reconstruction.

1Ruin-and-recreate is protected by US patent Optimization with ruin recreate No. 6418398; see
http://www.patentstorm.us/patents/6418398-fulltext.html.

http://www.patentstorm.us/patents/6418398-fulltext.html
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Ahmadi and Osman [3] study the capacitated clustering p�median problem.
Among different proposed methods and heuristics, the authors introduce a periodic
construction–deconstruction procedure, which is basically a simple form of iterated
greedy. After a given number of clusters have been built in the constructive method,
some of them are randomly deconstructed, and the constructive method is reapplied.

Richmond and Beasley [86] have presented an iterative construction heuristic
for a problem arising in ore selection. In this problem, processing options needs
to be chosen for a number of mining blocks. The destruction operator deletes the
processing option for some mining blocks; the size of the destruction is chosen
randomly following a uniform distribution in some interval. After the reconstruction
of a complete solution, the algorithm accepts only better quality solutions as new
incumbent ones. It should be clear from the description that the algorithm follows
directly the very same principles of iterated greedy.

Cesta et al. [17] describe an algorithm for a capacitated scheduling problem
that makes usage of the ideas underlying the concept of iterated greedy algorithms.
They have developed a method that uses a greedy constructive heuristic to generate
feasible schedules by introducing precedence constraints. In the destruction phase
(called retraction in the chapter), they remove some of the introduced precedence
relations to obtain a partial solution and then reconstruct a complete feasible one.
They call their method iterative flattening, where flattening refers to the reduction of
resource conflicts, which is an effect of the introduced precedence constraints. The
term iterative flattening has gained some popularity, and several follow-up articles
have been published on improvements of the algorithm [63], studies of combinations
of basic algorithm components [69], or applications to other problems [70, 71].

The authors of iterative flattening characterize the method in their initial paper as
a local search method. Few years before, [96] has proposed the large neighborhood
search method. The initial proposal consists in the removal of solution components
and the reinsertion of solution components by using constraint programming
techniques that exploit a tree search and constraint propagation techniques. Even
though the method was proposed in a constraint programming framework, where
a tree search is used to restore a complete solution instead of simple constructive
heuristic, the latter is mentioned as one possible option. In fact, in many later
articles on large neighborhood search, simple constructive heuristics are used [78],
implementing, hence, directly an iterated greedy method.

Finally, the name iterated greedy has been used by [92] and also in [48] to
denominate the type of SLS method we describe in this chapter. However, these
are not the first publications that are using the name iterated greedy. A much earlier
mentioning of the term iterated greedy is by Culberson [19]. His iterated greedy
algorithm for graph coloring uses a greedy algorithm for generating a coloring,
removing the color of all nodes and then reapplying the greedy algorithm using
a specific ordering of the nodes that guarantees the next generated coloring to be
not worse than the previous one but potentially better. This algorithm may be seen
as an extreme case of iterated greedy where the destruction operator destroys the
complete solution. However, our view is rather that it is a specific algorithm that
works in the way it is proposed mainly for graph coloring.



566 T. Stützle and R. Ruiz

Relationship to Other Approaches

Iterated greedy is a general-purpose SLS method that has many links to other SLS
methods. In the following, we discuss similarities and differences to a number of
SLS methods considering other constructive methods, local search methods, and
tree search algorithms. These relationships also open up many possibilities for
combining techniques proposed for different methods.

Repeated (Greedy) Construction Algorithms

Iterated greedy has natural connections to other methods that repeatedly construct
complete candidate solutions. A key difference between iterated greedy and few
other repeated construction methods is that the solution construction in iterated
greedy usually starts from a (nonempty) partial solution, while the other methods re-
peatedly generate new candidate solutions starting from empty candidate solutions.

A well-known simple such method is the greedy randomized adaptive search
procedures (GRASP) that combines a greedily biased but randomized solution
construction with a subsequent improvement of the generated candidate solutions
by a local search procedure [30, 84]. GRASP in turn extends on some initial ideas
of how to generate different solutions by a randomized greedy heuristic [45]. While
GRASP does not start the construction from partial solutions, it is an example of
a (simple) randomization scheme during the solution construction, which could be
included directly in iterated greedy algorithms. An appealing feature of GRASP is
the usage of adaptive constructive procedures, and the large number of articles on
GRASP [84] may be a source for randomized greedy heuristics to be used in iterated
greedy algorithms.

Many useful ideas that underlie other constructive methods may be adopted
into iterated greedy algorithms. One such possibility is ways of how to improve
the constructive mechanisms, for example, through look-ahead methods or, when
taking look-ahead to an extreme, as advocated in the rollout [11] and pilot method
[27]. In the rollout and pilot methods for each constructive decision to be taken,
a full solution is constructed (or at least well approximated), and the construction
decision that results in the best complete solution is taken as the next one. This
process is repeated for each construction decision, resulting in a relatively time-
consuming constructive approach. However, starting the rollout/pilot method from
partial solutions with the resulting reduction in computation time may make this
approach promising inside an iterated greedy algorithm.

Squeaky wheel optimization (SWO) [52] uses the idea of biasing the solution
construction by information that was gained by analyzing complete candidate
solutions. This is done by assigning priorities to specific solution components.
The solution reconstruction in SWO is done, differently from iterated greedy,
from empty initial solutions corresponding to a complete destruction of the current
candidate solution. Within the SWO framework, Aicklin et al. [5] proposed the idea
of seeding the reconstruction of a full candidate solution by some partial solution
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that was obtained by removing some of the solution components of a complete
candidate solution, making it a variant of iterated greedy.

A rather different way of biasing the solution construction is underlying the
ant colony optimization (ACO) metaheuristic [23, 24]. In ACO, (artificial) ants
implement stochastic solution construction heuristics that make their constructive
decisions based on so-called pheromone information and heuristic information
associated to specific solution components. The pheromone information tries to bias
solution construction toward the best solutions that have been found so far. Again,
differently from iterated greedy algorithms, the ants start their solution construction
from empty candidate solutions. However, there have been a number of proposals in
the ACO area that suggest starting the solution construction from partial solutions
that are either stored [1, 2] or obtained by deconstructing complete solutions
[103, 104, 109] in a way akin to iterated greedy algorithms. These approaches
generally try to transfer the advantages of iterated greedy to ACO algorithms, and
for several of these approaches, positive results are reported.

(Perturbative) Local Search Techniques

Iterated greedy has tight links to local search algorithms and, in particular, to very
large-scale neighborhood searches [4]. In fact, as also mentioned in section “IG
Applications: Historical Development,” one of the proposals of iterated greedy style
algorithms called the method large neighborhood search Shaw [78]. The analogy
stems from the fact that the removal of k solution components in the destruction
step and the subsequent reconstruction of a complete candidate solution can be
seen as a move in a large neighborhood that is implicitly defined by the number
of components to be removed and/or added.2 The (greedy) reconstruction of a
complete candidate solution typical for iterated greedy algorithms can then be seen
as a heuristic examination of the neighborhood either in a fully greedy way or
using randomization steps–details that simply depend on the particular design and
implementation of the construction step in an iterated greedy algorithm. By varying
the value of k, the size of the implicitly defined neighborhood is varied. Such
changes may be done either (i) randomly within some limited range Œkmin; kmax�

resembling known strategies in local search methods such as robust tabu search
[98], where one tries to avoid overcommitment to a single value for a parameter, (ii)
in a more systematic way such as advocated in the strategies defined for variable
neighborhood search [44], or (iii) by using feedback from the search performance
such as advocated in reactive search methods [9]. An interesting possibility for
exploring the neighborhoods is used in the adaptive large neighborhood algorithms

2Note that the number of solution components removed in a destruction step may be different from
the number of solution components added in the construction step and so we refrain from talking
of k-exchange neighborhoods here. A common example where this happens is subset problems
such as the SCP we discussed earlier.
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by [77, 89], who propose to consider different heuristics to be used in the solution
reconstruction. In their method, they additionally adapt the probability with which
specific heuristics are chosen over the run-time of the algorithm based on the
feedback of the search process.

An alternative to the heuristic exploration of neighborhoods provides methods
that try to determine the best possible solution that can be reached from the current
one, akin to best-improvement neighborhoods. In the case of large neighborhood
searches, this corresponds to an exact examination of all the possible solutions that
can be reached from a current partial candidate solution [4, 28]. The original pro-
posal of large neighborhood search by Shaw [96] actually considered such an exact
exploration of the resulting neighborhood by means of an constraint programming
approach embedded within a branch-and-bound scheme. Due to the large variation
in computation time that such a scheme however incurs, alternatives have been
tested such as pure insertion-based reconstruction or limited enumeration schemes.

If we consider other local search-based SLS methods, the closest related one is
certainly iterated local search [83], especially when iterated greedy algorithms ex-
ploit additional (perturbative) local search methods to improve candidate solutions,
as outlined in Fig. 3. In that case, the destruction–construction cycle corresponds to
what in ILS terms would be a solution perturbation. In general, it seems to be com-
mendable in ILS to apply problem-specific perturbations whenever possible, and the
destruction–construction cycle in iterated greedy introduces such problem-specific
information through the use of heuristic information. Basic variable neighborhood
search is an ILS-type algorithm that systematically varies the strength of the
perturbation, and thus the link to iterated greedy is also immediate.

Besides the fact that complete solutions may be improved by an additional
local search phase in iterated greedy algorithms, it could be worthwhile to also
consider the local re-optimization of the partial solutions that are obtained during the
destruction and reconstruction process. It is noteworthy that such occasional local
re-optimization of partial candidate solutions has shown to be useful in a number of
other contexts such as vehicle routing [16].

Tree Search Algorithms

Constructive mechanisms can be extended to an exhaustive search method by
adding a simple backtracking mechanism; adding further bounding schemes, one
quickly comes to methods such as branch-and-bound or, more in general, tree search
techniques [48]. Hence, it is clear that iterated greedy algorithms also share some
relationships to such methods.

Some links have already been mentioned in the previous section, when exact
methods are exploited to generate the best possible completion of a partial candidate
solution. Such a completion may be generated using tree search methods, and
various of these ideas have been explored [96]. Even if tree search is used, the search
need not be necessarily complete. For example, Shaw [96] has considered the usage
of limited discrepancy search [46], which consists in examining a limited number
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of alternative choices in the decision points during the tree generation. Any other
variants such as depth-bounded discrepancy search [108] could also be interesting.
Another alternative that does not seem to have been applied so far would be to apply
beam search [72].

Yet another connection to tree search techniques could rely on the exploitation
of lower bound information to generate heuristic information or to prune choices
that are guaranteed not to lead to improved solutions. So far, we are not aware of
an exploitation of such ideas inside iterated greedy algorithms, although in other
constructive SLS algorithms, such uses have been explored [12, 60].

Applications

In this section, we give a short overview of the applications of iterated greedy
algorithms. Few applications have already been mentioned in section “IG Appli-
cations: Historical Development” when discussing other methods that use the same
principle as iterated greedy. Here, we focus mainly on applications that identified
their algorithm as an iterated greedy algorithm. In fact, depending on the class of
problems for which the respective methods have been proposed, the usage of names
to refer to iterated greedy-type methods differs. For example, in the scheduling area,
the excellent results of the iterated greedy algorithms for the permutation flow shop
scheduling problem have spawned a lot of follow-up work on similar problems,
while the name large neighborhood search is frequently found in application to
vehicle routing problems, given the prominent role these algorithms have played
in that domain.

Iterated Greedy for Scheduling Problems

As mentioned, iterated greedy, as defined in this chapter, was initially applied to
the permutation flow shop scheduling problem by [92], so many applications to
other scheduling problems were published after that.3 [93] extended their iterated
greedy algorithm to tackle the permutation flow shop scheduling problem when
considering additional sequence-dependent setup times and other objectives than
makespan, namely, the total tardiness. Other variants of flow shop problems have
been studied in [85, 101] (blocking), [75] and [22] (no-wait), [94, 100], and [74]
who studied no-idle and mixed no-idle problems. Non-permutation flow shops
were approached by [111] or [10]. Distributed flow shop scheduling problems have
been solved with iterated greedy algorithms in [57] and [33]. Iterated greedy has
also proven valuable in other optimization criteria apart from makespan. Tardiness
is studied in [34] or total flowtime in [73] to name just a few. Multi-objective

3Various applications of iterative flattening to scheduling problems have been referenced in
section “IG Applications: Historical Development”.
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extensions of iterated greedy have proven effective for Pareto flow shops without
and with setups in [64] and in [18], respectively; [25] have embedded an iterated
greedy algorithm into the two-phase local search framework to tackle various bi-
objective flow shop problems. Parallel machine problems were successfully tackled
with iterated greedy algorithms [6, 29, 88]. Iterated greedy algorithms are effective
for various single-machine scheduling problems as shown in [21, 112]. Some other
more complex problems have been studied, including job-shop scheduling with
blocking constraints [80], job-shop scheduling with sequence-dependent setup times
and job families [55], hybrid flow shops [110], and real-life problems [105–107].

Iterated Greedy for Routing Problems

As mentioned above, in the context of vehicle routing problems, several algorithms
that follow the main structure of an iterated greedy algorithm have been applied
but usually using branding under the name large neighborhood search. The article
making these approaches popular has already been mentioned [96]. A major impact
in that line of applications had the adaptive large neighborhood search approaches
[77,89], which led to a large number of follow-up work mainly in the vehicle routing
domain. Some overview is also given in [78]. In fact, the usage of such iterated
greedy-type methods as local searches inside SLS algorithms for vehicle routing
problems is increasingly widespread and can by now be considered a standard
in this area. Apart from vehicle routing, also iterated greedy approaches have
been proposed to few other routing-type problems such as scheduling and routing
problems of freight trains [113] or in the context of TSP variants [54].

Iterated Greedy for Other Problems

There have been a number of other applications where explicitly iterated greedy
algorithms have been devised as the main solution techniques. Lozano et al. [58]
presented an iterated greedy approach to the maximum diversity problem, where
from a set of elements a subset with maximum diversity has to be chosen. After
proper tuning, the algorithm was shown to perform better than various competing
algorithms and was established as a new state-of-the-art algorithm. García-Martínez
et al. [37] have developed an iterated greedy algorithm enhanced by a short tabu
list in the destructive phase for the quadratic multiple knapsack problem. Lozano
et al. [59] have developed also another iterated greedy algorithm for the quadratic
minimum spanning tree problem obtaining excellent results on large instances;
further embedding the algorithm into a strategic oscillation approach by essentially
extending it with tabu criteria led to further improvements on some problem instance
classes. Early implementations of similar ideas for binary quadratic programming
have been presented before [43]; more recently, Toyama et al. [102] apply iterated
greedy to the same problem tackling also very large-scale instances successfully.
Kang et al. [53] study the problem of allocating parallel tasks to processors
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in computing systems that are distributed and heterogeneous. Population-based
iterated greedy algorithms and iterated greedy algorithms that exploit further exact
solutions to large neighborhood searches have been proposed for the maximal
covering location problem [87], the goal of which is to cover clients such that the
largest amount of demand possible is satisfied. A problem in market segmentation,
where a company asks to partition a set of customers subject to some specific
requirements related to homogeneity of customers and compactness of the areas is
tackled by Huerta-Muñoz et al. [49]. A population-based iterated greedy algorithm
has also been applied for delimiting and zoning rural settlements [79] and to the
minimum weight vertex cover problem [13]. First applications of iterated greedy
algorithms for machine learning tasks, in particular the generation of classification
rules, have been explored [76].

Given the wide applicability, the flexibility, and the often high performance
of iterated greedy, we would expect this list of applications to further grow
significantly in the future.

Conclusions

The main principle of iterated greedy is to build a sequence of solutions by
iterating over constructive algorithms through a loop of solution destructions
and (re-)constructions. Deconstruction removes solution components resulting in
partial solutions from which again full solutions are reconstructed. This loop may
be extended by an additional local search phase, where the generated complete
candidate solutions are further improved, and by many other techniques from other
heuristic and exact search techniques, making iterated greedy a very flexible and
malleable method.

We prefer to call this principle iterated greedy because (i) this name directly
refers to what the principle implies, namely, making iterative use of construction
methods, (ii) it does not obfuscate the name with natural or unnatural analogies,
(iii) it is a short and punchy name describing the essence of the method, and (iv)
and it has by now been used in a large number of publications. A bit unfortunate
is that in the literature there have been proposed several methods under different
names that make use of the same (or a very similar) principle including large
neighborhood search [78,96], simulated annealing [50], evolutionary heuristic [62],
ruin-and-recreate [95], iterative construction search [86], or iterative flattening [17].
The multitude of different names for the same kind of approach can probably be
explained in two ways. First, different researchers have a different perspective on the
same method, and, thus, the iterated greedy principle can be viewed and proposed,
for example, from the perspective of a (perturbative) neighborhood search leading to
the heuristic or exact exploration of large neighborhoods or from the perspective of
a (constructive) algorithm background where the method is simply iterating through
applications of constructive algorithms. Second, the method has been proposed
in somewhat different communities such as ruin-and-recreate in a physics journal
[95], large neighborhood search at a constraint programming conference [96], and
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iterative flattening at an artificial intelligence conference [17], and publications
using other names have appeared in operations research journals [50, 86, 92]. It
apparently has taken a significant amount of time that these ideas transpired from
one community to another.

Even if this leads to some confusion and we maybe contribute to this confusion,
we think that what is really important is (i) the principle underlying these methods,
(ii) the fact that the iterated greedy principle can lead to very powerful algorithms,
and (iii) the fact that iterated greedy is a very flexible method that can easily be
combined with other techniques. By making the relationship among the different
proposals clear, we hope to contribute also to a transfer of experience between
these different algorithms. In any case, we hope that this review chapter will be
useful for other researchers in stochastic local search methods by clearly identifying
the potential of iterated greedy and in this way also contribute to its further
development.
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