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Preface

Heuristics have become a very popular family of solution methods for optimization
problems because they are capable of finding acceptable solutions in a reasonable
amount of time. The word heuristic means serving to discover or find out. It is an
irregular formation from the Greek term heuretikos, which means inventive. It is
related to the Greek word heuriskein, meaning to find and the word Eureka, which
comes from the ancient Greek eurika, which means I have found it.

In the last decades, algorithmic advances as well as hardware and software
improvements have provided an excellent environment on which to build heuristic-
based decision support systems based on new and effective methodologies. To the
layman, heuristics may be thought of as rules of thumb, but despite its imprecision,
the field of heuristics is very rich and refers to experience-based techniques
for problem-solving, learning, and discovery. Any given heuristic solution is not
guaranteed to be optimal, but heuristic methods are used to speed up the process of
finding satisfactory solutions where optimal solutions are impractical. Despite the
dynamic state of heuristic optimization, we feel that the time is ripe to bring together
in one handbook the major algorithmic and methodological advances in this field.
Leading experts in heuristic optimization have contributed to this handbook.

The main goal of this handbook is to provide the basic principles and fundamen-
tal ideas that will enable students and practitioners to create valuable applications
based on heuristic technologies. Specifically, the Handbook of Heuristics is aimed
at engineers, scientists, operations researchers, and other applications specialists
who are looking for the most appropriate and recent optimization tools based
on heuristic and metaheuristic methodologies to solve particular problems. The
handbook provides a broad spectrum of advances in heuristic optimization with a
focus on its algorithmic and computational aspects.

The handbook consists of five main parts: search strategies, local search,
metaheuristics, analysis and implementations, and applications. In the part devoted
to search strategies, we cover methodological aspects, from multi-objective and
restart mechanisms to matheuristics, the exciting field in which mathematical
programming is combined with heuristics. As it is well known to practitioners of
heuristic optimization, local search constitutes the core of many methodologies.
For this reason, we devote an entire part of the handbook to local search. In the
metaheuristics part of the handbook, fourteen important methodologies in the major

v



vi Preface

field of heuristic optimization are described. We also focus on the analysis and
implementation of these methods in this part of the book. Finally, the purpose of the
part on applications is to provide the practitioner with a description of some relevant
optimization issues in a number of specific application areas, such as scheduling,
vehicle routing, network optimization, supply chain, diversity models, as well as
some examples of applied optimization in specific areas.

Finally, we would like to take the opportunity to thank Springer for inviting us
to edit this handbook, their staff for helping put the handbook into production,
the authors for their contributions, and the anonymous referees for their valuable
comments and suggestions.

Valencia, Spain Rafael Martí
Gainesville, FL, USA Panos M. Pardalos
Seattle, WA, USA Mauricio G. C. Resende
May 2018
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Abstract

For the last decades, metaheuristics have become ever more popular as a tool
to solve a large class of difficult optimization problems. However, determining
the best configuration of a metaheuristic, which includes the program flow and
the parameter settings, remains a difficult task. Adaptive metaheuristics (that
change their configuration during the search) and multilevel metaheuristics (that
change their configuration during the search by means of a metaheuristic) can
be a solution for this. This chapter intends to make a quick review of the latest
trends in adaptive metaheuristics and in multilevel metaheuristics.

Keywords
Metaheuristics � Multilevel � Adaptive � Configuration � Hyper-heuristics

Introduction

Metaheuristics are flexible frameworks that can be used to design heuristics for
virtually any combinatorial optimization problem. This flexibility also comes at a
cost: many researchers in metaheuristics spend a large amount of time to properly
design and tune their algorithm in a trial-and-error fashion. As mentioned and
observed in many published papers, designing an efficient metaheuristic is an art,
requiring a lot of intuition on the part of the metaheuristic designer. There is no
doubt, however, that the parameters and the structure of the metaheuristic may
influence the performance of the solution approach and the quality of the results
in the end.

In the design of a metaheuristic, a large fraction of the time is usually spent on
determining the control flow, i.e., the order in which the different components of
the metaheuristic are used and the optimal levels of the various parameters of the
metaheuristic. A more structured approach than the one commonly used is wanted.
The purpose of this chapter is to discuss one of the ways to alleviate this problem,
through adaptive and multilevel metaheuristics.

Our overview is necessarily very short and cannot replace the many years of
research, the large number of books and papers that have tried to clarify the topic.
We encourage the reader to address the existing work that we point out and explore
the references that we may have missed here. This chapter is not a complete review
of all papers in the field of adaptive or multilevel metaheuristics but rather a set of
good practices that can be done when designing metaheuristics.

In a first section, we will attempt to clearly define some concepts to come to
a definition of the terms adaptive and multilevel (section “Definitions”). We will
also discuss the impact of heuristic parameters on the behavior of a metaheuristic
algorithm (section “Configuring a Metaheuristic”) and how we can reduce the
number of parameters or how we can automatically tune some parameters. Adaptive
metaheuristics are discussed in section “Adaptive Metaheuristics”, and multilevel
metaheuristics and hyper-heuristics in section “Multilevel Metaheuristics and Hy-
per-heuristics”. Section “Conclusion” will conclude the chapter.
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Definitions

The terms adaptive and multilevel do not have a single, generally accepted definition
within the metaheuristics community. The aim of this section is to develop clear
definitions for both. Both adaptive and multilevel refer to the evolution of the
configuration of a metaheuristic algorithm during the optimization process. We must
therefore first define the term configuration. Our definitions will be intuitive rather
than formal.

Each metaheuristic algorithm consists of several components, i.e., parts that form
a more or less logical and atomic unit. Examples are a local search operator in a
variable search algorithm, a tabu list in a tabu search algorithm, a crossover operator
or a selection operator in an evolutionary algorithm. Each of these components
can exist more or less independently of the rest of the metaheuristic algorithm,
which includes their use in a different metaheuristic algorithm for the same
problem. Within the same metaheuristics, components can often be rearranged in
the overall structure of the algorithm. For example, local search operators in a
variable neighborhood search algorithm can be executed in a specific order; an
evolutionary algorithm may use its selection operator before or after the crossover
operator (or both), etc. In programming, this is called the control flow, a term
we will adopt here. Clearly, not every control flow makes sense, but generally
speaking, a sizeable number of possibilities exists. Determining the control flow
of the algorithm, i.e., the order in which the components are executed is a task for
the algorithm designer.

Each component may have one or more parameters that determine its function-
ing. Such parameters may be numerical, such as the tabu tenure of a tabu list, the
number of iterations without improvement before a perturbation move is used, etc.
Other parameters may be nonnumerical, like the choice of a discrete set of move
strategies to use in a local search operator (steepest descent, mildest descent, random
improving, . . . ). The algorithm designer usually defines a finite set of potential (or
sensible) values, e.g., the restricted candidate list of a GRASP algorithm is defined
to be an integer number between 5 and 20. In some situations, a parameter might
also be a real number.

Using these concepts, we may now define the term configuration.

Definition 1. Given the set of components of a metaheuristic algorithm together
with the set of all potential control flow alternatives, as well as its parameters and
their potential values, the configuration of a metaheuristic algorithm defines the
specific control flow and the specific set of parameter values it uses.

For example, a local search-based metaheuristic like the most basic tabu search
method depicted in Algorithm 1 has one parameter, the tabu tenure (the length of the
tabu list), and needs one type of neighborhood. It also needs several functions such
as initialize or update memory. One specific tabu tenure, one type of neighborhood
and the set of necessary functions will be the configuration of the current search
method.
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Algorithm 1: Basic tabu search

1 initialise: find an initial solution x

2 repeat
3 neighbourhood search: find a solution x0 2 N �.x/

4 update memory: tabu list, frequency-based memory, aspiration level, . . .
5 move x  x0

6 until stopping criterion satisfied

For a simple variable neighborhood search heuristic presented in Algorithm 2,
the order in which neighborhoods are explored (or whether they are explored at
all), the way in which the starting solution in the current neighborhood is generated
and the local search method that is applied to improve the solution with the current
neighborhood, as well as the total number of iterations kmax, define the configuration
of the VNS.

Algorithm 2: Basic variable neighbourhood search

1 initialise: find an initial solution x, k 1
2 repeat
3 shake: generate a point x0 at random from the neighbourhood Nk.x/

4 local search: apply a local search procedure starting from the solution x0

to find a solution x00

5 if x00 is better than x then
6 x  x00 and k  1 (centre the search around x00 and search again

with neighbourhood 1)
7 else
8 k  k C 1 (enlarge the neighbourhood)

9 until k D kmax

We can now define the terms adaptive and multilevel in the context of meta-
heuristic algorithms.

Definition 2. A metaheuristic is adaptive when it includes a mechanism to modify
its configuration during its execution.

In other words, an adaptive heuristic includes a mechanism to modify either the
control flow or the parameter values (or both) of a heuristic, and, by doing so modify
the behavior of the metaheuristic. As an example, consider the basic tabu search
shown in Algorithm 1. A common adaptive mechanism might make some changes
to the update memory: the length of the tabu list, the aspiration level, etc.



1 Adaptive and Multilevel Metaheuristics 7

Even though the definition has been conceived to be as watertight as possible,
there is always room for interpretation. For example, considering the VNS heuristic
in Algorithm 2, the basic design of the heuristic is such that the order in which
the neighborhoods are searched depends on the instance being solved. Since the
heuristic will move to the next neighborhood once a local optimum has been reached
(and local optima are different for every instance), the control flow of the algorithm
will be different for every instance. Yet, most researchers would not call a simple
VNS heuristic adaptive.

The mechanism that does the actual adaptation can range from very simple
to complex. Essentially, the aim of the mechanism is to search for the best
configuration of the metaheuristic algorithm. This search can itself be seen as a
combinatorial optimization problem, and an optimization algorithm may be used to
solve it. When the adaptation mechanism itself is a metaheuristic algorithm, we call
the overall result a multilevel metaheuristic.

Definition 3. A multilevel metaheuristic algorithm is a metaheuristic algorithm for
which the configuration is altered by another metaheuristic algorithm.

Note that, since the algorithm doing the adapting is itself a heuristic, with
its own components and parameters, the road is paved for a recursive structure
in which the configuration of the lowest-level heuristic is adapted by a higher-
level metaheuristic; the configuration of which is adapted by an even higher-level
heuristic, the configuration of which is adapted by . . . , ad infinitum. However,
the complexity added by implementing a higher-level metaheuristic algorithm to
adapt the configuration of a lower-level metaheuristic is usually considerable, which
precludes the design of a multilevel heuristic having many levels.

For reasons of clarity, a hybrid metaheuristic, i.e., a metaheuristic algorithm
that combines ideas from several metaheuristic frameworks, for which the config-
uration remains unchanged throughout the search, is not considered a multilevel
metaheuristic in this chapter. Also, the term multilevel is often used to denote
optimization problems that can decompose into several (simpler) problems (e.g.,
a location–routing problem can often be decomposed into a location problem and a
routing problem). Each of the problems may be separately solved by a metaheuristic
algorithm. In this chapter, we do not use the term multilevel metaheuristics to
describe such approaches.

Configuring a Metaheuristic

An optimization method and especially a metaheuristic has several (potentially
hundreds) possible configurations. Among all of them, only a few will allow the
search to reach the optimal solution or the best possible solution, but not for all
instances and not at all time. The configuration may have a great influence on the
quality of the final solution or the effectiveness of the search method. This is the
reason why properly tuning the parameters or choosing the right configuration is



8 M. Sevaux et al.

a very important task. Because of the “no free lunch theorem” [35], we know that
there is no optimal configuration of a metaheuristic that will outperform all others
on all problems and all instances.

Despite this fact, it is necessary to find an initial configuration suitable to
solve the problem at hand. This initial part will be described in this section. If
the configuration is not satisfying, instead of starting again the resolution with
a new configuration, one can change the configuration during the search (see
section “Adaptive Metaheuristics”).

As noted by several researchers (e.g., [14]), the first step of setting up a
metaheuristic has to go through the configuration phase during which the control
flow is established and the parameters are tuned. This phase is sometimes called
“offline parameter initialization.” This is long and fastidious and usually done
with trial-and-error methods. Moreover, even when this step is completed, its
efficiency is often effective on a subset of instances (usually close to the instances
on which the parameters have been calibrated). In addition, as already mentioned
for metaheuristics, the parameters are not only numerical values but can be search
components, updating function, etc. [32].

As a general observation, tuning these parameters is often so difficult that the
designers change them one by one until they get the right configuration. And the
value of these parameters is obtained empirically. Hence, the final combination of
the parameters deduced from a sequential empirical adaptation of the parameters
cannot guarantee that the final configuration is optimal. Furthermore, by changing
the parameters one by one, it is impossible (or too difficult) to detect the possible
interactions between these parameters. Moreover, the parameters and the control
flow of a heuristic generally heavily influence each other, which makes the process
of determining both even more difficult.

Eiben et al. [17] clearly define the parameter tuning for evolutionary algorithms:
By parameter tuning we mean the commonly practiced approach that amounts to
finding good values for the parameters before the run of the algorithm and then
running the algorithm using these values, which remain fixed during the run.

Once this initial tuning phase is completed, most metaheuristic designers keep
the configuration as it is to run their solution approach on the set of instances studied.
This configuration remains the same (as cited above) until the designer believes that
it is not adapted anymore and should be reconfigured with the same process.

Among the potential methods for tuning the parameters before solving, one can
list:

• Manual tuning (usually from the experience of a metaheuristic designer),
• Parameter tuning on a subset of representative instances,
• Automatic parameter tuning by the use of an external method.

An experienced metaheuristic designer is often able to decide the value of a
large number of parameters beforehand. The rules of thumb prevail on every other
considerations. The reason for this is that after several years of practicing, one can
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know that some parameters need to have certain values, and the values that are close
to it will not make a big difference on the final effectiveness of the results.

The population of a genetic algorithm is a rather good example. A small
population will have a premature convergence because too many individuals will
be the same (clones), and to avoid this without a specific mechanism, it is important
to have a population of a large size. Many papers on genetic algorithms have a
population of 100 individuals, but none mentioned how they have obtained this
value, or the motivations to set it to this value. No analysis is done to see if 95
or 105 will give better results.

Only a few researchers report the difficulty of finding the right parameter settings
and the limitations of this kind of approach [34]. Moreover, the manual tuning,
without post-analysis experiments, has the drawback of not being applicable to
different instances than the one presented in the paper. This is even more the case
for transferring the method to any similar industrial application.

Whatever the technique used for tuning these parameters or configurations
beforehand, it is important to keep in mind that every metaheuristic should be well
balanced between intensification and diversification [31]. Hence, the tuning of the
parameters should take this into account for ensuring that the metaheuristic is not
converging too fast (too much intensification or exploitation) or is wandering in
the search space without converging (too much diversification or exploration). Of
course, for being able to detect this, one has to set up some indicators showing
the speed of convergence, the evolution of the solution quality, the evolution of the
solutions themselves, etc.

The best practice is to report the results as Prins [26] has done in his paper on
the vehicle routing problem. In that paper, the tables present at the same time the
results obtained on a set of instances with some “standard parameter settings” and
the results obtained with the “best parameter settings.” This is a fair comparison to
existing work. The only drawback is the missing information on the time needed to
set up the standard parameter settings as well as the best parameter settings. This
can be a long and fastidious task and the total computational time can be high.

Setting up the parameters of a metaheuristic based on preliminary experiments is
probably the most common technique used in designing metaheuristics. A subset of
representative instances is selected, and the parameters are tested on these instances
until they converge to stable results. Hence, they are applied to the whole set of
instances, and the results are reported. The subset of instances should be carefully
selected to be representative of the future experiments.

Usually, the designer selects one parameter at a time, adjusts its value to the best
one, and reiterates with the next parameter. Only a few reports that they practice a
full factorial design as stated by Hooker [19]. With such a design, authors may try to
understand the relative contribution of each parameter to the global effectiveness of
the metaheuristic and the possible influence of the parameters between them. One
of the best examples of the application of this type of parameter design is presented
by Xu and Kelly [38] on a tabu search algorithm. In their paper, they have selected a
small subset of seven instances to tune five components of the tabu search. A more
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general approach is presented by Xu et al. [39] but still based on the same factorial
analysis.

Another technique to find the right parameter settings is to let an external
method to tune the parameters for the metaheuristic designers. Very few studies
exist on that issue if they are not used intrinsically during the metaheuristic search.
Dean and Voss [10] in their book present a technique known as the response
surface methodology in statistics. This method has been effectively used in [1]. This
technique consists in running a local search method in the space of the parameters. A
specific metric measuring the distance between each pair of parameters is calculated
by running the metaheuristic. For a fixed setting of parameters (or a point in
the search space of the parameters), the neighbors are also explored. If no better
neighbor can be found, the value for the parameters is fixed, and the search stops;
otherwise, the search continues with the best neighbor and the new parameter
settings.

Of course, one cannot guarantee the optimality for all the parameters at once and
even at the end of the search. But usually, this technique is able to discover good
parameter settings. One important drawback is the definition of the metric that is
very sensitive, especially if an order cannot be defined on the variables.

For a more elaborate discussion on this topic, we refer the reader to [3] and to
section “Hyper-heuristics for Metaheuristic Configuration” in this chapter.

Adaptive Metaheuristics

As stated in the previous section, once a designer has the best parameter settings for
its metaheuristics, he is able to run it confidently on the set of targeted instances and
produce results. The question is: “Can it go further?” And the answer is yes. Yes,
there is always some space for improvement. A parameter setting that works very
well on one instance might work poorly on another one.

To overcome this difficulty, it is always possible to analyze the behavior of the
metaheuristic during the search and adapt it to obtain better results. This phase can
be named “online parameter tuning.” Based on indicators (e.g., convergence, solu-
tion quality, similarity of explored solutions), the configuration of the metaheuristic
is changed. This technique is particularly appealing when one has to solve only one
large instance, and the tuning of parameters cannot be done beforehand.

Simple Adaptive Mechanisms

Detecting why a metaheuristic is not giving satisfying results is not an easy
task. It largely depends on the type of metaheuristic itself. For example, identical
individuals (clones) in a genetic or memetic algorithm are one of the known
consequences of premature convergence. In a local search method, cycling in the
objective space or in the solution space is also a situation that needs to be avoided.
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The online parameter tuning can be simple as in [30] where a tabu search
procedure is having a cycle detection mechanism and increases the tabu tenure
along the search when cycles are detected. To really improve the behavior of a
metaheuristic algorithm, however, more elaborate methods can be used during the
search and exploited for a better efficiency.

Such a mechanism includes that of Boutillon et al. [5] that can be activated during
the search like retroactive loops where a simulated annealing temperature parameter
is controlled during the search to follow a predefined probability acceptance
decreasing scheme.

Reactive Search

Among all existing methods, the work of Battiti [2] had traced the path a long
time ago. In the most simple reactive search, the past history of the search is
intensely used for feedback-based parameter tuning and for automated balance
of diversification and intensification. In the former, the tuning of parameters is
automated, and decisions on the new values of parameters are made based on the
past events of the search. In the latter, the concept of balancing exploration vs.
exploitation is used to guide the search.

One of the simplest forms of reactive search is reactive tabu search. The main
idea is to change the length of the tabu list (i.e., the tabu tenure) based on the search
trajectory. Essentially, the tabu list is made longer if the search is not finding better
solutions, and shorter if it does.

Greedy Randomized Adaptive Search Procedure

GRASP (greedy randomized adaptive search procedure) is a constructive meta-
heuristic, the main idea of which is to balance greediness and randomness. Many
constructive heuristics are greedy, which means that, at every iteration, they pick
the best element from the set of potential solution elements. An example is the
nearest-neighbor heuristic for the TSP which starts from a given city and moves to
the closest unvisited city at every iteration. The drawback of a fully greedy heuristic
is that it only generates a single solution, which is most likely suboptimal. A wrong
decision early on in the constructive procedure may lead to bad solutions in the end.

GRASP attempts to overcome this drawback by introducing randomness into the
solution construction process. Instead of picking the best element at each iteration,
GRASP creates a restricted candidate list, i.e., a list of the ˛ best elements and picks
one element from this list at random (˛ represents a number of elements). By doing
this, GRASP generates a different solution at each iteration. After several iterations,
some solutions will likely have been found that are better than the one found by a
purely greedy heuristic.

In reactive GRASP, introduced by Prais and Ribeiro [25], the parameter ˛

is randomly chosen from a set of discrete value. Initially, each possible ˛i has
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the same probability of being chosen. The search remembers the quality of the
solutions found for each possible value of ˛i . After some iterations, the probabilities
of selecting ˛i are updated to reflect the quality of the solutions it produced.
The probabilities corresponding to ˛i ’s that have resulted in good solutions are
increased; the others are decreased.

The reactive GRASP by Delorme et al. [11], e.g., works as follows. A value �i

is defined for each ˛i . The probability of selecting ˛i , pi is calculated as follows:

pi D
�i

Pn
kD1 �k

;

supposing that n different ˛i ’s have been defined.
Whenever a good solution is found using a certain ˛i , this solution is added to

the pool Pi for this ˛i . Periodically, the values of �i (and hence pi ) are updated
according to the following formula:

�i D

�
meanx 2 Pi Œf .x/ � f .x/�

f .x/ � f .x/

�ı

;

where x and x are the worst and best solutions found so far and ı is a parameter
introduced to attenuate the update of the probabilities pi .

Adaptive Large Neighborhood Search

Large neighborhood search (LNS) is a constructive metaheuristic that works by
building solutions from their constituting elements. For this purpose, it relies on
a set of simple constructive procedures to build solutions and on a set of destructive
procedures to partially destroy these solutions so they can be rebuilt. For this reason,
LNS has also been called ruin-and-recreate. At each iteration, LNS selects a pair
consisting of one destructive heuristic and one constructive heuristic. Using this
pair, a new solution is obtained. Most LNS implementations use a probabilistic
mechanism to select both the destructive and the constructive heuristic at each
iteration. A (nonadaptive) LNS algorithm could, e.g., assign equal probabilities to
each constructive heuristic and to each destructive heuristic.

Adaptive large neighborhood search goes a step further by selecting the heuristic
pair with a probability determined by the previous performance of both the
constructive and the destructive heuristics. As a result, constructive and destructive
heuristics that perform well will have a higher probability of being selected, whereas
those that will not have a lower probability. Usually, however, the probabilities are
bounded by some values that ensure all heuristics have at least a tiny chance of being
selected.

An example of an ALNS adaptive constructive/destructive heuristic selection
mechanism is the following. Suppose an ALNS heuristic has n constructive and
m destructive heuristics. Initially, each constructive heuristic i (and each destructive
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heuristic j ) is assigned a value �c
i D 1 (�d

j D 1). Then, a constructive heuristic is
selected from the set of constructive heuristics with a probability p proportional to
its value:

pi D
�i

Pn
kD1 �k

Similarly, a destructive heuristic is selected according to an equivalent rule.
Using the pair of destructive and constructive heuristic, a new solution is

generated. The quality of the new solution is evaluated, and the values of the selected
constructive and destructive heuristic are updated.

˛ D

8
ˆ̂
<

ˆ̂
:

0:5 if the new solution is worse than the current solution

1:5 if the new solution is better than the current solution

2 if the new solution is better than the global best solution

�c
i;new D ��c

i C .1 � �/˛

�d
j;new D ��d

j C .1 � �/˛

where � is a parameter between 0 and 1.
Using the formulas above, the probabilities of selection for each constructive

and destructive heuristic will adapt to the problem at hand. Moreover, using the
formulas above, the values can never increase above 2 and never drop below
0.5. In other words, all constructive and destructive heuristics will keep having a
positive probability of being selected, even if they consistently fail to find improving
solutions.

Multilevel Metaheuristics and Hyper-heuristics

In the previous section, we have examined different techniques for adapting the
configuration of metaheuristics. In this section, we look at multilevel metaheuristics,
i.e., metaheuristic algorithms for evolving the configuration of a metaheuristic.
Much of the research in this area has used evolutionary algorithms to configure
metaheuristics with one of the earliest studies being that conducted by Bölte and
Thonemann [4] which uses genetic programming for generating annealing sched-
ules, which were previously manually created in a simulated annealing algorithm to
solve the quadratic assignment problem. Various evolutionary algorithms, namely,
genetic algorithms, evolutionary strategies, and estimation of distribution algo-
rithms, have been used for parameter tuning of evolutionary algorithms [16]. These
are referred to as meta-EAs and operate on the design level, while the EA solving
the problem at hand is considered to form the algorithm layer. Hyper-heuristics are
proving to be effective for the automatic configuration of metaheuristics, and we
provide an overview of the use of hyper-heuristics for this purpose.
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Hyper-heuristics

Hyper-heuristics were initially introduced as “heuristics to choose heuristics”
[6,28]. Hyper-heuristics aim at providing a more generalized solution for a problem
domain rather than producing the best solution for certain problem instances. This
is achieved by exploring a space of low-level heuristics rather than a solution space
directly. The low-level heuristics can be constructive or perturbative. Construc-
tive low-level heuristics are used to create an initial solution, while perturbative
heuristics are used to improve an existing candidate solution. The first generation
of hyper-heuristics was essentially selection hyper-heuristics which chose which
constructive or perturbative heuristics to use at a particular point in constructing or
improving a candidate solution, respectively.

Selection constructive hyper-heuristics are used to select the low-level construc-
tion heuristic at each stage in constructing a solution. Similarly, in the case of
selection perturbative hyper-heuristics, the hyper-heuristic chooses a perturbative
low-level heuristic at each stage of the improvement process. We use an application
of hyper-heuristics to the domain of examination timetabling to illustrate these
concepts. Low-level construction heuristics generally used to solve examination
timetabling problems are the graph coloring heuristics, namely, largest degree,
largest weighted degree, largest color degree, largest enrollment, and saturation
degree [27]. Each of these heuristics assesses the difficulty associated with allocat-
ing an examination to the timetable. For example, the saturation degree heuristic
is the number of timetable slots, given the current state of the timetable at the
particular point in construction, an examination can be allocated to without causing
hard constraint violations such as a student being scheduled to write more than one
examination at the same time. A selection hyper-heuristic chooses which of the low-
level heuristics to use to schedule each of the examinations. This has proven to be
effective as different low-level heuristics work well for different problem instances,
and more importantly, different low-level heuristics are more effective at different
points of solution construction. Metaheuristics such as simulated annealing, tabu
search, variable neighborhood search, and genetic algorithms have generally been
used to search the heuristic space [6, 9].

Examples of low-level perturbative heuristics for the examination timetabling do-
main include swapping examinations, swapping rows of the timetable, de-allocating
examinations, and allocating examinations. Selection perturbative hyper-heuristics
can perform a single point search or a multipoint search. In the case of the former,
the hyper-heuristic is comprised of a heuristic selection and move acceptance
component [9]. Different techniques are employed to for heuristic selection and
move acceptance. These techniques can be as simple as randomly selecting a low-
level heuristic and accepting on moves that results in improvement. Metaheuristics
can also be employed for heuristic selection and move acceptance, e.g., simu-
lated annealing and tabu search have previously been employed for this purpose.
Multipoint search selection perturbation hyper-heuristics employ population-based
methods such as evolutionary algorithms and particle swarm optimization to explore
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the heuristic space, with the population-based approach, by its nature, performing
both the heuristic selection and move acceptance.

As the field developed, the idea of creating new low-level heuristics emerged
resulting in a second category of hyper-heuristics, namely, generation hyper-
heuristics. Generation hyper-heuristics generate low-level constructive or perturba-
tive heuristics. Genetic programming has primarily been employed by generation
hyper-heuristics to create low-level heuristics [8, 9]. An example of a generation
hyper-heuristic is that implemented by Burke et al. [7] for the one-dimensional
bin-packing problem. Construction low-level heuristics, e.g., first-fit, best-first, and
next-fit, are used to choose which bin to allocate an item to. In this study, genetic
programming is used to evolve low-level heuristics to decide which bin to allocate
an item to. In the study conducted by Sabar et al. [29] grammatical evolution,
a variation of genetic programming is used to evolve new low-level perturbative
heuristics by combining mechanisms for heuristic selection and move acceptance.
Generated low-level heuristics can be reusable or disposable. In the case of reusable
heuristics, the generated low-level heuristic created to solve the problem for one
instance can be used to solve other problem instances without any regeneration.
Disposable low-level heuristics are generated for the specific problem instance and
cannot be reused.

Selection and generation hyper-heuristics have generally been used for the
automatic configuration of metaheuristic algorithms. In this case, the low-level
heuristics represent parameters or operators of the metaheuristic and are essentially
perturbative. The hyper-heuristic employs a metaheuristic to explore the space of
low-level heuristics. Selection hyper-heuristics are used to determine control flow
and for parameter tuning. In this case, the hyper-heuristic selects a component at
each point in the application of the algorithm to solve the problem. Furthermore,
generation hyper-heuristics are used to create new low-level heuristics; in this
context, these represent the components of the metaheuristic.

Hyper-heuristics for Metaheuristic Configuration

Control flow is achieved by producing a combination of low-level heuristics, each
is a component of the metaheuristic algorithms, i.e., the hyper-heuristic selects
which low-level heuristic to apply at each point in a metaheuristic algorithm.
The low-level heuristics are components of the metaheuristic algorithm. Lourenço
et al. [21] use grammatical evolution to evolve evolutionary algorithms for the
royal road functions. The aim is for the evolutionary algorithm to adapt itself
during the evolutionary process. Evaluating the evolutionary algorithm proved to
be a computationally intensive task, and hence, a limited number of runs were
performed. Grammatical evolution combines the different evolutionary algorithm
components, namely, mutation, crossover, and selection components and parameter
values for these components. The evolved evolutionary algorithms are applied to
a seeded initial population. One instance was used for training, and the evolved
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evolutionary algorithms were tested on the remaining four instances. Performance
was found to be similar to that of the standard evolutionary algorithm. The
evolved EA that performed better than the standard EA did not follow the standard
structure and contained two types of crossover. There are a number of early
initiatives that can be categorized as hyper-heuristics for inducing evolutionary
algorithms, although this is not explicitly stated in the papers. Oltean and Groşan
[24] use multigene expression programming to evolve an evolutionary algorithm
to induce Griewank’s function. Algorithms comprised of initialization, mutation,
and crossover components are evolved. The number of crossover, initialization,
and mutation components in the best individual was found to increase as the
evolution progressed. Linear genetic programming has also been used for purposes
of evolutionary algorithm induction [23]. Each algorithm evolved is a generational
evolutionary algorithm composed of selection, crossover, and mutation components
and is applied to an initial population of randomly generated elements. Evolutionary
algorithms are evolved for function optimization, the traveling salesman problem,
and quadratic assignment problem. For all three problems, the evolved algorithms
are trained on a problem instance and are able to generalize and solve other
problem instances. In later work, Dioşan and Oltean [13] use genetic algorithms
to evolve evolutionary algorithms for function optimization. Each chromosome
is comprised of a combination of selection, mutation, and crossover operations
as well as population altering strategies to place the newly created offspring
into the population. A different evolutionary algorithm was evolved to induce
each of the ten functions. As in previous studies, the crossover operator was
the most prevalent in evolved evolutionary algorithms producing the best re-
sults.

In some studies, the hyper-heuristic achieves both control flow and parameter
tuning. In this case, the hyper-heuristic selects the component of the metaheuristic
and the parameter value. Tavares and Pereira [33] employ grammatical evolution
to automatically configure ant colonization algorithms for solving the traveling
salesman problem. The architecture of the ant colonization algorithm including the
components of the algorithm, e.g., method for evaporation, and parameter values are
evolved. The evolved architecture was found to be effective when applied to problem
instances different from those used for training during evolution. The evolved
architectures producing the best results were found to be different from those of the
standard ant colonization algorithms. Lourenço et al. [22] use grammatical evolution
to design evolutionary algorithms to solve the knapsack problem. The evolved
evolutionary algorithms are applied to unseen instances. Each evolved evolutionary
algorithm specifies the type of selection, type of crossover, type of mutation, and
parameter values. Evolved evolutionary algorithms using binary swap mutation and
uniform crossover performed the best.

Generation hyper-heuristics go a step further, and instead of choosing a compo-
nent of a metaheuristic to decide the control flow, these hyper-heuristics create a
new component. In the study conducted by Hong et al. [18] a generative hyper-
heuristic, employing genetic programming is used to evolve mutation operators
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for evolutionary programming. The terminal set is comprised of random numbers
produced by a Gaussian random number generator, and the function set is comprised
of arithmetic operators. The approach was used to evolve ten function classes,
seven unimodal and three multimodal, and was found to require less processor
time than the man hours needed to design new mutation operators. A different
mutation operator was evolved for each function class using one instance of the
class. Woodward and Swan [37] use local search, namely, hill-climbing, to evolve
mutation operators for genetic algorithms. These mutation operators were found
to outperform human-created mutation operators. Register machines are used to
simulate the behavior of mutation operators. Seven function classes were used
to test the effectiveness of the evolved mutation operators. Different mutation
operators were created for each function class. Woodward and Swan [36] evaluate
a similar approach which uses random search to generate search heuristics for a
genetic algorithm. As in the previous study, register machines are used to emulate
the selection process. Selection is based on the fitness or rank of a bit string.
The evolved selection heuristics were tested for the mimicry problem set and
were found to perform better than the human-designed selection heuristics. In
the study conducted by Dioşan and Oltean [12], genetic programming induces
crossover operators for a genetic algorithm for function optimization. A different
crossover operator is evolved for each of the 11 function classes. The performance
of the evolved operators was found to be comparative to human-designed crossover
operators. Drake et al. [15] also employ grammatical evolution to design the
construction heuristic and move operators used by variable neighborhood search
to solve the vehicle routing problem. The move operators generated are ruined, and
insertion heuristics which are used to perform the shaking process in the variable
neighborhood searched. The variable neighborhood search produced results close
to the global optimum for all problem instances. Løkketangen and Olsson [20] use
the ADATE system to generate the move selection, tabu tenure, and the aspiration
criteria in a tabu search for solving the Boolean optimization problem (BOOP).
The authors describe ADATE as a generation hyper-heuristic that performs offline
learning. ADATE is an automatic programming system that produces functional
programs in metalanguage ML. The generated components were found to perform
better than manually designed components. One of the generated components
producing good results was found to give good moves a longer tabu tenure which is
not typical of human-designed tabu searches. This again emphasizes the advantage
of automatic generation of metaheuristic components.

Discussion

Multilevel metaheuristics can be categorized as selection or generation perturbative
hyper-heuristics. As previously outlined, designing a metaheuristic involves making
decisions regarding what parameter values to use, what operators to use, and the
control flow of the overall algorithm. From the survey presented above, it is evident
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that hyper-heuristics have been fairly effective in making these design decisions.
Selection perturbative hyper-heuristics are used to select numerical and discrete
parameter values. Hence, the hyper-heuristic explores the space of parameter values.
Evolutionary algorithms have chiefly been used for this purpose. The parameter
values can either be coevolved while solving the problem at hand or optimized
separately. In the latter case, the parameters can be determined offline during the
training phase. Selection perturbative hyper-heuristics can also be used to make
control flow decisions. This essentially involves selecting different operators at
different stages of solving the problem. Hence, the decision of which operator to
use can be made as part of the control flow decision. Evolutionary algorithms,
including linear genetic programming, genetic algorithms, multigene expression
programming, and grammatical evolution have been used for control flow design.
The decision regarding which operator to use may not be a matter of selecting an
existing operator but creating a new operator. Generation hyper-heuristics can be
used to generate new operators. This research has focused to a large extent on
selection, mutation, and crossover operators in evolutionary algorithms. Genetic
programming has primarily been used to generate new operators. Grammatical
evolution, local search, and random search have also been used for this purpose.
A hyper-heuristic can be used to make all three design decisions simultaneously.
This can be seen in the studies conducted by Lourenço et al. [21, 22] and Tavares
and Pereira [33] where grammatical evolution is used to make this decision for
the induction of an evolutionary and an ant colonization algorithm simultane-
ously.

In the case of all three design decisions, the parameter values, operators, and
algorithms induced by the hyper-heuristic can be reusable or disposable. In the
case of reusability, two phases are performed, a training phase and a testing phase.
During the training phase, one or a subset of problem instances are used. The
induced parameter values, operators, and algorithms are then used to solve unseen
instances. Disposable parameter values, operators, and algorithms are induced
for the particular problem instance, and hence, a training phase is not required.
Reusability has the advantage of the time required for design being reduced as
redesign is not needed for every new instance; however, there may be a limited
number of instances for which the generated design is applicable.

One of the challenges associated with using hyper-heuristics for the design
of metaheuristics is the processing time needed. Given the advances made in
multicore architectures and the availability of multicore architectures on a standard
desktop machine, distributed architectures can be designed for the implementation
of these hyper-heuristics. Most of the research conducted this far has focused on
the configuration of evolutionary algorithms. These ideas can be transferred to
the design of other metaheuristics. Evolutionary algorithms have primarily been
used for design purposes. These have ranged from genetic algorithms through to
grammatical evolution. A comparative study into the performance of the different
types of evolutionary algorithms and their contribution to the design process would
be interesting.
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Conclusion

A metaheuristic algorithm’s configuration is the combination of its control flow
and its parameter settings. Determining the best possible configuration for a
metaheuristic is a difficult task that is commonly done by trial and error and based
on the experience of the algorithm designer. For this reason, metaheuristics have
been developed that are able to adapt their configuration during the search (adaptive
metaheuristics), potentially using a higher-level metaheuristic (multilevel meta-
heuristics). In this chapter, we have surveyed the literature on this topic. The chapter
has also highlighted the effectiveness of (see �Chap. 17, “Hyper-heuristics”) as
multilevel metaheuristics. This serves as a starting point for researchers wanting
to use hyper-heuristics for the automated design of metaheuristics. Hyper-heuristics
have been fairly effective for the purpose of design, and in most cases, the generated
designs have produced better results than the manually designed metaheuristic, in
some experiments producing designs that have not previously been thought of. This
overview has also brought to light certain research questions and hence areas for
future research. Research thus far has highlighted the potential of hyper-heuristics
in the automated configuration of metaheuristics. This has now set the foundation
for wider application, including more complex problems.
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Abstract

This chapter introduces biased random-key genetic programming, a new meta-
heuristic for evolving programs. Each solution program is encoded as a vector
of random keys, where a random key is a real number randomly generated in
the continuous interval Œ0; 1�. A decoder maps each vector of random keys to
a solution program and assigns it a measure of quality. A Program-Expression
is encoded in the chromosome using a head-tail representation which is later
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transformed into a syntax tree using a prefix notation rule. The artificial simulated
evolution of the programs is accomplished with a biased random-key genetic
algorithm. Examples of the application of this approach to symbolic regression
are presented.

Keywords
Genetic programming � Biased random-key genetic algorithms � head-tail
representation � prefix notation

Introduction

Genetic programming (GP) is an evolutionary metaheuristic inspired by biological
evolution to find computer programs that perform a predefined user computational
task.

GP has its origins around 1954 with the evolutionary algorithms applied by Nils
Aall Barricelli to evolutionary simulations [2]. One of the earliest practitioners of
the GP methodology was Lawrence J. Fogel who, in 1964, applied evolutionary
algorithms to the problem of discovering finite-state automata [9]. The first paper
on tree-based genetic programming was presented in [5] and was later expanded
by John R. Koza, who pioneered the application of genetic programming in various
complex optimization and search problems [20–23].

Traditionally, GP has favored the use of programming languages that naturally
embody tree structures [1], but several new non-tree representations were suggested
and successfully implemented, such as linear genetic programming (LGP) [4], gene
expression programming (GEP) [6], and Parallel Distributed Graphical Program-
ming (PDGP) [24].

Genetic programming is still a young field of research. It attracts a growing
research community, and there are many avenues of research yet to be explored.
In this chapter, we introduce biased random-key genetic programming (BRKGP), a
novel metaheuristic for computer program evolution.

The remainder of the chapter is organized as follows. In section “Program Repre-
sentation” we describe the program representation. In section “Biased Random-Key
Genetic Programming” we introduce the new approach, describing in detail the
BRKGA, the chromosome structure and the decoding procedure, and the fitness
function. Finally, in section “Examples” we illustrate the application of the approach
to two cases in the area of symbolic regression, and in section “Conclusions” we
make concluding remarks.

Program Representation

In genetic programming programs are usually expressed by syntax trees (ST).
Figure 1 shows the tree representation of the program:

max

�
2:2 �

X

11
; 7 � cos .Y /

�
:
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max

2.2

-

÷

×

7 cos

YX 11

Functions

Terminals

Fig. 1 Syntax tree of program max
�
2:2 � X

11
; 7 � cos .Y /

�

The variables and constants in the program (X, Y, 2.2, 11, and 7) are leaves of
the tree. In GP the nodes that correspond to the leaves are called terminals, and
the internal nodes represent the operations (�; �; �; cos, and max) and are called
functions. The sets of allowed functions (F) and terminals (T ) together form what
is called the primitive set (P) of a GP system.

In this chapter a linear representation of syntax trees is used. This indirect rep-
resentation, called Program-Expression (PE), encodes a syntax tree as a sequence
of elements of the primitive set which will be later translated, according to some
predefined rules, into a syntax tree.

The set of rules used to translate a PE into a ST follows a prefix notation
convention (P-rule). The P-rule translates a PE into a ST by reading sequentially,
from left to right, each element in the PE and placing it in the bottom-most
(first-criteria) and left-most (second-criteria) available node in the partial ST being
constructed. Note that if there are no nodes available, in the partially built syntax
tree, in which to place an element in the PE, then the process stops and the remaining
primitive elements in the PE are discarded and are called noncoding elements.
Figure 2 demonstrates how the PE

^ C 1 � r n n cos Y 17:5

can be translated into a ST following the P-rule. The first primitive element in the
PE is |^| and is placed in node 1 (the root of the tree). The second element in the
PE is |C| and is placed in node 2. The third primitive element in the PE is |1| and
is placed in node 4. The fourth primitive element in the PE is |�| and is placed in
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^

1

+

÷

n

r n

Node 1

Node 2 Node 3

Node 4 Node 5

Node 6 Node 7

PE

ST

Program

Fig. 2 Translation of a PE into a program using the P-rule

node 5. This process will be repeated until all elements in the PE are placed or there
are no nodes available in the tree in which to place an element.

Note that the last three elements of the PE, |cos|, |Y|, and |17.5|, are not included
in the ST. The program that corresponds to the final ST is

�
1 C

r

n

�n

:

Biased Random-Key Genetic Programming

This section begins with an overview of the proposed biased random-key genetic
programming (BRKGP) methodology. This is followed by a discussion of the biased
random-key genetic programming algorithm, including detailed descriptions of the
program encoding and decoding and the fitness measure.

Overview

The BRKGP metaheuristic presented in this chapter is based on four main com-
ponents: a biased random-key genetic algorithm (BRKGA) [13], chromosomes, a
decoding procedure to translate a chromosome into a syntax tree, and a fitness
measure to assess the quality of the resulting programs.
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Compute Quality of Program

Translate a Program-Expression (PE) 
into a 

Syntax Tree (ST)

Chromosome

Fig. 3 Architecture of the BRKGP

The role of the BRKGA is to supply and evolve the chromosomes. A chromosome
(genotype) indirectly represents a syntax tree (phenotype) that corresponds to a
program. The decoding procedure receives as input a chromosome and in a first
phase translates it into a Program-Expression (PE). Then, in a second phase the PE,
obtained in the first phase, is translated into a syntax tree using the P-rule described
in section “Program Representation.”

Figure 3 illustrates the sequence of steps applied by the BRKGP to each
chromosome.

The remainder of this section describes in detail the biased random-key genetic
algorithm, the chromosome structure, the decoding procedure that maps a chromo-
some into a syntax tree, and the fitness measures.

Biased Random-Key Genetic Algorithms

Genetic algorithms with random keys, or random-key genetic algorithms (RKGA),
were introduced by [3] for solving sequencing problems. In an RKGA, chromosomes
are represented as vectors of randomly generated real numbers in the interval Œ0; 1�.
A decoder is a deterministic algorithm that takes as input a chromosome and
associates it with a solution of the combinatorial optimization problem for which
an objective value or fitness can be computed.
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An RKGA evolves a population of random-key vectors over a number of
generations (iterations). The initial population is made up of p vectors each with
r random keys. Each component of the solution vector, or random key, is randomly
generated, independently, in the real interval Œ0; 1�. After the fitness of each
individual is computed by the decoder in generation g, the population is partitioned
into two groups of individuals: a small group of pe elite individuals, i.e., those with
the best fitness values, and the remaining set of p � pe nonelite individuals. To
evolve the population of generation g, a new generation (g C 1) of individuals is
produced. All elite individuals of the population of generation g are copied without
modification to the population of generation g C 1. RKGAs implement mutation
by introducing mutants into the population. A mutant is a vector of random keys
generated in the same way that an element of the initial population is generated. Its
role is similar to that of mutation in other genetic algorithms [11], i.e., to introduce
noise into the population and avoid convergence of the entire population to a local
optimum. At each generation, a small number pm of mutants is introduced into the
population. With pe Cpm individuals accounted for in population gC1, p�pe �pm

additional individuals need to be generated to complete the p individuals that make
up population g C 1. This is done by producing p � pe � pm offspring solutions
through the process of mating or crossover.

A biased random-key genetic algorithm [13], or simply BRKGA, differs from an
RKGA in the way parents are selected for mating. While in the RKGA of [3] both
parents are selected at random from the entire current population, in a BRKGA each
element is generated combining a parent selected at random from the elite partition
in the current population and one from the rest of the population. Repetition in
the selection of a mate is allowed, and therefore an individual can produce more
than one offspring in the same generation. As in a RKGA, parametrized uniform
crossover [25] is used to implement mating in a BRKGA. Let �e be the probability
that an offspring inherits the vector component of its elite parent. Recall that r

denotes the number of components in the solution vector of an individual. For
i D 1; : : : ; r; the i -th component c Œi � of the offspring vector c takes on the value of
the i -th component e Œi � of the elite parent e with probability �e and the value of the
i -th component Ne Œi � of the nonelite parent Ne with probability 1 � �e .

When the next population is complete, i.e., when it has p individuals, fitness
values are computed for all of the newly created random-key vectors, and the
population is partitioned into elite and nonelite individuals to start a new generation.
Figure 4 depicts the transitional process between two consecutive generations.

A BRKGA searches the solution space of the combinatorial optimization problem
indirectly by searching the continuous r-dimensional unit hypercube, using the
decoder to map solutions in the hypercube to solutions in the solution space of the
combinatorial optimization problem where the fitness is evaluated.

BRKGAs have been applied with success to solve many types of combinatorial
problems (see [10, 12, 14–19]).

A biased random-key genetic algorithm is specified by the parameters, the
encoding and decoding of the solutions, and by the fitness measure. In the next
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One Chromosome 
from TOP

Current
Population

Next 
Population

Best

Worst
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One Chromosome
from entire population

Elitist Selection

Mutation 
(Immigration)

mutants

Crossover

Fig. 4 Transitional process between consecutive generations

section the algorithm is specified by first showing how programs are encoded and
then decoded and how their fitness evaluation is computed.

Encoding and Chromosome Structure

A chromosome represents a program and is made of two parts. The first part encodes
a PE and the second part encodes the values of the constants that can be used in the
PE. To encode a PE a head-tail representation is proposed as in [6–8]. The head,
h, represents the maximum number of internal nodes that can be in the syntax tree
(ST) and can contain both functions (elements from set F) and terminals (elements
from the set T ), whereas the tail, t , represents the number of leaves of the ST
and can only contain terminals (elements from the set T ). For each problem, the
length of the head, h, is chosen, whereas the length of the tail, t , depends on h and
on the arity, a, of the function with the most arguments and is determined by the
expression

t D h .a � 1/ C 1: (1)

This way of determining the length of the tail guarantees that there will always be
enough terminals to create syntactically valid PEs (assuming closure among the set
of primitives).
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head

Chromosome = ( gene1  , … , geneh , geneh+1  , … , geneh+t ,  geneh+t+1 , … , geneh+t+k )Chromosome = ( gene1  , … , geneh , geneh+1  , … , geneh+t ,  geneh+t+1 , … , geneh+t+k )

constantstail

First part of the chromosome 
encoding a Program-Expression

Second part of the chromosome 
encoding the values of k constants

Fig. 5 Chromosome structure used to encode a PE with a vector of h C t C k random keys

Table 1 Information relative to the example

F D
n
C; �; �; �;

p
o

H) vF D .C; �; �; �;
p

/ nF D 5

T D fX; Y ; Z; K1; K2g H) vV D fX; Y ; Zg ; nV D 3 vK D

fK1I K2g ; nK D 2

h D 5; a D 2 H) t D 5 � .2 � 1/ C 1 D 6

Assuming that the terminal set includes k constants, then every chromosome sup-
plied by the BRKGA encodes a Program-Expression (PE) as a vector of (h C t C k)
random keys, and Fig. 5 depicts the corresponding chromosome structure.

Decoding a Chromosome into a PE

The decoding of a chromosome into a Program-Expression (PE) has the following
three steps:

• Decoding the head of the PE;
• Decoding the tail of the PE;
• Decoding the values of the constants.

Let the terminal set T be divided into the two mutually exclusive sets V and K
which represent the set of variables and the set of constants, respectively, and let
vF , vV , and vK represent vectors containing all the elements in the sets F , V , and
K, respectively. Additionally, let nF , nV , and nK represent the number of elements
in the vectors vF , vV , and vK, respectively.

To better illustrate the various steps in the decoding process, an example based
on the information presented in Table 1 is used.

According to Table 1 and the chromosome structure defined in the previous
section, the chromosome will have 13 (5 + 6 + 2) random keys. Furthermore, assume
that the chromosome being decoded is
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Fig. 6 Pseudo-code for the DecodeHead procedure

c D .0:25; 0:35; 0:93; 0:75; 0:05; 0:32; 0:67; 0:58; 0:15; 0:26; 0:86; 0:64; 0:43/ :

(2)

The decoding of the head of the PE is based on the fact that the head can be
made of elements in any of the sets F , V , and K. The mapping of the random key
in position r D 1; : : : ; h of the chromosome c, c Œr�, into the primitive element in
position r of the PE, PE Œr�, is accomplished by the procedure DecodeHead whose
pseudo-code is shown in Fig. 6.

Table 2 presents the results of the decoding of the head of the PE corresponding
to the first five components of the chromosome given in expression (2).

At this point the first five components of the PE will be

� � K2 Z C :

The decoding of the tail of the PE is based on the fact that the tail can only
consist of elements in sets V and K. The mapping of the random key in position
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Table 2 Decoding the Head of the PE

r cŒr� idx Head of the PE

1 0.25 d0:25 � .5 C 3 C 2/e D 3 vF Œ3� D �

2 0.35 d0:35 � .5 C 3 C 2/e D 4 vF Œ5� D �

3 0.93 d0:93 � .5 C 3 C 2/e D 10 vK Œ10 � 5 � 3� D K2

4 0.75 d0:75 � .5 C 3 C 2/e D 8 vV Œ8 � 5� D Z

5 0.05 d0:05 � .5 C 3 C 2/e D 1 vF Œ1� D C

Fig. 7 Pseudo-code for the DecodeTail procedure

r D h C 1; : : : ; h C t of the chromosome c, c Œr�, into the primitive element in
position r of the PE, PE Œr�, is accomplished by the procedure DecodeTail which
has the pseudo-code presented in Fig. 7.

Table 3 presents the results of the decoding of the head of the PE corresponding
to the chromosome given in expression (2).

At this point the components of the PE will be

� � K2 Z C Y K1 Z X Y K2:

This PE is translated with the P-Rule into
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Table 3 Decoding the tail of
the PE

r cŒr� idx Tail of the PE

6 0.32 d0:32 � .3 C 2/e D 2 vV Œ2� D Y

7 0.67 d0:67 � .3 C 2/e D 4 vK Œ4 � 3� D K1

8 0.58 d0:58 � .3 C 2/e D 3 vV Œ3� D Z

9 0.15 d0:15 � .3 C 2/e D 1 vV Œ2� D X

10 0.26 d0:26 � .3 C 2/e D 2 vV Œ4 � 3� D Y

11 0.86 d0:86 � .3 C 2/e D 5 vK Œ5 � 3� D K2

K2

Z
� .Y C K1/ : (3)

Note that the last four components in the PE are noncoding elements.
The final step in the decoding process consists in decoding the values of the

constants in the terminal set. That is accomplished by using the decoding expression

Ki D f k.c Œh C t C i � ; p1; p2; : : : ; pp/ i D 1; : : : ; nK;

where f k./ is a function that accepts as input a random key, c Œr�, and a set of
parameters p1; p2; : : : ; pp and outputs a real or integer value. The simplest case can
be obtained when f k.c Œr�/ D c Œr�, i.e., the value of the constant is equal to the
value of the random-key input. Many functions can be used for f k./. However, the
following functions were used:

1. randReal.c Œr� ; l; u/ D l C c Œr� � . u � l / – which generates a real value
between l and u;

2. randInt.c Œr� ; l; u/ D b l C c Œr� � .u � l / c – which generates an integer value
between the integers l and u.

For the example, assuming f k.c Œr�/ D c Œr�, the values of the constants K1 and K2

are, respectively, cŒ5 C 6 C 1� D 0:64 and cŒ5 C 6 C 2� D 0:43. The final program
can be obtained by replacing the constants K1 and K2 in expression (3) by 0:64 and
0:43, respectively, i.e.:

0:43

Z
� .Y C 0:64/ : (4)

Fitness Function

The objective of the fitness measure is to assign a quality value to each chromosome
so that the evolutionary process differentiates the different chromosomes and directs
the search to better solutions (chromosomes). Depending on the problem being
solved, different fitness measures can be used.
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Suppose that a symbolic regression problem is to be solved where the best fitting
function to a set of points is to be found. In this case the usual measures used in
the linear or nonlinear regression can be used, least squares, mean squared error,
etc. However, if, for example, a rule to decide when to buy or sell a certain stock
in the NYSE is to be discovered, then the quality of rule could be evaluated by
using historical data, and the profit obtained with the rule, over a certain number of
historical days, could be considered the measure of fitness.

Examples

This section presents two examples in the area of symbolic regression (SR) to
illustrate the application of BRKGP. The mean absolute error (MAE)

MAE D
1

ND

dDNDX
dD1

jfd � yd j

is used as fitness measure, where ND is the number of data points, yd is the value
of data point d , and fd is the value obtained by the expression generated by the
BRKGP for data point d .

SR-Example 1

Table 4 presents 30 data points that are sampled from the function y D x C 2x² C

3x³ C 4x4. BRKGP is used to try to discover the polynomial that best fits the data.
The BRKGP configuration used for this example is given in Table 5.
Note that, since the best value of h to use is not known, three possibilities for h

.h D 5; h D 10; h D 15/ are tried. For h D 5 and h D 10 the BRKGP was not
able to find the correct polynomial (i.e., MAE > 0). However, with h D 15 it was

Table 4 Dataset for
SR-example 1

x y x y x y

1 10 11 62;810 21 806;610

2 98 12 88;428 22 969;958

3 426 13 121;186 23 1;156;946

4 1252 14 162;302 24 1;369;752

5 2930 15 213;090 25 1;610;650

6 5910 16 274;960 26 1;882;010

7 10;738 17 349;418 27 2;186;298

8 18;056 18 438;066 28 2;526;076

9 28;602 19 542;602 29 2;904;002

10 43;210 20 664;820 30 3;322;830
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able to find the correct polynomial (i.e., MAE D 0) after 12 generations. The final
expression was

.....X C X/ � .X � X// C X/ � ..X C X/ C .X � X/// C ..X � X/ � X//

which after being simplified gives the correct polynomial.

SR-Example 2

In this example BRKGP is used to try to discover the relation between the Area of
the circle and its radius R that best fits the 20 data points presented in Table 6. The
20 data points were sampled from the function Area D �R².

The BRKGP configuration used for this example is given in Table 7. Note that,
in this case, three constants K1; K2; K3 are included that will be decoded using
f k./ D randInt.1; 10000/.

For h D 10 BRKGP found, after 67 generations, the expression

..R C ..R � 689/ � 689// � ...9151 � 4273/ � R/ C R//

which after being simplified is equivalent to Area D 3:1415933 R² and has
MAE D 0:00027997.

Table 5 BRKGP configuration for the SR-example 1

F D fC; �; �; �g p D 500

T D fxg pe D 100

h D 5; 10; 15 pm D 100

a D 2 �e D 0:85

t D h � .a � 1/ C 1 Fitness = mean absolute error (MAE)

Stopping criterion = 100 generations

Table 6 Dataset for
SR-example 2

R Area R Area

10 314:1592654 21 1385:44236

11 380:1327111 22 1520:530844

12 452:3893421 23 1661:902514

13 530:9291585 24 1809:557368

14 615:7521601 25 1963:495408

15 706:8583471 26 2123:716634

16 804:2477193 27 2290:221044

17 907:9202769 28 2463:00864

18 1017:87602 29 2642:079422

19 20;1256:637061 30 2827:433388
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Table 7 BRKGP configuration for the SR-example 2

F D fC; �; �; �g p D 500

T D fR; K1; K2; K3g pe D 100

f k./ D randInt.1; 10000/ pm D 100

h D 10; 15 �e D 0:85

a D 2 Fitness = mean absolute error (MAE)

t D h � .a � 1/ C 1 Stopping criterion = 100 generations

For h D 15 BRKGP found, after 82 generations, the expression

..R � ...R C R/ C R/ � ..476 C 9787/ � .6699 � 476//// � 9787/

which after being simplified is equivalent to Area D 3:1415939 R² and has
MAE D 0:00051594.

Note that, in both cases, the value of � was approximated to five decimals.

Conclusions

This chapter introduced biased random-key genetic programming, a novel meta-
heuristic for genetic programming. After introducing how programs are represented
using a linear Program-Expression representation, the chapter presents the head-tail
encoding and explains how the decoding of the chromosome can be accomplished.
The chapter concludes by illustrating how BRKGP can be applied to solve problems
using two symbolic regression examples.
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�Random-Key Genetic Algorithms
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Abstract

This chapter explores some stochastic local search heuristics that incorporate a
data mining procedure. The basic idea of using data mining inside a heuristic is to
obtain knowledge from previous iterations performed by a heuristic to guide the
search in next iterations. Patterns extracted from good quality solutions can be
used to guide the search, leading to a more effective exploration of the solution
space. This survey shows that memoryless heuristics may benefit from the use of
data mining by obtaining better solutions in smaller computational times. Also,
some results are revisited to demonstrate that even memory-based heuristics can
benefit from using data mining by reducing the computational time to achieve
good quality solutions.
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Introduction

Combinatorial optimization problems are defined based on an objective function
and on logical restrictions such that candidate solutions satisfying the restrictions are
called feasible solutions. The optimal solutions, based on maximizing or minimizing
the objective function, can be found among the feasible solutions. Many practically
relevant combinatorial optimization problems are NP-complete or NP-hard and
therefore, in general, are not solved efficiently.

So, one adopted option is to accept suboptimal solutions instead of trying to
find optimal solutions. Several computational approaches for getting suboptimal
or optimal solutions for hard combinatorial problems can be characterized as
search algorithms. The search algorithms iteratively generate and evaluate candidate
solutions. Despite that the complexity of time to find optimal solutions can grow
exponentially with the size of the instances for NP-hard problems, the evaluation
of candidate solutions can often be performed much more efficiently, i.e., in
polynomial time [29].

Construction heuristics can be formulated as search procedures, where partial
candidate solutions are iteratively extended to obtain complete good candidate
solutions aiming to optimize the objective function.

Moreover, local search algorithms begin with a complete candidate solution and
subsequently move from the current solution to a neighboring solution.

Many widely known and high-performance local search algorithms make use
of randomized choices in generating or selecting candidate solutions for a given
combinatorial problem instance. These algorithms are called stochastic local search
(or SLS) algorithms [29].

Metaheuristics are general purpose high-level procedures that guide basic heuris-
tics in order to explore the solution space more efficiently. Very well-known
metaheuristics such as simulated annealing, tabu search, GRASP, and ILS consist
of SLS methods and have been successfully used for many years in the context of
combinatorial optimization problems.

These metaheuristics are iterative processes, where a feasible candidate solution
is obtained in each iteration. Some of these metaheuristics, like GRASP and ILS,
are memoryless, i.e., to obtain a solution in one iteration, no information about the
candidate solutions obtained in previous iterations is used.

Otherwise, tabu search, scatter search, path relinking, and vocabulary building
are memory-based heuristics that incorporate special forms of memory by gener-
ating new solutions through the combination of high-quality solutions previously
found and stored in an elite set. These strategies were used to solve successfully
several combinatorial optimization problems [4, 15, 16].
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Data mining refers to the automatic extraction of knowledge from data [21,
52, 54, 56]. The extracted knowledge, expressed in terms of patterns, represents
important features of the data at hand. Hence, data mining provides a means to
better understand concepts implicit in raw data, which is fundamental in a decision-
making process.

There are some works in the literature that incorporates data mining process
in metaheuristics [31, 48]. The contribution of this chapter is to survey a set of
hybrid metaheuristics that we have previously developed, which incorporate a data
mining procedure to extract patterns from elite set solutions. The basic idea of
using data mining is to obtain knowledge from the previous iterations to guide the
search in next iterations. Patterns extracted from good quality solutions could be
used to guide the search, leading to a more effective exploration of the solution
space.

Ideas to extract good features from previously found solutions to guide future
search of the solution space have been successfully exploited by stochastic local
search heuristics. Lin and Kernighan [35] developed a multistart heuristic for
the traveling salesman problem, where they fix some links that occur in good
quality routes previously found by the algorithm. Fleurent and Glover [13] describe
multistart strategies to the problem of quadratic assignment, wherein, during the
construction process, the elements to be inserted into a solution are selected from an
elite set that has the best solutions generated so far. Heuristics based on evolutionary
algorithms [11] also try to maintain good characteristics of solutions found earlier by
selecting some of the parents with good fitness function. Lodi et al. [36] developed
an evolutionary heuristic for quadratic programming 0–1, where they present an
intensification strategy, used in a genetic algorithm, to set variables, that can have
their values fixed during all stages of the algorithm or only for a certain number of
steps.

The aim of the hybrid data mining proposal is to use more elaborated techniques
found in the data mining research area to search for good patterns extracted from a
set of high-quality solutions.

This survey shows that memoryless heuristics may benefit from the use of data
mining by obtaining better solutions in smaller computational times. Indeed, when
a data mining process is used with heuristics without memory, these heuristics
incorporate memory and better results are expected. Also, some revisited results
show that even heuristics using memory mechanisms can benefit from data mining
procedures by reducing the computational time to achieve good quality solu-
tions.

The goal of this chapter is to review some applications of data mining within
both memoryless and memory-based metaheuristics and survey the results obtained
by us until now. In section “Data Mining”, an overview of basic data mining theory
is outlined, and in section. “Strategies to Use Data Mining in Heuristics”, the
strategy adopted to combine metaheuristics with a data mining process is described.
In sections. “Memoryless Heuristics” and “Memory-Based Heuristics”, several
implementations for different applications that use memoryless heuristics and that
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use memory-based heuristics, respectively, along with corresponding computation
results, are reviewed and analyzed. Some concluding remarks and a discussion about
future work are presented in section “Conclusion”.

Data Mining

Data mining processes aim at discovering novel, interesting, and potentially useful
patterns and models, also referred as knowledge, from data. This knowledge
discovery has been applied in a large variety of fields, such as marketing, finance,
healthcare, education, and security. Independent of the application domain, data
mining techniques can be employed in two distinct scenarios: predictive and
descriptive. Predictive models are built in order to allow inferences and predictions
on the data domain. Descriptive patterns are mined to enable a deeper understanding
of the data at hand. Classification and regression models are examples of predictive
knowledge. Frequent itemsets, association rules, sequential patterns, and data
clusters are kinds of descriptive patterns.

This chapter describes and explores previously proposed hybrid metaheuristics
that incorporate a data mining process. The basic idea of this hybridization is that
patterns mined from a set of good quality solutions of a combinatorial problem
represent characteristics of these elite solutions. Then these extracted patterns can be
used to guide the search for better solutions, leading to a more effective exploration
of the search space. This is a kind of descriptive mining application, and, in all
hybrid metaheuristics explored here, the type of pattern used to characterize the
good features of the elite solutions was frequent itemset, which is defined as follows.

All data mining concepts used and reviewed in this section can be found in any
fundamental book of this field [21, 52, 54, 56]. Let I D fi1; i2; : : : ; ing be a set of
items from an application domain. Let D be a set of transactions (a transactional
database) defined over I , where each transaction t is a subset of I .t � I /.
Then, a nonempty subset X of I .X � I /, called itemset, holds in database D
with support s % if s % of the transactions in D contain X . The support of X is also
referred as sup.X/. Given a user-specified minimum support minsup, X is called
a frequent itemset if sup.X/ � minsup.

Market basket analysis is a typical application of this kind of pattern: a frequent
itemset represents a set of products that appears together in a significant number of
customers’ purchases. Frequent itemsets can reveal interesting correlations among
items within data.

As a general illustration, consider the following example. Let I D

fA; B; C; D; E; F; G; H g be a set of products. Let D be the database composed
of the following five purchase transactions: fA; C; D; Eg, fA; C; E; F g,
fB; E; F; G; H g, fA; B; C; E; G; H g, fA; E; H g. Suppose a minimum support
minsup of 0.6, i.e., the user wants to identify every set of products that occur
together in at least 60% of the database transactions. Considering these settings,
the frequent itemsets are fAg, fC g, fEg, fH g, fA; C g, fA; Eg, fC; Eg, fE; H g,
and fA; C; Eg since all of them have support greater or equal to 60%. For example,
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sup.fEg/ D 100%, sup.fA; Eg/ D 80%, and sup.fA; C; Eg/ D 60 %. The
itemset fB; E; Gg is not frequent since it appears in only 40% of the transactions,
which is less than the user minimum threshold. If minsup were 80%, there would
be only three frequent itemsets: fAg; fEg, and fA; Eg.

Since every subset of a frequent itemset is also frequent, in order to avoid
presenting the frequent itemsets and their frequent subsets, one could prefer to mine
only the maximal frequent itemsets. A frequent itemset X is maximal if none of its
supersets is frequent. In the example, considering minsup D 60%, there are two
maximal frequent itemsets: fE; H g; fA; C; Eg. With minsup D 80%, there is only
one: fA; Eg.

In order to illustrate how these concepts could be employed on combinatorial
optimization data, suppose that each transaction in the database D represents
a good solution of an optimization problem. For example, consider a packing
problem, where one has to pack a maximum number of elements (or a maximum
cost associated to the elements), respecting the limit of the pack and restrictions
regarding elements that cannot appear together in the pack. The first transaction
indicates that packing the elements A, C , D, and E leads to a good solution.

In this scenario, a frequent itemset mined from an elite set of solutions represents
characteristics of these suboptimal solutions. Considering minsup D 60%, the
frequent itemset fA; Eg indicates that the elements A and E are included in most
elite solutions (80%) and could be good candidates to be inserted when constructing
new solutions. The frequent itemset fA; C; Eg is not so strong, since its support is
60%; however, it has more elements and could lead to a faster construction of new
good solutions.

When incorporating this kind of data mining task into a metaheuristic, it is
important to guarantee the efficient extraction of the frequent itemsets – patterns – in
order to avoid overloading and making the metaheuristic slower. Next, the employed
data mining task will be defined, and the main proposed algorithms to solve it will
be indicated.

Given a transactional database D defined over I D fi1; i2; : : : ; ing and
a minimum support s, the frequent itemset mining (FIM) problem consists in
identifying every frequent itemset that holds in D , i.e., each set of items that occur
together in at least s % of the database transactions. In 1993, the FIM problem was
first introduced in [1], where the AIS algorithm was proposed to find all frequent
itemsets in the search space of 2n subsets of I .

In 1994, the well-known iterative Apriori algorithm was proposed in [2],
achieving significant improvements on the earlier strategy. Over the following
ten years, many Apriori-like algorithms had been proposed to efficiently mine
frequent itemsets [17]. Another competitive and important FIM strategy, which does
not follow the Apriori approach, is the FP-growth algorithm [22]. The FPmax*
strategy [19] implements the main ideas of the FP-growth to mine maximal frequent
itemsets.

For most combinatorial problems explored in this chapter, the solution can be
represented as a set of elements. Therefore, frequent itemsets, as well as maximal
frequent itemsets, were suitably adopted to represent patterns hidden in the elite
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set of solutions. The data mining modules inserted into the hybrid metaheuristics
that will be shown in the next sections were built based on the FPmax* algorithm
(available at http://fimi.cs.helsinki.fi).

Strategies to Use Data Mining in Heuristics

This section describes strategies used to incorporate a data mining process in
stochastic local search metaheuristics.

As described in [28, 29], given a (combinatorial) problem ˘ , a stochastic local
search algorithm for solving an arbitrary problem instance � 2 ˘ is defined by the
following components:

• The search space S.�/ of instance � , which is a set of candidate solutions s 2 S ;
• A set of (feasible) solutions S 0.�/ � S.�/;
• A neighborhood relation on S.�/; N .�/ � S.�/ � S.�/;
• An initialization procedure ini t_proc.�/ that draws an element from a prob-

abilistic function ini t.�/, which specifies a probability distribution over initial
search positions;

• A step procedure step_proc.�; s/ that draws an element from a probabilistic
function step.�/.s/, which maps each given position s onto a probability
distribution over its neighboring positions, for specifying the local search steps;

• A termination procedure term_proc.�; s/ which uses a terminate predicate T

which indicates the probability with which the search is to be terminated upon
reaching a specific point in the search space.

In Fig. 1, a pseudo-code for a stochastic local search for a minimization problem
is shown. In line 1, an initial solution is obtained using the probabilistic ini t

function, and from lines 3 to 10, an iterative process is performed that moves
the incumbent solution s through the search space trying to improve the objective
function f ./ until a termination predicate is achieved.

Fig. 1 Pseudo-code of the
SLS for a minimization
problem

procedure SLS Minimization(p ′ ∈ P ′, f (p
p

p
p

pp

p

′))
1. s ← init proc( ′);
2. best sol ← s;
3. while not term proc( ′,s) do
4. s ← step proc( ′,s);
7. if f ( ′,s)< f ( ′,best sol)
8. best sol ← s;
9. end if

10. end while
11. if best sol ∈ S ′( ′)
12. return best sol;
13. else
14. return ∅;
15. end if

http://fimi.cs.helsinki.fi
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procedure MS Heur Minimization(n iter, ′ ∈ ′, f ( ′))
1. f ( ′,best sol) ← ;
2. for it ← 1 to n iter do
3. s ← ∅

4. s ← construct sol(s, ′, f ( ′));
5. s ← local search(s, ′, f ( ′));
6. if f ( ′,s)< f ( ′,best sol)
7. best sol ← s;
8. end if
9. end for

10. if best sol ∈ S′( ′)
11. return best sol;
12. else
13. return ∅;
14. end if

p
p

p p
pp

p p

p

pP

Fig. 2 Pseudo-code of the multistart SLS heuristic for a minimization problem

Usually in constructive heuristics, the initial solution s obtained in line 1 is an
empty solution, and the step_proc procedure consists of using a function step that
generates neighbors by extending the initial solution and evaluating these neighbors
so that one of them is chosen to be part of the solution. The term_proc procedure
returns TRUE when a feasible solution is obtained.

In local search heuristics, a complete initial solution s is obtained in line 1, and
the step_proc procedure consists of using a function step that generates neighbors
by changing some attributes of the initial solution and evaluating these neighbors,
so that one of them is chosen to be the next incumbent solution. The term_proc

procedure may return TRUE when no better solution than the incumbent solution
is found.

Many times, stochastic local search metaheuristics are multistart methods where
several iterations are performed, and, in each iteration, a solution is built using
a constructive heuristic, and then a local search is executed until a termination
criterion is achieved. Figure 2 shows a pseudo-code for this kind of multistart
heuristics. In line 4, a solution is built, and, in line 5, a better solution is sought
in the neighborhood. The best solution is updated in line 7.

When using stochastic local search, the solutions obtained may be different in
each run of the algorithm, so multistart SLS metaheuristics are able to find different
solutions in each iteration.

So the basic concept of incorporating a data mining process in multistart SLS
metaheuristics is that patterns found in high-quality solutions obtained in earlier
iterations can be used to conduct and improve the search process.

Basically two strategies developed by us to use data mining are presented. In
the first one, called DM-MSH, the multistart heuristic (MSH) is divided in two
phases. The first one is called elite set generation phase. It consists in executing
some gen_eli te_i ter MSH iterations to obtain a set S of different solutions. The
d best solutions from S compose an elite set D .

Between the two phases, the data mining procedure is applied. It is responsible
for extracting a set of patterns P from the elite set D . The patterns to be mined
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are sets of elements that frequently appear in solutions in D , which characterizes a
frequent itemset mining application. A frequent itemset mined from D with support
s % represents a set of elements that occur in s % of the elite solutions.

Next, the second phase, called hybrid phase, is performed. In this phase, a
number of slightly different MSH iterations are executed. In these iterations, the
construction and/or local search heuristics may use a mined pattern p 2 P . For
example, in constructive heuristics, all elements of a pattern p may be inserted
into the partial solution, from which a complete solution will be built executing the
standard construction procedure. This way, all constructed solutions will contain
the elements of a pattern p 2 P . Likewise, local search procedures may use the
elements of pattern p by requiring that only neighbors that contain elements from
pattern p should be evaluated.

The pseudo-code of DM-MSH is illustrated in Fig. 3. In line 1, the elite set D
is initialized with an empty set. The loop from line 3 to line 11 corresponds to
the elite set generation phase, in which gen_eli te_i ter iterations of the multistart
heuristic are performed. The original construction method is executed in line 5,
having as input an empty solution that will be constructed. Then a local search
method is performed in line 6. The elite set D is updated in line 7. In line 8, it is
checked whether the best solution should be updated, which is done in line 9. The
data mining procedure extracts the set of patterns P from D in line 12. The loop

Fig. 3 Pseudo-code of
DM-MSH procedure DM MSH(n iter, ′ ∈ ′, f ( ′))

1. ← ∅;
2. f ( ′,best sol) ← ;
3. for it ← 1 to gen elite iter do
4. s ← ∅

5. s ← construct sol(s, ′, f ( ′));
6. s ← local search(s, ′, f ( ′));
7. UpdateElite( , s);
8. if f ( ′,s)< f ( ′,best sol)
9. best sol ← s;

10. end if
11. end for
12. ← Mine( );
13. p ← SelectPattern( );
14. for it ← gen elite iter to n iter do
15. s ← ∅;
16. s ← dm construct sol(p,s, ′, f ( ′));
17. s ← dm local search(p,s, ′, f ( ′));
18. if f ( ′,s)< f ( ′,best sol)
19. best sol ← s;
20. end if
21. p ← SelectPattern( );
22. end for;
23. if best sol ∈ S′( ′)
24. return best sol;
25. else
26. return ∅;
27. end if

p p

p

p p
pp

p

p p

p

p
p p

p

p

P
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from line 14 to line 22 corresponds to the hybrid phase. Each iteration is based on a
pattern p 2 P . This pattern p is initialized in line 13. The construction procedure
that may use data mining is performed in line 16. In line 17, the local search that
may use data mining is executed. From lines 18 through 20 the best solution is
updated. In line 21, another pattern is chosen to be used in the next iteration. The
best solution is returned in line 24.

In DM-MSH, the data mining procedure is executed just once. Although
satisfactory results were obtained with this strategy, a second strategy was developed
called MDM-MSH to attempt to further improve the results. The main ideas of this
strategy are to mine more than once and as soon as the elite set is stable and good
enough to be mined. The mining process will be executed (a) as soon as the elite
set becomes stable which means that no change in the elite set occurs throughout
a given number of iterations and (b) whenever the elite set has been changed and
again has become stable.

Figure 4 shows the pseudo-code of MDM-MSH. The loop from line 4 to 13
corresponds to the first elite set generation phase, in which MSH iterations are

Fig. 4 Pseudo-code of
MDM-MSH procedure MDM MSH(n iter, ′ ∈ ′, f ( ′))

1. ← ∅;
2. f ( ′,best sol) ← ;
3. it ← 0;
4. repeat
5. s ← ∅

6. s ← construct sol(s, ′, f ( ′));
7. s ← local search(s, ′, f ( ′));
8. UpdateElite( , s);
9. if f ( ′,s)< f ( ′,best sol)

10. best sol ← s;
11. end if
12. it ← it+1;
13. until elite set is ready or it = n iter
14. while it < n iter do
15. if elite set is ready
16. ← Mine( );
17. end if
18. p ← SelectPattern( );
19. s ← ∅;
20. s ← dm construct sol(p,s, ′, f ( ′));
21. s ← dm local search(p,s, ′, f ( ′));
22. if f ( ′,s)< f ( ′,best sol)
23. best sol ← s;
24. end if
25. UpdateElite( , s);
26. it ← it+1;
27. end while;
28. if best sol ∈ S′( ′)
29. return best sol;
30. else
31. return ∅;
32. end if
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performed until the elite set becomes ready to be mined or the total number of
iterations is executed. Next, in the loop from line 14 to 27, whenever the elite set
is ready, the data mining procedure is executed in line 16. In line 18, a pattern is
selected. Then the adapted construction is performed in line 20, and, in line 21, the
adapted local search is executed. If a better solution is found, the best solution is
updated in line 23. After the execution of all iterations, the best solution is returned
in line 29.

One important characteristic of SLS metaheuristics is the level of intelligence
used to exploit memory during its execution. Some metaheuristics use explicit
designs for recording past elements and use this information in a strategic way.
Based on the explicit use of memory, metaheuristics can be classified as memoryless
or memory-based methods. Metaheuristics such as greedy randomized adaptive
search procedure (GRASP) and iterated local search (ILS) do not incorporate the
explicit use of memory structures and are classified as memoryless heuristic. Tabu
search (TS) and scatter search (SS) are memory-oriented methods in which past
choices are used and are classified as memory-based heuristics [8].

The next two sections show that inserting data mining to memoryless methods
was able to improve the quality and computational time of the original heuristics and
that inserting data mining into memory-based heuristics improved computational
time of the original heuristic preserving its quality.

Memoryless Heuristics

This section presents how data mining was used with some memoryless heuristics.
First, the integration of data mining with a greedy randomized adaptive search
procedure (GRASP) developed to solve the server replication for reliable multicast
problem is described. The solutions of this problem are unordered set of elements.

Then another GRASP created to solve the traveling salesman problem with
pickup and delivery is presented. This problem has solutions that are ordered set
of elements, which required an approach that was different from the one employed
in the first problem. In both problems, patterns were used in the construction phase.

Initially, some iterations of the original GRASP are performed, and an elite set
with some good quality solutions is obtained. Then a data mining procedure extracts
some patterns from the elite set, and some elements from these patterns are fixed as
initial elements of a solution in the construction phase. The computational results
showed that using data mining improved the results related to both the quality and
computational time.

Finally, the results obtained by using data mining with an iterated local search
(ILS) heuristic for the set covering with pairs problem are showed. In this problem,
also some original ILS iterations were performed, and an elite set with some good
solutions was obtained. The data mining process extracted some patterns from the
elite set whose elements were used in the next ILS iterations within just the local
search procedure. The results showed that in this case the quality of the solution
remained the same, but the processing time was reduced.
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Hybrid DM-GRASP

GRASP [12] was the first SLS metaheuristic to be hybridized with data mining. It
is a multistart heuristic which performs several iterations and each iteration consists
of two phases: construction and local search. A feasible solution is obtained in the
construction phase, which starts from an empty solution and builds a solution by
performing iterations to insert new elements into the solution. In each iteration,
an element is randomly selected from a restricted candidate list (RCL) which is
obtained from a candidate list (CL). This CL is a list with all candidates ordered by
a greedy evaluation function, and the RCL is obtained by picking the top elements
from CL. A real value parameter ˛ 2 Œ0; 1� determines the size of RCL: if ˛ D 0

the RCL contains just the first element from CL and if ˛ D 1 the RCL contains all
elements from CL.

After the construction phase, the neighborhood of the constructed solution is
explored by a local search in order to find a better solution. The result is the best
solution found over all iterations.

The hybridization of GRASP with a data mining process was first introduced and
applied to the set packing problem [47] and to the maximum diversity problem [49],
and the results were equally successful.

In both applications, the data mining technique was applied in the construction
phase. The implementations used for these problems were divided in two parts. In
the first one, a number of GRASP iterations were executed, and the best solutions
were stored in an elite set. Then, a data mining algorithm was used to extract patterns
from this set of suboptimal solutions. In the second part, the GRASP iterations used
the mined patterns just to construct new solutions. In this strategy, the data mining
process was performed only once, after exactly half of the GRASP iterations.

New versions of the DM-GRASP metaheuristic were explored to experiment a
single activation in different points of the GRASP execution and also multiple and
adaptive executions of the data mining process during the GRASP execution.

These proposals were evaluated using the server replication for reliable multicast
problem, which consists in selecting, from a set of nodes in a computer network,
those which should act as replicated servers to provide a reliable and efficient
multicast service, which minimizes the transmission cost.

The pseudo-code of the DM-GRASP is illustrated in Fig. 5. In lines 1 and 2, the
cost of the best solution and the elite set are initialized. The loop from line 3 to
line 10 corresponds to the elite set generation phase, in which original GRASP is
performed for n iterations. The original construction method is executed in line 4,
followed by the local search method in line 5. The elite set, composed of d solutions,
is updated in line 6. In line 7, it is checked whether the best solution should be
updated, which is done in line 8. In line 11, the data mining procedure extracts p

patterns from the elite set, which are inserted in decreasing order of pattern size in
the set of patterns pat terns_set . The loop from line 12 to line 19 corresponds to
the hybrid phase. Each iteration is based on a pattern selected in line 13 from the set
of patterns in round-robin way. The adapted construction procedure is performed in
line 14, using the selected pattern as a starting point. In line 15, the same local search
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procedure DM GRASP()
1. Cost(best sol) ← ;
2. elite set ← ;0/
3. for it ← 1 to n do
4. sol ←Construction();
5. sol ← Local Search(sol);
6. UpdateElite(elite set, sol, d);
7. ifCost(sol) <Cost(best sol)
8. best sol ← sol;
9. end if
10. end for
11. patterns set ← Mine(elite set);
12. for it ← 1 to n do
13. pattern← SelectNextLargestPattern(patterns set);
14. sol ← Adapted Construction(pattern);
15. sol ← Local Search(sol);
16. if Cost(sol) <Cost(best sol)
17. best sol ← sol;
18. end if
19. end for;
20. return best sol;

Fig. 5 Pseudo-code of the DM-GRASP

performed in line 5 is executed. From line 16 to 18 the best solution is updated. The
best solution is returned in line 20.

Multicast communication is the delivery of information to many receivers
simultaneously. The server replication approach was used for this problem, in which
data are replicated at some of the multicast-capable relaying hosts and each of them
is responsible by the retransmission of packets to receivers of its group.

The developed DM-GRASP was an extension of the GRASP implementation
proposed in [34]. The solution of the problem is a set of M multicast-capable
relaying hosts that will be the replicated servers. The optimal solution is the one
that minimizes the cost of sending the packets in the network.

In the construction phase, relaying hosts are added to the solution one by one.
In the local search phase, the neighborhood structure considered is based on the 1-
exchange procedure. Every solution that can be obtained by replacing one element
of a solution s is part of its neighborhood. The best solution of the neighborhood
becomes the starting point of the next local search iteration.

In the context of the problem addressed, a pattern of suboptimal solutions is a set
of relaying hosts that frequently appears in solutions of the elite set. The algorithm
FPmax* [19] was used to extract the maximal patterns from the elite set.

Computational Results
In order to evaluate the proposed strategies, five simulated multicast scenarios were
generated in [39]. Three of them represent virtual conferences and two represent
broadcast transmissions.
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Both GRASP and DM-GRASP were run ten times with a different random seed
in each run. The GRASP parameter ˛ was set to 0:7, as used in [34]. Each run
consisted of 500 iterations. In the DM-GRASP strategy, the data mining process is
performed only once, after exactly half the iterations. The elite set generation phase
took 250 iterations and the hybrid phase took the rest. The size of the elite set, from
which the patterns are mined, was set to 10. A set of nodes was considered a pattern
if it was present in at least two of the elite solutions. The ten largest patterns found
were inserted in the pattern set.

The results related to the quality of the obtained solutions were calculated based
on the deviation value computed as follows:

dev D
.HeuristicCost � BestKnownCost/

BestKnownCost
� 100; (1)

where HeuristicCost is the (best or average) cost obtained by the heuristic technique
and the BestKnownCost is the best known value for the working instance.

For the 20 instances, DM-GRASP found 12 better results for best deviation, and
GRASP and DM-GRASP found 8 equal results. DM-GRASP found 12 better results
for average deviation, GRASP found 3, and GRASP and DM-GRASP found the
same result for 5 instances. The average value of the deviation value of the best
cost obtained by GRASP was 0.31 and by DM-GRASP was 0.08. And the average
value of the deviation value of the average cost obtained by GRASP was 0.42 and
by DM-GRASP was 0.21.

Figures 6 and 7 present the behavior of the construction and local search phases,
in terms of the cost values obtained, by GRASP and DM-GRASP throughout the
execution of 500 iterations, for a specific instance (BROAD1, m D 75, seed D 10).

Since the server replication is a minimization problem, the figures show that the
local search always reduce the cost of the solution obtained by the construction
phase. In Fig. 6, GRASP presents the same behavior for both construction and local
search during all iterations. In Fig. 7, after iteration 250, when the data mining
procedure is executed in the DM-GRASP strategy, there is an improvement in the
quality of the solutions reached by the construction and local search phases.

Table 1 presents the percentage difference from the DM-GRASP average
computational time to the GRASP average computational time for each group of
instances. The execution times for DM-GRASP are considerably smaller than those
for GRASP.

Figures 8 and 9 show the behavior of the construction and local search phases, in
terms of the time used in each phase, by GRASP and DM-GRASP throughout the
execution of 500 iterations, for a specific instance (BROAD1; m D 75; seed D 10).

Figure 8 shows that when executing the GRASP heuristic, the behavior of both
construction and local search is the same during all iterations. Figure 9 presents the
behavior when using the DM-GRASP strategy. After iteration 250, the time spent
in both construction and local search phases reduces considerably.

There are two main reasons for the faster behavior of DM-GRASP. First, the
computational effort of the adapted construction phase is smaller than the traditional
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Fig. 6 One execution of GRASP

construction, since the elements from a pattern are initially fixed in the solution.
Then a smaller number of elements must be processed and inserted into the
constructed solution. Second, the use of patterns leads to the construction of better
solutions which are the input for the local search. This incurs in less computational
effort taken to converge to a local optimal solution.

Next, the DM-80 strategy was developed, which executed the data mining
process closer to the last iterations, reserving 80% of the iterations to the elite set
generation. The objective of changing the point where the data mining occurs is to
evaluate if it is better to mine only near the end (DM-80), when the elite set elements
would have probably achieved higher quality.

Then, the DM-3X strategy was developed to execute the data mining algorithm
three times: after the execution of 20%, 50%, and 80% of the total number of
iterations. The elite set generation phase is performed until 20% of the total number
of iterations is executed. After that, the hybrid phase starts. However, in this strategy,
the elite set continues to be updated, and the data mining process is performed two
more times.

The results obtained for both versions (DM-80 and DM-3X) in [39] were not
so different concerning quality solution, so it was not possible to conclude how to
define the best fixed moment to activate the data mining process. So, an investigation
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Fig. 7 One execution of DM-GRASP

was carried out about using a dynamic way to set the moment when the data mining
process should be performed.

The main idea of this proposal, called Multi DM-GRASP (MDM-GRASP), was
to execute the mining process: (a) as soon as the elite set becomes stable and (b)
whenever the elite set has been changed and again has become stable. This idea
originated the MDM-MSH which was already described in section “Strategies to
Use Data Mining in Heuristics”.

The pseudo-code of the Multi DM-GRASP is illustrated in Fig. 10. In lines 1
and 2, the best solution and the elite set are initialized. The loop from line 3
to 10 corresponds to the first elite set generation phase, in which original GRASP
iterations are performed until the elite set becomes ready to be mined or the
termination criterion – the total number of iterations – becomes true. To determine
that the elite set is ready to be mined, the procedure checks if the set has not being
changed for a specific percentage of the total number of iterations after its last
update. Next, in the loop from line 11 to 22, whenever the elite set is ready, the
data mining procedure is executed, and a new pattern set is created in line 13, and,
from line 15 to 21, a hybrid iteration is executed. In line 15, a pattern is selected
from the patterns set. Then the adapted construction is performed in line 16, using
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Table 1 Comparing
computational time of
GRASP and DM-GRASP

Instance % time DM-GRASP

BROAD1 43.75

BROAD2 46.75

CONF1 29.00

CONF2 30.50

CONF3 37.75

Fig. 8 Computational time spent in each phase of GRASP

the selected pattern as a starting point. In line 17, the local search is executed. From
line 19 to 21, the best solution is updated. The best solution is returned in line 23.

The dynamic strategy awaits a given amount of iterations during which there are
no changes in the elite set and only then performs the data mining process. Exper-
iments were performed using three different values for the number of iterations to
wait: 5%, 10%, and 20% of the total number of iterations, which are called MDM-
D5, MDM-D10, and MDM-D20, respectively.

The results obtained in [39] showed that the MDM-D5 strategy presented the
best behavior related to solutiont’s quality and computational time.

Table 2 shows the percentage difference from DM-80 and MDM-D5 average
computational times to GRASP average computational time, for each group of
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Fig. 9 Computational time spent in each phase of DM-GRASP

instances. It can be seen that the MDM-D5 was faster than GRASP and DM-80
for all instances.

Another experiment was performed to evaluate the time required for GRASP,
DM-80, and MDM-D5 to achieve a target solution value.

Figures 11 and 12 show time-to-target plots (TTT) [3] used to analyze the
behavior of randomized algorithms. A TTT plot is generated by executing an
algorithm several times and measuring the time required to reach a solution at least
as good as a target solution.

GRASP, DM-80, and MDM-D5 were executed 100 times each (with different
random seeds), until a target solution was reached for a specific instance. The
instance BROAD1, m D 25, was used for test cases, and two targets were analyzed.
An easy target (value 2820) was selected, which was a value achieved by the three
strategies in the majority of the previous performed executions, and a more difficult
one (value 2818.92) was used, which was the best value obtained by the GRASP for
the instance.

The i -th sorted running time ti is associated with a probability pi D .i �

1=2/=100, and the points zi D .ti ; pi /, for i D 1; : : : ; 100 are plotted. Each plotted
point will then indicate the probability (vertical axis) for the strategy to achieve the
target solution in the indicated time (horizontal axis).
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procedure MDM GRASP()
1. Cost(best sol) ← ;
2. elite set ← ;0/
3. repeat
4. sol ←Construction();
5. sol ← Local Search(sol);
6. UpdateElite(elite set, sol, d);
7. if Cost(sol) <Cost(best sol)
8. best sol ← sol;
9. end if
10. until elite set is ready or end criterion;
11. while not end criterion;
12. if elite set is ready
13. patterns set ← Mine(elite set);
14. end if
15. pattern← SelectNextLargestPattern(patterns set);
16. sol ← Adapted Construction(pattern);
17. sol ← Local Search(sol);
18. UpdateElite(elite set, sol, d);
19. if Cost(sol) <Cost(best sol)
20. best sol ← sol;
21. end if
22. end while;
23. return best sol;

Fig. 10 Pseudo-code of the Multi DM-GRASP

Table 2 Comparing DM-80
and MDM-D5 computational
time related to GRASP
computational time

Instance % time DM-80 % time MDM-D5

BROAD1 23.75 53.75

BROAD2 23.25 55.75

CONF1 12.25 48.25

CONF2 10.25 49.25

CONF3 17.75 55.25

For the easy target, the behaviors of the three strategies were similar. For difficult
targets, the probability for MDM-D5 to reach the target in less time is always bigger
than the probability for DM-80 and GRASP. The plots in Fig. 12 indicate that MDM-
D5 is able to reach difficult solutions much faster than the other two strategies,
demonstrating the robustness of this strategy.

In this evaluation, the superiority of the data mining strategies was confirmed,
with a better behavior for the MDM-D5.
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Fig. 11 Time-to-target plot for an easy target for instance BROAD1, m D 25

1

0.8

0.6

0.4

cu
m

ul
at

iv
e 

pr
ob

ab
ili

ty

0.2

0
0 200 400

time to target solution

GRASP
DM-80

MDM-D5

600 800 1000 1200

Fig. 12 Time-to-target plot for a difficult target for instance BROAD1, m D 25
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Hybrid DM-GRASP+VND

The hybrid DM-GRASP+VND heuristic, proposed in [20], combined a data mining
technique with an existing heuristic for the one-commodity pickup and delivery
traveling salesman problem (1-PDTSP). 1-PDTSP was first presented in [26] and
is a generalization of the traveling salesman problem (TSP) because each customer
has a certain demand by the distributed product. Let G D .V; E/ be a connected
undirected graph, where V is the set of nodes representing customers and E is the set
of edges and a vehicle with limited capacity Q. Given a nonnegative weight function
w W E ! RC associated with the edges, the 1-PDTSP consists in finding a path of
shortest cost going through all customers, respecting the constraints of demand and
of vehicle capacity. 1-PDTSP is NP-hard and has some practical applications in the
repositioning scenario.

The hybrid GRASP+VND heuristic presented in [27] has the same structure of
a classical GRASP metaheuristic. This strategy consists of a main loop where the
termination criterion is the number of iterations. Each iteration has a construction
phase and a local search procedure. After all iterations, a post-optimization phase is
run, using another local search procedure, trying to improve the best overall solution
found. Both local search approaches are based on the VND procedure.

In the construction phase, one customer is selected at random to be the depot.
After that, customers are inserted iteratively at the end of the path as follows. In each
iteration, customers that can be feasibly inserted into the solution under construction
are sorted by their distance to the last customer in the solution, and only the first l

elements will be part of the restricted candidate list (RCL). If there is no customer
that can be feasibly added to the path, the RCL is built by the first l closest customers
to the one at the end of the current solution. Finally, one customer of the RCL is
chosen at random and inserted at the end of the path. The construction ends when
all customers are in the solution.

The local search phase, named VND1, is based on the variable neighborhood
descent procedure [38], which consists in applying multiple neighborhood structures
to a given solution in a predefined order, and whenever the current solution is
improved, the procedure returns to the first neighborhood structure. The VND1 is
made by two classic moves, 2-opt and 3-opt, modified to accept infeasible solutions
as a start point. These moves are applied in the following order: first, the 2-opt
heuristic, which removes two nonadjacent edges and inserts them in another way
to build a new route, and, next, the 3-opt, which is almost the same as the previous
one, but handling three edges.

After the end of the main loop, the post-optimization phase is performed with
another VND procedure, named VND2, which is applied to the best solution
found so far. The VND2 consists of two other neighborhood structures based on
the reinsertion move, also well-known for TSP. This move is divided into two
smaller structures, applied in this order: first, the reinsertion forward, that removes
a customer and reinserts it in a position after its original position, and secondly,
reinsertion backward, similar to the first one but the removed customer is reinserted
in a previous position.
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When the solution of the problems is represented by a subset of elements,
without setting any ordering, the application of the FIM technique is directly and
successfully applied. However, in the case of the 1-PDTSP, the order of the elements
is essential. A solution for the 1-PDTSP is defined by a sequence of visit to the
elements, and, hence, an intermediate step must be performed in order to apply the
FIM technique.

This transformation is explained as follows: for each pair of consecutive
customers (i and j ) from a given solution, an arc .i; j / is generated, map-
ping each solution to a set of arcs. For example, considering a solution s D

f5; 2; 7; 4; 1; 6; 3; 5g represented by this sequence of elements, s can be mapped as
smap D fa5!2; a2!7; a7!4; a4!1, a1!6, a6!3, a3!5g, where a5!2 is the arc from
5 to 2 and so on. Thereby, the sequence of s can be mapped to smap , which is a set,
without losing the order of elements. Once all the solutions were transformed into
sets, it is possible to apply the FIM technique.

The algorithm in Fig. 13 illustrates the DM-GRASP+VND approach [20] for
the 1-PDTSP. DM-GRASP+VND is divided into two main phases. The first
one is called the elite set generation phase and consists of executing n original
GRASP+VND iterations which generate a set of different solutions, storing the
d best solutions in the elite set (lines 3–11). After this, the transformation step is
called. Afterwards, the data mining technique is applied and the t largest patterns
are chosen (line 12).

procedure DM_+GRASP+VND(n,d,t)
1. f ∗ ← ;
2. M ← ;0/
3. for k = 1, . . . ,n do
4. x ← GreedyRandomizedConstruction1 - PDTSP;
5. x ←VND1(s);
6. UpdateElite(M, x, d);
7. if f (x)< f ∗ then
8. x∗ ← x;
9. f ∗ ← f (x);
10. end if;
11. end for;
12. patterns set ← Mine(M, t);
13. for k = 1, . . . ,n do
14. pattern ← SelectNextLargestPattern(patterns set);
15. x ← AdaptedGreedyRandomizedConstruction1-PDTSP( pattern);
16. x ←VND1(x);
17. if f (x) < f ∗ then
18. x∗ ← x;
19. f ∗ ← f (x);
20. end if
21. end for;
22. x∗ ←VND2(x∗);
23. return x∗;

Fig. 13 Pseudo-code of the hybrid DM-GRASP+VND for the 1-PDTSP
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A mined pattern is made of a set of arcs that frequently appeared in the elite
set, i.e., with support greater or equal to the minimum support. Inside a pattern, an
arc .i; j / has an origin costumer i and a destination costumer j . Moreover, one
can find that, in the same pattern, two or more arcs may be consecutive and can be
easily connected to set up a bigger route segment, named path segment (PS). This
way, each pattern is made of one or more PS.

The second phase of the DM-GRASP+VND consists of executing other n

iterations, replacing the original construction phase by an adapted construction
which uses the patterns extracted in the first phase to build new solutions (lines 13–
21). In line 22, the post-optimization is called. After the execution of all iterations,
the best solution is returned in line 23.

Computational Results
The computational results obtained for GRASP+VND and DM-GRASP+VND
strategies were compared in [20].

The set of instances used for the 1-PDTSP is provided by [27] which contains
a few randomly generated instances from 100 to 500 customers, using a vehicle
capacity of 10. These instances are the biggest in terms of number of customers
and hardest in terms of vehicle capacity. The maximum number of iterations n, the
elite set size d , the minimum support value, the number of patterns extracted t , and
the number of reserved iterations to build the elite set are, respectively, 200, 10,
20%, 10, e 100. With the exception of the number of iterations, which was chosen
according to the original parameter in [27], the others were defined based on the
reports made in [40]. Each strategy was run ten times with a different random seed
in each run.

In Table 3, the results for the set of difficult instances are shown. The first column
shows the instance identifier. The second, third, and fourth columns have the best
cost values, the average cost, and the average execution time (in seconds) obtained
for GRASP+VND. The fifth, sixth, and seventh columns report the percentage
difference (Diff %) of the hybrid DM-GRASP+VND over the GRASP+VND for
each criteria. The percentage difference is defined as follows:

Diff % D
Hybrid DM-Heuristic � GRASP+VND

GRASP+VND

The intermediate rows show the partial averages of the percentage differences
for each group of the same size instances, and the last row of the table presents
the overall average. The smallest values considering the best solution, the average
solution, and the average time, i.e., the best results among them, are boldfaced.

The results shown in Table 3 point out that the proposed DM-GRASP+VND
method produced better solutions in less computational time for almost all in-
stances. Only in 5 out of 50 instances, the DM-GRASP+VND did not outperform
GRASP+VND in terms of best solution found, giving an overall percentage
difference of 1.46% and being on average 30.63% faster than the original method. In
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Table 3 Computational results for difficult instances

Instances

GRASP+VND DM-GRASP+VND

Best Average Average Diff % Diff % Diff %
solution solution time (s) best average time

n100q10A 12369 12514:4 4:01 �3:67 �1:11 �25:98

n100q10B 13668 13885:7 3:86 �0:53 �0:45 �28:07

n100q10C 14619 14810:8 4:01 �2:11 �1:40 �28:92

n100q10D 14806 14993:4 4:15 �0:95 �1:47 �24:76

n100q10E 12594 12819:7 3:94 �4:57 �1:81 �33:27

n100q10F 12082 12297:2 3:57 �1:58 �1:40 �25:24

n100q10G 12344 12623:4 3:84 �1:36 �1:12 �29:56

n100q10H 13405 13590:7 3:72 �0:32 �0:96 �27:93

n100q10I 14512 14715:9 3:74 0:01 �0:12 �30:58

n100q10J 13700 13992:0 4:00 0:09 �0:62 �25:28

Group Average �1:50 �1:05 �27:96

n200q10A 18707 19053:1 34:34 �2:07 �1:72 �30:10

n200q10B 19046 19406:7 33:27 �1:87 �0:69 �34:18

n200q10C 17445 17740:2 37:19 �0:09 �0:62 �26:17

n200q10D 22428 22772:4 33:65 �1:70 �1:09 �32:58

n200q10E 20409 20738:2 36:77 �0:42 �0:47 �33:02

n200q10F 22483 22709:4 37:10 �0:84 �0:41 �26:63

n200q10G 18585 18855:3 34:72 �2:36 �0:64 �37:16

n200q10H 22165 22588:2 39:85 �1:16 �1:06 �33:12

n200q10I 19533 19859:3 34:22 �0:88 �1:79 �33:47

n200q10J 20179 20471:6 32:80 �0:83 �1:11 �29:42

Group Average �1:22 �0:96 �31:59

n300q10A 24942 25148:1 136:01 �2:21 �1:63 �32:23

n300q10B 24413 24802:3 133:15 �0:27 �0:84 �32:68

n300q10C 23212 23418:2 142:24 �1:61 �1:06 �34:69

n300q10D 27080 27614:3 147:46 �2:79 �1:82 �32:74

n300q10E 28643 28914:2 147:16 �2:31 �1:69 �32:11

n300q10F 25843 26213:9 143:07 �0:97 �1:22 �24:17

n300q10G 25631 25814:5 144:66 �2:05 �1:55 �24:86

n300q10H 23590 23795:3 138:41 �1:89 �1:19 �32:79

n300q10I 26018 26358:4 136:85 �2:21 �1:49 �31:02

n300q10J 24050 24466:0 140:90 �1:01 �1:34 �29:84

Group Average �1:73 �1:38 �30:71

n400q10A 33087 33266:8 393:04 �2:77 �1:94 �28:20

n400q10B 26677 26797:2 347:47 �2:14 �1:5 �29:01

n400q10C 30394 30682:2 399:14 �1:83 �1:46 �32:59

n400q10D 25814 26267:5 400:79 �2:03 �1:97 �33:98

n400q10E 26795 27313:9 355:53 �1:50 �1:79 �26:86

n400q10F 28107 28910:0 361:85 0:29 �1:28 �29:19

(continued)
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Table 3 (continued)

Instances

GRASP+VND DM-GRASP+VND

Best Average Average Diff % Diff % Diff %
solution solution time (s) best average time

n400q10G 25697 26220:6 398:57 �2:27 �2:78 �29:88

n400q10H 27158 27773:1 393:40 �1:27 �1:93 �29:20

n400q10I 30115 30898:7 387:77 0:31 �1:13 �31:95

n400q10J 27655 28059:0 383:00 �2:65 �1:86 �30:00

Group Average �1:59 �1:76 �30:08

n500q10A 29874 30661:4 825:94 �1:06 �1:35 �29:82

n500q10B 28559 29042:9 846:08 �1:07 �1:58 �32:18

n500q10C 32360 33162:5 867:24 �0:91 �1:79 �33:36

n500q10D 32750 33074:3 863:71 �1:93 �1:78 �31:23

n500q10E 32298 32667:1 881:04 �1:84 �1:24 �32:09

n500q10F 30856 31354:6 813:26 �1:37 �1:16 �37:12

n500q10G 28879 29123:4 885:22 �1:81 �1:65 �32:48

n500q10H 38579 39023:5 849:81 �1:69 �1:72 �29:80

n500q10I 32718 33217:7 858:72 �1:19 �1:79 �36:28

n500q10J 32407 33131:7 873:12 0:38 �1:24 �33:94

Group Average �1:25 �1:53 �32:83

Overall Average �1:46 �1:34 �30:63

terms of average quality of the solution, the average percentage difference between
these heuristics was 1.34%.

The two main reasons for the faster behavior of the hybrid data mining
approaches are the same of the previous application describe in section “Hybrid
DM-GRASP”: the adapted construction is faster than the original one, and the
quality of the solutions constructed after the data mining process is better than that
of the original construction causing less effort for local search.

Figures 14 and 15 illustrate the behavior of the construction and local search
phases, for both GRASP+VND and DM-GRASP+VND, in terms of the solution
cost values obtained, along the execution of 1000 iterations for the n500q10G
instance with a specific random seed. The behavior is the same as the one presented
in section “Hybrid DM-GRASP”. In Fig. 14, the GRASP+VND heuristic behaves
similarly throughout the iterations. Furthermore, both strategies (see Fig. 15) have
exactly the same behavior until the 500th iteration, where the data mining procedure
is done. From this point on, the quality of the solutions obtained by DM-
GRASP+VND, both in construction and local search procedures, is improved.

Figure 16 presents a comparison between these approaches, based on the time-to-
target plots (TTT-plots) [3], which were used to analyze the behavior of algorithms
in section “Hybrid DM-GRASP”. The instance n500q10G was used, with the target
value equal to 29123, and each strategy was run 100 times (with different random
seeds) until the target solution cost value was reached for a specific instance.
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Fig. 14 One execution of GRASP+VND for instance n500q10G

Fig. 15 One execution of DM-GRASP+VND for instance n500q10G

It is possible to observe that the data mining strategy outperformed the original
GRASP+VND. For example, the cumulative probability for DM-GRASP+VND to
find the prefixed target in 1000 s is almost 100%, while the same probability for the
original GRASP+VND is of about 55%.

Hybrid DM-ILS

This section shows the results obtained when applying data mining to another SLS
metaheuristic named ILS.
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Fig. 16 Time-to-target plot for an intermediate target for instance n500q10G

The ILS is a metaheuristic method for obtaining solutions to combinatorial
optimization problems that has been used with considerable success in many
computationally intractable problem [37].

This metaheuristic constructs an initial solution and performs an iterative process
where, in each iteration, a perturbation is applied to the incumbent solution and a
local search is performed starting from the perturbed solution. An initial solution is
obtained by a constructive algorithm, and a solution of better quality is searched in
its neighborhood. Then, while a stopping criterion is not satisfied, at each iteration, a
perturbation is applied in the current solution, and then its neighborhood is explored
by a local search algorithm. If the acceptance criterion is satisfied, the solution
obtained after the local search step becomes the current solution.

The ILS heuristic developed in [18] for the set covering with pairs problem
(SCPP) achieved good performance in both quality of solution and computational
time. So data mining was used with this heuristic to verify if the results obtained by
an ILS heuristic with good performance could be improved.

The SCPP has been defined in [25] as a generalization of the set covering
problem, known to be NP-hard. In the SCPP, the elements have to be covered by
specific pairs of objects, instead of a single object.

The problem of finding a minimum sized set of monitoring vertices at which to
place equipment to allow the estimation rates for all hop-on and hop-off paths was
also modeled as a SCPP in [7].

The SCPP can be formally defined using a coverage function. Let U D

fu1; � � � ; ung be a ground set of elements to be covered, and let A D fa1; � � � ; amg

be a set of objects, where each object ai 2 A has a nonnegative cost ci . The cover



3 Data Mining in Stochastic Local Search 65

function C W A � A ! 2U specifies, for each pair of objects fai ; aj g � A, the
subset of elements from U which is covered by this pair. The SCPP aims to find
a collection of objects S � A such that

S
fi;j g�S C .i; j / D U and

P
i2S ci are

minimized.
Following, the construction and local search procedures, the perturbation strat-

egy, and the stopping and acceptance criteria developed for the ILS heuristic for
SCPP [18] are presented.

The constructive add-drop heuristic (ADH) builds an initial solution. A feasible
solution S is initially created containing all objects from A. The objects in A are
sorted in non-decreasing order according to their associated cost and stored in A0.
The first object of the ordered set A0 is selected and removed from the set. Then,
it is checked if the removal of the this object from solution S will cause some
element of U to be uncovered. If the removal of this object does not turn the solution
infeasible, this object is removed from S . The algorithm ends when there are no
more candidates in the set A0.

Two local search heuristics were developed: drop-add local search (DALS) and
change object local search (COLS), which are used one after the other.

The DALS algorithm receives as input parameters an S solution obtained by
ADH constructive algorithm earlier described, a constant � 2 Œ0; 1�, and a positive
integer k indicating the stopping criterion of the algorithm. The first step of the
algorithm consists in removing � � jS j objects of the current solution S which
forms the set Q. These elements are removed from the current solution and are
prevented from being removed in the next I iterations by inserting them into a tabu
list l t . After this step, the elements of Q are removed from the solution set, making
it infeasible because some of the elements from U will become uncovered. The
reconstruction procedure recovers the feasibility of the solution by considering only
the elements uncovered in U and generates the solution S 0 determining the set of
objects that should be included in the solution to cover these uncovered elements at
a lower cost.

If the solution S 0 has a lower cost that the best solution cost found until the
current iteration, the best solution S� is updated. This process is repeated while
better solutions are found, being interrupted when the algorithm runs without
improving the solution cost for k iterations.

The COLS algorithm determines the best solution in the neighborhood of S�,
each time, by removing an object from S�, and the solution is reconstructed
using a heuristic drawn between the two heuristics Best Pair Heuristic (BPH)
and Modified Best Object Heuristic (MBOH) [18]. These heuristics consist in
performing iterations until a feasible solution is obtained. In each iteration, el-
ement(s) is(are) selected for incorporation in the solution according to different
strategies.

The perturbation strategy consists of removing a percentage of elements from the
current solution and reconstructing the solution using the BPH or MBOH heuristics
which are randomly chosen.
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As a stopping criterion, the following criteria may be used: execution timeout,
reaching a fixed number of iterations, and achieving a number of followed iterations
without improvement.

In each iteration, the current solution is updated by the solution generated after
the local search if its cost is better than the cost of the current solution.

The general idea of using data mining with ILS heuristic was to perform a number
of iterations of the original ILS heuristic to form a repository of good quality
solutions. Subsequently, patterns of this repository using a data mining technique
are obtained. The FPmax* [19] algorithm was used for extracting maximal frequent
itemsets. These patterns are used in subsequent iterations of the ILS in local search
procedures.

A repository rep contains the M best solutions found by ILS in n=2 early
iterations, and P contains the patterns mined from rep. Seven following strategies
were developed.

1. ILS-DM-AUnion10: a super-pattern SP is generated composed by the intersec-
tion of all patterns from P , and the elements from P are not allowed to be
removed during the local search COLS.

2. ILS-DM-A: the elements that belong to a pattern from P are not allowed to
be removed from the solution during local search COLS. In each iteration, one
pattern from P is selected in round-robin mode.

3. ILS-DM-B: the elements belonging to a pattern from P are not allowed to
be removed from the solution during local search DALS and are inserted in a
tabu list at the beginning of the local search (after a few iterations, the element
belonging to the tabu list loses its validity and leave the tabu list and may be
removed from solution). In each iteration, one pattern from P is selected in
round-robin mode.

4. ILS-DM-B-PatternTT: defined as the previous strategy, however, in this ap-
proach, the elements belonging to the pattern remains in the tabu list until the
end of the local search procedure.

5. ILS-DM-AB: the patterns are used in local search COLS and DALS. The ILS-
MD-A is applied to COLS and the ILS-MD-B to DALS. In each iteration, one
pattern from P is selected in round-robin way.

6. ILS-DM-AB-PatternTT: defined as the previous strategy, however, in this ap-
proach, the elements belonging to the pattern remain in the tabu list until the end
of the local search procedure.

Computational Results
The instances scp_p were created in [18]. They have between 50 and 28,160
elements, and the number of objects ranges from 192 to 11,264. The value of the
parameter p affects the number of pairs of each instance. Lower p values mean
greater number of pairs in the instances. For example, for p D 25%, the average
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number of pairs is 238,810 and for p D 75% is 77,543. Each group has 24 scp_p
instances.

In all strategies, the repository of solutions to be mined contains ten solutions,
and the ten largest mined patterns were used. A minimum support equal to 90% was
used for data mining.

The stopping criterion used for all strategies was running 100 iterations, and to
evaluate each strategy, ten runs with different random seeds were executed.

In each table of results, the first three lines report the results obtained for each
instance group, showing the percentage difference between the value obtained by
running the hybrid heuristic and the value obtained using the heuristic ILS. Positive
percentage differences denote that hybrid heuristics obtained better results than the
heuristic ILS, and negative values denote worse values. In the following lines, the
average percentage difference and the number of wins, losses, and draws of each
hybrid heuristic are presented.

Tables 4 and 5 present the average values of solution and computational times
obtained by the strategies that use patterns in local search.

The results obtained related to the solution’s quality, when using the patterns
in local search, were similar to those obtained by the ILS heuristic, but different
results were obtained with respect to computational times. Heuristics ILS-MD-
AUnion10, ILS-MD-A, ILS-MD-AB, and ILS-MD-AB-PatternTT had significantly
lower computational times than the ILS heuristic, while the ILS-MD-B strategy had
larger computational times.

The behaviors of the heuristics ILS-MD-A and ILD-MD-AB were studied in
more detail because both significantly decreased the computational times. Heuristic
ILS-MD presented computational time 25% lower than the ILS heuristic, and the
percentage difference of the average quality of the solution was only 0.032% below
the ILS heuristic solution. Heuristic ILS-MD-AB presented computational time

Table 4 The mean values of solutions using patterns in local search

Group AUnion10 A A-B A-B-PatternTT B B-PatternTT

scp_25 �0.059 0:004 0:01 0.08 0.094 0.13

scp_50 �0.089 �0:073 �0:046 0.007 0.04 0.023

scp_75 �0.103 �0:028 0:077 0.063 0.031 0.047

Average �0.084 �0:032 0:014 0.05 0.055 0.067

Wins/losses/draws 23/46/3 28/39/5 40/30/2 42/27/3 47/22/3 44/25/3

Table 5 The mean values of computational times using patterns in local search

Group AUnion10 A A-B A-B-PatternTT B B-PatternTT

scp_25 29.74 26.84 18.09 18.05 �10.58 0.19

scp_50 26.86 23.78 15.72 15.16 �14.93 1.1

scp_75 30.1 26.74 15.4 15.76 �2.83 1.48

Mean 28.9 25.79 16.4 16.32 �9.45 0.93

Wins/losses/ties 72/0/0 72/0/0 71/1/0 72/0/0 18/54/0 49/23/0
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16% lower than the ILS heuristic, and the percentage difference of the average
quality of the solution was 0.014% above the ILS heuristic solution.

In the first experiment, each hybrid heuristic was executed during the same
time that the ILS heuristic. Table 6 presents the solution values obtained for these
heuristics. It can be seen that for both heuristics, solutions of better quality were
obtained.

In another experiment, 100 iterations were performed for the instance scp41_25,
and the computational times used by the perturbation phase and local searches
COLS and DALS were obtained in each iteration. In Figs. 17, 18, and 19, the
iteration number is shown on the x-axis, and the execution time of each phase is
presented on the y-axis.

It can be observed that in the execution of the heuristic ILS-DM-A, which uses
the patterns extracted on the local search COLS, there is a decrease in COLS’s
execution time in the fifty iteration when the patterns are in use. In the execution
of heuristic ILS-MD-AB, where patterns are used both in COLS and DALS, one
can observe a decrease in execution time in both local searches also in 50 iteration.
These experiments indicate that using patterns decreased the computational time,
and the solutions have presented similar quality to the ones obtained by the original
heuristic ILS.

Table 6 Mean values of
solution of hybrid heuristics
using the same time of ILS

Group A A-B

scp_25 0:104 0:192

scp_50 0:055 0:123

scp_75 0:083 0:245

Mean 0:084 0:185

Wins/losses/draws 53/17/2 60/12/0
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The graphics in Figs. 20 and 21 show a comparison between the heuristics ILS,
ILS-DM-A, and ILS-DM-AB. Time-to-target (TTT) plots [3] were used to compare
the behavior of these heuristics through their execution times. The graphics shown
in these figures were generated by running each metaheuristic 100 times, using the
instance scp41_25, with different random seeds, with two target values: (a) an easy
target and (b) a difficult target. It is observed that both ILS-DM-A and ILS-DM-AB
reach the targets faster than ILS, proving that these hybrid heuristics require less
computational time to achieve similar quality solutions. The heuristic ILS-DM-AB
hits the easy target faster than the heuristic ILS-DM-A, while both have similar
behavior when using the more difficult target.
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Memory-Based Heuristics

This section presents ways to incorporate data mining with memory-based heuris-
tics. Data mining was integrated with two GRASPs that were hybridized with a
path-relinking strategy, which brings the explicit use of memory to the memoryless
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GRASP heuristic. In both problems, data mining was used only in the construction
phase as already explained in previous sections. The results obtained for the first
problem showed that using data mining was able to improve the quality of the
solutions and also the computational time. The introduction of data mining in the
second problem made it possible to achieve results with similar quality but in less
computational time.

Hybrid DM-GRASP+PR

As described in section “Memoryless Heuristics”, GRASP is a memoryless meta-
heuristic, i.e., it does not learn from the solutions found in previous iterations.

Path relinking was originally proposed by Glover [15] as an intensification
strategy exploring trajectories connecting solutions obtained by tabu search or
scatter search approaches. Starting from one or more elite solutions, path relinking
generates paths leading toward other elite solutions and explores them in the
search for better solutions. To generate paths, moves are selected to introduce
attributes in the current solution that are present in the elite guiding solution.
Path relinking is a strategy that seeks to incorporate attributes of high-quality
solutions, by favoring them in the selected moves. Laguna and Martí [33] were
the first to use path relinking within a GRASP strategy. Several extensions,
improvements, and successful applications of this technique can be found in the
literature [9, 45].

Basically, path relinking is applied to a pair of solutions fxi ; xgg by starting from
the initial solution xi and gradually incorporating attributes from the guide solution
xg to xi , until xi becomes equal to xg. The best solution found in this path is returned
by this algorithm. To use path relinking within a GRASP procedure, an elite set L is
maintained, in which good solutions found in previous GRASP iterations are stored.

Two basic strategies for introducing path relinking into GRASP may be
used [42]: (a) performing path relinking after each GRASP iteration using a solution
from the elite set and a local optimum obtained after the GRASP local search and
(b) applying path relinking to all pairs of elite solutions, either periodically or after
all GRASP iterations terminate.

The DM-GRASP+PR and MDM-GRASP+PR algorithms [5] are extensions of
the GRASP+PR implementation, proposed in [46], to solve the 2-path network
design problem (2PNDP) [10]. Let G D .V; E/ be a connected undirected graph,
where V is the set of nodes and E is the set of edges. A k-path between nodes
s; t 2 V is a sequence of at most k edges connecting them. Given a nonnegative
weight function w W E ! RC associated with the edges of G and a set D of pairs
of origin-destination nodes, the 2PNDP consists in finding a minimum-weighted
subset of edges E 0 � E containing a 2-path between every origin-destination pair
in D. Applications of the 2PNDP can be found in the design of communication
networks, in which paths with few edges are sought to enforce high reliability
and small delays. The decision version of the 2PNDP has been proved to be NP-
complete by Dahl and Johannessen [10].
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The GRASP+PR heuristic for the 2PNDP problem developed in [46] runs, in
each iteration, three procedures: construction, local search, and path relinking. The
greedy randomized construction algorithm computes one shortest 2-path at a time.
Solution x is computed from scratch using edge weights w0 that are initially equal to
the original weights w. Each iteration starts by the random selection of a pair .a; b/

still to be routed. The shortest path P from a to b using the modified weights w0

is computed, and the weights of the edges in P are temporarily set to 0 to avoid
that edge weights be considered more than once in the solution cost during the
forthcoming iterations. Pair .a; b/ is removed from the set of origin-destination pairs
to be routed, and the edges in P are inserted into the solution under construction.
This construction procedure stops when a 2-path has been computed for every
origin-destination pair.

The local search phase attempts to improve the solutions built greedily during
the construction phase. Each solution x may be viewed as a collection of 2-paths
for each pair .a; b/. Given any solution x, its neighbor solutions x0 may be obtained
by replacing any 2-path in x by another 2-path between the same origin-destination
pair. This procedure stops when it is not possible to change any origin-destination
pair without improvement.

The path-relinking phase is applied to the solution obtained by local search and
to a randomly selected solution from the pool L twice (one using the latter as the
starting solution and the other using the former). The local optimal solution obtained
by local search and the best solutions found along each relinking trajectory are
considered as candidates for insertion into the pool. A solution is inserted in the
pool if it is different from all solutions of the pool and its cost is better than the cost
of the worst solution of the pool.

The algorithm in Fig. 22 illustrates the DM-GRASP+PR procedure [5] for the
2PNDP. In line 3, the elite set used for data mining is initialized with the empty set.
The loop from line 4 to line 21 corresponds to the elite set generation phase, in which
GRASP with path relinking is performed for n iterations. The original construction
method is executed in line 5, followed by the local search method in line 6 and the
path-relinking procedure executed from line 8 to line 15. The elite set M , composed
of d solutions, is updated in line 16. A solution is inserted in the elite set if it is not
already in the set and its cost is better than the worst cost found in the set. In line 18,
the best solution is updated, if the new generated solution presents a better cost than
the best solution found in previous iterations. In line 22, the data mining procedure
extracts t patterns from the elite set, which are inserted in decreasing order of pattern
size in the set of patterns. The loop from line 23 to line 38 corresponds to the hybrid
phase. In line 24, one pattern is picked from the set of patterns in a round-robin
way. Then, the adapted construction procedure is performed in line 25, using the
selected pattern. In line 26, the local search is executed. From line 28 to 33 the path-
relinking procedure is executed. If a better solution is found, the best solution is
updated in line 35. After the execution of all iterations, the best solution is returned
in line 39.
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procedure DM-GRASP+PR(n,d,t)
1. L ← ;0/
2. f ∗ ← ;
3. M ← ;0/
4. for k = 1, . . . ,n do
5. x ← GreedyRandomizedConstruction2Path;
6. x ← LocalSearch2Path(x);
7. Update the pool of elite solutions L with x;
8. if |L| ≥ 2 then
9. Select at random an elite solution y from the pool L;
10. x1 ← PathRelinking(x,y);
11. Update the pool of elite solutions L with x1;
12. x2 ← PathRelinking(y,x);
13. Update the pool of elite solutions L with x2;
14. Set x ← argmin{ f (x), f (x1), f (x2)};
15. end if;
16. UpdateElite(M, x, d);
17. if f (x)< f ∗ then
18. x∗ ← x;
19. f ∗ ← f (x);
20. end if;
21. end for;
22. patterns set ← Mine(M, t);
23. for k = 1, . . . ,n do
24. pattern ← SelectNextLargestPattern(patterns set);
25. x ← AdaptedGreedyRandomizedConstruction2Path(pattern);
26. x ← LocalSearch2Path (x);
27. Update the pool of elite solutions L with x;
28. Select at random an elite solution y from the pool L;
29. x1 ← PathRelinking(x,y);
30. Update the pool of elite solutions L with x1;
31. x2 ← PathRelinking(y,x);
32. Update the pool of elite solutions L with x2;
33. Set x ← argmin{ f (x), f (x1), f (x2)};
34. if f (x) < f ∗ then
35. x∗ ← x;
36. f ∗ ← f (x);
37. end if
38. end for;
39. return x∗;

Fig. 22 Pseudo-code of the hybrid DM-GRASP with path relinking for the 2PNDP

The DM-GRASP+PR and MDM-GRASP algorithms proposed in [5] are similar
to DM-MSH and MDM-MSH already presented in section “Strategies to Use Data
Mining in Heuristics”.
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Computational Results
The computational results obtained for GRASP+PR, DM-GRASP+PR, and MDM-
GRASP+PR strategies were compared in [5]. The 25 instances used, similar to the
instances generated in [46], are complete graphs with jV j 2 f100, 200, 300, 400,
500g. The edge costs were randomly generated from the uniform distribution on the
interval (0, 10], and 10 � jV j origin-destination pairs were randomly chosen.

The three strategies were run ten times with a different random seed in each run.
Each strategy executed 1000 iterations.

In the mining strategies, the size of the elite set (d ), from which the patterns are
mined, and the size of the set of patterns (t ) were set to 10. A set of edges was
considered a pattern if it was present in at least two of the elite solutions. In the
MDM-GRASP+PR approach, the elite set was considered stable when 1% of the
total number of iterations is executed without change in the elite set d .

In Table 7, the results obtained by GRASP+PR, DM-GRASP+PR, and MDM-
GRASP+PR heuristics are presented. The first column shows the instance identifier.
The second, third, and fourth columns have the best cost values, the best average
cost, and the best average execution time (in seconds) obtained by, at least, one of the
three approaches. The remaining columns report the percentage difference (Diff %)
of the GRASP+PR, DM-GRASP+PR, and MDM-GRASP+PR over the best results
found. The percentage difference is evaluated as follows:

Diff % D
.valueheurist ic � best_value/

best_value
� 100;

where

best_valueD minfvalueGRASP CPR; valueDM�GRASP CPR; valueMDM�GRASP CPRg

The intermediate rows show the partial averages of the percentage differences for
each group of the same size instances, and the last row of the table presents the
overall average. The smallest values considering the best solution, the average
solution, and the average time, i.e., the best results among them, are boldfaced.

The results presented in Table 7 showed that the mining strategies proposed
were able to improve all results obtained by the original GRASP+PR, including
solution costs and execution times. MDM-GRASP+PR found 18 better values
and DM-GRASP+PR found four. Furthermore, MDM-GRASP+PR found 24 bet-
ter results and DM-GRASP+PR reached just one. In relation to running times,
DM-GRASP+PR was faster than MDM-GRASP+PR in 19 instances, while MDM-
GRASP+PR was faster than DM-GRASP+PR in 6 instances. These results indicated
that, in general, the MDM-GRASP+PR strategy produced better solutions than
the other strategies. MDM-GRASP+PR was, on average, 1.3% slower than DM-
GRASP+PR which is not very significant in terms of the heuristic performance.

Figures 23, 24, and 25 illustrate the behavior of the construction, local search,
and path-relinking phases, in terms of the cost values obtained, by GRASP-PR, DM-
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Fig. 23 One execution of GRASP-PR for instance a400-100

Fig. 24 One execution of DM-GRASP-PR for instance a400-100
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Fig. 25 One execution of MDM-GRASP-PR for instance a400-100

GRASP-PR, and MDM-GRASP-PR throughout the execution of 1000 iterations, for
the a400-100 instance, with a specific random seed.

The 2PNDP is a minimization problem, and the figures show that the local
search always reduces the cost of the solution obtained by the construction phase.
In general, the path-relinking procedure also always reduces the cost obtained after
the local search.

Figure 23 indicates that the construction and local search of GRASP-PR present
similar behavior throughout the iterations. The path-relinking procedure becomes
more effective in reducing the cost, after some iterations, when the pool contains
more solutions of better quality. In the last iterations, the path relinking still
improves the solution cost but with a smaller rate of improvement, because the pool
contains less diverse solutions.

Figure 24 presents the behavior of DM-GRASP-PR strategy. The data mining
procedure is executed immediately after iteration 500. After this iteration, the
quality of the solutions obtained by the construction, local search, and path-relinking
phases is improved.

The behavior of MDM-GRASP-PR is presented in Fig. 25. According to [5],
the data mining procedure was activated four times, after the iterations 584,
603, 654, and 822. In this specific case, the improvement due to the activation
of the data mining process started to happen immediately after the first mining
execution, later than the mining execution by the DM-GRASP-PR. On the other
hand, differently from the DM-GRASP-PR, the MDM-GRASP-PR continues to
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Fig. 26 Time-to-target plot to a difficult target for instance a400-100

slightly and gradually reduce the cost of the solutions obtained by the construction,
local search, and path-relinking phases, since patterns are extracted more than once.

Another comparison between the three strategies, based on t ime-to-target

(TTT) plots [3], are shown in Fig. 26. The plots presented in this figure were
generated by the executions of GRASP-PR, DM-GRASP-PR, and MDM-GRASP-
PR, for instance, a400-100, using the same difficult target solution (2820). Each
strategy was executed a hundred times [5]. Figure 26 shows that MDM-GRASP-
PR behaves better than DM-GRASP-PR, and both present a better behavior than
GRASP-PR.

Hybrid DM-HMS

This section describes the incorporation of a data mining procedure into a state-
of-the-art heuristic for a specific problem in order to give evidences that, when
a heuristic is able to find an optimal solution, or a near-optimal solution with
little chance of improvements, the mined patterns used to guide the search are
able to help to reach solutions with the same quality in less computational
time.

The state-of-the-art algorithm to be the base of this study was the multistart
hybrid heuristic proposed in [44] for the classical p-median problem, which
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combines elements of different traditional metaheuristics and uses path relinking
as a memory-based intensification mechanism.

Given a set F of m potential facilities, a set U of n customers, a distance
function d W U � F ! R, and a constant p � m, the p-median problem
consists in determining which p facilities to open so as to minimize the sum of the
distances from each costumer to its closest open facility. It is a well-known NP-hard
problem [32], with numerous applications [53].

At each iteration of the original algorithm, a randomized construction of a
solution is performed, which is then submitted to local search. After this, a solution
is chosen from the pool of elite solutions, made with some of the best solutions
found in previous iterations, and is combined with the solution obtained by the local
search through a path-relinking process [15]. Furthermore, after all iterations are
completed, this algorithm executes the second phase, called post-optimization, in
which elite solutions are combined with each other using the path-relinking process,
and the best solution found after the post-optimization phase execution is taken as
result.

The hybrid heuristic (HH) was compared with VNS (variable neighborhood
search) [23], VNDS (variable neighborhood decomposition search) [24], LOPT
(local optimization) [51], DEC (decomposition procedure) [51], LSH (Lagrangian-
surrogate heuristic) [50], and CGLS (column generation with Lagrangian surrogate
relaxation) [50]. In all cases, the solutions obtained by hybrid heuristic were within
0.1% of the best known upper bounds.

The data mining hybrid heuristic DM-HH was developed using data mining
in the construction phase as already showed in previous sections. The elite set
is created selecting d best solutions obtained by executing n pure HH iterations.
Then, a frequent itemset mining is applied to extract a set of patterns from the
elite set.

Next, another n slightly different HH iterations are executed where an adapted
construction phase starts building a solution guided by a pattern selected from the
set of mined patterns. Initially, all elements of the selected pattern are inserted into
the partial solution, from which a complete solution is built executing the standard
construction procedure.

The pseudo-code of the DM-HH for the p-median problem is illustrated in
Fig. 27. In lines 1 and 2, the elite set of the original heuristic and the elite set for
mining are initialized with the empty set. The loop from line 3 to line 14 corresponds
to the first phase of the strategy, in which pure HH is performed for maxit=2

iterations. The original construction method is executed in line 4, followed by the
local search method in line 5. In line 6, a solution is chosen from the pool of elite
solutions of the original approach to be combined, in line 8, using the path-relinking
process with the solution obtained by the local search. In lines 9 to 13, the elite set
of the original algorithm and the elite set for mining, composed of d solutions,
are updated with the solution obtained by the path-relinking process and with the
solution obtained by the local search. In line 15, the data mining procedure extracts
t patterns from the elite set, which are inserted in decreasing order of pattern size
in the set of patterns. The loop from line 16 to line 26 corresponds to the second
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procedure DM HH(maxit,elitesize)
1. elite set ← ∅;
2. elite set DM ← ∅;
3. for it ← 1 to maxit/2 do
4. S ←Construction p Median();
5. S ← Local Search p Median(S);
6. S′ ← Select(elite set);
7. if (S′ �= ∅)
8. S′ ← Path Relinking(S,S′);
9. Update Elite(elite set,S′);

10. Update Elite(elite set DM,S′);
11. end if
12. Update Elite(elite set,S);
13. Update Elite(elite set DM,S);
14. end for;
15. patterns set ← Mine(elite set DM, t);
16. for it ← 1 to maxit/2 do
17. pattern ← Select Next Largest Pattern(patterns set);
18. S ← Adapted Construction p Median(pattern);
19. S ← Local Search p Median(S);
20. S′ ← Select(elite set);
21. if (S′ �= ∅)
22. S′ ← Path Relinking(S,S′);
23. Update Elite(elite set,S′);
24. end if
25. Update Elite(elite set,S);
26. end for;
27.
28.

S ←Post Optimization(elite set);
return S;

Fig. 27 Pseudo-code of the DM-HH

phase of the strategy. In line 17, one pattern is picked from the set of patterns in a
round-robin way. Then the adapted construction procedure is performed in line 18,
using the selected pattern as a starting point. In line 19, the original local search
is executed. After this, a solution is chosen from the pool of elite solutions of the
original approach to be combined using the path relinking with the solution obtained
by the local search (lines 20 to 25). After all iterations are completed, this algorithm
executes the post-optimization in line 27, and the best solution found after the post-
optimization phase is taken as result.

The extraction of patterns from the elite set, which is activated in line 15 of the
pseudo-code presented in Fig. 27, corresponds to the frequent itemset mining (FIM)
task. To execute this task, the FPmax* algorithm [19] was adopted.

The adapted construction is quite similar to the original construction with the
difference that, instead of beginning the solution with an empty set, it starts with
all elements of the pattern supplied as a parameter. Then, the solution is completed
using the original construction method.
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Computational Results
The strategies were evaluated using three classes of instances. The first class, named
ORLIB, consists of 40 instances and was taken from the OR-Library [6]. Each
instance is a different graph with a corresponding value for p. The number of nodes
(customers) varies from 100 to 900, and the value of p ranges from 5 to 200. The
optimal cost is known for these 40 instances. In the OR-Library, these 40 instances
are identified by pmed01 to pmed40.

Instances of the second class, named TSP, are sets of points on the plane.
Originally proposed for the traveling salesman problem, they are available at the
TSPLIB [41]. Every point is considered both a potential facility and a customer,
and the cost of assigning customer c to facility f is simply the Euclidean distance
between the points representing c and f (the costs are real values). From the TSP
class, the FL1400 instances were considered [23, 24], with 1400 nodes and with
several different values for p.

The third class is named RW. Originally proposed in [43], it corresponds
to completely random distance matrices. In every case, the number of potential
facilities (m) is equal to the number of customers (n). The distance between each
facility and each customer has an integer value taken uniformly at random from
the interval Œ1; n�. Four different values of n were considered: 100, 250, 500, 1000,
1500, and 2000. In each case, several values of p were tested.

Both HH and DM-HH were performed nine times with a different random seed
in each execution. Each strategy executed 500 iterations. The size of the elite set for
mining (d ) and the size of the set of patterns (t ) were set to 10. And a set of facilities
was considered a pattern if it was present in at least two of the elite solutions.

When executed for the 40 instances from the ORLIB class, both HH and DM-
HH reached the optimal solution cost in all nine runs. DM-HH was always faster
than HH for all instances, and the standard deviations are quite small, varying from
0.02 to 0.86. On average, DM-HH was 25.06% faster than the HH strategy for the
ORLIB instances.

When executed for the 45 instances from the RW class, both HH and DM-HH
reached the best known solutions related to quality solution in all nine runs for 23
instances. Out of the 22 instances for which HH and DM-HH presented different
results, the DM-HH strategy found 11 better results for best values, and 4 were
found by HH. Considering the average results in nine runs, DM-HH found 15 better
values and HH found 7. These results show that the DM-HH strategy was able to
improve slightly the results obtained by HH for the RW class.

In terms of computational time, again, the DM-HH strategy was faster than
HH. On average, for the RW class, DM-HH was 28.26% faster, and the standard
deviation for DH-HH computational time varied from 0.03 to 28.33.

The results obtained for the 18 instances from the FL1400 class showed that
both strategies reached the best known solutions in all nine runs for only three
instances. For the other 15 instances, they obtained slightly different solutions. The
HH strategy found six better results for best values and just one was found by DM-
HH. Considering the average results, HH found seven better values and DM-HH
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Fig. 28 Time-to-target plot
for an easy target
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Fig. 29 Time-to-target plot for a difficult target

found four. Differently from ORLIB and RW classes, these results show that the
HH strategy, for the FL1400 class, was able to obtain slightly better results than
DM-HH.

However, related to time analysis, DM-HH always improved the HH perfor-
mance. On average, DM-HH was 30.03% faster than HH with the standard deviation
varying from 0.61 to 3.87.

Regarding the computational time, for all 113 instances, from ORLIB, RW, and
FL1400 classes, the DM-HH proposal was, on average, 27.32% faster than the HH
strategy. This result evidences that the DM-HH was able to speed up the original
HH strategy, maintaining, and in some cases improving, the quality of the obtained
solutions.
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The plots presented in Figs. 28 and 29 show another comparison between HH
and DM-HH strategies, based on t ime-to-target (TTT) plots [3], which are used
to analyze the behavior of randomized algorithms.

They were generated by the executing HH and DM-HH 100 times (with different
random seeds), until a target solution cost value was reached for a specific instance.
In each run, if the target value was not found in 500 iterations, then the post-
optimization was performed until the target value was found or the elite set used
for the post-optimization procedure was not updated.

The instance rw1000-p25 was used as the test case, and two targets were
analyzed: an easy target (value 24964) and a more difficult one (value 24923).

For the easy target, Fig. 28 shows that HH and DM-HH present similar behaviors
until about 50 s when the probability for DM-HH to find the target value starts to
be greater than for HH. This happens because, until the data mining procedure is
executed in DM-HH, both strategies obtain the same solution in each iteration, but
DM-HH starts to find the target value faster when the patterns are used.

For the difficult target, Fig. 29 shows that DM-HH behaves again better than HH.
These plots indicate that DM-HH is able to reach difficult solutions faster than HH.

Conclusion

This chapter has presented some ideas to incorporate data mining in local search
heuristics. Some applications developed by us have been described which have
shown that memoryless heuristics can benefit from the use of data mining by obtain-
ing better solutions in smaller computational times. Also, the results demonstrated
that even memory-based heuristics were able to obtain benefits from using data
mining by reducing the computational time to achieve good quality solutions.

These results encourage us to try to use data mining in other metaheuristics like
genetic algorithms and tabu search, where we can also use the patterns to guide the
search. We think of using data mining in exact algorithms like branch and bound,
where we may set the value of some variables based on the patterns extracted from
solutions previously found.

Analyzing the obtained results, it seems reasonable to expect that incorporating
data mining techniques into SLS heuristics can be in general useful. Wolpert
and Macread [55] presented a series of no free lunch theorems which establish
that, for any algorithm, the high performance on a class of problems is offset
by the low performance of another class. So they conclude that all black-box
optimization algorithms perform exactly equally well. However, some subsequent
studies [14, 30] have shown that these theorems apply to some specific classes of
problems and that is expected that real-world problems are not of this particular
class. Therefore, we expect that the good results obtained using the data mining
techniques in the presented problems may be also achieved in other real-world
problems.
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Abstract

Evolution strategies are classical variants of evolutionary algorithms which are
frequently used to heuristically solve optimization problems, in particular in
continuous domains. In this chapter, a description of classical and contemporary
evolution strategies will be provided. The review includes remarks on the history
of evolution strategies and how they relate to other evolutionary algorithms.
Furthermore, developments of evolution strategies for nonstandard problems and
search spaces will also be summarized, including multimodal, multi-criterion,
and mixed-integer optimization. Finally, selected variants of evolution strategies
are compared on a representative set of continuous benchmark functions, reveal-
ing strength and weaknesses of the different variants.

Keywords
Evolution strategy � derandomization � CMA-ES � benchmarking � theory

Introduction

Evolution strategies (ESs) are a class of metaheuristics for optimization by means
of (computer) experiments. They belong to the broader class of evolutionary
algorithms and like other heuristics from this class mimic adaptive processes in
biological evolution. The search in ESs is characterized by the alternating applica-
tion of variation and selection operators. Recombination and mutation operators
are the variation operators and create new individuals. The selection operator
selects individuals from a population based on their corresponding fitness value,
which is obtained by computing the objective function value in evolution strategies.
The selected individuals form the next population and the process is repeated. A
distinguishing feature of evolution strategies as compared to most other evolutionary
algorithms is self-adaptive mutation operators, which are capable of adapting the
shape of the mutation distribution according to the local topology of the landscape
and thereby help ESs achieve maximal progress rates.

Before discussing technical details of the evolution strategies, it will be worth-
while to give a brief outline of their history: The idea of mimicking evolution in
order to optimize technical systems arose in Germany, where it led to the devel-
opment of evolution strategies by Ingo Rechenberg [50] and Hans-Paul Schwefel
[57], and in the USA, where it led to the development of genetic algorithms
[21,34] and evolutionary programming [20]. In the mid-1990s, these strategies were
unified under the common umbrella of evolutionary algorithms (EAs) [5]. While
all these heuristics share the idea to mimic evolution in computational algorithms,
researchers in genetic algorithms and evolution strategies emphasized on different
aspects of algorithm design and problem domains.

Since their invention in the 1960s by Rechenberg and Schwefel at the Technical
University of Berlin, evolution strategies have been used to optimize real-world
systems, typically in engineering design. The first application of an evolution
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strategy was the design of optimal shapes in engineering such as nozzles and
wing shape using physical experiments. Often the evolutionary design procedure
discovered high-performing structures with surprising shapes that have never been
considered by engineers before [7]. Starting from sequential stochastic hill climbing
strategies, soon evolution strategies advanced to more sophisticated problem-
solvers, and their main application domain became the treatment of black-box
continuous optimization problems on the basis of computer models.

One important development introduced adaptive step sizes or mutation distri-
butions. Although there were some precursors to the idea of step-size adaptation
in stochastic search algorithms [56], the development of flexible and efficient
adaptation schemes for mutation distributions became a major point of attention in
ES research. This feature distinguished them from genetic algorithms which worked
commonly with constant mutation strengths.

Different variants of the adaptation of the mutation parameters were developed,
and the three mainstream variants are the control of a single step size by means of
the following approaches:

• The so-called 1=5-th success rule: the rate of generating successful mutations is
monitored, and the step size is controlled to achieve success rate 1=5, which is
the optimal on spherical function.

• The mutative self-adaptation: it most closely resembles natural evolution, where
the step size also undergoes the recombination, mutation, and natural selec-
tion [14].

• The derandomized self-adaptation (Hansen, Ostermeier, and Gawelczyk [30]):
it cumulates the standardized steps and compares the length of the cumulative
vector to the one obtained under random selection.

Their efforts to find efficient ways to control the shape of the mutation distribution
culminated in the covariance matrix adaptation evolution strategy (CMA-ES) [29].
Due to its invariance properties, it is seen today by many researchers as the state-
of-the-art evolution strategy when it comes to practically solving ill-conditioned
optimization problems (cf. [24]).

A parallel development was the introduction of population-based (or multi-
membered) evolution strategies. Here, the idea is to create an evolutionary algorithm
that performs, as Hans-Paul Schwefel called it, a collective hill climbing [58] (a
collection of search points, where each point performs a simple hill climb search).
To categorize different population models, the notation of .�; �/- and .� C �/-
schemes was introduced, in which � denotes the number of individuals in the
parent population and � the number of individuals in the offspring population. These
multi-membered strategies are able to exploit the positive effects of recombination
(crossover) and are more reliable in global optimization settings and on noisy
problems than the early single-membered variants. Moreover, population-based
algorithms could be executed in parallel and later could more easily be extended
to advanced evolution strategies for solving multi-objective and multimodal opti-
mization tasks.
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Nowadays, evolution strategies are mainly used for the simulation-based opti-
mization, i.e., computerized models that require parametric optimization. Evolution
strategies are suitable for the optimization of non-smooth functions because they
do not require derivatives. In general, the algorithmic paradigms of ESs can be
extended to general metric search spaces, and mainstream variants of ESs address
continuous optimization problems, as opposed to genetic algorithms [21], which are
more typically used on binary search spaces.

Contemporary evolution strategies have shown to be competitive to other
derivative-free optimization algorithms, both in theoretical studies [13, 65] and by
benchmark comparisons on a large corpus of empirical problems [59]. Furthermore,
their practical utility is underpinned by a large number of successful applications in
engineering and systems optimization [6].

This chapter will give a brief introduction to classical and contemporary evo-
lution strategies with a focus on mainstream variants of evolution strategies.
Firstly, classical .�; �/� and .� C �/ evolution strategies will be described in
section “Classical Evolution Strategies”. Then, in section “Derandomized Evo-
lution Strategies” derandomization, techniques will be discussed, which is the
distinguishing feature in the CMA-ES. Section “Theoretical Results” addresses
theoretical findings on the convergence and reliability of evolution strategies.
An overview on new developments and nonstandard evolution strategies is pro-
vided in section “Nonstandard Evolution Strategies”. Moreover, this section covers
adaptations of ESs that make them more suitable for multimodal optimization.
Section “Benchmarks and Empirical Study” discusses empirical benchmarks used
in this field and includes a comparative study of contemporary evolution strategies.
Section “Conclusions” summarizes the main characteristics of ESs and highlights
future research directions.

Classical Evolution Strategies

The typical application field of evolution strategies is (continuous) unconstrained
optimization where the optimization problem is given by:

min
Ex2Rd

f .Ex/ (1)

In the context of ESs, the function f can be a black-box function and usually
function f is assumed to be nonlinear and have a minimum. Maximization problems
can be brought into the standard form of Eq. 1 by simply flipping the sign of f .
Standard implementations also allow to restrict the domain of decision variables to
interval domains and to introduce constraints. For the sake of brevity, the extensions
of ESs for constraint handling will be widely omitted in the following discussion.

Evolution strategies can be viewed as stochastic processes on a population of
individuals from the space of individuals I. An individual in evolution strategies
typically comprises the following information:
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• a d -tuple of values for the decision variables x1; : : : ; xd , representing a candidate
solution for the optimization problem (see Eq. 1),

• a tuple of strategy parameters. The strategy parameters can, for instance, be the
standard deviations used to generate the perturbations of variables in the mutation
(step sizes) or the components of a covariance matrix used in the mutation.
Strategy parameters can be adapted during evolution.

• a fitness value. It is typically based on the objective function value, and it may be
altered by a penalty for constraint violations.

In some variants of the evolution strategies, the so-called .�; �; �/- evolution
strategies, the individual’s age is also maintained, that is, the number of generations
that an individual has survived.

Another basic data structure of an evolution strategy is a population. A population
is a multi-set of individuals, i. e., of elements of I. One distinguishes between the
parent populations Pt consisting of � individuals and the offspring populations
consisting of � individuals.

The basic algorithm of a .�; �/- evolution strategy and a .�C�/- evolution strat-
egy is outlined in Algorithm 1. The algorithm starts with initializing a population
P0 of � parent individuals, for instance, by uniform random sampling in the feasible
intervals for the objective variables Ex. Then, the fitness values of P0 are determined,
and the best solution found in P0 is identified and stored in the variables Exbest

0 ; f best
0 .

Algorithm 1: Evolution Strategy
input: initial population P0 with � evaluated individuals
t  0 {Generation counter}
.Exbest

1 ; f best
1 / D Update.P0/ {Updates best found solution to best solution

found in P0.}
while termination criterion not fulfilled do

t  t C 1

Rt  Recombine.Pt�1/ {Creates � offspring from Pt using recombination
operator.}
Mt  Mutate.Rt / {Creates a mutant for each individual in Rt .}
Ct  Evaluatef .Mt / {Evaluates fitness function values.}
.Exbest

tC1 ; f best
tC1 / D Update.Ct ; Ex

best
t ; f best

t ) {Updates best found solution.}
Pt  Select.Ct ; Pt�1/ {Selects the � best individuals from Ct [ Pt�1 in
case of a .�C �/- selection, and from Ct in case of a .�; �/-selection.}

end while
return Exbest ; f best

Then, the following generational loop is executed until a termination criterion is
met. Common termination criteria are stagnation of the search process or the excess
of a maximally allowed duration for searching.

The search process in the generational loop is governed by two (stochastic)
variation operators, recombination and mutation, and a deterministic selection
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operator. The recombination operator, namely, Recombine W I
� � ˝ ! I

�,
generates from the � individuals in Pt an offspring population of � individuals
which are then mutated by the mutation operator, Mutate W I

� � ˝ ! I
�.

The mutated individuals are evaluated, and, if necessary, the best found solution
Exbest

t ; f best
t gets updated. Then the parent population of the next round is determined

by selecting the � best solutions from

• in case of a .�; �/-ES the � offspring individuals
• in case of a .�C�/-ES the � parents of the current generation and the � offspring

individuals,
• in case of a .�; �; �/-ES from the � parents who have not exceeded an age of �

and the � offspring individuals

Finally the generation counter is increased, and the loop is continued or terminated
(if the termination condition is met). After completing the loop, the best attained
solution constitutes the output.

It appears to be a “chicken-and-egg” dilemma whether it makes more sense
to start the evolution strategy with the generation of a parent population (with �

individuals), as suggested in Algorithm 1, or to do so at some other stage of the
evolution, i.e., starting with an offspring population. The chosen representation has
the advantage that the process that generates the subsequent parent populations
P0; P1; P2; : : : can be viewed as a memoryless stochastic process or more precisely
a Markov process:

PtC1 D Select .Mutate .Recombine .Pt // ; Pt / : (2)

This means that given Pt for some t � 1, the information of Pt�1 is irrelevant in
order to determine PtC1; alternatively, in the terminology of stochastic processes,
the state of PtC1 is conditionally independent of the state of Pt�1 given Pt . This
so-called Markov property makes it easier to analyze the behavior of the evolution
strategy. In addition, Pt can be viewed as a checkpoint of the algorithm, and if the
process stops, e.g., because of a computer crash, the process may resume by starting
the loop with the last saved state of Pt .

The main loop of the evolution strategy is inspired by the principles of evo-
lutionary adaptation in nature that were discovered in parallel by the naturalists
Alfred Russel Wallace (1823–1913) and Charles Darwin (1809–1882). In brief,
a population of individuals adapt to their environment by (random) variation and
selection. The reason for variability in the population was unknown to these
researchers. Only much later in the so-called modern synthesis, it was linked to
the mutation and recombination of genes. The ES presented in Algorithm 1 does
however by far not provide a complete model for evolution in nature. In fact,
important driving forces of natural evolutionary processes such as the development
of temporally stable species and coevolution cannot be modeled with this basic
evolution strategy. On the other hand, by mimicking only the variation and selection
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process, one can already achieve a potent and robust optimization heuristic, and the
theoretical analysis of evolution strategies can provide new insights in the dynamics
of natural evolution.

There are many options to instantiate the operators of an evolution strategy, and
in the literature, a certain terminology is used to refer to standard choices. Next,
the most common instantiations of operators will be discussed by following the
structure of Algorithm 1. The first step is the initialization of P0, where the starting
population is set by the user, since this allows to resume the evolution from a
checkpoint. However, it is also very common to view the initialization as an integral
part of the evolution strategy. Initialization procedures vary, while common choices
are either constant initialization by generating � copies of a starting (seed) point, or
random initialization, i.e., to initialize the decision variables randomly within their
bounds. The initialization of strategy parameters can have a significant impact on
the transient behavior of an evolution strategy. In case of step-size parameters, it is
often recommended to set these to 5% of the search space size.

A more complex operator is the recombination operator. In the nomenclature,
the number of individuals that participate in the creation of a single vector is
called �. The notation .�=�; �/- ES and, respectively, .�=� C �/- ES makes this
number explicit. The � individuals that participate in the recombination are drawn
by independent uniformly random choices from the population.

Given � individuals, there are two common strategies to create an offspring
vector – intermediate recombination and dominant recombination. The vector to be
determined is commonly the vector of decision variables Ex, but it can also include
the vector of strategy parameters:

• Intermediate recombination determines the offspring by averaging the compo-
nents of the parent individual. It can be applied on the object parameters and
on the strategy parameters. Given a �-tuple parent vectors .Eq.1/; : : : ; Eq.�// 2

.Rd /�, it computes the resulting vector Er by means of rj D
1
�
.
P�

iD1 q
.i/
j / for

i D 1; : : : ; d .
• Discrete (or dominant) recombination sets the i -th position of the offspring

vector Er randomly to one of values of the parents. By drawing d uniform random
numbers uj ; j D 1; : : : ; d from the set f1; : : : ; �g, the offspring individual is set
to rj D quj .

The terminology, intermediate and dominant, is lent from the theory of inheritance
of biological traits by the botanist Gregor Mendel (1822–1884).

The mutation operator is seen as a main driving force of the evolutionary progress
in ESs. Mutation adds a small random perturbation to each component of Ex. The
scaling of this perturbation is based on the strategy variables. A common case is to
use individual so-called step-size parameters �1 2 R

C, : : : , �d 2 R
C. The mutation

then performs as indicated in the following equation:

x0
i  xi C �i �N .0; 1/; i D 1; : : : ; d (3)
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Here, Normal.0; 1/ denotes the generation of a standard normal distributed random
number. The resulting distributions of random numbers have a standard devia-
tion of �i , why the � -variables are also termed as standard deviations of the
mutation.

A distinguishing feature of ESs is the self-adaptation of the mutation’s pa-
rameters. In case of d step sizes, the mutative self-adaptation lets the step sizes
themselves undergo an evolutionary process. In continuous optimization, the pa-
rameters of the multivariate Gaussian distribution can be adapted. Three levels of
adaptation can be devised: Firstly, it is possible to control only a single standard
deviation that is used for all decision variables (possibly with a constant scaling
factor). This is called isotropic self-adaptation. Then, in the so-called individual
step-size adaptation for each decision variable, a different standard deviation for
the mutation is maintained and adapted. Finally, it is also possible to learn the
full covariance matrix of the multivariate Gaussian distribution that is used in the
mutation. The different levels of mutation distribution adaptation are indicated in
Fig. 1. As a rule of thumb, it can be stated that the more mutation parameters are to
be adapted, the longer it takes to reach an optimal convergence behavior for a given
model.

There are different strategies for controlling or adapting the mutation parame-
ters:

• Step-size control based on the success rate: It has been shown that for the
.1 C 1/-ES and on two important benchmark functions – sum of squares and
corridor model – among all isotropic Gaussian distributions, the optimal standard
deviation is obtained at a step size that yields approximately a success probability
of 1=5. Because the success probability can be assessed during execution, this
allows for an effective step-size control of the .1C 1/-ES.
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Fig. 1 Three levels of step-size control: isotropic (a), individual step sizes (b), and covariance
matrix adaptation (c)
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• Mutative step-size control: The idea is to make the parameters of the mutation
distribution part of the individual and let it undergo an evolutionary process itself.
Details of this strategy will be elaborated in this section.

• Derandomized step-size control: Here a more efficient adaptation of the mutation
distribution is derived based on cumulative information from previous successful
mutation steps. Derandomized self-adaptation uses arithmetic procedures that
can no longer be considered as biomimetic. For the price of losing flexibility
and simplicity, they gain efficiency in particular for unconstrained continuous
optimization and allow practicable schemes for adapting a full covariance matrix
of a mutation distribution. The history and details of derandomized evolution
strategies will be elaborated on in the next section.

The classical self-adaptive mutation in evolution strategies is nowadays called
mutative step-size control. For adapting the standard deviations of the mutation
distribution, it augments the individual by a step-size vector and mutates the
standard deviations of the mutation before it mutates the decision variables using
these standard deviations:

Nglobal  N .0; 1/ (4)

� 0
i  �i � exp.�localN .0; 1/C �globalNglobal/; i D 1; : : : ; d (5)

x0
i  xi C �i �N .0; 1/; i D 1; : : : ; d (6)

The parameters �local and �global are called local and global learning rates. The
simplest form of the mutative step-size control exploits only a single step size � for
all the coordinates. In this case, Eqs. (5) and (6) simplify to

� 0  � � exp.�globalNglobal/; i D 1; : : : ; d (7)

x0
i  xi C � 0 �N .0; 1/; i D 1; : : : ; d (8)

The utilization of mutative self-adaptation is valid when there are more offspring
individuals than parent individuals. In this case, the step sizes with a greater
value have a higher probability to be selected because they typically lead to better
offspring individuals. Two commonly used default settings for parameters in the
.�; �/-ES are:

• Small population size: � D 1, � D 7, �global D 1:2, single step size, � D 1.
• Large population size: � D 15, � D 100, �local D 1:1, �global D 1:2, � D �, and

intermediate recombination of decision variables and step-size parameters.

A larger population size is preferable if the optimization takes place on a rugged
fitness function and a larger number of evaluations can be afforded.
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Derandomized Evolution Strategies

Mutative step-size control tends to work well in the standard ES for the adaptation of
a single global step size but shows poor performance when it comes to the individual
step sizes or arbitrary normal mutations. Schwefel claimed that the adaptation of
the strategy parameters in those cases is impossible within small populations [58]
and suggested larger populations as a solution to the problem. Later on, Rudolph
questioned the effectiveness of ES learning upon discarding past information and
claimed that ES learning would benefit from introducing memory to the individuals
[52]. Indeed, due to the crucial role that the mutation operator plays within ES,
its mutative step-size control was investigated intensively. Especially, the disruptive
effects to which mutative step-size control is subject were studied at several levels
[29, 47] and are reviewed here:

• Indirect selection. By definition, the goal of the mutation operator is to apply a
stochastic variation to the decision variables, which will increase the individual’s
selection probability. The selection of the strategy parameters setting is indirect,
i.e., the vector of a successful mutation is not utilized to adapt the step-size
parameters, but rather the parameters of the distribution that led to this mutation
vector.

• Realization of parameter variation. Due to the sampling from a random
distribution, the realization of the parameter variation does not necessarily reflect
the nature of the strategy parameters. Thus, the difference de facto between
good and bad strategy settings of strategy parameters is only reflected in the
difference between their probabilities to be selected – which can be rather small.
Essentially, this means that the selection process of the strategy parameters is
strongly disturbed.

• The strategy parameter change rate is defined as the difference between strategy
parameters of two successive generations. Hansen and Ostermeier [29] argue that
the change rate is an important factor, as it gives an indication concerning the
adaptation speed, and thus it has a direct influence on the performance of the
algorithm. The principal claim is that this change rate basically vanishes in the
standard ES. The change rate depends on the mutation strength to which the
strategy parameters are subject. While aiming at attaining the maximal change
rate, the latter is limited by an upper bound, due to the finite selection information
that can be transferred between generations. Change rates that exceed the upper
bound would lead to a stochastic behavior. Moreover, the mutation strength that
obtains optimal change rate is typically smaller than the one that obtains good
diversity among the mutants – a desired outcome of the mutation operator, often
referred to as selection difference. Thus, the conflict between the objective of
optimal change rate versus the objective of optimal selection difference cannot
be resolved at the mutation strength level [47]. A possible solution to this conflict
would be to detach the change rate from the mutation strength.
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The so-called derandomized mutative step-size control aims to treat those disruptive
effects, regardless of the search space dimensionality, population size, or any other
characteristic parameters.

The concept of derandomized evolution strategies has been originally introduced
by scholars at the Technical University of Berlin in the beginning of the 1990s.
It was followed by the release of a new generation of successful ES variants by
Hansen, Ostermeier, and Gawelczyk [28, 30, 46, 48].

The first versions of derandomized ES algorithms introduced a controlled global
step size in order to monitor the individual step sizes by decreasing the stochastic
effects of the probabilistic sampling. The selection disturbance was completely
removed with later versions by omitting the adaptation of strategy parameters by
means of probabilistic sampling. This was combined with individual information
from the last generation (the successful mutations, i.e., of selected offspring) and
then adjusted to correlated mutations. Later on, the concept of adaptation by
accumulated information was introduced, aiming to use wisely the past information
for the purpose of step-size adaptation. Rather than using the last generation’s
information alone, it was successfully generalized to a weighted average of the
previous generations.

Note that the different derandomized ES variants strictly follow a .1; �/ strategy,
postponing the treatment of recombination or plus-strategies for later stages.
Moreover, the different variants hold different numbers of strategy parameters to
be adapted, and this is an important factor in the complexity of the optimization
routine and in its learning rate. The different algorithms hold a number of strategy
parameters scaling either linearly (O.d/ parameters responsible for individual
step-sizes) or quadratically (O.d 2/ parameters responsible for arbitrary normal
mutations) with the dimensionality d of the search space.

First Level of Derandomization

The so-called first level of derandomization targeted the following desired effects:
(i) a degree of freedom with respect to the mutation strength of the strategy
parameters, (ii) scalability of the ratio between the change rate and the mutation
strength, and (iii) independence of population size with respect to the adaptation
mechanism. The realization of the first level of derandomization can be reviewed
through three particular derandomized ES variants:

DR1
The first derandomized attempt [46] coupled the successful mutations to the
selection of decision parameters and learned the mutation step size as well as the
scaling vector based upon the successful variation. The mutation step is formulated
for the kth individual, k D 1; : : : ; �:

Ex.gC1/ D Ex.g/ C �kı.g/E�k
scal
Eı

.g/
scalEzk Ezk 2 f�1;C1gd (9)



100 M. Emmerich et al.

Note that Ezk is a random vector of ˙1, rather than a normally distributed random
vector, while E�k

scal �
EN .0; 1/C, i.e., distributed over the positive part of the normal

distribution. The evaluation and selection are followed by the adaptation of the
strategy parameters (subscripts sel refer to the selected individual):

ı.gC1/ D ı.g/ � .�sel/
ˇ (10)

Eı
.gC1/
scal D Eı

.g/
scal �

�
E�sel

scal C b
�ˇscal

(11)

DR2
The second derandomized ES variant [48] aimed to accumulate information about
the correlation or anticorrelation of past mutation vectors in order to adapt the
global step size as well as the individual step sizes – by introducing a quasi-memory
vector. This accumulated information allowed omitting the stochastic element in the
adaptation of the strategy parameters – updating them only by means of successful
variations, rather than with random steps.

The mutation step for the kth individual, k D 1; : : : ; �, reads

Ex.gC1/ D Ex.g/ C ı.g/Eı
.g/
scalEzk Ezk � EN .0; 1/ (12)

Introducing a quasi-memory vector EZ:

EZ.g/ D cEzsel C .1 � c/ EZ.g�1/ (13)

The adaptation of the strategy parameters according to the selected offspring:

ı.gC1/ D ı.g/ �

 

exp

 
k EZ.g/k
p

d
p

c
2�c

� 1C
1

5d

!!ˇ

(14)

Eı
.gC1/
scal D Eı

.g/
scal �

0

@

ˇ
ˇ
ˇ EZ.g/

ˇ
ˇ
ˇ

p
c

2�c

C b

1

A

ˇscal

;
ˇ
ˇ
ˇ EZ.g/

ˇ
ˇ
ˇ D

�
jZ

.g/
1 j; jZ

.g/
2 j; : : : ; jZ.g/

n j
�

(15)

DR3
This third variant [30], usually referred to as the Generation Set Adaptation (GSA),
considered the derandomization of arbitrary normal mutations for the first time,
aiming to achieve invariance with respect to the scaling of variables and the rotation
of the coordinate system. This naturally came with the cost of a quasi-memory
matrix, B 2 R

r�d , setting the dimension of the strategy parameters space to
d 2 � r � 2d 2. The adaptation of the global step size is mutative with stochastic
variations, just like in the DR1.

The mutation step is formulated for the kth individual, k D 1; : : : ; �:
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Ex.gC1/ D Ex.g/ C ı.g/�k Eyk (16)

Eyk D cmB.g/ � Ezk Ezk � EN .0; 1/ (17)

The update of the memory matrix is formulated as

B.g/ D
�
Eb

.g/
1 ; : : : ; Eb

.g/
r

�

Eb
.gC1/
1 D .1 � c/ � Eb

.g/
1 C c �

�
cu�sel Eysel

�
; Eb

.gC1/
iC1 D Eb

.g/
i

(18)

The step size is updated as follows:

ı.gC1/ D ı.g/ .�sel/
ˇ (19)

Second Level of Derandomization: CMA-ES

Following a series of successful derandomized ES variants addressing the first
level of derandomization, and a continuous effort at the Technical University of
Berlin, the so-called covariance matrix adaptation (CMA) evolution strategy was
released in 1996 [28], as a completely derandomized evolution strategy – the
fourth generation of derandomized ES variants. The so-called second level of
derandomization targeted the following effects: (i) The probability to regenerate the
same mutation step is increased, (ii) the change rate of the strategy parameters is
subject to explicit control, and (iii) strategy parameters are stationary when subject
to random selection. The second level of derandomization was implemented by
means of the CMA-ES.

The CMA-ES combines the robust mechanism of ES with powerful statistical
learning principles, and thus it is sometimes subject to informal criticism for
not being a genuine biomimetic evolution strategy. In short, it aims at satisfy-
ing the maximum likelihood principle by applying principal component analysis
(PCA) [35] to the successful mutations, and it uses cumulative global step-size
adaptation.

In the notation used here, the vector Em represents the mean of the mutation
distribution, but is also associated with the current solution-point, � denotes the
global step size, and the covariance matrix C determines the shape of the distribution
ellipsoid:

ExNEW � N . Em; �2C/ D EmC � �N .E0; C/ D EmC � � Ez

Two independent principles define the adaptation of the covariance matrix, C, versus
the adaptation of the global step size � :
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• The mean Em and the covariance matrix C of the normal distribution are updated
according to the maximum likelihood principle, such that good mutations are
likely to appear again. Em is updated such that

P
�
ExseljN

�
Em; �2C

��
�! max

and C is updated such that

P
� Exsel � Emold

�

ˇ
ˇ
ˇN
�
E0; C

��
�! max

considering the prior C. This is implemented through the so-called covariance
matrix adaptation (CMA) mechanism.

• � is updated such that it is conjugate perpendicular to the consecutive steps of Em.
This is implemented through the so-called cumulative step-size adaptation (CSA)
mechanism.

Evolution Path
A straightforward way to update the covariance matrix would be to construct a d�d

matrix analogue to the DR2 mechanism (see Eq. 13), with the outer-product of the
selected mutation vector Ezsel:

C � .1 � ccov/CC ccovEzselEz
T
sel

However, to avoid discarding the sign information of Ezsel, the so-called evolution
path is defined to accumulate the past information using an exponentially weighted
moving average,

Epc /

gX

iD0

.1 � cc/g�iEz.i/
sel;

yielding the following update step for the covariance matrix:

C � .1 � ccov/CC ccov Epc Ep
T
c

The Path Length Control
The covariance matrix update is not likely to simultaneously increase the variance
in all directions, and thus a global step-size control is much needed to operate in
parallel. The basic idea of the so-called path length control is to measure the length
of the evolution path, which also constitutes the consecutive steps of Em, and adapt
the step-size according to the following rationale: If the evolution path is longer than
expected, the steps are likely parallel, and thus the step size should be increased;
alternatively, if it is shorter than expected, the steps are probably antiparallel, and the
step size should be decreased accordingly. That magnitude is defined as the expected



4 Evolution Strategies 103

length of a normally distributed random vector. This evaluation is explicitly carried
out by the conjugate evolution path:

Ep� /

gX

iD0

.1 � c� /g�i C.i/ � 1
2 Ez.i/

sel

where the eigen-decomposition of C is required in order to align all directions within
the rotated frame. Then, the update of the step size depends on the comparison
between k Ep�k and the expected length of a normally distributed random vector,
E ŒkN .0; I/ k	:

�  � � � exp

�
k Ep�k

E ŒkN .0; I/ k	
� 1

�

The .�W ; �/ Rank-� CMA
The rank-� covariance matrix adaptation [26] is an extension of the original update
rule for larger population sizes. The idea is to use � > 1 vectors in order to
update the covariance matrix C in each generation, based on weighted intermediate
recombination. Let Exi W� denote the i th ranked solution point, such that

f
�
Ex1W�

�
� f

�
Ex2W�

�
� � � � � f

�
Ex�W�

�

The updated mean is now defined as follows:

Em 

�X

iD1

wi Exi W� D EmC �

�X

iD1

wiEzi W� � hExiW

with a set of weights, w1 � w2 � � � � � w� > 0;
P�

iD1 wi D 1. The covariance
matrix update is now formalized by means of rank-� update, combined with the
rank-one update:

C � .1 � ccov/CC
ccov

�cov
Epc Ep

T
c C ccov

�

1 �
1

�cov

� �X

iD1

wiEzi W�Ez
T
i W�

The .�W ; �/-CMA-ES heuristic is summarized in Algorithm 2, with initCMA()
referring to the parametric initialization procedure. It should be noted that a CMA
variant, which resembles the DR2 and targets a vector of d individual step sizes
(i.e., by means of a diagonalized covariance matrix), was released by the name of
sep-CMA-ES [51]. Furthermore, the CMA-ES heuristic was simplified in the form
of the so-called CMSA strategy [15] and was further improved for certain cases of
global optimization [1].
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Algorithm 2: .�W ; �/-CMA-ES
1: initCMA()
2: g 0

3: repeat
4: for k D 1 : : : � do
5: Ex

.gC1/

k  
˝
Ex
˛.g/

W
C �.g/ � Ez.gC1/

k , Ez.gC1/

k � N
�
E0; C.g/

�

6: f
.gC1/

k  Evaluate
�
Ex

.gC1/

k

�

7: end for
8:

˝
Ex
˛.gC1/

W
 Select

�
Ef .gC1/; Ex

.gC1/

1:::�W�

�

9: Ep
.gC1/
c  UpdatePath

�
Ep

.g/
c ; Ez.gC1/

1:::�W�

�

10: C.gC1/  UpdateCov
�

C.g/; Ep
.gC1/
c ; Ez.gC1/

1:::�W�

�

11: C.gC1/ WD R.gC1/˜.gC1/
�
R.gC1/

�T
, ˜.gC1/ D diag

�
�

.gC1/
max ; : : : ; �

.gC1/
min

�

12: Ep
.gC1/
�  UpdateSPath

�
Ep

.g/
� ; Ez.gC1/

1:::�W�

�

13: �.gC1/  UpdateStep
�
�.g/; Ep

.g/
�

�

14: g g C 1

15: until stopping criterion is met

16: return
˝
Ex
˛.g/

W

Theoretical Results

The theory of evolution strategies is traditionally focused on the questions of
convergence dynamics.

Under relative mild conditions on the used mutation and recombination opera-
tors, complete global convergence in probability for t ! 1 can be proven [54].
Basically, for continuous objective functions, it is sufficient to ascertain that for
every 
-ball around the global minimizer the probability that the mutation operator
samples a point in this region is positive, regardless of the starting point. This is
given, for instance, by bounding the standard deviations of the mutation from below
by a small positive value. This can be easily generalized to ES for discrete [53] or
even mixed-integer optimization problems [43].

Of more practical relevance are results on the convergence dynamics, that is,
the speed of convergence to the optimum and on local progress rates. Different
approaches for analysis have been used, based on dynamical systems theory [13],
stochastic process theory [54], and techniques from the asymptotic analysis of
randomized algorithms [33]. It is a well-established result that the most self-adaptive
ES variants, if parameterized correctly, achieve a linear convergence rate on convex
quadratic problems, where the condition number of the matrix and the type of step-
size adaptation determine the linear factor [14, 45]. The same can be found for
problems with fitness proportional noise [2]. On the other hand, on sharp ridges
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and plateaus and at the boundary of constraints, classical step-size adaptation tends
to fail [38]. Also for problems with additive noise, the accuracy of the found results
will be limited by the standard deviation of the noise [39]. The theory of ESs
also revealed some insights regarding the manner in which different parameters are
correlated with each other and devised guidelines concerning optimal parameter
settings. Most prominently, the 1=5-th success rule for step-size control in .1C 1/-
ES with isotropic mutation was developed based on theoretical studies on the sphere
and the corridor model [50].

Also results on the effect of genetic drift and recombination in population-
based evolution strategies are available: Beyer highlighted the so-called genetic
repair effect that recombination has in ESs. When using recombination convergent
behavior and optimal convergence, rates can be achieved with higher mutation
step sizes. This increases the robustness in global optimization settings as it is
more likely to escape from local optima. The genetic repair effect is stronger
when intermediate recombination is used, as compared to discrete recombination.
Dynamical systems analysis and Markov chain analysis on simple search landscapes
revealed that it is rather impossible to simultaneously explore different local optima
by means of a single population [11]. Even if the recombination operator is disabled,
when different attractor basins share exactly the same geometry, the population
tends to quickly concentrate on a single attractor only [55]. These findings gave
incentive to the development of niching [60] and restart methods [4] that counteract
this effect and prove to perform better on multimodal landscapes.

Nonstandard Evolution Strategies

The broad success of the family of evolution strategies provided the motivation
to devise extended heuristics for treating problem instances that are beyond
the canonical unconstrained single-objective, unimodal optimization formulation.
Indeed, ES extensions to mixed-integer search spaces [8, 42], uncertainty handling
[27], multimodal domains [60], and multi-objective Pareto optimization [31] were
introduced in recent years. The goal of the current section is to provide an overview
of those extensions.

ES for Nonstandard Search Spaces

A general framework for ES on nonstandard search spaces, termed metric-based
evolutionary algorithms, was developed by Droste and Wiesmann [17]. They
specified guidelines for instantiating of a mutation operator and recombination
operators and exemplified the design method for the optimization of ordinary
binary decision diagrams. Using similar guidelines, ESs for integer programming
[53], mixed-integer programming [43], and graph-based optimization [18] were
developed. Common guidelines on designing ESs for new types of solution
spaces are:
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1. Causal representation: Solutions should be represented in some metric search
space such that relatively small changes with respect to the distance in the search
space result on average in only relatively small changes of the objective function
value.

2. Unimodal mutation distributions: Small mutations should occur more likely than
large mutations.

3. Scalability of mutation: In order to implement self-adaptive mutation operators, it
is essential that mutations can be scaled in terms of the average distance between
parents and offspring.

4. Accessibility of points by mutation: By applying one or a chain of many
mutations, it should be possible to reach every point in the search space,
regardless of the starting point.

5. Unbiasedness of mutation: Mutations should not introduce a bias in the search.
They should be symmetric and probability distributions with maximal entropy
should be preferred.

6. Similarity to parents in recombination: The distance of an offspring to its parents
should not exceed the distance of the parents to each other. Moreover, on average,
the distance to all parents should be the same.

Following these design principles, one can expect generalized ESs to possess
similar properties in comparison with standard ESs for continuous search spaces.
However, a warning should be placed here regarding the functioning of step-size
adaptation. In the theoretical derivation of optimal schemes of ES, often the fact
is used that differentiable problems locally resemble quadratic or linear functions.
This property is lost when it comes to discrete optimization, and therefore the
generalization of such results requires some caution. On the other hand, it has
been found that mutative self-adaptation of step sizes also works in nonstandard
search spaces such as for the adaptation of mutation probabilities for binary
vectors or for parameters of geometric distributions in mixed integer evolution
strategies.

Niching and Multi-population ES

Given multimodal search landscapes with multiple basins of attraction that are of
interest, targeting the simultaneous identification of several optima constitutes a
challenge both at the theoretical and practical levels [44,49,60]. Within the domain
of evolutionary computation, this challenge is typically treated by extending a given
search heuristic into subpopulations of trial solutions that evolve in parallel to
various solutions of the problem. This idea stems from the evolutionary concept
of organic speciation, and the so-called niching techniques are the extension of
EAs to speciation forming multiple subpopulations. The computational challenge in
niching may be formulated as achieving an effective interplay between partitioning
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the search space into niches occupied by stable subpopulations, by means of
population diversity preservation, and exploiting the search in each niche by
means of a highly efficient optimizer with local search capabilities [60]. A niching
framework utilizing derandomized ES was introduced in [60], proposing the CMA-
ES as a niching optimizer for the first time. The underpinning of that framework
was the selection of a peak individual per subpopulation in each generation,
followed by its sampling according to DES principles to produce the consecutive
dispersion of search points. The biological analogy of this machinery is an
alpha male winning all the imposed competitions and dominating thereafter its
ecological niche, which then obtains all the sexual resources therein to generate its
offspring.

A common utility for defining the landscape subdomain of each subpopulation
is a so-called niche radius. A radius-based framework for niching, which employs
derandomized ES heuristics, has been formulated and investigated [61] and has
shown a broad success in tackling both synthetic and real-world multimodal
optimization problems. In practice, this framework holds multiple derandomized
ES populations, which conduct heuristic search in their radii-defined subdomains
and independently update their mutation distributions and step sizes. Since the
partitioning is enforced per each generation according to the niche radius parameter,
and since no a priori knowledge is available on the global structure of the search
landscape and the spatial distribution of its basins of attraction, an adaptive niche
radius approach was devised to remedy this so-called niche radius presumption [62].
The main idea of ES niching with self-adaptive niche shape approaches is to exploit
learned landscape information, as reflected by the evolving mutation distribution,
to define the niches in a more accurate manner. Especially, a Mahalanobis CMA-
ES niching heuristic was formulated, which carries out the distance calculations
among the individuals based upon the Mahalanobis distance metric, by utilizing
the evolving covariance matrices of the CMA mechanism. Such heuristic operation
resulted in successful niching on landscapes with unevenly shaped optima, on which
the fixed-radii approaches performed poorly [62].

On a related note, a multi-restart with increasing population size approach was
developed with the CMA algorithm, namely, IPOP-CMA-ES [4]. This heuristic
aims at attaining the global optimum, while possibly visiting local optima along
the process and restarting the algorithm with a larger population size and a modified
initial step size. It is thus not defined as a niching technique.

Noise Handling and Robust Optimization with ES

Robust optimization is concerned with identifying solvers that can also perform well
when the input parameters and/or the objective function values are slightly perturbed
on a systematic basis [10]. Most variants of ES are inherently suited to deal with
noisy environments, and it was shown that a larger population size and the use of
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recombination are beneficial in noisy settings [2,12]. Various techniques have shown
to further improve performance on noisy objective functions. One technique is
the so-called thresholding operator, which considers search points as improvement
only when they introduce objective function improvements that exceed a certain
threshold [9]. Moreover, it has been suggested to use the sample mean of multiple
evaluations of the same individual (effective fitness) for evaluation. This increases
the computation time, and therefore more efficient sampling schemes have been
developed subsequently. Furthermore, a rank stability scheme was suggested to treat
noise, exploiting the fact that ESs rather require a correct ranking rather than a
correct objective function value [27].

Knowledge of second-order Hessian information at the optimum is desirable
not only as a measure of system robustness to noise in the decision variables but
also as a means for dimensionality reduction and for landscape characterization.
Experimental optimization of quantum systems motivated the compilation of an
automated method to efficiently retrieve the Hessian matrix about the global
optimum without derivative evaluations from experimental measurements [63]. The
study designed a heuristic to learn the Hessian matrix based upon the CMA-ES
machinery, with necessary modification, by exploiting an inherent relation between
the covariance matrix to the inverse Hessian matrix. It then corroborated this newly
proposed technique, entitled forced optimal covariance adaptive learning (FOCAL),
on noisy simulation-based optimization as well as on laboratory experimental
quantum systems. The formal relation between the covariance matrix to the Hessian
matrix is generally unknown, but has been a subject of active research. A recent
study rigorously showed that accumulation of selected individuals carried the
potential to reveal valuable information about the search landscape [64], e.g., as
already practically utilized by derandomized ES variants. This theoretical study
proved that a statistically constructed covariance matrix over selected decision
vectors in the proximity of the optimum shared the same eigenvectors with the
Hessian matrix about the optimum. It then provided an analytic approximation of
this covariance matrix for a non-elitist multi-child .1; �/ strategy, holding for a large
population size �.

For a comprehensive overview of contemporary noise handling and robust
optimization in ESs, the reader is referred to the PhD dissertation of Kruisselbrink,
which was also complemented by an empirical study of the most common variants.
Also, theoretical limits in the precision of multi-evaluation schemes in the presence
of additive noise are derived therein [39].

Multi-criterion and Constraint-Handling ES

In practical settings, the scenario of unconstrained optimization is not very com-
mon. Rather problems with multiple constraint functions and conflicting objective
functions need to be solved.

In the optimization with constraints, it is mandatory to use alternative schemes
for step-size adaptation for reasons that are explained in detail by Kramer and
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Schwefel [38]. They also suggest alternative schemes that can better deal with the
constraints.

Adaptations of the ESs are also required for optimization with multiple objective
functions. In this case, it is common to search for a set of non-dominated
solutions, the so-called Pareto set. A first proposal on using evolution strategies
to approximate a Pareto front was made by Kursawe [40], a long time before the
nowadays flourishing research field of evolutionary multi-criterion optimization was
established. Today, three variants of the evolution strategy are used for optimization
with multiple objectives:

• Pareto archived evolution strategy [37]: This classical multi-criterion optimiza-
tion strategy uses an archive to maintain non-dominated points. The archive is
updated based on the non-dominance and density of points.

• Predator prey evolution strategy [22, 41]: In this biomimetic strategy, indi-
viduals are distributed on a grid and a population of predator individuals
is performing a random walk on the grid and triggers local selection. The
predators select their prey based on different objective functions or combination
strategies.

• Multi-objective CMA-ES [31]: This strategy seeks to improve contributions of
individuals to the hypervolume indicator, which measures the size of the Pareto
dominated space. Consequently, this strategy is well adapted to locate precise
and regular representations of Pareto fronts for objective functions with complex
shapes and correlated input variables. Another self-adaptation method, using
local tournaments on hypervolume contributions, was suggested in [36] but so
far received little attention.

Mirrored Sampling

The mirrored sampling technique is a derandomized mutation method. It was firstly
introduced in [16] for non-elitist .1; �/-ES and then extended to the .�; �/-ES [3].
The idea of mirrored sampling is to generate part (normally half) of the offspring
population in a derandomized way. More specifically, a single mutation vector z
is utilized to generate two offspring (rather than one in the standard ES) – one by
adding z to the parent x: x C z and another by subtracting z from x: x � z. The
two offspring generated are symmetric or mirrored to the parental point. Mirrored
sampling helps accelerating the convergence rate of evolution strategies, which is
theoretically proven in [16].

When applied in .�; �/-CMA-ES with cumulative step-size adaptation, the mir-
rored sampling leads to a reduction of recombined mutation variance. Consequently,
the step size is more than desirably reduced, and a premature convergence would
occur. In order to solve this, the concept of pairwise selection is introduced [3],
in which only the better offspring among the mirrored pair is allowed to possibly
contribute to the weighted recombination. Then, it is assured that recombination
will not use both elements of a mirrored pair at the same time.
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Benchmarks and Empirical Study

Besides a detailed description of evolution strategies and their theoretical aspects, it
would be intuitive and helpful to look at the empirical ability of ESs in solving the
black-box problems. In the ES benchmarking, two difficulties arise. On one hand, it
is hard to design a set of test functions that captures the problem characteristics
encountered in the real-world applications. On the other hand, summarizing ES
ability over a set of test functions would be not straightforward due to the fact
that performance of evolution strategies largely varies on problems with different
characteristics (e.g., separability). The black-box optimization benchmark [25]
(BBOB) is devised to tackle these difficulties. The noiseless BBOB encompasses
24 noise-free real-parameter single-objective functions that are either separable, ill-
conditioned, or multimodal. All the test functions are defined over Rd , while the
global optima for all the test functions are initialized in Œ�5; 5	d [19]. In addition,
BBOB also introduces a proper measure to represent the performance of ESs
for global optimization – the empirical cumulative distribution function (ECDF).
ECDFs can be summarized over multiple test functions and represented graphically,
increasing the accessibility of the benchmark results.

As opposed to the earlier work, in this empirical study, evolution strategies with
different step-size adaptation strategies are considered, including the classical 1=5-
th success rule and mutative self-adaptation. Moreover the benchmark also covers
a broad range of classical and contemporary strategies with derandomized self-
adaptation. The evolution strategies tested are listed in the following:

• .1C 1/-ES: one plus one elitist evolution strategy with 1=5 success rule.
• .15; 100/-MSC-ES: mutative self-adaptation of individual step sizes.
• .1; 7/-MSC-ES: mutative self-adaptation of individual step sizes.
• DR2-ES: the derandomized evolution strategy using accumulated success muta-

tion vector for step-size adaptation.
• .�=�w; �/-CMA-ES: covariance matrix adaptation evolution strategy with

weighted intermediate recombination.
• .�=�w; �m/-CMA-ES: CMA-ES with mirrored sampling and pairwise selection.
• IPOP-CMA-ES: a restart CMA-ES with increasing population size.
• .1; �/-DR2-Niching: the niching approach based on the second derandomized

ES variants.
• .1; �/-CMA-Niching: CMA-ES niching with fixed niche radius.
• .1C �/-CMA-Niching: the elitist version.
• .1; �/-Mahalanobis-CMA-Niching: niche shape adaptation using Mahalanobis

distance.

Experimental Settings

The BBOB parameter settings of the experiment are the same for all the tested
ES variants. The initial global step size � is set to 1. The maximum number of
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function evaluations is set to 104 � d . The initial solution vector (initial parent)
is a uniformly distributed random vector restricted to the hyper-box Œ�4; 4	d . The
algorithms are tested for problems of different number of input variables d . These
are d 2 f2; 3; 5; 10; 20g.

The parameter settings for CMA-ES variants follow the suggested values in [23];
the reader is referred to it for details. For all the niching ES variants, the setting
� D 10 is used throughout all the test. The fixed niche radius calculation can be
found in [60].
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Fig. 2 Bootstrapped empirical cumulative distribution of the number of objective function
evaluations divided by dimension (FEvals/DIM) for 50 targets in 10Œ�8::2	 for all functions and
subgroups in 5-D. The “best 2009” line corresponds to the best ERT observed during BBOB
2009 for each single target. Legend: ı:(1+1), O:(1,7)-MSC, ?:(15,100)-MSC, �:DR2, 4:CMA,
}:Mirroring
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Results

BBOB automatically records the history of the fitness values found by the tested
algorithm. The time is measured in numbers of function evaluations. The bench-
mark provides a postprocessing procedure to statistically estimate the empirical
cumulative distribution function (ECDF) of running length (function evaluations)
to reach the global optimum from the data. The ECDF of running length describes
the distribution of necessary function evaluations a specific optimization algorithm
follows in order to reach the global optimum in an experiment. An ECDF curve that
inclines to distribute running length over smaller values indicates good performance
of its corresponding algorithm. Thus, ECDFs characterize the performance of
optimization algorithms and are used to present the benchmark results.

Instead of generating ECDFs for all 24 test functions in BBOB, several represen-
tative functions in BBOB are selected, which are listed as follows:

1. f1 Sphere function.
2. f2 Ellipsoidal function.
3. f10 Rotated ellipsoidal function.
4. f8 Rosenbrock function.
5. f13 Sharp ridge function.
6. f7 Step ellipsoidal function.
7. f15 � f19 Multimodal function having weakly global structure.
8. f20 � f24 Multimodal function having adequate global structure.

By aggregating the selected functions in function groups, it is possible to
illustrate which ES variants perform better given a specific property (e.g., separable,
isotropic, multimodal) by identifying functions with distinct properties. Rather than
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Fig. 3 Bootstrapped empirical cumulative distribution of the number of objective function
evaluations divided by dimension (FEvals/DIM) for 50 targets in 10Œ�8::2	 for two groups of
multimodal functions in 5-D. The “best 2009” line corresponds to the best ERT observed during
BBOB 2009 for each single target. Legend: ı:(1+1), O:(1,7)-MSC, ?:(15,100)-MSC, �:DR2,
4:CMA, }:Mirroring
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subgroups in 20-D. The “best 2009” line corresponds to the best ERT observed during BBOB
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making a thorough competition, we aim for providing insights into the algorithms’
strengths and weaknesses.

The results are presented in two parts. In the first part, all the ESs except IPOP-
CMA-ES and the niching ES variants are compared on the aforementioned test
functions and are excluded from the comparison. The purpose is to compare all
the ESs which are inclining to local search. The results are depicted in Figs. 2, 3,
4, and 5. In 5D, the comparisons on the first 6 functions show that the standard
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CMA-ES and its mirrored sampling variant outperform the others in most functions.
In general, the mutative self-adaptation ESs perform worse than the derandomized
ES variants. The reason is that the MSC-ES normally exploits a much larger
population size in order to adapt the covariance and thus consumes much more
function evaluations. On the simple sphere function, the winner is .1 C 1/-ES,
as expected from theory. In addition, the DR2-ES is equally good as CMA-ES.
On the separable ellipsoid function, DR2-ES even outperforms CMA-ES because
it efficiently adapts the uncorrelated mutations. On the non-separable functions
(ellipsoid, Rosenbrock, sharp ridge and step-ellipsoid), CMA-ES and mirrored
sampling significantly outperform the other ES variants. This is because CMA-ES
is capable of adapting arbitrary mutations by means of the covariance matrix, while
the other ES variants exploit either isotropic or axis-parallel mutation distributions.
In 20D, the comparison roughly shows the same results as in 5D. Note that on
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separable ellipsoid and step-ellipsoid function, .15; 100/-MSC-ES could catch the
convergence speed of CMA-ES variants.

In the second part, all the niching ES variants, IPOP-CMA-ES, restart .1C1/-ES
and (15,100)-MSC-ES are compared on the multimodal functions. These algorithms
are grouped for this comparison because they are better equipped for global search.
The results are depicted in Figs. 6 (5D) and 7 (20D). On the weakly structured
multimodal functions (f15 � f19), IPOP-CMA-ES outperforms all the niching ES
variants, .1 C 1/-ES with restart and .15; 100/-MSC-ES. .1 C �/-CMA-Niching
shows the best performance among all the niching ES variants tested. Surprisingly,
.�; �/-MSC-ES performs well even compared to niching ES variants, which may
be a consequence of its large population size. On the weakly structured multimodal
functions, .1 C �/-CMA-Niching could catch up with the performance of IPOP-
CMA-ES both in 5D and 20D. .�; �/-MSC-ES performs quite poorly in this case. In
addition, although it is a simple strategy, .1C1/-restart shows good results compared
to IPOP-CMA-ES and niching ES. Evidently, the niching ES variants spend many
function evaluations for maintaining the local optima and thus exhibits altogether
poorer performance in terms of global convergence speed when compared to, e.g.,
IPOP-CMA-ES, which targets the accurate approximation of a single optimum and
exploits much of its resources to achieve this.

Conclusions

It has been shown in this chapter that evolution strategies are a versatile class of
stochastic search heuristics for optimization. There exists a rich body of theoretical
results on ESs, including global convergence conditions, results showing linear
convergence rates on high dimensional functions, and findings on the stability of
subpopulations and the impact of recombination on global convergence reliability.
Moreover, ESs are rank-based (order-invariant) and invariant to changes of the
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coordinate system. The self-adaptation of the stochastic distribution is an important
feature, too, as it frees the user from the burden of choosing the right parameters for
mutation and it also makes highly precise approximation of optima possible.

This chapter highlighted mainstream variants of ESs for continuous optimization,
including the .1C1/-ES with 1=5-th success rule, the .�; �/�ES with mutative step-
size adaptation, and common variants of ES with different levels of derandomized
step-size adaptation, namely, DR1, DR2, DR3, and CMA-ES. Moreover, common
concepts of ESs for multimodal optimization were discussed.

All these strategies have been compared on different categories of functions.
The empirical studies confirmed the superiority of covariance matrix adaptation
techniques on ill-conditioned problems with correlated variables. However, if these
problems do not govern the search difficulty, other evolution strategies can be highly
competitive as well. Moreover, it was confirmed that multimodal optimization
requires special adaptations to evolution strategies in order to achieve maximal
performance.

Our literature review has shown that the algorithmic techniques developed for
ES are not only fruitful in the domain of continuous optimization but can be applied
to other problem classes as well. Here, the key is defining a metric representation
of the search space and following a set of guidelines for the design of mutation and
recombination operators, which were reviewed here in a rather informal manner.

Some prevalent topics for future research will be the integration of multiple
criteria and constraints, although some first promising results are already available
in this direction. Moreover, for nonstandard ES, the theoretical analysis needs to be
advanced, in particular the study of convergence dynamics when the available time
is limited. Finally, looking back to the original biological inspiration of evolution
strategies, one might conjecture that nature has still many “tricks” in store that when
well understood could lead to a further enhancement of ES-like search strategies. In
this context, it will be interesting to follow recent trends in biological evolution
theories [32], showing that a much broader set of mechanisms seem to govern
organic evolution than those captured in the modern synthesis.
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Abstract

As its name suggests, a matheuristic is the hybridization of mathematical
programming with metaheuristics. The hallmark of matheuristics is the central
role played by the mathematical programming model, around which the overall
heuristic is built. As such, matheuristic is not a rigid paradigm but rather
a concept framework for the design of mathematically sound heuristics. The
aim of this chapter is to introduce the main matheuristic ideas. Three specific
applications in the field of wind farm, packing, and vehicle routing optimization,
respectively, are addressed and used to illustrate the main features of the method.

Keywords
Heuristics � Large scale neighborhood search � Local branching �

Mathematical programming � Matheuristics

Introduction

The design of heuristics for difficult optimization problems is itself a heuristic
process that often involves the following main steps.

After a clever analysis of the problem at hand and of the acceptable simplifica-
tions in its definition, one tries to set up an effective mathematical programming
(MP) model and to solve it by a general-purpose piece of software—often a mixed-
integer linear programming (MIP) solver. Due to the impressive improvement
of general-purpose solvers in recent years, this approach can actually solve the
instances of interest to proven optimality (or with an acceptable approximation)
within a reasonable computing time, in which case of course no further effort is
needed.

If this is not the case, one can insist on the MP approach and try to obtain
better and better results by improving the model and/or by enhancing the solver
by specialized features (cutting planes, branching, etc.). Or one can forget about
MP and resort to ad hoc heuristics not based on the MP model. In this latter case,
the MP model is completely disregarded or just used for illustrating the problem
characteristics and/or for getting an off-line indication of the typical approximation
error on a set of sample instances.

A third approach is however possible that consists in using the MP solver
as a basic tool within the heuristic framework. This hybridization of MP with
metaheuristics leads to the matheuristic approach, where the heuristic is built around
the MP model. Matheuristics became popular in recent years, as witnessed by the
publication of dedicated volumes and journal special issues [8, 19, 24] and by the
dedicated sessions on MP and metaheuristic conferences.

Designing an effective heuristic is an art that cannot be framed into strict
rules. This is particularly true when addressing a matheuristic, which is not a
rigid paradigm but a concept framework for the design of mathematically sound
heuristics. In this chapter, we will therefore try to illustrate some main matheuristic
features with the help of different examples of application.
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Section “General-Purpose MIP-Based Heuristics” describes powerful general-
purpose MIP heuristics that can be used within the matheuristic framework.
Interestingly, these heuristics can themselves be viewed as the first successful
applications of the matheuristic idea of hybridizing MP and metaheuristics. Indeed,
as noticed in [8], one of the very first illustrations of the power of the matheuristic
idea is the general-purpose local branching [7] paradigm, where a black-box MIP
solver is used to explore a solution neighborhood defined by invalid constraints
added to the MIP model for the sake of easing its solution.

Section “Application 1: Wind Farm Layout Optimization” addresses the design
of a matheuristic for wind farm optimization. This application is used to illustrate
the importance of the choice of the MIP model: models that are weak in polyhedral
terms can be preferred to tighter—but computationally much harder—models when
heuristic (as opposed to exact) solutions are required.

Section “Application 2: Prepack Optimization” addresses a packing problem
where the model is nonlinear, and the matheuristic is based on various ways to
linearize it after a heuristic fixing of some variables.

Finally, section “Application 3: Vehicle Routing” is used to illustrate an advanced
feature of matheuristics, namely, the solution of auxiliary MP models that describe
a subproblem in the solution process. In particular, we address a vehicle routing
problem and derive a matheuristic based on a set-partitioning MIP model asking for
the reallocation of a subset of customer sequences subject to capacity and distance
constraints.

The present chapter is based on previous published work; in particular, sec-
tions “General-Purpose MIP-Based Heuristics”, “Application 1: Wind Farm Layout
Optimization”, “Application 2: Prepack Optimization”, and “Application 3: Vehicle
Routing” are based on [8, 11, 13, 15], respectively.

General-Purpose MIP-Based Heuristics

Heuristics for general-purpose MIP solvers form the basis of the matheuristic’s
toolkit. Their relevance for our chapter is twofold. On the one hand, they are
invaluable tools for the solution of the subproblems tailored by the matheuristic
when applied to a specific problem. On the other hand, they illustrate the benefits
for a general-purpose MIP solver deriving from the use of metaheuristics concepts
such as local search and evolutionary methods.

Modern MIP solvers exploit a rich arsenal of tools to attack hard problems. It is
widely accepted that the solution of hard MIPs can take advantage from the solution
of a series of auxiliary linear programs (LPs) intended to enhance the performance
of the overall MIP solver. For example, auxiliary LPs may be solved to generate
powerful disjunctive cuts or to implement a strong branching policy. On the other
hand, it is a common experience that finding good-quality heuristic MIP solutions
often requires a computing time that is just comparable to that needed to solve the
LP relaxation. So, it makes sense to think of exact/heuristic MIP solvers where
auxiliary MIPs (as opposed to LPs) are heuristically solved on the fly, with the aim
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of bringing the MIP technology under the chest of the MIP solver itself. This leads
to the idea of “translating into a MIP model” (MIPping in the jargon of [9]) some
crucial decisions to be taken when designing a MIP-based algorithm.

We next describe the new generation of MIP heuristics that emerged in the late
1990s, which are based on the idea of systematically using a “black-box” external
MIP solver to explore a solution neighborhood defined by invalid linear constraints.
We address a generic MIP of the form

.MIP / min cT x (1)

Ax � b; (2)

xj 2 f0; 1g; 8j 2 B; (3)

xj integer; 8j 2 G; (4)

xj continuous; 8j 2 C; (5)

where A is an m � n input matrix and b and c are input vectors of dimension m
and n, respectively. Here, the variable index set N WD f1; : : : ; ng is partitioned into
.B;G; C/, where B is the index set of the 0-1 variables (if any), while sets G and C
index the general integer and the continuous variables, respectively. Removing the
integrality requirement on variables indexed by I WD B [ G leads to the so-called
LP relaxation.

Local Branching

The local branching (LB) scheme of Fischetti and Lodi [7] appears to be one of the
first general-purpose heuristics using a black-box MIP solver applied to subMIPs,
and it can be viewed as a precursor of matheuristics. Given a reference solution Nx

of a MIP with B 6D ;, one aims at finding an improved solution that is “not too far”
from Nx, in the sense that not too many binary variables need be flipped. To this end,
one can define the k-opt neighborhood N . Nx; k/ of Nx as the set of the MIP solutions
satisfying the invalid local branching constraint

�.x; Nx/ WD
X

j2BW NxjD0

xj C
X

j2BW NxjD1

.1 � xj / � k; (6)

for a small neighborhood radius k—an integer parameter typically set to 10 or 20.
The neighborhood is then explored (possibly heuristically, i.e., with some small
node or time limit) by means of a black-box MIP solver. Experimental results [10]
show that the introduction of the local branching constraint typically has the positive
effect of driving to integrality many component of the optimal solution of the LP
relaxation, improving the so-called relaxation grip and hence the capability of the
MIP solver to find (almost) optimal integer solutions within short computing times.
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Of course, this effect is lost if parameter k is set to a large value—a mistake that
would make local branching completely ineffective.

LB is in the spirit of local search metaheuristics and, in particular, of large-
neighborhood search (LNS) [29], with the novelty that neighborhoods are obtained
through “soft fixing,” i.e., through invalid cuts to be added to the original MIP
model. Diversification cuts can be defined in a similar way, thus leading to a flexible
toolkit for the definition of metaheuristics for general MIPs.

Relaxation-Induced Neighborhood Search

The relaxation-induced neighborhood search (RINS) heuristic of Danna, Rothberg,
and Le Pape [4] also uses a black-box MIP solver to explore a neighborhood of
a given solution Nx and was originally designed to be integrated in a branch-and-
bound solution scheme. At specified nodes of the branch-and-bound tree, the current
LP relaxation solution x� and the incumbent Nx are compared, and all integer-
constrained variables that agree in value are fixed. The resulting MIP is typically
easy to solve, as fixing reduces its size considerably, and often provides improved
solutions with respect to Nx.

Polishing a Feasible Solution

The polishing algorithm of Rothberg [27] implements an evolutionary MIP heuristic
which is invoked at selected nodes of a branch-and-bound tree and includes all
classical ingredients of genetic computation, namely:

• Population: A fixed-size population of feasible solutions is maintained. Those so-
lutions are either obtained within the branch-and-bound tree (by other heuristics)
or computed by the polishing algorithm itself.

• Combination: Two or more solutions (the parents) are combined with the
aim of creating a new member of the population (the child) with improved
characteristics. The RINS scheme is adopted, i.e., all variables whose value
coincides in the parents are fixed, and the reduced MIP is heuristically solved
by a black-box MIP solver within a limited number of branch-and-bound nodes.
This scheme is clearly much more time-consuming than a classical combina-
tion step in evolutionary algorithms, but it guarantees feasibility of the child
solution.

• Mutation: Diversification is obtained by performing a classical mutation step
that (i) randomly selects a “seed” solution in the population, (ii) randomly
fixes some of its variables, and (iii) heuristically solves the resulting reduced
MIP.

• Selection: Selection of the two parents to be combined is performed by
randomly picking a solution in the population and then choosing, again at
random, the second parent among those solutions with a better objective
value.
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Proximity Search

Proximity search [10] is a “dual version” of local branching that tries to overcome
the issues related to the choice of the neighborhood radius k. Instead of hard-fixing
the radius, proximity search fixes the minimum improvement of the solution value
and changes the objective function to favor the search of solutions at small Hamming
distance with respect to the reference one.

The approach works in stages, each aimed at producing an improved feasible
solution. As in LB or RINS, at each stage a reference solution Nx is given, and one
aims at improving it. To this end, an explicit cutoff constraint

cT x � cT Nx � � (7)

is added to the original MIP, where � > 0 is a given tolerance that specifies the
minimum improvement required. The objective function of the problem can then be
replaced by the proximity function �.x; Nx/ defined in (6), to be minimized. One
then applies the MIP solver, as a black box, to the modified problem in the hope
of finding a solution better than Nx. Computational experience confirms that this
approach is quite successful (at least, on some classes of problems), due to the action
of the proximity objective function that improves the “relaxation grip” of the model.

A simple variant of the above scheme, called “proximity search with incumbent,”
is based on the idea of providing Nx to the MIP solver as a staring solution. To avoid
Nx be rejected because of the cutoff constraint (7), the latter is weakened to its “soft”
version

cT x � cT Nx � �.1 � �/ (8)

while minimizing �.x; Nx/ C M� instead of just �.x; Nx/, where � � 0 is a
continuous slack variable and M � 0 is a large penalty.

Application 1: Wind Farm Layout Optimization

Green energy became a topic of great interest in recent years, as environmental
sustainability asks for a considerable reduction in the use of fossil fuels. The wind
farm layout optimization problem aims at finding an allocation of turbines in a given
site so as to maximize power output. This strategic problem is extremely hard in
practice, both for the size of the instances in real applications and for the presence
of several nonlinearities to be taken into account. A typical nonlinear feature of this
problem is the interaction among turbines, also known as wake effect. The wake
effect is the interference phenomenon for which, if two turbines are located one
close to another, the upwind one creates a shadow on the one behind. Interference
is therefore of great importance in the design of the layout as it results into a loss of
power production for the turbine downstream.
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We next outline the main steps in the design of a sound matheuristic scheme for
wind farm layout optimization that is able to address the large-size instances arising
in practical applications.

Choice of the MIP Model

Different models have been proposed in the literature to describe interference. We
will consider first a simplified model from the literature [5], where the overall
interference is the sum of pairwise interferences between turbine pairs. The model
addresses the following constraints:

(a) a minimum and maximum number of turbines that can be built is given;
(b) there should be a minimal separation distance between two turbines to ensure

that the blades do not physically clash (turbine distance constraints);
(c) if two turbines are installed, their interference will cause a loss in the power

production that depends on their relative position and on wind conditions.

Let V denote the set of possible positions for a turbine, called “sites” in what
follows, and let

• NMIN and NMAX be the minimum and maximum number of turbines that can be
built, respectively;

• DMIN be the minimum distance between two turbines;
• dist.i; j / be the Euclidean distance between sites i and j ;
• Iij be the interference (loss of power) experienced by site j when a turbine is

installed at site i , with Ijj D 0 for all j 2 V ;
• Pi be the power that a turbine would produce if built (alone) at site i .

In addition, let GI D .V;EI / denote the incompatibility graph with

EI D fŒi; j � 2 V � V W dist.i; j / < DMIN; i < j g

and let n WD jV j denote the total number of sites. Two sets of binary variables are
defined:

xi D

�
1 if a turbine is built at site i I
0 otherwise

.i 2 V /

zij D

�
1 if two turbines are built at both sites i and j I

0 otherwise
.i; j 2 V; i < j /

The model then reads
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max
X

i2V

Pixi �
X

i2V

X

j2V;i<j

.Iij C Iji /zij (9)

s.t. NMIN �
X

i2V

xi � NMAX (10)

xi C xj � 1 8Œi; j � 2 EI (11)

xi C xj � 1 � zij 8i; j 2 V; i < j (12)

xi 2 f0; 1g 8i 2 V (13)

zij 2 f0; 1g 8i; j 2 V; i < j (14)

Objective function (9) maximizes the total power production by taking interfer-
ence losses Iij into account. Constraints (11) model pairwise site incompatibility.
Constraints (12) force zij D 1 whenever xi D xj D 1; because of the objective
function, this is in fact equivalent to imposing zij D xixj .

The definition of the turbine power vector .Pi / and of interference matrix .Iij /
depends on the wind scenario considered, which greatly varies in time. Using
statistical data, one can in fact collect a large number K of wind scenarios k, each
associated with a pair .P k; I k/ with a probability �k , and define the average power
and interference to be used in the model as:

Pi WD

KX

kD1

�kP
k
i 8i 2 V (15)

Iij WD

KX

kD1

�kI
k
ij 8i; j 2 V (16)

While (9), (10), (11), (12), (13), and (14) turns out to be a reasonable model when
just a few sites have to be considered (say n � 100), it becomes hopeless when
n � 1000 because of the huge number of variables and constraints involved, which
grows quadratically with n. Therefore, when facing instances with several thousand
sites, an alternative (possibly weaker) model is required, where interference can be
handled by a number of variables and constraints that grows just linearly with n.
The model below is a compact reformulation of model (9), (10), (11), (12), (13),
and (14) that follows a recipe of Glover [17] that is widely used, e.g., in the quadratic
assignment problem [12, 32]. The original objective function (to be maximized),
rewritten as

X

i2V

Pixi �
X

i2V

0

@
X

j2V

Iij xj

1

A xi (17)

is restated as
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X

i2V

.Pixi � wi / (18)

where

wi WD

0

@
X

j2V

Iij xj

1

A xi D

( P
j2V Iij xj if xi D 1

0 if xi D 0

denotes the total interference caused by site i . Our compact model then reads

max z D
X

i2V

.Pixi � wi / (19)

s.t. NMIN �
X

i2V

xi � NMAX (20)

xi C xj � 1 8Œi; j � 2 EI (21)
X

j2V

Iij xj � wi CMi.1 � xi / 8i 2 V (22)

xi 2 f0; 1g 8i 2 V (23)

wi � 0 8i 2 V (24)

where the big-M term Mi D
P

j2V WŒi;j �62EI
Iij is used to deactivate constraint (22)

in case xi D 0, in which case wi D 0 because of the objective function.

Choice of Ad Hoc Heuristics

A simple 1-opt heuristic can be designed along the following lines. At each step, we
have an incumbent solution, say Qx, that describes the best-known turbine allocation
( Qxi D 1 if a turbine is built at site i , 0 otherwise), and a current solution x. Let

z D
X

i2V

Pixi �
X

i2V

X

j2V

Iij xi xj

be the profit of the current solution, � D
P

i2V xi be its cardinality, and define for
each j 2 V the extra-profit ıj incurred when flipping xj , namely:

ıj D

8
ˆ̂<

ˆ̂:

Pj �
X

i2V WxiD1

.Iij C Iji / if xj D 0;

�Pj C
X

i2V WxiD1

.Iij C Iji / if xj D 1
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where we assume Iij D BIG for all incompatible pairs Œi; j � 2 EI , and BIG >P
i2V Pi is a large penalty value, while Ii i D 0 as usual.
We start with x D 0, z D 0, and � D 0 and initialize ıj D Pj for all j 2 V .

Then, we iteratively improve x by a sequence of 1-opt moves, according to the
following scheme. At each iteration, we look in O.n/ time for the site j with
maximum ıj C FLIP .j /, where function FLIP .j / takes cardinality constraints
into account, namely

FLIP .j / D

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

�HUGE if xj D 0 and � � NMAX
�HUGE if xj D 1 and � � NMIN
CHUGE if xj D 0 and � < NMIN
CHUGE if xj D 1 and � > NMAX
0 otherwise

with HUGE � BIG (recall that function ıj C FLIPj has to be maximized).
Once the best j has been found, say j �, if ıj� C FLIP .j �/ > 0, we just

flip xj� ; update x, z, and � in O.1/ time; update all ıj ’s in O.n/ time (through
the parametric technique described in [11]); and repeat. In this way, a sequence
of improving solutions is obtained, until a local optimal solution that cannot be
improved by just one flip is found. To escape local minima, a simple perturbation
scheme can be implemented; see again [11] for details.

A 2-opt heuristic can similarly be implemented to allow a single turbine to move
to a better site—a move that requires flipping two variables. Each 2-opt exchange
requires O.n2/ time as it amounts to trying n 1-opt exchanges and to apply the best
one.

The Overall Matheuristic

Our final approach is a mixture of ad hoc (1- and 2-opt) and general MIP (proximity
search with incumbent) heuristics and works as shown in Algorithm 1.

At Step 2, the heuristics of section “Choice of Ad Hoc Heuristics” are applied in
their “initial-solution” mode where one starts with Qx D x D 0 and aborts execution
when 1-opt is invoked 10,000 consecutive times without improving Qx. At Step 4,
instead, a faster “cleanup” mode is applied. As we already have a hopefully good
incumbent Qx to refine, we initialize x D Qx and repeat the procedure until we count
100 consecutive 1-opt calls with no improvement of Qx. As to time-consuming 2-opt
exchanges, they are applied with a certain frequency and in any case just before the
final Qx is returned.

Two different MIP models are used to feed the proximity-search heuristic at
Step 6. During the first part of the computation, we use a simplified MIP model
obtained from (19), (20), (21), (22), (23), and (24) by removing all interference
constraints (22), thus obtaining a much easier problem. A short time limit is imposed
for each call of proximity search when this simplified model is solved. In this
way we aggressively drive the solution Qx to increase the number of built turbines,
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Algorithm 1: The overall matheuristic framework
1: read input data and compute the overall interference matrix (Iij );
2: apply ad hoc heuristics (1- and 2-opt) to get a first incumbent Qx;
3: while time limit permits do
4: apply quick ad hoc refinement heuristics (few iterations of 1- and 2-opt) to

possibly improve Qx;
5: if n > 2000, randomly remove points i 2 V with Qxi D 0 so as to reduce the

number of candidate sites to 2000;
6: build a MIP model for the resulting subproblem and apply proximity search

to refine Qx until the very first improved solution is found (or time limit is
reached);

7: end while
8: return Qx

without being bothered by interference considerations and only taking pairwise
incompatibility (21) into account. This approach quickly finds better and better
solutions (even in terms of the true profit), until either (i) no additional turbine can be
built or (ii) the addition of new turbines does in fact reduce the true profit associated
to the new solution because of the neglected interference. In this situation we switch
to the complete model (19), (20), (21), (22), (23), and (24) with all interference
constraints, which is used in all next executions of Step 6. Note that the simplified
model is only used at Step 6, while all other steps of the procedure always use the
true objective function that takes interference into full account.

Computational Results

The following alternative solution approaches were implemented in C language,
some of which using the commercial MIP-solver IBM ILOG Cplex 12.5.1 [21];
because of the big-Ms involved in the models, all Cplex’s codes use zero as
integrality tolerance (CPX_PARAM_EPINT = 0.0).

(a) proxy: The matheuristic outlined in the previous section, built on top of
Cplex with the following aggressive parameter tuning: all cuts deactivated,
CPX_PARAM_RINSHEUR = 1, CPX_PARAM_POLISHAFTERTIME = 0.0,
CPX_PARAM_INTSOLLIM = 2;

(b) cpx_def: The application of IBM ILOG Cplex 12.5.1 in its default setting,
starting from the same heuristic solution Qx available right after the first execution
of Step 2 of Algorithm 1;

(c) cpx_heu: Same as cpx_def, with the following internal tuning intended
to improve Cplex’s heuristic performance: all cuts deactivated, CPX_PA-
RAM_RINSHEUR = 100, CPX_PARAM_POLISHAFTERTIME = 20% of the
total time limit;
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(d) loc_sea: A simple heuristic not based on any MIP solver, that just loops
on Steps 4 of Algorithm 1 and randomly removes installed turbines from
the current best solution after 10,000 iterations without improvement of the
incumbent.

For each algorithm, we recorded the best solution found within a given time
limit.

In our view, loc_sea is representative of a clever but not oversophisticated
metaheuristic, as typically implemented in practice, while cpx_def and cpx_heu
represent a standard way of exploiting a MIP model once a good feasible solution
is known.

Our test bed refers to an offshore 3,000 � 3,000 (m) square withDMIN D 400 (m)
minimum turbine separation, with no limit on the number of turbines to be built (i.e.,
NMIN D 0 and NMAX D C1). Turbines are all of Siemens SWT-2.3-93 type (rotor
diameter 93 m), which produces a power of 0.0 MW for wind speed up to 3 m/s,
of 2.3 MW for wind speed greater than or equal to 16 m/s, and intermediate values
for winds in range 3–16 m/s according to a nonlinear power curve [30]. Pairwise
interference (in MW) was computed using Jensen’s model [22], by averaging
250,000+ real-world wind samples. Those samples were grouped into about 500
macro-scenarios to reduce the computational time spent for the definition of the
interference matrix. A pairwise average interference of 0.01 MW or less was treated
as zero. The reader is referred to [6] for details.

We generated five classes of medium-to-large problems with n ranging from
1,000 to 20,000. For each class, ten instances have been considered by generating n
uniformly random points in the 3,000 � 3,000 square. (Although in the offshore
case turbine positions are typically sampled on a regular grid, we decided to
randomly generate them to be able to compute meaningful statistics for each value
of n.)

In what follows, reported computing times are in CPU sec.s of an Intel Xeon E3-
1220 V2 quad-core PC with 16GB of RAM and do not take Step 1 of Algorithm 1
into account as the interference matrix is assumed to be precomputed and reused at
each run.

Computational results on our instances are given in Table 1, where each entry
refers to the performance of a given algorithm at a given time limit. In particular,
the left part of the table reports, for each algorithm and time limit, the number of
wins, i.e., the number of instances for which a certain algorithm produced the best-
known solution at the given time limit (ties allowed).

According to the table, proxy outperforms all competitors by a large amount for
medium-to-large instances. As expected, cpx_heu performs better for instances
with n D 1,000 as it is allowed to explore a large number of enumeration nodes
for the original model and objective function. Note that loc_sea has a good
performance for short time limits and/or for large instances, thus confirming its
effectiveness, whereas cpx_heu is significantly better than loc_sea only for
small instances and large time limits.

A different performance measure is given in the right-hand side part of Table 1,
where each entry gives the average optimality ratio, i.e., the average value of the
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Table 1 Number of times each algorithm finds the best-known solution within the time limit
(wins) and optimality ratio with respect to the best-known solution—the larger, the better

Number of wins Optimality ratio

n Time
limit (s)

proxy cpx_def cpx_heu loc_sea proxy cpx_def cpx_heu loc_sea

1,000 60 6 1 3 0 0.994 0.983 0.987 0.916

300 4 2 4 0 0.997 0.991 0.998 0.922

600 7 3 7 0 0.997 0.992 0.997 0.932

900 5 2 3 0 0.998 0.993 0.996 0.935

1,200 5 1 5 0 0.998 0.992 0.997 0.939

1,800 5 1 4 0 0.998 0.992 0.996 0.942

3,600 4 2 5 0 0.998 0.995 0.997 0.943

5,000 60 9 6 6 5 0.909 0.901 0.901 0.904

300 10 0 0 0 0.992 0.908 0.908 0.925

600 10 0 10 0 0.994 0.908 0.994 0.935

900 10 0 0 0 0.994 0.908 0.908 0.936

1,200 10 0 0 0 0.994 0.908 0.925 0.939

1,800 9 0 1 0 0.996 0.908 0.971 0.946

3,600 5 0 5 0 0.996 0.932 0.994 0.948

10,000 60 9 9 8 10 0.914 0.913 0.914 0.914

300 10 2 2 2 0.967 0.927 0.927 0.936

600 10 0 10 0 0.998 0.928 0.998 0.944

900 10 0 0 0 1.000 0.928 0.928 0.948

1,200 10 0 0 0 1.000 0.928 0.928 0.951

1,800 10 0 0 0 1.000 0.928 0.928 0.957

3,600 9 0 0 1 1.000 0.928 0.928 0.964

15,000 60 9 10 9 9 0.909 0.912 0.911 0.909

300 10 8 7 8 0.943 0.937 0.935 0.937

600 10 0 10 0 0.992 0.939 0.992 0.942

900 10 0 0 0 1.000 0.939 0.939 0.956

1,200 9 0 0 1 1.000 0.939 0.939 0.959

1,800 9 0 0 1 1.000 0.939 0.939 0.965

3,600 9 0 0 1 1.000 0.939 0.939 0.972

20,000 60 9 9 9 10 0.901 0.902 0.901 0.902

300 10 8 10 10 0.933 0.933 0.933 0.933

600 9 0 9 1 0.956 0.935 0.956 0.941

900 10 0 0 0 0.978 0.935 0.935 0.945

1,200 10 0 0 0 0.991 0.935 0.935 0.950

1,800 10 0 0 0 0.999 0.935 0.935 0.963

3,600 10 0 0 0 1.000 0.935 0.935 0.971

ALL 60 42 35 35 34 0.925 0.922 0.922 0.909

300 44 20 23 20 0.966 0.939 0.940 0.930

600 46 3 46 1 0.987 0.941 0.987 0.938

900 45 2 3 0 0.994 0.941 0.941 0.944

1,200 44 1 5 1 0.997 0.940 0.945 0.947

1,800 43 1 5 1 0.999 0.940 0.954 0.955

3,600 36 2 10 2 0.999 0.946 0.959 0.959
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ratio between the solution produced by an algorithm (on a given instance at a given
time limit) and the best solution known for that instance—the closer to one, the
better. It should be observed that an improvement of just 1% has a very significant
economical impact due to the very large profits involved in the wind farm context.
The results show that proxy is always able to produce solutions that are quite
close to the best one. As before, loc_sea is competitive for large instances when
a very small computing time is allowed, whereas cpx_def and cpx_heu exhibit
a good performance only for small instances and are dominated even by loc_sea
for larger ones.

Application 2: Prepack Optimization

Packing problems play an important role in industrial applications. In these
problems, a given set of items has to be packed into one or more containers
(bins) so as to satisfy a number of constraints and to optimize some objective
function.

Most of the contributions from the literature are devoted to the case where all
the items have to be packed into a minimum number of bins so as to minimize,
e.g., transportation costs; within these settings, only loading costs are taken into
account. The resulting problem is known as the bin packing problem and has been
widely studied in the literature both in its one-dimensional version [25] and in its
higher-dimensional variants [23].

We will next consider a different packing problem arising in inventory allocation
applications, where the operational cost for packing the bins is comparable, or even
higher, than the cost of the bins themselves. This is the case, for example, for
warehouses that have to manage a large number of different customers (e.g., stores),
each requiring a given set of items. Assuming that automatic systems are available
for packing, the required workforce is related to the number of different ways that
are used to pack the bins to be sent to the customers. To limit this cost, a hard
constraint can be imposed on the total number of different box configurations that
are used.

Prepacking items into box configurations has obvious benefits in terms of easier
and cheaper handling, as it reduces the amount of material handled by both the
warehouse and the customers. However, the approach can considerably reduce the
flexibility of the supply chain, leading to situations in which the set of items that
are actual shipped to each customer may slightly differ from the required one—at
the expense of some cost in the objective function. In addition, an upper bound on
overstocking is usually imposed for each store.

The resulting problem, known as prepack optimization problem (POP), was
recently addressed in [20], where a real-world application in the fashion industry is
presented, and heuristic approaches are derived using both constraint programming
(CP) and MIP techniques.
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Mathematical Model

In this section we briefly formalize POP and review the mathematical model
introduced in [20]. We are given a set I of types of products and a set S of stores.
Each store s 2 S requires an integer number ris of products of type i 2 I . Bins with
different capacities are available for packing items: we denote by K 	 ZC the set
of available bin capacities.

Bins must be completely filled and are available in an unlimited number for each
type. A box configuration describes the packing of a bin, in terms of number of
products of each type that are packed into it. We denote by NB the maximum
number of box configurations that can be used for packing all products and by
B D f1; : : : ; NBg the associated set.

Products’ packing into boxes is described by integer variables ybi : for each
product type i 2 I and box configuration b 2 B , the associated variable ybi
indicates the number of products of type i that are packed into the b-th box
configuration. In addition, integer variables xbs are used to denote the number of
bins loaded according to box configuration b that have to be shipped to store s 2 S .

Understocking and overstocking of product i at store s are expressed by
decisional variables uis and ois , respectively. Positive costs ˛ and ˇ penalize each
unit of under- and overstocking, respectively, whereas an upper bound ıis on the
maximum overstocking of each product at each store is also imposed.

Finally, for each box configuration b 2 B and capacity value k 2 K, a binary
variable tbk is introduced that takes value 1 if box configuration b corresponds to a
bin of capacity k.

Additional integer variables used in the model are qbis D xbs ybi (number of
items of type i sent to store s through boxes loaded with configuration b); hence,P

b2B qbis gives the total number of products of type i that are shipped to store s.
A mixed-integer nonlinear programming (MINLP) model then reads:

min
X

s2S

X

i2I

.˛uis C ˇois/ (25)

qbis D xbsybi .b 2 BI i 2 I I s 2 S/ (26)
X

b2B

qbis � ois C uis D ris .i 2 I I s 2 S/ (27)

X

i2I

ybi D
X

k2K

k tbk .b 2 B/ (28)

X

k2K

tbk D 1 .b 2 B/ (29)

ois � ıis .i 2 I I s 2 S/ (30)

tbk 2 f0; 1g .b 2 BI k 2 K/ (31)

xbs � 0 integer .b 2 BI s 2 S/ (32)
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ybi � 0 integer .b 2 BI i 2 I / (33)

The model is of course nonlinear, as the bilinear constraints (26) involve the
product of decision variables. To derive a linear MIP model, the following standard
technique can be used. Each xbs variable is decomposed into its binary expansion
using binary variables vbsl (l D 0; : : : ; L), where L is easily computed from an
upper bound on xbs . When these variables are multiplied by ybi , the corresponding
product wbisl D vbsl ybi are linearized with the addition of suitable constraints.

Our final MIP is therefore obtained from (25), (26), (27), (28), (29), (30), (31),
(32), and (33) by adding

xbs D

LX

lD0

2lvbsl .b 2 BI s 2 S/ (34)

vbsl 2 f0; 1g .b 2 BI s 2 S I l D 0; : : : ; L/ (35)

and by replacing each nonlinear equation (26) with the following set of new
variables and constraints:

qbis D

LX

lD0

2lwbisl .b 2 BI i 2 I I s 2 S/ (36)

wbisl � Y vbsl .b 2 BI i 2 I I s 2 S I l D 0; : : : ; L/ (37)

wbisl � ybi .b 2 BI i 2 I I s 2 S I l D 0; : : : ; L/ (38)

wbisl � ybi � Y .1 � vbsl / .b 2 BI i 2 I I s 2 S I l D 0; : : : ; L/ (39)

wbisl � 0 .b 2 BI i 2 I I s 2 S I l D 0; : : : ; L/ (40)

where Y denotes an upper bound on the y variables.
In case all capacities are even, the following constraint—though redundant—

plays a very important role in improving the LP bound of our MIP model:

X

i2I

.uis C ois/ � 1

 
s 2 S W

X

i2I

ris is odd

!
(41)

Matheuristics

The MIP model of the previous subsection is by far too difficult to be addressed by
standard solvers. As a matter of fact, for real-world cases even the LP relaxation at
each node turns out to be very time consuming. So we designed ad hoc heuristic
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approaches to exploit the special structure of our MIP, following the matheuristic
paradigm.

Each heuristic is based on the idea of iteratively solving a restricted problem
obtained by fixing a subset of variables, so as to obtain a subproblem which is
(reasonably) easy to solve by a commercial MIP solver, but still able to produce
improved solutions.

Two kinds of heuristics can be implemented: constructive and refinement heuris-
tics. Constructive heuristics are used to find a solution H starting from scratch. In a
refinement heuristic, instead, we are given a heuristic solution H D .xH ; yH / that
we would like to improve. We first fix some x and/or y variables to their value inH ,
thus defining a solution neighborhood N .H/ ofH . We then search N .H/ by using
a general-purpose MIP solver on the model resulting from fixing. If an improved
solution is found within the given time limit, we update H and repeat; otherwise, a
new neighborhood is defined in the attempt to escape the local optimum.

Fixing all x or y Variables
A first obvious observation is that our basic MINLP model (25), (26), (27), (28),
(29), (30), (31), (32), and (33) reduces to a linear MIP if all the x (or all the y)
variables are fixed, as constraints (26) trivially become linear. According to our
experience, the resulting MIP (though nontrivial) is typically solved very quickly
by a state-of-the-art solver, meaning that one can effectively solve a sequence of
restricted MIPs where x and y are fixed, in turn, until no further improvement can
be obtained.

Let Ny.H/ and Nx.H/ denote the solution neighborhoods of H obtained by
leaving y or x free, i.e., when imposing x D xH or y D yH , respectively.

A basic tool that we use in our heuristics is function REOPT.S 0; yH / that
considers a store subset S 0 
 S and a starting yH and returns the best solution
H obtained by iteratively optimizing over the neighborhoods Nx.H/, Ny.H/,
Nx.H/, etc. after having removed all stores not in S 0, H being updated after each
optimization.

Fixing y Variables For All but One Configuration
Another interesting neighborhood, say Nx.H; yˇ/, is obtained by leaving all x
variables free and by fixing ybi D yHbi for all i 2 I and b 2 B n fˇg for a given
ˇ 2 B . In other words, we allow for changing just one (out of NB) configuration in
the current solution, and leave the solver the possibility to change the x variables as
well.

In our implementation, we first define a random permutation fˇ1; : : : ; ˇNBg of B .
We then optimize, in a circular sequence, neighborhoods Nx.H; yˇt / for t D

1; : : : ; NB; 1; : : : Each time an improved solution is found, we updateH and further
refine it through function REOPT.S; yH /. The procedure is stopped when there is
no hope of finding an improved solution, i.e., after NB consecutive optimizations
that do not improve the current H .

A substantial speedup can be obtained by heuristically imposing a tight upper
bound on the x variables, so as to reduce the number L C 1 of binary variables
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vbsl in the binary expansion (34). An aggressive policy (e.g., imposing xbs � 1) is
however rather risky as the optimal solution could be cut off; hence, the artificial
bounds must be relaxed if an improved solution cannot be found.

Working with a Subset of Stores
Our basic constructive heuristic is based on the observation that removing stores
can produce a substantially easier model. Note that a solution H 0 D .x0; y0/ with
a subset of stores can easily be converted into a solution H D .x; y/ of the whole
problem by just invoking function REOPT.S; y0/.

In our implementation, we first define a store permutation s1; : : : ; sjS j according
to a certain criterion (to be discussed later). We then address, in sequence, the
subproblem with store set St D fs1; : : : ; stg for t D 0; : : : ; jS j.

For t D 0, store set S0 is empty and our MIP model just produces a y solution
with random (possibly repeated) configurations.

For each subsequent t , we start with the best solution Ht�1 D .xt�1; yt�1/ of
the previous iteration and convert it into a solution Ht D .xt ; yt / of the current
subproblem through the refining function REOPT.St ; yt�1/. Then we apply the
refinement heuristics described in the previous subsection to Ht , reoptimizing one
configuration at a time in a circular vein. To reduce computing time, this latter step
can be skipped with a certain frequency—except of course in the very last step when
St D S .

Each time a solution Ht D .xt ; yt / is found, we quickly compute a solution
H D .x; y/ of the overall problem through function REOPT.S; yt / and update the
overall incumbent where all stores are active.

As to store sequence s1; : : : ; sjS j, we have implemented three different strategies
to define it. For each store pair a; b, let the dissimilarity index dist.a; b/ be defined
as the distance between the two demand vectors .ria W i 2 I / and .rib W i 2 I /.

• random: The sequence is just a random permutation of the integers 1; : : : ; jS j;
• most_dissimilar: We first compute the two most dissimilar stores .a; b/,

i.e., such that a < b and dist.a; b/ is a maximum and initialize s1 D a. Then,
for t D 2; : : : ; jS j, we define S 0 D fs1; : : : ; st�1g and let

st D argmaxa2SnS 0f minfdist.a; b/ W b 2 S 0 g

• most_similar: This is just the same procedure as in the previous item, with
max and min operators reverted.

The rational of the most_dissimilar policy is to attach first a “core
problem” defined by the pairwise most dissimilar stores (those at the beginning
of the sequence). The assumption here is that our method performs better in its first
iterations (small values of t ) as the size of the subproblem is smaller, and we have
plenty of configurations to accommodate the initial requests. The “similar stores”
are therefore addressed only at a later time, in the hope that the found configurations
will work well for them.

A risk with the above policy is that the core problem becomes soon too difficult
for our simple refining heuristic, so the current solution in not updated after the
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very first iterations. In this respect, policy most_similar is more conservative:
given for granted that we proceed by subsequently refining a previous solution
with one less store, it seems reasonable not to inject too much innovation in a
single iteration—as most_dissimilar does when it adds a new store with very
different demands with respect to the previous ones.

Computational Experiments

The heuristics described in the previous section have been implemented in C lan-
guage. IBM ILOG CPLEX 12.6 [21] was used as MIP solver. Reported computing
times are in CPU seconds of an Intel Xeon E3-1220 V2 quad-core PC with 16GB
of RAM. For each run a time limit of 900 s (15 m) was imposed.

Four heuristic methods have been compared: the three construction heuristics
random, most_dissimilar and most_similar of section “Working with
a Subset of Stores,” plus

• fast_heu: The fast refinement heuristic of section “Fixing y Variables For All
but One Configuration” applied starting from a null solution x D 0.

All heuristics are used in a multi-start mode, e.g., after completion they are
just restarted from scratch until the time limit is exceeded. At each restart, the
internal random seed is not reset; hence, all methods natively using a random
permutation (namely, fast_heu and random) will follow a different search path
at each run as the permutations will be different. As to most_dissimilar and
most_similar, after each restart the sequence s1; : : : ; sjS j is slightly perturbed
by five random pair swaps. In addition, after each restart the CPLEX’s random seed
is changed so as to inject diversification among runs even within the MIP solver.

Due to their heuristic nature, our methods—though deterministic—exhibit a
large dependency on the initial conditions, including the random seeds used
both within our code and in CPLEX. We therefore repeated several times each
experiment, starting with different (internal/CPLEX) random seeds at each run, and
also report average figures.

In case all capacities are even (as it is the case in our tesbed), we compute the
following trivial lower bound based on constraint (41)

LB WD minf˛; ˇg �

ˇ̌
ˇ̌
ˇ

(
s 2 S W

X

i2I

ris is odd

) ˇ̌
ˇ̌
ˇ (42)

and abort the execution as soon as we find a solution whose value meets the lower
bound.

Test Bed
Our test bed coincides with the benchmark proposed in [20] and contains a number
of subinstances of a real-world problem (named AllColor58) with 58 stores that
require 24 (= 6 � 4) different items: T-shirts available in six different sizes and four
different colors (black, blue, red, and green). The available box capacities are 4, 6,
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8, and 10. Finally, each item has a given overstock limit (0 or 1) for all stores but
no understock limits, and the overstock and understock penalties are ˇ D 1 and
˛ D 10, respectively.

Note that our testing environment is identical to that used in [20] (assuming
the PC used are substantially equivalent), so our results can fairly be benchmarked
against those therein reported.

Comparison Metric
To better compare the performance of our different heuristics, we also make use
of an indicator recently proposed by [1, 2] and aimed at measuring the trade-off
between the computational effort required to produce a solution and the quality of
the solution itself. In particular, let Qzopt denote the optimal solution value and let
z.t/ be the value of the best heuristic solution found at a time t . Then, a primal gap
function p can be computed as

p.t/ D

�
1 if no incumbent found until time t
�.z.t// otherwise

(43)

where �.�/ 2 Œ0; 1� is the primal gap, defined as follows

�.z/ D

8
<̂

:̂

0 if jQzopt j D jzj D 0,
1 if Qzopt � z < 0,

z�Qzopt
maxfjQzopt j;jzjg

otherwise.
(44)

Finally, the primal integral of a run until time tmax is defined as

P .tmax/ D

R tmax
0

p.t/ dt

tmax
(45)

and is actually used to measure the quality of primal heuristics—the smaller
P .tmax/, the better the expected quality of the incumbent solution if we stopped
computation at an arbitrary time before tmax.

Computational Results
We addressed the instances provided in [20], with the aim of benchmarking our
matheuristics against the methods therein proposed. Results for the easiest cases
involving only NB D 4 box configurations (namely, instances Black58, Blue58,
Red58, and Green58) are not reported as the corresponding MIP model can be
solved to proven optimality in less than one second by our solver—thus confirming
the figures given in [20].

Tables 2 and 3 report the performance of various heuristics in terms of solution
value and time and refer to a single run for each heuristic and for each instance.

Table 2 is taken from [20], where a two-phase hybrid metaheuristic was
proposed. In the first phase, the approach uses a memetic algorithm to explore
the solution space and builds a pool of interesting box configurations. In the
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Table 2 Performance of
CPLEX and LNS heuristics
from [20]. Single run for each
instance. Times in CPU
seconds (time limit of 900 s)

CPLEX LNS

Instance NB Value Time (s) Value Time (s)

BlackBlue10 7 66 7 21 16

BlackBlue58 7 525 43 174 74

AllColor10 14 202 49 89 293

AllColor58 14 1828 273 548 900

Table 3 Performance of matheuristics. Single run for each instance. Times in CPU seconds (time
limit of 900 s)

most most

fast_heu random dissimilar similar

Instance LB Value Time (s) Value Time (s) Value Time (s) Value Time (s)

BlackBlue10 10 10 1 10 2 10 1 10 1

BlackBlue58 58 58 4 58 3 58 2 58 4

AllColor10 6 6 29 17 82 17 734 17 379

AllColor58 42 141 71 273 722 614 105 53 66

second phase, a box-to-store assignment problem is solved to choose a subset of
configurations from the pool—and to decide how many boxes of each configuration
should be sent to each store. The box-to-store assignment problem is modeled as a
(very hard in practice) MIP and heuristically solved either by a commercial solver
(CPLEX) or by a sophisticated large-neighborhood search (LNS) approach.

Table 3 reports the performance of our four matheuristics, as well as the
lower bound value LB computed through (42)—this latter value turned out to
coincide with the optimal value for all instances under consideration in the present
subsection.

Comparing Tables 2 and 3 shows that matheuristics outperform the LNS
heuristics analyzed in [20]. In particular, fast_heu is able to find very good
solutions (actually, an optimal one in 3 out of 4 cases) within very short computing
times. For the largest instance (AllColor58), however, most_similar qualifies
as the best heuristic both in terms of quality and speed.

To get more reliable information about the matheuristics’ performance, we ran
them 100 times for each instance, with different random seeds, and took detailed
statistics on each run. Table 4 reports, for each instance and for each heuristic,
the average completion time (time), the average time to find its best solution
(time_best), the primal integral after 900 s (pint, the lower the better), and the
number of provably optimal solutions found (#opt) out of the 100 runs. Note that, for
all instances, a solution matching the simple lower bound (42) was eventually found
by at least one of our heuristics. The 100-run statistics confirm that fast_heu is
very effective in all cases, though it is outperformed by most_similar for the
largest instance AllColor58 with respect to the #opt criterion. The results suggest
that a hybrid method running fast_heu and most_similar (possibly in
parallel) qualifies a robust heuristic with a very good performance for all instances.
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Table 4 Average performance (out of 100 runs) of our heuristics

Instance Heuristic Time (s) Time_best (s) Pint #opt

BlackBlue10 fast_heu 1:08 1:08 0:34 100

random 1:44 1:44 0:27 100

most_dissimilar 1:26 1:26 0:25 100

most_similar 1:25 1:25 0:29 100

BlackBlue58 fast_heu 4:61 4:61 9:88 100

random 6:40 6:40 10:11 100

most_dissimilar 2:76 2:76 9:13 100

most_similar 5:62 5:62 15:42 100

AllColor10 fast_heu 71:82 71:82 3:81 100

random 600:29 304:06 18:63 36

most_dissimilar 704:33 241:12 19:69 27

most_similar 626:15 302:40 20:54 26

AllColor58 fast_heu 900:00 332:43 328:20 0

random 874:87 329:59 562:95 2

most_dissimilar 893:48 323:93 545:47 1

most_similar 859:86 287:50 404:29 1

Application 3: Vehicle Routing

In this section we address the NP-hard distance-constrained capacitated vehicle
routing problem (DCVRP) that can be defined as follows. We are given a central
depot and a set of n�1 customers, which are associated with the nodes of a complete
undirected graph G D .V;E/ where jV j D n, node 1 representing the depot. Each
edge Œi; j � 2 E has an associated finite cost cij � 0. Each node j 2 V has a request
dj � 0 (d1 D 0 for depot node 1). Customers need to be served by k cycles (routes)
passing through the depot, where k is fixed in advance. Each route must have a total
duration (computed as the sum of the edge costs in the route) not exceeding a given
limitD and can visit a subset S of customers whose total request

P
j2S dj does not

exceed a given capacity C . The problem then consists of finding a feasible solution
covering exactly once all the nodes v 2 V n f1g and having a minimum overall cost;
see, e.g., [3, 31].

We will next outline the refinement matheuristic for DCVRP proposed in [15].

The ASSIGN Neighborhood for TSP

Sarvanov and Doroshko (SD) investigated in [28] the so-called ASSIGN neighbor-
hood for the pure Traveling Salesman Problem (TSP), i.e., for the problem of finding
a min-cost Hamiltonian cycle in a graph. Given a certain TSP solution (viewed as
node sequence < v1 D 1; v2; � � � ; vn >), the neighborhood contains all the bn=2cŠ

TSP solutions that can be obtained by permuting, in any possible way, the nodes in
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even position in the original sequence. In other words, any solution . 1;  2; � � � ;  n/
in the neighborhood is such that  i D vi for all odd i . An interesting feature of
the neighborhood is that it can be explored exactly in polynomial time, though it
contains an exponential number of solutions. Indeed, for any given starting solution,
the min-cost TSP solution in the corresponding ASSIGN neighborhood can be
found efficiently by solving a min-cost assignment problem on a bn=2c � bn=2c

matrix; see, e.g., [18]. Starting from a given solution, an improving heuristic then
consists of exploring the ASSIGN neighborhood according to the following two
phases:

• node extraction, during which the nodes in even position (w.r.t. the current
solution) are removed from the tour, thus leaving an equal number of “free holes”
in the sequence;

• node reinsertion, during which the removed nodes are reallocated to the available
holes in an optimal way by solving a min-sum assignment problem.

The simple example in Fig. 1 gives an illustration of the kind of “improving
moves” involved in the method. The figure draws a part of a tour, corresponding
to the node sequence hv1; v2; � � � ; v9i. In the node extraction phase, the nodes in
even position v2, v4, v6 e v8 are removed from the sequence, whereas all the other
nodes retain their position. In Fig. 1b the black nodes represent the fixed ones,
while the holes left by the extracted nodes are represented as white circles. If we
use symbol “�” to represent a free hole, the sequence corresponding to Fig. 1b
is therefore hv1;�; v3;�; v5;�; v7;�; v9i. The second step of the procedure, i.e.,
the optimal node reallocation, is illustrated in Fig. 1c, where nodes v4 and v6 swap
their position, whereas v2 and v8 are reallocated as in the original sequence. This
produces the improved part of tour hv1; v2; v3; v6; v5; v4; v7; v8; v9i.

In the example, the same final tour could have been constructed by a simple
2-opt move. However, for more realistic cases, the number of possible reallocation
is exponential in the number of extracted nodes; hence, the possible reallocation
patterns are much more complex and allow, e.g., for a controlled worsening of some
parts of the solution which are compensated by large improvement in other parts.

From TSP to DCVRP

One can conjecture that the ASSIGN neighborhood would work well if applied to
VRP problems. Indeed, due to the presence of several routes and of the associated
route constraints, in VRP problems the node sequence is not the only issue to be
considered when constructing a good solution: an equally important aspect of the
optimization is to find a balanced distribution of the nodes between the routes. In
this respect, heuristic refinement procedures involving complex patterns of node
reallocations among the routes likely are quite effective in practice.

We can therefore extend the SD method to DCVRP so as to allow for more
powerful move patterns, while generalizing its basic scheme so as to get rid of the
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Fig. 1 A simple example of node extraction and reallocation

Fig. 2 The assignment of
node v3 to route r1 is
nonoptimal

too simple min-sum assignment model for node reallocation in favor of a more
flexible reallocation model based on the (heuristic) solution of a more complex MIP
model. The resulting matheuristic will be introduced, step by step, with the help of
some illustrative examples.

Let us consider Fig. 2, where a nonoptimal part of a VRP solution is depicted. It
is clear that the position of node v3 is not very clever, in that inserting v3 between
node v1 and v2 is likely to produce a better solution (assuming this new solution is
not infeasible because of the route constraints). Even if v3 were an even position
node, however, this move would be beyond the possibility of the pure SD method,
where the extracted nodes can only be assigned to a hole left free by the removal
of another node—while no hole between v1 e v2 exists which could accommodate
v3. The example then suggests a first extension of the basic SD method, consisting
of removing the 1-1 correspondence between extracted nodes and empty holes. We
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Fig. 3 Improving the
solution depicted in Fig. 2

Fig. 4 Removing a sequence
of nodes to better reallocate
them (possibly in a different
order)

therefore consider the concept of insertion point: after having extracted the selected
nodes, we construct a restricted solution through the remaining nodes, obtained
from the original one by short-cutting the removed nodes. All the edges in the
restricted solution are then viewed as potential insertion points for the extracted
nodes. In the example, removing v3 but not v1 and v2 would produce the restricted
solution depicted in Fig. 3a, where all dashed edges are possible insertion points for
the extracted nodes—this allows the method to produce the solution in Fig. 3b.

A second important extension comes from a more flexible node extraction
scheme that allows for the removal of a sequence of nodes; see Fig. 4 for an
illustration. Once a sequence of nodes has been extracted, one can use a heuristic
procedure to generate new sequences through the extracted nodes, to be allocated
to different insertion points. To be more specific, starting from the extracted node
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sequences, one can create new derived sequences that combine the extracted nodes
in a different way and consider the possibility of assigning each derived sequence to
a different insertion point. Of course, one never knows in advance which are the best
sequences to be used, so all the (original and derived) sequences should be available
when solving the reallocation problem.

The above considerations imply the use of a reallocation model which goes far
beyond the scope of the original one, which is based on the solution of an easy
min-cost assignment problem. Indeed, the new reallocation model becomes a MIP
that receives as input the set of insertion points along with a (typically large) set
of node sequences through the extracted nodes and provides an (almost) optimal
allocation of at most one sequence to each insertion point, with the constraint that
each extracted node has to belong to one of the allocated sequences, while fulfilling
the additional constraints on the capacity and distance constraints on the routes. This
model will be described in more detail in the next section.

The Overall Matheuristic

Here is a possible implementation of the ideas outlined in the previous section,
leading to the so-called selection, extraction, recombination, and reallocation
(SERR) matheuristic.

(i) (Initialization). Apply a fast heuristic method to find a first (possibly infeasible,
see below) DCVRP solution.

(ii) (Selection). Apply one of the available criteria (to be described later) to
determine the nodes to be extracted—the nodes need not be consecutive, and
any node subset qualifies as a valid choice.

(iii) (Extraction). Extract the nodes selected in the previous step and construct
the corresponding restricted DCVRP solution obtained by short-cutting the
extracted nodes. All edges in the restricted solution are put in the list I of
the available insertion points.

(iv) (Recombination). The node sequences extracted in the previous step (called
basic in the sequel) are initially stored in a sequence pool. Thereafter, heuristic
procedures (to be described later) are applied to derive new sequences through
the extracted nodes, which are added to the sequence pool. During this phase,
dual information derived from the LP relaxation of the reallocation model can
be used to find new profitable sequences—the so-called pricing step. Each
sequence s in the final pool is then associated with a (heuristically determined)
subset Is of the available insertion points in I. For all basic sequences s, we
assume that Is contains (among others) the pivot insertion point associated to
s in the original tour, so as to make it feasible to retrieve the original solution
by just reallocating each basic sequence to the associated pivot insertion point.

(v) (Reallocation). A suitable MIP (to be described later in greater details) is set
up and solved heuristically through a general-purpose MIP solver. This model
has a binary variable xsi for each pair .s; i/, where s is a sequence in the
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pool and i 2 Is , whose value 1 means that s has to be allocated to i . The
constraints in the MIP stipulate that each extracted node has to be covered by
exactly one of the selected sequences s, while each insertion point i can be
associated to at most one sequence. Further constraints impose the capacity
and distance constraints in each route. Once an (almost) optimal MIP solution
has been found, the corresponding DCVRP solution is constructed and the
current best solution is possibly updated (in which case each route in the new
solution is processed by a 3-opt [26] exchange heuristic in the attempt of further
improving it).

(vi) (Termination). If at least one improved DCVRP solution has been found in the
last n iterations, we repeat from step (ii); otherwise the method terminates.

Finding a Starting Solution
Finding a DCVRP solution that is guaranteed to be feasible is an NP-hard problem;
hence, we have to content ourselves with the construction of solutions that, in
some hard cases, may be infeasible—typically because the total-distance-traveled
constraint is violated for some routes. In this case, the overall infeasibility of the
starting solution can hopefully be driven to zero by a modification of the SERR
recombination model where the capacity and distance constraints are treated in a
soft way through the introduction of highly penalized slack variables.

As customary in VRP problems, we assume that each node is assigned a
coordinate pair .x; y/ giving the geographical position of the corresponding cus-
tomer/depot in a two-dimensional map.

One option for the initialization of the current solution required at step (i) of the
SERR method is to apply the classical two-phase method of Fisher and Jaikumar
(FJ) [14]. This method can be implemented in a very natural way in our context in
that it is based on a (heuristic) solution of a MIP whose structure is close to that of
the reallocation model.

According to computational experience, however, the solution provided by the FJ
heuristic is sometimes “too balanced,” in the sense that the routes are filled so tightly
that leave not enough freedom to the subsequent steps of our SERR procedure.
Better results are sometimes obtained starting from a less-optimized solution whose
costs significantly exceed the optimal cost as, e.g., the one obtained by using a
simplified SWEEP method [16].

A second possibility is instead to start from an extremely good solution provided
by highly effective (and time-consuming) heuristics or metaheuristics, in the attempt
of improving this solution even further.

Node selection criteria
At each execution of step (ii), one of the following selection schemes is applied.

• scheme RANDOM-ALTERNATE: This criterion is akin to the SD one and selects
in some randomly selected routes all the nodes in even position, while in the
remaining routes the extracted nodes are those in odd position—the position
parity being determined by visiting each route in a random direction.
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• scheme SCATTERED: Each node had a uniform probability of 50% of being
extracted; this scheme allows for the removal of consecutive nodes, i.e., of route
subsequences.

• scheme NEIGHBORHOOD: Here one concentrates on a seed node, say v�, and
removes the nodes v with a probability that is inversely proportional to the
distance cvv� of v from v�.

Schemes RANDOM-ALTERNATE and SCATTERED appear particularly suited to
improve the first solutions, whereas the NEIGHBORHOOD scheme seems more
appropriate to deal with the solutions available after the first iterations.

Reallocation Model
Given the sequences stored in the pool and the associated insertion points (defined
through the heuristics outlined in the next subsection), our aim is to reallocate the
sequences so as to find a feasible solution of improved cost (if any). To this end, we
need to introduce some additional notation.

Let F denote the set of the extracted nodes, S the sequence pool, and R the set
of routes r in the restricted solution. For any sequence s 2 S , let c.s/ be the sum
of the costs of the edges in the sequence, and let d.s/ be the sum of the requests dj
associated with the internal nodes of s.

For each insertion point i 2 I, we define the extra-cost �si for assigning sequence
s (in its best possible orientation) to the insertion point i . For each route r 2 R in
the restricted solution, let I.r/ denote the set of the insertion points (i.e., edges)
associated with r , while let Qd.r/ and Qc.r/ denote, respectively, the total request and
distance computed for route r—still in the restricted tour. As already mentioned,
our MIP model is based on the following decision variables:

xsi D

�
1 if sequence s is allocated to the insertion point i 2 Is
0 otherwise

(46)

The model then reads:

X

r2R
Qc.r/C min

X

s2S

X

i2Is

�sixsi (47)

subject to:

X

s2v

X

i2Is

xsi D 1 8v 2 F (48)

X

s2SWi2Is

xsi � 1 8i 2 I (49)

Qd.r/C
X

s2S

X

i2Is\I.r/
d .s/xsi � C 8r 2 R (50)
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Qc.r/C
X

s2S

X

i2Is\I.r/
�sixsi � D 8s 2 S; r 2 R (51)

0 � xsi � 1 integer 8s 2 S; i 2 Is (52)

The objective function, to be minimized, gives the cost of the final DCVRP solution.
Indeed, each objective coefficient gives the MIP cost of an inserted sequence,
including the linking cost, minus the cost of the “saved” edge in the restricted
solution. Constraints (48) impose that each extracted node belongs to exactly one of
the selected sequences, i.e., that it is covered exactly once in the final solution. Note
that, in the case of triangular costs, one could replace D by � in (48), thus obtaining
a typically easier-to-solve MIP having the structure of a set-covering (instead of set-
partitioning) problem with side constraints. Constraints (49) avoid a same insertion
point be used to allocate two or more sequences. Finally, constraints (50) and
(51) impose that each route in the final solution fulfills the capacity and distance
restriction, respectively.

In order to avoid to overload the model by an excessive number of variables, a
particular attention has to be paid to reduce the number of sequences and, for each
sequence, the number of the associated insertion points.

Node Recombination and Construction of Derived Sequences
This is a very crucial step in the SERR method. It consists not just of generating new
“good” sequences through the extracted nodes, but it also associates each sequence
to a clever set of possible insertion points that can conveniently accommodate it.
Therefore, one has two complementary approaches to attack this problem: (a) start
from the insertion points and, for each insertion point, try to construct a reasonable
number of new sequences which are likely to “fit well” or (b) start from the extracted
nodes and try to construct new sequences of small cost, no matter the position of the
insertion points. The following two-phase method turned out to be a good strategy
in practice.

In the first phase, the sequence pool is initialized by means of the original (basic)
sequences, and each of them is associated to its corresponding (pivot) insertion
point. This choice guarantees that the current DCVRP solution can be reconstructed
by simply selecting all the basic sequences and putting them back in their pivot
insertion point. Moreover, when the NEIGHBORHOOD selection scheme is used,
a further set of sequences is generated as follows. Let v� be the extracted seed
node, and let N.v�/ contain v� plus the, say, k closest extracted nodes (k D 4

in our implementation). A complete enumerative scheme is applied to generate all
the sequences through N.v�/ that are added to the pool. This choice is intended
to increase the chances of locally improving the current solution, by exploiting
appropriate sequences to reallocate the nodes in N.v�/ in an optimal way.
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The second phase is only applied for the NEIGHBORHOOD and SCATTERED

selection schemes and corresponds to a pricing loop based on the dual information
available after having solved the LP relaxation of the current reallocation model.
The reader is again referred to [15] for details.

Examples
Extensive computational results for SERR matheuristic have been reported [15] and
are omitted because of space. We only report in Figs. 5 and 6 a plot of the incumbent
SERR solution for some instances from the literature. Computing time is given in
CPU seconds of an old AMD Athlon XP 2400+ PC with 1 GByte RAM, using
ILOG Cplex 8.0 as MIP solver. The figures show that SERR is able to significantly
improve the starting solution in the early part of its computation.

Conclusion

Contamination of metaheuristics with mathematical programming leads to the
concept of “matheuristics.” The result is a general approach to design mathemat-
ically sound heuristics. In this chapter we presented the main ideas underlying
matheuristics, and used some case studies to illustrate them. For each application,
we described the specific problem at hand, the mathematical programming model

Fig. 5 Time evolution of the SERR solution for various CVRP instances, with FJ [14] initial
solution
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Fig. 6 Time evolution of the SERR solution for various CVRP instances, with SWEEP [16] initial
solution

that formalizes it, and the way the model—or a simplification of it—can be used to
produce heuristic (as opposed to exact) solutions in an effective way.

Cross-References

�Adaptive and Multilevel Metaheuristics
�Constraint-Based Local Search
� Iterated Local Search
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Abstract

Multi-start procedures were originally conceived as a way to exploit a local or
neighborhood search procedure, by simply applying it from multiple random
initial solutions. Modern multi-start methods usually incorporate a powerful form
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of diversification in the generation of solutions to help overcome local optimality.
Different metaheuristics, such as GRASP or tabu search, have been applied to this
end. This survey briefly sketches historical developments that have motivated the
field and then focuses on modern contributions that define the current state of the
art. Two classical categories of multi-start methods are considered according to
their domain of application: global optimization and combinatorial optimization.
Additionally, several methods are reviewed to estimate the number of local
optima in combinatorial problems. The estimation of this number can help
to establish the complexity of a given instance, and also to choose the most
convenient neighborhood, which is especially interesting in the context of multi-
start methods. Experiments on three well-known combinatorial optimization
problems are included to illustrate the local optima estimation techniques.

Keywords
Metaheuristics � Multi-start methods � Local optima estimation

Introduction

Heuristic search procedures that aspire to find globally optimal solutions to hard
optimization problems usually require some type of diversification to overcome
local optimality. One way to achieve diversification is to restart the procedure from
a new solution once a region has been explored. This chapter describes the best
known multi-start methods for solving optimization problems.

The first multi-start efforts described in the literature rely on methods used in
statistics and calculus as instances of utilizing repeated constructions to produce
a preferred candidate, although such methods were not used to solve optimization
problems. In our context, early proposals can be found in the domains of heuristic
scheduling [9, 34] and the traveling salesman problem [21]. Multi-start global
optimization algorithms, on the other hand, were introduced in the 1980s for
bound constraint optimization problems. The well-known Monte Carlo random
restart approaches simply evaluate the objective function at randomly generated
points [38]. The probability of success approaches one as the sample size tends to
infinity under very mild assumptions about the objective function. Many algorithms
have been proposed that combine the Monte Carlo method with local search
procedures [26].

The restart mechanism inherent of a multi-start design has been superimposed on
many different search methods. Once a new solution has been generated, a variety of
options can be used to improve it, ranging from a simple greedy routine to a complex
metaheuristic such as tabu search [18] or GRASP [37]. Note that the former is based
on identifying and recording specific types of information (attributes) to exploit in
future constructions, while the latter is based on order statistics of sampling and on
generating unconnected solutions. Martí et al. [30] presented a detailed description
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of these two methodologies within the multi-start framework, in the context of
combinatorial optimization.

A basic multi-start procedure simply applies a procedure that can be called
ConstructSolution multiple times, returning the best solution found over
all starts. The constructed solution is typically improved with the LocalSearch
procedure. These two procedures, also called phases, are alternated until a stopping
criterion is satisfied. Then, each global iteration produces a solution (usually a
local optima) and the best overall is the algorithm’s output. This is illustrated in
Algorithm 1 for a minimization problem.

Algorithm 1: Pseudo-code for multi-start algorithm

procedure MultiStart
f �  1;
while stopping criterion not satisfied do

Construct feasible solution:
S  ConstructSolution;
S  LocalSearch.S/;

if f .S/ < f � then
S�  S ;
f �  f .S/;

return S�;

As it is well known in the heuristic community, the performance of the local
search-based algorithms strongly depends on the properties that the neighborhood
imposes on the search space. One of the most important properties is the number of
local optima. Given an instance and a neighborhood, the estimation of the number
of local optima can help to both measure the instance complexity and to choose
the most efficient neighborhood. This chapter reviews and tests several methods to
estimate the number of local optima in combinatorial optimization problems.

This chapter is focused on studying the different strategies and methods for
generating solutions to launch a succession of local searches for global optimum
in the context of two domains: global optimization and combinatorial optimiza-
tion. It is organized as follows. Section “Global Optimization” describes the
developments and strategies applied in the context of global (nonlinear) optimiza-
tion. Section “Combinatorial Optimization” introduces notation for combinatorial
optimization and provides descriptions for solution construction procedures and
multi-start algorithms. The difficulty of finding the global optima of a combinatorial
problem is evaluated through the estimation of its number of local optima in
section “Estimating the Number of Local Optima”. Specifically, methods proposed
in the literature are first reviewed, and then, the associated experiments are described
in section “Experiments”, where statistical tests are applied to draw significant
conclusions. Concluding remarks are given in section “Conclusions”.
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Global Optimization

As mentioned above, many algorithms have been proposed in the 1980s that
combine the Monte Carlo method with local search procedures [25], being the multi-
level single linkage the most relevant. In general terms, the probability of success
approaches one as the sample size tends to infinity under very mild assumptions
about the objective function. The convergence for random restart methods is studied
in [38], where the probability distribution used to choose the next starting point
can depend on how the search evolves. Some extensions of these methods seek to
reduce the number of complete local searches that are performed and increase the
probability that they start from points close to the global optimum [31].

From a theoretical point of view, Hu et al. [24] study the combination of the
gradient algorithm with random initializations to find a global optimum. Efficacy
of parallel processing, choice of the restart probability distribution, and number of
restarts are studied for both discrete and continuous models. The authors show that
the uniform probability is a good choice for restarting procedures.

Hickernell and Yuan Hickernell and Yuan [23] present a multi-start algorithm for
unconstrained global optimization based on quasirandom samples. Quasirandom
samples are sets of deterministic points, as opposed to random points, that are evenly
distributed over a set. The algorithm applies an inexpensive local search (steepest
descent) on a set of quasirandom points to concentrate the sample. The sample is
reduced replacing worse points with new quasirandom points. Any point that is
retained for a certain number of iterations is used to start an efficient complete local
search. The algorithm terminates when no new local minimum is found after several
iterations. An experimental comparison shows that the method performs favorably
with respect to other global optimization procedures.

Tu and Mayne [40] describe a multi-start with a clustering strategy for con-
strained optimization problems. It is based on the characteristics of nonlinear
constrained global optimization problems and extends a strategy previously tested
on unconstrained problems. In this study, variations of multi-start with clustering
are considered including a simulated annealing procedure for sampling the design
domain and a quadratic programming (QP) sub-problem for cluster formation. The
strategies are evaluated by solving 18 nonlinear mathematical problems and six
engineering design problems. Numerical results show that the solution of a one-
step QP sub-problem helps predict possible regions of attraction of local minima
and can enhance robustness and effectiveness in identifying local minima without
sacrificing efficiency. In comparison with other multi-start techniques, the strategies
of this study are superior in terms of the number of local searches performed, the
number of minima found, and the number of function evaluations required.

Ugray et al. [41] propose OptQuest/Multi-start or OQMS, a heuristic designed
to find global optima for pure and mixed integer nonlinear problems with many
constraints and variables, where all problem functions are differentiable with respect
to the continuous variables. It uses OptQuest, a commercial implementation of
scatter search developed by OptTek Systems, Inc., to provide starting points for any
gradient-based local NLP solver. This solver seeks a local solution from a subset
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of these points, holding discrete variables fixed. Computational results include
155 smooth NLP and MINLP problems, most with both linear and nonlinear
constraints, coded in the GAMS modeling language. Some are quite large for global
optimization, with over 100 variables and many constraints. Global solutions to
almost all problems are found in a small number of local solver calls, often one
or two. An improved version of OQMS is proposed in Ugray et al. [42] in terms of
the filters to apply the NLP solver.

More recently, Kaucic [27] presents a multi-start particle swarm optimization
algorithm for the global optimization of a function subject to bound constraints.
The procedure consists of three main steps. In the initialization phase, an opposition
learning strategy is performed to improve the search efficiency. Then, a variant of
the adaptive velocity based on the differential operator enhances the optimization
ability of the particles. Finally, a re-initialization strategy based on two diversity
measures for the swarm is act in order to avoid premature convergence and
stagnation. The algorithm is evaluated on a set of 100 global optimization test
problems. Comparisons with other global optimization methods show its robustness
and effectiveness.

Combinatorial Optimization

Boese et al. [4] analyze relationships among local minima from the perspective of
the best local minimum, finding convex structures in the cost surfaces. Based on
the results of that study, they propose a multi-start method where starting points
for greedy descent are adaptively derived from the best previously found local
minima. In the first step, adaptive multi-start (AMS) heuristics generate r random
starting solutions and run a greedy descent method from each one to determine a
set of corresponding random local minima. In the second step, adaptive starting
solutions are constructed based on the local minima obtained so far and improved
with a greedy descent method. This improvement is applied several times from each
adaptive starting solution to yield corresponding adaptive local minima. The authors
test this method for the traveling salesman problem and obtain significant speedups
over previous multi-start implementations. Hagen and Kahng [20] apply this method
for the iterative partitioning problem.

Moreno et al. [33] propose a stopping rule for the multi-start method based on a
statistical study of the number of iterations needed to find the global optimum. The
authors introduce two random variables that together provide a way of estimating the
number of global iterations needed to find the global optima: the number of initial
solutions generated and the number of objective function evaluations performed to
find the global optima. From these measures, the probability that the incumbent
solution is the global optimum is evaluated via a normal approximation. Thus,
at each global iteration, this value is computed, and if it is greater than a fixed
threshold, the algorithm stops; otherwise, a new solution is generated. The authors
illustrate the method using the median p-hub problem.
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One of the most well-known multi-start methods is the greedy adaptive search
procedure (GRASP), which was introduced by Feo and Resende [15]. It was
first used to solve set covering problems [14]. Each GRASP iteration consists of
constructing a trial solution and then applying a local search procedure to find
a local optimum (i.e., the final solution for that iteration). The construction step
is an adaptive and iterative process guided by a greedy evaluation function. It is
iterative because the initial solution is built considering one element at a time. It
is greedy because the addition of each element is guided by a greedy function.
It is adaptive because the element chosen at any iteration in a construction is a
function of previously chosen elements (i.e., the method is adaptive in the sense
of updating relevant information from one construction step to the next). At each
stage, the next element to be added to the solution is randomly selected from a
candidate list of high-quality elements according to the evaluation function. Once a
solution has been obtained, it is typically improved by a local search procedure. The
improvement phase performs a sequence of moves toward a local optimum solution,
which becomes the output of a complete GRASP iteration.

Hagen and Kahng [20] implement an adaptive multi-start method for a VLSI
partitioning optimization problem where the objective is to minimize the number
of signals sent between components. The method consists of two phases. It first
generates a set of random starting points and performs the iterative (local search),
thus determining a set of local minimum solutions. Then it constructs adaptive
starting points derived from the best local minimum solutions found so far. The
authors add a preprocessing cluster module to reduce the size of the problem.
The resulting clustering adaptive multi-start (CAMS) method is fast and stable and
improves upon previous partitioning results reported in the literature.

Fleurent and Glover [16] propose some adaptive memory search principles to
enhance multi-start approaches. The authors introduce a template of a constructive
version of tabu search based on both, a set of elite solutions and the intensification
strategies based on identifying strongly determined and consistent variables accord-
ing to the following definitions:

• Strongly determined variables are those whose values cannot be changed without
significantly eroding the objective function value or disrupting the values of other
variables.

• A consistent variable is defined as one that receives a particular value in a
significant portion of good solutions.

The authors propose the inclusion of memory structures within the multi-start
framework as it is done with tabu search. Computational experiments for the
quadratic assignment problem show that these methods improve significantly over
previous multi-start methods like GRASP and random restart that do not incorporate
memory-based strategies.

Patterson et al. [35] introduce a multi-start framework called adaptive reasoning
technique (ART), based on memory structures. The authors implement the short-
term and long-term memory functions, proposed in the tabu search framework,
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to solve the capacitated minimum spanning tree problem. ART is an iterative,
constructive solution procedure that implements learning methodologies on top
of memory structures. ART derives its success from being able to learn about
and modify the behavior of a primary greedy heuristic. The greedy heuristic is
executed repeatedly, and for each new execution, constraints that prohibit certain
solution elements from being considered by the greedy heuristic are introduced in a
probabilistic fashion. The active constraints are held in a short-term memory, while
a long-term memory holds information regarding the constraints that were in the
active memory for the best set of solutions.

Glover [17] approaches the multi-start framework from a different perspective.
The author views multi-start methods as an extreme version of the strategic
oscillation approach. Strategic oscillation is a mechanism used in tabu search to
allow the process to visit solutions around a “critical boundary,” by approaching
such a boundary from both sides.

Braysy et al. [5] propose a multi-start local search heuristic for the vehicle routing
problem with time windows. The objective in this problem is to design least cost
routes for a fleet of identical capacitated vehicles to service geographically scattered
customers within pre-specified service time windows. The suggested method uses
a two-phase approach. In the first phase, a fast construction heuristic is used to
generate several initial solutions. Then, injection trees, an extension of the well-
known ejection chain approach [18], are used to reduce the number of routes. In the
second phase, two new improvement heuristics, based on CROSS-exchanges [39],
are applied for distance minimization. The best solution identified by the algorithm
is post-optimized using a threshold accepting post-processor with both intra-route
and inter-route improvement heuristics. The resulting hybrid method is shown to be
fast, cost-effective, and highly competitive.

Mezmaz et al. [32] hybridize the multi-start framework with a model in which
several evolutionary algorithms run simultaneously and cooperate to compute better
solutions (called island model). They propose a solution method in the context
of multi-objective optimization on a computational grid. The authors point out
that although the combination of these two models usually provides very effective
parallel algorithms, experiments on large-size problem instances are often stopped
before convergence is achieved. The full exploitation of the cooperation model
needs a large amount of computational resources and the management of the fault
tolerance issue.

Under the template of a typical multi-start metaheuristic, [28] propose Meta-
RaPS (metaheuristic for randomized priority search), in which several randomiza-
tion methods and memory mechanisms are present. With the set covering problem
(SCP) as the application problem, it is found that these randomization and memory-
based methods work well for Meta-RaPS.

Beausoleil et al. [3] consider a multi-objective combinatorial optimization
problem called extended knapsack problem. By applying multi-start search and
path-relinking their solving method rapidly guides the search toward the most
balanced zone of the Pareto-optimal front (the zone in which all the objectives are
equally important).
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Essafi et al. [13] propose a multi-start ant-based heuristics for a machine line
balancing problem. The proposed procedure is a constructive algorithm that assigns
operations sequentially to stations. The algorithm builds a feasible solution step
by step according to a greedy function that computes the contribution of each
unassigned operation to the partial solution under construction based on operational
time and weights. The selection of the operation to be added is performed with
a roulette wheel mechanism based on the typical ant probability distribution
(pheromones of previous assignments). The proposed heuristic is applied to solve a
real industry problem.

Dhouib et al. [10] propose a multi-start adaptive threshold accepting algorithm
(MS-TA) to find multiple Pareto-optimal solutions for continuous optimization
problems. Threshold accepting methods (TAs) are deterministic and faster variants
of the well-known simulated annealing algorithms, in which every new move is
accepted if it is not much worse than the old one. A multi-start technique is applied
in this paper to the TA algorithm to allow more diversifications.

Villegas et al. [43] propose two hybrid algorithms for the single truck and trailer
routing problem. The first one is based on GRASP and variable neighborhood
descent (VND), while the second one is an evolutionary local search (ELS). In
the first one, large tours are constructed with a randomized nearest neighbor
method with a restricted candidate list that ignores capacity constraints and trailer-
point selection. VND is applied to improve these initial solutions obtained with
GRASP. In the second one, a multi-start evolutionary search is applied starting
from an initial solution (giant tour). The best solution found is strongly perturbed
to obtain different solutions from which the search is restarted. The perturbation
is managed by a mutation operator. The results of the computational experiments
on a set of 32 randomly generated instances also unveil the robustness of the
proposed metaheuristics, all of them achieving gaps to best known solutions of
less than 1 % even in the worst case. Among the proposed methods, the multi-
start evolutionary local search is more accurate and faster and scales better than the
GRASP/VND.

Estimating the Number of Local Optima

As previously seen, multi-start algorithms depend on a neighborhood defined in
the search space. Furthermore, the same multi-start algorithm can produce different
results in the same instance when it is used with two different neighborhoods.
Although there are several characteristics of a neighborhood that influence the
behavior of a multi-start algorithm, probably, the most relevant is the number of
local optima it generates.

The knowledge about the number of local optima that a neighborhood generates
in an instance of a combinatorial optimization problem (COP) can have a high
impact on the choice of the multi-start algorithm used to solve the instance. On
the first hand, different neighborhoods can generate a dramatically different number
of local optima. Of course, as a general rule, the higher the size of the neighbor-
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hood, the lower the number of local optima. However, given two neighborhoods
of the same size complexity (number of local solutions in the same order of
magnitude), the one that generates a lower number of local optima will always be
preferred.

Given an instance of a COP and a neighborhood, the exact calculation of the
number of local optima is impractical, except for extremely low dimensions (n �
14). Furthermore, this exact calculation requires, in most of the cases, the exhaustive
inspection of every solution in the search space, which makes this approach useful.
Therefore, statistical estimation methods are required to have an approximation of
the number of local optima of a landscape. Note, however, that the representation of
such number is in itself an additional challenge. When the dimension of a problem
is high (for instance, n � 200) and the size of the search space is exponential in n,
the number of local optima is usually so high that cannot be accurately represented
in the computer. The alternative choice to represent the proportion of solutions that
are local optima deals with similar issues as this number is too small to be accurately
represented. Therefore, the estimation of the number of local optima of an instance
of a COP is only plausible for moderate values of the problem size.

In spite of the useful information that the knowledge of the number of local
optima can provide in order to choose the best algorithm for solving a COP instance,
there have not been many proposals in the literature. This can probably be due
to the difficulty of the estimation problem. These proposals are mainly divided
into three groups (a good review and a comparison of several proposals can be
found in [22]). A first group is based on the hypothesis that the instances have
been generated uniformly at random [1, 2, 19]. The second group mainly includes
proposals that have been developed in the metaheuristics community. Finally, a third
group includes those that were not designed with the objective of estimating the
number of local optima, but were adapted to this problem.

In order to estimate the number of local optima, all the methods share some steps
of the process. All of them obtain uniformly at random a sample of size M from
the search space. Departing from these solutions and applying a greedy local search
algorithm, they finally obtain a sample of local optima (notice that in this sample
some local optima could be repeated several times). In addition to that, the concept
of basin of attraction is presented in all the estimation methods. Basically, a solution
belongs to the basin of attraction of a local optimum if, after applying a greedy local
search to that solution, it finishes in the corresponding local optimum. Notice that,
in case of injective functions, the basins of attraction represent a partition of the
search space.

Methods Proposed in the Metaheuristics Arena

Most of the methods proposed in the metaheuristics field are mainly due to [11, 12,
36]. They basically developed two kinds of methods: a first group where they use
confidence intervals to provide lower bounds (with high probability) for the number
of local optima and a second group using bias-correcting methods.
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In the first group, by assuming that the sizes of the basins of attraction of all the
local optima are the same, they manage to get lower bounds by means of several
methods:

• First repetition time: A random solution is taken from the search space, and a
greedy local search algorithm is applied to reach a local optimum. This process
continues until a local optimum is repeated for the first time. This number of
initial solutions needed until a local optimum is seen twice is the value used to
make the estimation. Note that in this method the sample size is not fixed.

• Maximal first repetition time: This method is similar to the previous one, except
that the sample size is fixed beforehand and the maximal first repetition time (the
maximum number of solutions between the first reoccurrence of a local optimum)
is used to carry out the estimation.

• Schnabel census: In order to make the estimation, the authors take into account
in this case the probability that r different local optima are discovered from a
sample of size M .

The main drawback of the previous methods is that they are strongly biased by
the assumption that all the local optima have the same size of basin of attraction. In
order to overcome this bias, a couple of very well-known methods in the statistical
literature are proposed: Jackknife and Bootstrap. These are nonparametric methods
that, departing from a biased estimation, try to correct the bias:

• Jackknife method: It consists in calculating M new estimations by leaving each
time one of the current solutions out from the original sample. These new M

estimations are used to modify the original estimation decreasing its bias.
• Bootstrap method: This resampling technique consists in obtaining several new

samples from the original sample. Each sample has the same size as the original
one and is obtained by uniformly at random sampling solutions with replacement
from the original sample. On the contrary to the previous method, it assumes a
probabilistic model in the basins of attraction to make a new estimation for each
resampling.

Methods Proposed in the Field of Statistics

The community working in metaheuristics quickly realized that the methods used by
biologists and ecologists to calculate the number of species in a population could be
easily adapted to the problem of calculating the number of local optima. Particularly
four nonparametric methods [6–8] were adapted to estimate the number of local
optima of instances of COPs [22]. Although they are nonparametric methods, they
are based on particular sampling models. An important consideration is that all
these methods assume an infinite population, in our case an infinite number of local
solutions. This assumption does not impose a big constraint because of the large
cardinality of the search space of the COPs:
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• Chao1984 method: It is based on multinomial sampling. The estimator is the
result of adding to the number of local optima obtained from the sample a term
that depends only on the number of local optima seen once and twice in the
sample.

• Chao&Lee methods: These two methods are also based on multinomial sampling.
They include the idea of sample coverage (sum of the proportions of the basins of
attraction of the local optima observed in the sample). They distinguish between
the local optima observed many times in the sample and those observed a few
number of times in the sample. So the estimators are the sum of the number
of local optima observed many times and some terms that depend on the sample
coverage and the number of local optima found a few times, trying to compensate
for the local optima that have small basins of attraction.

• Chao&Bunge method: It is based on a mixed Poisson sampling model and is
closely related to the previous estimators. This method bases the estimation of
unobserved local optima on a formula that depends on the expected proportion
of duplicates in the sample. It also makes the distinction between the local optima
observed many times in the sample and those observed a few number of times in
the sample.

Experiments

The accuracy of the different estimators presented in the previous section has
been tested on instances of three different common problems: permutation flow-
shop scheduling problem (PFSP), linear ordering problem (LOP), and quadratic
assignment problem (QAP). Using these datasets, the methods can be tested over a
wide set of instances with different characteristics. The number of local optima for
different neighborhoods is already known for some of these instances, which allows
to evaluate the accuracy of the different estimations. A comparison of the different
methods is given, together with recommendations of the methods that provide the
best estimations. Based on the results found in [22], the three first methods presented
in the previous section are removed for the analysis, that is, first repetition time,
maximal first repetition time, and Schnabel census.

Experimental Design

The instances used in the experiments are taken from three well-known benchmarks:
5 instances of the PFSP obtained from the Taillard’s benchmark, 5 instances of the
LOP taken from the LOLIB benchmark [29], and 5 instances of the QAP chosen
from the QAPLIB.

The flowshop scheduling problem can be stated as follows: there are b jobs to be
scheduled in c machines. A job consists of c operations and the j -th operation of
each job must be processed on machine j for a specific processing time without
interruption. Jobs are processed in the same order on different machines. The
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objective of the PFSP is to find the order in which the jobs have to be scheduled
on the machines, minimizing the total flow time.

In the LOP, given a matrix B D Œbij �nxn of numerical entries, a simultaneous
permutation of the rows and columns of B has to be found, such that the sum of
the entries above the main diagonal is maximized (or equivalently, the sum of the
entries below the main diagonal is minimized).

The QAP is the problem of allocating a set of facilities to a set of locations, with
a cost function associated to the distance and the flow between the facilities. The
objective is to assign each facility to a location such that the total cost is minimized,
given two n� n input matrices with real values H D Œhij � and D D Œdkl �, where hij

is the flow between facility i and facility j and dkl is the distance between location
k and location l .

For the three problems, instances of permutation size n D 13 are considered, so
the search space is of size j˝j D 13Š � 6:23 �109. In the case of the PFSP, instances
have 13 jobs and 5 machines. Notice that a first step consists of evaluating all the
solutions of the search space to know in advance the exact number of local optima.
Therefore, working with higher permutation sizes becomes impracticable.

The local optima of the instances have been calculated according two commonly
used operators: the 2-exchange and the insert neighborhoods. Denoting by � D

�1�2 : : : �n a solution (permutation of size n) of the search space, the 2-exchange
neighborhood considers that two solutions are neighbors if one is generated by
swapping two elements of the other:

NS .�1�2 : : : �n/D
n
.� 0

1� 0
2 : : : � 0

n/ j � 0
k D�k;8k ¤ i; j; � 0

i D�j ; � 0
j D�i ; i ¤ j

o
:

Two solutions are neighbors under the insert neighborhood (NI ) if one is the result
of moving an element of the other one to a different position:

NI .�1�2 : : : �n/ D
n
.� 0

1� 0

2 : : : � 0

n/ j � 0

k D �k; 8k<i and 8k>j; � 0

k D �kC1; 8i � k<j; � 0

j D �i

o

[ .̊� 0

1� 0

2 : : : � 0

n/ j � 0

k D �k; 8k<i and 8k>j; � 0

i D �j ; � 0

k D �k�1; 8i<k � j
�
:

The different methods for estimating the number of local optima are applied
to the 5 instances of each of the considered problems (PFSP, LOP, and QAP)
using both neighborhoods (NS and NI ). So, a total of 30 different landscapes are
considered. These two neighborhoods create different situations for the estimations.
As the insert neighborhood explores at each step more solutions than the 2-
exchange neighborhood, the number of local optima obtained when using the
first neighborhood is probabilistically lower than when assuming the second one.
However, as will be shown, due to the intrinsic nature of the QAP, given an instance
of this problem, the number of local optima when using the insert neighborhood is
much higher than when considering the 2-exchange neighborhood.

The estimation methods Jackknife, Bootstrap, Chao1984, Chao&Lee1,
Chao&Lee2, and Chao&Bunge are applied to each of the landscapes 10 times,
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and the average estimation value of the 10 repetitions is reported. Methods are
applied with different sample sizes: M D 100; 500; 1000; 5000.

Results

Our aim is to compare the accuracy of the different methods and their relation
to the sample size. Results are analyzed according to the type of problem and
the neighborhood used, and the effect of the sample size on the methods using
different sample sizes is studied. Table 1 reports the average estimations (of the
10 repetitions) obtained with the different methods and the different sample sizes
for all the instances of the three problems when using both neighborhoods. It also
indicates the real number of local optima of each instance. v denotes the real number
of local optima of the instances with the corresponding neighborhood.

Table 1 shows that the method that provides the best results more times is
Chao&Lee2. In fact, in general, the estimations, given by those methods that come
from the field of statistics, provide better results than Bootstrap and Jackknife, above
all, when the number of local optima is considerably high.

A statistical analysis was carried out to compare the estimations obtained with
the different methods and three different scenarios. In the first one, the estimations
are grouped in three sets according to the type of problem: PFSP, LOP, or QAP. The
second scenario considers two different sets that contain the estimations of the in-
stances when using the neighborhoods NS or NI . In the last scenario, the estimations
are grouped in four sets, according to the parameter M D 100; 500; 1000; 5000. A
nonparametric Friedman’s test with level of significance ˛ D 0:05 is used to test if
there are statistical significant differences among the estimations provided by the six
methods in the different scenarios. It provides a ranking of the methods while also
giving an average rank value for each method. Statistical differences are found in all
the cases, and then a post hoc test is applied to perform all pairwise comparisons.
Particularly, the Holm’s procedure is applied fixing the level of significance to
˛ D 0:05.

Table 2 shows the ranking obtained for the methods with the Friedman’s test
in the first scenario, that is, for the instances of the PFSP (first pair of columns),
LOP (the pair of columns in the middle), and QAP (last pair of columns). The
lower the rank, the worse the performance of the method is. So, the methods are
ordered from best to worst. Therefore, the best methods in the three groups are
Chao&Lee2, Chao&Lee1, and Chao1984. However, pairwise significant differences
are not found between Chao&Lee1 and Chao1984, Chao1984 and Bootstrap, and
Bootstrap and Chao&Bunge, for the PFSP instances, and between Bootstrap and
Chao&Bunge, Bootstrap and Jackknife, and Jackknife and Chao&Bunge, for the
LOP and the QAP instances.

In Table 3, the ranking for the methods is shown, but this time for the second
scenario, that is, when grouping the estimations for the instances using the 2-
exchange neighborhood NS (the first pair of columns), and the insert neighborhood
NI (the last pair of columns). In the first case, the Holm’s procedure states that
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Table 1 Mean of the estimations obtained for all the instances of the PFSP, LOP, and QAP, under
the 2-exchange and the insert neighborhoods

Method M=100 M=500 M=1000 M=5000 M=100 M=500 M=1000 M=5000

Instance 1. v D 2386 Instance 2. v D 8194

P
F

SP

2-
ex

ch
an

ge

Jackknife 158:20 517:30 744:80 1371:20 185:50 709:50 1139:10 2733:60

Bootstrap 155:90 562:80 862:00 1786:30 173:20 706:50 1199:00 3281:70

Chao1984 400:80 692:80 874:70 1405:30 1148:60 1438:50 1751:30 3105:50

Chao&Lee1 397:30 725:70 932:00 1401:90 1196:50 1544:50 1884:70 3223:90

Chao&Lee2 482:40 917:90 1185:30 1565:30 1302:50 2132:40 2605:80 4020:70

Chao&Bunge 236:50 822:80 2304:40 1901:50 494:40 390:50 660:30 14054:20

Instance 1. v D 134 Instance 2. v D 923

In
se

rt

Jackknife 54:30 95:40 104:00 173:40 125:10 317:30 435:90 955:40

Bootstrap 66:60 124:30 141:40 231:20 129:00 374:60 535:90 1253:50

Chao1984 62:40 100:10 103:20 170:60 256:60 389:90 482:80 997:40

Chao&Lee1 65:80 95:00 100:20 165:80 247:70 408:90 488:20 978:10

Chao&Lee2 84:00 103:90 104:60 169:60 371:80 545:50 583:90 1092:90

Chao&Bunge 250:80 121:30 109:20 171:80 112:20 1202:90 1108:50 1341:40

Instance 1. v D 9969 Instance 2. v D 3355

L
O

P

2-
ex

ch
an

ge

Jackknife 183:00 732:10 1185:50 3256:30 176:20 642:40 980:70 1946:70

Bootstrap 171:30 723:00 1237:20 3754:40 167:50 662:00 1073:30 2458:60

Chao1984 923:50 1633:00 1939:20 4073:00 810:70 1001:10 1225:40 2007:00

Chao&Lee1 935:30 1612:50 2043:00 4580:20 740:40 1003:10 1319:30 2033:40

Chao&Lee2 987:30 2104:70 2860:80 6487:20 904:80 1185:50 1677:20 2308:20

Chao&Bunge 349:80 399:90 680:10 2040:20 144:30 3188:10 2642:10 2950:40

Instance 1. v D 1113 Instance 2. v D 60

In
se

rt

Jackknife 124:40 335:20 472:70 1093:50 51:90 60:50 61:50 137:10

Bootstrap 128:80 391:80 578:00 1431:90 66:90 82:00 77:70 169:70

Chao1984 224:00 396:30 528:70 1121:70 53:20 57:70 60:40 133:70

Chao&Lee1 235:60 445:10 556:90 1137:30 52:30 57:60 59:60 133:40

Chao&Lee2 351:70 595:80 693:60 1285:00 57:30 57:70 59:70 133:60

Chao&Bunge 1111:70 859:80 8551:50 1630:70 67:70 57:70 59:70 133:60

Instance 1. v D 18720 Instance 2. v D 3472

Q
A

P

2-
ex

ch
an

ge

Jackknife 197:10 958:80 1811:60 6594:90 171:70 598:50 910:60 1889:80

Bootstrap 180:00 873:60 1678:60 6740:80 164:80 628:60 1009:20 2369:00

Chao1984 2000:70 9847:80 8007:20 9818:00 609:40 870:40 1191:10 2009:20

Chao&Lee1 2025:00 9914:80 7973:80 9750:90 616:20 934:40 1247:50 2026:20

Chao&Lee2 2025:00 10323:30 8296:00 10683:60 679:90 1188:50 1652:60 2351:40

Chao&Bunge 1050:00 3752:20 128363:10 17782:40 260:10 1330:50 4564:80 3386:60

Instance 1. v D 4615326 Instance 2. v D 1501175

In
se

rt

Jackknife 198:70 995:70 1991:60 9821:40 198:70 995:30 1988:20 9795:60

Bootstrap 180:80 892:70 1787:00 8851:40 180:80 892:50 1785:20 8837:20

Chao1984 580:10 93351:20 210869:40 226925:80 580:10 45585:50 196680:90 199572:40

Chao&Lee1 585:00 93575:00 211316:70 226706:30 585:00 41316:70 179342:60 199911:00

Chao&Lee2 585:00 93575:00 211316:70 245043:10 585:00 45980:20 198268:50 213030:90

Chao&Bunge 340:00 46925:00 105933:30 26271:90 340:00 16916:30 74087:70 34635:20
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M=100 M=500 M=1000 M=5000 M=100 M=500 M=1000 M=5000 M=100 M=500 M=1000 M=5000

Instance 3. v D 1997 Instance 4. v D 5119 Instance 5. v D 192

142:70 397:50 590:40 1098:50 167:40 575:20 886:60 1920:50 77:10 131:80 153:00 183:10

143:60 452:90 688:60 1428:00 161:40 609:20 982:40 2376:60 90:70 170:80 208:80 240:10

331:70 517:30 774:30 1153:30 544:30 843:40 1161:60 2122:60 94:00 136:20 151:60 178:30

340:50 546:50 769:10 1146:60 510:90 889:20 1242:60 2194:20 90:10 133:30 147:70 175:00

519:70 737:80 1030:10 1301:30 587:60 1145:70 1679:00 2689:10 108:80 146:70 155:00 177:60

204:60 3789:80 2399:70 1695:90 793:20 2103:80 1887:90 6446:60 258:10 173:30 162:10 178:60

Instance 3. v D 506 Instance 4. v D 190 Instance 5. v D 14

87:50 208:80 265:10 520:40 72:10 127:80 150:60 300:30 12:70 13:30 14:20 14:00

99:40 252:10 339:90 703:20 85:30 163:00 199:70 415:00 16:00 14:50 15:50 14:30

138:40 253:80 277:20 536:60 94:60 138:10 154:10 290:90 11:60 12:90 13:10 14:00

128:30 263:50 285:70 522:30 83:50 133:90 147:10 287:10 12:30 13:40 14:20 14:00

178:10 350:40 331:20 570:80 101:40 152:20 157:00 296:60 12:50 13:70 14:70 14:00

74:70 367:70 498:50 652:70 281:00 212:60 169:80 303:80 12:80 14:10 15:10 14:00

Instance 3. v D 4732 Instance 4. v D 3227 Instance 5. v D 6810

172:80 615:90 921:00 2068:10 136:30 394:10 587:80 1274:40 185:00 746:60 1248:20 2995:20

164:80 638:90 1019:00 2539:90 138:50 443:90 685:60 1607:50 172:70 734:40 1291:00 3578:20

842:70 1013:50 1211:00 2321:60 259:90 562:90 765:70 1428:50 1884:60 1523:20 1970:00 3297:30

813:00 1070:80 1299:90 2369:00 257:40 615:10 792:10 1463:30 1757:50 1589:10 2157:70 3485:10

1068:70 1450:40 1744:20 2914:70 328:00 935:00 1088:80 1785:30 1966:40 1960:20 2868:70 4263:30

156:90 27501:80 558:90 7544:60 121:70 714:80 2946:60 4654:60 666:8014991:50 7635:90 10894:20

Instance 3. v D 12 Instance 4. v D 9 Instance 5. v D 67

9:60 12:40 12:60 19:30 7:80 9:40 9:00 20:60 49:10 63:80 60:90 108:90

11:80 13:40 14:40 20:20 9:70 13:00 10:20 23:00 64:00 86:00 78:70 128:30

8:80 11:70 12:10 18:20 7:20 9:00 8:90 20:20 51:00 65:40 59:90 107:30

9:10 13:20 12:60 20:10 9:20 9:20 8:90 20:30 47:80 60:40 58:70 106:20

9:30 14:20 12:60 22:30 10:40 9:40 8:90 20:40 51:30 61:30 59:10 106:60

9:20 14:80 12:40 19:00 8:20 9:40 8:90 20:50 57:00 61:80 59:10 106:80

Instance 3. v D 62 Instance 4. v D 173568 Instance 5. v D 563

27:40 42:30 48:80 57:40 198:70 992:00 1965:20 9280:00 94:40 204:50 264:00 368:00

33:00 54:30 66:00 73:10 180:90 891:60 1771:50 8532:00 105:20 254:10 338:80 494:60

39:90 48:70 47:50 58:00 580:10 48561:00 49112:70 51951:40 139:00 227:10 286:40 373:90

32:30 44:10 49:50 54:90 585:00 48783:40 49601:10 51848:80 157:80 224:70 278:60 351:90

39:80 50:90 53:30 56:00 585:00 48783:40 49601:10 53432:60 257:00 266:60 320:90 365:80

55:20 130:20 66:70 56:50 340:00 24529:10 25050:50 174841:50 261:30 521:50 457:40 378:10

Instance 3. v D 579275 Instance 4. v D 6712090 Instance 5. v D 83240

199:00 987:00 1947:40 9108:50 199:00 997:70 1997:30 9955:30 193:70 884:40 1616:80 5935:70

181:00 889:90 1758:20 8408:30 181:00 894:50 1791:90 8929:10 179:00 829:50 1548:00 6141:30

100:00 43655:70 33049:70 54343:30 100:00 25200:50 225000:60 938528:00 2902:10 3923:60 4892:70 10856:90

100:00 38924:50 32904:70 58780:20 100:00 25275:00 225250:00 933604:60 2950:10 3925:40 5521:50 12057:10

100:00 45088:10 36647:70 83214:20 100:00 25275:00 225250:00 976729:70 2950:10 4803:90 8319:40 18835:30

100:00 12960:90 8107:80 4677:70 100:00 12850:00 113000:00 304803:40 1499:90 458:70 857:40 3354:70
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Table 2 Average rankings of the methods according to the type of problem

PFSP LOP QAP

Method Ranking Method Ranking Method Ranking

Chao&Lee2 4.85 Chao&Lee2 4.83 Chao&Lee2 4.77

Chao&Lee1 3.74 Chao&Lee1 4.08 Chao&Lee1 3.97

Chao1984 3.51 Chao1984 3.78 Chao1984 3.60

Bootstrap 3.37 Chao&Bunge 2.82 Jackknife 2.97

Chao&Bunge 3.05 Jackknife 2.78 Bootstrap 2.88

Jackknife 2.47 Bootstrap 2.69 Chao&Bunge 2.81

Table 3 Average rankings of
the methods according to the
neighborhood

NS NI

Method Ranking Method Ranking

Chao&Lee2 5.22 Chao&Lee2 4.41

Chao&Lee1 3.94 Chao&Lee1 3.92

Chao1984 3.61 Chao1984 3.66

Bootstrap 3.12 Jackknife 3.26

Chao&Bunge 2.88 Chao&Bunge 2.91

Jackknife 2.23 Bootstrap 2.84

Table 4 Average rankings of the methods according to the sample size

M D 100 M D 500 M D 1000 M D 5000

Method Ranking Method Ranking Method Ranking Method Ranking

Chao&Lee2 4.72 Chao&Lee2 5.01 Chao&Lee2 5.01 Chao&Lee2 4.54

Chao&Lee1 3.87 Chao&Lee1 4.06 Chao&Lee1 3.97 Chao&Lee1 3.83

Chao1984 3.65 Chao1984 3.63 Chao1984 3.57 Chao1984 3.67

Bootstrap 3.19 Bootstrap 2.93 Bootstrap 3.00 Chao&Bunge 3.48

Jackknife 3.12 Chao&Bunge 2.69 Chao&Bunge 2.93 Bootstrap 2.81

Chao&Bunge 2.46 Jackknife 2.67 Jackknife 2.52 Jackknife 2.67

significant differences exist among each pair of methods. Nevertheless, for the
second neighborhood, significant differences are not found between Chao&Lee1
and Chao1984 and between Chao&Bunge and Bootstrap. It is observed in this
table that, also in this scenario, the best estimations are provided by Chao&Lee2,
Chao&Lee1, and Chao1984.

Finally, Table 4 shows the ranking obtained for the methods when the esti-
mations are separated according to the sample size used by the methods M D

100; 500; 1000; 5000. Again, the three best methods are Chao&Lee2, Chao&Lee1,
and Chao1984. Significant differences are not found between Chao&Lee1 and
Chao1984 and between Bootstrap and Jackknife, when using M D 100. For
M D 500 there are not significant differences among Bootstrap, Chao&Bunge,
and Jackknife, while significant differences are not found between Bootstrap and
Chao&Bunge when M D 1000. Finally, when taking M D 5000, there are
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not significant differences among Chao&Lee1, Chao1984, and Chao&Bunge and
between Jackknife and Bootstrap.

Although the statistical analysis gives a global picture of the performance of the
methods, and Chao&Lee2 provides the best solutions with significant differences
between this method and the remaining methods, it is also relevant to consider
some aspects that are not reflected in the hypothesis tests. The closeness of the
estimations provided by the methods to the value to estimate is the most important
factor. Obviously, there are methods that estimate better than others, but it does not
mean that the estimations provided by the best methods are close enough to the
real value. In order to check if the methods provide useful estimations, and so as
to add more information to that deduced from Table 1, the average errors of the
estimations with respect to the real number of local optima are calculated. Tables 5,
6, and 7 show the average relative errors and the standard deviations (in brackets)
grouped by the neighborhood used and the sample size, for all the instances of the
PFSP, LOP, and QAP, respectively.

A general conclusion drawn from Tables 5, 6, and 7 is that, in general terms, the
estimations improve as the sample size grows, and they are worse as the number
of local optima increases. Specifically, as shown in Table 1, the instances of the
LOP with the insert neighborhood have a low number of local optima, and Table 6
shows that the average error is lower than in the rest of the cases. Moreover, the
instances of the QAP with the insert neighborhood have a high number of local
optima, and the errors obtained for those instances (in Table 7) are higher than
for the rest. It is remarkable that, for sample size M D 100 and M D 500, the
estimations are far from the real value. However, there is one method which behaves
different and does not follow the general lines. This is the Chao&Bunge method.
This estimation method does not necessarily improve as the sample size grows,

Table 5 Average relative errors and standard deviations (in brackets) of the estimations provided
by the different methods for the instances of the PFSP, according to the neighborhood and the
sample size M

M D 100 M D 500 M D 1000 M D 5000

2-
ex

ch
an

ge

Jackknife 0.88 (0.14) 0.74 (0.22) 0.66 (0.24) 0.44 (0.22)

Bootstrap 0.87 (0.17) 0.69 (0.30) 0.61 (0.28) 0.38 (0.15)

Chao1984 0.79 (0.15) 0.68 (0.21) 0.60 (0.22) 0.42 (0.20)

Chao&Lee1 0.79 (0.14) 0.67 (0.20) 0.60 (0.20) 0.42 (0.19)

Chao&Lee2 0.74 (0.18) 0.60 (0.20) 0.51 (0.19) 0.35 (0.16)

Chao&Bunge 0.89 (0.26) 1.06 (2.23) 0.84 (1.12) 0.28 (0.38)

In
se

rt

Jackknife 0.60 (0.28) 0.39 (0.22) 0.30 (0.18) 0.19 (0.23)

Bootstrap 0.58 (0.26) 0.28 (0.23) 0.21 (0.16) 0.54 (0.40)

Chao1984 0.53 (0.23) 0.34 (0.19) 0.28 (0.17) 0.19 (0.21)

Chao&Lee1 0.54 (0.24) 0.34 (0.18) 0.29 (0.15) 0.17 (0.19)

Chao&Lee2 0.45 (0.22) 0.25 (0.15) 0.24 (0.14) 0.23 (0.20)

Chao&Bunge 0.92 (1.40) 0.50 (0.78) 0.20 (0.18) 0.32 (0.24)
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Table 6 Average relative errors and standard deviations (in brackets) of the estimations provided
by the different methods for the instances of the LOP, according to the neighborhood and the
sample size M

M D 100 M D 500 M D 1000 M D 5000

2-
ex

ch
an

ge

Jackknife 0.96 (0.01) 0.87 (0.04) 0.81 (0.06) 0.56 (0.08)

Bootstrap 0.97 (0.01) 0.87 (0.04) 0.79 (0.06) 0.47 (0.12)

Chao1984 0.83 (0.14) 0.79 (0.06) 0.73 (0.06) 0.52 (0.07)

Chao&Lee1 0.84 (0.12) 0.78 (0.05) 0.71 (0.07) 0.49 (0.06)

Chao&Lee2 0.80 (0.15) 0.71 (0.07) 0.62 (0.09) 0.37 (0.05)

Chao&Bunge 0.95 (0.06) 2.38 (8.21) 1.12 (1.44) 0.51 (0.47)

In
se

rt

Jackknife 0.33 (0.30) 0.18 (0.27) 0.16 (0.22) 0.77 (0.49)

Bootstrap 0.28 (0.32) 0.37 (0.21) 0.26 (0.17) 1.05 (0.61)

Chao1984 0.35 (0.25) 0.18 (0.24) 0.14 (0.20) 0.72 (0.47)

Chao&Lee1 0.35 (0.28) 0.19 (0.23) 0.14 (0.19) 0.75 (0.48)

Chao&Lee2 0.33 (0.33) 0.18 (0.24) 0.12 (0.15) 0.82 (0.51)

Chao&Bunge 0.49 (0.74) 0.31 (0.70) 1.39 (4.95) 0.83 (0.37)

Table 7 Average relative errors and standard deviations (in brackets) of the estimations provided
by the different methods for the instances of the QAP, according to the neighborhood and the
sample size M

M D 100 M D 500 M D 1000 M D 5000

2-
ex

ch
an

ge

Jackknife 0.87 (0.17) 0.75 (0.25) 0.67 (0.28) 0.50 (0.29)

Bootstrap 0.84 (0.20) 0.69 (0.33) 0.62 (0.34) 0.44 (0.32)

Chao1984 0.77 (0.24) 0.57 (0.21) 0.53 (0.19) 0.41 (0.19)

Chao&Lee1 0.78 (0.20) 0.56 (0.21) 0.53 (0.19) 0.42 (0.19)

Chao&Lee2 0.73 (0.25) 0.52 (0.22) 0.49 (0.19) 0.38 (0.19)

Chao&Bunge 0.91 (0.40) 0.87 (1.41) 1.89 (5.45) 0.27 (0.39)

In
se

rt

Jackknife 1.00 (0.00) 1.00 (0.00) 1.00 (0.01) 0.98 (0.03)

Bootstrap 1.00 (0.00) 1.00 (0.00) 1.00 (0.01) 0.98 (0.03)

Chao1984 0.99 (0.02) 0.96 (0.04) 0.93 (0.06) 0.89 (0.04)

Chao&Lee1 0.99 (0.02) 0.97 (0.03) 0.94 (0.05) 0.89 (0.04)

Chao&Lee2 0.99 (0.02) 0.96 (0.04) 0.93 (0.06) 0.86 (0.06)

Chao&Bunge 1.00 (0.01) 0.99 (0.01) 0.98 (0.03) 0.98 (0.03)

and the standard deviation presented in most of the cases is really high compared
with other methods. It seems that Chao&Bunge is a very unstable method. The
instability of this method is a consequence of the variability on the estimation of the
parameter that represents the expected proportion of duplicates in the sample [22].
This estimation is unreliable when the sample has many local optima that are seen
only once, but there is a small number of local optima seen a low (but higher than
one) number of times. These particularities are commonly found when the sample
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size is small with respect to the number of local optima or even when the variance
of the sizes of the attraction basins of the local optima is high.

As a conclusion from this analysis, we highly recommend the use of the
Chao&Lee2 method to estimate the number of local optima. According to the
hypothesis test, this estimation method provides the best results. Although in the
statistical analysis it is not reflected, the Chao&Bunge method gives also good
estimations in a high number of occasions; however, its instability provokes that it
is not trusted. Therefore, we recommend to execute both methods independently. If
the results provided are close, Chao&Bunge is usually the choice; otherwise, select
Chao&Lee2.

Conclusions

The objective of this study has been to extend and advance the knowledge associated
to implementing multi-start procedures. Unlike other well-known methods, it has
not yet become widely implemented and tested as a metaheuristic itself for solving
complex optimization problems. Previous efforts have been classified according to
its domain of applicability: global and combinatorial optimization.

In this chapter, different methods have been reviewed for estimating the number
of local optima of instances of combinatorial optimization problems. Addition-
ally, some methods in the optimization field have been compared with methods
previously used for estimating the number of species in a population in the field
of statistics. The methods have been applied to instances of three well-known
problems in combinatorial optimization and two classical neighborhoods. The main
conclusions are that, in general, the higher the sample used by the methods, the
more precise the estimations, and the higher the number of local optima, the worse
the estimations provided. Based on the results observed through the experiments,
we recommend using the Chao&Lee2 method or applying it together with the
ChaoBunge method for a more accurate local optima estimation.

Cross-References

�GRASP
�Restart Strategies
�Tabu Search
�Theory of Local Search

Acknowledgments This work has been partially supported by the Spanish Ministerio de
Economía y Competitividad (codes TIN2016-78365-R, TIN2015-65460, and TIN2013-41272P),
the Basque Government (IT-609-13 program), and Generalitat Valenciana (project Prometeo
2013/049).



174 R. Martí et al.

References

1. Albrecht A, Lane P, Steinhofel K (2008) Combinatorial landscape analysis for k-SAT instances.
In: IEEE congress on evolutionary computation, CEC 2008, Hong Kong. IEEE World congress
on computational intelligence, pp 2498–2504

2. Albrecht A, Lane P, Steinhofel K (2010) Analysis of local search landscapes for k-SAT
instances. Math Comput Sci 3(4):465–488

3. Beausoleil R, Baldoquin G, Montejo R (2008) A multi-start and path relinking methods to deal
with multiobjective knapsack problems. Ann Oper Res 157:105–133

4. Boese K, Kahng A, Muddu S (1994) A new adaptive multi-start technique for combinatorial
global optimisation. Oper Res Lett 16:103–113

5. Braysy O, Hasle G, Dullaert W (2004) A multi-start local search algorithm for the vehicle
routing problem with time windows. Eur J Oper Res 159:586–605

6. Chao A (1984) Nonparametric estimation of the number of classes in a population. Scand J
Stat 11(4):265–270

7. Chao A, Bunge J (2002) Estimating the number of species in a stochastic abundance model.
Biometrics 58(3):531–539

8. Chao A, Lee SM (1992) Estimating the number of classes via sample coverage. J Am Stat
Assoc 87(417):210–217

9. Crowston WB, Glover F, Thompson GL, Trawick JD (1963) Probabilistic and parametric
learning combinations of local job shop scheduling rules. Technical report 117, Carnegie-
Mellon University, Pittsburgh

10. Dhouib S, Kharrat A, Chabchoub H (2010) A multi-start threshold accepting algorithm for
multiple objective continuous optimization problems. Int J Numer Methods Eng 83:1498–1517

11. Eremeev AV, Reeves CR (2002) Non-parametric estimation of properties of combinatorial
landscapes. In: Cagnoni S, Gottlieb J, Hart E, Middendorf M, Raidl G (eds) Applications of
evolutionary computing. Lecture notes in computer science, vol 2279. Springer, Berlin/Heidel-
berg, pp 31–40

12. Eremeev AV, Reeves CR (2003) On confidence intervals for the number of local optima. In:
Proceedings of EvoWorkshops 2003, Essex, pp 224–235

13. Essafi M, Delorme X, Dolgui A (2010) Balancing lines with CNC machines: a multi-start and
based heuristic. CIRP J Manuf Sci Technol 2:176–182

14. Feo T, Resende M (1989) A probabilistic heuristic for a computationally difficult set covering
problem. Oper Res Lett 8:67–71

15. Feo T, Resende M (1995) Greedy randomized adaptive search procedures. J Glob Optim
6:109–133

16. Fleurent C, Glover F (1999) Improved constructive multi-start strategies for the quadratic
assignment problem using adaptive memory. INFORMS J Comput 11:198–204

17. Glover F (2000) Multi-start and strategic oscillation methods – principles to exploit adaptive
memory. In: Laguna M, Gonzalez-Velarde J (eds) Computing tools for modeling optimization
and simulation. Kluwer Academic, Boston, pp 1–25

18. Glover F, Laguna M (1997) Tabu search. Kluwer Academic, Boston
19. Grundel D, Krokhmal P, Oliveira C, Pardalos P (2007) On the number of local minima for the

multidimensional assignment problem. J Combin Optim 13:1–18
20. Hagen L, Kahng A (1997) Combining problem reduction and adaptive multi-start: a new

technique for superior iterative partitioning. IEEE Trans CAD 16:709–717
21. Held M, Karp R (1970) The traveling-salesman problem and minimum spanning trees. Oper

Res 18:1138–1162
22. Hernando L, Mendiburu A, Lozano JA (2013) An evaluation of methods for estimating the

number of local optima in combinatorial optimization problems. Evol Comput 21(4):625–658
23. Hickernell F, Yuan Y (1997) A simple multistart algorithm for global optimization. OR Trans

1:1–11
24. Hu X, Shonkwiler R, Spruill M (1994) Random restarts in global optimization. Ga Inst Technol

1:1–10



6 Multi-start Methods 175

25. Kan AR, Timmer G (1987) Stochastic global optimization methods (Part II): multi level
methods. Math Program 39:57–78

26. Kan AR, Timmer G (1998) Global optimization. In: Kan R, Todds (eds) Handbooks in
operations research and management science. North Holland, Amsterdam, pp 631–662

27. Kaucic M (2013) A multi-start opposition-based particle swarm optimization algorithm with
adaptive velocity for bound constrained global optimization. J Glob Optim 55:165–188

28. Lan G, DePuy G (2006) On the effectiveness of incorporating randomness and memory into
a multi-start metaheuristic with application to the set covering problem. Comput Ind Eng
51:362–374

29. Martí R, Reinelt G, Duarte A (2012) A benchmark library and a comparison of heuristic
methods for the linear ordering problem. Comput Optim Appl 51(3):1297–1317

30. Martí R, Resende M, Ribeiro C (2013) Multi-start methods for combinatorial optimization.
Eur J Oper Res 226(1):1–8

31. Mayne DQ, Meewella C (1988) A non-clustering multistart algorithm for global optimization.
In: Bensoussan A, Lions J-L (eds) Analysis and optimization of systems. Lecture notes in
control and information sciences. Springer, Berlin/New York, pp 111–117

32. Mezmaz M, Melab N, Talbi E (2006) Using the multi-start and island models for parallel multi-
objective optimization on the computational grid. In: Second IEEE international conference on
e-science and grid computing, Amsterdam

33. Moreno J, Mladenovic N, Moreno-Vega J (1995) An statistical analysis of strategies for
multistart heuristic searches for p-facility location-allocation problems. In: Eighth meeting
of the EWG on locational analysis Lambrecht

34. Muth JF, Thompson GL (1963) Industrial scheduling. Prentice-Hall, Englewood Cliffs
35. Patterson R, Pirkul H, Rolland E (1999) Adaptive reasoning technique for the capacitated

minimum spanning tree problem. J Heuristics 5:159–180
36. Reeves C, Aupetit-Bélaidouni M (2004) Estimating the number of solutions for SAT problems.

In: Yao X, Burke E, Lozano J, Smith J, Merelo-Guervós J, Bullinaria J, Rowe J, Tino P, Kabán
A, Schwefel HP (eds) Parallel problem solving from nature – PPSN VIII. Lecture notes in
computer science, vol 3242. Springer, Berlin/Heidelberg, pp 101–110

37. Resende M, Ribeiro C (2010) Greedy randomized adaptive search procedures: advances and
applications. In: Gendreau M, Potvin JY (eds) Handbook of metaheuristics, 2nd edn. Springer,
New York, pp 293–319

38. Solis F, Wets R (1981) Minimization by random search techniques. Math Oper Res 6:19–30
39. Taillard E, Badeau P, Gendreau M, Guertin F, Potvin J (1997) A tabu search heuristic of the

vehicle routing problem with time windows. Transp Sci 31:170–186
40. Tu W, Mayne R (2002) An approach to multi-start clustering for global optimization with non-

linear constraints. Int J Numer Methods Eng 53:2253–2269
41. Ugray Z, Lasdon L, Plummer J, Glover F, Kelly J, Martí R (2007) Scatter search and local NLP

solvers: a multistart framework for global optimization. INFORMS J Comput 19(3):328–340
42. Ugray Z, Lasdon L, Plummer J, Bussieck M (2009) Dynamic filters and randomized drivers

for the multi-start global optimization algorithm MSNLP. Optim Methods Softw 24:4–5
43. Villegas J, Prins C, Prodhon C, Medaglia A, Velasco N (2010) GRASP/VND and multi-start

evolutionary local search for the single truck and trailer routing problem with satellite depots.
Eng Appl Artif Intell 23:780–794



7Multi-objective Optimization

Carlos A. Coello Coello

Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Pareto Optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Multi-objective Evolutionary Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
Multi-objective Evolutionary Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

Recent Algorithmic Trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Use of Other Metaheuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

Artificial Immune Systems (AIS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
Particle Swarm Optimization (PSO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Ant Colony Optimization (ACO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Other Metaheuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

Some Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
Some Current Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Cross-References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

Abstract

This chapter provides a short overview of multi-objective optimization us-
ing metaheuristics. The chapter includes a description of some of the main
metaheuristics that have been used for multi-objective optimization. Although
special emphasis is made on evolutionary algorithms, other metaheuristics,
such as particle swarm optimization, artificial immune systems, and ant colony
optimization, are also briefly discussed. Other topics such as applications and
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recent algorithmic trends are also included. Finally, some of the main research
trends that are worth exploring in this area are briefly discussed.

Keywords
Multi-objective optimization � metaheuristics � evolutionary algorithms �

optimization

Introduction

Metaheuristics have been widely used for solving different types of optimization
problems (see, e.g., [88, 109, 198]).

One particular class of optimization problems involves having two or more
(often conflicting) objectives which we aim to optimize at the same time. In fact,
such problems, which are called “multi-objective” are quite common in real-world
applications, and their solution has triggered an important amount of work within
Operations Research [135].

During the last 40 years, a large number of mathematical programming tech-
niques have been developed to solve certain specific classes of multi-objective
optimization problems. However, such techniques have a relatively limited ap-
plicability (e.g., some of them require the first or even the second derivative
of the objective functions and the constraints; others can only deal with convex
Pareto fronts, etc.). Such limitations have motivated the development of alternative
optimization methods, from which metaheuristics have become a very popular
alternative [43].

From the many metaheuristics currently available, evolutionary algorithms
have been, without doubt, the most popular choice for dealing with any sort of
optimization problem [21, 85], and multi-objective optimization is, by no means,
an exception. Thus, in this chapter, we will focus our discussion mainly on the use
of evolutionary algorithms for solving multi-objective optimization problems.

The use of evolutionary algorithms for solving multi-objective optimization
problems was originally hinted in 1967 [173], but the first actual implementation
of what is now called a “multi-objective evolutionary algorithm (MOEA)” was
not produced until the mid-1980s [178, 179]. However, this area, which is now
called “evolutionary multi-objective optimization,” or EMO, has experienced a
very important growth, mainly in the last 20 years [41, 42, 52, 201]. The author
maintains the EMOO repository, which, as of December 8, 2017, contains over
11,000 bibliographic entries, as well as public-domain implementation of some
of the most popular MOEAs. The EMOO repository is located at https://emoo.cs.
cinvestav.mx/.

The remainder of this chapter is organized as follows: In section “Basic
Concepts”, we provide some basic concepts related to multi-objective optimization,
which are required to make this chapter self-contained. The use of evolutionary
algorithms in multi-objective optimization is motivated in section “Multi-objective
Evolutionary Algorithms”. A short discussion on other bio-inspired metaheuristics

https://emoo.cs.cinvestav.mx/
https://emoo.cs.cinvestav.mx/
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that have also been used for multi-objective optimization is provided in section “Use
of Other Metaheuristics”. Some of the main research topics which are currently
attracting a lot of attention in the EMO field are briefly discussed in section
“Multi-objective Evolutionary Algorithms”. A set of sample applications of MOEAs
is provided in section “Some Applications”. Some of the main topics of research
in the EMO field that currently attract a lot of attention are briefly discussed
in section “Some Current Challenges”. Such topics include the use of other
metaheuristics. Finally, some conclusions are provided in section “Conclusions”.

Basic Concepts

In this chapter, we focus on the solution of multi-objective optimization problems
(MOPs) of the form:

minimize
�
f1.Ex/; f2.Ex/; : : : ; fk.Ex/

�
(1)

subject to the m inequality constraints

gi .Ex/ � 0 i D 1; 2; : : : ; m (2)

and the p equality constraints

hi .Ex/ D 0 i D 1; 2; : : : ; p (3)

where k is the number of objective functions fi W R
n ! R. We call Ex D

Œx1; x2; : : : ; xn�T the vector of decision variables. We wish to determine from among
the set F of all vectors which satisfy (2) and (3) the particular set of values
x�

1 ; x�
2 ; : : : ; x�

n which yield the optimum values of all the objective functions.

Pareto Optimality

It is rarely the case that there is a single point that simultaneously optimizes all
the objective functions. In fact, this situation only arises when there is no conflict
among the objectives, which would make unnecessary the development of special
solution methods, since this single solution could be reached after the sequential
optimization of all the objectives, considered separately. Therefore, we normally
look for “trade-offs,” rather than single solutions when dealing with multi-objective
optimization problems. The notion of “optimality” normally adopted in this case is
the one originally proposed by Francis Ysidro Edgeworth [63] and later generalized
by the French economist Vilfredo Pareto [152]. Although some authors call this
notion Edgeworth-Pareto optimality, we will use the most commonly adopted term:
Pareto optimality.
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We say that a vector of decision variables Ex� 2 F (i.e., a feasible solution) is
Pareto optimal if there does not exist another Ex 2 F such that fi .Ex/ � fi .Ex�/

for all i D 1; : : : ; k and fj .Ex/ < fj .Ex�/ for at least one j (assuming that all the
objectives are being minimized).

In words, this definition says that Ex� is a Pareto optimal solution if there exists
no feasible vector of decision variables Ex 2 F which would decrease some criterion
without causing a simultaneous increase in at least one other criterion. Assuming
the inherent conflict normally present among (at least some) objectives, the use of
this concept normally produces several solutions. Such solutions constitute the so-
called Pareto optimal set. The vectors Ex� corresponding to the solutions included
in the Pareto optimal set are called nondominated. The image of the Pareto optimal
set under the objective functions (i.e., the objective function values corresponding
to the decision variables contained in the Pareto optimal set) is called Pareto front.

Multi-objective Evolutionary Algorithms

The core ideas related to the development of search techniques that simulate the
mechanism of natural selection (Darwin’s survival of the fittest principle) can be
traced back to the early 1930s [75]. However, the three main techniques based on
this notion were developed during the 1960s: genetic algorithms [101], evolution
strategies [184], and evolutionary programming [74]. These approaches, which are
now generically denominated “evolutionary algorithms,” have been found to be very
effective for solving single-objective optimization problems [76, 89, 185].

The basic operation of an evolutionary algorithm (EA) is described next. First,
a set of potential solutions (called “population”) to the problem being solved is
randomly generated. Each solution in the population (called “individual”) encodes
all the decision variables of the problem (i.e., each individual contains all the
decision variables of the problem to be solved). The user needs to define a measure
of performance for each of the solutions. Such a measure of performance is called
“fitness function” and will allow us to know how good is a solution with respect to
the others. Such a fitness function is normally a variation of the objective function
of the problem that we wish to solve (e.g., the objective function that we aim
to optimize). Then, a selection mechanism must be applied in order to decide
which individuals will “mate.” This selection process is generally stochastic and
is normally based on the fitness contribution of each individual (i.e., the fittest
individuals have a higher probability of being selected). Upon mating, a set of
“offspring” (or children) are generated. Such offspring are “mutated” (this operator
produces a small random change, with a low probability, on the contents of an
individual) and constitute the new population to be evaluated at the next iteration
(each iteration is called a “generation”). This process is repeated until reaching a
stopping condition (normally, a maximum number of generations defined by the
user) [64].
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The main motivation for using EAs for solving multi-objective optimization
problems relies on their population-based nature, which allows them to generate
(if properly manipulated) several elements of the Pareto optimal set, in a single
run. In contrast, mathematical programming techniques normally generate a single
element of the Pareto optimal set per run. Additionally, the so-called multi-objective
evolutionary algorithms (MOEAs) are less susceptible to the shape and continuity
of the Pareto front and require less specific domain information to operate [41].

MOEAs extend a traditional (single-objective) EA in two main aspects:

• The selection mechanism: In this case, the aim is to select nondominated
solutions and to consider all the nondominated solutions in a population to be
equally good (unless there is some specific preference from the user, all the
elements of the Pareto optimal set are equally good).

• A diversity maintenance mechanism: Because of stochastic noise, EAs tend to
converge to a single solution if run for a sufficiently long time [89]. In order to
avoid this, it is necessary to block the selection mechanism in a MOEA, favoring
the diversity of solutions, so that several elements of the Pareto optimal set can
be generated in a single run.

Regarding selection, early MOEAs relied on the use of aggregating functions
(mainly linear) [93] and relatively simple population-based approaches [179]. How-
ever, such approaches have evident drawbacks (i.e., the use of linear aggregating
functions does not allow the generation of non-convex portions of the Pareto front
regardless of the weights combination that is adopted [49]). Toward the mid-
1990s, MOEAs started to adopt variations of the so-called Pareto ranking selection
mechanism. This approach was originally proposed by David E. Goldberg in his
seminal book on genetic algorithms [89], and it consists of sorting the population
of an EA based on Pareto optimality, such that all nondominated individuals
are assigned the same rank (or importance). The aim is that all nondominated
individuals get the same probability of being selected and that such probability is
higher than the one corresponding to individuals which are dominated. Although
conceptually simple, this sort of selection mechanism allows for a wide variety of
possible implementations [41, 52].

Regarding diversity maintenance, a wide variety of methods have been proposed
in the specialized literature to maintain diversity in a MOEA. Such approaches
include fitness sharing and niching [53, 91], clustering [203, 230], geographically
based schemes [120], the use of entropy [46, 117], and parallel coordinates [100],
among others. In all cases, the core idea behind diversity maintenance mechanisms
is to penalize solutions that are too close from each other in some space (i.e.,
decision variable or objective function space or even both). Most MOEAs penalize
solutions that are too close from each other in objective function space, because it
is normally aimed to have solutions well-distributed along the Pareto front.

Additionally, some researchers have proposed the use of mating restriction
schemes (which imposes rules on the individuals that can be recombined) [188,
230]. Furthermore, the use of relaxed forms of Pareto dominance has also become
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relatively popular in recent years, mainly as an archiving technique which encour-
ages diversity, while allowing the archive to regulate convergence (the most popular
of such mechanisms is, with no doubt, �-dominance [124], which has been adopted
in some approaches such as �-MOEA [57]).

A third component of modern MOEAs is elitism, which normally consists of
using an external archive (also called “secondary population”) that may (or may
not) interact in different ways with the main (or “primary”) population of the MOEA
during selection. The main purpose of this archive is to store all the nondominated
solutions generated throughout the search process, while removing those that
become dominated later in the search (called local nondominated solutions). The
approximation of the Pareto optimal set produced by a MOEA is thus the final
contents of this archive. It is important to emphasize that the use of elitism is
not only advisable (the lack of elitism could make us lose nondominated solutions
generated during the search), but it is also required because of theoretical reasons
(elitism is required in order to guarantee convergence of a MOEA to the Pareto
optimal set as proved in [174]).

It is worth noticing that, in practice, external archives are normally bounded to a
certain maximum number of solutions. This was originally done in some MOEAs
that used the external archive during the selection stage (see, e.g., [230]). In such
a case, allowing the size of the archive to grow too much dilutes the selection
pressure, which has a negative effect on the performance of the MOEA. However,
most modern MOEAs bound the size of the external archive, even if the archive
is not used during the selection process, mainly because of practical reasons (this
makes it easier to compare results with respect to other MOEAs).

An important remark is that the use of a plus (+) selection is another possible
elitist mechanism. Under this sort of selection scheme, the population of parents
competes with the population of offspring (both populations are of the same size),
and then we keep only the best half. This sort of selection scheme has been relatively
popular in single-objective optimization and has been also adopted in some modern
MOEAs (see, e.g., [56]), but it is less popular than the use of external archives.

Multi-objective Evolutionary Algorithms

In spite of the very large number of publications related to MOEAs that can be
found in the literature, there is only a handful of algorithms that are actually used
by a significant number of researchers and/or practitioners around the world.

1. Strength Pareto Evolutionary Algorithm 2 (SPEA2): This is an updated
version of the Strength Pareto Evolutionary Algorithm (SPEA) proposed in the
late 1990s [230] whose main features are the following. It adopts an external
archive (called the external nondominated set), which stores the nondominated
solutions previously generated and participates in the selection process (together
with the main population). For each individual in this archive, a strength value is
computed. This strength value is proportional to the number of solutions that a
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certain individual dominates. In SPEA, the fitness of each member of the current
population is computed according to the strengths of all external nondominated
solutions that dominate it. As the size of the external nondominated set grows
too much, this significantly reduces the selection pressure and slows down the
search. In order to avoid this, SPEA adopts a clustering technique that prunes the
contents of the external nondominated set so that its size remains below a certain
(pre-defined) threshold. SPEA standardized the use of external archives as the
elitist mechanism of a MOEA, although this sort of mechanism had been used
before by other researchers (see, e.g., [107]). SPEA2 has three main differences
with respect to the original SPEA [231]: (1) it incorporates a fine-grained fitness
assignment strategy which takes into account, for each individual, both the
number of individuals that dominate it and the number of individuals by which it
is dominated, (2) it uses a nearest neighbor density estimation technique which
guides the search more efficiently (i.e., a more efficient clustering algorithm is
adopted), and (3) it uses an enhanced archive truncation method that guarantees
the preservation of boundary solutions (this fixes a bug from the original SPEA).

2. Pareto Archived Evolution Strategy (PAES): This is perhaps the most simple
MOEA than can be possibly designed. It was proposed by Knowles and Corne
[119], and it consists of a (1+1) evolution strategy (i.e., a single parent that
generates a single offspring through the application of mutation to the parent)
in combination with a historical archive that stores the nondominated solutions
previously found. This archive is used as a reference set against which each
mutated individual is being compared. Such (external) archive adopts a crowding
procedure that divides objective function space in a recursive manner. Then, each
solution is placed in a certain grid location based on the values of its objectives
(which are used as its “coordinates” or “geographical location”). A map of
such a grid is maintained, indicating the number of solutions that reside in each
grid location. When a new nondominated solution is ready to be stored in the
archive, but there is no room for it (the size of the external archive is bounded),
a check is made on the grid location to which the solution would belong. If
this grid location is less densely populated than the most densely populated
grid location, then a solution (randomly chosen) from this heavily populated
grid location is deleted to allow the storage of the newcomer. This aims to
redistribute solutions, favoring the less densely populated regions of the Pareto
front. Since the procedure is adaptive, no extra parameters are required (except
for the number of divisions of the objective space).

3. Nondominated Sorting Genetic Algorithm II (NSGA-II): This is a heavily
revised version of the Nondominated Sorting Genetic Algorithm (NSGA),
which was originally proposed in the mid-1990s [193] as a straightforward
implementation of the Pareto ranking algorithm described by Goldberg in his
book [89]. NSGA was, however, slow and produced poorer results than other
non-elitist MOEAs available in the mid-1990s, such as MOGA [77] and NPGA
[103]. NSGA-II adopts a more efficient ranking procedure than its predecessor.
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Additionally, it estimates the density of solutions surrounding a particular
solution in the population by computing the average distance of two points on
either side of this point along each of the objectives of the problem. This value
is the so-called crowding distance. During selection, NSGA-II uses a crowded
comparison operator which takes into consideration both the nondomination rank
of an individual in the population and its crowding distance (i.e., nondominated
solutions are preferred over dominated solutions, but between two solutions with
the same nondomination rank, the one that resides in the less crowded region
is preferred). NSGA-II does not use an external archive as most of the modern
MOEAs in current use. Instead, the elitist mechanism of NSGA-II consists
of combining the best parents with the best offspring obtained (i.e., this is a
(� C �)-selection used in evolution strategies). Due to its clever mechanisms,
NSGA-II is much more efficient (computationally speaking) than its predecessor,
and its performance is so good that it has become very popular, triggering
a significant number of applications and becoming some sort of landmark
against which new MOEAs have been compared during more than 10 years, in
order to merit publication. More recently, the Nondominated Sorting Genetic
Algorithm III (NSGA-III) [54] was introduced. NSGA-III still adopts the same
NSGA-II framework (i.e., it still performs a classification of the population in
nondominated levels). However, its mechanism to maintain diversity is based
on the use of a number of well-spread reference points which are adaptively
updated. The NSGA-III does not require any additional parameters (other than
those associated to the genetic algorithm that is used as its search engine), and
it is designed to deal with many-objective optimization problems (i.e., problems
having 4 or more objectives).

4. Pareto Envelope-based Selection Algorithm (PESA): This algorithm was
proposed by Corne et al. [44] and uses a small internal population and a larger
external (or secondary) population. PESA adopts the same adaptive grid from
PAES to maintain diversity. However, its selection mechanism is based on the
crowding measure. This same crowding measure is used to decide what solutions
to introduce into the external population (i.e., the archive of nondominated
vectors found along the evolutionary process). Therefore, in PESA, the external
memory plays a crucial role in the algorithm since it determines not only the
diversity scheme but also the selection performed by the method. There is also
a revised version of this algorithm, called PESA-II [45], which is identical to
PESA, except for the fact that a region-based selection is used in this case.
In region-based selection, the unit of selection is a hyperbox rather than an
individual. The procedure consists of selecting (using any of the traditional
selection techniques [90]) a hyperbox and then randomly selecting an individual
within such hyperbox. The main motivation of this approach is to reduce the
computational costs associated with traditional MOEAs (i.e., those based on
Pareto ranking).

5. Multi-objective Evolutionary Algorithm based on Decomposition (MOEA/D):
This approach was proposed by Zhang and Li [221]. The main idea of this
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algorithm is to decompose a multi-objective optimization problem into several
scalar optimization subproblems which are simultaneously optimized. The
decomposition process requires the use of weights, but the authors provide a
method to generate them. During the optimization of each subproblem, only
information from the neighboring subproblems is used, which allows this
algorithm to be effective and efficient. MOEA/D is generally considered one
of the most powerful MOEAs currently available, as has been evidenced by
several comparative studies.

Recent Algorithmic Trends

Many other MOEAs have been proposed in the specialized literature (see, e.g.,
[39, 57, 200, 202, 219]), but they will not be discussed here due to obvious space
limitations. A more interesting issue, however, is to try to predict which sort of
MOEA will become predominant in the next few years.

Efficiency is, for example, a concern nowadays, and several approaches have
been developed in order to improve the efficiency of MOEAs (see, e.g., [113]). Also,
the use of fitness approximation, fitness inheritance, surrogates, and other similar
techniques has become more common in recent years, which is a clear indication
of the more frequent use of MOEAs for the solution of computationally expensive
problems (see, e.g., [118, 157, 166, 169, 177, 217, 222]).

However, the most promising research line within algorithmic design seems to
be the use of a performance measure in the selection mechanism of a MOEA. This
research trend formally started with the Indicator-Based Evolutionary Algorithm
(IBEA) [229], although this idea had been already formulated and used (in different
ways) by other authors (see, e.g., [106, 120]). Nevertheless, the most representative
MOEA within this family is perhaps the S metric selection Evolutionary Multi-
Objective Algorithm (SMS-EMOA) [19, 67]. SMS-EMOA was originally proposed
by Emmerich et al. [67] and is based on NSGA-II. SMS-EMOA creates an initial
population, and then, it generates only one solution by iteration using the operators
(crossover and mutation) of the NSGA-II. After that, it applies Pareto ranking.
When the last front has more than one solution, SMS-EMOA uses the hypervolume
contribution to decide which solution will be removed. The Hypervolume (also
known as the S metric or the Lebesgue Measure) of a set of solutions measures
the size of the portion of objective space that is dominated by those solutions
collectively. This is the only unary performance indicator which is known to be
Pareto compliant [232]. Beume et al. [19] proposed not to use the contribution to the
hypervolume indicator when in the Pareto ranking we obtain more than one front.
In that case, they proposed to use the number of solutions which dominate to one
solution (the solution that is dominated by more solutions is removed). The authors
argued that the motivation for using the hypervolume indicator is to improve the
distribution in the nondominated front and then it is not necessary in fronts different
to the nondominated front.
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The hypervolume indicator has attracted a lot of attention from researchers due
to its interesting theoretical properties. For example, it has been proven that the
maximization of the hypervolume is equivalent to finding the Pareto optimal set
[73]. Empirical studies have shown that (for a certain number of points previously
determined) the maximization of the hypervolume does indeed produce subsets of
the Pareto front which are well-distributed [67, 120].

However, there are also practical reasons for being interested in indicator-based
selection. The main one is that MOEAs such as SMS-EMOA seem to continue
working as usual as we increase the number of objectives, as opposed to Pareto-
based selection mechanisms which are known to degrade quickly in problems
having more than three objectives (this research area is known as many-objective
optimization). Although the reasons for the poor scalability of Pareto-based MOEAs
requires further study (see, e.g., [182]), the need for scalable selection mechanisms
has triggered an important amount of research around indicator-based MOEAs.
The main drawback of adopting the hypervolume in the selection mechanism
of a MOEA is its extremely high computational cost. One possible alternative
for dealing with this high computational cost is to estimate the hypervolume
contribution. However, MOEAs designed around this idea (e.g., HyPE [7]) seem
to have a poor performance with respect to those that adopt exact hypervolume
contributions. An alternative is to rely on other performance indicators. In this
regard, several researchers have proposed the design of selection mechanisms based
on performance measures such as �p [168, 183] and R2 [24, 94, 99, 154]. The use
of the maximin [10, 132] is another intriguing alternative, as this expression seems
to be equivalent to the use of the �-indicator [233].

Use of Other Metaheuristics

A wide variety of other bio-inspired metaheuristics have become popular in the
last few years for solving optimization problems [43]. Multi-objective extensions of
many of these metaheuristics already exist [41], but few efforts have been made to
actually exploit the main specific features of each of them. There are also few efforts
in trying to understand the types of problems in which each of these metaheuristics
can be more suitable.

Next, we briefly review three popular bio-inspired metaheuristics that are good
candidates for being used as multi-objective optimizers, but many other choices also
exist (see, e.g., [41]).

Artificial Immune Systems (AIS)

Our natural immune system has provided a fascinating metaphor for developing a
new bio-inspired metaheuristic. Indeed, from a computational point of view, our
immune system can be considered as a highly parallel intelligent system that is
able to learn and retrieve previously acquired knowledge (i.e., it has “memory”),
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when solving highly complex recognition and classification tasks. This motivated
the development of the so-called artificial immune systems (AISs) during the early
1990s [50, 51].

AISs were identified in the early 1990s as a useful mechanism to maintain
diversity in the context of multimodal optimization [78, 191]. Smith et al. [192]
showed that fitness sharing can emerge when their emulation of the immune system
is used. Furthermore, the approach that they proposed turns out to be more efficient
(computationally speaking) than traditional fitness sharing [53], and it does not
require additional information regarding the number of niches to be formed.

Over the years, a wide variety of multi-objective extensions of AISs have been
proposed (see, e.g., [27, 32, 38, 79, 130, 155]). However, most of the algorithmic
trends in MOEAs have had a delayed arrival in multi-objective AISs. Also, the high
potential of multi-objective AISs for pattern recognition and classification tasks has
been scarcely exploited.

For more information on multi-objective AISs, the interested reader is referred
to [28, 80].

Particle Swarm Optimization (PSO)

This metaheuristic is inspired on the movements of a flock of birds seeking food,
and it was originally proposed in the mid-1990s [116]. In the particle swarm
optimization algorithm, the behavior of each particle (i.e., individual) is affected
by either the best local (within a certain neighborhood) or the best global (i.e.,
with respect to the entire swarm or population) individual. PSO allows particles
to benefit from their past experiences (a mechanism that does not exist in traditional
evolutionary algorithms) and uses neighborhood structures that can regulate the
behavior of the algorithm.

The similarity of PSO with EAs has made possible the quick development
of an important number of multi-objective variants of this metaheuristic (see,
e.g., [40, 139, 142, 153, 165, 216]). Unlike AISs, most algorithmic trends adopted
with MOEAs have quickly been incorporated into multi-objective particle swarm
optimizers (MOPSOs). Nevertheless, few PSO models have been used for multi-
objective optimization, and the study of the specific features that could make
MOPSOs advantageous over other metaheuristics in some specific classes of
problems is still a pending task.

For more information on MOPSOs, the interested reader is referred to [11, 37,
41, 61, 167].

Ant Colony Optimization (ACO)

This metaheuristic was inspired on the behavior observed in colonies of real
ants seeking for food. Ants deposit a chemical substance on the ground, called
pheromone [60], which influences the behavior of the ants: they tend to take those
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paths in which there is a larger amount of pheromone. Therefore, pheromone trails
can be seen as an indirect communication mechanism used by the ants (which can be
seen as agents that interact to solve complex tasks). This interesting behavior of ants
gave rise to a metaheuristic called ant system, which was originally applied to the
traveling salesperson problem. Nowadays, the several variations of this algorithm
that have been developed over the years are collectively denominated by ant colony
optimization (ACO), and they have been applied to a wide variety of domains,
including continuous optimization problems.

Several multi-objective versions of ACO are currently available (see, e.g., [2,
4, 70, 111, 137, 140, 170]). However, the algorithmic trends developed in MOEAs
have had a slow delay in being incorporated into multi-objective ACO algorithms.
Additionally, the use of alternative ACO models for multi-objective optimization
has been relatively scarce.

For more information on multi-objective ACO, the interested reader is referred
to [4, 41, 82].

Other Metaheuristics

Many other metaheuristics have been extended to deal with multi-objective opti-
mization problems, including simulated annealing [48,65,189,190,194], differential
evolution [134, 138, 197, 199, 204, 207, 208], tabu search [30, 86, 95, 149], scatter
search [12, 15, 16, 158, 160, 211], and artificial bee colony [33, 58, 127, 159],
among many others. However, their discussion was omitted due to obvious space
constraints.

Some Applications

Multi-objective metaheuristics have been extensively applied to a wide variety of
domains. Next, we will provide a short list of sample applications classified in three
large groups: (1) engineering, (2) industrial, and (3) scientific. Specific areas within
each of these large groups are also identified.

By far, engineering applications are the most popular in the current literature on
multi-objective metaheuristics. This is not surprising if we consider that engineering
disciplines normally have problems with better understood mathematical models. A
representative sample of engineering applications is the following:

• Electrical engineering [161, 176]
• Hydraulic engineering [186, 196]
• Structural engineering [218, 224]
• Aeronautical engineering [6, 172]
• Robotics [115, 220]
• Control [123, 131]
• Telecommunications [105, 141]
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• Civil engineering [145, 214]
• Transport engineering [8, 223]

Industrial applications are the second most popular in the literature on multi-
objective metaheuristics. A representative sample of industrial applications of multi-
objective metaheuristics is the following:

• Design and manufacture [9, 17, 228]
• Scheduling [26, 29]
• Management [34, 69]

Finally, there are several publications devoted to scientific applications. For
obvious reasons, computer science applications are the most popular in the literature
on multi-objective metaheuristics. A representative sample of scientific applications
is the following:

• Chemistry [13, 71, 126, 227]
• Physics [14, 171]
• Medicine [97, 122]
• Computer science [146, 175]

This sample of applications should give at least a rough idea of the increasing
interest of researchers for adopting multi-objective metaheuristics in practically all
kinds of disciplines.

Some Current Challenges

The existence of challenging, but solvable problems, is a key issue to preserve
the interest in a research discipline. Although multi-objective optimization using
metaheuristics is a discipline in which a very important amount of research has
been conducted, mainly within the last 15 years, several interesting problems still
remain open. Additionally, the research conducted so far has also led to new and
intriguing topics. The following is a small sample of open problems that currently
attract a significant amount of research within this area:

• Scalability: Although multi-objective metaheuristics have been commonly used
for a wide variety of applications, they have certain limitations. For example, as
indicated before, selection mechanisms based on Pareto optimality are known to
degrade quickly as we increase the number of objectives. The reason is that, as
we increase the number of objectives, unless there is a significant increase in the
population size, all the individuals will quickly become nondominated, which
will cause stagnation (i.e., no individual will be better than the others, which
makes the selection mechanism totally useless). In fact, there is experimental
evidence that indicates that, when dealing with ten objectives, random sampling



190 C. A. Coello Coello

performs better than Pareto-based selection [121]. There are alternative ranking
techniques that can be used to deal with these problems having four or more
objectives [83, 129], but it is also possible to use relaxed forms of Pareto
dominance [59, 72], dimensionality reduction techniques [23, 128], or indicator-
based selection mechanisms [19, 229]. It is worth indicating that scalability in
decision variable space (i.e., the capability of multi-objective metaheuristics for
dealing with large-scale problems) has been scarcely studied in the specialized
literature (see, e.g., [5, 62]).

• Incorporation of user’s preferences: It is normally the case that the user does
not need the entire Pareto front of a problem but only a certain portion of it. For
example, solutions lying at the extreme parts of the Pareto front are normally
unnecessary since they represent the best value for one objective, but the worst
for the others. Thus, if the user has at least a rough idea of the sort of trade-
offs that he/she aims to find, it is desirable to be able to explore in more detail
only the nondominated solutions within the neighborhood of such trade-offs.
This is possible, if we use, for example, biased versions of Pareto ranking [47]
or some multi-criteria decision- making technique, from the many developed
in Operations Research [22, 35, 150]. In spite of the importance of preference
incorporation in real-world applications, the use of these schemes in multi-
objective metaheuristics is still relatively scarce [31, 68, 81, 110].

• Dealing with expensive problems: There is an important number of real-
world multi-objective problems for which a single evaluation of an objective
function may take several minutes, hours, or even days [6]. Evidently, such
problems require special techniques to be solvable using MOEAs [177]. The
main approaches that have been developed in this area can be roughly divided
into three main groups:

1. Use of parallelism: This is the most obvious approach given the current
access to low-cost parallel architectures (e.g., GPUs [18, 187]). It is worth
noting, however, that in spite of the existence of interesting proposals (see,
e.g., [3, 136]), the basic research in this area has remained scarce, since most
publications involving parallel MOEAs focus on specific applications or on
parallel extensions of specific MOEAs, but rarely involve basic research.

2. Surrogates: In this case, knowledge of past evaluations of a MOEA is
used to build an empirical model that approximates the fitness functions to
be optimized. This approximation can then be used to predict promising
new solutions at a smaller evaluation cost than that of the original problem
[114, 118]. Current functional approximation models include polynomials
(response surface methodologies [162]), neural networks (e.g., multilayer
perceptrons (MLPs) [102, 108, 156]), radial-basis function (RBF) networks
[147, 205, 213], support vector machines (SVMs) [1, 20], Gaussian processes
[25, 206], and Kriging [66, 163] models. The use of statistical models
developed in the mathematical programming literature in combination with
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MOEAs is also an interesting alternative (see, e.g., the multi-objective P-
algorithm [151, 226]).

3. Fitness approximation: The idea of these approaches is to predict the fitness
value of an individual without performing its actual evaluation. From the
several techniques available, fitness inheritance has been the most popular in
multi-objective optimization [164], but the research in this area has remained
scarce.

• Theoretical foundations: Although an important effort has been made in recent
years to provide a solid theoretical foundation to this field, a lot of work is still
required, and the work done in the Operations Research community can provide
some useful hints (see, e.g., [151, 225]). The most relevant theoretical work in
this area includes topics such as convergence [174, 209], archiving [180, 181],
algorithm complexity [143, 144], and run-time analysis [87, 125].

• Constraint-handling: The use of multi-objective optimization concepts to han-
dle constraints in single-objective evolutionary algorithms has been a relatively
popular research area (see, e.g., [84,98,133,195,210,215]). In contrast, however,
the design of constraint-handling mechanisms for MOEAs has not been that
popular (see, e.g., [92, 96, 104, 112, 148, 212]). This is remarkable, given the
importance of constraints in real-world applications, but this may be due to
the fact that some modern MOEAs (e.g., NSGA-II) already incorporated a
constraint-handling mechanism. Additionally, the use of benchmarks containing
constrained test problems (e.g., [55]) has not been very popular in the specialized
literature. Most of the current research in this area has focused on extending
the Pareto optimality relation in order to incorporate constraints (e.g., giving
preference to feasibility over dominance, such that an infeasible solution is
discarded even if it is nondominated). Also, the use of penalty functions that
“punish” a solution for not being feasible are easy to incorporate into a MOEA
[36]. However, topics such as the design of constraint-handling mechanisms
for dealing with equality constraints, the design of scalable test functions that
incorporate constraints of different types (linear, nonlinear, equality, inequality),
and the study of mechanisms that allow an efficient exploration of constrained
search spaces in MOPs remain practically unexplored.

Conclusions

In this chapter, we have provided some basic concepts related to multi-objective
optimization using metaheuristics. This overview has included basic concepts
related to multi-objective optimization in general, as well as some algorithmic
details, with a particular emphasis on multi-objective evolutionary algorithms.

Some of the recent algorithmic trends have also been discussed, and some sample
applications have been addressed. In general, breadth has been favored over depth,
but a significant number of bibliographic references are provided for those interested
in gaining an in-depth knowledge of any of the topics discussed herein.
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The information provided in this chapter aims to serve as a general overview of
the field and to motivate the interest of the reader for pursuing research in this area.
As could be seen, several research opportunities are still available for newcomers.

Cross-References

�Ant Colony Optimization: A Component-Wise Overview
�Evolutionary Algorithms
�Genetic Algorithms
� Particle Swarm Methods
�Theoretical Analysis of Stochastic Search Algorithms
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Introduction

When evaluating performance of an optimization method, the most commonly
reported statistics are running time (or execution time) and solution quality.
Often these statistics are sensitive to initial conditions and algorithm parameters,
especially in randomized algorithms. To capture this variability when analyzing
computational performance, it is common to report a sequence of run-times and
the corresponding objective function values (or their averages and some measures
of dispersion) for different problem instances, initial conditions, and parameter
settings. In general, it is natural to consider a probability distribution of time that
an algorithm requires to obtain a solution of a given quality (e.g., an optimal
solution or a solution whose value is within factor ˛ from optimal). The variability
in run-times can often be attributed to randomized algorithmic steps, such as
randomized branching rules and column selection in branch-and-price methods,
arbitrarily resolved ties, stochastic initial solutions, and random local search moves
in metaheuristics.

In some applications, the distribution of the algorithm’s run-time has a large
spread, and there is a relatively high probability of having a run-time that is
far from the average run-time value [6]. Such peculiar distributions can be ex-
ploited to accelerate the search via multi-start strategy: each run has a limited
duration, and the algorithm is repeatedly restarted with different initial condi-
tions or random seeds. Importantly, such acceleration opportunity is not just a
mathematical curiosity, but it is commonly found in many real-life applications pro-
viding significant acceleration for the state-of-the-art optimization algorithms; see,
e.g., [6, 12, 16, 18].

If a probability distribution of an algorithm’s run-time admits such acceleration,
it is referred to as a restart distribution. In [18], the authors provide the formal defi-
nition of a restart distribution. The authors also establish the theoretical explanation
of the efficient restart strategies for enumeration algorithms. A search tree model is
described in [2] to provide a formal proof of heavy-tailed behavior in imbalanced
search trees.

Incorporating variability into deterministic methods may lead to faster algo-
rithms. Randomizing certain decision in the deterministic algorithms may also
induce restart distribution of run-times. This type of acceleration has been reported
for various applications of randomized backtracking search. In [6], random steps are
embedded in a complete search algorithm for the constraint satisfaction problem
and the propositional satisfiability problem, and it is shown that the proposed
randomization accelerates deterministic methods.

Finally, multi-start is a popular framework in many metaheuristics (see, e.g., [3,
13, 14, 16]). However, the impact of restart strategies on the computational per-
formance is often underestimated. One of the most successful metaheuristics –
tabu search – and its run-time distributions in the context of restart strategies are
discussed in [19].
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Fig. 1 The distribution of run-time of a tabu search algorithm for an instance of the maximum cut
problem based on 80,000 runs

The following example of a restart distribution is based on a randomly generated
instance of the directed maximum cut problem [20] with 400 vertices, where every
possible edge between vertices is included in the graph with probability 1

2
(both

directions are considered separately). This random instance is repeatedly solved by a
simple version of the tabu search method [4] starting from different initial solutions,
terminating when the algorithm finds a solution whose objective is better than a
predefined threshold value. The implementation of the tabu search in this example
has a fixed tabu tenure of ten iterations, and it does not include any advanced
features, except for the cycle detection [4].

The distribution of the run-times is presented in Fig. 1. Markedly, it can be
observed that the probability of large computational times is rather high or,
in other words, the run-time has a heavy-tailed distribution (the tails are not
exponentially bounded). In order to accelerate the search, one can select a restart
parameter value and repeatedly restart the algorithm after the number of iterations
exceeds this predefined parameter. Figure 2 provides the average run times for
the tabu algorithm as a function of the number of iterations between restarts.
It is clear from the plot that certain values of the restart parameter guarantee
superior algorithmic performance, when compared to the original algorithm that
does not employ any restart strategy. In this context, an interesting question can
be stated: What is the best restart value for algorithm acceleration? The following
discussion provides an overview of the research that addresses this important
question.



208 O. V. Shylo and O. A. Prokopyev

450000

400000

350000

300000

250000

200000

150000

100000
0 100000800006000040000

Restart Parameter

T
im

e

20000

Fig. 2 The average run-time of a tabu search algorithm for an instance of the maximum cut
problem as a function of the restart parameter (the same instance as in Fig. 1)

Basic Restart Strategies

Unlike Monte Carlo algorithms, which are guaranteed to provide approximate
answers or solutions within a fixed time, the Las Vegas-type algorithms are defined
as algorithms that always find “correct solutions,” but the required computational
time is uncertain. To define the correctness of a solution, one can demand a proof
of optimality or comparison of the solution objective function to a predefined
threshold, in which case the “correct solution” is any solution with the objective
function better than the threshold.

In general, the run-time of an algorithm can be measured either in iterations or in
computational time. A restart strategy associated with a given algorithm is typically
defined (see, e.g., [10, 22]) as a sequence, S D ft1; t2; : : :g, that represents allocated
run-times between restarts. According to the strategy S , the first run continues for
t1 time units (iterations) or until the correct answer is found. The second run lasts t2
time units or until the correct answer is found and so on. The runs are independent
from each other, as no information is passed between different computational runs.
As briefly discussed in section “Introduction”, different restart strategies might lead
to different average run-times.

In [10], the authors consider integer run-times that represent the total number
of iterations until a desired outcome is achieved. They consider a wide domain
of restart strategies including strategies with random restart intervals and those
that enable suspension of algorithm execution in favor of another run with an
option to continue its execution later. It is shown that there always exists a uniform
restart strategy (i.e., t1 D t2 D : : : D t�) that is optimal. It is easy to see
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that the same result holds if a run-time is determined using continuous time units
instead of iterations – for example, consider rounding continuous times to the
nearest integral values (number of seconds) and redefining the run-time distribution
accordingly.

To find an optimal restart period t�, a good estimate of the underlying run-time
distribution is required, which might be problematic in practice. If this information
is not available, the universal restart strategy introduced in [10] can provide a
decent performance guarantee. In this strategy, all run length are powers of 2 starting
with a run of length 20 (this sequence may be rescaled). Considering the duration
of the current run, if the number of previous runs with the same length is even,
then the next run duration is double of the current run duration. Otherwise, the
next run has the length equal to one. These rules define the following numerical
sequence:

Suniv D f1; 1; 2; 1; 1; 2; 4; 1; 1; 2; 1; 1; 2; 4; 8; 1; : : :g

When comparing Suniv to the optimal restart strategy, its performance is within
a logarithmic factor from optimality without any requirements on prior knowledge
of the run-time distribution [10]. Formally, if T univ denotes the expected run-time of
the algorithm that uses universal restart strategy and T opt denotes the expected run
time under the optimal restart strategy, then

T univ � 192 � T opt.log2.T opt/ C 5/:

Unfortunately, the difference between run-times of the universal and optimal
strategies may be large in practice, which limits the applicability of this important
theoretical result.

Restart strategies can be naturally extended to parallel optimization [9], where
copies of the same algorithm are executed in parallel. Note that due to randomness,
the search trajectories are in general different. As in the serial setting, a restart
strategy defines maximum run-times for each copy of the algorithm, i.e.,

S D

8
ˆ̂
<

ˆ̂
:

t 1
1 ; t 1

2 ; t 1
3 ; : : :

t 2
1 ; t 2

2 ; t 2
3 ; : : :

: : :

tn
1 ; tn

2 ; tn
3 ; : : :

(1)

In a uniform parallel restart strategy, each copy of the algorithm has the same
restart schedule (i.e., t i

j D t�). This strategy is no longer optimal as it was in the
serial case, but its performance is provably within a constant factor from optimality.
An example of nonuniform optimal strategy can be found in [9].
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Restart Distribution and Optimal Restart Strategies

Next, we overview some formal characterizations of run-time distribution that can
be exploited to gain computational acceleration. Our discussion in this and the next
sections is mostly based on the results from [22].

Consider a randomized algorithm A for solving a problem instance P . The
execution time of A when solving P is a random variable, � . Based on the
algorithm A, one can define its uniform restart version, AR, which follows the same
algorithmic steps as A, but is restarted after R iterations or time units if the correct
solution is not found. Similarly to A, algorithm AR terminates as soon as the correct
solution is obtained. The positive parameter R is referred to as a restart period (or
a restart parameter) of AR.

The number of restarts before the first successful run of AR is a geometric random
variable, and the expected run-time, T .R/, of AR can be expressed as

T .R/ D R �
1 � P rf� � Rg

P rf� � Rg
C EŒ�j� � R� (2)

The first part of (2) is an expected number of restarts multiplied by the duration of
each run, while the second is an average duration of the run that produces the final
solution.

Definition 1. A probability distribution of a random variable � , P rf� � xg, is
called a restart distribution if there exists R > 0, such that

R �
1 � P rf� � Rg

P rf� � Rg
C EŒ�j� � R� < EŒ�� (3)

From (3), if a run-time of an algorithm follows a restart distribution, then the
algorithm has a restart version that outperforms the algorithm without restarts in
terms of its average run-time. Clearly, the properties of the run-time distribution
depend on the optimization problem and the algorithm itself. If, for example, an
optimization algorithm uses an optimal restart policy, then its run-time will no
longer follow a restart distribution.

A log-normal distribution is an example of a restart distribution. For example,
consider three log-normal random variables with the same location parameter,
� D 1. The scale parameters, � , are 2, 2.5, and 1.5. The expected values of
these random variables are 20.08, 61.86, and 8.37, respectively. If these variables
represented run-times of some algorithms, we would be able to achieve acceleration
by restarting after R units of run-time. Figure 3 illustrates this opportunity by
showing the expected run-time given by (2) as a function of restart period R. It
shows that restarting an algorithm allows us to achieve significant acceleration for
these run-time distributions. Furthermore, we can see that the larger variability in
run-times provides a better opportunity for acceleration by the restart mechanism.

The optimality conditions can be derived for continuous and differentiable
(first and second derivative) cumulative distribution functions (CDF) of run-times



8 Restart Strategies 211

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
1

2
3

4
5

Restart parameter

A
ve

ra
ge

 ru
n−

tim
e

Fig. 3 The average run-time as a function of the restart parameter, R, for log-normally distributed
run-times

(see [22] for more details). If this is not the case, then a continuous and differentiable
approximation of original CDF can be used instead.

Proposition 1. Let R� be an optimal restart period for AR. Then the expected run-
time of AR� is

T .R�/ D
1 � P rf� � R�g

dP rf��Rg
dR

ˇ
ˇ
ˇ
RDR�

(4)

Proof.

dT .R/

dR
D

1 � P rf� � Rg

P rf� � Rg
CR �

 
� dP rf��Rg

dR

P rf� � Rg
�

1 � P rf� � Rg

.P rf� � Rg/2
�

dP rf� � Rg

dR

!

CR �
dP rf� � Rg

dR

1

P rf� � Rg
C

� dP rf��Rg
dR

.P rf� � Rg/2

Z R

0

xf .x/dx

D
1 � P rf� � Rg

P rf� � Rg
�

dP rf��Rg
dR

P rf� � Rg

�

R �
1 � P rf� � Rg

P rf� � Rg
C EŒ�j� � R�

�

D
1 � P rf� � Rg

P rf� � Rg
�

dP rf��Rg
dR

P rf� � Rg
� T .R/

ut
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The reciprocal of the expression in the right-hand side of (4) is known as a hazard
rate function, which is an important concept in reliability engineering [17]. The
hazard rate function, or failure rate, can be used to describe general properties of
restart distributions.

Proposition 2. A hazard rate function of a restart distribution is nonincreasing on
some interval containing an optimal restart period.

This property allows us to rule out the distribution that has an increasing hazard
rate functions [7]. The previous proposition shows, for example, that the following
distributions are not restart distributions:

• Weibull distributions with the shape parameter k > 1,
• Gamma distribution with the shape parameter k > 1,
• Uniform distribution,
• Normal distribution.

Single Algorithm Portfolios of Restart Algorithms

Algorithmic acceleration can be achieved by combining algorithms in portfolios that
are executed concurrently in a distributed manner. For example, a single algorithm
portfolio consists of different copies of the same algorithm that are deployed on
different processors. This simple parallelism can be extremely efficient in practical
applications that involve randomized algorithms. There are numerous reports of
superlinear speedup when using this type of parallelization (e.g., see [15]). By
superlinear speedup, we imply that the algorithm utilizes up to n processors and
on average is more than n time faster than the algorithm utilizing one processor.

The superlinear speedup can be related to the concept of restart distributions.
Consider a single restart algorithm portfolio: a parallel algorithm An

R that consists
of n independent copies of AR running in parallel (no communication), where, as
previously, AR is the restart version A with parameter R. The algorithm An

R halts
whenever one of n copies finds a correct solution. Let random variable �n

min denote
the run-time of An

R, while Tn.R/ denotes the expected run-time of An
R.

The expected run-time of the single algorithm portfolio with a uniform restart
strategy is given by

Tn.R/ D R �
.1 � P rf� � Rg/n

1 � .1 � P rf� � Rg/n
C EŒ�n

minj�n
min � R� (5)

An optimality condition similar to the serial case can be derived for parallel
restart algorithms (see [22]).

Proposition 3. Let R�
n be the optimal restart period for An

R; then the expected
running time of An

R is



8 Restart Strategies 213

Tn.R�
n / D

.1 � P rf� � R�
n g/

n � dP rf��Rg
dR

ˇ
ˇ
ˇ
RDR�

n

(6)

As mentioned earlier, the log-normal distribution is a restart distribution. We use
this distribution to illustrate some of the ideas, since we can easily calculate the
exact values for the conditional expectations in (5) without resorting to statistical
sampling. For example, we can use the log-normal run-time to provide an illustration
of the superlinear speedup.

Let � be a random variable with a log-normal distribution with parameters � D 2

and � D 1. We define a parallel speedup as a ratio between run-time of a serial
algorithm and run-time of its parallel version. Firstly, we consider the speedup for
the algorithm that does not apply any restart strategy. The data presented in Fig. 4
clearly indicates the superlinear average speedup relative to the run-time of the serial
algorithm.

The following proposition from [22] states that if the superlinear parallel speedup
is achieved by a single algorithm portfolio, then the underlying distribution of the
run-time is a restart distribution.

Proposition 4. If R� and R�
n are optimal restart periods for AR and An

R, respec-

tively, then T .R�/

Tn.R�

n /
� n.
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Fig. 4 Speedup is obtained by comparing the serial no-restart version with the parallel no-
restart version [22]; � has log-normal distribution with � D 1 and � D 2
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Simply speaking, Proposition 4 indicates that the superlinear parallel speedup
can be attributed to the inefficiencies of the serial algorithm, and these inefficiencies
can be alleviated by adopting an appropriate restart strategy.

Consider now the situation when both serial and parallel algorithms implement
optimal restart strategies. It is important to note that the optimal values in parallel
and serial cases are not necessarily the same. The following proposition relates the
number of processors to the value of the optimal restart parameter.

Proposition 5. If the hazard rate function of the run-time distribution is unimodal
and T .R�/

Tn.R�

n /
< n, then R� < R�

n .

Intuitively, it might seem that the best serial algorithm is the best candidate for
parallelizing. However, Proposition 5 shows that the optimal restart parameter for
the serial algorithm is not necessarily optimal when considering the performance
of the corresponding single algorithm portfolio. In other words, good average
performance in serial setting can often provide suboptimal parallel performance.

Suppose that the run-time of a serial algorithm follows the same log-normal
distribution as in the previous example. The optimality conditions (4) and (6)
for the optimal restart parameters provide the corresponding optima. Figure 5
illustrates the computational speedup achieved by the parallel algorithms with
optimal restart parameters and varying number of parallel processors compared to
the serial algorithm (for the log-normal run-times). The restart parameters of the
serial and parallel algorithms are different: in fact, it turns out that the optimal restart
parameter is monotonically increasing as a function of the number of processors.
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Fig. 5 Speedup is obtained by comparing the optimal serial restart version with the optimal
parallel restart version [22]; � has log-normal distribution with � D 1 and � D 2
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Fig. 6 Comparison of the parallel algorithms with and without implementation of the optimal
restart strategy [22]; � has log-normal distribution with � D 1 and � D 2

The speedup is almost linear for the number of processors below 100. For large
numbers of processors, the speedup quickly becomes sublinear, and the single
algorithm portfolio parallelization becomes less effective.

Another interesting question that is important for practical applications is: what
is the value of knowing the optimal restart parameter? Figure 6 shows the value
of implementing optimal restart strategy with respect to the number of processors.
As the number of processors increases, the benefit of knowing the exact value
of optimal restart parameter is steadily decreasing. In some sense, the single
algorithm portfolio framework takes advantage of restart-distribution properties
without restarting the algorithm. The performance can be improved by applying an
effective restart strategy explicitly; however, the value of such improvement quickly
diminishes as the number of processes increases.

An optimal value of restart parameter is typically unknown in a realistic problem
setting. Furthermore, as mentioned previously, the value of the optimal restart
parameter may decrease as the number of processors grows. These observations
suggest that the main effort should be concentrated on developing and identifying
algorithms with run-times that follow restart distributions instead of focusing on the
methods that find optimal restart values. The potential for acceleration of run-times
that follow restart distributions can be automatically exploited via portfolio paral-
lelization. Furthermore, any errors in estimating the exact value of the optimal restart
sequence can degrade the performance with respect to adopting no-restart strategy.

We illustrate this idea by looking at different tenure parameters of tabu search.
Again we consider a random instance of the maximum directed cut problem with
400 vertices. The computational experiment is based on a simple tabu search with
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Table 1 Average number of iterations for different number of processors

Number of processors Average number of iterations

Tabu tenure D 10 Tabu tenure D 30

1 192,216 26,073

2 19,950 13,264

4 1049 6996

8 434 3664

16 433 2003

32 325 1124

Fig. 7 Computational results for MAXDICUT problem using tabu search in a single algorithm
portfolio [19]

different values of tabu tenure that was mentioned in earlier examples. Table 1 shows
the results for two tabu algorithms with different tenure parameters. The algorithm
with tenure parameter 30 is significantly faster than the algorithm with tenure
parameter 10 when deployed on a single processor. However, the situation changes
when parallel implementation is considered: the parallel algorithm with tenure 10 is
much faster than its serial version. This example (see [19]) shows that if one uses the
average serial run-time as the main criterion for choosing an algorithm for parallel
implementation, the better parameter choices (or even algorithmic approaches) can
be dropped in favor of suboptimal choices.

Figure 7 highlights the value of knowing the optimal restart parameter. The tabu
algorithm with tenure 10 without restarts quickly converges to the performance of
the same tabu algorithm that uses an optimal restart strategy.
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Mixed Algorithm Portfolios of Restart Algorithms

Instead of focusing on a single algorithm portfolio, one may consider a combination
of different algorithms. The diversity of mixed algorithms can improve the overall
performance with respect to a single algorithm portfolio. Suppose that we have a
set of available randomized algorithms and we want to select a subset of them to
include into a mixed algorithm portfolio of a given size. If the available algorithms
are simply different copies of the same algorithm, we call such selection a single
algorithm portfolio; otherwise, we will refer to it as a mixed algorithm portfolio.

There are a number of examples in the literature of mixed algorithm portfolios
that outperform single algorithm portfolios. In particular, the algorithm portfolio
approach for constraint satisfaction and mixed integer programming is presented
in [5]. The authors show that the mixed algorithm portfolio can outperform a
single algorithm portfolio and discuss intuition behind such situations. An efficient
algorithm portfolio approach using backtracking search for the graph-coloring
problems is considered in [8]. Extensive computational experiments with restart
strategies and algorithm portfolios for benchmark instances of network design
problem are also investigated in [1].

The mathematical model of mixed portfolios of restart algorithms can be outlined
as follows. Consider a set of m algorithms A1, : : :, Am with restart parameters R1,
: : :, Rm and random run-times �1, : : :, �m, respectively. Additionally, there are N

parallel processors that are available, and we need to select N algorithms to deploy
on each processor. Each processor should be used by a single algorithm, and the
same algorithm can be deployed on multiple processors. We assume that the run-
time of each algorithm is an integer multiple of its restart parameter. In other words,
even if an algorithm finds a solution in the beginning of the run, an actual run-time
will be rounded up to the next restart period.

Using this setup, there are m single algorithm portfolios that can be formed. Let
Ts denote the average run-time of the best single algorithm portfolio, which can be
easily defined using the properties of the geometric distribution:

Ts.A1; : : : ; Am; N / D min

�

R1

1

1 � pN
1

; : : : ; Rm

1

1 � pN
m

�

:

Let Tm.A1; n1; : : : ; Am; nm/ denote the expected run-time of the mixed algo-
rithm portfolio, which consists of n1 copies of A1, n2 copies of A2, and so on�Pm

iD1 ni D N
�
. The mixed algorithm portfolio terminates as soon as one of the

algorithms finds the target solution (e.g., a solution with objective below a certain
threshold).

To identify the computational benefit that can be achieved by mixing randomized
algorithms with different properties, we define the speedup ratio S as

S D
Ts.A1; : : : ; Am; n1 C : : : C nm/

Tm.A1; n1; : : : ; Am; nm/
: (7)
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Unlike the serial case, in [9] the authors demonstrate that the best uniform
restart strategy repeated on every processor is not necessarily optimal; however,
its performance is within a constant factor of the optimal strategy. Furthermore, in
[21] and the subsequent work in [11], it is shown that the speedup ratio S of any
mixed algorithm portfolio satisfies

S �
1

1 � e�1
� 1:58: (8)

Therefore, if one has a full knowledge of run-time distributions, the best mixed
algorithm portfolio is less than two times faster than the best single algorithm
portfolio. However, a mixed algorithm portfolio can be viewed as a strategy
that can reduce risks associated with a nonoptimal algorithm selection for single
algorithm portfolios. Recall that by the definition in (7), the value of S compares
the performance of a mixed algorithm portfolio against the best possible algorithm
portfolio.

Moreover, it is interesting to note that according to the theoretical approach
described above (see derivation details of (8) in [11, 21]), the best performance of
a mixed algorithm portfolio is achieved when it consists of N algorithms that can
also be used as candidates to form the best single algorithm portfolio. Thus, the
expected performance of these algorithms in the case of a single algorithm portfolio
is the same. However, for the mixed algorithm portfolio, one should select N � 1

algorithms with a relatively short restart parameter and exactly one algorithm with
a long restart parameter. As all of these algorithms have the same performance in
the single portfolio setting, it also implies that each of the former N � 1 algorithms
is relatively unreliable within its short restart period (thus, these algorithms have
to be restarted a large number of times), while the remaining N -th algorithm,
despite its large restart parameter, is very reliable (i.e., the corresponding p is close
to one). Clearly, the existence of such algorithms is not necessarily guaranteed.
Nevertheless, the above result provides an intuitive characterization of effective
mixed algorithm portfolios. Namely, if there exists a trade-off that involves the
restart parameter value and the algorithm reliability, then it can be exploited within
a mixed algorithm portfolio.

Conclusions

In the discussion above, we only consider a setting with a single problem instance.
However, the same framework can be easily extended to the setting with multiple
problem instances. For example, optimization models of daily locomotive schedul-
ing remain constant, i.e., one needs to find optimal routes using existing railroad
network for a given demand. The particular demand patterns can vary substantially
from day to day producing different problem instances. We can form a training set
by selecting a set of problem instances from historical demands and use them for
construction of optimal restart strategies and/or algorithm portfolios. This is also
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a typical approach for computational experiments. The researchers often test their
techniques on a small set of instances, tune the algorithms, and then conduct the
final experiment on a larger set of problems.

Cross-References

�Matheuristics
�Multi-start Methods
�Tabu Search
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Abstract

Constraint-Based Local Search emerged in the last decade as a framework
for declaratively expressing hard combinatorial optimization problems and
solve them with local search techniques. It delivers tools to practitioners that
enables them to quickly experiment with multiple models, heuristics, and meta-
heuristics, focusing on their application rather than the delicate minutiae of
producing a competitive implementation. At its heart, the declarative models are
reminiscent of the modeling facilities familiar to constraint programming, while
the underlying computational model heavily depends on incrementality. The net
result is a platform capable of delivering competitive local search solutions at
a fraction of the efforts needed with a conventional approach delivering model-
and-run to local search users.

Keywords
Constraint � Local search � Neighborhood � Synthetic search satisfaction �
Optimization � Incremental model � Declarative

Introduction

Complete techniques such as Integer Programming and Constraint Programming
typically offer optimality guarantees on the results they deliver but do not always
scale to large instances. This explains the appeal of local search methods that deliver
a different trade-off in the algorithmic design space, favoring scalability at the
expense of guarantees. Local search algorithms apply to diverse application domains
such as routing, scheduling, resource allocation, or rostering to name just a few. In
most cases, local search techniques scale to truly large problem instances that are
often out of scope for complete techniques and are capable of producing streams of
solutions of improving quality.

Yet, while modeling and high-level tools are ubiquitous for Mixed Integer
Programming and Constraint Programming, they have been relatively unexplored
for local search until recently. This is primarily due to the fact that the separation
of models and algorithms is not as simple in local search compared to MIP and CP
which are declarative in nature. Indeed, the vast majority of papers discussing local
search describe their solution in algorithmic terms rather than declarative terms like
models, decision variables, and constraints. The 1990s witnessed a shift in interest
and the emergence of multiple tools expressly dedicated to local search techniques.
GSAT [13, 14] and WalkSAT [15] offered the initial impetus behind formulating
problems with a simple language (in clausal form) and using generic local search
algorithms operating on that encoding. Integer Optimization by Local Search [25]
generalized this line of work to the richer language of integer programming.

Localizer [8,9] took a different approach, providing a first step to build a general-
purpose modeling language for local search. It introduced the concept of invariants
to express arbitrary one-way constraints that are automatically and incrementally
updated under variable assignments. These invariants can then encode, in a declara-
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tive fashion, the incremental data structures typically needed in the implementation
of meta-heuristics such as Tabu Search [5], Min-Conflict Search [10], Simulated
Annealing [6], Scatter Search [7], or GRASP [4] to name just a few.

Constraint-Based Local Search is the culmination of this line of work. It
complements the constraint programming efforts typically focused on complete
search techniques and delivers a “model and search” framework in which one
uses decision variables and constraints to model a problem and relies on search
procedures to explore the underlying search space. COMET is an optimization
platform that embodies Constraint-Based Local Search and is a direct descendant of
LOCALIZER. It is an object-oriented programming language with explicit support
for modeling problems declaratively and solving them with local search techniques.
The contributions underlying COMET span from the incremental computation
model, the modeling abstractions, and the control mechanisms to specify and
execute local search heuristics and meta-heuristics easily, efficiently, and compactly.

Foundations

Constraint-Based Local Search aims at implementing the vision captured by the
equation

LocalSearch D ModelC Search

that expresses the belief that a local search algorithm is best viewed as the
composition of a declarative model with a search component. This separation of
concerns is central: it postulates the importance of expressing the structures of
the problem being solved declaratively and compositionally and providing a search
component which exploits those structures and guide the search toward high-quality
local optima.

The Constraint-Based Local Search architecture delivers several key benefits:

Rich Language Constraints are declarative and capture the problem substruc-
tures. They range from simple arithmetic constraints, the indexing of arrays
of variables with variables, meta-constraints (constraints on the truth value of
other constraints) and logical constraints, to combinatorial constraints such as
cardinality, sequence, or alldifferent constraints to name just a few. Constraints
(and combinators) for local search were introduced in [24].

Rich Search Programming meta-heuristics is supported by a wealth of language
combinators and control abstractions to automate the most tedious and error-
prone aspects of an actual implementation. The abstractions foster the decoupling
of neighborhood, heuristics, and meta-heuristics specifications while leveraging
the incrementality exposed by the constraints present in the declarative model.
Control abstractions were introduced in [20].

Separation The untangling of model and search promotes the independent design
and evolution of these two components. With Constraint-Based Local Search,
it is possible to explore alternative models independently of refinements to the
search procedures.
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Versatility The ability to specify meta-heuristics orthogonally to the model
also enables a collection of generic search routines which are highly reusable
and promote the experimental process to design an effective CBLS program.
This versatility further promotes the reuse of highly generic “canned” search
procedures.

Extensibility New constraints and objective functions can be added to the system
library and used in conjunction with native constraints. Perhaps even more
interestingly, the new constraints can be implemented directly in the host
language (i.e., COMET), and the bulk of the implementation is often cast in terms
of invariants. New heuristics and meta-heuristics can also be easily added to the
system as the implementation of any heuristic or meta-heuristic relies on a few
key concepts such as closures, continuations, selectors, and neighbors.

Performance Finally, the architecture heavily relies on incrementally maintain-
ing the computational state over time. This capability is compositional and a
direct by-product of the declarative model. The approach enables the platform to
deliver Constraint-Based Local Search programs that are a fraction of the size
and complexity of handcrafted code, yet deliver performance comparable, and
sometime exceeding, manually crafted implementations.

The rest of this chapter starts with an illustration of Constraint-Based Local
Search through the modeling and resolution of the classic n�queens problem in
section “Getting Started.” Section “Foundations” discusses the theoretical under-
pinnings of Constraint-Based Local Search starting with models and concluding
with programs. Section “Case Studies” focuses on how to model applications
with a rich language that goes beyond Boolean formulas or linear equations.
Section “Implementation” explores the implementation issues, starting with the
support for incremental computation through invariants and proceeding with a
discussion of differentiation. Section “Empirical Results” gives a brief survey of
the type of performance that can be expected from Constraint-Based Local Search
systems, and section “Conclusion” concludes the chapter.

Getting Started

To introduce Constraint-Based Local Search, it is valuable to start with the modeling
and resolution of a simple well-known problem. The examples presented in this
chapter uses the COMET platform.

The Problem

The n�queens problem is to place n queens on a chess board of size n�n so that no
two queens can attack each other. While the problem is polynomial, its simplicity
is appealing to illustrate Constraint-Based Local Search. The COMET program is
shown in Fig. 1 and features two clear components that are discussed next.
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1 import lssolver;
2 int n = 8;
3 range Size = 1..n;
4 Solver<LS> m();
5 ConstraintSystem<LS> S(m);
6 var{int} queen[Size](m,Size);
7 S.add(alldifferent(queen));
8 S.add(alldifferent(all(i in Size) (queen[i] + i)));
9 S.add(alldifferent(all(i in Size) (queen[i] – i)));

10

11 while(S.violations() > 0)
12 selectMin(i in Size,v in Size: queen[i]!=v)(S.getAssignDelta(queen[i],v))
13 queen[i] := v;

Fig. 1 A Constraint-Based Local Search model for the queens problem

The Model

The model definition spans lines 4–9, is declarative, and exclusively focuses on
defining an array of decision variables queen in line 6 and three combinatorial
constraints on lines 7–9. Variable queeni models the row on which the queen in
column i is to be placed. Each decision variable has a domain Size representing the
set of permissible values for that variable. Each combinatorial alldifferent
constraint takes as input an array of expressions and requires that the values of all
entries in the array be pairwise distinct. For instance, line 7 states that no two queens
can be assigned to the same row. The constraints on lines 8 and 9 play a similar role
but for the upward and downward diagonals. Note how an operator all is used on
line 8 to create an array of expressions

.queen1 C 1; queen2 C 2; queen3 C 3; � � � ; queen7 C 7; queen8 C 8/

which is the input of the combinatorial constraint.

The Search
A classic Constraint-Based Local Search starts from a tentative assignment of
values to the decision variables and iteratively transforms it, moving from tentative
assignments to tentative assignments using a local move operator. The local move
used in this specific case is the assignment of a single variable to a new value.
Namely, with n decision variables, each with a domain of size n, one could consider
up to �.n2/ such moves. To illustrate the search process, consider the left board
in Fig. 2a which depicts a tentative assignment. Here, a move consists of relocating
a queen to a new row and the algorithm chooses the best such move. The right
side, Fig. 2b, shows the reduction in violations for each possible move. Therefore,
a viable move is to relocate queen4 to row 3, reducing the total number of conflicts
(violations) from 7 to 5.
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Fig. 2 The first step of the CBLS algorithm for the queens problem. (a) Starting point. (b) Delta
matrix

The search outlined above is a classic greedy search. The implementation
spanning lines 11–14 obtains the set of constraints present in the model (line 11)
and starts from a randomly initialized tentative assignment �0. It proceeds through
a sequence of moves aimed at satisfying the three softened constraints present in S .
The underlying neighborhood function N defined as

N .�/ D f� 0 j 9j 2 1 : : : 8 8i 2 1 : : : 8; i ¤ j W � 0.queeni / D �.queeni /^

� 0.queenj / 2 D.queenj / n f�.queenj /gg

is implemented with the select statement on line 12 that considers the reassign-
ment of a single decision variable at a time. Overall, the search produces a sequence
of tentative assignments

�0; �1 2 N .�0/; �2 2 N .�1/; � � � ; �k 2 N .�k�1/

delivering a solution �k that satisfies all the softened constraints (violations of S

are 0).

Foundations

This section reviews the foundations of Constraint-Based Local Search, covering
both models and programs. It introduces the main concepts behind the declarative
and operational models.
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Models

From an end-user perspective, constraints and objective functions are at the heart
of Constraint-Based Local Search. They provide the declarative bricks needed
to construct models describing requirements and properties of the solution being
sought. They also support the underlying computational model. This section first
reviews the key concepts of constraints and objective functions before finishing with
a presentation of the underlying semantics.

Basics
Constraint-Based Local Search is the process of looking for an assignment of values
to decision variables that meets specific requirements. Decision variables are central
to the modeling process as they characterize solutions. This chapter focuses on
integer variables only for simplicity. Extensions to more complex variables (i.e.,
set, paths, and trees) have been proposed in [12, 23]. The chapter also assumes
that Constraint-Based Local Search models are defined over a set X of decision
variables.

Definition 1 (Assignment). An assignment � is a mapping X ! D.X/ from
variables to values in their domain. The value assigned to x in � is denoted by
�.x/. The set of all possible assignments is denoted by ˙ .

For convenience, the expression �Œx=v� denotes a new assignment � 0 which is
similar to � except that variable x is assigned to v, i.e.,

8y 2 X n fxg W � 0.y/ D �.y/ ^ � 0.x/ D v:

Constraints are used to impose requirements on the decision variables. Con-
straints are naturally declarative, can be expressed in a variety of ways, and always
capture a relation over a subset of variables from X .

Definition 2 (Constraint). A constraint c.x1; � � � ; xn/ is a n�ary relation over
variables x1 � � � xn 2 X . The set vars.c/ is the set of n variables appearing in c,
i.e., vars.c/ D fx1; � � � ; xng.

Constraints can be expressed through algebraic expressions, logical statements,
or combinatorial structures.

Example 1. In the queens example, the requirement that any two variables cannot
lay on the same row, i.e., alldifferent(x), is semantically equivalent to the
conjunction of constraints

^

i21:::8;j 2iC1:::8

xi ¤ xj :
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Operationally, however, the alldifferent maintains its state and violations
more efficiently than the naive reformulation above.

Example 2. A constraint system S is a set of constraints and its truth value is
equivalent to the truth value of ^c2S c.

Evaluations and Violations
The driving force behind Constraint-Based Local Search rests on the ability to assess
how badly constraints are violated. This is captured by the concept of violation
degrees (or violations for short).

Definition 3 (Violation Degree). The violation degree of c.x1; � � � ; xn/ is a func-
tion �c W ˙ ! R

C such that, for any assignment � such that �.x1/ 2

D.x1/; � � � ; �.xn/ 2 D.xn/, it holds that

c.�.x1/; � � � ; �.xn// � �c.�/ D 0:

The violation degree definition depends critically on the structure conveyed by
constraint c. The definition of violation is constraint-dependent but is derived
systematically for algebraic and logical expressions. For completeness, consider the
specification of expression evaluation.

Definition 4 (Expression Evaluation). Let e 2 E be an arithmetic expression and
� 2 ˙ be an assignment. The evaluation of e with respect to (wrt) � is specified by
the function E.�; e/ W E � ˙ ! Z which is defined inductively on the structure of
e in Fig. 3.

Algebraic constraints are based on relations and logical combinators. To reason
about the violations of relational and logical constraints, it is useful to derive an
expression modeling the violations of constraint c from the structure of c.

Definition 5 (Constraint Conversion). Let c be a logical or relational constraint.
The constraint conversion of c is an expression V.c/ which can be evaluated to
determine the violations of c with respect to some assignment. It is specified by
the function V.c/ W E ! E which is defined by induction on the structure of c as
specified in Fig. 4.

Fig. 3 The evaluation of an
expression with respect to an
assignment
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Fig. 4 The constraint
conversion function

The conversion for the conjunction of two constraints is none other than the sum
of the converted relation violations.

Example 3. The conversion of x D 5 ^ y ¤ 10 where x; y 2 X is derived as
follows:

V.xD5^y ¤ 10/DV.x D 5/CV.y ¤ 10/ D ABS.x�5/C1�min.1; ABS.y�10//:

It is now possible to compose both functions to obtain the actual violations of an
algebraic constraint c with respect to an assignment � .

Example 4. The violation of an arithmetic constraint c � l � r is given by

E.�;V.l � r//

The violation degree function for c is then given by

�c.�/ D E.�; ABS.r � l// D max.E.�; r/ � E.�; l/; 0/:

Example 5. The violation of a conjunction c D c1 ^ c2 is defined as

�c.�/ D E.�;V.c1 ^ c2//:

While the above mechanics are appropriate to obtain the violations of algebraic
constraints, combinatorial constraints define their own notion of violations that
capture the combinatorial substructure at hand. Consider the alldifferent
constraint again.

Example 6. The violation function of c D alldifferent(x1; � � � ; xn) simply
counts the number of values used more than once by variables x1; : : : ; xn. More
precisely, given an assignment � and vars.c/ D fx1; � � � ; xng,

�c.�/ D
X

i2S

max.0; jfxj 2 vars.c/j�.xj / D igj � 1/
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where S D
S

i21:::n D.xi /. Consider the alldifferent constraint on the rows
for the board in Fig. 2a. The assignment is � D Œ1; 4; 5; 4; 8; 7; 8; 3�: It has 2
variables using value 4 and 2 variables using value 8, giving a violation of 2.

Differentiation
The infrastructure covered so far enables the incremental assessment of the sat-
isfaction, and the number of violations, of a constraint c. However, it does not
specify how to assess the impact of a local move on the satisfiability or violations
of constraints. Gradients are the cornerstone of this process.

Definition 6 (Gradient). Given an assignment � and an arithmetic expression e,
"x .�; e/ denotes the maximum increase for the evaluation of e over all possible
values in D.x/ wrt � , whereas #x .�; e/ denotes the largest decrease for the
evaluation of e over all possible values in D.x/ wrt � , i.e.,

"x .�; e/ D max
v2D.x/

E.�Œx=v�; e/ � E.�; e/

#x .�; e/ D E.�; e/ � min
v2D.x/

E.�Œx=v�; e/:

Note that gradients are nonnegative in this specification. An efficient implemen-
tation can be derived inductively on the structure of expression e. Figure 5 gives an
abridged version of such derivation. The definition for "x .�; x/ is an interesting

Fig. 5 Expression gradients
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1 interface Constraint<LS> {
2 bool holds();
3 var{int} violations();
4 var{int} violations(var{int} x);
5 int getAssignDelta(var{int} x,int v);
6 }

Fig. 6 The constraint interface

base case. Indeed, "x .�; x/ D maxv2D.x/ v � �.x/ which has the effect of picking
up the largest increase as the distance between the value currently assigned to x in
� and the largest value of the domain. Similarly, note how "x .�; e1� e2/ combines
the largest increase in e1 with the largest decrease in e2.

The next concept, variable violation, is interesting: It captures how many
violations can be attributed to a specific variable for a given assignment. Variable
violations are specified in terms of gradients.

Definition 7 (Variable Violations). Given a constraint c, the variable violations of
c wrt x 2 vars.c/ and assignment � are specified by #x .�;V.c//.

The concepts of violation degrees and variable violations are generic and hence
they enable the specification of a common API for all constraints. This API makes
it possible to implement the slogan

LocalSearch D ModelC Search

mentioned in the introduction. In particular, the API of a constraint is spec-
ified in Fig. 6. For instance, the method call violations() simply returns
the evaluation of �c.�/, while the method call violations(x) return #x

.�;V.c//, for the current variable assignment � . Finally, the call to method
getAssignDelta(x,v) returns the variation in violation degree when using
the assignment �Œx=v� instead of � , i.e., it returns

�c.�/ � �c.�Œx=v�/:

Combinatorial constraints like alldifferent also conform to this interface,
and the implementation of the last two methods takes advantage of the constraint
semantics to implement the specification incrementally.

Objective Functions
Objective functions play an equally critical role within Constraint-Based Local
Search. Objectives provide the necessary mechanics to express and exploit objective
functions. Interestingly, once gradients are available, objectives do not add much
complexity. Objective functions must conform to the interface depicted in Fig. 7.
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1 interface Objective<LS> {
2 var{int} evaluation();
3 var{int} increase(var{int} x);
4 var{int} decrease(var{int} x);
5 int getAssignDelta(var{int} x,int v);
6 }

Fig. 7 The objective interface

Given the current variable assignment � , the call evaluation() returns
E.�; e/, while the call increase(x) returns "x .�; e/ and the call
decrease(x) returns #x .�; e/.

Models and Constraint Hardness
From a purely pragmatic and operational standpoint, it is often convenient to
partition the actual constraint set C in two

C D S [R .S \R D ;/

where R represents a set of required but easy to solve constraints and S represents
a set of softened constraints that are typically much harder to satisfy. The intent
is to handle both type of constraints differently. Intuitively, required constraints are
always satisfied during the search, while softened constraints may be violated. In the
n�queens examples introduced earlier, R D ; and all the constraints are softened in
S . In general, however, R may contain some constraints that are not worth relaxing
in S . The membership in S or R is clearly a design decision for the modeler to
consider.

Definition 8 (Constraint Model). A Constraint-Based Local Search model M for
a constraint optimization problem is a quintuplet M D hX; D; F; R; Si where

– Every x 2 X is a decision variable taking its value from D.x/,
– F is, without loss of generality, a minimization function,
– R is a set of required constraints (easy to satisfy), and
– S is a set of soft constraints (difficult to satisfy).

Declaratively, the semantics of a Constraint-Based Local Search model is given by
the optimization problem

min
�2˙

E.�; F /C
X

c2S

�c.�/

subject to
�c.�/ D 0 W 8c 2 R
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Namely, the objective is to minimize the sum of the violations over the softened
constraints and the original objective function subject to the required constraints.
In the case of constraint satisfaction, E.�; F / D 0 for every � as the objective is
absent. Note that constraints can be weighted, which makes it possible to balance the
two terms of the objective. It is simple to write a combinator to weight a constraint
in a generic way [23].

Definition 9 (Feasible Solution). A feasible solution � to a Constraint-Based
Local Search model M D hX; D; F; R; Si satisfies

X

c2S

�c.�/ D 0:

F.M/ denotes the set of feasible solutions to M .

Note that, by definition, every assignment � also satisfy all the required constraints
(�c.�/ D 0 W 8c 2 R).

Definition 10 (Optimal Solution). An optimal solution �� to a Constraint-Based
Local Search model M D hX; D; F; R; Si is a feasible solution �� 2 F.M/ such
that

8� 2 F.M/ W E.��; F / � E.�; F /:

Definition 11 (Search Procedure). A search procedure produces a sequence of
assignments �0; � � � ; �k where 8i 2 0::k W �c.�i / D 0 .c 2 R/ and returns �

satisfying

min
�2f�0;��� ;�kg

E.�; F /C
X

c2S

�c.�/:

A Constraint-Based Local Search procedure succeeds if � 2 F.M/.

Programs

The model specifies the properties satisfied by assignments appearing in a trace
s0; s1; � � � ; sk ; It does not dictate how the assignments in the trace are generated.
This is the prerogative of concrete search procedures which are often viewed as
the composition of a neighborhood function, a legality restriction function, and a
candidate selection function.

Definition 12 (Neighborhood). The neighborhood of an assignment �k , denoted
N .�k/, is the set of assignments reachable from �k via a local move.
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Local moves can be microscopic changes to the candidate solution such as the
reassignment of a single variable or the swap of the values associated with
two distinct variables. In specific domains, e.g., in scheduling, the move can be
macroscopic and involve changing several variables to capture moves in more
complex neighborhood, e.g., moving a task in a job sequence.

Example 7. In the 8�queens example outlined in section “Getting Started”, the
neighborhood is based on the reassignment of a single queen to a new row. The
neighborhood consist of �.n2/ assignments. It could be further restricted to �.n/

assignments by only considering the queen appearing in the largest number of
conflicts and its possible reassignments. Given a model M D hX; D; 0;;; Si, where
S is the set consisting of three softened alldifferent constraints, the quadratic
neighborhood function is

N .�k/ D f�kŒx=v� j x 2 X ^ v 2 D.x/ n f�k.x/gg ;

while the linear neighborhood function is

N .�k/ D

(
�kŒx=v� j x 2 arg-max

y2X

#y .�k;V. ^
c2S

c// ^ v 2 D.x/ n f�k.x/g

)
:

Definition 13 (Legal Neighbors). The legal neighborhood of an assignment �k is
a restriction of N .�k/, namely, L.N .�k/; �k/ � N .�k/, and the legal subset is
required to at least satisfy all the required constraints R.

Note that the legal subset of N .�k/ may even be more restrictive and reject
neighbors that are feasible with respect to R but fail to exhibit other characteristics.
The full characterization of the function L is part of the definition of a meta-
heuristic. For instance, the tabu meta-heuristic excludes neighbors that were seen
in the recent past.

Definition 14 (Neighbor Selection). The selection function S is responsible for
choosing the next assignment among legal neighbors. Namely,

�kC1 D S.L.N .�k/; �k/; �k/ 2 L.N .�k/; �k/:

For instance, a greedy selection chooses the best neighbor, i.e.,

�kC1 2 arg-min
�2N .�k/

E.�;V.S//

A heuristics or meta-heuristics specifies the three functions N , L, and S which
parameterize the computation model.
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Control Primitives
To support these abstractions, Constraint-Based Local Search programs rely on
a handful of control primitives designed to automate tedious and error-prone
implementation details.

While the specification of a program relies on three distinct functions N , L, and
S , any implementation concerned with performance produces code that fuses the
three functions often degrading the readability and maintainability in the process.
Key considerations such as randomization and tiebreaking add another layer of
complexity to the code. The implementation of meta-heuristics induces its share
of complexity by refining move legality and selection further.

COMET attempts to strike a delicate balance between efficiency, code readability,
and ease of maintenance by decoupling these aspects as much as possible. The
language introduces selectors, neighbors, and randomized choosers as control
abstractions.

Neighborhood Selectors
The concept of neighborhood selector is a cornerstone for the specification of
complex local searches. A simplified version of its interface is presented below:

1 interface Neighborhood {
2 void insert(int q,Closure c);
3 boolean hasMove();
4 Closure getMove();
5 }

The key idea is that a neighbor is defined as a pair hq; ci consisting of a quality
measure q and a closure c. The intuition is that, in general, the closure c defines the
move which, when executed, will produce an objective value of q for the resulting
assignment. Method insert adds a neighbor c of quality q (line 2), method
hasMove checks whether the neighborhood is nonempty, and method getMove
returns the selected move.

Concrete implementations of this interface commit to a specific selection policy.
For instance, the concrete selector MinNeighborSelector implements the
neighborhood interface and retains only a neighbor minimizing the quality measure.
Namely, if the set of inserted neighbors is N D fhq1; c1i; � � � ; hqn; cnig, the selector
retains one neighbor

hq; ci 2 arg-min
hqj ;cj i2N

qj

and produces it as its selection when getMove is called. Alternative selectors
include KMinNeighborSelector that returns one of the top�k best neighbors
(k being a parameter of the selector).
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1 MinNeighborSelector N();
2 while(S.violations()!=0) {
3 forall(i in Size,v in queen[i].getDomain() : queen[i] != v)
4 neighbor(S.getAssignDelta(queen[i],v),N) queen[i] := v;
5 if (N.hasMove()) call(N.getMove());
6 }

Fig. 8 An alternative greedy search for n�queens

The neighbor Control Primitive
Neighborhood selectors work in conjunction with the neighbor control primitive.
The primitive has the following syntax:

neighbor(hexpri; hN i) hBodyi

where hexpri refers to an arbitrary arithmetic expression, hN i is an expression
referring to a selector, and hBodyi is a statement (or block of statements). From
a semantics standpoint, the control primitive creates a closure c of the body code
responsible for producing the assignment �kC1 from the current assignment �k . It
then associates the closure with a quality measure q and submits the pair hq; ci to
the selector denoted by N . What makes neighbor particularly attractive is the
syntactic closeness between the code specifying the quality of the move and the code
carrying out the move even if, in practice, there is a strong temporal disconnection
between the time when the closure is recorded with the selector and the time it gets
executed.

The search procedure in Fig. 8 illustrates an alternative implementation of the
greedy search presented in Fig. 1. The loop on lines 3–4 scans all variables and
values accumulating the reassignments in the selector N and associating with each
one a quality measure based on the delta. The 1-instruction block queen[i] :=
v; on line 4 is automatically wrapped in a closure that is entrusted by neighbor to
the selector N . The beauty in the construction lies in the ability to easily accumulate
in the same selector the union of multiple neighborhoods, all defined with different
move operators. This capability will be illustrated in the Progressive Party Problem
use case in section “Progressive Party.”

Randomized Choosers
To support developers, COMET provides control abstractions to make greedy, semi-
greedy, and randomized choices. The abstractions encapsulate the necessary state
to deliver independent pseudorandom streams in each such instruction appearing in
the program. For instance, the �.n/-sized neighborhood that considers reassigning
the queen with the most violations to a new row, is easily modeled with instructions
in lines 3–7 below.
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1 MinNeighborSelector N();
2 while(S.violations()!=0) {
3 selectMax[2](i in Size)(S.violations(queen[i])) {
4 forall(v in queen[i].getDomain() : queen[i] != v)
5 neighbor(S.getAssignDelta(queen[i],v),N)
6 queen[i] := v;
7 }
8 if (N.hasMove()) call(N.getMove());
9 }

The bracketed 2 on line 3 simply requests the selector to retain any value i among
the best two (according to the violation measure).

Discussion
The Constraint-Based Local Search model appearing in Fig. 1 highlights the key
features of the framework. It features a complete separation between a declara-
tive model and a procedural search component. The declarative model relies on
combinatorial constraints specifying the properties of solutions, while the search is
exclusively devoted to the selection of a heuristic and meta-heuristic. In this model,
the search remains problem specific. Yet, both the model and the search can evolve
independently. One can add constraints without changing the search or choose a
different search strategy without modifying the model. All these characteristics,
when blended with the performance of an incremental computation, deliver an
appealing architecture for producing local search solutions.

The program in Fig. 1 can still be improved. In particular, it is tempting to
provide syntactic sugar to automatically handle the boiler plate code and support
the notion of constraint annotations to partition the constraint set into soft and
required constraints S [ R. The resulting program is shown in Fig. 9. The model
m is now attaching a soft annotation to each constraint to dictate its addition to
S , while line 10 is used to extract the set of soft constraints from m. Perhaps
even more interestingly, the adoption of an explicit first-class model concept
enables the authoring of completely generic search procedures. Indeed, the code
in lines 10–13 can be packaged as the reusable min-conflict procedure depicted in
Fig. 10.

Naturally, lines 10–13 from Fig. 9 disappear from the model in favor of a
single line calling the generic minConflictSearch on model m program,
i.e.,

1 minConflictSearch(m);

This leaves us with a 10 lines Constraint-Based Local Search implementation.
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1 MinNeighborSelector N();
2 while(S.violations()!=0) {
3 selectMax[2](i in Size)(S.violations(queen[i])) {
4 forall(v in queen[i].getDomain() : queen[i] != v)
5 neighbor(S.getAssignDelta(queen[i],v),N)
6 queen[i] := v;
7 }
8 if (N.hasMove()) call(N.getMove());
9 }

1 import lssolver;
2 int n = 8;
3 range Size = 1..n;
4 model m {
5 var{int} queen[Size](Size);
6 soft: alldifferent(queen);
7 soft: alldifferent(all(i in Size) (queen[i] + i));
8 soft: alldifferent(all(i in Size) (queen[i] i));
9 }

10 ConstraintSystem<LS> S = m.getSoftConstraintSystem();
11 while(S.violations() > 0)
12 selectMin(i in Size,v in Size : queen[i]!=v)(S.getAssignDelta(queen[i],v))
13 queen[i] := v;

−

Fig. 9 A revised Constraint-Based Local Search model for n-queens

1 void function minConflictSearch(Model<LS> m) {
2 ConstraintSystem<LS> S = m.getSoftConstraintSystem();
3 var{int}[] X = S.getIntVariables();
4 while(S.violations() > 0)
5 selectMin(i in X.getRange(),
6 v in X[i].getDomain() : X[i]!=v)(S.getAssignDelta(X[i],v))
7 X[i] := v;
8 }

Fig. 10 A reusable min-conflict procedure

Case Studies

To explore Constraint-Based Local Search, it is desirable to consider a few
applications that are elegantly and effectively solved with COMET. The next three
subsections consider the progressive party problem [16], car sequencing [3], and
scene allocation [18] as each application illustrates a different aspect.
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Progressive Party

The progressive party problem is a standard benchmark in combinatorial optimiza-
tion and it illustrates two important features. It shows a rich model with many
combinatorial constraints as well as constraints on the truth value of relations. It
also shows how soft constraints may be instrumental in obtaining a neighborhood.
The goal in this problem is to assign guest parties to boats (the hosts) over multiple
time periods. Each guest can visit the same boat only once and can meet every other
guest at most once over the course of the party. Moreover, for each time period, the
guest assignment must satisfy the capacity constraints of the boats.

Figure 11 depicts the declarative part of the model. The decision variable
boat[g,p] specifies the boat visited by guest g in period p. Lines 8–9 specify the
alldifferent constraints for each guest, lines 10–11 specify the capacity constraints,
and lines 12–13 state that two guests meet at most once during the evening. The
soft(2) annotations added on lines 9 and 11 are not only specifying that the
constraint must be softened, but they also associate a fixed static weight of 2 with
each constraint. The weights can be easily incorporated in the inductive definition
of V.c/ shown in Fig. 4

V.soft.w/ W c/ D w � V.c/

to handle statically weighted soft constraints.

The Neighborhood
The first sensible neighborhood to consider focuses on reassigning a single variable
boat[g,p] to a new value. This can follow the same template used for the
queens problem. These moves impact the violations of all the constraints. However,
these moves may also prove too restrictive. When an instance is near satisfaction,
one can expect most of the bins in any given knapsack to be near full. A single

1 range Hosts = 1..13;
2 range Guests = 1..29;
3 range Periods = 1..up;
4 set{int} config[1..6];
5

6 model m {
7 var{int} boat[Guests,Periods](Hosts);
8 forall(g in Guests)
9 soft(2): alldifferent(all(p in Periods) boat[g,p]);

10 forall(p in Periods)
11 soft(2): knapsack(all(g in Guests) boat[g,p],crew,cap);
12 forall(i in Guests, j in Guests : j > i)
13 soft: atmost(1,all(p in Periods) boat[i,p] == boat[j,p]);
14 }

Fig. 11 The progressive party problem
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variable reassignment amounts to moving an item from one bin into another
and that may prove fruitless from a violation standpoint. A natural idea is to
include a second neighborhood that considers the exchange of values between two
variables appearing in the same constraint. While such swaps have no effects on the
alldifferent constraints, they can more easily lead to violation improvements
for the knapsack constraints. Formally, the neighborhood is therefore

N D f�Œx=v� j x D arg-maxz2X #z .�;V.S// ^ v 2 D.x/ n f�.x/gg
S

f�Œx=c; y=d � j x D arg-maxz2X #z .�;V.S// ^

y 2
S

c2S^x2vars.c/ vars.c/ ^ c D �.y/ ^ d D �.x/g

where S is the set of soft constraints.
The code in Fig. 12 implements that idea. The main loop (lines 7–30) seeks to

improve the overall violations of the soft constraints. The selector on line 9 picks

1 int tenure = 2;
2 int it = 0;
3 int tabu[Guests,Periods,Hosts] = 0;
4

5 ConstraintSystem<LS> S = m.getSoftConstraintSystem();
6 MinNeighborSelector N();
7 while (S.violations() > 0) {
8 int old = S.violations();
9 selectMax(g in Guests, p in Periods)(S.violations(boat[g,p])) {

10 forall(h in Hosts : tabu[g,p,h] <= it) {
11 neighbor(S.getAssignDelta(boat[g,p],h),N) {
12 tabu[g,p,boat[g,p]] = it + tenure;
13 boat[g,p] := h;
14 }
15 }
16 selectMin(g1 in Guests,d=S.getSwapDelta(boat[g,p],boat[g1,p]))(d) {
17 neighbor(d,N) {
18 tabu[g,p,boat[g1,p]] = it + tenure;
19 tabu[g1,p,boat[g,p]] = it + tenure;
20 boat[g,p] :=: boat[g1,p];
21 }
22 }
23 }
24 if (N.hasMove()) {
25 call(N.getMove());
26 if (violations < old && tenure > 2) tenure = tenure − 1;
27 if (violations >= old && tenure < 10) tenure = tenure + 1;
28 }
29 it = it + 1;
30 }

Fig. 12 The search procedure for the progressive party problem
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a variable boat[g,p] that induces the most violations. Once the variable is
selected, the two nested selectors (lines 10–15 and lines 16–22) implement the two
parts of the neighborhood structure. Lines 10–15 select the variable with the most
violations and choose a new value that decreases its violations the most. The second
selector is more interesting. It picks a second variable boat[g1,p] in the same
period p as the first variable boat[g,p] in such a way that the swap between the
two variables has the largest impact on the overall violations of S . Note that both
variables appear in the knapsack constraint stated over period p. The remainder of
the code (lines 23–28) executes the best move in N (if one exist) and updates the
variable tabu tenure.

The 30 lines of code are compact and elegant: They benefit from the automation
provided by the neighborhood selector, the selectors, and the neighbor construction.
Yet, they still require some effort to analyze the model and produce a code template
that follows a standard recipe. In addition, this code skeleton must still be updated
with classic ideas like search intensification around high-quality local minima and
diversification to escape from basins of attraction. However, the steps applied in
deriving this search procedure are rather systematic: They rely on an analysis of the
model to recognize the presence of specific types of constraints that then suggest
a particular neighborhood structure. The is the idea behind the synthesis of search
procedures that is described next.

The Synthesized Search
Given that models are first-class objects, COMET can manipulate and analyze them.
Here, COMET recognizes the presence of knapsack constraints and generates a
composite neighborhood consisting of the union of variable assignments and of the
variable swaps appearing in violated knapsack constraints, an idea first articulated
by Van Hentenryck [19]. The synthesis process per se was described in details
in [22].

The skeleton of a synthesized tabu search is depicted in Fig. 13. It uses the fact
that all variables have the same domains. Lines 7–9 associate with each decision
variable xi the set of constraints mentioning xi and susceptible to benefit from
exchanging (swapping) the values of two of its variables. This initial step is a
straightforward projection of the constraint array in S that only retains constraints
that refer to xi and can use a swap. Line 10 defines a neighborhood selector. Line
15 selects the variable xi with the most violations among the softened constraints
S . Lines 16–20 focus on the first part of the neighborhood and consider simple
reassignments that lead to the largest violation decrease. All the potential neighbors
are submitted to N . Lines 21–29 consider all the constraints referring to variable xi

and for which swaps can be of potential benefit. For each such constraint, the code
retrieves the variables of the constraint and accumulates in the selector N all the
closures modeling swaps (along with their impact on violations).

It is appealing to notice the similarities between the manual and synthetic
implementation. In essence, they both capture the same idea. Yet, the generic code
adapts to the model and consider exploiting all the constraints susceptible to profit
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1 function bool refersTo(var{int}[] av,var{int} x) {
2 return or(i in av.rng()) (av[i].getId() == x.getId());
3 }
4 function void minConflictWithSwap(Model<LS> m) {
5 ConstraintSystem<LS> S = m.getSoftConstraintSystem();
6 var{int}[] X = S.getVariables();
7 set{Constraint<LS>} cx[i in X.rng()] =
8 collect(j in S.rng() : S[j].canUseSwap() &&
9 refersTo(S[j].getVariables(),X[i])) S[j];

10 MinNeighborSelector N();
11 int k = 0,tenure = 20;
12 int at[X.rng()] = 0;
13 int mat[X.rng(),X.rng()] = 0;
14 for(int k=0;S.violations() != 0;k++) {
15 selectMax(i in X.getRange())(S.violations(X[i])) {
16 forall(v in X[i].getDomain() : at[i] <= k)
17 neighbor(S.getAssignDelta(X[i],v),N) {
18 X[i] := v;
19 at[i] = k + tenure;
20 }
21 forall(c in cx[i]) {
22 var{int}[] Y = c.getVariables();
23 forall(j in Y.getRange() : mat[i,j] <= k)
24 neighbor(S.getSwapDelta(X[i],Y[j]),N) {
25 X[i] :=: Y[j];
26 mat[i,j] = mat[j,i] = k + tenure;
27 }
28 }
29 }
30 if (N.hasMove()) call(N.getMove());
31 }
32 }

Fig. 13 The synthesized search procedure for the progressive party problem

from swaps. The COMET extension required to do so is a minimal extension to query
the capabilities of the constraint in the model.

As shown later, the synthesized search outperforms all published results on this
problem. Note that, if the set of required constraints R was not empty (it is empty
in this application), the two neighborhoods would have to discard assignments
and swaps that yield nonzero values for the calls to getAssignDelta and
getSwapDelta to implement the legality requirement correctly. Finally, observe
that this skeleton implementation contains a very simply tabu condition to further
restrict the legal moves to those that were not recently attempted; this is achieved
with two simple data structures (one per neighborhood) that record the last iteration
number when a move was performed. Supporting generic intensification and
diversification is equally easy.
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Car Sequencing

Figure 14 presents a model for car sequencing. In this application, n cars must
be sequenced on an assembly line of length n. The customer demands for car
configurations are specified in an array demand and the total demand is, of course,
n. Each car configuration may require a different sets of options, while capacity
constraints on the production units restrict the possible car sequences. For a given
option o, these constraints are of the form k out of m meaning that, out of m

successive cars, at most k can require o. The model declares the decision variables
specifying which type of car is assigned to each slot in the assembly line (line 12).
It states a hard constraint specifying which cars must be produced (line 13) and then
states the soft capacity constraints for each option (lines 14–15).

The handcrafted search procedure, illustrated in Fig. 15, is modeled after a
conflict minimization structure. The initialization satisfies the cardinality constraint
by using a random permutation of an array of values that already meet the cardinality
requirement (lines 4–7). The main loop (lines 10–27) minimizes the number of
violations by selecting the slot of the assembly line causing the most violations
and swapping its content with another slot that delivers the most improvements.
The move itself appears on line 14. The search features a diversification component
(lines 19–25) that randomly swaps a subset of slots in the assembly line when no
improvement took place for a number of iterations. Each time an improving move
is found, the stability counter is reset and the best value for this stage is recorded
(line 18).

It is possible to recognize the combinatorial structure present in the model thanks
to the presence of global sequence constraints and to automatically synthesize a
search procedure that matches the ideas present in the handcrafted search procedure.

1 // ... read parameters nbCars, nbConfigs, nbOptions
2 range Cars = 1..nbCars;
3 range Configs = 0..nbConfigs −1;
4 range Options = 1..nbOptions;
5 boolean requires[Configs,Options];
6 int demand[Configs];
7 int lb[Options],ub[Options];
8 // ... read the data ...
9

10 set{int} options[o in Options] = setof(c in Configs) requires[c,o];
11 model m {
12 var{int} line[Cars](Configs);
13 hard: atmost(demand,line);
14 forall(o in Options)
15 soft: sequence(line,options[o],lb[o],ub[o]);
16 }

Fig. 14 The car sequencing model
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1 ConstraintSystem<LS> S = m.getSoftConstraintSystem();
2 Solver<LS> ls = m.getLocalSolver();
3 int best = System.getMAXINT();
4 int cars[Cars];
5 int nb = 0;
6 forall(c in Configs, n in 1..demand[c])
7 cars[++nb] = c;
8 RandomPermutation perm(Cars);
9 forall(c in Cars) lines[c] := cars[perm.get()]; // Satisfy required constraint

10 while (S.violations() != 0) {
11 selectMax(i in Cars)(S.violations(X[i])) {
12 selectMin(j in Cars : line[i] != line[j] && t[i,j] <= it)
13 (S.getSwapDelta(line[i],line[j])) {
14 X[i] :=: X[j];
15 t[i,j] = t[j,i] = it + tenure;
16 }
17 }
18 if (S.violations() < best) { best = S.violations();stable = 0;}
19 if (stable == 500) {
20 with atomic(ls)
21 forall(k in 1..5)
22 select(a in Cars,b in Cars : line[a] != line[b]) line[a] :=: line[b];
23 stable := 0;
24 best = S.violations();
25 } else stable++;
26 it++;
27 }

Fig. 15 The handcrafted search procedure for car sequencing

The result is shown in Fig. 16. It depicts a generic tabu search procedure featuring
several key components. Note how line 6 of the model retrieves the required
constraints (line 3) and initializes the start assignment by delegating to each required
constraint the task of picking a suitable assignment. A basic requirement for
achieving this is the following independence property of the required constraints:

8ci ; cj 2 R s.t. i ¤ j W vars.ci / \ vars.cj / D ;:

In this case, R D fatmost(demand,line)g and the sole cardinality constraint
can create, in polynomial time, an array of values that meet the cardinality
requirement and randomly permute it to produce the initial assignment to the
variables in vars.c/. The algorithm for the cardinality constraint uses a (randomized)
feasible flow algorithm to match values to variables. As all variables appear in the
cardinality constraint, swapping two variables is feasibility-preserving (the number
of cars of each type is unchanged). Moreover, the cardinality constraint is tight,
meaning that there is a bijection from variable to value occurrences. The core of the
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1 function void tabuSearch(Model<LS> m) {
2 ConstraintSystem<LS> S = m.getSoftConstraintSystem();
3 ConstraintSystem<LS> R = m.getHardConstraintSystem();
4 Solver<LS> ls = m.getLocalSolver();
5 var{int}[] X = R.getVariables();
6 forall(i in R.getRange()) with atomic(ls) R.getConstraint(i).initialize();
7 Counter it(ls) := 0;
8 Counter stable(ls) := 0;
9 int tenure = 20;

10 int t[X.rng(),X.rng()] = 0;
11 Integer best(System.getMAXINT());
12 whenever S.violations()@changes(int o,int n)
13 if (n < best) { best := n;stable := 0;}
14 whenever it@changes() stable++;
15 whenever stable@changes()
16 if (stable == 500) {
17 with atomic(ls)
18 forall(k in 1..5)
19 select(a in X.rng(),b in X.rng() : X[a] != X[b]) X[a] :=: X[b];
20 stable := 0;
21 }
22 while (S.violations() != 0) {
23 selectMax(i in X.rng())(S.violations(X[i])) {
24 selectMin(j in X.rng() : X[i] != X[j] && t[i,j] <= it)
25 (S.getSwapDelta(X[i],X[j])) {
26 X[i] :=: X[j];
27 t[i,j] = t[j,i] = it + tenure;
28 }
29 }
30 it++;
31 }
32 }

Fig. 16 The synthesized Tabu-search for car sequencing

search spans lines 22–31 and features the selection of the most conflicting variable
(line 23) together with the variable that yield the largest decrease in violations
through a swap (lines 24–25). The actual move is performed on line 26 and the
move is marked tabu in line 27.

The implementation of the diversification is more interesting. To modularize
the capability, it relies on events. In COMET, objects like Counter, Integer,
or var{int} are capable of dispatching notifications when specific events occur.
For instance, a counter issues a change event when its value is modified. COMET

provides the ability to associate a code fragment with events: The code is then
executed in response to these events. This is illustrated on line 14 that states that,
each time the iteration counter it changes, the stability counter stable must
increase. Similarly, lines 15–21 specify that, when the stability counter changes,
one should check whether it has reached a critical value, 500 in this example,
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in which case a diversification step is undertaken. This architecture promotes the
separation of the diversification logic from the main heuristic. Indeed, the code for
the diversification simply dictates how to react to changes to the stability counter
and the COMET platform automatically weaves that code in the proper place. Finally,
note how recording improvements in the violations are also done through an event
hooked on the violations of the entire soft system S .

Scene Allocation

Figure 17 features a model for the scene allocation problem that is sometimes used
to compare CP and MIP solvers since it is highly symmetric. The problem consists
of assigning specific days for shooting scenes in a movie. There can be at most five
scenes shot per day and all actors of a scene must be present. Each actor has a fee and
is paid for each day she/he plays in a scene. The goal is to minimize the production
cost. The decision variable scene (line 12) represents the day a scene is shot. The
hard cardinality constraint (line 13) specifies the maximum number of scenes shot
on any one day. The objective function minimizes the sum of actor compensations,
which is the actor fee times the number of days he/she appears in a scene shot on
that day.

The model in Fig. 17 is now a constraint optimization model featuring an
objective function that demands a different strategy to obtain a suitable search
procedure. In general, it is necessary to juggle three considerations. First, one should
maintain the feasibility of the required constraints through a suitable initialization
and the selection of moves that never violate the constraints in R. Second, one

1 int maxScene = ...; // read the data
2 int maxDay = ...; // read the data
3 range Scenes = 1..maxScene;
4 range Days = 1..maxDay;
5 enum Actor = ... ; // read the data
6 int pay[Actor] = ...; // read the data
7 set{Actor} appears[Scenes] = ...; // read the data
8 set{int} which[a in Actor] = setof(s in Scenes) member(a,appears[s]);
9 int occur[Days] = ...; // read the data

10

11 model m {
12 var{int} scene[Scenes](Days);
13 hard: atmost(occur,scene);
14 minimize: sum(a in Actor) pay[a]∗
15 (sum(d in Days) (or(s in which[a]) (scene[s] == d)));
16 }
17 generatedTabuSearch(m);

Fig. 17 Scene allocation model
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may have to deal with softened difficult constraints (S ) for whom one searches
for a feasible solution by driving down the violations. Third, it is essential to
drive down the value of the objective function. The latter two considerations (true
objective and softened constraint) are naturally conflicting as it is easier to drive
the objective function down if one violates difficult constraints and vice versa. The
practical response is to rely on a statically or a dynamically weighted sum of the two
objectives where the search shifts the emphasis on either considerations by altering
the weights.

In this application, S D ; and R D fatmost.occur; scene/g; hence, the task
is somewhat simpler as there is only one component to the objective function. In
this case, the generated tabu search is driven by the sole required constraint but with
a significant difference. In the previous example, the soft constraint was tight, a fact
detected by the model analysis. Indeed, the cardinality constraint in car sequencing
is tight because the assembly line has as many slots as the number of cars to produce.
This is not the case here: there are typically fewer scenes than the number of slots
in which they can be scheduled and thus the required constraint is not a bijection
between variables and value occurrences. As a result, limiting the neighborhood
only to swaps would preserve the feasibility of the cardinality constraint at the
expense of a significant decrease in solution quality. This is not surprising since
the neighborhood would no longer be connected. The model analysis however
recognizes that the atmost constraint is not tight and also considers feasibility-
preserving assignments.

The generated skeleton is depicted in Fig. 18. As before, line 5 uses the required
constraints to initialize the search to a feasible assignment (once again, the task is
delegated to the required constraints and the model analysis ensures that vars.ci / \

vars.cj / D ;8ci ; cj 2 R before generating code. The core of the search spans lines
11–24 and relies on the union of two neighborhoods. Line 12 starts by selecting a
variable xi that can lead to the largest decrease in the objective function. Lines 13–
15 consider all the swaps that include xi and lead to the largest decrease in the
objective function (i.e., the most negative delta). The selector on line 13 is semi-
greedy and will select, uniformly at random, one of the top-3 such moves. Lines
16–19 are devoted to the second neighborhood and collect the best value to reassign
xi . Line 17 shows the conjunct that eliminates assignments that are not feasible
with respect to R. The skeleton search uses a vanilla tabu data structure and omits
the diversification component for simplicity.

Implementation

The implementation of a Constraint-Based Local Search system critically depends
on incremental computation. Constraints and objective functions must respond to
their APIs like violations, increase, decrease, or getAssignDelta
extremely fast in order to consider large neighborhoods and long traces of assign-
ment within an allotted time.
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1 function void generatedTabuSearch(Model<LS> m) {
2 Function<LS> obj = m.getObjective();
3 ConstraintSystem<LS> R = m.getHardConstraintSystem();
4 Solver<LS> ls = m.getLocalSolver();
5 forall(i in R.getRange()) with atomic(ls) R.getConstraint(i).initialize();
6 int it = 0,tenure = 20,best = System.getMAXINT();
7 var{int}[] X = obj.getVariables();
8 int tm[X.rng(),X.rng()] = 0;
9 int t[X.rng()] = 0;

10 MinNeighborSelector N();
11 while (it < 10000) {
12 selectMax(i in X.rng())(obj.decrease(X[i])) {
13 selectMin[3](j in X.rng() : i != j && tm[i,j] <= it,
14 d = obj.getSwapDelta(X[i],X[j]))(d)
15 neighbor(d,N) { X[i] :=: X[j];tm[i,j] = tm[j,i] = it + tenure;}
16 selectMin(v in X[i].getDomain() : t[i] <= it && v != X[i] &&
17 R.getAssignDelta(X[i],v)==0,
18 d = obj.getAssignDelta(X[i],v))(d)
19 neighbor(d,N) { X[i] := v;t[i] = it + tenure;}
20 }
21 if (N.hasMove()) call(N.getMove());
22 if (obj.evaluation() < best) best = obj.evaluation();
23 it++;
24 }
25 }

Fig. 18 Generated search for scene allocation

To deliver this performance, the implementation is presented in two distinct
layers. The invariant layer is responsible for the basic incremental computa-
tion that occurs when an assignment is changed through a local move operator.
The differentiability layer is responsible for implementing the response
mechanism behind the constraints and objective function. Their implementation
is primarily framed in terms of invariants. Both are highlighted in this section,
starting with invariants (section “Invariants”) and finishing with differentiation
(section “Differentiation”).

Invariants

Invariants provide a declarative concept that relieves programmers from the tedious
task of maintaining complex data structures incrementally. By focusing on what to
maintain, rather than how to maintain assignments under changes, programmers
are relieved of an error-prone, yet critical, aspect of implementing constraints
and objective functions. In essence, invariants capture so-called one-way con-
straints [1, 2, 11, 17], namely, they capture the value of an expression that must be
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maintained over time under changes to the value of its variables. An acyclic network
of dependencies connects all the variables of the problems and is responsible for
scheduling the evaluations. This subsection reviews examples and outlines the
underlying implementation.

Definition 15 (Invariant). An invariant I is a one-way constraint

hx1; : : : ; xni  f .y1; : : : ; ym/

where x1; : : : ; xn are called invariant variables and y1; : : : ; ym are either decision or
invariant variables. The set O D fx1; : : : ; xng is the output variables of I The set
I D fy1; : : : ; ymg are the input variables of I. We often abuse notation and rewrite
the one-way constraints as

O  f .I /:

IO , II , and If denote the output variables, the input variables, and the function of
invariant I.

Since invariants are one-way constraints, there are some necessary syntactic
restrictions. One such restriction is that no two invariants have a common output
variable. This ensures that every invariant variable is defined at most once.

The declarative semantics of an invariant specifies that the one-way constraints
always holds.

Definition 16 (Declarative Semantics of an Invariant). Let � be an assignment
before or after any atomic instruction of a program for which the invariant I has
been posted. Then, it follows that

h�.x1/; : : : ; �.xn/i  f .�.y1/; : : : ; �.ym//

where IO D fx1; : : : ; xng and II D fy1; : : : ; ymg. The narrative abuses notation
and sometimes writes

�.Io/ If .�.II //:

Example 8 (Expression Invariant). The numerical invariant

x  y C 3 	 z

stating that, at any point in time, the value of x in an assignment � , i.e., �.x/, should
be the value �.y/ plus three times the value of �.z/.

Operationally, an invariant must maintain the link between its output and input
variables under assignments to its input variables. The invariant maintains this link
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by keeping a local assignment of its input variables and by implementing an update
function which updates the global and local assignments to reflect the change in one
of its input variables.

Definition 17 (Operational Semantics of an Invariant). Let I be an invariant.
Operationally, I maintains a local store I� over variables II and implements an
update procedure Iu W ˙ � X . Let �l D I� be the local store of I, � be an
assignment, and y 2 II . The update procedure Iu.�; y/ performs the following
assignments:

�.IO/ WD If .�l Œ�.y/=y�.II //I

�l .y/ WD �.y/I

To propagate a collection of invariants effectively, the implementation constructs
an incremental graph.

Definition 18 (Incremental Graph). An incremental graph G.X [ I; A/ is a di-
rected acyclic graph whose vertices coincides with decision variables and invariants
and whose arc set correspond to the dependencies induced by the invariant. Each
invariant I introduces a dependency I  y for each y 2 II and a dependency
x  I for each x 2 IO .

Figure 19 depicts the dependencies of the arithmetic invariant presented earlier.

Example 9 (Summation Aggregate). A summation invariant captures the relation

x  

n�1X

iD0

yŒi �

where n is a constant and y denotes an array of n variables. The dependencies are
shown below:

Fig. 19 The dependencies of
an arithmetic invariant

x x ← y + 3 . z

y

z
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The update function Iu.�; y/ implements the following code:

1 �.x/ WD �.x/ C �.y/ � �l .y/;
2 �l .y/ WD �.y/;

where �l D I� .

Example 10 (Counting). A counting invariant x  count.y/ defined over an array
of variables y yields an array of variables x indexed by R D

Sn�1
iD0 D.yi / that

maintains the relations

8 v 2 R W xv D
X

i 2 range.y/

.yi D v/

Namely, xv counts the number of variables in y currently assigned to v. The
dependencies are as follows:

and there are jRj � 1C n of them. The update function Iu.�; y/ implements the
following code:

1 �.x�l .y// WD �.x�l .y// � 1;
2 �.x�.y// WD �.x�.y// C 1;
3 �l .y/ WD �.y/;

where �l D I� .

Incremental Computation
Given G.X [ I; A/, one can obtain a topological sort r of its vertices. Indeed, each
dependency y  x imposes the constraint

1C r.x/ � r.y/:

The partial ordering expressed in r drives the propagation algorithm that updates all
the variables following an assignment of new values to decision variables.

Figure 20 shows the pseudo-code for the invariant propagation algorithm.
The propagate algorithm is invoked with the incremental graph G.X; A/, an
assignment � and the set of decision variables Y that have been updated. Line 3
initializes a priority queue PQ with all the invariants mentioning any member of
Y as one of its sources. The priority associated with invariant I is its topological
number r.I/. The main loop spanning lines 6–11 considers the invariants in priority
order (see Line 7). The update function of the selected invariant is executed in Line
8. Line 9 collects in C the modified output variables and Line 10 enqueues the new
invariant to reconsider.

The correctness of the propagate algorithm hinges on the facts that G.X; A/

is acyclic. The use of topological numbers guarantee that the invariant considered
in iteration i is handled only after its sources have reached final values in � . As
long as u meets its specification, the assignment � is guaranteed to satisfy all the
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Fig. 20 The invariant propagation

invariants considered in iterations 1 : : : i . Computing the affected variables in C

and scheduling any invariant depending on them cannot possibly schedule an earlier
invariant since the graph is acyclic.

Differentiation

The implementation of constraints and objective functions relies on the foundation
provided by invariants as first described in [21]. As indicated earlier, the implemen-
tation of the constraint API

1 interface Constraint<LS> {
2 bool holds();
3 var{int} violations();
4 var{int} violations(var{int} x);
5 int getAssignDelta(var{int} x,int v);
6 }

depends on an efficient, incremental evaluation of violations, variable violations,
and gradients. The functions E.�; e/, V.e/, "x .�; e/, and #x .�; e/ are essential
to the evaluation of expressions and the definition of violation and gradient
expressions from algebraic definitions. Yet, none of them are incremental and
therefore unsuitable for direct use in, for instance, Example 5. Likewise, this is
true for combinatorial constraints such as alldifferent. Invariants do provide
the solution, and the subsection focuses on the implementation when constraints are
expressed algebraically or combinatorially.

Algebraic and Logical Constraints
The key insight to an incremental implementation is to forsake the evaluation
function E and adopt instead a compilation approach, generating invariants that
evaluate an expression incrementally. This is achieved by Function I W E ! X � 2I
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Fig. 21 Compiling
expression evaluations to
invariants

(which is partly shown in Fig. 21) and defined inductively on the structure of
expressions. Specifically, a call I.e/ on an expression e produces a decision variable
holding the value of the expression and a set of invariants that define this variable.

Note how each line of the inductive definition obtains the variable and invariants
supporting the operand and produces a fresh variable alongside an additional
invariant based on the variables obtained from the inductive calls on the operands.
For instance, the last line of Fig. 21 shows that the compilation of a summation
expression inductively obtains a fresh decision variable ik for each term ek , as
well as the invariants supporting ik’s definition in Sk . It then creates a new fresh
variable i˙ and the summation aggregate invariant that defines it. It finally adds all
the invariants in Sk .

Relations simply give rise to arithmetic expressions through the function V

whose definition is in Fig. 3. To obtain an incremental evaluation of the violations
of an arbitrary relation e1 ˘ e2, one can simply obtain the violation expression and
compile it with:

hie1˘e2 ; Se1˘e2i D I.V.e1 ˘ e2//

to retrieve a set of invariants (which it states) and an output variable ie1˘e2 whose
value �.ie1˘e2/ denotes the violations of e1 ˘ e2 with respect to � . At this point,
the implementation of method violation() is straightforward and reduces to
returning �.ie1˘e2/. The incremental evaluation of gradients proceeds similarly with
the generation of an expression modeling the gradient of e and its compilation with
I, i.e.,

hi#x.e/; S#x.e/i D I.#x .e//

and #x .e/ is an expression (independent of � ) whose evaluation w.r.t. � would yield
#x .�; e/. Similarly, a method call violations(x) must simply return �.i#x.e//.
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Finally, objective functions make a direct use of expressions as well as "x and #x

and are therefore handled exactly like constraints.

Combinatorial Constraints
While combinatorial constraints could be implemented in terms of expressions, it is
often preferable to exploit the semantics of the constraints to directly produce an in-
cremental implementation. To illustrate the idea, consider the alldifferent(x)
constraint used in the introductory example and responsible for ensuring that no two
entries in x have the same value.

Fundamentally, the constraint should maintain the cardinality of each value
used in x and require that no two values have a cardinality larger than 1 to
satisfy the constraint. The variable violation for xi would, in this case, simply
be the excess in the number of variables assigned to �.xi /. In essence, when the
constraint alldifferent(x) is added on an array x with n variables whereSn

j D1 D.xj / D V , it is sufficient to state the following invariants:

c  count.x/

vi  max.0; ci � 1/ 8i 2 V

cv  
P

k2V vi

vvj  vxj 8j 2 1 : : : n:

The implementation of the constraint then reduces to

1 class alldifferent implements Constraint<LS> {
2 bool holds() { return �.cv/ DD 0;}
3 var{int} violations() { return cv;}
4 var{int} violations(var{int} x) { return vvid.x/;}
5 int getAssignDelta(var{int} x,int v) {
6 if �.x/ DD v

7 return 0;
8 else
9 return .�.cv/ � 1/ � .�.x/ � 2/;

10 }
11 }

where the function id is used to identify the variable x by an integer. Note the
simplicity of the method implementations that simply leverage the work done
by invariants. Additionally, the implementation does not have to provide any
imperative code to handle the changes of decision variables as all of this logic
is handled through the invariants. Finally, even the getAssignDelta(x,v)
implementation remains straightforward. When the current value assignment to
variable x is identical to the tentative assignment (v), the function returns 0.
Otherwise, it returns the amount of change. Namely, if value v is already used once
or more, the number of violations will increase by 1. Similarly, if �.x/ is used twice
or more, a violation is necessarily lost.
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Empirical Results

Offering a comprehensive empirical evaluation of COMET is beyond the scope of
this chapter. Yet, the monograph [23] contains an extensive empirical evaluation on
many problems and discusses the impact of modeling techniques and search.

Instead, this section focuses on demonstrating the potential behind the synthesis
of search procedures. In particular, it explores the performance of the search
procedures shown in Figs. 13, 16, and 18 and contrasts them with the results
obtained from purely synthesized search procedures in the spirit of [22]. In all cases,
the results were obtained on a Core i7 machine clocked at 1.8 Ghz and running OSX
10.10 and the reported results are based on averages collected from 100 runs of each
algorithms.

Progressive Party

Two instances of the problem (5–7 and 6–7) were used in the evaluation in the
following table.

Type Choice jP j �iter �iter �T .msec:/ �T .msec:/

Manual 5 7 2,360.9 1,386.1 723:9 377:3

Synthetic 5 7 2,282.2 1,495.9 842:5 476:1

Manual 6 7 6,847.8 5,714.7 1; 682:0 1; 324:4

Synthetic 6 7 4,532.2 4,724.5 1; 338:1 1; 281:6

The search procedures are extremely similar and only differ in the presence of
an adaptive tabu list within the synthetic implementation. It is not surprising to note
that both implementation are very close with a slight win for the synthetic search
without having to invest any effort in parameter tuning.

Car Sequencing

One instance (4–72) was used for car sequencing. In this case, the two implementa-
tions seem to exhibit significantly different behaviors as the number of iterations
is almost 4 times as high (on average) for the manual implementation. This is
most likely due to the difference in parameters and in the components of the
meta-heuristics within the synthetic search. It also shows that, without exploring
variants of the search procedure, it is not obvious to produce high-quality results.
Yet, the ability to easily exploit, without further ado, restarts, diversification and
intensification components is quite valuable. Lastly, note that the time per iteration
of the two searches is quite close showing that the differences only come from the
search heuristic and meta-heuristic, not the incremental computation.
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Type Instance �iter �iter �T .s:/ �T .s:/

Manual 4–72 162,944.3 164,853.9 19:9 20:5

Synthetic 4–72 49,598.8 57,815.4 5:4 6:3

Scene Allocation

The scene allocation benchmark was used to compare three variants: the manual
implementation in Fig. 18 and two synthetic search procedures with different
parameters, namely, one of them uses 10,000 iterations and no restarts, while the
other uses 10 restarts and 1000 iterations per restart. Here, the synthetic search
relying on restarting is very close to the custom implementation. Its success rate
is 99/100, just shy of a perfect 100 like the custom search. While the synthetic
search uses more iterations (on average) to get to the optimum, the runtimes are
very close. An examination of the synthesized search reveals that the root cause of
the difference is the search heuristic. The equivalent of lines 13 and 17 in Fig. 18
in the synthesized search rely on a purely random selector rather than the more
aggressive semi-greedy and greedy selectors used in the custom implementation.
This difference explains the loss in greediness and explains the positive impact of
restarts.

Type �iter� �iter� �f � �f � #Opt �T .msec:/ �T .msec:/

Manual 860 982 334,144 0 100 567.4 46:9

Synthetic(10,000
iters, 1 restart)

2;254 3;104 334,960 1;093 64 731.8 175:6

Synthetic(1000
iters, 10 restarts)

1;954 2;212 334,167 227 99 730.1 71:7

Conclusion

Constraint-Based Local Search is an appealing framework for the design and
implementation of local search models for any number of applications. It adopts
the core practices of constraint programming through the support of separated
components for expressing a declarative model and for programming the search.
The declarative models rely on a rich language seamlessly blending algebraic,
logical, and combinatorial constraints. The search component itself is exclusively
devoted to the automation of the most tedious and error-prone activities that arise
when implementing a variety of heuristics and meta-heuristics. Perhaps even more
crucially, search procedures can be written completely independently of the model,
making them highly reusable and generic. The culmination of this effort is the
availability of synthetic search procedures that take advantage of an analysis of the
declarative model to produce sensible search procedures that often compete with
tailored, hand-written implementations.
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The entire framework competitiveness relies on incremental implementations
that are constructed on top of invariants and differentiable abstractions such as
constraints and objectives. The net result is a platform for practitioners who would
take advantage of the capabilities of local search techniques without the significant
investment necessary to produce an efficient implementation.
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Abstract

Guided local search (GLS) is a meta-heuristic method proposed to solve combi-
natorial optimization problems. It is a high-level strategy that applies an efficient
penalty-based approach to interact with the local improvement procedure. This
interaction creates a process capable of escaping from local optima, which
improves the efficiency and robustness of the underlying local search algorithms.
Fast local search (FLS) is a way of reducing the size of the neighborhood to
improve the efficiency of local search. GLS can be efficiently combined with
FLS in the form of guided fast local search (GFLS). This chapter describes
the principles of GLS and provides guidance for implementing and using GLS,
FLS, and GFLS. It also surveys GLS extensions, hybrids, and applications to
optimization, including multi-objective optimization.

Keywords
Heuristic search � Meta-heuristics � Penalty-based methods � Guided local
search � Tabu search � Constraint satisfaction

Introduction

Many practical problems are NP-hard in nature, which means complete, constructive
search is unlikely to satisfy our computational demand. Many real-life problems
cannot be realistically and reliably solved by complete search. This motivates the
development of local search or heuristic methods.

Local search (LS) is the basis of most heuristic search methods. It searches in the
space of candidate solutions.The solution representation issue is significant, though
it is not the subject of our discussion here. In the basic variant of LS, known as
hill climbing, LS starts from a (possibly randomly generated) candidate solution
and then moves to a “neighbor” that is “better” than the current candidate solution
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according to the objective function. The search naturally stops when all neighbors
are inferior to the current solution.

LS can find good solutions very quickly. However, it can be trapped in local
optima – positions in the search space that are better than all their neighbors, but
not necessarily representing the best possible solution (the global optimum). To
improve the effectiveness of LS, various techniques have been introduced over the
years. Simulated annealing (SA), tabu search (TS), and guided local search (GLS)
all attempt to help LS escape local optimum. This chapter focuses on GLS [79], a
general meta-heuristic algorithm, and its applications. GLS has been applied to a
nontrivial number of problems and found to be efficient and effective. It is relatively
simple to implement and apply, with only a few parameters to tune.

GLS can be seen as a generalization of its predecessors GENET [23, 77]
which was developed for constraint satisfaction problems. GLS also relates to
ideas from the area of search theory on how to distribute the search effort. In
particular, incremental distribution of the search effort according to information in
a probabilistic framework can be found in a class of methods deriving themselves
from the optimal search theory of Koopman [42, 69].

The principles of GLS can be summarized as follows. As a meta-heuristic
method, GLS sits on top of LS algorithms. To apply GLS, one defines a set of
features for the candidate solutions. When LS is trapped in local optima, certain
features are selected and penalized. LS searches the solution space using the
objective function augmented by the accumulated penalties.

The novelty of GLS is in the way that it selects features to penalize. GLS
effectively distributes the search effort in the search space, favoring promising areas.
Penalty modifications regularize the solutions generated by local search to be in
accordance to prior or gathered during search information. The approach taken by
GLS is similar to that of regularization methods for “ill-posed” problems [75].
The idea behind regularization methods and GLS up to an extent is the use of
prior information to help in solving an approximation problem. Prior information
translates to constraints which further define our problem reducing so the number
of candidate solutions to be considered.

The structure of the chapter is as follows. In section “Guided Local Search”,
we describe GLS with details about implementing its components. Similarly,
the implementation of combining GLS with fast local search is discussed in
section “Guided Fast Local Search”. Next, in section “GLS Extensions, Hybrids,
and Variations”, we review other algorithms that extend GLS or hybridize it with
other techniques. We then present an extension of GLS to handle multi-objective
optimization problems in section “GLS for Multi-objective Optimization”. The
applications of GLS to the traveling salesman problem and a workforce scheduling
problem are explained in sections “GLS Implementation on the Traveling Salesman
Problem” and “GLS/GPLS Implementation on a Workforce Scheduling Problem”,
respectively. We give comprehensive references to the applications of GLS and
its variants in section “Overview of GLS Applications”, and we conclude in
section “Conclusions”.
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Guided Local Search

As mentioned earlier, GLS augments the given objective function with penalties.
To apply GLS, one needs to define features for the problem. For example, in the
traveling salesman problem [28], a feature could be whether the candidate tour
travels immediately from city A to city B. GLS associates a cost and a penalty with
each feature. The costs can often be defined by taking the terms and their coefficients
from the objective function. For example, in the traveling salesman problem, the
cost of the above feature can simply be the distance between cities A and B. The
penalties are initialized to 0 and will only be increased when the local search reaches
a local optimum. Given an objective function g that maps every candidate solution s

to a numerical value, GLS defines a function h that will be used by LS (replacing g):

h.s/ D g.s/C � �
X

i is a feature

.pi � Ii .s// (1)

where s is a candidate solution, � is a parameter of the GLS algorithm, i ranges over
the features, pi is the penalty for feature i (all pi ’s are initialized to 0), and Ii is an
indication of whether s exhibits feature i :

Ii .s/ D 1 if s exhibits feature i ; 0 otherwise: (2)

Sitting on top of local search algorithms, GLS helps them to escape local
optima in the following way. Whenever the local search algorithm settles in a local
optimum, GLS augments the cost function by adding penalties to selected features.
The novelty of GLS is mainly in the way that it selects features to penalize. The
intention is to penalize “unfavorable features” or features that “matter most” when
a local search settles in a local optimum. A feature with high cost has more impact
on the overall cost. Another factor that should be considered is the current penalty
value of that feature. The utility of penalizing feature i , ut i li , under a local optimum
s�, is defined as follows:

ut i li .s�/ D Ii .s�/ �
ci

1C pi

(3)

where ci is the cost and pi is the current penalty value of feature i . In other words,
if a feature is not exhibited in the local optimum (indicated by Ii ), then the utility of
penalizing it is 0. The higher the cost of this feature (the greater ci ), the greater the
utility of penalizing it. Besides, the larger the number of times it has been penalized
(the greater pi ), the lower the utility of penalizing it again. In a local optimum, the
feature with the greatest ut i l value will be penalized. When a feature is penalized,
its penalty value is always increased by 1. The scaling of the penalty is adjusted
by �.

By taking the cost and current penalty into consideration in selecting the feature
to penalize, GLS focuses its search effort on more promising areas of the search
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space: areas that contain candidate solutions that exhibit “good features,” i.e.,
features involving lower cost. On the other hand, penalties help to prevent the search
from directing all effort to any particular region of the search space.

Naturally, the choice of the features, their costs, and the setting of � may
affect the efficiency of a search. Experience shows that the features and their
costs normally come directly from the objective function. In many problems, the
performance of GLS is not too sensitive to the value �. It means that not too much
effort is required to apply GLS to a new problem. In certain problems, one needs
expertise in selecting the features and the � parameter. Research aiming to reduce
the sensitivity of the � parameter in such cases is reported in [54].

Implementation Guideline

A local search procedure for the particular problem is required for the algorithm
to be implemented. Guided local search is repeatedly using this procedure to
optimize the augmented objective function of the problem. Each time the local
search procedure reaches a local minimum, the augmented objective function is
modified by increasing the penalties of one or more of the features present in the
local minimum. These features are selected by using the utility function (Eq. 3).
The section below presents and explains the pseudo-code for implementing a guided
local search method.

Algorithm 1 depicts the pseudo-code for the guided local search procedure,
where P is the problem, g is the objective function, h is the augmented objective
function, � is a parameter, Ii is the indicator function of feature i , ci is the
cost of feature i , M is the number of features, pi is the penalty of feature
i , Const ructionMethod.P / is the method for constructing an initial solution
for problem p, and ImprovementMethod.sk; h/ is the method for improving
solution sk according to the augmented objective function h.

To understand the pseudo-code, let us first explain the methods for constructing
and improving a solution, as they are both prerequisites for building a GLS
algorithm.

Construction Method
As with other meta-heuristics, GLS requires a construction method to generate an
initial (starting) solution for the problem. In the pseudo-code, this is denoted by
Const ructionMethod . This method can generate a random solution or a heuristic
solution based on some known technique for constructing solutions for the particular
problem. GLS is not very sensitive to the starting solution given that sufficient time
is allocated to the algorithm to explore the search space of the problem.

Improvement Method
A method for improving the solution is also required. In the pseudo-code, this is
denoted by ImprovementMethod . This method can be a simple local search
algorithm or a more sophisticated one such as variable neighborhood search [36],
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Algorithm 1: The guided local search algorithm
GuidedLocalSearch(P , g, �, ŒI1; : : : ; IM �, Œc1; : : : ; cM �, M )

k  0;
s0  Const ructionMethod.P /;
{set all penalties to 0}
for i  1 until M do

pi  0;
end for
{define the augmented objective function}
h g C � �

P
pi � Ii ;

while StoppingCriterion do
skC1  ImprovementMethod.sk; h/;
{compute the utility of features}
for i  1 until M do

ut i li  Ii .skC1/ � ci =.1C pi /;
end for
{penalize features with maximum utility}
for all i such that ut i li is maximum do

pi  pi C 1;
end for
k  k C 1;

end while
s�  best solution found with respect to objective function g;
return s�;

variable depth descent [49], ejection chains [32], or combinations of local search
methods with exact search algorithms [60].

It is not essential for the improvement method to generate high-quality local
minima. Experiments with GLS and various local heuristics reported in [82] have
shown that High-quality local minima take time to produce, resulting in less
intervention by GLS in the overall allocated search time. This may sometimes
lead to inferior results compared to a simple but more computationally efficient
improvement method.

Note also that the improvement method is using the augmented objective function
instead of the original one.

Indicator Functions and Feature Penalization
Given that a construction and an improvement method are available for the problem,
the rest of the pseudo-code is straightforward to apply. The penalties of features are
initialized to zero, and they are incremented for features that maximize the utility
formula, after each call to the improvement method.
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The indicator functions Ii for the features rarely need to be implemented. Look-
ing at the values of the decision variables can directly identify the features present
in a local minimum. When this is not possible, data structures with constant time
deletion/addition operations (e.g., based on double-linked lists) can incrementally
maintain the set of features present in the working solution, thus avoiding the need
for an expensive computation when GLS reaches a local minimum.

The selection of features to penalize can be efficiently implemented by using
the same loop for computing the utility formula for features present in the local
minimum (the other features can be ignored) and also placing features with
maximum utility in a vector. With a second loop, the features with maximum utility
contained in this vector have their penalties incremented by one.

Parameter �

Parameter � is the only parameter of the GLS method (at least in its basic version)
and in general is instance dependent. Fortunately, for several problems, it has been
observed that good values for � can be found by dividing the value of the objective
function of a local minimum with the number of features present in it. In these
problems, � is dynamically computed after the first local minimum and before
penalties are applied to features for the first time. The user only provides parameter
˛, which is relatively instance independent (i.e., tuning ˛ can result in � values,
which work for many instances of a problem class). The recommended formula for
� as a function of ˛ is the following:

� D ˛ � g.x�/=.no. of features present in x�/ (4)

where g is the objective function of the problem and x� is a local minimum. Tuning
˛ can result in � values, which work for many instances of a problem class. Another
benefit from using ˛ is that, once tuned, it can be fixed in industrialized versions of
the software, resulting in ready-to-use GLS algorithms for the end user.

Augmented Objective Function and Move Evaluations
With regard to the objective function and the augmented objective function, the
program should keep track of the actual objective value in all operations related to
storing the best solution or finding a new best solution. Keeping track of the value
of the augmented objective value (e.g., after adding the penalties) is not necessary
since local search methods will be looking only at the differences in the augmented
objective value when evaluating moves.

However, the move evaluation mechanism needs to be revised to work efficiently
with the augmented objective function. Normally, the move evaluation mechanism
is not directly evaluating the objective value of the new solution generated by
the move. Instead, it calculates the difference �g in the objective function. This
difference should be combined with the difference in the amount of penalties. This
can be easily done and has no significant impact on the time needed to evaluate a
move. In particular, we have to take into account only features whose state changes
(being deleted or added). The penalties of the features deleted are summed together.
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The same is done for the penalties of added features. The change in the amount of
penalties due to the move is then simply given by the difference:

X

over all features j added

pj �
X

over all features k deleted

pk (5)

which then has to be multiplied by � and added to �g.
Another minor improvement is to monitor the actual objective value not only for

the solutions accepted by the local search but also for those evaluated. Since local
search is using the augmented objective function, a move that generates a new best
solution may be missed. From our experience, this modification does not improve
significantly the performance of the algorithm although it can be useful when GLS
is used to find new best-known solutions to hard benchmark instances.

Stopping Criterion
There are many choices possible for the StoppingC ritet ion. Since GLS is not
trapped in local minima, it is not clear when to stop the algorithm. Like other meta-
heuristics, we usually resort to a measure related to the length of the search process.
For example, we may choose to set a limit on the number of moves performed, the
number of moves evaluated, or the CPU time spent by the algorithm. If a lower
bound is known, we can utilize it as a stopping criterion by setting the gap to be
achieved between the best-known solution and the lower bound. Criteria can also be
combined to allow for a more flexible way to stop the GLS method.

Possible Features for Common Applications

Applying guided local search to a problem requires identifying a suitable set of
features to guide the search process. Features provide the heuristic search expert
with quite a powerful tool since any solution property can be potentially captured
and used to guide local search. Usually, we are looking for solution properties,
which have a direct impact on the objective function. These can be modeled as
features with costs equal or analogous to their contribution to the objective function
value. By applying penalties to features, GLS can guide the improvement method to
avoid costly (“bad”) properties, converging faster toward areas of the search space,
which are of high quality.

Features are not necessarily specific to a particular problem, and they can be used
in several problems of similar structure. Real-world problems, which sometimes
incorporate elements from several academic problems, can benefit from using more
than one feature set to guide the local search in better optimizing the different terms
of a complex objective function.

Below, we provide examples of useful features for several representative prob-
lems from various domains.
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Routing/Scheduling Problems
In routing/scheduling problems, one is seeking to minimize the time required by a
vehicle to travel between customers or for a resource to be set up from one activity to
the next. Problems in this category include the traveling salesman problem, vehicle
routing problem, machine scheduling with sequence-dependent setup times, and
others.

Travel or setup times are modeled as edges in a path or graph structure commonly
used to represent the solution of these problems. The objective function (or at least
part of it) is given by the sum of lengths for the edges used in the solution.

Edges are ideal GLS features. A solution either contains an edge or not.
Furthermore, each edge has a cost equal to its length. We can define a feature for
each possible edge and assign a cost to it equal to the edge length. GLS quickly
identifies and penalizes long and costly edges guiding local search to high-quality
solutions, which use as much as possible the short edges available.

Assignment Problems
In assignment problems, a set of items has to be assigned to another set of
items (e.g., airplanes to flights, locations to facilities, people to work, etc.). Each
assignment of item i to item j usually carries a cost, and depending on the problem,
a number of constraints are required to be satisfied (e.g., capacity or compatibility
constraints). The assignment of item i to item j can be seen as a solution property
which is either present in the solution or not. Since each assignment also carries a
cost, this is another good example of a feature to be used in a GLS implementation.

In some variations of the problem such as the quadratic assignment problem,
the cost function is more complicated, and assignments have an indirect impact
on the cost. Even in these cases, we found that GLS can generate good results
by assigning the same feature costs to all features (e.g., equal to 1 or some other
arbitrary value). Although GLS is not guiding the improvement method to good
solutions (since this information is difficult to extract from the objective function),
it can still diversify the search because of the penalty memory incorporated, and it
is capable of producing results comparable to popular heuristic methods.

Resource Allocation Problem
Assignment problems can be used to model resource allocation applications. A
special but important case in resource allocation is when the resources available
are not sufficient to service all requests. Usually, the objective function will contain
a sum of costs for the unallocated requests, which is to be minimized. The cost
incurred when a request is unallocated will reflect the importance of the request or
the revenue lost in the particular scenario.

A possible feature to consider for these problems is whether a request is
unallocated or not. If the request is unallocated, then a cost is incurred in the
objective function, which we can use as the feature cost to guide local search. The
number of features in a problem is equal to the number of requests that may be
left unallocated, one for each request. There may be hard constraints which state
that certain requests should always be allocated a resource, in which case there is
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no need to define a feature for them. Problems in this category include the path
assignment problem [8], maximum channel assignment problem [68], workforce
scheduling problem [9, 15], and others.

Constrained Optimization Problems
Constraints are very important in capturing processes and systems in the real world.
A number of combinatorial optimization problems deal with finding a solution,
which satisfies a set of constraints or, if that is not possible, minimizes the number of
constraint violations (relaxations). Constraint violations may have costs (weights)
associated with them, in which case the sum of constraint violation costs is to be
minimized.

Local search usually considers the number of constraint violations (or their
weighted sum) as the objective function even in cases where the goal is to find a
solution which satisfies all the constraints. Constraints by their nature can be easily
used as features. They can be modeled by indicator functions, and they also incur a
cost (i.e., when violated/relaxed), which can be used as their feature cost. Problems
which can benefit from this modeling include the constraint satisfaction and partial
constraint satisfaction problem, the famous SAT and its MAX-SAT variant, graph
coloring, various frequency assignment problems [1, 56], and others.

Guided Fast Local Search

In this section, we look at the combination of guided local search with fast local
search, a generalized algorithm for speeding up local search, resulting in the guided
fast local search method. Guided fast local search addresses the issue of slow local
search procedures, and it is particularly useful when applying GLS to tackle large-
scale problem instances, especially when repeatedly and exhaustively searching the
whole neighborhood is computationally expensive.

One factor which affects the efficiency of a local search algorithm is the size
of the neighborhood. If too many neighbors are considered, then the search could
be very costly. This is especially true if the search takes many steps to reach a
local optimum and/or each evaluation of the objective function requires a significant
amount of computation. Bentley presented in [12] the approximate 2-Opt method to
reduce the neighborhood of 2-Opt in the TSP. We have generalized this method to a
method called fast local search (FLS). The principle is to use heuristics to identify
(and ignore) neighbors that are unlikely to lead to improving moves in order to
enhance the efficiency of a search.

The neighborhood chosen for the problem is broken down into a number of
small sub-neighborhoods, and an activation bit is attached to each one of them.
The idea is to scan continuously the sub-neighborhoods in a given order, searching
only those with the activation bit set to 1. These sub-neighborhoods are called active
sub-neighborhoods. Sub-neighborhoods with the bit set to 0 are called inactive sub-
neighborhoods, and they are not being searched. The neighborhood search process
does not restart whenever we find a better solution, but it continues with the next
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sub-neighborhood in the given order. This order may be static or dynamic (i.e.,
change as a result of the moves performed).

Initially, all sub-neighborhoods are active. If a sub-neighborhood is examined
and does not contain any improving moves, then it becomes inactive. Otherwise, it
remains active and the improving move found is performed. Depending on the move
performed, a number of other sub-neighborhoods are also activated. In particular,
we activate all the sub-neighborhoods where we expect other improving moves to
occur as a result of the move just performed. As the solution improves, the process
dies out with fewer and fewer sub-neighborhoods being active until all the sub-
neighborhood bits turn to 0. The solution formed up to that point is returned as an
approximate local optimum.

The overall procedure could be many times faster than conventional local search.
The bit setting scheme encourages chains of moves that improve specific parts of
the overall solution. As the solution becomes locally better, the process is settling
down, examining fewer moves and saving enormous amounts of time which would
otherwise be spent on examining predominantly bad moves.

Although FLS procedures do not generally find very good solutions, when they
are combined with GLS, they become very powerful optimization tools. Combining
GLS with FLS is straightforward. The key idea is to associate features to sub-
neighborhoods. The associations to be made are such that for each feature we know
which sub-neighborhoods contain moves that have an immediate effect upon the
state of the feature (i.e., moves that remove the feature from the solution).

By reducing the size of the neighborhood, one may significantly reduce the
amount of computation involved in each local search iteration. The idea is to enable
more local search iterations in a fixed amount of time. The danger of ignoring certain
neighbors is that some improvements may be missed. The hope is that the gain in
“search speed” outweighs the loss in “search quality.”

Implementation Guideline

Guided fast local search (GFLS) is more sophisticated than the basic GLS algorithm
as it uses a number of sub-neighborhoods, which are enabled/disabled during the
search process. The main advantage of GFLS lies in its ability to focus the search
after the penalties of features are increased. This can dramatically shorten the time
required by an improvement method to re-optimize the solution each time the
augmented objective function is modified.

The following provide the pseudo-code for the method and also some suggestions
on how to achieve an efficient implementation. We first look at the pseudo-code for
fast local search, which is part of the overall guided fast local search algorithm.

Fast Local Search
The pseudo-code for fast local search is given in Algorithm 2, where s is the solu-
tion, h is the augmented objective function, L is the number of sub-neighborhoods,
biti is the activation bit for sub-neighborhood i , MovesForSubneighborhood.i/
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is the method which returns the set of moves contained in sub-neighborhood i ,
and SubneighborhoodsForMove.m/ is the method which returns the set of sub-
neighborhoods to activate when move m is performed.

Algorithm 2: The fast local search algorithm
FastLocalSearch(s, h, Œbi t1; : : : ; bi tL�, L)

while 9bit , bit D 1 do
{i.e., while active sub-neighborhood exists}
for i  1 until L do

if biti D 1 then
{search sub-neighborhood i}
Moves MovesForSubneighbourhood.i/;
for all move m in Moves do

s0  m.s/;
{s0 is the result of move m}
if h.s0/ < h.s/ then

{spread activation}
ActivateSet SubneighbourhoodsForMove.m/;
for all sub-neighborhood j in ActivateSet do

bitj  1;
end for
s  s0;
GOTO: ImprovingMoveFound

end if
end for
{no improving move found}
biti  0;

end if
ImprovingMoveFound: continue

end for
end while
return s;

As explained earlier, the problem’s neighborhood is broken down into a number
of sub-neighborhoods, and an activation bit is attached to each one of them. The
idea is to examine sub-neighborhoods in a given order, searching only those with the
activation bit set to 1. The neighborhood search process does not restart whenever
we find a better solution, but it continues with the next sub-neighborhood in the
given order. The pseudo-code given above is flexible since it does not specify which
bits are initially switched on or off, something which is an input to the procedure.
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This allows the procedure to be focused to certain sub-neighborhoods and not the
whole neighborhood, which may be a large one.

The procedure has two points that need to be customized. The first is the
breaking down of the neighborhood into sub-neighborhoods (MovesForSubneigh-
borhood method in pseudo-code). The second is the mapping from moves to
sub-neighborhoods for spreading activation (SubneighbourhoodsForMove method
in pseudo-code). Both points are strongly dependent on the move operator used.

In general, the move operator depends on the solution representation. Fortu-
nately, several problems share the same solution representation which is typically
based on some well-known simple or composite combinatorial structure (e.g.,
selection, permutation, partition, composition, path, cyclic path, tree, graph, etc.).
This allows us to use the same move operators for many different problems (e.g.,
1-Opt, 2-Opt, swaps, insertions, etc.).

The method for mapping sub-neighborhoods to moves, which is denoted in
the pseudo-code by SubneighbourhoodToMoves, can be defined by looking at
the implementation of a typical local search procedure for the problem. This
implementation, at its core, will usually contain a number of nested for-loops for
generating all possible move combinations. The variable in the outermost loop in the
move generation code can be used to define the sub-neighborhoods. The moves in
each sub-neighborhood will be those generated by the inner loops for the particular
sub-neighborhood index value at the outermost loop.

In general, the sub-neighborhoods can be overlapping. Fast local search is usually
examining a limited number of moves compared to exhaustive neighborhood search
methods, and therefore duplication of moves is not a problem. Moreover, this can be
desirable sometimes to give a greater range to each sub-neighborhood. Since not all
sub-neighborhoods are active in the same iteration, if there is no overlapping, some
improving moves may be missed.

The method for spreading activation, denoted by SubneighbourhoodsForMove,
returns a set of sub-neighborhoods to activate after a move is performed. The lower
bound for this set is the sub-neighborhood where the move originated. The upper
bound (although not useful) is all the sub-neighborhoods in the problem.

A way to define this method is to look at the particular move operator used.
Moves will affect part of the solution directly or indirectly while leaving other
parts unaffected. If a sub-neighborhood contains affected parts, then it needs to be
activated since an opportunity could arise there for an improving move as a result of
the original move performed.

The fast local search loop is settling down in a local minimum when all the
bits of sub-neighborhoods turn to zero (i.e., no improving move can be found
in any of the sub-neighborhoods). Fast local search in that respect is similar to
other local search procedures. The main differences are that the method can be
focused to search particular parts of the overall neighborhood and, secondly, it is
working in an opportunistic way looking at parts of the solution which are likely
to contain improving moves rather than the whole solution. In the next section, we
look at guided fast local search, which uses fast local search as its improvement
method.
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Guided Fast Local Search
The pseudo-code for guided fast local search is given in Algorithm 3, where
FastLocalSearch is the fast local search method as described in section “Fast
Local Search”, SubneighbourhoodsForFeature.i/ is the method which returns
the set of sub-neighborhoods to activate when feature i is penalized, and the rest of
the definitions are the same than those used in the pseudo-code for GLS described
in section “Implementation Guideline”.

Algorithm 3: The guided fast local search algorithm
GuidedFastLocalSearch(p, g, �, ŒI1; : : : ; IM �, Œc1; : : : ; cM �, M , L)

k  0;
s0  Const ructionMethod.p/;
{set all penalties to 0}
for i  1 until M do

pi  0;
end for
{set all sub-neighborhoods to the active state}
for i  1 until L do

biti  1;
{define the augmented objective function}

end for
h g C � �

P
pi � Ii ;

while StoppingCriterion do
skC1  FastLocalSearch.sk; h; Œbi t1; : : : ; bi tL�; L/;
{compute the utility of features}
for i  1 until M do

ut i li  Ii .skC1/ � ci =.1C pi /;
{penalize features with maximum utility}

end for
for all i such that ut i li is maximum do

pi  pi C 1;
{activate sub-neighborhoods related to penalized feature i}
ActivateSet SubneighbourhoodsForFeature.i/;
for all sub-neighborhood j in ActivateSet do

bitj  1;
end for

end for
k  k C 1;

end while
s�  best solution found with respect to objective function g;
return s�;
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This pseudo-code is similar to that of GLS explained in section “Implementation
Guideline”. All differences relate to the manipulation of activation bits for the
purpose of focusing fast local search. These bits are initialized to 1. As a result,
the first call to fast local search is examining the whole neighborhood for improving
moves. Subsequent calls to fast local search examine only part of the neighborhood
and in particular all the sub-neighborhoods that relate to the features penalized by
GLS.

Identifying the sub-neighborhoods that are related to a penalized feature is
the task of SubneighbourhoodsForFeature method. The role of this method is
similar to that of SubneighbourhoodsForMove method in fast local search (see
section “Fast Local Search”). The SubneighbourhoodsForFeature method is usually
defined based on an analysis of the move operator. After the application of penalties,
we are looking for moves which remove or have the potential to remove penalized
features from the solution. The sub-neighborhoods, which contain such moves, are
prime candidates for activation. Specific examples will be given later in the chapter
and in the context of GLS applications.

GLS Extensions, Hybrids, and Variations

GLS is closely related to other heuristic and meta-heuristic methods. In this section,
we shall review the different variations, hybrids, and extensions of GLS and FLS
that have been developed in recent years.

Extensions to GLS

GLS is closely related to other heuristic and meta-heuristic methods. This motivates
the adoption of ideas borrowed from other meta-heuristics in GLS. For example,
taboo lists and aspiration ideas from tabu search have been used in later versions of
GLS. Resembling the tabu lists idea, a limited number of penalties are used when
GLS is applied to the radio link frequency assignment problem [56]. When the list
is full, old penalties are overwritten [81]. The motive is that if too many penalties
are built up during the search, the local search could be misguided. In another GLS
work, aspiration is used to favor promising moves [54].

Tairan and Zhang in [71] studied how to enhance the performance of GLS
through designing a cooperative mechanism based on the proximate optimality
principle (POP), resulting in a population-based GLS framework. The idea is to run
multiple agents of GLS, and during the search the agents exchange their obtained
information about the previous search to make their further search more rational.
Based on POP, they suggested that common features that appear in many locally
optimal solutions of GLS agents are more likely to be parts of the globally optimal
solution. Thus, this property should be taken into consideration in the penalization
stage during the search. The effectiveness of the proposed cooperative method was
demonstrated through high-quality results obtained in the TSP.
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GLS Hybrids

Being simple and general, GLS ideas can easily be combined with other techniques.
GLS has been hybridized with several meta-heuristics creating efficient frameworks
which were successfully applied to several applications. Below, we review and
comment on some of these hybrids of GLS.

As a meta-heuristic method, GLS can also sit on top of genetic algorithms (GA).
This has been demonstrated in guided genetic algorithm (GGA) [45–47]. GGA is a
hybrid of GA and GLS. It is designed to extend the domain of both GA and GLS.
One major objective is to further improve the robustness of GLS. It can be seen
as a GA with GLS to bring it out of local optima: if no progress has been made
after a specific of iterations (this number is a parameter of GGA), GLS modifies the
fitness function (which is the objective function) by means of penalties, using the
criteria defined in (Eq. 3). GA will then use the modified fitness function in future
generations. The penalties are also used to bias crossover and mutation in GA –
genes that contribute more to the penalties are more likely to be changed by these
two GA operators. This allows GGA to be more focused in its search.

On the other hand, GGA can roughly be seen as a number of GLSs running in
parallel from different starting points and exchanging material in a GA manner. The
difference is that only one set of penalties is used in GGA, whereas parallel GLSs
could have used one independent set of penalties per run. Besides, learning in GGA
is more selective than parallel GLS: the updating of penalties is only based on the
best chromosome found at the point of penalization.

GLS was hybridized with two major evolutionary computation (EC) techniques,
namely, estimate distribution algorithm (EDA) and evolution strategy (ES). The
hybrid of GLS with EDA was introduced by Zhang et al. [88]. They proposed a
framework that incorporates GLS within EDA, in which GLS is applied to each
solution in the population of EDA. The framework is successfully applied to the
quadratic assignment problem. The results show the superiority of EDA/GLS over
GLS alone.

The hybrid of GLS with ES was first studied by Mester and Braysy [51]. The
resulting framework combines GLS and ES into an iterative two-stage procedure.
GLS is used in both phases to improve the local search in the first stage and to
regulate the objective function and the neighborhood of the modified ES in the
second stage. The principle of FLS is also incorporated into the idea of penalty
variable neighborhood in which the neighborhood considered by the local search is
limited to a small set of the neighbors of the penalized feature.

GLS has also been hybridized with variable neighborhood search (VNS) and
large neighborhood search (LNS). Kytojoki et al. [43] combine GLS with VNS in
an efficient variable neighborhood search heuristic, named guided VNS (GVNS),
which was applied to the vehicle routing problem. The addition to VNS is the
use of GLS to escape local minima. The idea of threshold value borrowed from
threshold accepting (TA) is used as a termination condition for every GLS stage.
The hybrid of GLS with LNS is introduced in [84]. In the proposed framework,
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LNS is applied when the GLS cannot escape a local optimum after a number of
penalizations, with the aim of increasing the diversity and exploring more promising
parts of the search space. The effectiveness of this hybrid was demonstrated through
high-quality results obtained in a planning optimization problem.

Guided tabu search (GTS) is a hybrid meta-heuristic which combines GLS with
TS proposed by Tarantilis et al. [73, 74] to solve the vehicle routing problem with
heterogeneous fleet and then extended to solve another variant of the same general
problem. The basic idea is to control the exploration of TS by a guiding mechanism,
based on GLS, that continuously modifies the objective function of the problem.
The authors propose a new arc (as a feature) selection strategy which considers the
relative arc length according to the rest of customers (di;j =avgi;j rather than di;j ,
where avgi;j is the average value of all outgoing arcs from i and j). They argue that
this would lead to a more balanced arc selection, which should improve upon the
most frequently employed strategy based on di;j only. Experimental results confirm
the effectiveness of GTS, producing new best results for several benchmarks. De
Backer et al. [10] also proposed a guided tabu search hybrid in their work on the
VRP.

GLS has been also successfully hybridized with ant colony optimization (ACO)
by Hani et al. [35]. This hybrid algorithm was applied to the facility layout problem,
a variant of the quadratic assignment problem (QAP). The basic idea is simple: GLS
sits on top of the basic LS in the ACO.

The hybridization of GLS and constraint programming (CP) was introduced by
Gomes et al. [34]. This method, named guided constraint search, borrows ideas
from GLS to improve the efficiency of pure CP methods. The basic principle is to
use a fitness function to choose at each iteration only the N most promising values
of each variable’s domain, defining a subspace for the CP method. The selection
strategy is inspired from GLS; for each pair, a utility function, penalty parameter,
and cost are defined. At each iteration, those features (variable/value pairs) which
were considered but did not belong to a new best solution are deemed bad features
and are penalized.

Variations of GLS

The success of GLS motivated researchers to invent new algorithms inspired from
GLS, borrowing the ideas of features, penalties, and utilities. Below, we briefly
describe such GLS-inspired algorithms.

Partially based on GLS, which is a centralized algorithm, Basharu et al.
[11] introduce an improved version for solving distributed constraint satisfac-
tion problems. The distributed guided local search (Dis-GLS) incorporates ad-
ditional heuristics to enhance its efficiency in distributed scenarios. The algo-
rithm has been successfully applied to the distributed version of the graph col-
oring problem producing promising results compared to other distributed search
algorithms.
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Hifi et al. [37] introduced a variant of GLS by proposing a new penalization
strategy. The principle is to distinguish two phases in the search process, namely, the
penalty and normal phases. The search process switches between the two phases in
order to either escape local optima or diversify the search to explore another feasible
space. The computational results confirm the high quality of solutions obtained by
the proposed variant.

Tamura et al. [72] propose an improved version of GLS, named the objective
function adjustment (OA) algorithm which incorporates the idea of features (from
GLS) alongside the concept of energy function.

GLS for Multi-objective Optimization

Most real-world optimization problems are multi-objective in nature. The multi-
objective optimization problem (MOP) concerns the optimization of two or more
objectives simultaneously. Instead of searching for a global optimum solution as
in single-objective optimization problems, the search in MOPs targets a set of
solutions representing the optimum set of trade-offs between the objectives. This set
is known interchangeably as the Pareto optimum set or the efficient solutions, and
the objective values of these solutions are located at the Pareto front (PF). Efficient
solutions are nondominant solutions in the sense that improving the value of any
one of their objectives must be at the expense of degrading the quality of one or
more of the other objectives. Thus, all efficient solutions are considered equivalent
as long as there is no further information regarding the relative importance of each
of the objectives.

Pareto Local Search

A simple, intuitive adaptation of local search to contain multiple objectives, is to
apply the Pareto domination as an acceptance criterion when comparing the current
solution to the new one. An archive of nondominant solutions discovered during the
search is maintained in order to produce an approximation to the PF. The algorithm
stops when the neighborhood of all solutions in the archive have been explored, i.e.,
the archive is a Pareto local optimum set. Recently, this idea was termed Pareto local
search (PLS) and has been developed and extended by several researchers such as
in [58]. PLS can be outlined, from a high-level perspective, as follows:

1. It starts with a randomly or heuristically generated solution that is added to the
archive.

2. A non-visited candidate solution in the archive is randomly chosen, and its
neighborhood is explored while applying a first-improvement strategy (i.e., any
better solution found is accepted immediately, and its neighborhood is explored
for further improvement). This is an iterative step which is applied every time a
new better solution is found and accepted.
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3. The archive is updated with any nondominated neighbor, i.e., the new neighbor
is added to the archive only if it is nondominated by another solution in the
archive, and then all existing solutions that are dominated by the new neighbor
are removed from the archive.

4. The exploration of the neighborhood of the current solution stops when all of
the neighbors are visited. When the exploration stops, the current solution is
considered as a Pareto local optimum.

5. The current solution is marked as being visited.
6. The procedure continues at step 2, while there is a solution in the archive that

is not visited.

The PLS returns the archive, which is a Pareto local optimal set.

Guided Pareto Local Search

Guided Pareto local search (GPLS) [4, 6] extends the guidance approach in GLS
to guide PLS to escape Pareto local optimum sets. The only change that GPLS
makes to the underlying PLS is the replacement of each objective function gi with
an augmented objective function hi during the evaluation of neighbor solutions. The
augmented functions are not used in the updating procedure of the archive, which
always depends only on the original objective functions.

In GPLS, the definition of features has to be derived from all objectives.
Thus, a set (or multiple sets) of features has to be defined, which will be shared
by all solutions. In multi-objective optimization problems, one should take into
consideration two different scenarios:

1. All objectives have the same structure (e.g., putting an item in all knapsacks in
the knapsack problem or an edge in the multi-objective TSP), and therefore they
share one defined feature set. However, the cost of a feature varies according to
a particular objective. In order to define the cost of a feature in this case, the
influence of the feature on each objective has to be considered and modeled into
a single cost function. Such models include (weighted) aggregating approaches
and other general functions such as min, max, or mean.

2. A distinct feature set needs to be defined for each objective, and a cost is
associated with each feature to describe its influence on the corresponding
objective. In this case, features from all feature sets should be considered at the
penalization phase to pick one or more features to penalize.

The guidance strategy that GLS employs relies on penalizing some features
exhibited by the recent local optimum. As described in section “Guided Local
Search”, the novelty of GLS is mainly in the way it selects features to penalize. The
target is to penalize “bad features” when the local search settles in a local optimum.
Two factors affect the utility of a feature, namely, its cost and the frequency of
penalizing this feature in previous penalizations.
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GPLS deals with a Pareto local optimum set instead of a local optimum.
A straightforward penalization strategy is to evaluate the utility of all features
exhibited by any nondominant solution in the archive and penalize features with
maximum utility (Eq. 3). However, this simple strategy does not incorporate any
information from the archive (i.e., the Pareto local optimum set). An example of
important information that can be extracted from the archive is the number of
nondominant solutions that exhibit a particular feature. This is another factor that
can be incorporated into the utility function, such that the more Pareto local optima
that exhibit a feature, the greater its utility of penalization. Recall that when a feature
is penalized, only those Pareto local optima that exhibit the penalized feature will
have the chance to escape. Therefore, increasing the utility of penalizing a feature
that occurs in many Pareto local optima would enhance the chance of escaping a
Pareto local optimum set by restarting from more solutions. It would also help to
prevent the search from directing all its efforts toward any particular region of the
PF, which therefore leads to a better spread over the PF. Bad features, in terms of
their cost, are hoped to be removed either during the next calls of PLS or by future
penalization.

The utility function, as stated in Eq. 3, is redefined to incorporate the number of
solutions in the Pareto local optimum set that exhibits this feature (�i ):

utili .archive/ D Ii .archive/ �
ci � .�i =jarchivej/

1C pi

(6)

where archive is a Pareto local optimum set, Ii .archive/ indicates whether “at least”
one solution in the archive exhibits feature i , ci is the feature’s cost, pi is the penalty,
and jarchivej is the size of the Pareto local optimum set. The feature with the greatest
ut i l value will be penalized. When a feature is penalized, its penalty value is always
incremented by 1.

This utility function redefines the term “bad feature.” If a feature is not exhibited
in the Pareto local optimum set (indicated by Ii ), then the utility of penalizing
it is 0. The higher the cost of this feature (the greater ci ) and the more nondominant
solutions exhibiting it (the greater �i ), the greater the utility of penalizing it.
Furthermore, the more times that it has been penalized (the greater pi ), the lower
the utility of penalizing it again.

Having penalized a feature, all solutions in the archive that exhibit this feature
need to be marked as “non-visited,” so as to be considered by the PLS method in the
next iteration.

The lambda parameter � is the only parameter to GLS which determines the
scaling of the penalty. In multi-objective scenarios each objective ideally has its
own lambda, which is calculated as a function of a local optimum with respect
to the correspondent objective. Thus, GPLS requires a set of lambda parameters:
Œ�1; � � � ; �k�, where �i is a parameter for the objective hi . Recall that lambda can be
dynamically computed after the first local optimum and before penalties are applied
to features for the first time (Eq. 4).
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GPLS proves its effectiveness to converge quite quickly, however, at the middle
area of the Pareto front [5]. In [6], the speedy convergence property of GPLS is
utilized, and the performance of GPLS is further enhanced by coupling it with an
efficient initial solution set. Two GPLS-based frameworks are proposed, both of
which require such an efficient initial solution set. The first framework applies the
standard GPLS, after filling its archive with the initial set. The second framework is
a parallel version of GPLS, where each independent GPLS run takes a solution from
the initial set as a starting point. GPLS and its frameworks are successfully applied
to the 0/1 multi-objective knapsack problem [5], the multi-objective TSP[4], and the
empowerment-based workforce scheduling problem [4].

Other Attempts

Apart from GPLS, Alhindi and Zhang [2, 3] propose an idea of using GLS, as a
heuristic local search procedure specific for single-objective optimization, in multi-
objective evolutionary algorithms (MOEAs). In this work GLS and multi-objective
evolutionary algorithm based on decomposition (MOEA/D) [87] are combined to
propose a highly efficient algorithm for solving MOPs. To this end, a combination of
MOEA/D with GLS, called MOEA/D-GLS, is proposed. In MOEA/D-GLS, a MOP
is decomposed into a number of single-objective subproblems. The subproblems
are optimized in parallel by using neighborhood information and problem-specific
knowledge. In the proposed work, GLS alternates between those subproblems to
help them escape local Pareto optimal solutions. More specifically, for a subproblem
trapped in a local Pareto optimal solution, the GLS starts from its solution
and constructs a transformation function (i.e., augmented function). Then, GLS
optimizes the augmented function in order to identify a new better solution. The
algorithm has been successfully applied to the multi-objective traveling salesman
problem.

GLS Implementation on the Traveling Salesman Problem

For illustration, the implementation details of GLS on the TSP is discussed in this
section. The TSP is chosen here as it is the most significant application of GLS. The
full details about the application of GLS to the TSP is given in [82].

Problem Description

There are many variations of the TSP. Here, we examine the classic symmetric TSP.
The problem is defined by N cities and a symmetric distance matrix D D Œdij �

which gives the distance between any two cities i and j . The goal is to find a tour
(i.e., closed path), which visits each city exactly once and is of minimum length.
A tour can be represented as a cyclic permutation � on the N cities if we interpret
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�.i/ to be the city visited after city i , i D 1; : : : ; N . The cost of a permutation is
defined as

g.�/ D

NX

iD1

di�.i/ (7)

and gives the cost function of the TSP.

Local Search

Solution Representation
The solution representation usually adopted for the TSP is that of a vector which
contains the order of the cities in the tour. For example, the i -th element of the
vector will contain an identifier for the i -th city to be visited. Since the solution of
the TSP is a closed path, there is an edge implied from the last city in the vector to
the first one in order to close the tour. The solution space of the problem is made of
all possible permutations of the cities as represented by the vector.

Construction Method
A simple construction method is to generate a random tour. If the above solution
representation is adopted, then all that is required is a simple procedure, which
generates a random permutation of the identifiers of the cities. More advanced TSP
heuristics can be used if we require a higher-quality starting solution to be generated.
This is useful in real-time/online applications where a good tour may be needed very
early in the search process in case the user interrupts the algorithm. If there are no
such concerns, then a random tour generator suffices since the GLS meta-heuristic
tends to be relatively insensitive to the starting solution and capable of finding high-
quality solutions even if it runs for a relatively short time.

Improvement Method
Most improvement methods for the TSP are based on the k-Opt moves. Using k-Opt
moves, neighboring solutions can be obtained by deleting k edges from the current
tour and reconnecting the resulting paths using k new edges. The k-Opt moves are
the basis of the three most famous local search heuristics for the TSP, namely, 2-Opt
[20], 3-Opt [48], and Lin-Kernighan (LK) [49].

The reader can consider using the simple 2-Opt method, which in addition to its
simplicity is very effective when combined with GLS. With 2-Opt, a neighboring
solution is obtained from the current solution by deleting two edges, reversing one
of the resulting paths, and reconnecting the tour. In practical terms, this means
reversing the order of the cities in a contiguous section of the vector or its remainder
depending on which one is the shortest in length.

Computing incrementally the change in solution cost by a 2-Opt move is
relatively simple. Let us assume that edges e1, e2 are removed and edges e3, e4 are
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added with lengths d1, d2, d3, d4, respectively. The change in cost is the following:

d3C d4 � d1 � d2 (8)

When we discuss the features used in the TSP, we will explain how this
evaluation mechanism is revised to account for penalty changes in the augmented
objective function.

Guided Local Search

For the TSP, a tour includes a number of edges, and the solution cost (tour length)
is given by the sum of the lengths of the edges in the tour (see Eq. (7)). As
mentioned in section “Routing/Scheduling Problems”, edges are ideal features for
routing problems such as the TSP. First, a tour either includes an edge or not,
and second, each edge incurs a cost in the objective function which is equal to
the edge length, as given by the distance matrix D D Œdij � of the problem. A
set of features can be defined by considering all possible undirected edges eij

.i D 1 : : : N; j D i C 1 : : : N; i ¤ j / that may appear in a tour with feature
costs given by the edge lengths dij . With each edge eij connecting cities i and j is
attached a penalty pij initially set to 0 which is increased by GLS during the search.
When implementing the GLS algorithm for the TSP, the edge penalties can be
arranged in a symmetric penalty matrix P D Œpij �. As mentioned in section “Guided
Local Search”, penalties have to be combined with the problem’s objective function
to form the augmented objective function which is minimized by local search. We
therefore need to consider the auxiliary distance matrix:

D0 D D C � � P D Œdij C � � pij � (9)

Local search must use D0 instead of D in move evaluations. GLS modifies P

and (through that) D0 whenever the local search reaches a local minimum.
In order to implement this, we revise the incremental move evaluation formula

(Eq. 8) to take into account the edge penalties and also parameter �. If p1, p2,
p3, p4 are the penalties associated with edges e1, e2, e3, and e4, respectively, the
revised version of (Eq. 8) is as follows:

.d3C d4 � d1 � d2/C � � .p3C p4 � p1 � p2/ (10)

Similarly, we can implement GLS for higher-order k-Opt moves.
The edges penalized in a local minimum are selected according to the utility

function (Eq. 3), which for the TSP takes the form:

Util.tour; eij / D Ieij .tour/ �
dij

1C pij

; (11)
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where

Ieij .tour/ D

�
1; eij 2 tour
0; eij … tour

(12)

The only parameter of GLS that requires tuning is parameter �. Alternatively, we
can tune the ˛ parameter which is defined in section “Implementation Guideline”
and is relatively instance independent. Experimenting with ˛ on the TSP, we found
that there is an inverse relation between ˛ and local search effectiveness. Not so
effective local search heuristics such as 2-Opt require higher ˛ values compared to
more effective heuristics such as 3-Opt and LK. This is probably because the amount
of penalty needed to escape from local minima decreases as the effectiveness of the
heuristic increases explaining why lower values for ˛ (and consequently for � which
is a function of ˛) work better with 3-Opt and LK. For 2-Opt, the following range
for ˛ generates high-quality solutions for instances in the TSPLIB [62]:

1=8 � ˛ � 1=2 (13)

The reader may refer to [82] for more details on the experimentation procedure
and the full set of results.

Guided Fast Local Search

We can exploit the way local search works on the TSP to partition the neighborhood
in sub-neighborhoods as required by guided fast local search. Each city in the
problem may be seen as defining a sub-neighborhood, which contains all 2-Opt
edge exchanges removing one of the edges adjacent to the city. For a problem with
N cities, the neighborhood is partitioned into N sub-neighborhoods, one for each
city in the instance.

The sub-neighborhoods to be activated after a move is executed are those of the
cities at the ends of the edges removed or added by the move.

Finally, the sub-neighborhoods activated after penalization are those defined by
the cities at the ends of the edge(s) penalized. There is a good chance that these
sub-neighborhoods will include moves that remove one or more of the penalized
edges.

GLS/GPLS Implementation on a Workforce Scheduling Problem

The workforce scheduling problem (WSP) is another application of GLS, which
is chosen here as another illustrative example. It is chosen since both GLS and
GPLS have been applied to two different versions of WSP. The implementation of
GLS/GPLS components is provided here, and for full details, the reader is referred
to [4, 7, 76].
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Problem Description

The WSP is basically the problem of allocating a set of technicians (resources),
R D fr1; r2; : : : ; rjRjg, to a set of tasks, T D ft1; t2; : : : ; tjT jg. A task t is described
by a 5-tuple:

< ct ; durt ; reqSkillt ; Œstartt ; endt �; loct >

where ct is a predefined priority which determines its importance to the company.
The higher the value of ct , the more important the task will be, and ct 2 <. durt is
the expected duration a technician requires to finish this task. Each task requires a
technician with a particular skill reqSkil lt 2 Skil lSet , where Skil lSet is the set
of all skills: Skil lSet D fskil l1; : : : ; skil ljS jg. A task t must be serviced within
a predefined time window described by Œstartt ; endt �. Tasks are geographically
distributed, and the location of a task is denoted by loct .

Each technician r 2 R is described by the following triple:

< Œstartr ; endr �; skillsr ; locr >

Each technician has limited shift hours where the beginning and end of the shift
are expressed by Œbrr ; err �. skil lsr denotes the skill(s) a technician has, where
skil lsr � Skil lSet . There is no single depot for technicians to start from, as they
can start from home or from one of predefined depots. The location of a technician
is denoted by locr .

There are two sets of decision variables in the WSP: the allocation variables X D

fxrt jr 2 RI t 2 T I xrt 2 f0; 1gg and the service times ServT ime D fstt jt 2 T g. A
variable xrt is set to 1 if the technician r is allocated to the task t and 0 otherwise.
A variable stt denotes the start time of service for task t .

Having decided these variables, a set of routes � D f�r jr 2 Rg are defined.
A route �r is a sequence of tasks (� T ) that are to be visited by technician r ;
�r D .�r1; � � � ; �r�r /; 1 � �r � jT j.

A main objective is to maximize the number of allocated tasks with respect to
their priorities, while satisfying all assignment and routing constraints.

The WSP can, then, be mathematically modeled as follows:

max

P
r2R

P
t2T ct xrtP

t2T ct

(14)

subject to

X

r2R

xrt 6 1 8t 2 T (15)

reqSkil lt 2 skil lsr 8xrt D 1; t 2 T; r 2 R (16)

startt 6 stt 8t 2 T (17)
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stt C durt 6 endt 8t 2 T (18)

startr 6 st�ri 8r 2 R; i D f1::�rg (19)

st�ri C dur�ri 6 endr 8r 2 R; i D f1::�rg (20)

startr C t rvllocr loc�r1
6 st�r18r 2 R (21)

stti C durti C t rvllocti loctiC1
6 sttiC1

8ti 2 �r ; �r 2 � (22)

The objective function is represented by (1) which is normalized by dividing by
the sum of all the costs associated with tasks. Constraint (2) imposes that each task
is visited at most once. The skill constraint is expressed in (3). The time window
constraints of all tasks are assured by (4) and (5). (6) and (7) ensure that all tasks
which are assigned to a technician must be within the technician’s working time.
Finally, constraints (8) and (9) ensure route validity by considering the traveling
time between a technician’s base location and the first task, as well as between
subsequent tasks in technician’s route.

Empowerment in Workforce Scheduling
Empowerment scheduling [4, 7] is a term introduced to refer to scheduling ap-
proaches that incorporate the empowerment concept in the scheduling system by
involving technicians in the task assignment decision. The hope of empowering
human resources is to boost their contribution and commitment to the organization.
In [4], an empowerment scheduling model is proposed for the workforce schedul-
ing problem, named as the EmS-WSP, by enabling technicians to express their
requests/preferences and submit plans for consideration in the allocation process.
Naturally all plans can be expressed as a constraint relationship. These constraints
will be considered to be satisfied in the scheduling process. Workforce scheduling
problems are very complex, and thus the promise of satisfying all the plans cannot be
guaranteed. One direct way to handle employees’ work plans is to treat them as soft
constraints and associate a cost to each plan when it is not satisfied. In this case the
task involves finding a schedule that satisfies the majority of constraints, rather than
all the constraints. A key property of the empowerment scheduling model proposed
in [7] is in the efficient strategy that dynamically determines the incurred cost of
violating each plan (see [7] for more details).

Formally, every technician r 2 R is given an opportunity to provide a work
plan (wpr ) every day. A plan is basically a constraint (�) by which a technician can
describe the jobs he/she wants to undertake. For instance, a technician r might want
to be allocated to jobs of a particular set of skills or jobs in a particular region. Each
plan is associated with a weight (!); in our case this is equal to the EP value of r .

An indicator yr .8r 2 R/ is defined which is equal to 1 if the plan �r is satisfied
and 0 otherwise.

The WSP is reformulated in the EmS-WSP to not only maximize the productivity
in terms of the number of served jobs (Eq. 14) but also to satisfy the maximum
number of working plans. The formulation of the additional objective is as follows:
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wpr D < �r ; !r > 8r 2 R; 0 6 !r 6 1 (23)

max

P
r2R yr!rP

r2R !r

(24)

Local Search

Before going to the implementation details, it is worth mentioning that the two
objectives in the EmS-WSP can be transformed to a single-objective using an
aggregation approach and then solved using a single-objective optimizer such as
GLS. Otherwise, a multi-objective optimizer such as GPLS can be used to optimize
the two objectives simultaneously. Since both GLS and GPLS are similar in the
definition of their basic components, the following implementation details are for
both algorithms.

Solution Representation
A candidate solution (i.e., a possible schedule) by a permutation of the jobs. Each
permutation is mapped into a schedule using the deterministic algorithm described
below:
procedure Evaluation (input: one particular permutation of jobs)

1. For each job, order the qualified engineers in ascending order of the distances
between their bases and the job (such orderings only need to be computed once
and recorded for evaluating other permutations).

2. Process one job at a time, following their ordering in the input permutation.
For each job x, try to allocate it to an engineer according to the ordered list
of qualified engineers:

2.1 To check if engineer g can do job x, make x the first job of g; if that fails to
satisfy any of the constraints, make it the second job of g, and so on;

2.2 If job x can fit into engineer g’s current tour, then try to improve g’s new tour
(now with x in it): the improvement is done by a simple 2-Opt algorithm (see
section “GLS Implementation on the Traveling Salesman Problem”), modified
in such a way that only better tours which satisfy the relevant constraints will
be accepted;

2.3 If job x cannot fit into engineer g’s current tour, then consider the next
engineer in the ordered list of qualified engineers for x; the job is unallocated
if it cannot fit into any engineer’s current tour.

3. The costs of the input permutation, which is the cost (as defined in Eqs. 14
and 24) of the schedule thus created, are returned. These costs will be some-
how aggregated in a single cost by GLS or maintained simultaneously by
GPLS.
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Improvement Method
Given a permutation, the local search is performed in a simple way: the pairs of jobs
are examined one at a time. Two jobs are swapped to generate a new permutation
to be evaluated (using the evaluation procedure above) and compared to the current
permutation. Note here that since the problem is also close to the vehicle routing
problem (VRP), one may follow a totally different approach considering VRP move
operators such as insertions, swaps, etc. In this case, the solution representation and
construction methods need to be revised. The reader may refer to other works (e.g.,
[10]) for more information on the application of GLS to the VRP.

Feature Definition

Since there are two objectives of different natures in the EmS-WSP, two sets of
features need to be defined. As maximizing the total allocated tasks is an objective,
each feature in the first set represents the inability to serving a task, so as to bias
the local search to serve tasks of high importance. Thus, for each task t , we define
a feature It .schedule/, which is equal to 1 if t is unallocated in schedule and 0
otherwise. The cost of this feature is given by the task priority (ct ) which is equal to
the cost incurred in the cost function (Eq. 14) when a task is unallocated.

The second objective concerns maximizing the total satisfied employees’ plans,
and therefore each feature in the second feature set represents the inability to satisfy
a work plan, so as to bias the (Pareto) local search to satisfy plans of high weight.
Thus, for each technician r in the problem, we define a feature Ir .schedule/ D yr ,
where yr is equal to 1 if the work plan of r (�r ) is satisfied and 0 otherwise. The
cost of this feature is given by the working plan’s weight (!) which is equal to the
cost incurred in the cost function (Eq. 24) when a plan is unsatisfied.

Overview of GLS Applications

GLS and its descendants have been applied to a number of nontrivial problems and
have achieved state-of-the-art results.

Routing/Scheduling Problems

One of the most successful application of GLS and FLS is the traveling salesman
problem (TSP). The Lin-Kernighan algorithm (LK) is a specialized algorithm for
the TSP that has long been perceived as the champion of this problem [49, 50]. We
tested GLS + FLS + 2Opt against LK [82] on a set of benchmark problems from a
public TSP library [62]. Given the same amount of time, GLS + FLS + 2Opt found
better results than LK on average. The outstanding performance of GLS+FLS+2Opt
was also demonstrated in comparison to simulated annealing [39], tabu search [41],
and genetic algorithm [30] implementations for the TSP. One must be cautious
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when interpreting such empirical results as they could be affected by many factors,
including implementation details. But given that the TSP is an extensively studied
problem, it takes something special for an algorithm to outperform the champions
under any reasonable measure (“find the best results within a given amount of time”
must be a realistic requirement). It must be emphasized that LK is specialized for
the TSP, but GLS and FLS are much simpler general-purpose algorithms.

GLS extensions and hybrids have also been proposed for the TSP, including a
population-based GLS [71] and the combination of GLS with memetic algorithms
[38] and also with the dynamic programming-based dynasearch technique with
encouraging preliminary results reported in [18]. The multi-objective TSP has been
tackled by GPLS [4] and a GLS hybrid with MOEA/D [3].

Padron and Balaguer [57] have applied GLS to the related rural postman problem
(RPP), Vansteenwegen et al. [78] applied GLS to the related team orienteering
problem (TOP), and Mester et al. [52] applied the guided evolution strategy
hybrid meta-heuristic to a genetic ordering problem (a Unidimensional Wandering
Salesperson Problem, UWSP).

In a vehicle routing problem, one is given a set of vehicles, each with its specific
capacity and availability, and a set of customers to serve, each with specific weight
and/or time demand on the vehicles. The vehicles are grouped at one or more depots.
Both the depots and the customers are geographically distributed. The task is to
serve the customers using the vehicles, satisfying time and capacity constraints.
This is a practical problem which, like many practical problems, is NP-hard.

Kilby et al. applied GLS to vehicle routing problems and achieved outstanding
results [40]. As a result, their work was incorporated in Dispatcher, a commercial
package developed by ILOG [10]. Recently, the application of GLS and its hybrids
to the VRP have been considerably extended to several variants of the problem.
GLS has been applied to the vehicle routing problem with backhauls and time
windows [89] and to the capacitated arc routing problem [13]. Guided tabu search
has been applied to the VRP with time window [73, 74], and also extended to other
variants of the VRP, namely, the VRP with two-dimensional loading constraints
[85], the VRP with simultaneous pickup and delivery [86], and the VRP with
replenishment facility [74]. GLS with VNS [43] and GLS with ES [51] hybrids
have been proposed to solve large-scale VRPs. A new hybridization between GLS
and GA has been devised to effectively tackle the transit network design problem
in [61]. The deployment of fiber optics in the telecommunication industry has been
successfully optimized using GLS in [19] and [66].

Assignment Problems

The generalized assignment problem is a generic scheduling problem in which the
task is to assign agents to jobs. Each job can only be handled by one agent, and
each agent has a finite resource capacity that limits the number of jobs that it can be
assigned to. Assigning different agents to different jobs bear different utilities. On
the other hand, different agents will consume different amounts of resources when
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doing the same job. In a set of benchmark problems, GGA found results as good as
those produced by a state-of-the-art algorithm (which was also a GA algorithm) by
Chu and Beasley [17], with improved robustness [47].

GLS hybrids have been proposed for the related QAP. Zhang et al. [88]
proposed the GLS/EDA hybrid meta-heuristic. In addition, the hybrid of GLS
with ACO (ACO_GLS) has been applied to a variation of the QAP [35]. This
encourages Daoud et al. [21] to couple GLS with ACO, GA, and PSO into three
frameworks which are successfully applied to the robotic assembly line balancing
problem.

In the radio link frequency assignment problem (RLFAP), the task is to assign
available frequencies to communication channels satisfying constraints that prevent
interference [14]. In some RLFAPs, the goal is to minimize the number of
frequencies used. Bouju et al. [14] is an early work that applied GENET to radio
length frequency assignment. For the CALMA set of benchmark problems, which
has been widely used, GLS+FLS reported the best results compared to all work
published previously [80]. In the NATO Symposium on RLFAP in Denmark, 1998,
GGA was shown to improve the robustness of GLS [46]. In the same symposium,
new and significantly improved results by GLS were reported [81]. At the time, GLS
and GGA held some of the best-known results in the CALMA set of benchmark
problems.

We have experimented with GLS and FLS on a variety of other problems,
including the maximum channel assignment problem, a bandwidth packing problem
variant, graph coloring, and the car sequencing problem. Some of their work are
available for download over the Internet from Essex University’s website [33] but
are largely undocumented due to lack of time during the original development phase
of the algorithm.

GGA was also successfully applied to the processor configuration problem, with
new better results than those found by other previously reported algorithms [45,46].

GLS and FLS have been successfully applied to the 3-D bin packing problem and
its variants [26, 44], VLSI design problems [27], and network planning problems
[29, 84]. GLS has been applied to the natural language parsing problem [22], graph
set T-coloring problem [16], query reformulation [55], and ligand docking problems
via drug design [59]. Variations of GLS have been applied to graph coloring [11] and
the multidimensional knapsack problem [37, 70]. The multi-objective 0/1 knapsack
problem has been tackled using GPLS in [6].

Resource Allocation Problems

In the workforce scheduling problem (WSP) [9], the task is to assign technicians
from various bases to serve the jobs, which may include customer requests and
repairs, at various locations. Customer requirements and working hours restrict
the service times at which certain jobs can be served by certain technicians. The
objective is to minimize a function that takes into account the traveling cost,
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overtime cost, and unserved jobs. In the WSP, GLS + FLS holds the best-published
results for the benchmark problem available to the authors [76]. GPLS has also been
applied to a multi-objective WSP in [4].

Constrained Optimization Problem

Given a set of propositions in conjunctive normal form, the satisfiability (SAT)
problem is to determine whether the propositions can all be satisfied. The MAX-
SAT problem is a SAT problem in which each clause is given a weight. The task is
to minimize the total weight of the violated clauses. In other words, the weighted
MAX-SAT problem is an optimization problem. Many researchers believe that
many problems, including scheduling and planning, can be formulated as SAT and
MAX-SAT problems; hence, these problems have received significant attention in
recent years (e.g., see Gent et al. [31]).

GLSSAT, an extension of GLS, was applied to both the SAT and weighted
MAX-SAT problem [53]. On a set of SAT problems from DIMACS, GLSSAT
produced more frequently better or comparable solutions than those produced by
WalkSAT [64], a variation of GSAT [65], which was specifically designed for the
SAT problem.

On a popular set of benchmark weighted MAX-SAT problems, GLSSAT pro-
duced better or comparable solutions, more frequently than state-of-the-art algo-
rithms, such as DLM [67], WalkSAT [64], and GRASP [63].

GLS in Commercial Packages

GLS and FLS have been incorporated into commercial software packages, namely,
iOpt, which is a software toolkit for heuristic search methods [83], and iSchedule
[24], which is an extension of iOpt for planning and scheduling applications (e.g.,
for solving problems such as the VRP [25]).

Conclusions

For many years, general heuristics for combinatorial optimization problems, with
prominent examples such as simulated annealing and genetic algorithms, heavily
relied on randomness to generate good approximate solutions to difficult NP-hard
problems. The introduction and acceptance of tabu search [32] by the operations
research community initiated an important new era for heuristic methods where
deterministic algorithms exploiting historical information started to appear and to
be used in real-world applications.

Guided local search described in this chapter follows this trend. While tabu
search is a class of algorithms (where a lot of freedom is given to the management
of the tabu list), GLS is more prescriptive (the procedures are more concretely
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defined). GLS heavily exploits information (not only the search history) to distribute
the search effort in the various regions of the search space. Important structural
properties of solutions are captured by solution features. Solutions features are
assigned costs, and local search is biased to spend its efforts according to these
costs. Penalties on features are utilized for that purpose.

When local search settles in a local minimum, the penalties are increased for
selected features present in the local minimum. By penalizing features appearing
in local minima, GLS escapes the local minima visited (exploiting historical
information) but also diversifies the choices, with regard to the various structural
properties of solutions, as captured by the solution features. Features of high costs
are penalized more often than features of low cost: the diversification process is
directed and deterministic rather than undirected and random.

In general, several penalty cycles may be required before a move is executed out
of a local minimum. This should not be viewed as an undesirable situation. It is
caused by the uncertainty in the information as captured by the feature costs which
forces the GLS to test its decisions against the landscape of the problem.

The penalization scheme of GLS is ideally combined with FLS which limits the
neighborhood search to particular parts of the overall solution leading to the GFLS
algorithm. GFLS significantly reduces the computation times required to explore
the area around a local minimum to find the best escape route allowing many more
penalty modification cycles to be performed in a given amount of running time.

Despite all the years of development, further research is possible to improve GLS
and its related techniques further. The use of incentives implemented as negative
penalties, which encourage the use of specific solution features, is one promising
direction to be explored. Other interesting directions include fuzzy features with
indicator functions returning real values in the [0, 1] interval, automated tuning
of the � or ˛ parameters, definition of effective termination criteria, alternative
utility functions for selecting the features to be penalized, and also studies about
the convergence properties of GLS.

It is relatively easy to adapt GLS and GFLS to the different problems examined
in this chapter. Although local search is problem dependent, the other structures of
GLS and also GFLS are problem independent. Moreover, a mechanical, step-by-
step procedure is usually followed when GLS or GFLS is applied to a new problem
(i.e., implement a local search procedure, identify features, assign costs, define sub-
neighborhoods, etc.) This makes GLS and GFLS easier to use by nonspecialist
software engineers.

Cross-References

� Iterated Local Search
�Tabu Search
�Variable Neighborhood Search
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Abstract

Local search is a widely used method to solve combinatorial optimization
problems. As many relevant combinatorial optimization problems are NP-hard,
we often may not expect to find an algorithm that is guaranteed to return
an optimal solution in a reasonable amount of time, i.e., in polynomial time.
Therefore, one often resorts to heuristic methods that return good, suboptimal
solutions in reasonable running times. Local search is a heuristic method that
is popular for its ability to trade solution quality against computation time. By
spending more time, we will generally get better solutions. Well-known examples
of local search approaches are iterative improvement, simulated annealing, and
tabu search.

The performance of local search, in terms of quality or running time, may be
investigated empirically, probabilistically, and from a worst-case perspective. In
this chapter we focus on the last option. That is, we give provable results on the
worst-case performance of local search algorithms.

Besides combinatorial optimization problems, the theory discussed in this
chapter also finds its application in game theory and computational complexity.

Keywords
Performance ratio � Time complexity � PLS � Iterative improvement

Introduction

Local search is a widely used method to solve combinatorial optimization problems.
An instance of a combinatorial optimization problem P can be characterized by
a pair .S; f /, where S denotes a finite set of solutions and f W S ! R a cost
function that assigns to each solution a real value that represents the quality of this
solution. The problem is to find an optimal solution s� in S , i.e., a solution for which
f .s�/ � f .s/ for each s 2 S in case P is a minimization problem or a solution for
which f .s�/ � f .s/ for each s 2 S in case P is a maximization problem.

As many combinatorial optimization problems are NP-hard, we often may not
expect to find polynomial-time solution approaches that always return provably
optimal solutions. In practice, one often has to settle for heuristic methods that return
good, suboptimal solutions in reasonable running times. Local search is a heuristic
method that is popular for its ability to trade solution quality against computation
time. By spending more time, we will generally get better solutions. Well-known ex-
amples of local search approaches are iterative improvement, simulated annealing,
and tabu search.

Loosely defined, a local search approach starts at an (often) arbitrarily chosen
solution sinit 2 S and iteratively jumps to a (potentially) better solution in the
neighborhood, until it ends at a locally optimal solution send for which – hopefully
– f .send/ is close to f .s�/.



11 Theory of Local Search 301

Using local search amounts to defining a neighborhood function N W S ! P .S/,
where the power set P .S/ denotes the set of all subsets of solutions in S . For each
solution s 2 S , N .s/ gives the neighbors of s, i.e., the solutions one can jump to
from S in one iteration of the local search approach.

Given S and N , the execution of a local search algorithm can be considered as
a path in the directed neighborhood graph G D .V; E/, where each node v 2 V

corresponds to a solution in S and .v; w/ 2 E if and only if w corresponds to a
neighbor of v. A local search algorithm specifies how sinit is chosen, how iteratively
for the current solution s a neighboring solution from N .s/ is chosen as the next
solution, and how eventually the algorithm will terminate. For example, iterative
improvement starts with an initial solution and repeatedly selects for the given
current solution s one of its neighbors s0 2 N .s/ using some pivoting rule. If s0

has a better quality than s, then s0 is adopted as the new current solution. Otherwise,
s is retained as the current solution. This procedure is repeated until the algorithm
arrives at a local optimum, i.e., a solution that is better than any of its neighbors.
This local optimum is then returned as the final solution. For a given local search
approach, the transition graph is defined to be the subgraph of the neighborhood
graph containing only the cost-improving edges.

The performance of a local search algorithm is determined by two aspects,
namely, .1/ the quality of the solutions it finally produces and .2/ the time it takes to
find these solutions (time complexity). The performance of a local search algorithm
can be investigated in three ways:

- empirical analysis: investigate the performance by applying it to a representative
set of problem instances.

- probabilistic analysis: assume a probability distribution over the set of all
problem instances and use this to derive probabilistic results on solution quality
and running time.

- worst-case analysis: investigate the performance by assuming worst-case
assumptions.

Empirical and probabilistic analyses have the disadvantage that additional
assumptions are required on how representative or how probable problem instances
will be for a given application at hand and the information to base these assumptions
upon may not be available. In this chapter we restrict ourselves to worst-case
analysis.

Many of the examples that we give in this chapter relate to the traveling salesman
problem (TSP). An instance of this well-known combinatorial optimization problem
is defined by a set of n cities and an n�n distance matrix d , where dij 2 INC defines
the distance from city i to city j . The problem is to find a tour visiting all n cities
with minimum tour length. The TSP has three variants that will be considered in this
chapter, namely, SYMMETRIC TSP, METRIC TSP, and EUCLIDEAN TSP. For the
first variant, the distance matrix is required to be symmetric, i.e., dij D dji for all
i; j. For the second, the distance matrix should satisfy the triangle inequality, i.e.,
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dik � dij C djk for all i; j; k. And a TSP instance is said to belong to the third
variant if the distance matrix d is defined by the Euclidean distance.

This chapter can be considered as a condensed version of two chapters from
the monograph Theoretical Aspects of Local Search [16]. For a more extensive
treatment of the subject, the reader is referred to this work. This chapter is organized
in two parts. The first part considers solution quality, while the second part considers
time complexity.

Solution Quality

In this section we study the guaranteed solution quality for iterative improvement.
This corresponds to determining the quality of local optima. Ideally, we want
iterative improvement to be guaranteed to end up in an optimal solution. This
means that the neighborhood function N is exact. In the subsection below, we
give examples of this. However, in most applications of local search, we do not
have the luxury of a practical exact neighborhood function. There, we have to be
satisfied with suboptimal solutions. In these cases, it is interesting to know how
far the quality of the suboptimal solution can be from that of an optimal one. To
this end, we say that a neighborhood function has a performance bound U if all its
local optima are guaranteed to have a cost at most U times the optimal cost in case
of a minimization problem and a cost at least 1=U times the optimal cost in case
of a maximization problem. If bound U is tight, then U is called a performance
ratio. We devote a subsection to analyzing the performance ratio of the k-change
neighborhood function for Euclidean TSP. In the last two subsections, we finally
elaborate on the relation between the formal hardness of finding an R-approximate
solution and the existence of an efficient neighborhood function with a performance
bound of R.

Exact Neighborhood Functions

A neighborhood function is said to be exact if each locally optimal solution
is also globally optimal. In this section we present some examples of exact
neighborhood functions. First of all, consider sorting. Sorting a multiset of n

numbers a1; a2; : : : ; an corresponds to finding a permutation � of f1; 2; : : : ; ng that
minimizes the cost function f .�/ D

Pn
iD1 i � a�.i/ if the numbers have to be put

in non-increasing order and that maximizes this cost function if they have to be put
in non-decreasing order. A well-known algorithm for sorting is bubble sort. This
algorithm starts with an arbitrary permutation � and then swaps repeatedly two
adjacent numbers that are not in the right order. Bubble sort finds an optimal solution
because a sequence of numbers is sorted if and only if any two adjacent numbers
in the sequence are sorted correctly. Obviously, swapping two adjacent numbers
improves the cost of a permutation if and only if they are not in the right order. This
means that bubble sort corresponds to iterative improvement with the neighborhood
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function that constructs neighbors by swapping two adjacent numbers. Because
bubble sort solves sorting, this neighborhood function is exact.

In the minimum spanning tree (MST) problem, we are asked to find a spanning
tree with minimum weight for an edge-weighted graph. This problem can also be
solved by applying iterative improvement with the exact neighborhood function
proposed in the following theorem, which is taken from Papadimitriou and Stei-
glitz [21].

Theorem 1. Consider for MST the neighborhood function that generates a neigh-
bor of a spanning tree T in the following way. First of all, we add an arbitrary edge
to T . This produces a single cycle. From this cycle we delete an arbitrary edge,
which gives a new spanning tree. This neighborhood function is exact.

Proof. Suppose we have a spanning tree T that is a local optimum, but not a global
optimum. To prove the theorem, we show that this yields a contradiction. Let T � be
an optimal spanning tree that has a maximum number of edges in common with T .
Furthermore, let e be an edge with minimum weight from the set of edges that are
in T � but not in T . As any spanning tree has n � 1 edges, such an edge exists. The
removal of e splits T � into two subtrees T �

1 and T �
2 . We now construct a neighbor

T 0 of T as follows. First, we add edge e to T . This results in a cycle c. Besides e,
this cycle must contain at least one other edge e0 connecting a node from T �

1 with a
node from T �

2 . We now construct T 0 by removing e0 from c.
Because T is a local optimum, we have that the cost of T 0 is at least the cost of

T . Hence, w.e/ � w.e0/, where w.e/ and w.e0/ give the weights of edges e and e0.
However, this implies that connecting T �

1 and T �
2 by edge e0 results in a spanning

tree that is at least as good as T � and that has at least one edge more in common with
T . This yields a contradiction. Hence, we conclude that the proposed neighborhood
function is exact. ut

Exact Neighborhood Function for TSP: An NP-Completeness Proof

Theoretically, all problems admit an exact neighborhood function. If we choose as
neighborhood of a solution s the complete solution set, i.e., N .s/ D S for all s 2 S ,
then this neighborhood function is exact. However, this neighborhood is not very
practical since verifying whether a solution is locally optimal corresponds to solving
the decision problem underlying the optimization problem. Mostly, we want to use
local search for NP-hard problems, in which case this problem is NP-complete. In
order to be practically useful, it makes sense to aim for a neighborhood function with
the property that a single iteration of iterative improvement can be implemented to
run in polynomial time. This is captured by the following definition.

Definition 1. A neighborhood function is said to be polynomially searchable if in
polynomial time we can decide whether a solution is locally optimal and, if not,
construct a better neighboring solution. ut
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The problem is how do we know whether or not an exact polynomially
searchable neighborhood function exists for a problem? One way of settling this
issue is to use complexity theory to prove for a particular problem that an exact
neighborhood function does not exist. We now present the result from Papadimitriou
and Steiglitz [20, 21], who show how this can be done for Metric TSP.

An outline of the proof is as follows. It is well known that Hamiltonian cycle
(HC) is NP-complete, where HC is the problem of deciding for a graph whether
it contains a Hamiltonian cycle. We first prove that the problem does not become
easier if in addition to the graph we are also given a Hamiltonian path. Remember
that a Hamiltonian cycle is a Hamiltonian path in which we return to the starting
node. Hence, we prove that the following problem is NP-complete.

Definition 2 (Restricted Hamiltonian Cycle (RHC)). Given are a graph G and a
Hamiltonian path in G. Is there a Hamiltonian cycle in G? ut

Using this result, we next show that Metric TSP suboptimality is also NP-complete,
which was our goal. ut

Definition 3 (Metric TSP Suboptimality). Given are an instance I of Metric TSP
and a tour � for I . Is � suboptimal? ut

Lemma 1. RHC is NP-complete.

Proof. Proving RHC 2 NP is trivial. Hence, to prove the lemma, it now suffices to
show that RHC is polynomially reducible from HC. Let G D .V; E/ be an arbitrary
graph defining a problem instance of HC. The construction of a corresponding
instance of RHC is based on the special-purpose subgraph depicted in Fig. 1. This
subgraph, which consists of eight nodes, is called a diamond.

Fig. 1 A diamond subgraph
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Fig. 2 (a) North-south mode. (b) East-west mode

In a diamond we identify four special nodes, called N (north), E (east), S

(south), and W (west). We will use diamonds in such a way that if a graph G0

contains a diamond D, then only these special nodes may be connected to other
nodes in the graph. We now claim that if a graph G0 contains a Hamiltonian cycle c,
then for each diamond D in G0 we have that its nodes are visited by c either in the
way depicted in Fig. 2a or in the way depicted in Fig. 2b. The former case is referred
to as north-south mode and the latter as east-west mode.

We now focus on proving this claim. Suppose that Hamiltonian cycle c enters
diamond D in node N . We show that following any other path than the one depicted
in Fig. 2a results in a contradiction. If node N is not succeeded by node nw (north-
west) but by ne, then the only way for c to visit nw is via node W . However, this
is not possible because, being in nw, we can neither go to N nor return to W as
this would imply visiting N or W twice. Hence, N is indeed succeeded by nw in
c. Obviously, the only way to proceed from nw is to go to W . Once at node W , we
cannot leave D because then the only way for c to visit sw and ne is by skipping
se. From node sw we have to go to ne because if we chose S this would make
it impossible to visit ne as well as se. From ne we can then only go to E, and
to prevent skipping node se, we conclude the traversal of D by visiting se and S ,
successively. By a similar reasoning, it can be verified that if c enters a diamond
D via the south, then D is also traversed as depicted in Fig. 2a, and if c enters D

via the east or the west, then D is traversed as depicted in Fig. 2b. This proves our
claim.

We now construct for our arbitrary graph G D .V; E/ specifying the arbitrary HC
instance the following corresponding graph G0 D .V 0; E 0/. Let V D f1; 2; : : : ; ng.
For each node i 2 V , we introduce a diamond Di with special nodes Ni ; Ei ; Si ; and
Wi . Except for the last diamond Dn, we connect the south node of each diamond Di

with the north node of the next diamond DiC1, i.e., we add the edges fSi ; NiC1g for
all 1 � i < n to E 0. Finally, we introduce for each edge fi; j g 2 E the two edges
fWi ; Ej g and fWj ; Ei g.
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Obviously, the path that visits the diamonds in increasing order and traverses each
diamond from north to south in the way depicted in Fig. 2a gives us a Hamiltonian
path. Hence, to prove that we presented a valid polynomial-time reduction, it
now suffices to show that G has a Hamiltonian cycle if and only if G0 has one.
We start with the “only if” part. Hence, suppose that G has a Hamiltonian cycle c.
Then visiting the diamonds in G0 in the order specified by c and the nodes inside
a diamond in east-west mode yields a Hamiltonian cycle for G0. Next, assume that
G0 has a Hamiltonian cycle c. If c traverses one diamond in north-south mode, then
it must traverse all diamonds in north-south mode as north and south nodes are not
connected to east and west nodes. However, as only n � 1 north-south edges exist,
no Hamiltonian cycle can exist that traverses each diamond in north-south mode.
Hence, we can conclude that c must traverse each diamond in east-west mode. The
order in which these diamonds are visited defines a Hamiltonian cycle for G. ut

Theorem 2. Metric TSP suboptimality is NP-complete.

Proof. Again, proving membership in NP is a trivial task. We now show that RHC
is polynomially reducible to Metric TSP suboptimality. Let G D .V; E/ with
Hamiltonian path p D .v1; v2; : : : ; vn/ define an arbitrary problem instance I of
RHC. If fv1; vng 2 E, then we can directly conclude that I is a yes-instance
of RHC. Hence, without loss of generality, we assume that fv1; vng … E. We
transform problem instance I into the following problem instance of Metric TSP
suboptimality. The set of cities is given by C D V D f1; 2; : : : ; ng, and the distance
dij between cities i to j is defined by 1 if fi; j g 2 E and by 2 if fi; j g … E.
Hamiltonian path p gives us a tour � with cost n C 1 because fvi ; viC1g 2 E with
1 � i < n and fv1; vng … E. Now, G has a Hamiltonian cycle if and only if tour �

is suboptimal. To see this, suppose that � is suboptimal. A tour � 0 then exists with
length n. This tour defines a Hamiltonian cycle in G. Conversely, if G contains a
Hamiltonian cycle, then this cycle determines a tour with length n, which implies
that � is suboptimal. This proves the theorem. ut

Corollary 1. Provided that P ¤ NP, no polynomially searchable exact neighbor-
hood function exists for Metric TSP. ut

Performance Ratios of Neighborhood Functions

In case a problem does not admit a polynomially searchable exact neighborhood
function, we have to resort to a neighborhood function for which local optima can
be suboptimal. To know how far we can be off from an optimal solution if we use
such a neighborhood function, we can try to derive bounds on the performance
ratio of the neighborhood function. Observe that this performance ratio equals the
performance ratio of iterative improvement where we select the initial solution
randomly. If we select the initial solution more carefully, the performance ratio of
iterative improvement may improve.
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Consider Symmetric TSP. As the neighborhood size of k-change is polynomially
bounded, a single iteration of k-Opt, which corresponds to a single step in the
transition graph, can be implemented to run in polynomial time. Furthermore,
finding a tour with length at most 2p.n/ times the optimal length is NP-hard for
any fixed polynomial p [22]. Hence, if we were to prove that k-Opt is guaranteed to
reach a locally optimal tour within a polynomial number of iterations, then we would
obtain that, unless P D NP, k-Opt does not admit a performance ratio at most 2p.n/

for any fixed polynomial p. However, as we show in the next section, k-Opt may
require an exponential number of iterations, which implies that the given reasoning
is not applicable. The following theorem states that the lower bound of 2p.n/ on the
performance ratio of k-Opt nevertheless holds. It even claims a stronger result: no
function in n exists that gives an upper bound on the performance ratio of k-change.
We note that this does not mean that it is impossible to bind the performance ratio. It
can, for instance, be bounded trivially by the largest distance in the distance matrix
d divided by the smallest distance in d .

Theorem 3. For any fixed k � 2 and n � 2k C 4, the performance ratio of the
k-change neighborhood function cannot be bounded by a constant for Symmetric
TSP on n cities. This means that no function in n exists that gives a performance
bound for k-change.

Proof. For any k � 2 and " > 0, we define a problem instance of Symmetric TSP
containing n D 2k C 4 cities. For this problem instance, we construct a locally
optimal tour O� , which has a performance ratio of 1 C 1

n"
. It is easy to extend this

problem instance and to modify the locally optimal tour, such that the problem
instance contains any n > 2k C 4 cities, the tour O� remains locally optimal, and
the performance ratio of O� is still 1 C 1

n"
. Since for " ! 0 this performance ratio

approaches 1, this proves the theorem.
We define the symmetric distance matrix d , such that all entries are given

by 1 C " except for the entries di;iC1 with 1 < i < n, d1;n, d1;kC2Cl with
l D k mod 2, and di;n�iC1 with 2 � i � k C 2, which are all given by ". In
this definition we restrict ourselves without loss of generality to the entries dij with
i < j .

Let G D .V; E/ be the graph obtained from the complete graph of n nodes by
maintaining an edge fi; j g if dij D " and by removing it if dij D 1 C "; see Fig. 3.
Obviously, a tour has length n" if it defines a Hamiltonian cycle in graph G and
it has length at least 1 C n" otherwise. Moreover, it can be proved that the tour
�� D .1; n; n � 1; 2; 3; n � 2; n � 3; : : : / defines the only Hamiltonian cycle in G,
where tours that only differ in their starting position or direction are considered to be
equivalent. Hence, tour �� is the only optimal tour, and the length of any other tour
� is at least 1Cn". From this it follows that if a tour O� has length 1Cn" and if it has
k C 1 edges that are absent in ��, then O� is a locally optimal tour with performance
ratio 1Cn"

n"
D 1C 1

n"
. It can be verified that such a tour is given by O� D .1; 2; : : : ; n/.

This proves the theorem. ut
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Fig. 3 For k D 5, the figure shows (a) graph G, (b) optimal tour �� of length n", and (c) locally
optimal tour O� of length 1 C n"

In the remainder of this section, we focus on Metric TSP. Although solving this
problem is as difficult as solving Symmetric TSP (they are both strongly NP-hard),
it is easier to find an approximate solution for Metric TSP than for Symmetric TSP.
Currently, Christofides’ algorithm [3] is the polynomial-time algorithm with the
best known worst-case performance. This constructive algorithm works as follows.
First of all, it computes a minimum spanning tree T . Next, it converts this tree
into an Eulerian graph, which is a graph in which each node has an even degree.
This is done by deriving a perfect matching on the nodes with an odd degree.
These edges are added to T . For an Eulerian graph, we can easily determine an
Eulerian tour, which is a tour that traverses each edge exactly once. By introducing
shortcuts, we can eliminate multiple visits to the same city in the tour. This results
in a tour for which it can be proved that its length is at most 3

2
times the optimal

length.
For k-Opt Chandra, Karloff, and Tovey [2] have proved that, for infinitely

many n, a lower bound on the performance ratio is given by 1
4

p
n for k D 2

and by 1
4
n

1
2k for k � 3. Hence, from a worst-case perspective, the local search

algorithm k-Opt cannot compete against Christofides’ constructive algorithm.
Nevertheless, k-Opt may still be preferred over Christofides’ algorithm as in
practice we may be more interested in a good average-case performance than
in a good worst-case performance. Hence, it is still interesting to analyze the
worst-case performance of k-Opt or, equivalently, k-change, not only to obtain a
worst-case performance guarantee but also to enhance our understanding of the
algorithm.

Chandra, Karloff, and Tovey [2] also proved that k-Opt has a performance bound,
i.e., an upper bound on the performance ratio, of 4

p
n for any k � 2. By a tighter

analysis, Levin and Yovel [13] improved this bound to 2
p

2n. Below, we prove
this result. Note that this performance bound differs by a constant factor from the
presented lower bound for k D 2 and by a factor that increases with n for any k � 3.
In order to prove the bound, we need the following auxiliary result that states that a
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locally optimal tour cannot contain too many long edges as expressed as a fraction
of the optimal tour length.

Lemma 2. For an arbitrary problem instance of Metric TSP, let l� be the optimal
tour length and O� a locally optimal tour with respect to the 2-change neighborhood
function. For any i with 1 � i � n, we have jEi j < i=2, where set Ei contains the
edges fj; j 0g from O� with djj 0 > 2l�

p
i
.

Proof. We prove the lemma by contradiction. So, suppose we have jEi j � i=2 for
some i . Although the direction of O� is irrelevant, we assume some orientation of
the tour. As a result, the r D jEi j edges in Ei transform into r arcs .tj ; hj / with
1 � j � r . The cities tj and hj are called the tail and head of arc .tj ; hj /.

We first show that a tail tu with 1 � u � r cannot be surrounded by too many
other tails of arcs from Ei . Let Vu be the set of all tails of arcs from Ei that have
a distance of at most l�

p
i

from tu. Assume that jVuj �
p

i=2. We prove that jVuj <
p

i=2 by showing that this assumption yields a contradiction.
Let tj ; tj 0 2 Vu. Because the triangle inequality holds and because, by definition,

the distance from tu to any of these two tails is at most l�

p
i
, we obtain that the distance

between tj and tj 0 is at most 2l�

p
i
. This implies that the distance between the heads

hj and hj 0 is strictly larger than 2l�

p
i
. If this would not be the case, then replacing the

edges ftj ; hj g and ftj 0 ; hj 0g in O� via a 2-change into ftj ; tj 0g and fhj ; hj 0g would
result in a shorter tour because the length of each of the former two edges is strictly
larger than 2l�

p
i

by the definition of Ei . This would contradict the local optimality

of O� .
Hence, jVuj �

p
i=2 heads can be identified in Ei that all have a mutual distance

of strictly more than 2l�

p
i
. This implies that the optimal tour on these heads is strictly

more than l�, which gives a contradiction because due to the triangle inequality it is
not possible that an optimal tour over all cities is shorter than the optimal tour over a
subset of all cities. This proves our claim jVuj <

p
i=2. We use this result to derive

a contradiction from the assumption r � i=2, which settles the proof of the lemma.
Consider the following labeling algorithm. Select an unlabeled tail tu in Ei ,

and label all tails in Ei that have a distance of at most l�

p
i

from tu (including tu).
Repeat this labeling step until all tails in Ei are labeled. As proved above, strictly
fewer than

p
i=2 tails are labeled in each iteration. As r � i=2, this implies that

the labeling procedure takes strictly more than
p

i iterations. Obviously, the tails
that are selected in these iterations all have a mutual distance strictly larger than
l�

p
i
. This implies that the optimal tour has length strictly larger than

p
i � l�

p
i

D l�,
which results in a contradiction. This proves the lemma. ut

Using Lemma 2, we can now prove the claimed result.

Theorem 4. The k-change neighborhood function has a performance bound of
2
p

2n for Metric TSP.
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Proof. To prove the theorem, it suffices to show that a tour O� has a performance
ratio of at most 2

p
2n if it is a locally optimal tour with respect to the 2-change

neighborhood function. Lemma 2 yields that the i th largest edge in O� has a length of

at most
p

2l�

p
i

, where l� is the optimal tour length. Hence, the length of O� is at most

nX

iD1

p
2l�

p
i

D
p

2l�

nX

iD1

1
p

i
: (1)

As 1p
x

is a decreasing function in x 2 R, we have 1p
i

�
R i

i�1
1p
x

dx for any positive

integer i . Hence, the right-hand side of (1) is at most
p

2l�
R n

0
1p
x

dx, which equals

2
p

2nl�. ut

We note that, to get better performance guarantees, it sometimes helps to use an
objective function that differs from the one defined in the optimization problem. An
example of this is given by Angel et al. [1]. They refer to a result from [9] who
show that the flip neighborhood function has a performance bound of 3

2
for the non-

weighted Max k-SAT problem. Khanna et al. [12] prove that this is the best you can
achieve using any normal local search implementation. However, they also show
that when using to a different objective function, the flip neighborhood function can
achieve a performance ratio of 4

3
for this problem.

Non-approximability Results

Above, we gave examples of performance ratio analyses for a particular neigh-
borhood function. In this section, we show that we can also prove results on the
performance ratio for a complete class of neighborhood functions for a problem.

Suppose that finding an R-approximate solution for … is NP-hard for a given
R � 1. Provided that P ¤ NP, this means that iterative improvement using
neighborhood function N does not find a solution with performance ratio R in
polynomial time. As it may take iterative improvement an exponential number of
steps to reach a local optimum, this does not directly imply that N has a performance
ratio larger than R. The following theorem from Yannakakis [24] states that the
claim is nevertheless true. Observe that, by taking R D 1, the theorem yields that
an NP-hard problem will not admit a polynomially searchable exact neighborhood
function.

Theorem 5. Let … 2 NPO, and let N be a neighborhood function for … that is
polynomially searchable. If the problem of finding an R-approximate solution for …

is NP-hard for a given R � 1, then N does not have a performance bound of R,
provided that NP ¤ co-NP.
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Proof. We prove the result by contradiction. Suppose that approximating … within
a factor R is NP-hard and that N has a performance bound of R. We show that for
any decision problem …D 2 NP the complementary problem …c

D obtained from
…D by reversing the answers is also in NP. This yields a contradiction as it implies
NP D co-NP.

To prove …c
D 2 NP, we need to show that each yes-instance of …c

D has a
certificate that can be checked in polynomial time for validity, where the size of
the certificate is polynomially bounded. As approximating … within a factor R is
NP-hard, a polynomial-time algorithm A exists that decides …D , where A may use
an oracle that returns an R-approximate solution for any problem instance of ….
Hence, if for a problem instance I of …D we are given a sequence consisting of
solutions that may be returned successively by the oracle during the execution of A
on I , then we can determine in polynomial time whether I is a yes-instance or a no-
instance of …D . This implies that as a certificate for yes-instances of …c

D we can use
a sequence consisting of solutions that are locally optimal for the problem instances
that are successively given to the oracle, i.e., the i th solution in the sequence is a
local optimum for the i th problem instance given to the oracle. The certificate, which
is of polynomial size, can be checked for validity in polynomial time by substituting
each call of the oracle in A by a polynomial-time procedure that checks whether the
corresponding solution in the certificate is a local optimum for the problem instance
given to the oracle. By assumption this polynomial-time procedure exists. ut

From the above theorem and the complexity result of Sahni and Gonzalez [22],
it follows that if NP ¤ co-NP, then the performance ratio of the k-change
neighborhood function cannot be bounded by 2p.n/ for some fixed polynomial p.
Note that this result is weaker than the result of Theorem 3. Theorem 3 states that
the performance ratio cannot even be bounded by 22n

, for instance, and that it also
holds in the unlikely case that NP D co-NP.

From Neighborhood Function to Polynomial-Time Algorithm

Rewriting Theorem 5 gives that if a polynomially searchable neighborhood function
N with performance bound R exists for some given combinatorial optimization
problem … 2 NPO, then the problem of finding an R-approximate solution for …

is not NP-hard, provided that NP ¤ co-NP. One question that arises is whether
this result can be strengthened to the extent that the existence of such an N

implies that the problem of finding an R-approximate solution for … is easy, i.e.,
polynomially solvable. In this section we prove for a special type of combinatorial
optimization problem that the answer is affirmative for R D 1 and that it is
affirmative up to some arbitrary small error " > 0 for R > 1. In other words,
we show for a special type of combinatorial optimization problem how we can
derive from a polynomially searchable exact neighborhood function a polynomial-
time algorithm that solves the problem and how we can derive from a polynomially
searchable neighborhood function with performance bound R a polynomial-time
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approximation algorithm with a performance bound of R C " for any precision
" > 0. Besides being polynomial in the input size, the .R C "/-approximation
algorithm is also polynomial in 1

"
. Before proving these results, we introduce some

terminology used in this section. The results are due to Schulz, Weismantel, and
Ziegler [23] and Orlin, Punnen, and Schultz [18], respectively.

For many combinatorial optimization problems, it holds that a solution can be
viewed as a subset of a ground set E and that the cost of a solution s � E can
be written as

P
e2s c.e/, where c.e/ is the cost of element e 2 E. This is, for

instance, the case for TSP: define E as the set of all pairs .i; j / of cities and c.i; j /

as the distance dij from city i to city j . We call such problems linear combinatorial
optimization problems.

Definition 4. An instance of a linear combinatorial optimization problem is a pair
.S; c/, where each solution in the solution space S � 2E is a subset of a finite
ground set E D f1; 2; : : : ; ng and where c W E !QC assigns a cost to each element
e 2 E. The cost of a solution s 2 S is defined by f .s/ D

P
e2s c.e/. ut

Definition 5. A linear combinatorial optimization problem … is specified by a set
of problem instances as defined in Definition 4, and the goal is to minimize for
a problem instance the associated cost function f . Hence, for a problem instance
.S; c/, we have to find a solution s� that satisfies f .s�/ � f .s/ for all s 2 S . ut

Definition 6. A linear combinatorial optimization problem … is called closed
under scaling whenever for each problem instance .S; c/ of … it holds that if we
change function c W E !QC to some other cost function c0 W E !QC, then the
problem instance remains in …. ut

In this section the focus is on linear combinatorial optimization problems … that
satisfy the following two properties.

• … is closed under scaling.
• For each problem instance of …, we can derive in polynomial time a feasible

solution.

It can easily be verified that the linear combinatorial optimization problem TSP
(the generic formulation) satisfies these two properties. However, this is not true, for
instance, for Metric TSP because this problem is not closed under scaling.

If a problem is closed under scaling, then this need not necessarily mean that
we can change the cost function of a problem instance in polynomial time. The
reason for this is that an encoding scheme may be applied that does not give c.e/

explicitly for each e 2 E. To avoid this problem, we focus on linear combinatorial
optimization problems that are encoded by a cost-explicit encoding scheme, where
a cost-explicit encoding scheme is defined as follows.
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Definition 7. An encoding scheme of a linear combinatorial optimization problem
is called cost explicit if the encoding eI 2 f0; 1g� of a problem instance I D .S; c/

with underlying ground set E is given by eI D e
.1/
I e

.2/
I , where

• e
.1/
I is an explicit encoding of the function c W E ! QC, which means that it

contains the encoding of c.e/ for each e 2 E, and
• e

.2/
I is an encoding, either implicit or explicit, of the solution space S .

Furthermore, e
.1/
I only depends on S via its ground set E, and e

.2/
I is independent

of c. ut

Exact Neighborhood Functions
Let … be a linear combinatorial optimization problem from NPO that satisfies the
two properties given above, and let a cost-explicit encoding scheme be used for ….
Furthermore, let N be an exact polynomially searchable neighborhood function for
the problem. We will now present a polynomial-time algorithm, called AOPT.N /,
that solves ….

Let I D .S; c/ be a problem instance of …, where, without loss of generality, we
assume that c is a function to the natural numbers instead of the rational numbers.
AOPT.N / solves I in K D dlog2.cmax C 1/e phases, where cmax is the maximum
cost c.e/ of any element e 2 E. In phase k an optimal solution is derived for
the problem instance Ik D .S; ck/ that is obtained from I by defining the cost
ck.e/ of an element e 2 E as the number represented by the k leading bits in the
binary representation of c.e/. By adding leading zeros, the binary representation is
made equally long for all e 2 E, i.e., each binary representation consists of exactly
K bits. We implement a phase by applying iterative improvement with the exact
neighborhood function N . In the first phase, an arbitrary solution may be chosen
as the starting solution, and in phase k with k � 2, the solution derived in phase
k �1 is chosen as the starting solution. Figure 4 gives the algorithm in pseudo-code,
where fk denotes the cost function related to problem instance Ik .

Theorem 6. Let … 2 NPO be a linear combinatorial optimization problem that is
closed under scaling and for which we can derive a feasible solution in polynomial
time. Furthermore, let N be a polynomially searchable exact neighborhood function
for …. Then the algorithm AOPT.N / given in Fig. 4 solves … in polynomial time in
the case that we use a cost-explicit encoding scheme for ….

Proof. By construction, the number of phases is bounded by K D dlog2.cmax C1/e.
Furthermore, because N is polynomially searchable, the individual iterations of the
iterative improvement algorithm that makes up a single phase of AOPT.N / can be
implemented to run in polynomial time. Hence, to prove the theorem, we only have
to show that in an arbitrary phase k the iterative improvement algorithm executed
terminates within a polynomial number of iterations.
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Fig. 4 Algorithm AOPT.N /

for a linear combinatorial
optimization problem … and
an accompanying
neighborhood function N . …

is closed under scaling, and
.S; c/ denotes an arbitrary
problem instance of … that is
given as input to the
algorithm. Cost function fk

relates to problem instance
.S; ck/

algorithm OPT(N)

begin

s := some initial solution;

K := �log2(cmax +1)�;

for k := 1 to K do

begin

for all e ∈ E do ck(e) :=
⌊
c(e) ·2k−K⌋

;

repeat

generate an s′ ∈ N(s);

if fk(s′)< fk(s) then s := s′;

until fk(s′) ≥ fk(s) for all s′ ∈ N(s);

end

end;

Let si be the solution derived in phase i of AOPT.N /, and let s0 be the starting
solution of the first phase. Hence, in phase k, iterative improvement starts with
sk�1 and ends with sk . Because the cost of the solution derived by iterative
improvement decreases in each iteration, it suffices to prove that fk.sk�1/ � fk.sk/

is polynomially bounded to show that in phase k iterative improvement terminates
within a polynomial number of iterations. By defining c.i/.e/ with e 2 E as the i th
bit in the binary representation of c.e/, we obtain that for any solution s the cost
fk.s/ satisfies

fk.s/ D

� P
e2s c.1/.e/ if k D 1

2fk�1.s/ C
P

e2s c.k/.e/ if k � 2:

Furthermore, we have
P

e2s c.k/.e/ � n, where n denotes the number of elements
in E. Using these two observations and the optimality of sk�1 with respect to cost
function fk�1, we can derive for k � 2

fk.sk�1/ � fk.sk/ D 2 .fk�1.sk�1/ � fk�1.sk// C
X

e2sk�1

c.k/.e/ �
X

e2sk

c.k/.e/ � n
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and for k D 1

fk.sk�1/ � fk.sk/ D
X

e2sk�1

c.k/.e/ �
X

e2sk

c.k/.e/ � n:

This proves the theorem. ut

Neighborhood Functions with Performance Bound
Theorem 6 yields that if a polynomially searchable neighborhood function with per-
formance bound RD1 exists for a given linear combinatorial optimization problem
… that satisfies some properties, then the problem of finding an R-approximate
solution for … is polynomially solvable. We now show that for R > 1 this result
holds up to some arbitrary small error " > 0. More precisely, we proceed as follows.

Let … be a linear combinatorial optimization problem from NPO that satisfies
the same two properties as those given in Theorem 6 and for which we use a
cost-explicit encoding scheme. Furthermore, let N be a polynomially searchable
neighborhood function for … with a performance bound of R. We now present
an algorithm for which we will prove that for any precision " > 0 it .i/ has a
running time that is polynomially bounded in both the input size and 1

"
and .i i/ has

a performance bound of R C ".
Let I D .S; c/ be a problem instance of …, and suppose that we perform iterative

improvement on I , where we take an arbitrary s 2 S as a starting solution. By
assumption, s can be derived in polynomial time. We turn iterative improvement
into a polynomial-time algorithm in the following way: we replace the function c

in I by c0, such that in each iteration the cost of the solution derived by iterative
improvement decreases by at least q and f 0.s/=q is polynomially bounded, where
f 0.s/ is the cost of solution s with respect to the new function c0 W E !QC. The
former property is achieved by defining for any e 2 E

c0.e/ D

�
c.e/

q

�

q:

The latter property is achieved by defining q as

q D
f .s/"

2nR.R C "/

since we then have

f 0.s/

q
�

f .s/ C nq

q
D 2nR

�
R

"
C 1

�

C n;

which is polynomially bounded in jI j and 1
"
.

Using the polynomial-time algorithm described, we can now construct a
polynomial-time .RC"/-approximation algorithm A".N / for …. Algorithm A".N /

proceeds in phases. In each phase the algorithm described is executed, where the
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final solution of the previous phase is taken as a starting solution. If the algorithm
arrives at a solution for which the cost is at most half the cost of the solution with
which the phase started, then the algorithm is interrupted, and the next phase is
initiated. If the algorithm terminates, i.e., if it arrives at a local optimum, then the
overall algorithm A".N / also terminates. In Fig. 5 algorithm A".N / is given in
pseudo-code.

Lemma 3. Let … 2 NPO be a linear combinatorial optimization problem that is
closed under scaling and for which we can derive a feasible solution in polynomial
time. Furthermore, let N be a polynomially searchable neighborhood function for
…. Then the algorithm A".N / given in Fig. 5 runs in polynomial time in the case
that we use a cost-explicit encoding scheme for ….

Proof. The number of phases executed by A".N / is bounded by log.ncmax/,
where cmax is the maximum cost c.e/ of any element e 2 E. As a cost-explicit
encoding scheme is assumed, this implies that the number of executed phases
is polynomially bounded. Combined with the above-derived polynomial running
time of each individual phase, this proves the polynomial-time running time of
A".N /. ut

The next lemma focuses on the quality of the solutions returned by A".N /.

Lemma 4. Let … be a linear combinatorial optimization problem that is closed
under scaling, and let N be a neighborhood function for … with performance bound
R. Then the algorithm A".N / given in Fig. 5 is an .RC"/-approximation algorithm.

Proof. Let sinit, q, c0, and f 0 denote the corresponding values at the moment A".N /

terminates, let s be the solution returned by the algorithm, and let s� be an optimal
solution to the problem instance I D .S; c/, which is the problem instance that is
given as input to the algorithm.

According to the definition of function c0, we have f .s/ � f 0.s/. Furthermore,
as s is locally optimal for problem instance I 0 D .S; c0/ (but not necessarily for I )
and as the neighborhood function has a performance bound of R, by assumption,
we have f 0.s/ � R � f 0.s�/. Using this, we can derive

f .s/ � R � f 0.s�/ D R
X

e2s�

�
c.e/

q

�

q � R
X

e2s�

.c.e/ C q/ � R � f .s�/ C Rnq:

(2)

Moreover, f .sinit/=2 < f .s/ holds because otherwise the last phase of the
algorithm would have been interrupted just before setting the variable stop to true.
From this and the definition of q, it now follows that q < f .s/ "

nR.RC"/
. Combined

with (2) this gives f .s/ � R � f .s�/ C f .s/ "
RC"

, which can be rewritten as
f .s/ � .R C "/f .s�/. ut
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algorithm e(N)

begin

s := some initial solution;

stop := FALSE;

while ¬stop do

begin

sinit := s;

q := f (sinit)e/(2nR(R+ e));

for all e ∈ E do c′(e) :=
⌈
c(e)
q

⌉
q;

repeat

if f ′(s′) ≥ f ′(s) for all s′ ∈ N(s) then stop := TRUE;

else

begin

generate an s′ ∈ N(s);

if f ′(s′)< f ′(s) then s := s′;

end

until stop= TRUE or f (s) ≤ f (sinit)/2;

end

end;

Fig. 5 Algorithm A".N / for a linear combinatorial optimization problem … that is closed under
scaling, an accompanying neighborhood function N , and an arbitrary precision " > 0. .S; c/

denotes an arbitrary problem instance of … that is given as input to the algorithm. Cost function f

relates to problem instance .S; c/, while cost function f 0 relates to problem instance .S; c0/

Theorem 7. Let … 2 NPO be a linear combinatorial optimization problem that is
closed under scaling and for which we can derive a feasible solution in polynomial
time. Furthermore, let N be a polynomially searchable neighborhood function for
… with performance bound R. Then the algorithm A".N / given in Fig. 5 is a
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polynomial-time .R C "/-approximation algorithm in the case that we use a cost-
explicit encoding scheme for ….

Proof. The theorem follows directly from Lemmas 3 and 4. ut

Time Complexity

Since optimal algorithms for NP-hard problems have exponential running time, we
presented local search as an approach that trades off quality against performance.
More precisely, it tries to reduce execution time by not solving the real optimization
problem, but an associated local search problem, as defined below.

Definition 8. An instance of a local search problem is a triple .S; f; N /, where
.S; f / is an instance of a combinatorial optimization problem and N W S ! 2S is a
neighborhood function on S . ut

Definition 9. A local search problem …LS is specified by a set of problem
instances, and it is either a minimization or a maximization problem. The problem
is to find for a given instance .S; f; N / a locally optimal solution Os 2 S . For a
minimization problem, this means that f .Os/ � f .s/ for all s 2 N .s/, and for a
maximization problem, it means that f .Os/ � f .s/ for all s 2 N .s/. ut

For the time complexity of a local search algorithm, we can both be interested
in the average case time complexity or in a guaranteed, i.e., worst-case time
complexity. In this section we focus on the latter. First we study the computational
complexity of local search problems. This means that we try to find an answer
to the question of how hard the problem is that a local search algorithm tries
to solve. This section is based on the paper of Yannakakis [24], who gives an
excellent presentation of the complexity theory for local search problems introduced
by Johnson, Papadimitriou, and Yannakakis [11]. Second, we look at the time
complexity of the basic local search algorithm: iterative improvement.

Computational Complexity of Local Search Problems

To distinguish easy decision problems from hard ones, the theory of NP-
completeness has been developed. In a nutshell, the idea of this theory is as follows.
A class NP of decision problems is defined that contains the decision variants
of many apparently hard and interesting combinatorial optimization problems.
To relate the complexity of two problems in NP, polynomial-time reductions are
introduced. If a problem … is polynomially reducible to problem …0, then …0 is
at least as hard as …, which means that a polynomial-time algorithm for …0 can
only exist if it exists for …. The problems in NP to which all problems in this class
are polynomially reducible are called NP-complete. These problems are the hardest
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problems in NP since they only allow an efficient polynomial-time algorithm if such
an algorithm exists for all problems in NP. This is very unlikely as no polynomial-
time algorithm has been found for an NP-complete problem despite the enormous
amount of effort that has been spent by many experts on finding one.

A similar strategy is used to identify hard local search problems for which it is
very unlikely that they can be solved by a polynomial-time algorithm. First of all, we
define a complexity class, called PLS, which contains local search problems that are
specified by a combinatorial optimization problem from NPO and a “reasonable”
corresponding neighborhood function. Next, we present a reduction to express that
a local search problem is at least as hard as another given local search problem.
Using this reduction, we can identify the hardest problems in PLS. Because no
polynomial-time algorithm is known for any of these PLS-complete problems, as
they are called, it is commonly believed that no such algorithm exists for these
problems.

We now further elaborate on this theory. Let … be a combinatorial optimization
problem from NPO, and let N be a neighborhood function for it. A successful
application of local search for this problem depends on whether it is easy to generate
an initial solution and to check whether a solution is locally optimal and, if not, to
derive a better neighbor. In terms of iterative improvement, this means that both the
initialization and each single iteration of the algorithm can be implemented to run
in polynomial time. The number of iterations, however, may be exponential. The
class PLS contains all local search problems in which the properties described are
satisfied.

Definition 10. Let …LS be a local search problem, and let … be the underlying
combinatorial optimization problem. Local search problem …LS is in the class PLS
(Polynomial-time Local Search) if … 2 NPO and if two polynomial-time algorithms
A and B exist that satisfy the following properties.

• For a problem instance .S; f; N / of …LS, algorithm A returns a solution s 2 S .
• For a problem instance .S; f; N / of …LS and a solution s 2 S , algorithm B

decides whether s is a local optimum and, if this is not the case, it returns a
neighboring solution with better cost.

ut

The following definition specifies a PLS-reduction by which we can relate the
complexity of two local search problems. From the definition it follows directly that
if local search problem …LS is PLS-reducible to local search problem …0

LS, then the
existence of a polynomial-time algorithm for …0

LS implies the existence of such an
algorithm for …LS. In other words, …0

LS is at least as hard as …LS. Furthermore, it
can be verified that PLS-reductions are transitive, which means that if …LS is PLS-
reducible to …0

LS and …0
LS is PLS-reducible to …00

LS, then …LS is also PLS-reducible
to …00

LS.



320 W. Michiels et al.

Fig. 6 Example of algorithm
®2 for mapping solutions
from S 0 to solutions from S .
The squares indicate the local
optima

S S′

ϕ2

Definition 11. Local search problem …LS is PLS-reducible to local search problem
…0

LS, denoted by …LS / …0
LS, if two polynomial-time algorithms '1 and '2 exist

that satisfy the following properties; see also Fig. 6.

• Algorithm ®1 transforms a problem instance I of …LS into a problem instance
®1.I / of …0

LS.
• Algorithm ®2 maps a problem instance I D .S; f; N / of …LS and a solution

s0 2 S 0 with ®1.I / D .S 0; f 0; N 0/ to a solution s 2 S .
• For a problem instance I of …LS, we have that if s0 2 S 0 is a local optimum for

®1.I / D .S 0; f 0; N 0/, then ®2.I; s0/ is a local optimum for I .

The pair .®1; ®2/ is called a PLS-reduction. ut

We note that the definition of ®2 can be weakened. For ®2 it suffices that instead
of all solutions in S 0, only the local optima are mapped to a solution in S . However,
if we have …LS 2 PLS, then we can easily transform such a ®2 into an algorithm
that satisfies Definition 11 by mapping all solutions that are not in the domain of the
restricted ®2 to the solution returned by the polynomial-time algorithm A defined
in Definition 10. Analogously to NP-completeness, we define the notion of PLS-
completeness to indicate the hardest problems in PLS.

Definition 12. A local search problem in PLS is PLS-complete if each problem
…LS 2 PLS is PLS-reducible to it. ut

Let NPCO contain all NP-hard problems from NPO. When determining the
complexity of solving some combinatorial optimization problem from NPO to
optimality, one generally aims to decide whether the problem is in PO or in NPCO.
It is therefore interesting to relate the class PLS and the subclass of PLS-complete
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problems to the classes PO, NPO, and NPCO. This is the focus of the remainder of
this section.

First we show that PLS � NPO. Let …LS be an arbitrary local search problem
in PLS. Problem …LS can be formulated as a minimization problem … 2 NPO by
defining an instance .S; f 0/ 2 … for any instance .S; f; N / 2 …LS, such that cost
function f 0 W S ! f0; 1g satisfies f 0.s/ D 0 if s is locally optimal and f 0.s/ D 1

otherwise. The existence of algorithm B as defined in Definition 10 for …LS implies
that f 0 is computable in polynomial time. From this it follows that … is indeed a
problem from NPO. Moreover, …LS and … are clearly equivalent. As a result, we
get PLS � NPO.

We now show that PO � PLS. Let … 2 PO and let A be an optimal
polynomial-time algorithm for …. Without loss of generality, we assume that …

is a minimization problem. Then we define minimization problem …0 2 PO such
that any instance I D .S; f / of … corresponds to an instance .S; f 0/ of …0, where
f 0.s/ D 0 if solution s is optimal with respect to cost function f and f 0.s/ D 1

otherwise. If we define a neighborhood function for …0 in such a way that each
solution has only one neighbor, namely, the solution returned by A, then we obtain
a local search problem that is equivalent to …. Furthermore, the problem is in PLS.
Algorithm A in Definition 10 can be defined as A, and algorithm B in this definition
can be realized by first comparing the cost of the solution given by A with the cost
of a given solution s and by then returning the optimal solution derived by A if the
latter cost is larger. Hence, we now obtain the following result.

Theorem 8. The complexity classes PO, PLS, and NPO satisfy

PO � PLS � NPO:

ut

From the relation PLS � NPO, it follows that a PLS-complete problem is
not harder than any NP-hard problem in NPO, as will now be shown. Suppose
that a polynomial-time algorithm exists for an NP-hard problem in NPCO. This
means that all problems in NPO are polynomially solvable, including those in PLS.
To substantiate the intractability of PLS-complete problems, a more interesting
question is whether PLS-complete problems are also at least as hard as the problems
in NPCO. If the answer were to be affirmative, then the existence of a polynomial-
time algorithm for a PLS-complete problem would be as unlikely as the existence
of such an algorithm for a problem in NPCO. However, this is not the case because
the following theorem states that if NP ¤ co-NP, then a PLS-complete problem is
not NP-hard. Hence, in the unlikely case that PLS-complete problems turn out to be
polynomially solvable, this still does not imply that the problems in NPCO are also
solvable in polynomial time. Figure 7 depicts the relations between the different
complexity classes.

Theorem 9. If NP ¤ co-NP, then none of the problems in PLS are NP-hard.
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PO
PLS

NPO

NP-hard problems
(TSP,STG,MGC,...)

PLS-complete problems

Fig. 7 Positioning of the classes PO, PLS, and NPO in the case that P ¤ NP, NP ¤ co-NP, and
PO ¤ PLS

Proof. The result can be proved in a similar way as Theorem 5. Note that Theorem 5
easily follows from this theorem. Suppose that a problem …LS 2 PLS is NP-hard.
We show that this contradicts NP ¤ co-NP by showing that it implies that, for any
decision problem …D in NP, the complementary problem …c

D obtained by reversing
the answers in …D is also in NP.

As …LS is NP-hard, a polynomial-time algorithm A exists that decides …D ,
where A may use an oracle that, for any problem instance of …LS, returns a local
optimum. Hence, if for a problem instance I of …D we are given a sequence
consisting of local optima that may be returned successively by the oracle during
the execution of A on I , then we can determine in polynomial time whether I

is a yes-instance or a no-instance of …D . As a result, we can use this sequence
of locally optimal solutions as a certificate for yes-instances of …c

D . Furthermore,
the certificate, which is of polynomial size, can be checked in polynomial time for
validity by substituting each call of the oracle in A by a polynomial-time procedure
that checks whether the corresponding solution in the certificate is a solution to
the problem instance of …LS given to the oracle. The existence of polynomial-time
algorithm B in Definition 10 shows that this polynomial-time procedure exists. This
proves …c

D 2 NP, which completes the proof of the theorem. ut

Proving PLS-Completeness

As for the theory of NP-completeness, the theory of PLS-completeness only
becomes useful once we have a first problem for which we can prove that it is
among the hardest of the class PLS. After that, we can prove PLS-completeness of
a problem by simply proving that a known PLS-complete problem is PLS-reducible
to it. The first problem for which PLS-completeness has been proved is circuit/flip
as defined below.

Suppose we want to apply local search to the problem of finding an integer s with
0 � s < 2n for which a given function f W f0; 1; : : : ; 2n �1g ! f0; 1; : : : ; 2m �1g is
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minimized. We can use the neighborhood function in which s0 2 f0; 1; : : : ; 2n � 1g

is a neighbor of s if s0 can be obtained from s by flipping exactly one of the n bits in
the binary representation of s. The corresponding local search problem, formulated
in terms of Boolean circuits, is the first problem that has been proved to be PLS-
complete.

Boolean circuits are theoretical counterparts of the digital circuits from which
computers are made. They compute Boolean functions f W f0; 1gn ! f0; 1gm, and,
conversely, each Boolean function is computed by a circuit.

Definition 13. A Boolean circuit is a directed acyclic graph D D .V; A/. The
node set V consists of n input nodes and jV j � n gates. The input nodes have
indegree zero and are labeled by the binary variables x1; x2; : : : ; xn. The labels
of the gates are taken from the set f^; _; :g of Boolean functions. The gates
with outdegree zero are called the output nodes, and they are additionally labeled
by the binary variables y1; y2; : : : ; ym. Boolean circuit D computes a Boolean
function f W f0; 1gn ! f0; 1gm by deriving for given values of the input variables
x1; x2; : : : ; xn corresponding values for the output variables y1; y2; : : : ; ym in the
following way.

Let l be the label of a gate g. If l is given by :, then the value of g is one minus
the value of the node from which the only incoming edge of g is incident. Next,
suppose that l 2 f^; _g. Then g has exactly two incoming edges. Let o1; o2 be the
values of the nodes from which these two edges are incident. If g is labeled ^, then
it is assigned the value 1 if o1 D o2 D 1, and it is assigned the value 0, otherwise. If
g is labeled _, then it is assigned the value 0 if o1 D o2 D 0, and it is assigned the
value 1 otherwise. The size of Boolean circuit D D .V; A/ is given by the number
of nodes in V . ut

By interpreting the input and output vectors as two numbers written in binary no-
tation, i.e., by interpreting the input as

Pn
iD1 2i�1xi and the output as

Pm
iD1 2i�1yi ,

a Boolean circuit can compute an integer function. Hence, the local search problem
mentioned above can be formalized by the following definition. We note that the
Hamming distance of two strings s and s0 of equal size, denoted by H.s; s0/, is
given by the number of positions in which s and s0 differ.

Definition 14 (Circuit/flip). Given is a Boolean circuit D with n input nodes
x1; x2; : : : ; xn and m output nodes y1; y2; : : : ; ym. The neighborhood function,
called flip, is based on the solution space f0; 1gn containing all possible input vectors
.x1; x2; : : : ; xn/ of the circuit. A solution s is a neighbor of solution s0 if s and s0

have a Hamming distance H.s; s0/ of one. Find a solution Os that is locally optimal
with respect to the cost function

f .Os/ D

mX

iD1

2i�1yi ;
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which gives the integer interpretation of the output of Boolean circuit D on input
Os. In min-circuit/flip, it is our goal to minimize the cost function, while in max-
circuit/flip it is our goal to maximize the cost function. ut

Theorem 10. Min-circuit/flip and max-circuit/flip are both PLS-complete. ut

Although very interesting, the proof of the above theorem is rather complex and
therefore left out of this chapter. For details, we refer to Yannakakis [24], Johnson,
Papadimitriou, and Yannakakis [11] or Michiels, Aarts, and Korst [16]. To focus on
how the theory can be used, we now give an example of how it can be used to show
that the uniform graph partitioning problem with the Kernighan-Lin neighborhood
function is PLS-complete.

Definition 15 (Uniform Graph Partitioning (UGP)). Given is an edge-weighted
graph G D .V; E/ with jV j D 2n and a weight w.e/ 2 IN for each edge e 2 E.
Find a partition of V into two subsets V1 and V2 with jV1j D jV2j D n, such that the
sum of the weights of the edges that have one endpoint in V1 and one endpoint in V2

is minimal, i.e., such that

c.V1; V2/ D
X

e2E\.V1�V2/

w.e/

is minimal. ut

An obvious neighborhood function for UGP is the swap neighborhood function
in which the neighbors of a partition .V1; V2/ are obtained by interchanging a node
from V1 with a node from V2. Variable-depth search gives an effective approach
for making the swap neighborhood function more powerful. The main idea is that
we allow multiple swaps to be performed simultaneously. We call the resulting
neighborhood function Kernighan-Lin, after its two inventors. For each i with
1 � i � n, the Kernighan-Lin neighborhood of a partition .V1; V2/ contains exactly
one partition that is obtained from .V1; V2/ by exchanging i nodes from V1 with i

nodes from V2.
The n Kernighan-Lin neighbors of a partition .V1; V2/, written as .V

.i/
1 ; V

.i/
2 / for

1 � i � n, can be determined in n steps as follows. In Step i we derive partition
.V

.i/
1 ; V

.i/
2 / by performing the best possible swap on .V1; V2/ if i D 1 and on the

partition .V
.i�1/

1 ; V
.i�1/

2 / derived in the previous step if 2 � i � n. We are not
allowed to select a node that has already been selected before for a swap. By the best
possible swap, we mean the swap of the nodes from V

.i�1/
1 and V

.i�1/
2 that produces

the maximum decrease in cost or, if such a swap does not exist, a minimum increase
in cost. In the case of a tie, a tie-breaking rule is used to choose a unique pair of
nodes that is swapped. The neighborhood consists of n partitions because, after n

swaps, all nodes of the graph have been selected for an exchange and, by definition,
each node may only be selected once. In other words, the neighbors are obtained by
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performing iterative improvement using the best-improvement pivoting rule and the
swap neighborhood function. However, unlike the standard iterative improvement
algorithm, we have the additional constraint that each node may only be selected
once for a swap and that we accept a best cost-increasing neighbor if we are in a
local optimum.

We prove that UGP with the Kernighan-Lin neighborhood function is PLS-
complete by a reduction from another local search problem. Before defining this
problem, we introduce some terminology. Let U be a set of binary variables. A
truth assignment for U assigns to each variable in U either the value 0 (false) or
1 (true). A variable u 2 U is called a positive literal, and its negation Nu D 1 � u
is called a negative literal. A clause is a set of literals and/or constants, where a
constant has the value either 0 or 1.

Definition 16 (Positive Not-All-Equal Max-3Sat (POS NAE MAX-3SAT)).
Given is a set U of binary variables, a set C of clauses over U , and a positive
integer weight w.c/ for each clause c 2 C . A clause does not contain negative
literals, and the number of positive literals plus the number of constants in each
clause is at most three. A clause is satisfied by some truth assignment if and only if
it contains at least one literal/constant with value 1 and at least one literal/constant
with value 0. The problem is to find a truth assignment that maximizes the sum of
the weights of clauses that are satisfied. ut

A possible neighborhood function for POS NAE MAX-3SAT is the flip neigh-
borhood function in which truth assignment t 0 is a neighbor of truth assignment
t if t 0 can be obtained from t by changing (flipping) the value of one variable.
In much the same way as the Kernighan-Lin neighborhood function for UGP is
obtained by applying variable-depth search to the swap neighborhood function, the
Kernighan-Lin neighborhood function for POS NAE MAX-3SAT is obtained by
applying variable-depth search to the flip neighborhood function. This means that a
truth assignment t 0 is a neighbor of truth assignment t with respect to the Kernighan-
Lin neighborhood function if it can be derived from t by performing a sequence
of flips, where in each step the most profitable (least unprofitable) flip is chosen
from the flips that change the value of a variable that has not been flipped before
in this sequence. An arbitrary rule may be used for breaking ties. We now state
the following result without proof. For a proof, we again refer to Yannakakis [24],
Johnson, Papadimitriou, and Yannakakis [11] or Michiels, Aarts, and Korst [16].

Theorem 11. POS NAE MAX-3SAT with the Kernighan-Lin neighborhood function
is PLS-complete. ut

Knowing that POS NAE MAX-3SAT/Kernighan-Lin is PLS-complete, we are
now able to prove that UGP/Kernighan-Lin is PLS-complete.

Theorem 12. UGP with the Kernighan-Lin neighborhood function is PLS-
complete.
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Proof. Let the cut of a partition .V1; V2/ be defined as the set of edges that have one
endpoint in V1 and one in V2.

UGP is equivalent to its maximization variant in which we are asked to partition
the nodes of a graph into two sets V1; V2 of equal size, such that the weight c.V1; V2/

of the resulting cut is maximized instead of minimized. This can be seen as follows.
Let G D .V; E/ be a weighted graph with maximum weight W D maxe2E w.e/,
and let K be the complete graph on the same node set V , in which the weight of
an edge e is given by W � w.e/ if e 2 E and by W otherwise. The cost of a
partition .V1; V2/ in one variant of the problem is then equivalent to n2W minus the
cost of this partition in the other variant. This implies that both problems are indeed
equivalent.

When we inspect the given relation between the two variants, it follows easily
that the corresponding local search problems under the Kernighan-Lin neighbor-
hood function are also equivalent. As a result, we can prove the theorem by
giving a PLS-reduction .®1; ®2/ from POS NAE MAX-3SAT/Kernighan-Lin to
the maximization version of UGP with the Kernighan-Lin neighborhood function,
where we use Theorem 11, which states that the former problem is PLS-complete.

Definition PLS-reduction. Let I be an arbitrary problem instance of POS NAE
MAX-3SAT/Kernighan-Lin, and let x1; x2; : : : ; xm be the binary variables of I . The
problem instance ®1.I / is defined by the following graph G D .V; E/. Node set
V contains two nodes xi and x0

i for each variable xi in I . The nodes xi and x0
i

represent the value of the variable xi and its negation, respectively. To V we also
add the nodes y and z, which represent the constant 1, and the nodes y0 and z0, which
represent the constant 0. This concludes the definition of V .

The edge set E is partitioned into the two subsets E1 and E2. Set E1 contains
all edges that connect an unprimed node xi with its primed variant. Furthermore, it
contains an edge from each of the two 1-nodes y and z to each of the two 0-nodes y0

and z0. All these m C 4 edges are assigned the same large weight of W C 1, where
W is defined as the total weight of all clauses in I . The following two conditions
are necessary and sufficient to guarantee that a cut contains all edges from E1.

• Nodes y and z that represent the constant 1 are both assigned to the same subset,
and nodes y0 and z0 that represent the constant 0 are both assigned to the other
subset.

• The nodes xi and x0
i are assigned to different subsets for all 1 � i � m.

If these two conditions are satisfied by a partition, we say that the partition
is feasible; see Fig. 8 for an example. We can assume the following one-to-
one correspondence between a feasible partition and a truth assignment without
violating the interpretation of the nodes xi and x0

i as being the value of variable xi

and its negation. A variable xi or its negation is assigned the value 1 if and only
if the corresponding node is contained in the same subset as the variables y; z that
represent the constant 1. This means that if a variable or its negation is assigned
the value 0, then the corresponding node is contained in the same subset as the two
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Fig. 8 Feasible partition Pt D .V1; V2/ for the graph ®1.I /, where I is the problem instance of
POS NAE MAX-3SAT/Kernighan-Lin consisting of the two clauses fx1; x2; 1g and fx2; x3g. Both
clauses have a weight of two. The undashed edges are from E1 and the dashed edges are from E2.
Each edge from E1 has weight W C 1 D 5, and the weights of the edges from E2 are denoted in
the figure. Feasible partition Pt corresponds to truth assignment t with x1 D 1 and x2 D x3 D 0.
This truth assignment satisfies the clause fx1; x2; 1g but not the clause fx2; x3g

variables y0 and z0 that represent the constant 0. We define Pt as the feasible partition
corresponding to truth assignment t and R as the set of all feasible partitions, i.e.,
R D fPt j t truth assignmentg.

To be able to derive the cost of a truth assignment t from the feasible partition
Pt , we add additional edges to E via E2. For each clause c D fa; bg, we add the
edge fa; bg to E2 with the same weight as clause c, where for the constants 1 and 0
we use the nodes y and y0, respectively. If such an edge contributes its weight to the
cost of a feasible partition Pt , then a and b are assigned to different subsets, which
imply that the clause fa; bg is satisfied by truth assignment t .

For a clause c D fa; b; cg of weight w, we include the three edges fa; bg, fb; cg,
and fa; cg in E2, each with weight w=2. It can be verified that the cut of a potentially
infeasible partition contains either two out of the three edges or none of the three
edges. Moreover, for a feasible partition Pt , the former case implies that clause c is
satisfied by t , and the latter case implies that c is not satisfied by t . As a result, the
edges contribute w to the cost of a feasible partition Pt if c is satisfied by t and they
do not contribute otherwise. We note that if a pair of nodes a; b occurs in several
clauses, we assign to edge fa; bg the weight obtained by summing up the weights
that arise from all these clauses. This concludes the definition of G and therefore of
problem instance ®1.I /. To complete the definition of our PLS-reduction, we define
algorithm ®2 in such a way that it returns for a potentially infeasible partition P the
truth assignment that assigns to a variable xi the value 1 if and only if it is contained
in the same subset as variable y. Note that this algorithm complies with the given
relation between a truth assignment t and the feasible partition Pt .

Proof strategy. As the total weight W of the edges from E2 that can be in the cut of
a partition is strictly smaller than the weight W C 1 of a single edge in E1 and as
the cut of a feasible partition contains all edges from E1, we can make the following
observation.
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Fig. 9 Correspondence
between arc in transition
graph TI and arc in transition
graph T®1.I /

t
ϕ2 I Pt)( ,

t′ Pt ′

Pt
Pt

ϕ2 I Pt′)( , Pt′

Tϕ1 I( )TI

Observation. The minimum cost over all feasible partitions is strictly larger than
the maximum cost over all infeasible partitions.
This implies that, for any feasible partition Pt , the transition graph T®1.I / of ®1.I /

only contains outgoing arcs to other feasible solutions. Consequently, to prove that
.®1; ®2/ correctly defines a PLS-reduction, it suffices to prove that the transition
graph satisfies the following two conditions.

• Condition 1. T®1.I / contains an arc .Pt ; Pt 0/ if and only if TI contains the arc
.t; t 0/. See Fig. 9.

• Condition 2. For any partition P … R, transition graph T®1.I / contains a path to
a feasible partition.

In the proof we assume that, to determine the Kernighan-Lin neighborhood of a
partition, an arbitrary rule is used for breaking ties in the case that several pairs
of nodes qualify for being selected for a swap. Given this rule, we may choose
the tie-breaking rule used to determine the Kernighan-Lin neighborhood of a truth
assignment as we like because the PLS-completeness result for POS NAE MAX-
3SAT/Kernighan-Lin holds regardless of this rule.

Proof of Condition 1. As the cost of a feasible partition Pt is given by jE1j.W C 1/

plus the cost of truth assignment t , the first condition holds if we can prove that
for any truth assignment t , partition Pt and t have the same neighborhood. More
precisely, it suffices to show that Pt 0 is a neighbor of Pt for t 0 ¤ t if and only if t 0 is
a neighbor of t . Until all pairs of nodes xi ; x0

i have been swapped and thus blocked,
we only swap pairs xi ; x0

i of nodes when deriving the neighbors of Pt . This is true
since swapping such a pair in a feasible partition results again in a high-quality,
feasible partition, while swapping any other pair of nodes results in a low-quality,
infeasible partition. After all pairs of nodes xi ; x0

i have been swapped, the nodes y; z
and y0; z0 are swapped in two steps, where the intermediate partition is infeasible.
This brings us back to partition Pt .

Swapping xi and x0
i has the same effect on the cost of a feasible partition as

flipping the value of variable xi on the cost of the corresponding truth assignment.
As a result, we obtain that, if the same rule is used for breaking ties in the
derivation of the Kernighan-Lin neighborhood of t as is used in the derivation of
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the Kernighan-Lin neighborhood of Pt , then the feasible neighbors of Pt , excluding
Pt , correspond to the truth assignments in the neighborhood of t . This proves the
first claimed condition given above.

Proof of Condition 2. To prove the second condition, suppose that it does not hold,
which means that an infeasible partition OP exists that is locally optimal. We show
that this gives rise to a contradiction. As OP D .V1; V2/ is infeasible, either V1

contains a pair u; u0 of corresponding nodes or the two 1-nodes y; z are split.
First of all, consider the former case. Obviously, V2 also contains a pair v; v0 of
corresponding nodes as jV1j D jV2j. Swapping u and v leads to a weight gain of at
least W C 1 via the edges from E1, and it leads to a weight reduction of at most W

via the edges from E2. This contradicts the assumption that OP is locally optimal.
Next, assume that the two 1-nodes are split but that V1 does not contain a pair u; u0

of corresponding nodes. The two 0-nodes then also have to be in different subsets.
Swapping a 0-node from one subset with a 1-node in the other subset yields a cost
improvement of 2.W C 1/. Again, this contradicts the local optimality of OP . ut

It follows from the definition of PLS that an improving solution can be found in
polynomial time if it exists. This is true for k-Opt, where an improving tour can be
found in O.nk/ time. However, this is only practical for very small k. An interesting
question is whether we can do better. This is studied by Marx [15] and Guo et al. [8].
They prove for a number of TSP neighborhood functions that the answer to this
question is negative. However, the complexity may be exponential in k.

Time Complexity of Iterative Improvement

While the focus of the previous section was on the computational complexity
of local search problems, we now study the time complexity of the iterative
improvement algorithm when it is used to solve such a problem. A local search
problem can be formulated as finding a node in a transition graph with outdegree
zero. Iterative improvement is the obvious algorithm for tackling this problem. It
traverses a transition graph, which is directed and acyclic, until it reaches a node
without outgoing arcs. The precise path that the algorithm follows is determined
by the pivoting rule. This rule specifies the neighboring solution that is selected if
a solution has more than one neighbor with better cost. In terms of the transition
graph, the pivoting rule prescribes which arc is to be selected in a given node if it
has multiple outgoing arcs. Ideally, we would like to use a pivoting rule that takes
the shortest path to a local optimum. However, computing this rule may be NP-hard,
as, for instance, is the case for TSP with the 2-change neighborhood function [6].

As most of the neighborhood functions used in practice induce relatively small
neighborhoods, which is reflected in our definition of the class PLS, it is generally
easy to derive efficient implementations of commonly used (heuristic) pivoting
rules as first improvement and best improvement. Hence, with regard to the time
complexity of iterative improvement, we are particularly interested in the number
of iterations required by iterative improvement. Obviously, the maximum number of



330 W. Michiels et al.

iterations required by iterative improvement is bounded from above by the longest
path that occurs in the transition graph. This upper bound holds regardless of the
pivoting rule used and the solution with which the algorithm starts. Whether or not
this bound is tight depends on the pivoting rule applied and on the algorithm we use
for generating the initial solution. With regard to the starting solution of iterative
improvement, we generally do not want to make any assumptions. A reason for this
is that because the quality of a starting solution generally has a major effect on the
quality of the final solution, we want to have the opportunity to tune the algorithm
that derives a starting solution to the application we are considering. Another reason
is that, in order to make multiple runs of iterative improvement successful, we like
to initialize each run with a solution that is quite different from the starting solutions
used in the other runs.

Suppose that we apply iterative improvement to solve a problem …LS in PLS
and let c be the cost of the solution with which we initialize the algorithm.
Because the cost function is assumed to be integral and because in each iteration
of iterative improvement the cost of the solution improves, the number of iterations
the algorithm needs for reaching a local optimum is bounded by jc �f �j, where f �

is the cost of an optimal solution. From this, it follows that if in the combinatorial
optimization problem underlying …LS the cost of a solution is polynomially
bounded in the input size, then iterative improvement can be implemented to run
in polynomial time for …LS.

Although not satisfying this strong constraint, the cost functions of many
combinatorial optimization problems satisfy the weaker property that the cost of a
solution is polynomially bounded in the input size and the magnitude of the largest
number that occurs in the problem instance. In these cases iterative improvement
has a pseudo-polynomial running time. Examples include the already discussed
problems TSP and UGP. For TSP the cost of a solution is, for instance, bounded by n

times the longest distance in the distance matrix. In the combinatorial optimization
problem underlying circuit/flip, the cost function does not even satisfy this weaker
property.

In the next two subsections, we describe two different strategies for analyzing
the time complexity of iterative improvement. In the first subsection, we give an
example of the strategy where we analyze a specific implementation of iterative
improvement. That is, the analysis assumes a certain pivoting rule. In the next
subsection, we take a more generic strategy where we further exploit the theory
of PLS-completeness to derive negative results that hold regardless of the pivoting
rule used.

Ad Hoc Strategies

In the literature, a number of results have appeared on the maximum number of
iterations that are required by an implementation of iterative improvement. Proving
a negative result, i.e., that the number of iterations can be exponential, is easiest
if we assume the pivoting rule that selects an improving neighbor randomly. In
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that case, we only need to show that there exists a path in the transition graph
that has exponential length. An example of this is given in the result below from
Luecker [14]. We note, however, that the result has been improved by Englert,
Röglin and Vöcking [4] who prove that also for Euclidean TSP, the 2-change
neighborhood function may result in an exponential number of iterations.

Theorem 13. For Metric TSP with the 2-change neighborhood function, iterative
improvement may require an exponential number of iterations to reach a local
optimum if the pivoting rule is used that selects an improving move randomly.

Proof. Consider a problem instance I of Symmetric TSP instead of Metric TSP.
By adding to each entry dij of the distance matrix d the maximum distance dmax
occurring in d , we obtain a distance matrix that satisfies the triangle inequality. This
modification does not affect a run of iterative improvement as for any tour it results
in a length increase of exactly n � dmax. Hence, to prove the theorem, it suffices to
show that it holds for Symmetric TSP.

We now proceed as follows. For any even n, we construct a problem instance
I of Symmetric TSP consisting of n cities. For this problem we then derive
a sequence of exponentially many tours that can be visited successively by the
iterative improvement algorithm. Note that because iterative improvement runs in
pseudo-polynomial time for Symmetric TSP, the distance matrix of I will have to
contain distances of exponential length.

Because we are considering Symmetric TSP, we have dij D dji . Therefore, it
suffices to define the distance dij for the case where i � 2 and either j > i or
j D 1. The definition of the distance matrix d is visualized in Fig. 10. Formally, for
even i � 2, the distance dij is given by 22iC3 if j is odd and either j D 1 or j > i ,
and dij is given by dij D 22iC4 if j is even and j > i . For odd i � 2, we apply the

22i

22i+3

i

22i+3

22i+4

i

1 i+1 i+3

n-1

i+2
i+4

i+6

n

1 i+2 i+4

n-1

i+1
i+3

i+5

n

i even i odd

odd cities

even cities

Fig. 10 Definition of the distance matrix d in the problem instance of Symmetric TSP introduced
in the proof of Theorem 13, where i � 2 is an arbitrary city that is either even (left) or odd (right)
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same case distinction: dij is given by 22i if j is odd and either j D 1 or j > i , and
it is given by 22iC3 if j is even and j > i .

We prove that iterative improvement can take an exponential number of iterations
to transform the tour .1; 2; : : : ; n/ into the tour .1; n � 1; n � 2; : : : ; 2; n/ for the
problem instance described. We prove this result by showing by induction on q that
the following assertion holds. Let tour � contain a subtour x; 2; 3; : : : ; 2q C 1; y

for a q � n�2
2

, where x and y are cities, possibly 1 and 2q C 2, such that for all
2 � i � 2q C 1 we have dx;i D d1;i and di;y D di;2qC2. Then a sequence of at
least 2q�1 improving 2-changes exists that transforms tour � into �q , where tour �q

is equivalent to � , except that the subtour x; 2; 3; : : : ; 2q C 1; y is replaced by the
subtour x; 2q C 1; 2q; : : : ; 2; y, in which the order of the 2q middle cities has been
reversed.

We first prove the basis case q D 1. Tour �q D �1 that contains x; 3; 2; y is
obtained from tour � that contains x; 2; 3; y by the single 2-change that replaces
the edges fx; 2g and f3; yg by fx; 3g and f2; yg. As 2q�1 D 1, the basis case now
follows if �1 is shorter than � . This is true because for the cost improvement �.�; �1/

of �1 in comparison with � , we can derive

�.�; �1/ D d1;2 C d3;4 � d1;3 � d2;4

D 27 C 29 � 26 � 28

> 0:

Next, consider the case q � 2. We show how � can be transformed into �q

in at least 2q�1 improving 2-changes, where we distinguish five phases in the
transformation. The final tour in phase i is denoted by �.i/. Hence, �.5/ D �q .

In the first phase, �.1/ D �q�1 is derived from � . By the induction hypothesis, this
can be done in 2q�2 improving 2-changes. In Phase 2 we next change the order of
the cities 2q and 2q C 1 in subtour x; 2q � 1; 2q � 2; : : : ; 2; 2q; 2q C 1; y of �.1/ by
performing a 2-change on the edges f2; 2qg and f2q C 1; yg. This results in a tour
�.2/ with shorter length than �.1/ since

�.�.1/; � .2// D d2;2q C d2qC1;2qC2 � d2;2qC1 � d2q;2qC2

D 28 C 24qC5 � 27 � 24qC4

> 0:

In Phase 3 the first and last edges fx; 2q � 1g and f2q; yg occurring in subtour
x; 2q � 1; 2q � 2 : : : ; 2; 2q C 1; 2q; y of �.2/ are replaced by the two edges fx; 2qg

and f2q � 1; yg. This yields a cost improvement of

�.�.2/; � .3// D d1;2q�1 C d2q;2qC2 � d1;2q � d2q�1;2qC2

D 24q�2 C 24qC4 � 24qC3 � 24qC1

> 0:
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The resulting tour �.3/ contains x; 2q; 2q C 1; 2; 3; : : : ; 2q � 1; y. By the definition
of the distance matrix, we have d2qC1;i D d1;i and di;2qC2 D di;2q for all 2 � i �

2q. As a result, we can apply the induction hypothesis to the subtour x0; 2; 3; : : : ;

2q � 1; y0 of �.3/ with x0 D 2q C 1 and y0 D y. This yields that �.3/ can be
transformed into �.4/ by at least 2q�2 improving 2-changes, where �.4/ is given by
�.3/ with the order of the cities 2; 3; : : : ; 2q�1 reversed, i.e., �.4/ contains x; 2q; 2qC

1; 2q � 1; 2q � 2; : : : ; 2; y. In the final phase, we reverse the order of the cities 2q

and 2q C 1 by performing a 2-change on fx; 2qg and f2q C 1; 2q � 1g. This again
results in an improvement of the tour as we have

�.�.4/; � .5// D d1;2q C d2q�1;2qC1 � d1;2qC1 � d2q�1;2q

D 24qC3 C 24q�2 � 24qC2 � 24qC1

> 0:

In conclusion, we have transformed � into �.5/ D �q by only performing
improving 2-changes. The total number of 2-changes is at least 2q�2 in Phase 1,
one in Phases 2 and 3, at least 2q�2 in Phase 4, and one in Phase 5. This makes a
total of more than 2q�1 improving 2-changes. This proves the induction hypothesis
and consequently it proves the theorem. ut

The above result does not match the subquadratic number of iterations that one
observes in practice [10]. To better understand the average case behavior, Chandra,
Karloff, and Tovey [2] analyzed the expected length of the longest path in the
transition graph in case the n cities are placed uniformly at random in the unit
square. They proved an expected length of O.n10 log.n//.

General Strategy

Suppose that, either empirically or via an analysis as given in the above subsection,
we find out that iterative improvement takes an exponential number of steps. A
question that arises is whether this bad worst-case behavior can be avoided by
choosing a less naive pivoting rule or whether it is unavoidable due to the structure
of the transition graph. This means that we are interested in the question of whether
iterative improvement would still run in worst-case exponential time if for the
pivoting rule we were to have an oracle at our disposal that gives us a neighbor
that leads to a nearest local optimum. This problem, called the transition graph
complexity problem, is formalized as follows.

Definition 17. Let T be a transition graph and let OV be the nodes with outdegree
zero (they represent the local optima). The potential of a node v is the minimum
distance in T between v and a node in OV . The potential of T is the maximum
potential over all its nodes.
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Definition 18. For a given local search problem …LS, the transition graph com-
plexity problem corresponds to deciding whether …LS can induce transition graphs
with an exponentially large potential. ut

In this section we study the transition graph complexity problem for PLS-
complete problems. For PLS-complete problems, we already know that, unless
PO D PLS, they cannot be solved in polynomial time. Solving the transition graph
complexity problem gives us additional information on whether the unavoidable
exponential running time is caused by the structure of the transition graph or is only
caused by the intractability of computing an optimal pivoting rule.

The reason we introduced local search problems is that they are the problems
that are actually solved by iterative improvement. Solving a local search problem
is generally not a goal in itself. Therefore, considerably less attention has been
paid by scientists to solving these problems efficiently than to finding efficient
algorithms for NP-hard combinatorial optimization problems and NP-complete
decision problems. As a result, we have stronger evidence for the inequality P ¤

NP, which is equivalent to PO ¤ NPO, than for PO ¤ PLS. This brings us to the
second relevant implication of knowing that the potential of a transition graph can
be exponentially large for a given PLS-complete problem. It proves an exponential
worst-case running time for iterative improvement even in the case that PO D PLS.
We nevertheless emphasize that it is commonly believed that PO ¤ PLS holds.

To solve the transition graph complexity problem, we proceed as follows. We
defined PLS-reductions such that if …LS / …0

LS holds and if …LS cannot be solved
in polynomial time, then …0

LS cannot be solved in polynomial time either. Below
we refine the definition of a PLS-reduction such that, in addition to this behavior,
we have that if …LS / …0

LS holds and if a transition graph for …LS can have
an exponentially large potential, then a transition graph of …0

LS can also have an
exponentially large potential. This more powerful PLS-reduction is called a tight
PLS-reduction. We show that the class PLS contains a local search problem for
which the transition graph can have an exponentially large potential. Furthermore,
most known PLS-reductions, including the ones for circuit/flip and Theorem 11, are
tight [11, 16, 24]. We now elaborate a bit more on the details.

Let .®1; ®2/ define a PLS-reduction between two local search problems …LS

and …0
LS, and let I D .S; f; N / be an arbitrary problem instance of …LS with

image ®1.I / D .S 0; f 0; N 0/. By definition, algorithm ®2 maps any solution in
S 0 to a solution in S , such that a local optimum in S 0 is also a local optimum
in S . Figure 11a depicts possible transition graphs TI and T®1.I / of I and ®1.I /,
respectively, and a possible choice for ®2. For .®1; ®2/ to be a tight PLS-reduction,
a subset R of S 0 has to exist that satisfies the following three conditions. In the first
place, ®2 has to be surjective for I when restricting the solution set S 0 of ®1.I /

to R. This means that for each solution s 2 S , a solution s0 2 R must exist that
is mapped to s by algorithm ®2. Furthermore, solution s0 must be computable in
polynomial time. Note that for .®1; ®2/ to be a standard PLS-reduction it is not
necessary that ®2 is surjective for a given problem instance, as follows from Fig. 6.
The second condition on R is that it contains all local optima of ®1.I /. Figure 11b,
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Tϕ1 I( )TI

ϕ2

Tϕ1 I( )TITϕ1 I( )TI Tϕ1 I( )TI

ϕ2
Rϕ2

R ϕ2
R

(a) (c)(b) (d)

Fig. 11 (a) Transition graphs TI of I D .S; f; N / and T®1.I / of ®1.I / D .S 0; f 0; N 0/ and
algorithm ®2 for some local search problem instance I and PLS-reduction .®1; ®2/. A dashed arc
originates from an s0 2 S 0 and points to s D ®2.I; s0/. (b)–(c) Invalid choices of R, where R is
given by S 0 minus the shaded solutions in transition graph T®1.I /. ®R

2 denotes algorithm ®2 for I

with the solution set S 0 of ®1.I / restricted to R. (d) Valid choice of R

c give examples of R that do not satisfy the first and second condition, respectively,
and Fig. 11d gives an example of R that satisfies both conditions. The third and last
condition that has to be satisfied is that if in T®1.I / a solution s0

2 2 R can be reached
from a solution s0

1 2 R without visiting any other solution from R, then the distance
between the corresponding solutions in S is not too large, i.e., it is polynomially
bounded.

Definition 19. Local search problem …LS is tightly PLS-reducible to local search
problem …0

LS, denoted by …LS /tight …0
LS, if a PLS-reduction .®1; ®2/ exists, such

that for a polynomial p the following holds. For any problem instance I D .S; f; N /

of …LS with image instance ®1.I / D .S 0; f 0; N 0/ of …0
LS, we can choose a subset

R � S 0 that satisfies the following properties.

• For any s 2 S we can construct in polynomial time a solution s0 2 R with
®2.I; s0/ D s.

• R contains all local optima in S 0.
• If transition graph T®1.I / of ®1.I / contains a direct path from s0

1 2 R to s0
2 2 R,

then the distance from s1 D ®2.I; s0
1/ to s2 D ®2.I; s0

2/ in transition graph TI of
I is bounded from above by p.jI j/, where a path in T®1.I / is said to be direct if,
except for the first and last solution, it only contains solutions outside R.

The pair .®1; ®2/ is called a tight PLS-reduction. ut

Definition 20. A local search problem in PLS is tightly PLS-complete if each
problem …LS 2 PLS is tightly PLS-reducible to it. ut
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This definition of a tight PLS-reduction preserves the property that a transition
graph induced by a problem can be exponential, as shown in the following. By
the last condition in Definition 19, we have that if the distance between any two
solutions s0

1 2 R and s0
2 2 R in T®1.I / is ds0

1;s0

2
, then ds0

1;s0

2
� p.jI j/ gives an upper

bound on the distance between the corresponding solutions s1 D ®2.I; s0
1/ and s2 D

®2.I; s0
2/ in TI . As R contains all local optima, this implies that if s0 2 R is within k

steps of a local optimum Os 0 in T®1.I /, then solution s D ®2.I; s0/ is within k � p.jI j/

steps of Os D ®2.I; Os 0/, which by the definition of a PLS-reduction is a local optimum
in S . Hence, by the second condition in Definition 19, the potential of TI is at most
p.jI j/ larger than the potential of T®1.I /. Because the input size of ®1.I / is bounded
from above by a polynomial in the input size of I , this implies that if TI has an
exponentially large potential, then T®1.I / must have one as well. We thus arrive at
the following result.

Lemma 5. If .®1; ®2/ defines a tight PLS-reduction from local search problem …LS

to local search problem …0
LS and if the potential of …LS cannot be bounded by a

polynomial, then neither can the potential of …0
LS. ut

By Lemma 5, it now suffices to indicate one local search problem in PLS for
which the transition graph can have an exponentially large potential to conclude
that this result holds for any tightly PLS-complete problem.

Lemma 6. PLS contains a local search problem for which the potential of the
transition graph cannot be bounded by a polynomial.

Proof. Consider the trivial combinatorial optimization problem that, given an
integer n, asks for the smallest integer i between 1 and n. This means that we want
to minimize the cost function f .i/ D i with 1 � i � n. For this problem, we
consider the solution space consisting of the integers 1; 2; : : : ; n, and we assume
a neighborhood function in which integer 1 has no neighbors and integer i � 2

has only one neighbor, namely, i � 1. This yields a local search problem that is
obviously in PLS. Furthermore, the transition graph is given by a single directed
path that successively visits the solutions n; n �1; : : : ; 1. The potential of this graph
equals the distance from n to 1, which is n � 1. This is exponentially large as the
input size is only log n. ut

Theorem 14. For a tightly PLS-complete problem, iterative improvement requires
an exponential number of iterations in the worst case to reach a local optimum,
regardless of the pivoting rule used. ut

It can be verified from the definition that the PLS-reduction given in Theorem 12
is tight. Furthermore, as shown in [11, 16, 24], the problem POS NAE MAX-
3SAT/Kernighan-Lin from which the reduction is made is tightly PLS-complete.
This brings us at the following result.
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Theorem 15. The local search problem UGP/Kernighan-Lin is tightly PLS-
complete. ut

Suppose that for a combinatorial optimization problem … we have two neighbor-
hood functions N and N 0, where N 0 is a generalization of N , i.e., N .s/ � N 0.s/

for any solution s. For TSP, the 2-change and 3-change neighborhood functions are
examples of N and N 0, respectively. Then the local search problem …LS specified
by … and N is PLS-complete if this is the case for the local search problem …0

LS
specified by … and N 0. More generally, this means that to prove PLS-completeness
results for one combinatorial optimization problem and multiple neighborhood
functions it suffices to prove that the weakest neighborhood function induces a
PLS-complete problem. However, if we want to know whether the induced local
search problems are tightly PLS-complete, we can no longer restrict ourselves
to the weakest neighborhood function. It may be the case that …LS is tightly
PLS-complete, while this is not the case for …0

LS. The reason for this is that the
generalization can add arcs to the transition graph, which may decrease its potential
to a polynomially bounded value.

We refer you to Michiels, Aarts, and Korst [16] and to Monien, Dumrauf, and
Tscheuschner [17] for a set of local search problems that have been proven to be
(tightly) PLS-complete.

Relevance of PLS Beyond Local Search

Although introduced to enhance the understanding of applying local search algo-
rithms to combinatorial optimization problems, the class PLS has also found its
way to other disciplines. First of all, the theory of PLS-completeness is used in
game theory to prove the hardness of computing pure Nash equilibria. An overview
of such results until 2010 is given in [17]. Furthermore, PLS is an interesting class
of problem in between P and NP-hard. We motivate this using the argumentation
given by the excellent paper of Papadimitriou [19]. Many search problems have
proven either to be NP-complete or to belong to P. The complexity of NP-hard
problems typically results from the difficulty of deriving whether a solution exists.
As a result of this, most of the problems that have not been categorized as being
either NP-complete or in P belong to the class of total search problems. For problems
in this class, a solution is known to exist. The most well-known example of this
is factoring. It is known that any integer number can be factored into primes, but
finding the factorization is considered to be difficult. This problem has not proven
to be NP-complete, but as for NP-complete problems, many have tried to solve it in
polynomial time but without success. Therefore, it is commonly assumed that this
problem is also hard to solve. The security of the widely used cryptographic cipher
RSA even relies on this assumption.

Different classes of total search problems are used to capture the possible
different reasons why a total search problem can be hard to solve. PLS is such
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a class. Others are Polynomial Parity Argument (PPA), Polynomial Pigeonhole
Principle (PPP), and Polynomial Parity Argument for Directed graphs (PPAD).
Interesting papers in this area are [5, 7, 19].

Conclusion

Local search owes its popularity mainly to its good average-case performance.
Its worst-case performance is typically less good compared to alternative solution
approaches, like constructive algorithms. Nevertheless, studying the worst-case
performance is still valuable since it both provides performance guarantees and
enhances our understanding of the algorithm. In this chapter we discussed several
worst-case local search results that have been scattered over the literature. We pre-
sented results on the worst-case performance ratio of local search implementations
and on the time complexity of reaching a locally optimal solution. The latter results
also find their applications outside the scope of local search for combinatorial
optimization problems, viz., game theory and general computational complexity
theory.
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Abstract

Local search heuristic that explores several neighborhood structures in a de-
terministic way is called variable neighborhood descent (VND). Its success is
based on the simple fact that different neighborhood structures do not usually
have the same local minimum. Thus, the local optima trap problem may be
resolved by deterministic change of neighborhoods. VND may be seen as a local
search routine and therefore could be used within other metaheuristics. In this
chapter, we discuss typical problems that arise in developing VND heuristic:
what neighborhood structures could be used, what would be their order, what
rule of their change during the search would be used, etc. Comparative analysis
of usual sequential VND variants is performed in solving traveling salesman
problem.

Keywords
Variable neighborhood descent � Local search � Intensification � Deterministic
exploration

Introduction

Optimization is a key discipline in fields such as computer science, artificial
intelligence, and operations research. Outside these scientific communities, the
meaning of optimization becomes quite vague, going to mean simply “do it as better
as you can.” In the context of this chapter, the concept of optimization is conceived
as the process of trying to find the best possible solution to an optimization problem,
usually in a limited time horizon.

In the simplest case, an optimization problem may be defined by a 2-tuple
.X; f /, where X represents the set of feasible solutions and f is an objective
function that assigns a real number to each solution x 2 X , which represents its
quality or fitness. Then, the main objective of an optimization problem is to find
a solution x? 2 X with the best objective function value among all solutions in
the search space. Therefore, in a minimization problem, x? 2 X is a minimum
point if f .x?/ � f .x/; 8x 2 X . Notice that minimization of f is equivalent to
maximization of �f .

In optimization problems, there is usually either finite but a huge number or
infinity number of solutions and a clear criterion for the comparison among them.
Some well-known examples of optimization problems are the traveling salesman
problem (TSP), the vehicle routing problem (VRP), the quadratic assignment
problems (QAP), or scheduling problems, among others. A detailed description of
these problems can be found in [3, 36]. The difficulty of solving these problems
has been studied since the late 1970s [12]. These studies concluded that there is a
subset of problems where it is possible to design an algorithm, which presents a
polynomial computational complexity, i.e., the execution time of these algorithms
polynomially grows with the problem size. Such problems belong to the class P, and
they are considered “easy to solve.” Examples of these problems are the shortest
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path problem (Dijkstra algorithm), the minimum spanning tree (Prim or Kruskal
algorithms), or flows in networks (Ford-Fulkerson algorithm). However, computing
optimal solutions is intractable for many optimization problems of industrial and
scientific importance (i.e., there is no known algorithm with polynomial complexity
to solve it optimally). This type of problems belongs to a class known as NP, and
they are considered “hard to solve.”

In practice, we are usually satisfied with “good” solutions, which are obtained
by heuristic algorithms. In particular, metaheuristics (MHs) represent a family of
approximate [42] optimization techniques that gained a lot of popularity in the
past two decades, becoming the most promising and successful techniques for
solving hard problems. Unlike exact optimization algorithms, metaheuristics do not
guarantee the optimality of the obtained solutions. Additionally, metaheuristics do
not define how close the obtained solutions are from the optimal ones, in contrast
with approximation algorithms. MHs provide acceptable solutions in a reasonable
computing time for solving hard and complex problems in science and engineering.

The term metaheuristic was coined in 1986 [13] as a way of defining a master
process that guides and modifies other subordinate heuristics to explore solutions
beyond simple local optimality. MHs are among the most prominent and successful
techniques to solve a large amount of complex and computationally hard combi-
natorial and numerical optimization problems arising in human activities, such as
economics, industry, or engineering. MHs can be seen as general algorithmic frame-
works that require relatively few modifications to be adapted to tackle a specific
problem. They constitute a very diverse family of optimization algorithms including
methods such as simulated annealing (SA), Tabu search (TS), genetic algorithms
(GA), ant colony optimization (ACO), or variable neighborhood search (VNS).

Metaheuristics are high-level strategies for exploring the search space using
different methods. The search strategies are highly dependent on the philosophy of
the metaheuristic itself. In particular, trajectory-based metaheuristics can be seen
as intelligent extensions of traditional local search methods. The goal of this kind
of MH is to escape from a local optimum in order to proceed in the exploration
of the search space and move on to find other hopefully better local optimum.
Examples of these MHs are Tabu search [13], simulated annealing [23], or variable
neighborhood search [15], among others. Population-based metaheuristics deal with
a set of solutions instead of dealing with only one solution. These techniques
proved a natural and intrinsic way for the exploration of the search space. The final
performance of these methods strongly depends on how the population is managed.
Examples of population-based metaheuristics are genetic algorithms [19], scatter
search [14], or memetic algorithms [33], among others. Some authors consider a
third kind of metaheuristics called constructive-based metaheuristics, where the
main effort is put in the intelligent construction of the solution. In other words,
instead of starting the search from a random solution, these methods try to construct
a high-quality initial solution. Examples of constructive-based metaheuristics are
GRASP [10], ant colony optimization [5], or iterated greedy [39], among others.

The number of new proposed metaheuristics has amazingly increased in the last
25 years. Nowadays, the portfolio of MHs contains more than 50 variants, only



344 A. Duarte et al.

considering the most stabilized ones (MHs successfully applied to a relatively large
set of optimization problems). However, at the end, when designing a metaheuristic
for an optimization problem, we face with two contradictory criteria: intensification
(exploitation) and diversification (exploration). In fact, the performance of a meta-
heuristic basically relies on how it balances both criteria. The intensification of an
algorithm describes its ability to thoroughly explore the promising regions in the
hope to find better solutions. On the other hand, diversification describes the ability
of the metaheuristic to explore non-visited regions of the search space in order to
assure the evenly exploration of the search space and to avoid the confinement to the
procedure to a reduced number of regions. Therefore, when tackling an optimization
problem, it is necessary to search for the equilibrium between both criteria.

Variable neighborhood search (VNS) is a metaheuristic which was proposed in
[32] as a general framework to solve hard optimization problems. This methodology
is based on performing systematic changes of neighborhoods during the search
space exploration. VNS has evolved in recent years, resulting in a large variety of
strategies. Some of the most relevant variants are reduced VNS (RVNS), variable
neighborhood descent (VND), basic VNS (BVNS), skewed VNS (SVNS), general
VNS (GVNS), or variable neighborhood decomposition search (VNDS), among
others (see [18] for a survey on VNS). We refer the reader to [6, 8, 37, 40, 41] to
some recent and successful applications of VNS to hard optimization problems.

In this chapter, we focus on the deterministic variant of VNS, namely, variable
neighborhood descent (VND). VND deserves separate attention since it is usually
used in context of other metaheuristics as a local search routine. Once the set of
neighborhood structures is selected, to be used in a deterministic manner, the VND-
based local searches may be designed in three possible ways: (i) sequential VND,
where neighborhoods are placed in the list with a given order and always explored
in that order; (ii) nested or composite VND, where neighborhood operators are
composed, i.e., N1.N2.N3.: : : .x//// (neighborhood one of neighborhood two of
neighborhood three, etc. of x; and (iii) mixed nested VND, where the two previous
strategies are combined.

In this chapter, we first give some possible classification of neighborhood
structures that are usually used in solving continuous and discrete optimization
problems. Then we provide pseudocodes of sequential, composite, and mixed nested
variants of VND. Variants of sequential VND are compared on traveling salesman
problem.

Neighborhoods

The representation (encoding) of a solution in an optimization problem plays a
relevant topic in the design of an algorithm. In fact, as it is well documented,
this representation determines the difficulty of solving a problem [12] and also the
complexity of some routines within algorithm. In addition, this encoding strongly
influences the way in which the neighborhoods of a given solution are defined.
Therefore, it is not possible to separate the neighborhood of a solution from its
corresponding representation in the computer memory.
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Let us assume without loss of generality that each solution x 2 X is represented
by a vector x D .x1; : : : ; xn/, being n the size of the problem. Depending on the
values of each xi , we can distinguish among different types of problems: continuous
(xi 2 R), binary (xi 2 f0; 1g), integer (xi 2 N), or permutations (xi 2 N, 1 �

xi � n and xi ¤ xj if i ¤ j ). We could also identify a fifth class of problems
which encompasses mixed variables. In this section, we describe the most common
neighborhoods defined in the related literature as well as some basic properties.

Neighborhoods for Continuous Optimization Problems

The continuous constrained nonlinear global optimization problem (GOP) in gen-
eral form is given as follows:

.GOP /

2
664

min f .x/

s.t. gi .x/ � 0 8i 2 f1; 2; : : : ; mg

hi .x/ D 0 8i 2 f1; 2; : : : ; rg

aj � xj � bj 8j 2 f1; 2; : : : ; ng

where x 2 R
n, f W Rn ! R, gi W R

n ! R, i D 1; 2; : : : ; m, and hi W R
n ! R,

i D 1; 2; : : : ; r are possibly nonlinear continuous functions and a; b 2 R
n are the

variable bounds.
GOP naturally arises in many applications, e.g., in advanced engineering design,

data analysis, financial planning, risk management, scientific modeling, etc. Most
cases of practical interest are characterized by multiple local optima, and, therefore,
in order to find the globally optimal solution, a global scope search effort is needed.

If the feasible set X is convex and objective function f is convex, then GOP is
relatively easy to solve, i.e., the Karush-Kuhn-Tucker conditions may be applied.
However, if X is not a convex set or f is not a convex function, we could have
many local minima, and thus, the problem may not be solved by using classical
techniques.

For solving GOP, neighborhood structures Nk.x/ are usually induced from the
`p metric:

�.x; y/ D

 
nX

iD1

jxi � yi j
p

!1=p

(1 � p <1) (1)

or

�.x; y/ D max
1�i�n

jxi � yi j (p !1). (2)

The neighborhood Nk.x/ denotes the set of solutions in the k–th neighborhood of
x, and using the metric �, it is defined as:

Nk.x/ D fy 2 X j �.x; y/ � �kg; (3)

or

Nk.x/ D fy 2 X j �k�1 � �.x; y/ � �kg; (4)
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where �k , known as the radius of Nk.x/, is monotonically increasing with k.
Note that in some papers neighborhoods structures in R

n are not induced from
the `p metric (see e.g., [1]).

Neighborhoods for Binary Problems

There are a large family of optimization problems, whose solution is usually
represented as a binary array, where the presence or absence of an element is
described by means of a binary variable. The knapsack problem [28], the max-cut
problem (MCP) [29], or the maximum diversity problem [7] are examples of these
problems. For solving binary problems, neighborhood structures Nk.x/ are usually
induced from the Hamming metric:

dH .x; y/ D

nX
iD1

jxi � yi j (5)

More precisely, the k–th neighborhood of a solution x, i.e., Nk.x/, relatively to
Hamming metric, is defined as

N Bin
k .x/ D fy 2 X j dH .x; y/ D kg (6)

We will use the max-cut problem to illustrate the most relevant characteristics of
binary problems. Consider a graph G D .V; E/ with vertex set V and edge set E.
Let wij be the weight associated with edge .i; j / 2 E. A cut.W; W 0/ is a partition
of V into two sets W , W 0 D V nW , and its value is given by the expression:

cut.W; W 0/ D
X

i2W^j2W 0

wij

The max-cut problem (MCP) consists of finding a cut in G with maximum
value. Karp [22] showed that MCP is an NP-hard problem. Figure 1a shows an
example graph with five vertices and seven edges where the number close to each
edge represents the corresponding weight. Figure 1b shows a possible solution,
x D .W; W 0/, where W D f1; 2g and W 0 D f3; 4; 5g. The value of this solution is
cut.W; W 0/ D 9 C 14 C 10 C 5 D 38, computed as the sum of the edges whose
endpoints are in different sets (dashed edges). This solution can be represented as
a binary vector x D f1; 1; 0; 0; 0g where xi D 1 indicates that the corresponding
vertex is in W , while xi D 0 means that the vertex is in W 0.

For a given solution x of a MCP, we define N Bin
drop.x/ neighborhood using the

drop.x; i/ move operator. This operator is responsible of changing the value of a
variable xi from 1 to 0, producing a new solution x0. The associated neighborhood,
N Bin

drop.x/, has size n (in the worst case) and is a subset of N Bin
1 .x/. Formally,

N Bin
drop.x/ is defined as:

N Bin
drop.x/ D fx0  drop.x; i/ W xi D 1 ^ 1 � i � ng
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Fig. 1 Example of graph with five vertices and seven edges and a possible solution for the MCP.
(a) Example of a graph. (b) Solution x D f1; 1; 0; 0; 0g
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Fig. 2 Solutions generated when performing the different moves to the one depicted in Fig. 1b.
(a) x0  drop.x; 2/. (b) x00  add.x; 5/. (c) x000  swap.x; 1; 3/

Figure 2a shows an example of a this type of move. In particular, drop.x; 2/

considers the solution x (depicted in Fig. 1b), removes the vertex 2 from W , and
includes it in W 0, producing a new solution xdrop D f1; 0; 0; 0; 0g. The Hamming
distance between x and x0 is 1 since there is only one vertex located in a different
group.

Symmetrically, we define the add.x; i/ as the move operator responsible of
changing the value of a variable xi from 0 to 1, producing a new solution xadd.
Considering the MCP, this move operator removes a vertex from W 0 and includes it
in W . This move is represented as x00  add.x; i/, and the neighborhood, N Bin

add .x/,
with size n in the worst case, is:

N Bin
add .x/ D fx00  add.x; i/ W xi D 0 ^ 1 � i � ng

Figure 2b shows the move add.x; 1/. It considers again the solution x (depicted in
Fig. 1b), removes the vertex 1 from W 0 including it in W . The Hamming distance
between the new produced solution, x00 D f1; 1; 0; 0; 1g, and x is again 1.
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Finally, we define N Bin
swap.x/ neighborhood as a subset of N Bin

2 .x/ defined by
swap move. Swap move is defined as an operation that changes the value of one
variable xi from 1 to 0, and simultaneously a different variable xj change the value
from 0 to 1. This move interchanges a vertex from W to W 0 and, simultaneously a
different vertex from W 0 to W . This move is represented as x000  swap.x; i; j /,
and the neighborhood, N Bin

swap.x/ (with size n2 in the worst case), is:

N Bin
swap.x/ D fx000  swap.x; i; j / W xi ¤ xj ^ 1 � i; j � ng:

Figure 2c shows the move swap.x; 1; 3/. It considers again the solution x

(depicted in Fig. 1b) and interchanges the vertex 1 and 3 between W and W 0,
respectively. The Hamming distance between the new produced solution, x000 D

f0; 1; 1; 0; 0g, and x is in this case 2.

Neighborhoods for Integer Problems

There are some optimization problems where the solution x is represented as a
vector of n variables, x D .x1; x2; : : : ; xn/, such that l � xj � u for all j

(i.e., assuming that all variables are integer and bounded within the interval Œl; u�).
For example, the solutions to the set covering problem [9], the capacitated task
allocation problem [24], or the maximally diverse grouping problems [11] can be
represented as a vector of integer values. For solving these problems, neighborhood
structures N Int

k .x/ are usually induced from the metric defined as:

�int.x; y/ D

nX
iD1

jxi � yi j (7)

or

�int.x; y/ D max
1�i�n

jxi � yi j (8)

The neighborhood N Int
k .x/ denotes the set of solutions in the k–th neighborhood

of x, and it is defined as

N Int
k .x/ D fy 2 X j �int.x; y/ � kg (9)

or

N Int
k .x/ D fy 2 X j k � 1 � �int.x; y/ � kg (10)

We use the maximally diverse grouping problem to illustrate neighborhoods for
integer problems. It consists of grouping a set of M elements into G mutually
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Fig. 3 Example of the maximally diverse grouping problem

disjoint groups in such a way that the diversity among the elements in each group
is maximized. The diversity among the elements in a group is calculated as the
sum of the individual distances between each pair of elements, where the notion of
distance depends on the specific application context. The objective of the problem
is to maximize the overall diversity, that is, the sum of the diversity of all groups.
Figure 3 shows an example of a graph with ten vertices where we must select
three groups of elements. For the sake of clarity, we only represent the distances
among selected elements. In addition, we use different shapes to differentiate the
vertices on each group. In particular, group 1 (diamond shape) is G1 D f1; 4; 9g

whose distances among edges are represented with dashed lines; group 2 (rectangle
shape) is G2 D f3; 5; 8g represented with dotted lines; and group 3 (circle shape)
is G3 D f2; 6; 7; 10g represented with solid lines. Therefore, this solution can be
represented as a vector x D f1; 3; 2; 1; 2; 3; 3; 2; 1; 3g (i.e., each vertex i is located
in group xi ).

With this representation, we define the following moves:

Exchange of values (Swap move): given a solution x, the exchange of the
values of the variables xi and xj is denoted by swap.x; i; j / and generates a
new solution x0 such that x0k D xk , 8k ¤ i; j , and x0i D xj , x0j D xi . Note that
resulting solution x0 belongs to the neighborhood

N Int
0 .x/ D fy 2 X j max

1�i�n
jxi � yi j D 0g:

Replacement of a single value (Replacement move): given a solution x, the
replacement move denoted by replace.x; j; i/ creates a solution x0 for which
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Fig. 4 Example of moves applied to a solution for the maximally diverse grouping problem.
(a) x0  swap.x; 6; 5/. (b) x00  replace.x; 2; 1/

x0k D xk , 8k ¤ j , and x0j D i . The move is such that xj ¤ i . In this case, the
resulting solution x0 belongs to the neighborhood

N Int
m .x/ D fy 2 X j

X
1�i�n

jxi � yi j � mg;

where m D jxj � i j.

Given the solution x D f1; 3; 2; 1; 2; 3; 3; 2; 1; 3g, the move swap.x; 6; 5/

interchanges the corresponding group of vertices 6 and 5, producing the solution
x0 D f1; 3; 2; 1; 3; 2; 3; 2; 1; 3g (see Fig. 4a). Similarly, the move replace.x; 2; 1/

includes the vertex 2 in group 1 (removing it from its original group). The final
solution in this case is x00 D f1; 1; 2; 1; 2; 3; 3; 2; 1; 3g (see Fig. 4b).

Neighborhoods for Permutation Problems

In permutation-based representations, a solution is typically expressed as a labeling
(permutation), where each element receives a unique label from 1 to n, being n

the size of the problem. The traveling salesman problem [35], the linear ordering
problem [30], or the cutwidth minimization problem [34] are examples of this
kind of problems. For solving these problems, neighborhood structures N Int

k .x/

may be induced using several metrics (see e.g., [4] for possible metric). However,
neighborhoods are usually induced from the Cayley distance:

�perm.x; y/ WD the minimum number of transpositions needed to obtain y from x
(11)

So, the neighborhood N Perm
k .x/ denotes the set of solutions in the k–th neighbor-

hood of x, and it is defined as:

N Perm
k .x/ D fy 2 X j �perm.x; y/ D kg (12)
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Fig. 5 Graph with six vertices and seven edges and an example solution for the CWP. (a) Example
graph. (b) Cutwidth of G for a labeling x

We use the cutwidth minimization problem (CMP) to illustrate some neighbor-
hoods for permutation-based problem. It can be easily described in mathematical
terms. Given a graph G D .V; E/ with n D jV j and m D jEj, a labeling or linear
arrangement x of G assigns the integers f1; 2; : : : ; ng to the vertices in V , where
each vertex receives a different label. The cutwidth of a vertex v with respect to
x, C Wx.v/, is the number of edges .u; w/ 2 E satisfying x.u/ � x.v/ < x.w/. In
mathematical terms:

C Wx.v/ D jf.u; w/ 2 E W x.u/ � x.v/ < x.w/gj

The cutwidth of G with respect to x is defined as the maximum value of all
C Wx.v/ for v 2 V . More formally:

C Wx.G/ D max
v2V

C Wx.v/

The optimum cutwidth of G is then defined as the minimum C Wx.G/ over all
possible layouts of G. This optimization problem is NP-hard even for graphs with a
maximum degree of three [27]. Figure 5a shows an example of an undirected graph
with six vertices and seven edges. Figure 5b shows a labeling, x, of the graph in
Fig. 5a, setting the vertices in a line with the order of the labeling, as commonly
represented in the CMP. We represent x with the ordering .C; A; D; E; B; F /

meaning that vertex C is located in the first position (label 1), vertex A is located
in the second position (label 2), and so on. In Fig. 5c, the cutwidth of each vertex is
represented as a dashed line with its corresponding value. For example, the cutwidth
of vertex C is C Wx.C / D 1, because the edge .C; B/ has an endpoint in C labeled
with 1 and the other endpoint in a vertex labeled with a value larger than 1. In a
similar way, we can compute the cutwidth of vertex A, C Wx.A/ D 4, by counting
the appropriate number of edges: .C; B/; .A; B/; .A; E/, and .A; D/. Then, since
the cutwidth of the graph G, C Wx.G/, is the maximum of the cutwidth of all
vertices in V , in this particular example, we obtain C Wx.G/ D C Wx.D/ D 5.



352 A. Duarte et al.

The associated neighborhoods for this optimization problem are typically
based on two different move operators. The first one is referred to as
exchange. Given a solution x D .v1; : : : ; vi ; : : : ; vj ; : : : ; vn/, we define
exchange.x; i; j / as exchanging in x the vertex in position i (i.e., vertex vi )
with the vertex in position j (i.e., vertex vj ), producing a new solution x0 D

.v1; : : : ; vi�1; vj ; viC1; : : : ; vj�1; vi ; vjC1; : : : ; vn/. So, exchange move represents
a transposition. For the sake of simplicity, we denote x0 D exchange.x; i; j /. The
associated neighborhood N Perm

exchange, obtained applying all possible exchange moves,
has size n.n � 1/=2, and it is formally defined as:

N Perm
exchange.x/ D fx0  exchange.x; i; j / W i ¤ j ^ 1 � i; j � ng

This neighborhood is actually N Perm
1 neighborhood.

The second move operator for CMP is known as insert. Specifically, given a
solution x, we define insert.x; j; vi / as the move consisting of deleting vi from its
current position i and inserting it in position j . This operation results in the new
solution x0 as follows:

• If i � j , then x D .: : : ; vj�1; vj ; vjC1; : : : ; vi�1; vi ; viC1; : : :/, and
the vertex vi is inserted just before the vertex vj , obtaining x0 D

.: : : ; vj�1; vi ; vj ; vjC1; : : : ; vi�1; viC1; : : :/.
• If i < j , then x D .: : : ; vi�1; vi ; viC1; : : : ; vj�1; vj ; vjC1; : : :/, and

the vertex vi is inserted just after the vertex vj , obtaining x0 D

.: : : ; vi�1; viC1; : : : ; vj�1; vj ; vi ; vjC1; : : :/.

Thus, a move insert.x; j; vi / generates a solution belonging to the neighborhood
N Perm
jj�i j

.x/. The associated neighborhood, N Perm
insert , obtained applying all possible

insert moves has size n.n � 1/=2, and it is formally defined as:

N Perm
insert .x/ D fx0  insert.x; j; vi / W i ¤ j ^ 1 � i; j � ng

The following example illustrates how the insert is implemented. Let x D

.C; A; D; E; B; F / be a solution of the cutwidth problem. Suppose that we perform
insert.x; 2; B/, obtaining solution x0 D .C; B; A; D; E; F /. Figure 6 graphically
shows the solutions before and after the move.

Local Search Methods

Local search methods are likely the oldest and simplest heuristic methods. Starting
from a given feasible solution, these procedures explore a determined neighborhood
in each iteration, replacing the current solution if a neighbor improves the objective
function. The search ends when all neighbor solutions are worse (i.e., larger
objective function value in a minimization problem) meaning that a local optimum
is found.
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Fig. 6 Example of performing an insert move in a permutation solution. (a) Solution x before the
move. (b) Resulting solution after insert.x; 2; B/

Algorithm 1: Best improvement(x)
1: improve true
2: while .improve/ do
3: improve false
4: x0  arg minx2N .x/ f .x/

5: if f .x0/ < f .x/ then
6: x  x0

7: improve true
8: end if
9: end while

10: return x

There exist two typical strategies to explore the corresponding neighborhood:
best improvement and first improvement. In the former (also known as steepest
descent), the associated neighborhood is completely explored by a fully determin-
istic procedure, performing the best associated move. Therefore, no matter how the
neighborhood is scanned, since all neighbor solutions are visited. Algorithm 1 shows
the typical pseudocode of this local search method for a minimization problem. The
algorithm starts by initializing the control variable improve (step 1). Then, the best
improvement strategy performs iterations until it finds a local optimum with respect
to neighborhood N .x/ (steps 2–9). Given a solution x, the best neighbor solution x0

is determined in step 4. This instruction has a computational complexity of jN .x/j.
In steps 5–8, it is decided whether to perform a new iteration (by updating x to x0)
or not (abandoning the search).
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The first improvement strategy tries to avoid the time complexity of exploring the
whole neighborhood by performing the first improving move encountered during
the exploration of the corresponding neighborhood. In this kind of exploration, the
order in which the neighbors are inspected can have a significant influence of the
efficiency of the search. Instead of using a fixed ordering for scanning the neighbors,
random orders are usually suggested, since the first scanning strategy always drives
to the same local optimum, while the second one can reach different local optima.

The pseudocode of this strategy is equivalent to the one presented in Algorithm 1.
The only difference is in step 4, where, instead of selecting the best neighbor,
it selected the first neighbor which improves the incumbent solution (in terms
of objective function value). Additionally, if we follow a predefined order (e.g.,
a lexicographic order), the first positions in that order (e.g., 1; 2; : : :, in the
lexicographic order) are favored, producing a kind of bias in the search.

Figure 7 shows the performance of two iterations of both strategies starting
from the same solution, where the numbers over the arrows indicate the order of
exploration of the solutions. Specifically, considering the MCP described in sec-
tion “Neighborhoods for Binary Problems”, the initial solution is x1 D Œ1; 1; 0; 0; 0�,
representing W D Œ1; 2� and W 0 D Œ3; 4; 5�, with an objective function value of
38. The neighborhood selected to be explored is N Bin

add .x1/, where each neighbor
is generated by adding a new vertex to W (removing it from W 0). In the first
iteration, the best improvement strategy (Fig. 7a) generates all possible neighbor
solutions for x1 (i.e., x2; x3; x4). The exploring order, as stated before, is irrelevant,
since it is going to explore the whole neighborhood. Then, the method selects
the best neighbor solution, which is x3 in Fig. 7a, with a higher (better) objective
function value of 43. Finally, in the next iteration, the method explores the entire
x3 neighborhood, stopping after the exploration, since there is no better neighbor
solution.

Regarding the first improvement method (Fig. 7b), the exploration order (which
is relevant in this case) is selected at random, starting with solution x2. As the
objective function value of x2 is lower (worse) than x1, the method explores another
neighbor, which is x4. The objective function value for x4, 41, is better than for x1,
38, so in this case, the first improvement strategy stops the iteration, starting the next
one from this new best solution x4. Notice that although solution x3 is better than
x4, it is not explored in this strategy, since the order selected has lead the method to
find a better solution before reaching x3. Finally, in the next iteration, the method
starts from x4 and then explores, in this order, x6 and x5, stopping the search since
there is no improvement in any neighbor.

In the context of large neighborhoods, there is a compromise between the number
of iterations required to find a local optimum and the associated computing time. In
general, iterations performed in the first improvement strategy are more efficient
than those in the best improvement one, since the former only evaluates part of
the neighborhood, while the latter explores it completely. On the other hand, the
improvement obtained in the first improvement strategy is typically smaller than
the one achieved by the best improvement strategy, requiring in general more
iterations to obtain the local optimum. Additionally, the best improvement strategy
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Fig. 7 Comparison of best and first improvement strategies when starting from the same solution
for the MCP. (a) Best improvement. (b) First improvement

is usually more adequate to perform efficient catching and updating mechanisms,
which allows the search to efficiently explores the neighborhood [20].

In [17], an empirical study on traveling salesman problem was conducted in order
to compare the first and the best improvement strategy within 2-opt neighborhood
structure. It appeared that the quality of the final solution depends on the quality of
the initial solution: (i) if random initial solution is chosen, the better and faster is the
first improvement strategy; (ii) the opposite holds if the greedy solution is taken as
initial one.

VND Variants

The Variable Neighborhood Search (VNS) is a metaheuristic proposed in [32]
as a general framework to solve hard problems. It is based on a simple idea:
systematical changes of neighborhood structures within the search procedure. Let
N D fN1; : : : ; Nkmaxg be set of operators such that each operator Nk , 1 � k �

kmax maps a given solution x to a neighborhood structure Nk.x/. Note that the order
of operators taken from the set N defines also the order of neighborhood structures
of a given solution x examined. When solving an optimization problem by using
different neighborhood structures, VNS methodology proposes to explore them in
three different ways: (i) at random, (ii) deterministically, or (iii) mixed (both, in
deterministic and random fashion).



356 A. Duarte et al.

Variable neighborhood descent (VND) is a variant of VNS that explores neigh-
borhoods in a deterministic way. In general, VND explores small neighborhoods
until a local optimum is encountered. At that point, the search process switches to
a different (typically larger) neighborhood that might allow further progress. This
approach is based on the fact that a local optimum is defined with respect to a
neighborhood relation, such that if a candidate solution x is locally optimal in a
neighborhood Ni .x/, it is not necessarily a local optimum for another neighbor-
hood Nj .x/. Thus, VND explores the solution space using several neighborhood
structures either in a (i) sequential, (ii) a nested (or composite), or (iii) mixed nested
way [21, 43].

Sequential Variable Neighborhood Descent Procedures

Most typical VND variants traverse the list of neighborhood structures in a
sequential way. Within this variants, the basic VNS, the pipe VND, the cyclic
VND, and the union VND emerge as the most representative search procedures.
These variants differ in how they implement the neighborhood change procedures.
Specifically, if an improvement has been detected in some neighborhood, this is how
the search (after updating the incumbent solution) is continued:

• Basic VND (B-VND) – returns to the first neighborhood from the list
• Pipe VND (P-VND) – continues the search in the same neighborhood
• Cyclic VND (C-VND) – resumes the search in the next neighborhood from the

list
• Union VND (U-VND) (sometimes called multiple neighborhood search [44],

where the single neighborhood is obtained as the union of all predefined
neighborhoods) – continues the search in the same large neighborhood. U-VND
is recently proposed in [2, 26, 44] and used within Tabu search.

All these VND procedures follow the steps given in Algorithm 2 and start from
a given solution x. In each VND iteration, a local search procedure through a given
neighborhood structure is applied, followed by a neighborhood change function
(Step 7). The neighborhood change function defines the neighborhood structure that
will be examined in the next iteration. Each VND variant stops when there is no
improvement with respect to any of the considered neighborhood structures. Thus,
the solution obtained by any sequential VND is a local optimum with respect to all
neighborhood structures.

We show the performance of the three aforementioned variants considering the
example introduced in [31]. In particular, it shows an empirical study on different
VND variants used to solve traveling salesman problem. For testing purposes,
15,200 random test instances were generated in the way described in [17]. Within
VND variants, three classical TSP neighborhood structures are considered: 2-opt
(Fig. 8), Insertion-1 (Fig. 9), and Insertion-2 (Fig. 10). On each instance from this
data set, each VND variant, except U-VND, is tested under 24 different settings.
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Algorithm 2: Sequential variable neighborhood descent
Function SeqVND (x,kmax,N )

1 x00  x

2 Stop= False
while Stop= False do

3 x  x00

4 Stop= True
5 k 1

while k � kmax do
6 x0  arg min

y2Nk.x/

f .y/

7 Change Neighborhood (x; x0; k)
8 if f .x0/ < f .x00/ then
9 x00  x0

10 Stop= False
end

end
end

11 return x00;
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Fig. 8 Example of a 2-opt move involving vertices 1, 2, 4, and 5

Each setting corresponds to choosing the following: (i) one out of two common
ways for getting an initial solution, at random (solution generated as a random
permutation of nodes) or greedy; (ii) one out of six possible neighborhood orders;
and (iii) the best or the first improvement search strategy. This gives 2� 6� 2 D 24

different search methods that use 2-opt, Insertion-1, and Insertion-2 neighborhoods.
On the other hand, U-VND is tested under only two different settings as: U-VND
that uses the best improvement search strategy and the greedy initial solution and
U-VND that uses the best improvement search strategy and the random initial
solution. Note that if the first improvement search strategy is used within U-VND,
then U-VND is equivalent to basic VND.

Table 1 summarizes results considering the entire set of 15,200 instances as a
test case. Namely, the average solution values (Column ‘av. best value’) and
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Fig. 9 Example of an Insertion-1 move where vertex 5 is inserted between vertices 1 and 2 and
removed from its corresponding former position
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Fig. 10 Example of an Insertion-2 move where vertices 4 and 5 are inserted between vertices 1
and 2, removing them from its corresponding former position

Table 1 Comparison of
VND variants

VND variant av. best value av. time (s)

Basic VND 1198.24 0.16

Pipe VND 1198.52 0.12

Cyclic VND 1198.76 0.46

Union VND 1197.65 1.06

average CPU times (Column ‘av. time’) over all test instances in the data set,
attained by VND variants under the best settings, are reported.

From the results presented in Table 1, the following conclusions may be drawn:
(i) U-VND is slightly better than the others VNDs, regarding the best average values
attained, but much slower than the others. This is explained by the fact that U-VND
in each iteration performs exploration of large part of the solution space before
deciding to re-center the search. Obviously, such principle is suitable for reaching
good final solution, but requires a large CPU time; (ii) comparing VNDs that re-
center the search in the inner loop (i.e., B-VND, P-VND, and C-VND), it follows
that B-VND is able to provide the best solution values. Regarding average CPU
times consumed by B-VND, P-VND, and C-VND to find the best-reported average
solution value, their ranking is as follows: the fastest is P-VND, B-VND is ranked
as the second, while C-VND is the slowest one. However, since, B-VND consumed
negligible more CPU time to find the best reported average solution value comparing
to CPU time that P-VND consumed to do so, we may conclude that B-VND is the
most appropriate sequential VND version.
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Nested Variable Neighborhood Descent

A nested (composite) variable neighborhood descent procedure [21] explores a large
neighborhood structure obtained as a composition of several neighborhoods. More
precisely, let N D fN1; : : : Nkmaxg again be set of move operators such that each one
Nk , 1 � k � kmax maps a given solution x to a predefined neighborhood structure
Nk.x/. Then, the neighborhood explored within a nested variable neighborhood
procedure is defined with operator Nnested D N1 ı N2 ı � � � ı Nkmax . More
precisely, the composite neighborhood of solution x is formed by first applying
the move operator N1, obtaining N1.x/. Then, the move operator N2 is applied
to all solutions in N1.x/, forming the set N1.N2.x// and so on. Obviously, the
cardinality of a neighborhood structure Nnested .x/ D N1.N2.: : : .Nkmax.x//// of
some solution x is less than or equal to the product of cardinalities of nested
(composed) neighborhoods, i.e.,

jN .x/j �

kmaxY
kD1

jNk.x/j:

Such cardinality obviously increases chances to find an improvement in the
neighborhood. The nested VND is illustrated in Algorithm 3. The neighborhood
N .x/ may be explored by using either the first or the best improvement search
strategy. However, since its cardinality is usually very large, the first improvement
is used more often [21, 43].

Algorithm 3: Steps of best improvement nested VND
Function Nested_VND(x, kmax, N )
Nnested D N1 ıN2 ı � � � ıNkmax

repeat
x0  x;
x  argminy2N .x0/f .y/;

until f .x0/ � f .x/;
return x0;

We use the uncapacitated r-allocation p-hub median problem (r-p-HMP) to
illustrate how this VND strategy works. Specifically, the r-p-HMP may be stated
as follows. Given n nodes, this problem considers for each pair of nodes i and j ,
the distance dij and the amount of flow tij � 0 that needs to be transferred from i

to j . It is generally assumed that the transportation between non-hub nodes i and
j is only possible via hub nodes hi and hj , to which nodes i and j are assigned,
respectively. Transferring tij units of flow through path i ! hi ! hj ! j induces
a cost cij .hi ; hj /, which is computed as

cij .hi ; hj / D tij .�dihi C ˛dhi hj C ıdhj j /:
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Fig. 11 Interchange neighborhood NH . Yellow dots are the possible new hub location for the one
represented in green

Parameters �; ˛, and ı represent unit rates for collection (origin-hub), transfer
(hub-hub), and distribution (hub-destination), respectively. Note that the hub nodes
hi and hj may be equal.

We represent a solution of r-p-HMP by a set H containing p hubs and a matrix
A, where each row i contains r hubs assigned to node i (i.e., i -th row coincides
with the set Hi ). Thus, our solution is represented as x D .H; A/. The initial
solution is obtained using the greedy heuristic described in [38]. We consider two
neighborhood structures of a given solution x D .H; A/. The first neighborhood
structure, denoted by NH , is obtained by replacing one hub node from H by another
non-hub node from N nH (see Fig. 11). More formally,

NH .x/ D fx0 j x0 D .H 0; A0/; jH \H 0j D p � 1g:

The second neighborhood, denoted by NA, is obtained by replacing one hub
assigned to some node with another hub, while the set H remains unchanged (see
Fig. 12):

NA.x/ D fx0jx0 D .H; A0/; jAnA0j D 1g:

Unfortunately, evaluating the objective function value of a solution from NH

requires to solve an allocation problem, which is N P hard by itself [25].
Therefore, solving exactly the associated allocation problem will be quite time
consuming. In order to deal with this drawback, we find near-optimal allocation
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Fig. 12 Allocate neighborhood NA. Yellow dot represents the non-hub node which is reallocated
to the another hub

A0 of some solution x00 2 NH as follows. For each node, we firstly determine node-
to-hub allocation using the greedy procedure (see Algorithm 4).

Algorithm 4: Greedy allocation
Function GreedyAllocation(H, A)

1 for i 2 N do
2 for j D 1 to p do value.j / D dihj

P
k2N tik C

P
k2N tikdhj k ;

3 Sort array value in nondecreasing order i.e.,
value.�.1// � value.�.2// � � � � � value.�.p//;

4 for j D 1 to r do AŒi�Œj � D h�.j /;
end

The solution x00 D .H 00; A00/ obtained in this way is then improved by exploring
the second neighborhood NA.x00/. In that way, the so-called nested variable
neighborhood descent (Nest-VND) is defined (see Algorithm 5).

Algorithm 5: Nested VND for r-p-HMP
Function NestVND(x);

1 for each x00 2 NH .x/ do
2 GreedyAllocation(H”, A”);
3 Select x0 as the best solution in NA.x00/;
4 if x0 is better than x then S  x0

end
5 return x
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Table 2 Comparison of
GRASP and GVNS on AP
instances

GRASP GVNS_RP

Aver. Aver. Aver. Aver. %

n value time value time impr.

60 122348:90 4:59 121829:27 3:73 0:42

65 123001:53 6:66 122689:74 5:87 0:25

70 123931:76 10:51 123604:38 5:75 0:26

75 124776:42 11:11 124650:73 5:93 0:10

80 125148:22 14:40 124844:76 9:36 0:24

85 125566:58 19:48 125378:23 13:10 0:15

90 124934:99 22:95 124734:55 12:32 0:16

95 125121:18 24:27 124926:55 25:45 0:16

100 125805:04 4:81 125588:19 10:39 0:17

150 126728:85 21:42 126307:10 24:70 0:33

200 129144:44 58:86 128788:66 98:67 0:28

Avg. 125137:08 18:10 124849:29 19:57 0:23

In [43], the above nested VND was used as a local search within a general
variable neighborhood search (GVNS)-based heuristic. The performance of this
heuristic, named GVNS_RP, was compared with the GRASP heuristic proposed
in [38]. In Table 2, we provide a summarized results of comparison of GVNS_RP
and GRASP on instances from AP data set (see [43]). The average value of best
found solutions and average CPU times needed for finding these solutions over all
instances with the same number of nodes are reported. The column headings are
defined as follows. In the first column of Table 2, we report the number of nodes
in the considered instances, whereas in the columns “GRASP” and “GVNS_RP,”
we provide the average of best solution values found by GRASP and GVNS_RP,
respectively. In columns “time,” the average time needed to reach best found
solutions for instances with n nodes is given, while in column “impr.(%),”
we report the percentage improvement obtained by GVNS_RP compared with the
current best known values. From the reported results, it follows that within each set
of instances with the same number of nodes, there is at least one instance where the
best known solution is improved by GVNS_RP. Moreover, the average improvement
on AP data set achieved by GVNS variants is around 0.25 %.

Mixed Variable Neighborhood Descent

Mixed variable neighborhood descent [21] combines ideas of sequential and nested
variable neighborhood descent. Namely, it uses a set of move operators N D

fN1; : : : Nbg to define a nested neighborhood, and, after that, on each element in this
nested neighborhood, it applies a sequential variable neighborhood descent variant
defined by a set of move operators N 0 D fNbC1; : : : Nkmaxg. The cardinality of the
set explored in one iteration of a mixed VND is bounded by:
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jNmixed .x/j �

bY
`D1

jN`.x/j �

kmaxX
`DbC1

jN`.x/j; x 2 S:

In Algorithm 6, we show the pseudocode of a mixed VND. Note that if the set N
is the empty set (i.e., b D 0), we get pure sequential VND. If b D kmax, we get pure
nested VND. Since nested VND intensifies the search in a deterministic way, boost
parameter b may be seen as a way of balancing intensification and diversification in
deterministic local search with several neighborhoods.

Algorithm 6: Steps of mixed VND
Function Mixed_VND(x, b,kmax, N , N 0 )
N D N1 ıN2 ı � � � ıNb x0  x;
repeat

stop D t rue;
x x0;
for each y 2 N .x/ do

x00  SeqVND(y, kmax � b, N 0) ;
if f .x00/ < f .x0/ then

stop D false x0  x00;

end
end

until stop D t rue;
return x0;

In [21], two mixed VND heuristics along with one basic sequential VND
heuristic were proposed for solving the incapacitated single allocation p-hub
median problem (USApHMP). Neighborhood structures examined within these
VND variants are cluster based. A cluster represents one hub with all locations
assigned to it. In particular, the following neighborhood structures are distinguished:
(i) Allocate- change membership of a non-hub node by reallocating it to the another
hub without changing the location of hubs; (ii) Alternate-change the location of the
hub in one cluster; (iii) Locate - select one cluster C with hub h and a location node
that is not in this cluster. The selected node becomes a hub, and all locations from
the cluster C are assigned to the closest hub (including the new one).

The proposed basic sequential VND heuristic, named Seq-VND, examines
neighborhood structures Allocate, Alternate, and Locate in that order. On the other
hand, the first mixed VND heuristic, named Mix-VND1, takes several random
points from Locate neighborhood and starting from each of them carries out search
applying a basic sequential VND heuristic Seq-VND1. The used Seq-VND1
explores Allocate and Alternate neighborhoods in that order. The second mixed
VND heuristic, named Mix-VND2, performs more thoroughly exploration of the
solution space than Mix-VND1 applying Seq-VND1 on each point from Locate
neighborhood. These three VND variants together with three local searches in
the three defined neighborhood structures (Allocate, Alternate, and Locate) are



364 A. Duarte et al.

0

20

40

60

80

100

120

0 20 40 60 80 100%
 d

ev
ia

tio
n 

of
 lo

ca
l o

pt
im

um
 o

ve
r b

es
t k

no
w

n

distance between local optimum and best known

Local Search Allocate

0

20

40

60

80

100

120

0 20 40 60 80 100%
 d

ev
ia

tio
n 

of
 lo

ca
l o

pt
im

um
 o

ve
r b

es
t k

no
w

n

distance between local optimum and best known

Local Search Alternate

0

20

40

60

80

100

120

0 20 40 60 80 100%
 d

ev
ia

tio
n 

of
 lo

ca
l o

pt
im

um
 o

ve
r b

es
t k

no
w

n

distance between local optimum and best known

Local Search Locate

0

20

40

60

80

100

120

0 20 40 60 80 100%
 d

ev
ia

tio
n 

of
 lo

ca
l o

pt
im

um
 o

ve
r b

es
t k

no
w

n

distance between local optimum and best known

Local Search Seq-VND

0

20

40

60

80

100

120

0 20 40 60 80 100

%
 d

ev
ia

tio
n 

of
 lo

ca
l o

pt
im

um
 o

ve
r b

es
t k

no
w

n

distance between local optimum and best known

Local Search Mix-VND1

0

20

40

60

80

100

120

0 20 40 60 80 100%
 d

ev
ia

tio
n 

of
 lo

ca
l o

pt
im

um
 o

ve
r b

es
t k

no
w

n

distance between local optimum and best known

Local Search Mix-VND2

Fig. 13 Multistart on 1000 random initial solutions for AP instance with n D 100 and p D 15

experimentally compared on AP instance with n D 100 and p D 15 (see [21]). One
thousand initial points are generated at random in the solution space, and a local
search is conducted from each one in each type of neighborhood. The distance-to-
target diagram [16] presented at Fig. 13 shows the distribution of local minima. Each
point .x; y/ plots the distance x and percentage deviation y of the local minimum
from the best known solution. The results are summarized in Table 3.

Comparing the results in Table 3, we observe that (i) the search in first (Allocate)
and second (Alternate) local neighborhoods is faster than the others, but they have
the worse quality; (ii) Seq-VND gives better results than the third local search
(Locate) and is considerably faster; (iii) all three multistart VND local searches
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Table 3 Comparison of six local searches on AP instance with n D 100 and p D 15

Allocate Alternate Locate Seq-VND Mix-VND1 Mix-VND2

Average % dev 41.28 21.17 7.41 1.62 0.35 0.16

Minimum % dev. 15.87 6.14 2.58 0.00 0.00 0.00

Maximum % dev. 110.63 49.84 14.6 5.37 3.41 0.68

Average CPU
time (sec)

0.002 0.004 0.15 0.06 3.36 27.15

found the best known solution in the AP instance; and (iv) the mixed VND versions
give the best results, although, as expected, solution times are longer than solution
time of Seq-VND.

We see in Fig. 13 that the number of local minima is reduced when VND is
used. This is due to the larger neighborhood in VND. For example, the Seq-VND
neighborhood clearly contains each of the individual neighborhoods, Allocate,
Alternate, and Locate. It is remarkable that Mix-VND2, which utilizes the largest
neighborhood, yields only four local minima for this problem instance.

Conclusions

Local search represents one of the most popular classical heuristic technique that
improves (locally) the current feasible solution of some continuous or discrete
optimization problem. For that purposes, usually only one neighborhood structure
is defined and explored to improve the incumbent solution. Searching for the
better solution in such neighborhood is repeated until there is no better solution,
i.e., until the local minimum with respect to that predefined neighborhood is
reached.

Since the local minimum with respect to one neighborhood structure is not
necessary local in another, one needs to construct deterministic local search in cases
when more than one neighborhood is used. Such procedures are known as variable
neighborhood descent (VND). In this VND survey, we first propose a possible
classification of neighborhood structures in solving optimization problems and also
provide some simple examples to clearly illustrate the basic ideas. Then, we discuss
possible general ways of combining several neighborhoods in the deterministic
fashion. Needless to say that the number of possible combination of VND local
search variants is large, and they could include problem specific knowledge in
building heuristic for each particular problem. Therefore, VND area is an open
avenue for the future research in the area of optimization.

Cross-References
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�Multi-Start methods
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40. Sánchez Oro J, Mladenović N, Duarte A (2014) General variable neighborhood search for
computing graph separators. Optim Lett 1–21. https://doi.org/10.1007/s11590-014-0793-z

41. Sánchez Oro J, Pantrigo JJ, Duarte A (2014) Combining intensification and diversification
strategies in VNS. An application to the vertex separation problem. Comput Oper Res 52, Part
B(0):209–219. Recent advances in variable neighborhood search

42. Talbi EG (2009) Metaheuristics: from design to implementation. Wiley, Hoboken
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Abstract

The indirect communication and foraging behavior of certain species of ants have
inspired a number of optimization algorithms for NP-hard problems. These al-
gorithms are nowadays collectively known as the ant colony optimization (ACO)
metaheuristic. This chapter gives an overview of the history of ACO, explains
in detail its algorithmic components, and summarizes its key characteristics. In
addition, the chapter introduces a software framework that unifies the implemen-
tation of these ACO algorithms for two example problems, the traveling salesman
problem and the quadratic assignment problem. By configuring the parameters of
the framework, one can combine features from various ACO algorithms in novel
ways. Examples on how to find a good configuration automatically are given in
the chapter. The chapter closes with a review of combinations of ACO with other
techniques and extensions of the ACO metaheuristic to other problem classes.

Keywords
Ant colony optimization � Automatic configuration � Combinatorial
optimization � Metaheuristics

Introduction

Ant colony optimization (ACO) [31, 33, 35] is a metaheuristic that generates
candidate solutions by repeated applications of a probabilistic solution construc-
tion procedure. In ACO, the probabilities that bias the solution construction are
computed from two types of numerical information associated with construction
decisions: heuristic information, which is derived from the problem instance
being tackled, and artificial pheromone trails, which are adapted based on the
search performance to bias the solution construction toward high-quality solutions.
Pheromone trails are the result of a learning mechanism that tries to identify
the solution components that, when appropriately combined, lead to high-quality
solutions.

As the name suggests, ACO was inspired by entomological experiments on real
ant colonies. These experiments demonstrated that some ant species can find the
shortest path between their nest and a food source and showed how this mechanism
is enabled by the ants’ pheromone trail laying and following behavior [22]. The
equations used in computer simulations that mimicked the probabilistic behavior
of real ant colonies inspired computer scientists to define the way artificial ants
take decisions when solving combinatorial optimization problems [30, 36, 38].
Nonetheless, rather than faithfully simulating the behavior of natural ants, the focus
of ACO research, since its early days, has been the computational performance of
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ACO algorithms and the quality of the solutions that can be generated. To this
aim, additional algorithmic techniques have been quickly added to the first ACO
algorithms to make them competitive with other metaheuristics. One example of
such algorithmic techniques is the exploitation of heuristic information for guiding
the construction of solutions [30, 36, 38]; another example is the use of local search
algorithms for improving the solutions constructed by the ants [34,35,47,123,125].

The first ACO algorithm, ant system, was proposed by Dorigo et al. [30, 36–
38]. After the publication of the first journal paper on ant system in 1996 [38],
the research on ACO has gained momentum, and a large number of algorithmic
improvements have been proposed. A first improvement over the basic form of
ant system was elitist ant system (EAS) [30]. Among the most successful of
these successors have been ant colony system (ACS) [34, 45] and max-min ant
system (MMAS) [122, 123, 125]. Generally speaking, the main features of these
improvements over the basic ant system include mechanisms to intensify the search
around high-quality solutions and mechanisms to maintain a sufficient level of
search space exploration.

When viewing algorithms from a component-wise perspective, that is, when
considering that an algorithm is composed of algorithmic components that fulfill
specific tasks for which alternative procedures may exist, there are similari-
ties between various components of MMAS, ACS, and other ACO algorithms
such as EAS [30, 38], rank-based ant system (RAS) [19], best-worst ant system
(BWAS) [21], and others. In this chapter, we present the available ACO algorithms
for combinatorial optimization from such a component-wise perspective. This
perspective makes the contributions of each of the ACO algorithms more easily
identifiable, which allows a more flexible approach toward their implementation.
One additional contribution of this chapter is to provide such an implementation.
The main advantage of this framework is that it enables the composition of new
ACO variants. While one possible approach would be to manually explore different
ACO algorithm designs and test their effectiveness, this exploration may also be
done using automatic methods [65]. For illustration purposes, we demonstrate
here how to find the best configuration of such a framework for the traveling
salesman problem (TSP) and the quadratic assignment problem (QAP) using irace,
an automatic algorithm configuration method [83].

This chapter is structured as follows. In section “Combinatorial Optimization
Problems and Constructive Heuristics” we introduce some basic notions of com-
binatorial optimization and construction heuristics. Next, in section “The ACO
Algorithmic Framework”, we present the ACO metaheuristic as an algorithmic
framework for single-objective combinatorial optimization problems, explaining
ACO algorithms from a component-wise perspective. Section “ACOTSP/ACOQAP:
A Unified Framework of ACO Algorithms for the TSP and QAP” describes how
historical ACO algorithms are instantiations of this framework and how ACO
algorithms can be automatically configured. Section “Applications of ACO to Other
Problem Types” describes recent developments in ACO applied to problems with
particular characteristics, including continuous optimization and mixed-variable,
multi-objective, and dynamic problems. Section “ACO in Combination with Other
Methods” reviews hybridizations of ACO with other methods, such as tree search
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methods, exact methods, and surrogate models. We also briefly discuss recent
experiments in dynamically changing the parameters of ACO algorithms during
execution. Finally, section “Conclusions” concludes with some perspectives for
future research in ACO.

Combinatorial Optimization Problems and Constructive
Heuristics

Many problems of enormous practical and theoretical importance can be modeled
as combinatorial optimization problems (COPs) [106]. Although practical problems
usually have a large number of constraints to be satisfied and uncertainties or
multiple objectives to be considered, even simpler COPs without such complicating
factors may be very difficult to solve.

A COP can be defined as consisting of a set of instances [106]. An instance
of a combinatorial optimization problem .S ; ˝; f / is defined by

• A search space S given by the possible value assignments to discrete
decision variables xi , with i D 1; : : : ; n;

• A set of constraints ˝ among the decision variables;
• An objective function f W S ! R, which may have to be minimized or

maximized.

The notion of problem refers to the general abstract task to be solved, while the
instance is defined as a concrete instantiation of this task with fully specified data.

One of the most studied combinatorial optimization problems is the traveling
salesman problem (TSP). In the TSP, a graph G D .N; E/ is given with n D jN j

nodes, a set E of edges fully connecting the nodes, and distances associated with
the edges dij , 8.i; j / 2 E. The goal is to find a Hamiltonian tour of minimal length.
Such a tour can be represented as a permutation � D .�1; : : : ; �n/t of the n nodes,
where �i is the node index at position i . Thus, S is the space of such permutations.
The objective function in the TSP is

min
�2S

d�n�1 C

n�1X

iD1

d�i �iC1
(1)

It is important to note that the permutations in the TSP are cyclic, that is, for a
TSP solution, the absolute position of a node in the permutation is not relevant.

Another well-known combinatorial problem is the quadratic assignment problem
(QAP), where two matrices are given describing the distances between n locations
and the flows (of persons, goods, etc.) between n facilities. The goal is to find an
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assignment of facilities to locations that minimizes the sum of the products between
distances and flows. More formally, given two n � n matrices Œdij � and Œfij � with
i; j D 1; : : : ; n, a solution to the QAP is an assignment of facilities to locations (or,
equivalently, of locations to facilities). Because the number of facilities is the same
as the number of locations, such an assignment can be represented by a permutation
� , where �i is the facility assigned to location i . The objective function in the
QAP is

min
�2S

nX

iD1

nX

j D1

dij � f�i �j (2)

Solving a combinatorial optimization problem can often be described as choosing
a subset from a finite set of solution components C D fc1; c2; : : : g and determining
their precise combination that results in a solution that satisfies the problem
constraints, i.e., a feasible solution, and that optimizes the objective function, i.e.,
an optimal solution. (For what follows, we assume without loss of generality that
the objective function is to be minimized.) In the TSP, for example, the solution
components cij are typically taken to be the edges .i; j / of the given graph, whereas
in the QAP, they are the possible individual assignments of a facility j to a location
i . Commonly, problems are solved by either searching only in the feasible candidate
solution space or, if this is deemed to be too difficult, by allowing the evaluation of
infeasible candidate solutions but biasing the search in some way toward feasible
ones. For both the TSP and the QAP, a search in the feasible space can be easily
enforced, as any permutation is a feasible candidate solution.

Many COPs with practical applications belong to the class of NP-hard prob-
lems [49], and, hence, they are considered hard to solve. The NP-hardness of many
of these problems, including the TSP and the QAP, implies that, in the worst case,
the time needed to find the optimal solution for a given instance grows exponentially
with instance size. Thus, instead of searching for an optimal solution and proving its
optimality, which may require an infeasible amount of computation time, heuristic
algorithms are used to generate good solutions within a reasonable time.

Perhaps the simplest heuristic methods are constructive heuristics. A constructive
heuristic starts from an empty or partial candidate solution and then iteratively
extends it by adding solution components to it. In many cases, a heuristic estimation
of the quality of solution components is available and can be used to guide the choice
of which solution components to add. Greedy constructive heuristics rank solution
components according to their heuristic value and, at each construction step, they
add the best-ranked solution component to the current partial solution. If more than
one solution component has the best heuristic value, tiebreaking can be done either
randomly or by a secondary heuristic.

An example of constructive heuristic for the TSP is the nearest neighbor
heuristic. Starting from a random node i and an empty candidate solution � D hi,
it selects the solution component cij , j 2 N n fig with the smallest distance dij and
adds it to � such that �1 D i and �2 D j . The next solution component cjk chosen
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is the one that minimizes the distance djk , k 2 N nfi; j g, and so on until a complete
permutation � of the nodes in N is obtained.

A constructive heuristic for the QAP would be guided by the fact that facilities
with a high total flow to other facilities should be placed at locations that are
central and, thus, have a small sum of distances to other locations. Thus, one may
precompute values f D .f1; : : : ; fn/t , where fi D

Pn
j D1 fij , and analogously

d D .d1; : : : ; dn/t , where dk D
Pn

lD1 dkl , and then assign the facility with the
largest fi to the locations with the smallest dk and iterate these steps.

If the heuristic values of solution components remain constant during the
solution construction, the construction heuristic is called static. Otherwise, when
the heuristic values are a function of the partial solution generated so far, one talks
of an adaptive construction heuristic. In the QAP case, one may obtain an adaptive
heuristic by using the intuition that facilities with a high interaction with already
assigned ones should be put on a location that is as close as possible to already
chosen locations. Adaptive heuristics generally require higher computation times as
the heuristic values need to be updated or even recomputed after each construction
step; however, making decisions dependent on a partial solution may lead to higher-
quality complete candidate solutions.

Constructive heuristics are basic ingredients of many metaheuristics. As an ex-
ample, semi-greedy heuristics [64] are a randomized form of constructive heuristics,
i.e., they make randomized decisions during the constructive search, thus generating
many different solutions. The GRASP metaheuristic [42, 43] extends upon semi-
greedy heuristics by combining randomized adaptive construction heuristics with
local search algorithms. Another example is iterated greedy algorithms [112], which
consist in the repeated application of constructive heuristics that start from partial
solutions. A destruction mechanism generates these partial solutions by removing
solution components from a complete candidate solution.

The ACO Algorithmic Framework

ACO algorithms can also be seen as an extension of construction heuristics. The
main characteristics that distinguish an ACO algorithm from other metaheuristics
and, in particular, other constructive metaheuristics are the following: (i) it is a
population-based algorithm, where m solutions are generated at each iteration, (ii)
solutions are generated by a probabilistic constructive mechanism that is biased by
numerical information called pheromones (and possibly by heuristic information),
and (iii) the pheromones are updated during the run of the algorithm using the
quality of generated solutions as feedback.

The general outline of an ACO algorithm is given in Fig. 1. After initializing
data structures and parameters, an ACO algorithm generally iterates through two
procedures: solution construction (procedure ConstructSolutions) and pheromone
update (procedure UpdatePheromones). Additionally, a local search algorithm may
be used to improve some or all the solutions constructed in the current iteration.
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Fig. 1 General pseudo-code of the ACO metaheuristic for NP-hard problems. First, each ant
constructs a complete solution by probabilistically choosing solution components to extend their
current partial solution (section “Solution Construction”). Some of these solutions are sometimes
further improved by means of local search (section “Local Search”). Finally, pheromone values are
updated according to the solutions constructed by the ants (section “Global Pheromone Update”).
The update usually consist of two complementary steps: evaporation decreases pheromone values
and deposit increases them

Clearly, each of these procedures may in turn consist of different phases and,
depending on the particular ACO algorithm implemented, the particular choices
taken within these phases may differ quite strongly. These differences, however,
mainly concern specific building blocks or parameter settings that are used within
the ACO algorithm phases. These building blocks and parameters are referred as
algorithmic components.

In the following, we present the algorithmic components that have been proposed
in typical ACO algorithms for combinatorial optimization and discuss alternative
options proposed in the literature for implementing these components.

Choice of Pheromone Trails and Heuristic Information

In ACO, the solution construction is probabilistically biased by two types of
information: pheromone trails and heuristic information.

The pheromone trails are a set T of numerical values associated, in principle,
to all solution components, that is, 8c 2 C , 9�c 2 T . Pheromone trails are
updated during the run of an ACO algorithm according to the quality of previously
generated solutions through the mechanisms of pheromone deposit and pheromone
evaporation. During the solution construction procedure, pheromone trails bias the
choice of solution components toward constructing high-quality solutions. A high
value of �c represents a higher probability of adding solution component c to the
solution being constructed. It is therefore important to appropriately define the set of
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solution components C , and the corresponding pheromone trails T , when applying
an ACO algorithm to a particular problem.

For many problems, the appropriate definition of solution component and, thus,
of pheromone trail is rather straightforward. In the TSP, the adjacency information
is relevant, that is, which node is the direct successor or predecessor to another
one, and therefore a solution component cij D .i; j / typically refers to the edge
connecting nodes i and j . Thus, �ij represents the pheromone trail associated with
the edge. This definition of solution component is also related to the choices made
in the nearest neighbor heuristic, which underlies the construction mechanism used
in almost all ACO applications to the TSP. Differently, in the QAP, the individual
assignments of facilities to locations are of crucial importance. Therefore, a solution
component cij denotes that facility j is assigned to location i in a candidate solution
� , that is, �i D j and the pheromone trails �ij then represent the desirability of
assigning facility j to location i . When constructing solutions for the QAP, the
order in which facilities are chosen for assigning them to locations may also have
an impact on the solution that is eventually constructed. Such an order may also be
determined during solution construction by the ants through pheromone trails that
indicate which facility should be chosen next for an assignment to a location [120].
Hence, one could have two types of pheromones, the first type �ij would refer to the
desirability of assigning facility j to location i and the second one � 0

kl would refer
to the desirability of generating an assignment for facility l directly after having
assigned facility k. However, no effective implementation of such a second type of
pheromone trails seems to be available.

For more complex problems than the TSP and the QAP, alternative definitions
of solution components, and the corresponding pheromone trails, may have to
be considered [101]. How to define solution components and their associated
pheromone trails is itself an ongoing research topic [17, 99]. However, a basic
guideline would be to consider effective greedy constructive heuristics and then
define the pheromone trails to bias the most important decisions done by this
heuristic. Using this guideline, standard definitions of solution components and
pheromone trails will be available for many known problems; however, for more
complex problems, some research effort may be required to determine the most
appropriate solution components and pheromone trails.

The heuristic information H is also a set of numerical values associated with
solution components (8c 2 C , 9�c 2 H ). However, in contrast to the pheromone
trails, heuristic information is not updated during the run of the algorithm in
dependence of the quality of the solutions generated. Instead, �c is a value that
is either constant for each solution component, when static heuristic information
is used, or a value that is a function of the partial solution generated so far,
when adaptive heuristic information is used. The actual formulation of the heuristic
information is specific to each problem. However, its computation should be fast
as the value of �c is used at every step of the solution construction by each ant. In
some problems there is no readily available heuristic information that effectively
guides solution construction, and thus, no heuristic information is used. This is, for
example, the case in most ACO applications to the QAP.
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Solution Construction

Solution construction is the process by which a new set of solutions is generated
at each iteration of an ACO algorithms. In ACO terms, a solution is constructed
by an ant; in optimization terms, each ant corresponds to the execution of a
probabilistic solution construction procedure. In particular, each ant constructs one
solution by starting from an empty solution s D hi and adding, at each construction
step i , one solution component cj from a set of candidate components Ni . The
probabilistic choice at each step of the solution construction can be modeled by
a probability distribution that assigns to each solution component the probability
with which it is chosen. Thus, for each cj there is a probability P r.cj / of being
chosen. This probability depends on the pheromone trails, the heuristic information,
and the current partial candidate solution s, that is, P r.cj jT ; H ; s/. There are
many different ways of computing this probability. Many ACO algorithms use the
probabilistic rule that was introduced for ant system (AS) to choose one element
from Ni as follows:

Pr.cj / D
�j

˛ � �j
ˇ

P
ck2Ni

�k
˛ � �k

ˇ
8 cj 2 Ni ; (3)

where ˛ and ˇ are parameters that control the relative importance of pheromone
trails and heuristic information on the decision probabilities. If ˛ tends to zero,
the solution construction becomes a probabilistic multi-start greedy algorithm; if
ˇ tends to zero, the solution construction is biased only by the pheromone trails,
and heuristic information is neglected. This rule assigns a probability in a fashion
similar to the well-known roulette wheel selection of evolutionary algorithms [51],
where the value �j

˛ � �j
ˇ plays the role of the fitness assigned to a candidate.

Clearly, many different ways can be used to define probability distributions for the
solution components. For example, Maniezzo [84, 85] uses in his ANTS algorithm
an additive way of combining pheromone trails and heuristic information:

Pr.cj / D
˛ � �j C .1 � ˛/ � �jP

ck2Ni

˛ � �k C .1 � ˛/ � �k

8cj 2 Ni : (4)

The above equation has the advantage over the most common one (Eq. 3) that
the operations used (multiplication instead of exponentiation and sum instead of
multiplication) are measurably faster in current CPUs. However, one needs to ensure
that the range of values of the pheromone trails and of the heuristic information is
similar to avoid undesired biases.

A method for making the construction more deterministic was proposed by
Dorigo and Gambardella [34] with their ant colony system (ACS) algorithm. They
introduced the pseudorandom proportional rule, which is controlled by a parameter
q0. At each construction step i , a random value q is drawn uniformly from Œ0; 1/; if
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q > q0, the probability of cj is computed as in Eq. 3; otherwise (i.e., when q � q0)
the choice is made as

cj D arg max
ck2Ni

�k
˛ � �k

ˇ; (5)

that is, when q � q0, the solution component with maximum probability is chosen
deterministically. A larger value of q0 is equivalent to a more “greedy” construction
procedure, which usually results in faster convergence, whereas smaller values of
q0 lead to more varied solutions and, thus, to more exploration.

Solution construction is one of the critical components of ACO, thus techniques
have been proposed to improve its efficacy and efficiency. Efficacy is sometimes
improved by using lookahead [96], that is, by considering more than one component
at a time when choosing which component should be added to the current partial
solution. Efficiency can be greatly improved, particularly in large problem instances,
by restricting the choice of solution components to candidate lists [33, 34].
Candidate lists contain the most promising solution components, and their definition
depends on the instance data and/or on the current partial solution. The most
efficient candidate lists depend only on the instance data and are typically computed
at the start of the algorithm. One example of candidate lists is the nearest neighbor
lists in the TSP, which store the cl nearest neighbors to each city ordered according
to nondecreasing distances. Even a small value of cl, such as 20, is sufficient to
generate very-high-quality (or even optimal) solutions to the TSP. Such candidate
lists are crucial when applying ACO algorithms to large TSP instances.

Candidate lists may also save memory if the algorithm only stores the pheromone
values of those solution components that are part of the candidate lists. Another
approach to save memory used in some ACO variants is to avoid explicitly storing
the pheromone trails of all solution components by using, for example, a hash
table [3] to store only the pheromone values associated with solution components
that have appeared in previouslyconstructed solutions. This might be beneficial
when the fraction of pheromone values explicitly stored is small enough (relative
to the total size of T ) to compensate for the fact that insertion, deletion and look-up
in the hash table require more than constant time.

Independent of the usage of candidate lists, solution construction may be speeded
up when using static heuristic information by precomputing the values of �j

˛ � �j
ˇ ,

8cj 2 C , as all ants use the same total values in Eqs. 3 and 5, and each ant’s partial
solution only affects which precomputed values are considered at each construction
step. If an adaptive heuristic information is used, the total values would depend on
the partial solution of each ant; hence, they cannot be precomputed in this way.

Most ACO algorithms construct solutions starting from an empty solution.
However, a few proposals have studied the possibility of starting from partially
constructed solutions with the goal of partially destroying a very good solution
and reconstructing from it a, hopefully better, new one. This is the same concept
applied by iterated greedy [112]. Examples of this kind of ACO algorithm are ACO
algorithms using external memory [1], iterated ants [133], and cunning ants [132].
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Considering the effectiveness of the solution construction, these methods are useful
as they avoid the most expensive construction steps that happen when solutions are
empty or almost empty. In the Enhanced ACO [47], solution construction is guided
by the global-best solution, the best solution found since the start of a run of the
algorithm, by adopting the choice done for that solution with a fixed probability at
each construction step. This approach somehow introduces a guided perturbation
into the best solution found so far and, thus, a straightforward way of increasing
the exploitation of good solutions in ACO. It has also the advantage of resulting
in faster solution construction as no probabilistic choices among several candidate
components need to be done; thus, it is deemed to be useful particularly for tackling
large instance sizes.

Typically, construction rules take into account the pheromone trails associated
with only single solution components. However, for specific problems it may be
useful to include also the pheromone associated with other solution components.
An example are scheduling problems, for which the pheromone summation rule
was proposed [92]. Its goal is to avoid that jobs are scheduled in a position too far
away from positions where they occur in high-quality solutions.

Global Pheromone Update

As mentioned above, the pheromone trails are modified during the run of an
ACO algorithm in order to bias the construction of new solutions. Pheromone
update usually consists of two complementary steps: pheromone evaporation and
pheromone deposition. The general idea behind these two steps is to bias the
pheromone trails so as to favor the construction of high-quality solutions. This
general idea can be implemented in a number of different ways.

Pheromone evaporation decreases the pheromone values by some factor with the
goal of reducing the effect of previous pheromone depositions and, in this way, help
to forget previous poor decisions. Pheromone evaporation itself can be applied, in
principle, to some or all the pheromone trails. It can be described as

Tnew D evaporation.Told; �; S eva/; (6)

where � 2 .0; 1/ is a parameter called evaporation rate and S eva denotes the set
of solutions that are selected for evaporating the pheromone trails. Most of the
existing ACO algorithms do not make use of the solutions in S eva to implement the
pheromone evaporation and simply reduce the pheromone trail value of all solution
components by the same factor:

�j D .1 � �/ � �j 8�j 2 T : (7)

A value of � D 1 would mean that pheromone trails are reset at each iteration
of the algorithm and, thus, no learning occurs. A value of � D 0 would mean
that no evaporation occurs, which would result in an unlimited accumulation of
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pheromones. For intermediate values of �, the amount of pheromone decreases
geometrically as a function of this parameter.

In some ACO algorithms, the global pheromone evaporation only applies to some
specific solution components. For example, in ACS pheromone evaporation affects
only the solution for which pheromone is deposited in the current iteration:

�j D .1 � �/ � �j 8�j j cj 2 seva; (8)

where 8�j jcj 2seva are all the pheromone trails associated with solution components
that occur in the solution seva chosen for pheromone deposition (see also below).
Equation 6 is also general enough to include the pheromone evaporation applied in
population-based ACO [55], where the pheromone trails are defined as a function
of the solution components occurring in a set of candidate solutions and where
pheromone evaporation corresponds to the reduction of the amount of pheromone
that is associated with components of the solutions that leave this set of candidate
solutions.

Evaporation has the effect of slowing down the convergence of the algorithm
as it reduces the probability of constructing again solutions previously constructed.
However, while pheromone deposition selectively reinforces the pheromone trails
associated with some solution components, pheromone evaporation has the effect
of decreasing the probability of selecting those solution components less recently
reinforced, thus allowing the algorithm to focus on the most recently found solutions
and to “forget” previous pheromone depositions.

Pheromone deposition consists in increasing the pheromone values of a few
selected solution components. These solution components belong to one or more
solutions previously constructed by the ACO algorithm. In a general form, the
pheromone deposition can be written as

�j D �j C
X

sk2Supdjcj 2sk

wk � F .sk/; (9)

where Supd � S eva is the set of solutions chosen to deposit pheromones, wk is
a weight that is associated with solution sk 2 Supd, and F .sk/ is a function that
is nondecreasing with respect to the quality of the solution sk – that is, whenever
f .si / < f .sl / in the minimization case, then it follows that F .si / � F .sl /.
The amount wk � F .sk/ therefore corresponds to the amount of pheromone that is
deposited by a solution sk .

The solutions used for updating the pheromone trails (Supd) have a strong
influence in the behavior of an ACO algorithm. Ant system (AS) selects all solutions
constructed in the latest iteration. In contrast, there are alternative methods that
consider one single solution for the pheromone deposition, e.g., the iteration-
best update (ib-update), which uses the best solution from those generated in the
most recent algorithm iteration; the global-best update (gb-update), which uses the



13 Ant Colony Optimization: A Component-Wise Overview 383

best solution found since the start of the algorithm; and the restart-best update
(rb-update), which uses the best solution found since the pheromones were reini-
tialized (see also below on pheromone reinitialization). Intermediate alternative
methods would define a set of candidate solutions that may comprise a number
of the best solutions of the latest algorithm iteration and solutions such as the
global-best or the restart-best ones and use these to deposit pheromone. The
particular set of solutions that is chosen to deposit pheromone has a direct effect
on the speed of convergence and possible stagnation behavior of the algorithm,
which occur when the pheromone trails have converged and the same solu-
tions are constructed over and over again. The gb-update provides the fastest
convergence but may more easily lead to such stagnation, while allowing all
candidate solutions to deposit pheromones may delay the convergence of the
algorithm [35].

In addition to the choice of solutions that form Supd, the amount of pheromone
deposited by these solutions also has a direct impact on the search behavior of
ACO algorithms. A typical setting in ACO algorithms is to make the amount of
pheromone deposited inversely proportional to the objective function value (in the
minimization case), that is, to set wk � F .sk/ D 1=f .sk/. This is the case, for
example, for MMAS [125]. (Instead of making the amount of pheromone deposited
a function of the quality of the solution, one may also deposit a constant amount
of pheromone if the bias toward good solutions is ensured by choosing ib-update,
gb-update, or similar biases toward the best candidate solutions.) Various other
ACO algorithms add additional weighting factors that may be dependent or not
on the quality of the solution relative to others. ACS uses a pheromone update by
setting wk � F .sk/ D �=f .sk/, where � is the evaporation rate. AS initially used
a setting of wk � F .sk/ D Q=f .sk/, where Q is a parameter; however, in many
recent implementations, one simply uses Q D 1. Various ACO algorithms use an
unequal weighting for the amount of pheromone deposited. For example, RAS [19]
makes the weight dependent on the rank of a solution in the current algorithm
iteration by choosing wk � F .sk/ D maxf0; w � rg=f .sk/, where w D jSupdj is
the number of solutions that deposit pheromone after each iteration (this parameter
is called rasrank in section “ACOTSP/ACOQAP: A Unified Framework of ACO
Algorithms for the TSP and QAP”) and r is a solutions’ rank in the current
iteration. The largest amount of pheromone (w=f .sk/) in RAS is assigned to the
global-best solution sgb. This corresponds to a choice where Supd comprises the
global-best solution and the w � 1 best-quality solutions of the current iteration.
In EAS [30, 36, 38], the usual AS deposition rule is followed, that is, all solutions
generated in the current iteration deposit pheromone; in addition, the global-best
solution deposits an amount of pheromone wgb � F .sgb/ D Q � melite=f .sgb/,
where Q is the same parameter as for AS and melite is the multiplicative factor
that increases the weight of the global-best solution. In BWAS [21], not only the
global-best solution deposits pheromone, but also further evaporation is applied,
following Eq. 7, to the pheromone trails associated with the solution components
that appear in the worst solution of the current iteration and that do not appear in the
global-best one.
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Pheromone Update Schedule

As said above, the choice of the solutions that deposit pheromone has a strong
impact on the search behavior of ACO algorithms. The main goal of pheromone
update schedules is to adapt the choice of the solutions that deposit pheromone
during the ACO algorithm run. In the simplest case, this is done following a
predefined schedule. The first algorithm to make such a predefined schedule explicit
is MMAS in its application to the TSP [118,125] (related ideas are also discussed in
[90]). In particular, when local search is applied, the central idea is to shift from
a frequent use of the ib-update, which is used by default, toward an increasing
frequency of the gb-update (or an rb-update). This shift has the effect of changing
the search behavior from a more explorative one toward a more exploitative one
that searches for new, improving solutions around the best-so-far ones. When
used after the reinitialization of the pheromone trails (see section “Pheromone
Reinitialization”), the schedule can also switch in the pheromone deposit between
ib-update, rb-update, and gb-update. In particular, if the restart-best solution is used
every iteration and no new restart-best solution is found for a number of iterations,
the schedule switches to gb-update. As a result, the pheromone trails will implicitly
interpolate between the restart-best solution and the global-best solution in a way
that resembles the ideas underlying path relinking [50].

The update schedule may have a critical impact on the performance of an ACO
algorithm, because it determines the balance between speed of convergence and
exploration capabilities. It is also very sensitive to the termination criteria: an update
schedule that performs well for long computation times may converge too slowly if
the algorithm is terminated much earlier.

Initialization of Pheromones

Two alternative ways of initializing the pheromone trails have been proposed: either
using a very small initial value (ACS and BWAS) or using a rather large value
(MMAS), where small and large are relative to the amount of pheromone deposited
in the global pheromone update. A small value results in a rather quick bias toward
the best solutions, while a large value results in a more explorative initial search
phase (though depending also on other parameters such as the evaporation rate).
Neither the original AS (nor EAS and RAS) specify how the pheromones are
initialized and leave it open as a parameter �0 to be specified by the user.

Pheromone Reinitialization

It has been shown that resetting the pheromone values back to their initial value
may help in long runs by increasing the exploration of the search space [125].
This procedure is often called restart, since it is equivalent to restarting the run,
although the information about the global-best solution found is kept. While most



13 Ant Colony Optimization: A Component-Wise Overview 385

ACO algorithms do not implement such restarts, restarting has been shown to be
very effective for problems such as the TSP and the QAP where the use of strong
local search algorithms leads to fast convergence.

MMAS was the first ACO algorithm to employ pheromone reinitialization to
avoid stagnation. In particular, MMAS computes a measure, called branching factor,
of the potential alternatives encoded in the pheromone trails. When the branching
factor goes under a certain threshold value (close to 1), pheromone values are reset
to their maximum value (�max).

Another ACO algorithm that uses pheromone reinitialization is best-worst ant
system (BWAS) [21], which reinitializes the pheromone values to �0 whenever
the distance, in the decision space, between the global-best solution and the worst
solution found in the last iteration falls under a threshold value.

In order to avoid very frequent restarts, there is often a “grace period” when
no restarts are allowed; for example, a certain number of iterations since the last
restart-best solution was found.

Local Pheromone Update

Local pheromone update is a mechanism that works during solution construction.
It modifies the amount of pheromone associated with solution components that
have just been chosen by the ants. The first such mechanisms were studied
during the design of AS in the so-called ant-density and the ant-quantity models
[20, 30, 37] but were abandoned due to their poor performance. In later research,
local pheromone update to diminish the pheromone trails associated with chosen
solution components was explored in the design of the ACS algorithm [34]. In
particular, ACS uses local pheromone update following

�j D .1 � �/ � �j C � � �0 8�j j cj ; (10)

where cj is the solution component just selected by an ant during solution
construction, � 2 .0; 1/ is a parameter controlling the strength of the local update,
and �0 is the initial pheromone value, which is set to a very small value, much lower
than the expected amount of pheromone deposited in the global pheromone update.
The effect of this update rule in ACS is to increase the search exploration during
construction making used solution components less attractive.

Although the local pheromone update is very effective when combined with the
other characteristics of ACS, it is difficult to incorporate it on its own to other
ACO algorithms, because it relies on a strong gb-update and a lack of pheromone
evaporation.

An important implementation detail is whether the solutions are constructed in
parallel, that is, each ant chooses one solution component at a time, or sequentially,
that is, each ant completes its own solution before the next one starts constructing
their own. The different construction schemes may introduce differences in the
effect of the local pheromone update.
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Pheromone Limits

MMAS introduced the concept of explicit pheromone limits that restrict the possible
values the pheromone strength can take to the range Œ�min; �max�. The goal is to
prevent stagnation, which occurs when the pheromone values of some solution
components are so low that there is no possibility the component will ever be
selected (or alternatively, the pheromone values of some solution components are
so high that there is no possibility that any other component will ever be selected).

The original proposal showed how to adapt the limits within a run of MMAS.
In practice, however, the upper pheromone limit seems to be less important as the
maximum amount of pheromone possible on any solution component is already
limited by pheromone evaporation.

The definition of �min and �max is problem specific. In general, �max should be an
estimation of the pheromone added by the optimal solution. In the TSP, for instance,
it corresponds to �max D 1

��f .sopt/
; however, since the optimal solution sopt is not

known, the global-best solution sgb is used instead.
The main parameter controlling the pheromone limits is pdec, which is the

probability that an ant chooses exactly the sequence of solution components that
reproduces the best solution found so far. The value �min is given by

�min D
�max � .1 � n

p
pdec/

n0 � n
p

pdec
(11)

where n0 is an estimation of the number of solution components available to each
ant at each construction step. This value often corresponds to n=2 (or to half the
size of the candidate lists if they are used). Nonetheless, in some implementations of
MMAS, and specially when local search is used to improve the solutions constructed
by the ants, the above computation may be simplified to �min D �max

2�n
.

ACS also implicitly uses pheromone trail limits. Due to the way its local
pheromone update rule is defined, the pheromone trails can never fall under
the value �0, and they cannot grow above 1=F .sgb/, thus limiting implicitly the
pheromone trails to the range Œ�0; 1=F .sgb/�.

Local Search

In many combinatorial problems, the use of local search algorithms is essential for
obtaining competitive results. Local search algorithms start from an initial solution
and iteratively apply small changes to it, as defined by a neighborhood operator, in
order to find an improved solution. Two of the most basic local search algorithms
are best improvement and first improvement, which replace the current solution with
the best- and first-improving solution found in the neighborhood, respectively. These
algorithms stop if, after examining the whole neighborhood of the current solution,
no improved solution can be found, thus stopping at a local optimum. Other local
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search algorithms that do not necessarily stop at a local optima, such as tabu search
or simulated annealing, have also been combined with ACO algorithms [82, 120].

When combined with an ACO algorithm, local search is typically applied to
the solutions constructed by the ants. The decision about which ant applies local
search to its solution depends on the effectiveness and efficiency of the specific
local search [47]. If the local search is relatively fast and effective, it may be worth
applying it to all ants’ solutions. Otherwise, restricting it either to the iteration-
best ant or to a candidate set of promising solutions may save computation time,
while still giving a chance to further improve the best solution found by the
ants.

ACO Algorithms as Instantiations of the ACO Metaheuristic

Given the algorithmic components discussed above, then ACO algorithms from
the literature can be described as combinations of specific components. (This list
includes only a small subset of the ACO algorithms and algorithmic components
proposed in the literature. A more comprehensive component view of ACO is left
for further work.)

In particular, AS uses Eq. 3 for solution construction for all ants, Eq. 7 for
pheromone evaporation, and Eq. 9 for the pheromone deposition with all ants using
the same weight w1 D � � � D wm, where m is the number of ants. EAS, RAS,
BWAS, and MMAS all use the same solution construction rules and the same
evaporation mechanism as AS, but they differ from AS in the way pheromone is
deposited; also, they add new algorithmic components. In particular, the pheromone
deposition of EAS uses the global-best solutions with a weight melite. Similarly, the
only difference between AS and RAS is the way pheromone is deposited, which also
uses the global-best solution and weights defined according to a parameter called
rasrank, already explained in section “Global Pheromone Update”. The pheromone
deposition of BWAS also uses the global-best solution and, in addition, applies
further evaporation to pheromone trails associated with solution components that
appear in the worst solution of each iteration and not in the global-best one. In
addition, BWAS performs pheromone reinitialization depending on the average
distance between the iteration-worst solution and the global-best one. MMAS
adds several features: it enforces minimum and maximum limits to pheromone
values and uses an update schedule to switch between iteration-best, global-best,
and restart-best deposition and pheromone reinitialization according to branching
factor, and pheromones are initialized to a high initial value. MMAS variants that
use the pseudorandom proportional rule (Eq. 5) have also been considered in the
literature [124]. Finally, ACS is the ACO algorithm that structurally differs the most
from AS: it adds the pseudorandom proportional rule to AS solution construction,
pheromone is deposited using the global-best solution, and evaporation is performed
at the same time on those values updated during pheromone deposition (Eq. 8).
Moreover, further evaporation is performed during solution construction (local
pheromone update, section “Local Pheromone Update”) by each ant.
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ACOTSP/ACOQAP: A Unified Framework of ACO Algorithms for
the TSP and QAP

We present in this section a software framework that unifies the implementation
of several ACO algorithms found in the literature. The code is publicly available
at http://iridia.ulb.ac.be/aco-tsp-qap/. The implementation aims at generality, by
clearly separating the general components of the ACO metaheuristic from the
problem-specific components that vary from one problem to another. In this chapter,
we present an implementation for the TSP and the QAP. However, it is possible to
extend the framework to other combinatorial optimization problems with far less
effort than an implementation from scratch.

In its current form, the software implements AS, MMAS, EAS, RAS, ACS,
and BWAS. In addition to the usual ACO parameters (˛, ˇ, �, m, � , etc), it also
allows combining various algorithmic components by setting specific parameters.
In particular:

• Pheromone limits as defined by MMAS can be enabled or disabled independently
of the algorithm chosen (except for ACS).

• Pheromone reinitialization (restart) can also be enabled or disabled indepen-
dently of the algorithm. In particular, when more than resit iterations have passed
since the last restart-best solution was found, a restart condition is tested. This
restart condition may be the branching factor going under a threshold value
(resbf), as in MMAS, or the distance between the global-best and the iteration-
worst ants going under a threshold value (resdist). In addition, a setting of always
(never) means that the restart condition is always (never) satisfied.

• Any algorithm may use the pseudorandom proportional rule of ACS (Eq. 5) by
simply using a value q0 > 0.

In the problem-specific part, the implementation for the TSP follows what is
provided by the ACOTSP software [119], that is, heuristic information, candidate
lists, and various types of local search, including 3-opt first improvement with
don’t-look-back bits (dlb-bits) and nearest neighborhood lists (nnls). The part
corresponding to the QAP does not implement heuristic information nor candidate
lists, since these techniques have not proved useful for the QAP. It does implement,
however, various local search algorithms, such as the fast 2-exchange best- and first-
improvement local searches proposed by Taillard [128] and the robust tabu search
proposed in the same paper.

The update schedule (section “Pheromone Update Schedule”) is implemented as
specific to each problem and ACO algorithm; however, it would be straightforward
to extend the update schedule to all ACO algorithms. In the case when MMAS is
used together with local search, the user can control the frequency with which the
restart-best (or global-best) solution, instead of the iteration-best one, is used to
update the pheromone trails, by means of a parameter called schedule length (slen).
Higher values mean longer emphasis on the iteration-best solution, thus possibly
increasing exploration at the expense of faster convergence.

http://iridia.ulb.ac.be/aco-tsp-qap/
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Table 1 Default parameter settings for each ACO algorithm from the literature. Parameters
that are available only for particular ACO algorithms are described under the table. The default
parameter configuration used in the experiments is based on MMAS (see Table 2)

m � q0 ph-limits Restart Restart parameters

TSP / QAP TSP / QAP

AS, EAS,
RAS

25 / 5 0.5 / 0.2 0.0 No Never

BWAS 25 / 5 0.5 / 0.2 0.0 No Distance resdist D 0:05

MMAS 25 / 5 0.2 / 0.2 0.0 Yes Branch-factor resbf D

(
1:00001 (TSP)

1:1 (QAP)

ACS 10 / 5 0.1 / 0.2 0.98 No Never

melite D n when using EAS, rasranks D 6 when using RAS, � D 0:1 when using ACS,
slen D 250 (TSP) or 20 (QAP) when using MMAS

In the two following sections, we show how to find a good performing ACO
algorithm for a specific class of instances of the TSP and the QAP by automatically
configuring the proposed ACO framework. In particular, there is, for each problem,
a set of training instances and another set of testing instances. The automatic
configuration tool irace [83] is used here to find a parameter configuration given
the set of training instances. Finally, this parameter configuration is compared with
the default configuration for each problem by evaluating both configurations on the
set of test instances.

The implementation of the proposed ACO framework assigns default values,
consistent with the literature, to certain parameters depending on the particular
ACO algorithm chosen. These default values are documented in Table 1 for
completeness. For the purpose of automatic configuration, we consider a single
default configuration based on MMAS. Table 2 summarizes, for each problem,
the parameters of the proposed ACO framework, their domain, and default values
considered in the automatic configuration experiments described below. Although
some parameters are still exclusive to a particular ACO algorithm (e.g., � can only be
used together with ACS), the framework allows using components from one ACO
algorithm in others (e.g., the restart mechanism of BWAS can be enabled for any
algorithm by setting parameter restart to the value “distance”).

Finding a Better ACO Configuration for the TSP

In the case of the TSP, we consider random Euclidean TSP instances, in particular
50 instances of each size f1000; 1500; 2000; 2500; 3000g for training and other 50

instances of each size for testing. A single run of irace has a maximum budget of
25;000 runs of the ACO software, and each run is stopped after 60 CPU seconds.
Since the goal is to investigate whether it is possible at all to find a better ACO
algorithm than the default one from the literature and in order to speed up the
process, irace starts from the default configuration for the TSP (Table 2) as an
initial solution. After irace finishes, the configuration found is evaluated on the test
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Table 2 Domains and default values of the parameter settings of the ACO framework considered
in the automatic configuration experiments for the TSP and the QAP. A value of n/a means that the
parameter does not exist for the corresponding problem. A value of “–” means that the parameter
has no value in the default configuration (because it depends on another parameter setting that is
not enabled by default). The list of parameters enabled only for certain values of other parameters
is given under the table

TSP QAP

Parameter Domain Default Domain Default

algorithm
fAS, EAS, RAS, ACS,

MMAS, BWASg
MMAS

fAS, EAS, RAS, ACS,

MMAS, BWASg
MMAS

m Œ1; 500� 25 Œ1; 10� 5

˛ .0:0; 5:0/ 1.0 .0:0; 5:0/ 1.0.

ˇ .0:0; 10:0/ 2.0 n/a n/a

� .0:01; 1:0/ 0.2 .0:01; 1:0/ 0.2

q0 .0:0; 1:0/ 0.0 .0:0; 1:0/ 0.0

cl Œ5; 50� 20 n/a n/a

� .0:01; 1:0/ – .0:01; 1:0/ –

rasrank Œ1; 100� – Œ1; 100� –

melite Œ1; 750� – Œ1; 750� –

pdec .0:001; 0:5/ – .0:001; 1/ 0.005

ph-limits fYes, nog Yes fYes, nog Yes

slen Œ20; 500� 250 Œ5; 250� 20

restart
fNever, branch-factor;

distance, alwaysg
Branch-factor

fNever, branch-factor;

distance, alwaysg
Branch-factor

resbf .1:0; 2:0/ 1.00001 .1:0; 2:0/ 1.1

resdist .0:01; 0:1/ – .0:01; 0:1/ –

resit Œ1; 500� 250 Œ1; 50� 5

localsearch
fNone, 2-opt;

2:5 � opt; 3 � optg
3-opt

fNone, best-2-opt;

short-tabu-search;

long-tabu-searchg

Best-2-opt

dlb-bits fYes, nog Yes fYes, nog No

nnls Œ5; 50� 20 n/a n/a

rasrank When algo D RAS

melite When algo D EAS

� When algo D ACS

pdec when ph-limits D yes (and for the TSP only if also restart D never)

ph-limits When algo ¤ ACS

slen When algo D MMAS

resbf When restart D branch-factor

resdist When restart D distance

resit When restart ¤ never

dlb-bits, nnls When localsearch ¤ none
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Table 3 Best configurations found by irace for the TSP

algo m ˛ ˇ � q0 � cl nnls ph-limits slen restart resit

ACS 28 3:07 5:09 0:32 0:53 0:21 22 9 – –
Branch-factor

.resbf D 1:74/
212

MMAS 40 0:94 4:11 0:72 0:14 – 18 12 Yes 191
Branch-factor

.resbf D 1:91/
367

Common parameters: localsearch D 3-opt C dlb-bits
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Fig. 2 Comparison of tuned vs. default configurations of ACOTSP on the test TSP instances.
Tuned ACS configuration (left) and tuned MMAS configuration (right). Each point gives the
relative percentage deviation from the optimal solution on one particular instance

instances. In particular, we select two configurations found by irace that improve
over the default (see Table 3): one is a tuned variant of MMAS and the other
is a tuned variant of ACS. These two configurations use a higher value of ˇ

and a stronger evaporation � than the default configuration. Since q0 > 0, this
MMAS variant uses the pseudorandom proportional rule from ACS, which is a
MMAS variant that has also been explored previously in the literature [124]. It
is also interesting that the restart strategy is typically much more aggressive than
the default, with a much larger threshold branching factor, which results in more
frequent restarts, only limited by the grace period (resit). Other parameters, such
as the size of the candidate list (cl), remain mostly unchanged from the default
configuration.

Figure 2 compares the results obtained by these two tuned configurations with
those obtained using the default configuration on the test instances. We ran each
configuration once on each test instance up to 60 CPU seconds, and we computed
the relative percentage deviation (RPD), with respect to the optimal solution, of the
best solution found throughout the run. Both plots show that the solutions obtained
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Table 4 Results on the test TSP instances obtained by the default configuration and two tuned
configurations found by irace. Objective function values are given as relative percentage deviation
from the optimal solution. �CI denotes the 95% confidence interval around the mean difference
between the default configuration minus the configuration in that column (thus, positive values
would denote that the default configuration is worse)

Default Tuned ACS Tuned MMAS

mean 1.37 0.35 0.38

sd 1.08 0.18 0.32

�CI Œ0:904; 1:14� Œ0:875; 1:1�

by the tuned configurations are, in most instances, better than those obtained by the
default configuration, and the differences are specially large for the largest instances.
These observations are further confirmed by comparing the mean and standard
deviation of the values obtained by each configuration (Table 4). In particular, a 95%
confidence interval around the mean difference between the default and the tuned
configurations does not contain the value zero, which indicates that the observed
differences are statistically significant.

Finding a Better ACO Configuration for the QAP

In the case of the QAP, we consider two different instance sets: RR, where
the distance matrix entries correspond to the Euclidean distances between points
randomly generated in a square of side length 300 and the flow matrices are
randomly generated according to a uniform distribution, and RS, where the distance
matrix is generated as in the previous case and the flow matrix shows a structure
similar to that found in real-world QAP instances. Within each set, we consider
100 instances, and we use half of them for training and the other half for testing
the ACO configurations generated. For tuning the ACO framework, we consider
a similar setup as in the TSP case, that is, each run of irace has a maximum
budget of 25;000 runs of the ACO software, and each run stops after 60 CPU
seconds.

For each of the two training sets, RR and RS, Table 5 reports the best
configuration found in three independent runs of irace. These two configurations
are fairly similar but quite different from the default one. First of all, it is somehow
surprising that none of them uses pheromone limits, despite this being one of the key
characteristics of MMAS. This could be due to the stronger restart strategies, which
do not allow pheromone values to reach the limits and, thus, enforcing the limits
adds an overhead that never pays off. Also, the schedule-length (slen) value is more
than five times higher than the default, which implies a much higher exploitation of
the iteration-best solution.

The two configurations of Table 5 are run on each test instance for 60 CPU
seconds. Since for these instances the optimal objective values are not known,
the relative percentage deviation (RPD) is computed with respect to a reference
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Table 5 Best configurations found by irace for the QAP

algo m ˛ � q0 dlb-bits ph-limits slen restart resit

RR MMAS 6 0:324 0:29 0:062 Yes No 153
Distance

.resdist D 0:051/
22

RS MMAS 4 0:164 0:342 0:284 Yes No 170
Branch-factor

.resbf D 1:822/
40

Common parameters: localsearch D best-2-opt
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Fig. 3 Comparison of tuned vs. default configurations on the QAP test instances. RR instances
(left) and RS instances (right). Each point gives the relative percentage deviation from the optimal
solution on one particular instance

solution, for each instance, obtained by running the default configuration ten times
with a time limit of 600 CPU seconds and keeping the best solution found.

Figure 3 compares the above configurations with the default on the test instances.
The improvements of the tuned configurations over the default are not so clear for
the QAP as they were for the TSP. In general, most RPD values are extremely
small, which indicates that the variations over the best-known solutions are very
small for all configurations. In both cases, there are a few instances where the
default configuration obtains better RPD values than the tuned one. The statistical
analysis in Table 6 shows that the mean difference between the default and tuned
configuration for the RS instances is very small but still statistically significant
(since the confidence interval does not contain zero), whereas for the RR instances,
the null hypothesis of zero difference cannot be rejected (since the corresponding
CI contains the value zero). The latter result is likely caused by the relatively large
RPD values obtained by the tuned configuration on three particular instances, as
shown on the left side of Fig. 3. These results could provide the motivation for
exposing additional algorithmic components to automatic configuration, such as
the precise update schedule of MMAS, which is known to be very sensitive to
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Table 6 Results on the QAP test instances obtained by the default configuration and the tuned
configurations found by irace. CI denotes the 95% confidence interval around the mean difference
between the default configuration minus the configuration in that column (thus, positive values
would denote that the default configuration is worse)

RR instances

Default Tuned ACO

Mean 0.00241 0.00109

sd 0.00466 0.00335

�CI Œ�0:000352; 0:00299�

RS instances

Default Tuned ACO

Mean 0.00210 0.000485

sd 0.00364 0.000941

�CI Œ0:00062; 0:00261�

the instance characteristics [125]. Extending the proposed framework with new
algorithmic components from other ACO algorithms may also further improve the
results on the QAP.

Applications of ACO to Other Problem Types

Although the ACO metaheuristic was primarily designed for tackling single-
objective combinatorial optimization problems, its main ideas have been extended
to tackle other types of problems. In this section, we provide an overview of
such problems and how ACO has been adapted to deal with their particular
characteristics. Comprehensive reviews of ACO applications are available in the
literature [35, 126].

Continuous Optimization Problems

In continuous optimization problems, the domain of the decision variables is the set
of real numbers or a subset thereof. In some problems, the simplest approach is to
discretize the real-valued domain, which would allow the direct application of ACO.
This was, for example, the approach followed by [70] when applying ACO to the
protein–ligand docking problem, where a discrete ACO algorithm was combined
with a local search for continuous domains.

In many problems, this discretization approach is not feasible, and the problem
must be tackled in the continuous domain. A first group of algorithms for continuous
optimization is inspired by the behavior of some ant species [14, 39, 97]. However,
these algorithms diverge from the basic framework of the ACO metaheuristic, for
example, by requiring the direct communication among ants instead of a pheromone
structure. Therefore, they should rather be considered a separate class of algorithms.

A second group of algorithms directly translates the ideas underlying the
ACO metaheuristic to the continuous domain. For example, Socha and Dorigo
[116] replace the discrete pheromone distributions by Gaussian kernel functions
that take the role of the pheromone model that is updated by the ants. Other
similar approaches are found in [114, 131]. More recently, Liao et al. [74, 76]
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proposed a unified model of various ACO algorithms for continuous optimization
problems. Their model allows the automatic configuration of new ACO algorithms
for continuous optimization very much in the line of what is presented in sec-
tion “ACOTSP/ACOQAP: A Unified Framework of ACO Algorithms for the TSP
and QAP”. They show that their final configured continuous ACO algorithms are
competitive to other state-of-the-art algorithms for continuous optimization.

These approaches have also been extended to mixed-variable (continuous and
discrete) problems [75, 115], by using appropriate ways of representing pheromone
trails when handling discrete and continuous variables.

Multi-objective Problems

In many real-world problems, a solution is evaluated according to multiple,
conflicting criteria (objectives). If there is a priori information about the importance
of each objective, the objectives can be aggregated according to a preference model,
and solutions are compared in this way. In the absence of such preference model,
one can only say that a solution is better than another if the former is not worse in
all objectives and better in at least one of them. Thus, the goal becomes to find (an
approximation of) the Pareto set, i.e., the set of solutions not dominated by any other
feasible solution [40, 117].

There are several proposals in the literature on how to apply the ACO metaheuris-
tic to multi-objective combinatorial optimization problems. A few of these proposals
assume an order of importance among the objectives [46]; however, most proposals
attempt to approximate the Pareto set [5, 48, 80, 113]. As pointed out by López-
Ibáñez and Stützle [79], many of these multi-objective ACO (MOACO) algorithms
share similar algorithmic components combined in different ways. For example,
Pareto ACO [27], BicriterionAnt [67], and COMPETants [26] use a different
pheromone set T (a matrix, in their case) per objective, whereas MACS [10]
and mACO-3 [2] use a single T . Some papers have specifically compared both
design choices [2, 82]. Moreover, there are basically two ways of updating the
pheromone trails in MOACOs: either selecting the best solution for each objective,
as done in COMPETants, Pareto ACO, and mACO-4 [2], or selecting (a subset
of) all nondominated solutions, as done in BicriterionAnt, MACS, and mACO-3.
Finally, a few MOACO algorithms make use of multiple colonies, where a colony
is understood as a group of ants that construct solutions only according to the
pheromone trails associated with their colony. The pheromone trails of each colony
may correspond to multiple pheromone matrices (which are aggregated during
solution construction), and colonies may exchange solutions [67]. Nonetheless, it
is straightforward to define multi-colony variants of most MOACO algorithms [79].

Most of the MOACO algorithms were proposed for bi-objective problems. In
the bi-objective case, the results presented in the literature indicate that the use of
one pheromone matrix per objective and of multiple colonies, each of them with
their own pheromone matrices, is necessary for MOACO algorithms to perform well
on different regions of the objective space [48, 79, 80]. When applied to problems
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with more than two objectives, this approach quickly becomes too computationally
expensive. Notable exceptions are MOACO algorithms based on population-based
ACO [4, 56]. However, a thorough comparison with other MOACO approaches on
problems with more than two objectives is missing in the literature.

Dynamic Problems

Dynamic problems are those in which some information about the problem changes
or becomes available after the start of the algorithm. This is the typical case in
network routing, where ACO algorithms specifically designed for these problems
have achieved notable results [23, 24, 130]. These algorithms differ significantly
from the classical ACO algorithms for combinatorial optimization problems: ants
are launched asynchronously in a distributed way, and no global pheromone update
takes place. However, there are also in the literature dynamic variants of classical
combinatorial problems, such as the dynamic TSP and the dynamic vehicle routing
problem (VRP), where cities may appear or disappear and the distances between
them may change. ACO algorithms for the dynamic TSP [41, 53], the dynamic
QAP [54], and the dynamic VRP [29, 98] follow more closely the general outline
of ACO algorithms discussed in section “The ACO Algorithmic Framework”. In
addition, they use specific routines to modify the pheromone trails after detecting
changes in the problem data or structure. A real-world application of ACO to the
scheduling of hospital nurses in Austria is described by Gutjahr and Rauner [63].
More recently, Lissovoi and Witt [77] formally analyze which type of changes in the
dynamic shortest path can be tracked by a constant number of ants using a simplified
MMAS variant. A recent overview of ACO algorithms for dynamic optimization
problems is given by Leguizamón and Alba [73].

Stochastic Problems

In some optimization problems, either the objective function, the decision variables,
or the constraints are not deterministic but subject to uncertainty or noise, and they
are specified only within certain bounds or in terms of a probability distribution.
The first stochastic problem to which ACO algorithms have been applied is the
probabilistic TSP (PTSP), where one is given for each city a probability that
it requires a visit. The goal in the PTSP is to find a tour of minimal expected
length over all the cities. The first ACO algorithm for the PTSP was proposed
by Bianchi et al. [11], who were using ACS. This algorithm was later improved
upon by Guntsch and Branke [52] and further by Balaprakash et al. [7]. The
ACO algorithms developed in that latter paper were then shown to match or even
surpass in some cases state-of-the-art performance for the PTSP [8], and extensions
thereof are state-of-the-art for the vehicle routing problem with stochastic customers
and demands [9]. Another early ACO proposal for problems under uncertainty
is the S-ACO algorithm [59], which has been the basis of later applications, for
example, to the selection of optimal screening policies for diabetic retinopathy [18].
The S-ACO algorithm was later extended by Birattari et al. [15] who integrated
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F-Race for determining the global-best solution in an ACO algorithm for stochastic
optimization and have shown positive results for this latter integration. Another
notable example is the application of ACO to the VRP with stochastic demands [12].
A survey of various metaheuristics, including ACO, for stochastic combinatorial
optimization problems is provided by Bianchi et al. [13].

ACO in Combination with Other Methods

In this section, we briefly overview research on combining ACO with other methods.

ACO and Tree Search Methods

Ants in ACO perform a probabilistic solution construction that can be seen as a
stochastic exploration of a search tree. Thus, a natural extension of ACO is to
make use of tree search techniques such as branch-and-bound. An example is the
approximate nondeterministic tree search (ANTS) algorithm by Maniezzo [84, 85],
which uses lower bounds in three different ways. First, it incorporates a lower bound
estimate as the heuristic information. Second, it prunes feasible solution components
during construction if the estimated solution cost is larger than a threshold (e.g.,
the cost of the best solution found so far). Third, the order of assignment of
solution components during solution construction is influenced by lower bound
computations.

A different alternative is to integrate concepts from ACO into tree search
methods. An example of this approach is Beam-ACO [16], which incorporates the
use of pheromone trails into beam search. Beam search is an incomplete tree search
method that keeps a set of partial solutions (the beam) and, at each iteration, selects
a number of potential extensions of each of them by adding an additional solution
component. These potential extensions are selected based on heuristics [105]. The
number of extensions is typically larger than the size of the beam; thus, only the best
extensions, according to a lower bound estimate, are kept for the following iteration.
Beam-ACO executes beam search several times, replacing the deterministic solution
extension of beam search with the probabilistic construction of ACO. In this way,
the extension of partial solutions is biased by pheromone trails that are updated with
the best solutions found in previous executions of beam search [16]. If lower bound
estimates are not reliable or computationally feasible for the problem at hand, an al-
ternative is to perform stochastic sampling [78], that is, to complete partial solutions
by means of the construction procedure of ACO and use the cost of the complete
solution (or the best of several samples) as the cost estimate of the partial solution.

ACO and Exact Methods

The combination of heuristic and exact methods, sometimes called matheuristics,
is a promising trend in optimization. Roughly speaking there are two types of
matheuristics: those that use exact methods to solve simpler versions of a problem in
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order to improve the solutions generated by a heuristic or provide better estimates of
solution quality and those that use heuristic methods to provide initial solutions or
to constrain the search space of exact methods in order to make their application
feasible to large problems. (The exploitation of tree search techniques such as
branch-and-bound or beam search discussed before, can actually also be seen as
such a matheuristic approach.)

An example of the first type of matheuristic is the use of constraint programming
(CP) techniques [86] to help ACO focus on feasible solutions. This is particularly
useful in highly constrained problems, such as scheduling or timetabling, where a
major challenge is to find feasible solutions among many infeasible ones. Classical
ACO algorithms do not perform satisfactorily on such overly constrained problems.
Meyer and Ernst [95] use CP techniques to identify in the ants’ construction
procedure whether specific solution components lead to infeasible solutions. An
example of the second type of matheuristic is the work by Massen et al. [88, 89].
Their pheromone-based column generation algorithm uses an ACO algorithm to
generate a heuristic set of feasible routes, from which an optimal subset that is a
solution to a vehicle routing problem is selected by an exact solver. The combined
algorithm is still a heuristic, because the exact solver does not consider all possible
routes, but it allows applying the exact solver to problems with many feasible routes
and black-box constraints.

ACO and Surrogate Models

When the evaluation of candidate solutions is very costly in terms of computation
time, usually only a small number of candidates can actually be evaluated. Costly
solution evaluation arises in the case of simulation-based optimization [6] and,
frequently, in industrial settings [44, 129]. Applications with very small evalu-
ation budgets have been rarely studied in the ACO literature, and preliminary
results suggest that typical ACO parameter settings are not appropriate in such
context [109]. In cases with very small evaluation budget, also the use of surrogate
models during optimization may prove useful [68, 100, 134]. Surrogate modeling
approaches build prediction models that estimate the quality of candidate solutions,
such that only the most promising candidate solutions are actually evaluated.
A first approach combining surrogate models and ACO algorithms for tackling
combinatorial optimization problems was studied by Pérez Cáceres et al. [109];
further research is needed to generalize the results to other problems.

Parameter Adaptation

Good parameter settings may not only be found “offline,” as done in section “ACOT-
SP/ACOQAP: A Unified Framework of ACO Algorithms for the TSP and QAP”,
but modified or adapted “online” while the algorithm is running. Good parameter
settings may also be predicted according to instance features [102]. In the context of
ACO, several parameters have a strong effect on the balance between search space
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exploration and exploitation of the best found solutions, and their proper values
may additionally depend strongly on how much computational time is available to
the algorithm. Parameters ˇ and � are the earliest and most frequently modified
parameters in the literature [90, 93]. A significant effort has been done to define
adaptive parameter choices, where the algorithm parameters are modified as a
predefined function of the ACO search behavior [72,111], or to define self-adaptive
parameter adaptation schemes, where the algorithm modifies the parameters itself
during execution [69,87,110]. A recent paper [127] critically reviews the works that
have applied parameter adaptation to ACO algorithms. The same paper also shows
that the convergence speed of MMAS can be significantly improved, without leading
to early stagnation, by means of very simple prescheduled parameter variations,
such as starting with a very high value of ˇ and reducing it to a much smaller
value after a number of iterations. López-Ibáñez and Stützle [81] demonstrate
how such prescheduled variations can be automatically tuned for the purpose of
improving the convergence speed of ACO algorithms and show that fast increments
in the number of ants, fast decrements of ˇ, and, in particular, slow decrements
of q0 produce remarkable improvements on the TSP. (The software described in
section “ACOTSP/ACOQAP: A Unified Framework of ACO Algorithms for the
TSP and QAP” and published alongside this chapter is also able to replicate these
parameter variation schemes.) Finally, Pellegrini et al. [108] empirically showed that
parameter adaptation methods proposed in the literature (excluding prescheduled
variations) may often worsen the performance of state-of-the-art ACO algorithms
and only improve over static parameter settings when the latter produce very poor
results and when only one parameter is carefully adapted.

Conclusions

In this chapter, we have reviewed ACO algorithms from a component-wise per-
spective, and we have provided an example implementation of ACO algorithms
according to this perspective. We have also concisely reviewed trends in ACO
research on applications to problems with challenging characteristics such as time-
varying problem data, multiple objectives, and stochastic data as well as algorithmic
developments that combine ACO algorithms with other techniques. We did not
cover in this chapter research on the parallelization of ACO algorithms, which has
the goal of either speeding up the execution of a single run of an ACO algorithm or
of increasing the quality of the final solution obtained within the same wall-clock
time (by evaluating more solutions than would be possible without parallelization)
[107]. Another important area not covered in this chapter is the ongoing work
on the theoretical understanding of ACO algorithms. Early theoretical work has
focused on the convergence behavior of ACO algorithms [57, 58, 121]. Later work
has analyzed the dynamics of ACO behavior [91] and its relationship to other
algorithms [94]. An overview of early theoretical work on ACO is given by Dorigo
and Blum [32]. More recent works theoretically analyze the convergence speed of
ACO algorithms [28, 60–62, 66, 71, 103, 104].
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Fig. 4 Number of publications per year in the Scopus database for which their titles contain the
keywords “ant system,” “ant colony system,” or “ant colony optimization”

These developments together with the large number of ACO algorithm variants
that have been proposed in the literature and the large number of applications to
a very diverse set of problems show that ACO has become a widely accepted
and well-established metaheuristic. This fact is confirmed also by the number
of publications that have as central topic some aspect related to ACO. Figure 4
shows the number of publications in the Scopus database that have one of the
three terms “ant system,” “ant colony system,” or “ant colony optimization” in
the article title. There is a very strong increase from the period 2000–2010, while
after 2010 the number of publications remained at a high level. The success
of ACO is also witnessed by a number of industrial applications. For example,
AntOptima (www.antoptima.com) is a small company using the ACO methodology
for tackling industrial problems in distribution and production management, while
ArcelorMittal is using ACO algorithms in various areas relevant to steel production
to improve operative production performance [25, 44]. ACO is also a central topic
of journals and conferences specializing in the area of swarm intelligence such as
the ANTS conference series started in 1998 (http://iridia.ulb.ac.be/ants/) and the
journal “Swarm Intelligence.” This success of ACO is due to (i) a truly original
algorithmic idea inspired by a natural phenomenon, (ii) a strong versatility of the
resulting algorithmic method, and (iii) a focus of ACO research on performance
and a pragmatic approach trying to make it a useful technique. In the future, the
ideas underlying the ACO metaheuristic promise to be of crucial importance when
tackling challenging problems where aspects of constructive search, distributed
information, and dynamic domains match well the inherent characteristics of ACO.
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Abstract

Evolutionary algorithms (EAs) are population-based metaheuristics, originally
inspired by aspects of natural evolution. Modern varieties incorporate a broad
mixture of search mechanisms, and tend to blend inspiration from nature with
pragmatic engineering concerns; however, all EAs essentially operate by main-
taining a population of potential solutions and in some way artificially ‘evolving’
that population over time. Particularly well-known categories of EAs include
genetic algorithms (GAs), Genetic Programming (GP), and Evolution Strategies
(ES). EAs have proven very successful in practical applications, particularly
those requiring solutions to combinatorial problems. EAs are highly flexible and
can be configured to address any optimization task, without the requirements for
reformulation and/or simplification that would be needed for other techniques.
However, this flexibility goes hand in hand with a cost: the tailoring of an EA’s
configuration and parameters, so as to provide robust performance for a given
class of tasks, is often a complex and time-consuming process. This tailoring
process is one of the many ongoing research areas associated with EAs.

Keywords
Population-based � Genetic algorithms � Evolutionary programming �

Evolution strategies

Introduction

Evolutionary algorithms (EAs) are population-based metaheuristics. Historically,
the design of EAs was motivated by observations about natural evolution in
biological populations. Recent varieties of EA tend to include a broad mixture
of influences in their design, although biological terminology is still in common
use. The term “EA” is also sometimes extended to algorithms that are motivated
by population-based aspects of EAs but which are not directly descended from
traditional EAs, such as scatter search. The term evolutionary computation is also
used to refer to EAs but usually as a generic term that includes optimization
algorithms motivated by other processes but which generally involve a population
of potential solutions adapting and improving over time. This includes algorithms
inspired by other natural processes, such as ant colony optimization (ACO –
inspired by the collective problem-solving behavior of social insects) and artificial
immune systems (AIS – inspired by the adaptive molecular processes involved in
the human immune system’s ability to recognize and destroy harmful agents). It also
includes algorithms inspired by social behavior, such as particle swarm optimization
(PSO); however, in recent years, the convention has shifted toward using the term
“swarm intelligence” to describe PSO, ACO, and other algorithms inspired more by
interaction than evolution. Although these algorithms often resemble EAs, this is
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not always the case, and they will not generally be discussed in this chapter. For a
discussion of their commonalities and differences, the reader is referred to [1].

Over the years, EAs have become an extremely rich and diverse field of study. In
part this arises from their inherent design flexibility – there are innumerable ways
to specify an algorithm that operates according to the core concepts of evolution. In
part this also arises from the fact that their performance tends to be highly problem
dependent – an EA that works well on one task may well perform poorly on another,
even quite similar, task. Arising from these factors and others, the sheer number of
publications in this area is challenging for people new to the field. To address this,
this chapter aims to give a concise overview of EAs and their application, with an
emphasis on contemporary rather than historical usage.

The main classes of EA in contemporary usage are (in order of popularity)
genetic algorithms (GAs), evolution strategies (ESs), differential evolution (DE),
and estimation of distribution algorithms (EDAs). Multi-objective evolutionary
algorithms (MOEAs), which generalize EAs to the multiple objective case, and
memetic algorithms (MAs), which hybridize EAs with local search, are also
popular, particularly within applied work. Special-purpose EAs, such as genetic
programming (GP) and learning classifier systems (LCS), are also widely used.
These are all discussed in this chapter.

Although these algorithms differ from each other in a number of respects, they
are all based around the same core process. Each of them maintains a population of
search points (known variously as candidate solutions, individuals, chromosomes,
or agents). These are typically generated at random and are then iteratively evolved
over a series of generations by applying variation operators and selection. Variation
operators generate changes to members of the population, i.e., they carry out moves
through the search space. After each generation, the objective value (or fitness) of
each search point is calculated. Selection then removes the search points with the
lowest objective values, meaning that only the best search points are maintained,
and new search points are always derived from these. It is this combination of
maintaining a population of search points and carrying out selection between search
points that differentiates EAs from most other metaheuristics.

Each EA uses its own distinctive set of variation operators, which are sometimes
inspired by the mutative and recombinative processes that generate diversity in
biological evolution. The mutation operator resembles the generation of “moves”
in other optimization algorithms and involves sampling the neighborhood around
an existing search point in some fashion. A typical approach would be to randomly
change one component of a solution, though a particular EA may use more than one
kind of mutation operator. The recombination (or crossover) operator explores the
region between two or more search points, for example, by randomly reassembling
the components that make up two existing solutions. This process of searching the
region between existing search points is also a distinctive feature of EAs, though
its practical utility depends upon the structure of the search space. Some EAs,
particularly “evolutionary programming” and older varieties of evolution strategy,
do not use recombination at all.



412 D. Corne and M. A. Lones

Principal Algorithms

All EAs share certain common features, including in particular the broad concepts
of variation and selection, as introduced in section “Introduction”, operating over a
series of generations. More fundamentally, all EAs work by seeking the “best” (in
some sense) solutions they can find to a given optimization task. Put in another way,
an EA is almost always used to find the solution data-structure x which optimizes
a given function f.x/. For example, the task at hand may be straightforward
numerical function optimization, where the candidate solution data-structure is
a binary string that is interpreted as a list of real-valued parameters, and f.x/

is a mathematical function over those parameters whose result is a scalar value.
Alternatively, the task at hand may be to find an ideal schedule for a collection of
manufacturing tasks at a factory; in this case, the candidate solution data-structure
might be an ordered sequence of task identifiers, and f.x/would be a program that
simulates the schedule from the sequence, returning a vector of quality indicators
including cost, time, and risk. Whatever the nature of the underlying data-structure
being “evolved” and whatever the nature of f.x/, we can express a “canonical” EA
in pseudocode as follows:

Preliminaries: determine a suitable way to represent solutions as data-structures,
prepare the fitness function, and set g D 0.

Step 1: set g D 0, and generate and evaluate an initial population Sg of candidate
solutions;

Step 2: apply selection operators to produce a set of “parent” solutions P ;
Step 3: apply variation operators to P to produce a set of “chil” solutions C , and

evaluate the fitness of each one;
Step 4: apply population update operations to the union of Sg and C to produce

SgC1, and increment g

Step 5: if a termination criterion has not been reached, go to Step 2; otherwise,
finish and return the fittest member of the population.

In the above pseudocode, steps 2–5 constitute a “generation,” whose major
components are selection, variation, and then the “population update” step that leads
to renewal of the population, now ready to enter the next generation. Individual
EAs vary greatly in each of these steps, including the “preliminaries” step. In the
remainder of this section, we provide brief introductions to the principal classes
of EA that are in current use and then discuss existing understanding of their
performance and applicability.

Genetic Algorithms

Genetic algorithms, or GAs, are one of the earliest forms of EAs and remain widely
used. Candidate solutions, often referred to as chromosomes in the GA literature,
comprise a vector of decision variables. Nowadays, these variables tend to have a
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direct mapping to an optimization domain, with each decision variable (or gene)
in the GA chromosome representing a value (or allele) that is to be optimized.
However, it should be noted that historically GAs worked with binary strings,
with real values encoded by multiple binary symbols, and that this practice is still
sometimes used. GA solution vectors are either fixed-length or variable-length, with
the former the more common of the two.

Given their long history, genetic algorithm implementations vary considerably.
However, it is fairly common to use a mutation operator that changes each decision
variable with a certain probability (values of 4–8% are typical, depending upon
the problem domain). When the solution vector is a binary string, the effect of
the mutation operator is simply to flip the value. More generally, if the solution
vector is a “k�ary” string, in which each position can take any of a discrete set
of k possible values, then the mutation operator is usually designed to choose a
random new value from the available alphabet. If the solution vector is a string of
real-valued parameters within a set range, the new value may be sampled from a
uniform distribution in that range, or it may be sampled from a nonuniform (e.g.,
Gaussian) probability distribution centered around the current value. The latter is
generally the preferred approach, since it leads to less disruptive change on average.
Recombination is typically implemented using two-point or uniform crossover.
Recombination tends to be applied at a high rate (e.g., 0.7, typically called the
crossover rate); this means, for example, that when a variation operator is to be
applied, the chance of this operator being a crossover operator will be 0.7; otherwise
(depending on the algorithm), the operator may be the application of mutation to a
single parent or simply copying a single parent. Two-point crossover chooses two
parent solutions and two crossover points within the solutions. The values of the
decision variables lying between these two points are then swapped to form two
child solutions. Historically, “one-point” crossover was popular, which produced
the first (second) child by copying the first (second) parent up to a randomly chosen
point and then copied the second (first) parent thereafter. However, though more
convenient for theoretical analyses, one-point crossover is rarely used in practice
these days. Meanwhile, in uniform crossover, crossover points are created at each
decision variable with a given probability. Other forms of crossover have also been
used in GAs. Examples include line crossover and multi-parent crossover. Other
variation operators, such as inversion, have been found useful for some problems.

Various forms of selection are used with GAs. Rank-based or tournament selec-
tion are generally preferred, since they maintain exploration better than the more
traditional fitness-proportionate selection (e.g., roulette-wheel selection). Note,
however, that the latter is still widely used. Rank-based selection involves ranking
the population in terms of objective value. Population members are then chosen
to become parents with a probability proportional to their rank. In tournament
selection, a small group of solutions (typically three or four) are uniformly sampled
from the population, and those with the highest objective value(s) become the
parent(s) of the next child solution that is created. Tournament selection allows
selective pressure to be easily varied by adjusting the tournament size.
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Evolution Strategies and Evolutionary Programming

Evolutionary programming(EP) and evolution strategies (ES) also have a long
history, starting earlier than the development of GAs. First described in the 1960s
and 1970s, respectively (see [2] for a comprehensive account of the historical
development), early ES and EP used only single-parent operators in the variation
step (i.e., mutation). Meanwhile, EP was singular in focusing on using finite-state
machines as the evolving data-structures, while ES soon introduced a recombination
operator and championed the exploration of so-called “m C n” schemes, whereby a
population of m parents would generate n children and the best n of the combined
parents and children becomes the next generation of parents. In current research
and practice, modern formulations of EP focus on numerical optimization over
real-valued parameters and still eschew multi-parent operators in favor of paying
attention to careful design of the mutation operator(s). Of the two styles, however,
ES is more widely researched and deployed in practice, and particular variants of
ES have shown particular prowess in numerical function optimization. Modern ESs
incorporate strategies that carefully guide how the mutation operator is applied to
each decision variable. Unlike GAs, ESs mutate every decision variable at each
application of the operator and do so according to a set of strategy parameters
that determine the magnitude of these changes. Strategy parameters usually control
characteristics of probability distributions from which the new values of decision
variables are drawn.

It is standard practice to adapt strategy parameters over the course of an
ES run, the basic idea being that different types of move will be beneficial at
different stages of search. Various techniques have been used to achieve this
adaptation. Some of these involve applying a simple formula, e.g., the 1/5th rule,
which involves increasing or decreasing the magnitude of changes based on the
number of successful mutations that have recently been observed. Others are based
around the idea of self-adaptation, which involves encoding the strategy parameters
as additional decision variables and hence allowing evolution to come up with
appropriate values. However, the most widely used contemporary approach is
covariance matrix adaptation (CMA-ES), which uses a mechanism for estimating
the directions of productive gradients within the search space and then applying
moves in those directions. In this respect, CMA-ES has similarities with gradient-
based optimization methods.

ESs use different recombination operators to GAs and often use more than two
parents to create each child solution. For example, intermediate recombination gives
a child solution the average values of each decision variable in each of the parent
solutions. Weighted multi-recombination is similar but uses a weighted average,
based on the fitness of each parent. Also unlike GAs, ESs tend to use deterministic
rather than probabilistic selection mechanisms, whereby the best solutions in the
population are always used as parents of the next generation.
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Estimation of Distribution Algorithms

Like ESs, estimation of distribution algorithms [3], or EDAs, make use of prob-
ability distributions. However, rather than using them to describe a distribution
of next moves, as an ES does, EDAs use them to describe a distribution of next
sample solutions. The basic mechanism is quite simple. As for most EAs, the
initial population of solutions is (typically) sampled from a uniform distribution.
Selection is then used to remove the poorer members of this population, and a
probability distribution is then constructed that attempts to model the statistics of the
relatively high-fitness sample solutions that remain in the population. Importantly,
this distribution is constructed in such a way that it “generalizes” the population
members suitably well. The next generation of solutions is then constructed by
sampling from this distribution. So, if the distribution was highly peaked around the
existing samples, for example, the next generation would explore very little beyond
the previous one. This pattern of building a distribution, sampling, and selection is
then iterated in the usual generational fashion, with the hope that the final probability
distribution will characterize solutions that are, or are close to, globally optimal.

While an EDA may be used with any kind of probability distribution, in practice,
it is necessary to choose a distribution that induces an appropriate trade-off between
efficiency and expressiveness. More expressive models, such as Bayesian networks
and Markov models, can capture dependencies between decision variables but can
be expensive to construct and sample from. Simple univariate distributions, by com-
parison, are cheap to build and sample from but are unable to capture dependencies
between variables. This trade-off is reflected in the range of EDAs in common use.
Population-based incremental learning (PBIL) and the compact genetic algorithm
(CGA) are both examples of computationally efficient EDAs that build simple
univariate models based on discrete variables. Because of their simplicity, they can
be applied to large problem instances. Bayesian optimization algorithms (BOAs) lie
at the other end of the spectrum: these can express dependencies between variables,
and certain varieties can be applied to both discrete and continuous variables, but
they are far more demanding of computational resources.

Differential Evolution

Differential evolution [4,5], or DE, is a relatively recent EA formulation which uses
a mechanism for adaptive search that does not make use of probability distributions.
While its basic mechanism is similar to a GA, its mutation operator is quite
different, using a geometric approach that is motivated by the moves performed
in the Nelder-Mead simplex search method. This involves selecting two existing
search points from the population, taking their vector difference, scaling this by a
constant F , and then adding this to a third search point, again sampled randomly
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from the population. Following mutation, DE’s crossover operator recombines the
mutated search point (the mutant vector) with another existing search point (the
target vector), replacing it if the child solution (known as a trial vector) is of equal or
greater objective value. There are two standard forms of crossover [6]: exponential
crossover and binomial crossover, which closely resemble GA two-point crossover
and uniform crossover, respectively. The comparisons between target vector and
trial vector play the same role as the selection mechanism in a GA or ES. Since
DE requires each existing solution to be used once as a target vector, the whole
population is replaced in the course of applying crossover.

An advantage of using simplex-like mutations in DE is that the algorithm is
largely self-adapting, with moves automatically becoming smaller in each dimen-
sion as the population converges. More generally, the authors of the method have
claimed that this sort of self-adaptation means that the size and direction of moves
are automatically matched to the search landscape, a phenomenon they term contour
matching. When compared to CMA-ES, for example, this means that the algorithm
has few parameters and is relatively easy to implement.

Performance Comparisons

Fair comparisons of optimization algorithms are inherently challenging [7] and
arguably unachievable. Nevertheless, there have been some attempts to understand
the comparative performance of different EAs, particularly within the domain of
continuous optimization. In particular, a series of workshops held at two of the
largest annual EA conferences, CEC and GECCO, have sought to define benchmark
suites of real-valued function optimization problems suitable for comparing EAs
(and other optimizers) [8–10]. Using these benchmarks, a number of authors have
shown their algorithms to perform better than others, including variants of CMA-ES
and DE (see [4]). It should be borne in mind that these are not exhaustive studies,
either in terms of problems or approaches. The “no free lunch theorem”(NFLT)
[11] may also be considered when attempting to generalize these results to a wider
spectrum of problems, although, in itself, the NFLT does not apply in the case of
comparisons based on the standard suites of test problems (since those suites are not
closed under permutation [12]). A nice example of the perils of comparison study
in this field is shown by a recent study that showed how quite different conclusions
could be drawn from a comparative study by changing minimization problems into
maximization problems [13].

Common Variants

The general purpose EAs introduced in the last section are applicable to a wide range
of problems. However, over the course of EA history, algorithmic variants have been
developed to deal with the characteristics of particular categories of problem. Some
of these categories are quite broad, for example, problems with multiple solutions.
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Others are more specific, such as discrete optimization problems. In this section, we
discuss a number of these EA variants, focusing on those which are commonly used
to solve real-world optimization problems.

Alternative Representations

In common with other optimization algorithms, most EAs are designed to work
with and optimize vectors (or, equivalently, lists or arrays) of decision variables.
Solutions to many kinds of problems can be represented, either directly or indirectly,
in this form. However, EAs are not limited to working with vectors, and there are
often advantages to working directly with representations that are more natural
for the problem domain: for example, matrices [14], trees [15], graphs [16],
rule sets, etc. The general approach is the same as for the EAs discussed in
the previous section, except that specialized initialization routines and variation
operators are used to randomly create, mutate, and recombine instances of the
appropriate solution representation. These variants are typically based around GAs
or ESs, since these two classes of EA can be readily adapted to use alternative
solution representations. Nevertheless, DE [17] and EDA [18] have also been used
successfully with other representations.

Genetic programming (GP) [15] is a well-known GA variant in which each
candidate solution is a program; in early GP this was invariably achieved by
encoding programs as tree-structures, in which each “node” in the tree corresponds
to a function whose input parameters are the results returned by its child-nodes and
which itself returns a result to its parent nodes (if any). GP is still mostly used to
optimize computer programs or mathematical expressions, often expressed as tree-
structures. However alternative ways to encode programs are now often explored in
GP, such as so-called linear GP, in which programs are represented as a sequence of
parameterized instructions interacting via registers. A particularly common current
use of GP is symbolic regression, which involves finding a mathematical expression
that fits a particular data set. Unlike standard mathematical approaches to regression,
such as curve fitting, GP makes relatively few assumptions about the function that
generated the data, allowing a wide exploration of the space of possible solutions.
GP is also widely used for solving classification problems. More generally, the GP
community is interested in automatic programming, i.e., finding computer programs
that solve a particular task, and there are many variants of GP that use particular
forms of program representation. See [19] and [20] for overviews.

Some EAs work with two different solution representations, using one of
these when creating and manipulating search points, the other when evaluating
search points, and a mapping process that converts the former into the latter [21].
Many of these approaches are motivated by biology, and hence this process is
known as a genotype-phenotype mapping, with the representation used during
search termed the genotype and the representation used for evaluation termed the
phenotype. This approach can be used when the natural representation for a domain
is not well suited to being evolved, i.e., where mutation and recombination do
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not lead to productive solutions. This approach has also been widely used for
generating complex structures, such as large neural networks [22], where a genotype
representation can be chosen that compresses repetitive features such as symmetry
and modularity. This is arguably an area in which EAs benefit from their relationship
to biology, since biology provides a ready source of information on how to represent
complex structures in an evolvable way.

Hybridization with Local Search

EAs are often considered to be global search algorithms, since they explore a
relatively wide region of the search space and are relatively good at escaping
local optima. However, their convergence to optimal solutions can be relatively
slow when compared to local search algorithms. For this reason, EAs are often
hybridized with local search, using it to locally optimize members of the population
at regular intervals, hence speeding up convergence. Although the resulting hybrid
algorithms are known by various names, the term memetic algorithm [23] (MA)
has become popular in recent years. Memetic, in this case, refers to an analogy
between the role of local search in these algorithms and the role of within-generation
learning in biological systems, though the majority of memetic algorithms have no
particular biological justification beyond this. In principle, these algorithms may
involve hybridizing an EA with any or with multiple local search algorithms and
consequently are very diverse. For a recent review, see [24].

Beyond hastening convergence, MAs are also seen as a means of introducing
domain knowledge into EAs. This is done through the use of specialized local
search operators that are relevant to a particular domain. For example, this approach
underlies the success of MAs in the area of discrete optimization [25]. Related
to the idea of problem specialization in memetic algorithms is the concept of
hyper-heuristics in EAs, which has developed some traction in recent years [26].
Generally speaking, hyper-heuristics are applicable to domains in which a variety
of so-called low-level heuristics exist (or can be invented) to build quick, good
solutions. In the job shop scheduling problem, for example, “shortest-process-
time” and “earliest-available-machine” are two examples of low-level “dispatch”
heuristics that, when iterated, can build a single solution quickly. Hyper-heuristics
are essentially mechanisms used to explore combinations of such lower-level
heuristic strategies. The term hyper-heuristics is also used to describe the cases in
which an EA (often GP) both creates anew and combines such low-level heuristics.
In a nutshell, the broad idea of hyper-heuristics is to search a space of algorithms
that can solve a class of problems, rather than search the space of solutions directly
for a single problem instance.

Multimodal Optimization

An advantage of maintaining a population of search points is that EAs can be
readily applied to multimodal optimization problems in which there is more than one
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solution of interest. However, effective multimodal optimization generally requires
some modification to the EA’s underlying behavior, since, although EAs explore
diverse areas of the search space, they eventually converge to fairly small areas.
This behavior can be mitigated, to an extent, by varying the global selection pressure
used when choosing parents; for example, in the case of tournament selection, the
tournament size can be made small, increasing the likelihood that less fit members
of the population will contribute to the next generation of search points. While
this increases exploration, it decreases exploitation: meaning that multiple solutions
may be found, but they are less likely to be optimal. Since EAs are stochastic, and
there is the potential for them to converge on different optima during different runs,
another simple approach to finding multiple solutions is to run an EA multiple times.
However, there is no guarantee that all optima will be explored, and algorithmic
biases (such as the manner in which the initial population is generated) may favor
some solutions over others.

A more effective approach is to use some kind of niching technique [27]. These
aim to preserve global diversity in the population, but without lowering local
selective pressure. Niching approaches are motivated by the biological concept
of evolutionary niches, in which species compete within a niche but not between
niches. In optimization terms, a niche is a local region within the search space that
contains a solution of interest, and the aim is for the population to be distributed
across all the relevant niches. Niching has been studied for some time in GAs, and
techniques include crowding [28], fitness sharing [29], spatial segregation [30], and
clustering [14]. For comparative studies, see [6] and [8]. A simple but effective
example of niching is probabilistic crowding [28]. This works at the operator level
and always replaces parent solutions with their children, meaning that search points
are usually replaced with nearby search points and the population remains spread
across the search space. Similar techniques have also been developed for use in
DE. Niching is less commonly used in ESs, in part due to their use of smaller
populations, though examples do exist [31]. It is also common to use multi-objective
evolutionary algorithms (see below) to solve multimodal problems, since these
algorithms often have effective mechanisms for preserving population diversity.

Multi-objective Optimization

Multi-objective EAs, or MOEAs, are used to solve problems which have multiple
and often conflicting objectives. A central concept for MOEAs, and multi-objective
optimization in general, is that of a non-dominated solution. This is a solution
which is no worse than any of the other solutions within the population when
all objectives are taken into account, and the aim of an MOEA is to build and
maintain a population of non-dominated solutions that cover all trade-offs between
the objectives. This is known as the Pareto optimal front. Exactly how this is
achieved varies between MOEAs. However, a well-known example is NSGA-II
(non-dominating sorting genetic algorithm) [32]. Prior to selection, NSGA-II ranks
all solutions in terms of dominance: those which are non-dominated are assigned
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rank 1, those which are only dominated by rank 1 solutions are assigned rank 2, etc.
The population is then ordered by rank, and by a measure of crowding distance
within ranks, and the first half of the ordered population is copied directly into
the next generation. The remainder of the population is then filled by breeding,
with parents selected from the higher ranks. Hence, non-dominated solutions are
preserved between generations, and new solutions are explored via interbreeding,
resulting in a diverse set of non-dominated solutions that approximate the Pareto
optimal front.

The core challenge faced by multi-objective optimization (and absent from
single-objective optimization) is how to rank candidate solutions in a way that leads
to effective selection pressure, especially when the entire population (or most of it)
may be non-dominated. Another way in which multi-objective optimization differs
from single-objective optimization is in the nature of the “best-so-far solution.” In
single-objective optimization, the “best-so-far” solution is trivial to define and to
keep track of; in multi-objective optimization, the situation is vastly different: the
solution is, technically, the entire Pareto front, which is usually a set of solutions,
whose cardinality may vary from one to the entire search space. For MOEAs, this
leads to certain technical issues which are invariably addressed by maintaining an
archive of non-dominated solutions; this archive simply keeps track of the “best-
so-far” approximation to the Pareto front but is also often used as a reservoir for
selection of parents. Approaches to the main challenge – how to apply effective
selection pressure among the current population – are far more varied. While the
approach taken by NSGA-II, as detailed above, is a common and quite successful
one, many other styles of MOEA exist, which take different approaches to this
central question. In PAES [33], for example, there is only a single “current”
population member. Selection is consequently simplified; however, the challenge
shifts to the question of whether or not to update the current solution with a newly
generated one when the two are non-dominated; PAES makes this decision with
the aid of its archive, preferring to explore new areas of the search space than
to stay close to solutions already in the archive. Meanwhile, a different breed
of MOEAs in this respect is represented by MOEA/D [34]; bypassing the need
to distinguish between non-dominated solutions for selection purposes, MOEA/D
“decomposes” a multi-objective problem into many single-objective simplifications
of it, each involving a different weighting of the objectives. MOEA/D conducts these
single-objective searches in parallel (typically using a local search mechanism)
and organizes occasional communication between them, as well as bookkeeping
activities that build and maintain the archive. Effectively, each of MOEA/D’s single-
objective searches explores a different area of the Pareto front. There are many other
approaches, and MOEAs are becoming increasingly used as it becomes recognized
that real-world problems are almost invariably multi-objective in nature. Further
discussion of the latter point, as well as a first introduction to MOEAs, may be
found in [35], while an example of a fairly recent review of MOEAs may be found
in [36].
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Dynamic Optimization

So far, our discussion of optimization has only considered problems in which the
search space remains fixed. In many real-world problems, this is not the case, and
various EA approaches are used to handle these situations. Dynamic optimization
is an area in which EAs might be expected to perform relatively well, since the
natural diversity present in their populations provides a recovery mechanism that
can respond to slow changes in the optimization landscape. This is especially
the case when diversity maintenance techniques are implemented, such as those
already discussed in the sections on multimodal and multi-objective optimization.
However, this diversity may be insufficient when the optimization targets change
rapidly or abruptly. A simple solution in this situation is to inject extra diversity into
the population when a change is detected, for instance, by adapting the variation
operators so that larger moves are made. Detection of change can be done by
reevaluating a proportion of the population, looking for significant changes in
fitness.

A variety of more elaborate approaches have been developed to handle dy-
namic optimization in EAs. An approach inspired by biological systems is to use
redundancy in the encoding of a solution. Rather than replacing components of
a solution when variation operators are applied, this allows old components to
become recessive, i.e., to remain present within the solution but not be expressed
during evaluation. Later in the evolutionary process, these components can become
reactivated, in effect providing a mechanism to backtrack to previous search points.
This is particularly useful when changes in the search space are cyclic. A well-
known example is the use of multiploidy in GAs [37], where each solution has
multiple chromosomes (only one of which is dominant) and variation operators
are able to move information between chromosomes. Other approaches to handling
dynamic search spaces include predicting change and using multiple populations;
see [38] for a recent review.

Coevolving Solutions

Coevolutionary algorithms [39] are motivated by the interactions that occur between
species during the course of biological evolution and the roles these interactions
are thought to play in the evolution of complex organisms. Most coevolutionary
algorithms use multiple populations, one per species. Coevolutionary relationships
in biology can be cooperative or competitive. The latter class are particularly well
known and are encapsulated in the idea of predator-prey patterns of evolution, where
an arms race between two species can lead to the rapid emergence of complex
adaptations. Similar ideas have been explored in EAs, the classic example being the
coevolution of sorting networks and sorting algorithms [40]: the discovery of harder
problems (the sorting networks in the first population) leads to selective pressure to
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discover better solutions (the sorting algorithms in the second population), which
leads to selective pressure to discover harder problems and so on. Competitive
coevolution can be used to solve hard problems and is also useful in circumstances
where a fitness function cannot be defined. However, competitive coevolution is
known to be difficult to control, and pathological situations can lead to ineffective
search. See [39] for a review.

Cooperative coevolution, by comparison, is seen as a useful mechanism for
breaking down large problems into more tractable chunks [41]. The idea is that a so-
lution to a problem is divided into sub-components. Each of these sub-components is
then evolved in a separate population, with its objective value dependent upon how
compatible it is with sub-components being evolved in other populations. Following
this, the coadapted sub-components are then assembled to form a complete solution.
In [42], for example, the authors describe how a cooperative coevolutionary variant
of DE can be used to solve numerical optimization problems with up to 1000
variables. Cooperative coevolution can also take place within a single population.
An example of this is a Michigan-style learning classifier system (LCS), a form of
EA that coevolves a population of rules that can collectively solve difficult problems
in classification and machine learning [43].

Applying Evolutionary Algorithms

Choosing a Methodology

It can be difficult to choose which EA to use for a particular task, since there are
many different EAs in common use and relatively little in the way of objective
comparative guidance. In practice, it may be necessary to try out different EAs to
find out which is the best match to a problem, especially when the problem is poorly
understood. However, given whatever is known about the problem at hand, it might
be possible to leverage existing understanding of the strengths and weaknesses
of particular algorithm frameworks. Some guidance on this matter is available in
studies of comparative performance mentioned at the end of section “Introduction”.
It is hoped that section “Principal Algorithms” also provides useful pointers if the
problem is multimodal, multi-objective, dynamic, or unusually large and complex.
It is also notable that multi-objective and memetic algorithms, in particular, have
become popular for solving difficult real-world problems.

Choosing Parameters

EAs invariably have many parameters, and once an algorithm has been selected,
it is normal to carry out parameter tuning in order to obtain a better fit between
the algorithm and the problem. It can be challenging to obtain optimal parameter
settings, since parameters are typically both numerous and not independent of one
another. DE, for instance, is notable for having relatively few parameters, and this is
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often portrayed as a strength of the method. However, EAs are relatively forgiving,
and good performance is likely to be possible with nonoptimal parameter settings.
Nevertheless, guidance is available for choosing the settings of certain parameters
[44], and a number of techniques have been developed for automating the choice of
parameter settings [45].

Software Tools

Tools support is an important issue for many practitioners, and a particular EA
methodology is likely to be more appealing if it has a mature supported implemen-
tation. Tools support is also important if it is necessary to handcraft a new algorithm
to solve a particular problem, and in this situation the language used by the tool
may also be a significant concern. Table 1 summarizes the features of some of the
better known EA tools. GAs are widely supported by all of these. ES support is also
widely available, though EvA2 stands out in this regard, with implementations of
a wide range of ES variants. DE and EDAs are more recent algorithms, and this
is reflected by fewer mature tools. However, EvA2 is again notable for having an
implementation of BOA and other EDAs. GP support is offered by a number of
these tools, with ECJ implementing a particularly wide range of GP variants. Most
also offer support for multimodal and multi-objective approaches, though MOEA
Framework stands out for the latter. All of these tools allow custom code to be
written. Most use Java or C C C, though DEAP is notable as a mature Python
implementation and HeuristicLab is available for C# users.

Table 1 Open-source EA frameworks

Tool Language Summary

DEAP https://code.google.
com/p/deap/

Python Distributed Evolutionary Algorithms in Python offers
good support for GAs and ESs. Also implements GP and
MOEAs

ECJ http://cs.gmu.edu/~
eclab/projects/ecj/

Java Continuously developed since 1998, Evolutionary
Computation in Java has particular strength in GP but
also implements GAs, DE, and MOEAs

EO http://eodev.sourceforge.
net

CCC Evolving Objects is an established general-purpose EA
library with implementations of GAs, GP, ESs, and
EDAs

EvA2 http://www.ra.cs.
uni-tuebingen.de/software/
JavaEvA/

Java EvA2 is a general-purpose EA framework but has partic-
ular strengths in ESs and EDAs, including BOA

HeuristicLab http://dev.
heuristiclab.com/

C# HeuristicLab implements many of the common EA vari-
eties and also has support for other population-based and
local search metaheuristics

MOEA framework http://
www.moeaframework.org/

Java A relatively new EA framework with considerable
strength in MOEAs and multi-objective variants of DE
and GP

OpenBEAGLE https://code.
google.com/p/beagle/

CCC A long established EA framework with good support for
GAs and ESs. Also implements GP and NSGA-II

https://code.google.com/p/deap/
https://code.google.com/p/deap/
http://cs.gmu.edu/~{}eclab/projects/ecj/
http://cs.gmu.edu/~{}eclab/projects/ecj/
http://eodev.sourceforge.net
http://eodev.sourceforge.net
http://www.ra.cs.uni-tuebingen.de/software/JavaEvA/
http://www.ra.cs.uni-tuebingen.de/software/JavaEvA/
http://www.ra.cs.uni-tuebingen.de/software/JavaEvA/
http://dev.heuristiclab.com/
http://dev.heuristiclab.com/
http://www.moeaframework.org/
http://www.moeaframework.org/
https://code.google.com/p/beagle/
https://code.google.com/p/beagle/
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Case Studies

Evolutionary Algorithms at Large

Now more than half a century since the first appearance of “EA”-style algorithms in
the research literature (widely considered to be [46]), EAs have penetrated almost
every area of science and industry and are regularly used in solving an immense
range of optimization problems.

In terms of broad classes of problem, EAs have enabled practitioners and
researchers to make particular headway in combinatorial optimization which,
unlike numerical optimization, for example, was hitherto poorly served by classical
algorithms. In combinatorial optimization, the task is typically to find an ideal
permutation (or otherwise constrained arrangement) of a set of entities – such as a
sequence of customer visits for a delivery vehicle or a sequence of production tasks
for each of a set of machines in a factory. Before EAs, the primary approach used
to solve such problems was integer programming and constraint programming (and
variations thereon),which tend to require a complex (and often tortuous) problem
reformulation step. EAs, however, provide a far more accessible and flexible
approach to addressing such problems and are now commonly used in practice
for combinatorial tasks such as vehicle routing, job shop scheduling, and facility
allocation [47].

Meanwhile, beyond combinatorial optimization, the inherent flexibility of EAs
has led to their use, to at least some extent, in every conceivable area of science,
enterprise, and industry in which one or more important tasks can be formulated
in terms of optimization and/or design. To name just a few of the areas in which
EAs have had much impact, we can list aeronautical and automotive design [48],
bioinformatics and biotechnology [49], chemical engineering [50], creative pursuits
[51], finance and investment [52], manufacturing [53], and structural design [54].
To select a small number of case studies could not serve to characterize the true
diversity of applied EAs. We therefore duck that challenge and take the liberty of
concluding this chapter by providing two case studies from the authors’ recent work,
illustrating how some EA approaches are being applied to diverse and challenging
optimization problems in just one corner of science.

Using Niching and Coevolution to Understand Gene Regulation

Understanding gene expression is fundamental to understanding living processes.
The expression of each gene in an organism is determined by the binding of
special proteins, called transcription factors, within a region of DNA upstream
of its coding region. In higher organisms, such as humans, this regulatory region
typically contains around 5–10 transcription factor binding sites. Characterizing
these bindings sites, both individually and in combination, is a fundamental part
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of reconstructing (and ultimately controlling) the genetic networks that underlie
biological function.

Identifying binding sites is often reduced to an optimization problem that
involves constructing a matrix model of the occurrence of each DNA base at each
position within a short region of DNA. Candidate solutions to this problem can
be evaluated by scanning them along the regulatory regions of groups of genes
which are known to be expressed at a certain time or within a certain cell type,
looking for matches to patterns embedded in the sequences. In most cases, this is
a multimodal problem, since multiple binding sites are likely to be relevant to a
particular regulatory context, and it is important to be able to identify these different
optima. However, these binding sites can vary quite considerably in their degree
of conservation, meaning that the objective values of different optima also vary
considerably.

Identifying and preserving different modes within a multimodal search space
is a challenging problem, especially when they have different relative finesses. In
section “Common Variants”, we discussed the idea of niching within the populations
of EAs as a means of addressing multimodal problems. In [14] we used an EA
furnished with a particular form of niching, termed population clustering, that uses
a clustering algorithm to identify and preserve the different modes present within an
evolving population of solutions. This allowed a number of different binding sites
to be characterized and preserved during a single run. Compared to other forms
of niching, it also had the benefit of explicitly identifying these different groups
of solutions, allowing the progress of search to be visualized and for clustering
parameters to be dynamically modified by an expert user. Even in the absence of
dynamic modification, however, this was effective at identifying the clusters of
binding sites within comparatively long regions of DNA.

Identifying binding sites is only one part of the problem. Another important
aim is to understand the interactions between different binding sites during gene
regulation. In [55], we used coevolution to explore solutions to this problem. This
involved coevolving two populations, the first containing matrix models of binding
sites and the second containing Boolean expressions describing their co-occurrence
within binding regions. Members of the binding site population were used as leaves
within the Boolean expressions. In essence, the problem of identifying binding
sites and their co-expression was decomposed into two problems which were then
solved in parallel, using coevolution to provide feedback between the populations.
In comparison to a more traditional approach, which would involve sequentially
learning binding sites and then learning their interactions, this allows search to be
directed toward solutions that interact well with other solutions during the course
of search. Such solutions, in turn, are more likely to be meaningful. This approach
proved effective for reverse engineering the regulatory rules underlying differential
gene expression within tissues. More surprisingly, it also provided a mechanism
for solving harder instances of the single binding site optimization problem, with
coevolution provided a means of implicitly decomposing the matrices associated
with these harder problems.
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Evolving Classifiers for Parkinson’s Disease Diagnosis

This second case study concerns a problem in which the optimal representation for
solutions is not clear in advance, requiring experimentation with different kinds of
solution representation. As discussed earlier, EAs are entirely flexible in this regard.
The problem involves building diagnostic classifiers for Parkinson’s disease. These
are required to reach their decision based on time series movement data recorded
while patients and age-matched control were undergoing clinical assessments of
motor function. Motor aspects of Parkinson’s are incompletely understood, making
it unclear what kind of features of the data are important.

To address this, we used EAs to explore two different relatively unconstrained
classifier models. Initially we considered a GP-based approach, using it to discover
mathematical expressions that describe overrepresented patterns of movement
embedded in short segments of the time series data, i.e., a form of symbolic
regression [56]. An advantage of this approach is that the resulting expressions were
relatively interpretable, allowing us to gain insight into the basis of classifications
and then pass this information on to our clinical partners. In particular, analysis
of the evolved expressions identified specific aspects of the closing phase of a
“finger tap” movement as highly discriminatory of Parkinson’s disease patients
versus control. These factors alone were indeed more discriminatory than standard
metrics; however, overall classification performance was not quite as good as that
of trained clinicians.

We then considered a more unusual method of representing programs, artificial
biochemical networks [57]. These are abstract executable models of the networks of
biochemical interactions that underlie the function of biological cells. In a nutshell,
they attempt to capture the representation which biological evolution has selected to
optimize complex behaviors, with the hypothesis that this makes them particularly
suitable for use with EAs. Meanwhile, the use of an EA to search through the space
of possible artificial biochemical network classifiers represents, in itself, a major and
commonly understood strength of EAs: they can be tailored and deployed effectively
with relative ease despite the complexity and diversity of the structure they are being
used to evolve. By using this approach, we were now able to find classifiers that
produced comparable performance to that of trained clinicians [58]; with accuracy
at around 90% overall, accuracy was comparable to the diagnostic accuracies found
in clinical diagnosis, and significantly higher than those found in primary and non-
expert secondary care.

Conclusion

In this chapter we have provided a broad introduction to and overview of evolution-
ary algorithms, and the many varieties of them that appear in modern research and
practice. We have seen that there are a handful of key EA ‘families’, such as ‘genetic
algorithms’ and ‘differential evolution’; meanwhile, to some extent cutting across
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the principal types of EAs, there are several algorithm features and variants (such
as co-evolution, or hybridisation with local search) that are often ‘grafted’ into an
EA, in order to boost performance on a particular class of problems (or perhaps just
for research purposes). Towards the end, we considered the real-world application
of EAs, reporting that they are generally highly successful, and are growing to be
common tools used for optimisation tasks in science and industry. However, for
someone new to EAs, an early question might well be: “There are so many types
and variants of EAs – which should I use?” In this chapter, we have effectively
promised that EAs are likely to be a successful approach to any given optimization
task – particularly if that task is not well served by other available schemes or
heuristics. However, we have not necessarily made it easy for a novice to deliver
on that promise. A common theme has been the very wide variety of EA designs
that have been developed, and this great variety can be a barrier for those new to the
field, who aim to understand the key aspects of EAs and how best to apply them to
any given task. In closing, we attempt to provide some support for the novice via
the following perspective: EAs should not be seen as a collection of algorithms;
instead, they are far more fruitfully viewed as an approach to the engineering
of problem-specific (or problem-class specific) optimization algorithms. The key
lesson for practitioners, from half a century of research and practice in EAs, is,
broadly speaking, that concepts from evolution (population, selection, variation) can
be very powerful tools in optimization; but to achieve ideal performance on a given
task, one must be pragmatic, and often creative, about the details.
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Abstract

This chapter presents the fundamental concepts of genetic algorithms (GAs)
that have become an essential tool for solving optimization problems in a wide
variety of fields. The first part of this chapter is devoted to the revision of the
basic components for the design of GAs. We illustrate this construction process
through its application for solving three widely known optimization problems as
knapsack problem, traveling salesman problem, and real-parameter optimization.
The second part of the chapter focuses on the study of diversification techniques
that represent a fundamental issue in order to achieve an effective search in
GAs. In fact, analyzing its diversity has led to the presentation of numerous GA
models in the literature. Similarly, the hybridization with other metaheuristics
and optimization methods has become a very fruitful research area. The third
part of the chapter is dedicated to the study of these hybrid methods. In closing,
in the fourth part, we outline the wide spectrum of application areas that shows
the level of maturity and the wide research community of the GA field.

Keywords
Genetic Algorithms � basic components � GA design � population diversity �

diversity maintenance � diversity generation � hybrid genetic algorithms

Introduction

Genetic algorithms, or GAs, are nowadays an important field in artificial intelligence
and operations research, with more than 2,500 publications per year in the last
10 years. Contrary to their most common type of application, GAs were not initially
presented in the 1970s for problem solving, but as an instrument for simulating
the biological evolution of adaptive natural systems [58]. Nevertheless, it was
precisely the simulated adaptive ability that promoted, in the subsequent years,
the opportunity for tackling optimization problems successfully [26, 27, 43]. In this
chapter, we focus on their utility for problem solving, so GAs can operationally
be described as iterative algorithms that sample candidate solutions for a given
problem, with the aim of reaching the best configurations.

GAs take their inspiration from the biological evolution of species. Thus, the
following ideas belong to their core foundations:

• Species evolve in populations of individuals that compete for survival within an
environment.

• New individuals appear because of the recombination of previous individuals.
• Darwin’s theory of natural selection establishes that the fittest individuals, those

better adapted to the environment, get higher chances of surviving and breeding.
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Thus, less fitted individuals may probably perish at some point of the evolution
process.

• Individuals’ adaptation to the environment strongly depends on their phenotypic
characteristics, which, in turn, are principally determined by their genotype.

• Individuals might eventually suffer mutations at their genotype level, which may
affect their phenotype and adequacy to the environment.

Using these ideas, the following principles govern most of GAs for optimization:

• The environment is defined by the problem to be addressed.
• Individuals, also known as chromosomes, represent candidate solutions for the

problem.
• Their genotypes encode the candidate solutions for the problem. The genotype-

phenotype translation establishes how the chromosomes should be interpreted to
get the actual candidate solutions.

• The fitness of individuals depends on their adequacy on the given problem, so
fitter individuals are more probably to survive and breed.

• There is an evolving population of individuals, where new individuals may get
into and other may perish.

• New individuals are generated as the consequence of the recombination and/or
the mutation of previous ones.

It should be pointed out that similar approaches were being developed since
the 1960s, and, thus, there are nowadays several optimization methods sharing a
reasonable resemblance. All these approaches have been gathered up under the
term evolutionary algorithms [29, 37], pointing out the fact that these strategies
work with candidate solutions which evolve toward better configurations. However,
a distinguishing feature of GAs at the time was the concept of recombination
implemented as a crossover operator. This, in contrast with the neighborhood
exploration of just one solution, carried out by the existing heuristics and by the
operators of other algorithms, introduced the idea of combining the information
from two candidate solutions to generate a new one. Years afterward, the idea
of recombining two or more solutions was adopted by most representatives of
evolutionary computation.

The main aim of this chapter is to introduce the general and practical guidelines
for designing GAs for given problems. Thus, we will gather up classical ideas from
their origins and the latest tendencies without going into the specific and theoretical
details. The interested reader is referred to [95] for a survey of the works developed
in this regard.

The chapter is organized as follows. GA Construction Section offers several
hints to newcomers for the design and implementation of a GA. Three different and
widely known classes of optimization problems are used for reviewing the basic GA
components, and several classic alternatives are provided for each of them. Diversifi-
cation Techniques for GAs Section analyzes the premature convergence problem of
GAs produced by the lack of diversity and presents different methods and operators
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that attempt to favor the diversity of the population in GAs. Hybrid GAs Section is
devoted to another research area with an important number of algorithms reported in
the last years and that is intended to exploit the complementary character of different
optimization strategies. Finally, GA Applications Section outlines the application
areas of GAs and the major challenges faced by GAs to deal with optimization
problems in these areas.

GA Construction

In this section, we revise the basic ingredients for designing a GA. We comment
some of the original and widely used strategies for each of these components without
getting into a deep discussion whether they perform better or worse than other
approaches.

Given an optimization problem with a set of decision variables arranged in a
vector x, let f W X ! < be a function that maps any configuration of the
decision variables to a quality value. The aim is to find the combination of values
for the decision variables that maximizes, or minimizes, function f . This function
is usually known as the objective function. We assume that function f is to be
maximized for the rest of the chapter, being trivial most of the needed modifications
for minimization problems. In some cases, there are additional restrictions that
solutions must satisfy, which are modeled by a set of inequality and equality
constraints, gj .x/ � 0 and hj .x/ D 0 with j D 1; : : : ; M , respectively. We will
use the following widely known optimization problems throughout the chapter to
illustrate the application of GAs to problems with very different characteristics:

Knapsack Problem: In the classic knapsack problem [22], we are given a set
of N objects with profits pi � 0 and weights wi � 0 and a container, the
knapsack, with a maximum capacity C . The goal is to decide which objects
should be included in the knapsack in such a way that the sum of the profits
of the selected objects is maximized and the capacity C is not exceeded by the
sum of their respective weights. Note that the decision variables of this problem
should indicate which objects are included into the knapsack and which are not.
Likewise, given a valid candidate solution that satisfies the capacity constraint
(g.x/ D �C C

P
i2Knapsack wi ), the objective function f is the sum of the profits pi

of those objects in the knapsack.

Traveling Salesman Problem: This problem [50] consists in the design of travel
plans visiting a given set of cities or locations so that the traveled distance is
minimized. The information given is the set of cities, all of them have to be visited,
and the distances between each pair of cities. In this case, decision variables should
represent the order in which the cities are visited, and the objective function is the
sum of the distance between consecutive cities plus the journey back to the first city
from the last one.
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Real-Parameter Optimization: Here, we are given an objective function whose
decision variables take values from the continuous space <. In the context of
optimization with metaheuristics, this objective function is treated as a black box
so analytical methods cannot be applied. This is often the case when the evaluation
of candidate solutions involves the execution of an external simulation procedure,
such as wind tunnels or driving simulators, whose internal processes are obscure or
they are not subject of analysis. The distinguishing feature of these problems, with
regard to combinatorial problem, is that decision variables take real values instead
of binary or integer ones.

Whichever is the problem, the design of a GA goes throughout the following
steps and not necessarily in this order:

Representation

The practitioner needs to specify how the decision variables of the problem are
represented in the computer program to allow the GA to generate the different
possible configurations. In particular, the GA community stresses the difference
between the solution representation, genotype, from arrays of binary, integer (or
elements from an alphabet), or floating-point variables to complex structures such
as trees, graphs, or objects of specifically designed classes and the solution which is
actually represented, phenotype. Consider the previous optimization problems:

Knapsack Problem – Representation: The classic representation for this problem
is the binary coding, which is actually the traditional representation in GAs
regardless the problem. Solutions are represented by an array of N binary variables,
as much as objects in the problem, where the value 1 at the i-th position indicates
that the i-th object should be included into the knapsack and 0 means the opposite.
Therefore, the following example indicates that we should select the first, third,
fourth, and seventh objects and discard the others.

Œ 1 0 1 1 0 0 1 �

Here, the array of binary variables is the genotype, and the interpretation of that
genotype, the actual configuration of the knapsack, is the phenotype. However, note
that we could have adopted a different representation such as a variable-length array
or set with the integer indexes of the included objects (Œ1 3 4 7� in the case above).
We assume from now on that binary coding is adopted for this problem.

Traveling Salesman Problem – Representation: Given that the important in-
formation here is the order in which cities are visited, a natural way to represent
solutions is by means of permutations [72], such as the following one:

Œ 3 4 5 7 2 6 1 �
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These permutations are the genotype from which different interpretations could be
developed, the phenotype. The most commonly used is the one that establishes
traveling relations between consecutive values, i.e., in the example above, the agent
travels from the third city to the fourth one, from the fourth to the fifth, and so
on; finally, the agent returns to the third city from the first one (last value in the
solution). As previously, other coding schemes could be adopted, such as the binary
encoding of each of the integers in the example (Œ 011 100 101 111 010 110 001 �).
Particularly, an indirect technique with relative success in the field is the random
key encoding [48]. This represents a permutation as the sorting order of an array of
numbers. Therefore, the array Œ 3:0 4:1 0:2 0:3 �0:2 7 1 � would be first translated
into the permutation Œ 5 3 4 7 1 2 6 �, from which the appropriate interpretation
should be extracted. For the rest of the chapter, we adopt the former representation,
which indicates the order by which cities are visited.

Real-Parameter Optimization – Representation: Initially, real (and integer)
optimization problems were addressed with the binary coding scheme, considering
either a natural or a gray transformation [16,43,58]. This latter intends to minimize
the number of hamming differences between close final interpretations. However,
real encoding is much widely used lately for real-parameter optimization problems,
which avoids the differentiation between genotype and phenotype [55, 61, 81]:

Œ 0:5 0:0001 0:2342 1:0 100:0 0:7 � 7:2 �

Initial Population: Generating Candidate Solution from Scratch

At the beginning of the search process, GAs conform an initial population of
candidate solutions. Usually, there is not much information to be exploited to
generate these candidate solutions and the following alternatives are commonly
applied:

• Random solutions: When there is no other information apart from the considered
representation (binary, integer, permutations, real, trees, etc.), one of the easiest
and most widely used methodologies is to generate the initial population at
random. Thus, the task of generating the initial population becomes the one
of producing arrays of random binary, integer, or floating-point numbers, trees,
graphs, or a mixture of them.

• Diverse solutions: As we will see later, the practitioner is often concerned
with the presence of diverse solutions in the population. For the case of the
initial population, many works recommend random procedures that incorporate
some bias for generating diverse solutions and, thus, covering the search
more uniformly [91]. One simple technique is a generalization of the Latin
hypercube [60] which works as follows. Suppose that N initial solutions should
be generated, whose genotype is an array with l variables that take values from
an m-ary alphabet. First, l random permutations of f1; : : : ; N g are composed.
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Table 1 Latin hypercube sampling with N D 6, m D 3, and l D 7

Individual P1 P2 P3 P4 P5 P6 P7 Genotype

I1 2 5 5 6 2 3 2 Œ 3 3 3 1 3 1 3 �

I2 5 2 2 4 1 6 6 Œ 3 3 3 2 2 1 1 �

I3 6 3 6 2 5 4 4 Œ 1 1 1 3 3 2 2 �

I4 4 1 1 3 4 2 5 Œ 2 2 2 1 2 3 3 �

I5 1 4 4 5 6 5 1 Œ 2 2 2 3 1 3 2 �

I6 3 6 3 1 3 1 3 Œ 1 1 1 2 1 2 1 �

Then, solutions are generated concatenating the corresponding values of the
permutations modulo m (plus 1 if needed), i.e., the first solution considers the
first value of the permutations and so on. See an example in Table 1. Note that
N should be a multiple of m to assure a uniform sample of the m values. In
case of using a real encoding scheme, one possibility is to divide the domain of
the variables in m disjoint intervals. The previous procedure is applied and the
variable finally takes a uniform random value from the selected interval.

• Heuristic solutions: In case you have some information of the problem at
hand, you may exploit it to sample initial solutions better than those randomly
generated. For example, in the knapsack problem, objects with better weight-
profit ratios can be given higher probabilities of being included into the knapsack;
or in the traveling salesman problem, the nearest neighbor heuristic can be
randomized to generate different solutions [115].

In [65], different population initialization techniques are reviewed and catego-
rized into a taxonomy.

Evaluation

Solutions are evaluated to decide whether they will, or will not, take part in the
evolution process. This means assigning a fitness value to these candidate solutions.
The most common practice is to assign a fitness value which is computed exactly as,
or directly from, the objective function f .�/. For example, the sum of the profits of
the included objects can be used in the knapsack problem or the traveled distance,
in the traveling salesman problem. In some other occasions, you may be interested
in another computation such as a scaling procedure to avoid the influence of the
scale of the function, or including other information such as diversity maintenance
or constraint violation, often addressed with penalty functions [100, 118].

A very different strategy is to consider a relative measure such as the ranking
of the chromosomes in fitness order [94, 113]. Though there is information loss, a
clear advantage is that fitness values do not depend on the scale of the objective
function.
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Selection Operator

This operator is traditionally the only one in charge of assigning more reproduction
possibilities to better solutions and, therefore, biasing the search process toward the
pursued objective. GAs apply this operator to select those individuals allowed to
breed and generate new candidate solutions.

The first selection operator applied is known as the roulette-wheel method. The
idea is to assign selection probabilities, or roulette portions, to the solutions in the
population, which are proportional to their fitness values. Thus, better individuals
get higher probabilities of being selected. Then, the roulette is drawn as many
times as the number of individuals needed. An enhanced method is the stochastic
universal selection of Baker [9]. In this case, the roulette has multiple equally
spaced spinners, as much as individuals need to be selected, and is drawn just once.
In contrast to roulette wheel, Baker’s method reduces the stochastic possibility of
selecting the best individual too many or not enough times.

Tournament is another selection operator widely applied nowadays because of
its simplicity [47]. This method composes a set of tsize random individuals from
the population, and the best one is selected for breeding. Multiple tournaments are
simulated to get the parent population. Note that parameter tsize controls the bias
toward the best solutions, being tsize D 2 a classic setting, i.e., binary tournament.

Genetic Operators

Crossover and mutation operators are the GA components that generate new
candidate solutions, which are afterward evaluated and considered for the subse-
quent evolution iteration. Between these two, the crossover has traditionally got
a superior significance, and mutation often acts in the background, being applied
less frequently. The goal of the former is to combine the information of two or more
parent chromosomes from the current population, while the second usually modifies
a chosen chromosome random and locally.

There is not a clear methodology for the order in which these operators should
be applied. Commonly, two GA parameters govern the frequency of crossover and
mutation applications, namely, crossover and mutation probabilities, and the process
is often carried as follows. The selected parent solutions firstly undergo crossover
according to the crossover probability, and offspring is transferred to the mutation
step; parents are otherwise transferred to the mutation phase. Subsequently, muta-
tion is applied on the received solutions according to the mutation probability, and
the result is temporarily stored for the next generation.

Given the strong interaction between the solution representation and genetic
operators, we revise some classical proposals in the context of previous problems.

Crossover Operator
We show in this section some examples for combining the information from more
than one parent through crossover application.
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Table 2 Example of binary crossover operators with parents P1 D Œ 0 1 1 0 1 0 0 � and P2 D
Œ 1 1 1 1 0 0 1 �

Name Intermediate steps Result

One point Cut point Heads Tails Offspring

Crossover 4 Œ 0 1 1 0 1 0 0 � Œ 0 1 1 0 0 0 1 �

Œ 1 1 1 1 0 0 1 � Œ 1 1 1 1 1 0 0 �

Uniform Genes from P1 Genes from P2 Offspring

Crossover 1, 3, 5, 6 2, 4, 7 Œ 0 1 1 1 1 0 1 �

Half uniform Differences Genes from P1 Genes from P2 Offspring

Crossover 1, 4, 5, 6 4, 5 1, 6 Œ 1 1 1 0 1 0 1 �

Knapsack Problem – Crossover Operator: The firstly proposed crossover oper-
ator took its inspiration from biology and is widely known as one-point crossover
operator. Given two binary strings representing the corresponding parent solutions,
this operator chooses a random position (4 in the example in Table 2) and combines
the head of the first parent with the tail of the second one, generating a new candidate
solution, and vice versa for a second candidate solution. However, other crossover
operators such as uniform crossover [102] and half-uniform crossover [33] (see also
The Crossover Operator as Diversification Agent Section) usually perform better.
Both create a new offspring by selecting randomly each of the gene values from
the parents, but the latter assures that half of the number of differences are taken
from one parent and the other half from the other parent. In the particular case of
the knapsack problem, the resulting solutions may violate the capacity constraint,
so penalty functions or repair operators would be needed.

Traveling Salesman Problem – Crossover Operator: Problems using the permu-
tation coding, such as this one, require crossover operators to accept permutations
as input and produce valid permutations as output. Note that previous operators
do not satisfy this necessity. Therefore, specific operators are proposed for this
type of problems (see Table 3). The firstly proposed one was partially mapped
crossover [45], which is aimed precisely at generating sequences of numbers
without repetition. Its idea is to divide the two parent permutations in three segments
each according to two randomly chosen positions (2–4 in Table 3). Then, the inner
segment of one parent is combined with the outer ones of the other, and repeated
genes in the outer segments are changed according to the mapping rules defined
in the inner segment. Order crossover [23] is another option which intends to
exploits the relative order of the gene values instead of their absolute positions, as
previous operator does. Firstly sampling two random positions, this operator copies
the inner segment into the offspring and continues copying those valid gene values
from the secondly sampled position of the other parent (see Table 3). Given that
different operators focus on different interpretations of the information transmitted,
the practitioner should identify what is the one most appropriate for the adopted
problem representation.
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Table 3 Example of crossover operators for permutations with parents P1 D Œ 1 2 3 4 5 6 7 � and
P2 D Œ 2 4 5 7 1 6 3 �

Name Intermediate steps Result

Partially Cross.
points

Comb. and rep. re-
moval

Mappings Offspring

Mapped 2–4 Œ 2/ j 2 3 4 j 1 6 3/ � 2 ! 4; 3 ! 5; 4 ! 7 Œ 7 j 2 3 4 j 1 6 5 �

Crossover Œ 1 j 4 5 7 j 5/ 6 7/ � 4 ! 2; 5 ! 3; 7 ! 4 Œ 1 j 4 5 7 j 3 6 2 �

Order Cross.
points

Inner segment Valid values Offspring

Crossover 4–6 Œ � � � j 4 5 6 j � � Œ 2 4/ j 5/ 7 1 6/ j 3 � Œ 2 7 1 j 4 5 6 j 3 �

Œ � � � j 7 1 6 j � � Œ 1/ 2 j 3 4 5 6/ j 7/ � Œ 3 4 5 j 7 1 6 j 2 �

Table 4 Example of real-parameter crossover operators with parents P1 D Œ 0:3 7 � and P2 D
Œ 0:4 1 �, ˛ D 0:5, and domains x1 2 Œ0; 1� and x2 2 Œ�10; 9�

Name Intermediate steps

BLX-˛ I a
i jp1

i � p2
i j Lower bound Upper bound Interval

max.li ; min.p1
i ; p2

i / � ˛I a
i / min.ui ; max.p1

i ; p2
i /C ˛I a

i /

o1 0:1 max.0; 0:3 � 0:05/ min.1; 0:4 C 0:05/ Œ0:25; 0:45�

o2 6 max.�10; 1 � 3/ min.9; 7 C 3/ Œ�2; 9�

PBX-˛ I a
i jp1

i � p2
i j Lower bound Upper bound Interval

max.li ; p1
i � ˛I a

i / min.ui ; p1
i C ˛I a

i /

o1 0:1 max.0; 0:3 � 0:05/ min.1; 0:3 C 0:05/ Œ0:25; 0:35�

o2 6 max.�10; 1 � 3/ min.9; 1 C 3/ Œ�2; 4�

Real-Parameter Optimization – Crossover Operator: Similar to previous cases,
there are many proposals for the combination of the information in two real-coded
parent solutions. In this case, researchers pay attention to the capacities of the
crossover to converge, expand, or even correlate the changes on the decision vari-
ables [56]. An interesting characteristic of most real-parameter crossover operator
is whether they tend to sample new solutions near the centroid of the parents or near
the parents. BLX-˛ [34] is an example of centroid-centered operator and PBX-˛ is
its parent-centered version [39,76]. For each offspring gene oi , both operators create
an interval I D Œa; b� from which the actual value is uniformly and randomly drawn.
In both cases, the amplitude of the interval depends on the difference between the
parent gene values, I a

i D abs.p1
i � p2

i /, and the domain of the variable, Œli ; ui �.
The difference is the location of that interval, biased toward the average of previous
parent gene values, in the case of BLX-˛, or the value of the first parent, PBX-˛.
Table 4 shows an example of how both operators compute the intervals from where
offspring gene values are sampled.

Mutation Operator
As for the crossover operator, mutation is strongly connected with the adopted
representation. Therefore, we will see some simple examples for any of the
three problems considered through this chapter. Apart, we shall mention that the
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community usually distinguishes between applying mutation at individual or gene
level. In the first case, the chromosome is mutated only once according to the
mutation probability. One gene is randomly selected and modified, which could
involve additional modifications in one or a few other genes. In the latter, all the
genes of the chromosome are visited, and each one is mutated according to the
mentioned probability, so chromosomes might suffer stronger alterations. In this
case, the mutation probability is often much smaller.

Knapsack Problem – Mutation Operator: Flipping is the simplest mutation
operator for binary strings. If mutation applies at the individual level, a random
gene is selected and its value is changed, from 0 to 1 or the other way around. If
mutation is at the gene level, each variable is visited once and flipped according
to the mutation probability. One should notice that other operators might be more
appropriate for the problem at hand. For example, in the case of the knapsack
problem, flipping one bit from 0 to 1 might leave room for inserting another object
in the knapsack, and changing one bit from 1 to 0 may make the solution unfeasible.
Thus, you might prefer using another more specialized operator, such as flipping
two bits with different values, instead of this general one.

Traveling Salesman Problem – Mutation Operator: Assigning random values
to one or several genes is often applied in integer-coded problems; however, this
strategy is not appropriate for permutation codings. Instead, mutation operators
usually apply swappings, insertions, reorderings, or sublist inversions [29, 98].
Table 5 shows the application of swap [11, 88] and sublist inversion [58]. In both
cases, two positions are randomly drawn. Notice, however, that sublist inversion
modifies less arcs of the solution path in symmetric graphs than swapping the
selected positions. This is due to the fact that traveling direction does not affect
the solution cost in this kind of graphs. Thus, sublist inversion is often preferred for
this problem.

Real-Parameter Optimization – Mutation Operator: Uniform and norm ran-
dom variables, with a symmetric distribution around zero, are commonly used
to perturb a given real-coded solution locally. In contrast to previous cases, it is
usual to modify more than one and often all the variables of the solutions at the
same time, by adding up a complete randomly drawn vector. Altering either one
or all the variables, practitioners often pay attention at the global impact of the

Table 5 Example of mutation operators for permutations with chromosome S D Œ 2 4 5 7 1 6 3 �

Swap Mut. points Result Arcs removed Added arcs

2–5 Œ 2 j 1 j 5 7 j 4 j 6 3 � 2 ! 4; 4 ! 5; 2 ! 1; 1 ! 5

7 ! 1; 1 ! 6 7 ! 4; 4 ! 6

Sublist Mut. Points Result Arcs removed Added arcs

Inversion 2–5 Œ 2 j 1 7 5 4 j 6 3 � 2 ! 4; 1 ! 6 2 ! 1; 4 ! 6
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mutation so that the difference between the original and the mutated solution, under
the Euclidean metric, for instance, is controlled. A widely used operator is the
nonuniform mutation [61, 81], which reduces the intensity of mutation with the
number of generations. Particularly, a variation vector � D Œ ı1 : : : ıi : : : ıN �,
computed as follows, is added up to the given solution X D Œ x1 : : : xi : : : xL �:

ıi D

�
.ui � xi /.1 � zi /

� ; with probability 1/2
.li � xi /.1 � zi /

� ; otherwise

� D

�

1 �
t

tmax

�ˇ

where zi is an uniform random variable in Œ0; 1�, ui and li are the box bounds of
variable xi , ˇ is a parameter with ˇ > 0, and t and tmax are, respectively, the current
and maximal number of generations.

Evolution Model and Replacement Strategy

The traditional GA applied a generational evolution strategy. This means that
evolutions occur at generations where a complete new population is generated
from the current one, which, in turn, becomes the current population for the next
generation. The pseudocode of this generational GA is shown in Fig. 1. A possible
undesirable effect of this model is that the new population might be worse, in quality
terms, than the current population. So usually, the best solution from the current
population is artificially inserted in the new population, particularly when there is
not any better solution in the new population. This evolution model is known as
generational with elitism [10].

Another commonly applied model is the steady-state GA [28], which contrarily
generates a reduced set of new chromosomes, usually just one solution, that
compete to enter into the population (see pseudocode in Fig. 2). In steady-state
GAs, the designer has to specify a replacement policy, which determines whether
the new solutions enter the population or are discarded and which solution from
the population is removed to make room for the new one, if this is accepted. A
simple policy to introduce the new solution into the population is replacing the worst
solution if the new one is better. Other strategies consider diversity measures, like
replacing the most similar solution [52] (see also Strategies to Maintain Diversity
Section, crowding methods) or the worst parent.

Stop Condition

GAs evolve until a certain stopping criterion is met. Practitioners commonly
consider a maximum number of generations, fitness evaluations, or a maximal
processing time. These criteria are widely used when one is interested in comparing
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Input:

NP: Population size

pc: Crossover probability

pm: Mutation probability

Output:

S: Best solution found

//Initial population

1 for i=1 to NP do

2 pi ← Generate solution;

3 pi.fitness ← Evaluate(pi); //acc. to objective function f(·)

4 end

//Evolution

5 repeat

6 PO ← ∅;

//Offspring generation

7 repeat

8 parents ← Selection(P);

9 offspring ← Crossover(parents); //acc. to pc

10 offspring ← Mutation(offspring); //acc. to pm

11 offspring.fitness ← Evaluate(offspring);

12 PO = PO ∪ offspring;

13 until |PO| = NP;

14 P ← PO;

15 until Stop-condition is met;

16 return Best generated solution;

Fig. 1 Basic scheme of a generational GA
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Input:

NP: Population size

pc: Crossover probability, usually equal to 1 in steady-state GAs

pm: Mutation probability

Output:

S: Best solution found

//Initial population

1 for i=1 to NP do

2 pi ← Generate solution;

3 pi.fitness ← Evaluate(pi); //acc. to objective function f(·)

4 end

//Evolution

5 repeat

6 parents ← Selection(P);

7 offspring ← Crossover(parents);

8 offspring ← Mutation(offspring); //acc. to pm

9 offspring.fitness ← Evaluate(offspring);

10 P ← Replacement(offspring, P);

11 until Stop-condition is met;

12 return Best generated solution;

Fig. 2 Skeleton of a steady-state GA

the performance of several algorithms, and the same computational resources have
to be provided for a fair study.

On other occasions, especially when one is aimed at solving a particular problem,
GAs are executed until a minimal solution quality is attained or the population
converges so further progress is very difficult. In these cases, practitioners often
need to be able to consult the progress of the search to decide at the moment, whether
continuing the evolution or truncating it and applying a restart procedure (see also
section “Methods to Generate Raw Diversity”).
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Diversification Techniques for GAs

There are two primary factors in the search carried out by a GA [20]: population
diversity and selective pressure. In order to have an effective search, there must be
a search criteria (the fitness function) and a selection pressure that gives individuals
with higher fitness a higher chance of being selected for reproduction, mutation,
and survival. Without selection pressure, the search process becomes random, and
promising regions of the search space would not be favored over regions offering
no promise. On the other hand, population diversity is crucial to a GAs ability
to continue the fruitful exploration of the search space. If the lack of population
diversity takes place too early, a premature stagnation of the search is caused. Under
these circumstances, the search is likely to be trapped in a region not containing
the global optimum. This problem, called premature convergence, has long been
recognized as a serious failure mode for GAs [53, 119]. In the literature, many
approaches have been proposed to introduce new methods and operators that attempt
to favor the diversity of the population to overcome this essential problem of genetic
algorithms. Next, we present a quick overview of them.

Methods to Generate Raw Diversity

Premature convergence causes a drop in the GAs efficiency; the genetic operators
do not produce the feasible diversity to tackle new search space zones, and thus
the algorithm reiterates over the known zones producing a slowing-down in the
search process. Under these circumstances, resources may be wasted by the GA
searching an area not containing a solution of sufficient quality, where any possible
improvement in the solution quality is not justified by the resources used. Therefore,
resources would be better utilized in restarting the search in a new area, with a
new population. This is carried out by means of a restart operator [42, 44], which
introduces chromosomes with high raw diversity to increase the average diversity
level, thus to ensure the process can jump out the local optimum and to revolve
again.

Eshelman’s CHC algorithm [32] represents a GA with elitist selection and
a highly disruptive recombination operator which restarts the search when the
population diversity drops below a threshold level. The population is reinitialized
by using the best individual found so far as a template for creating a new
population. Each individual is created by flipping a fixed proportion (35%) of the
bits of the template chosen at random without replacement. If several successive
reinitializations fail to yield an improvement, the population is completely (100%)
randomly reinitialized.

Another GA that utilizes population reinitialization is the micro GA [43]. In
general, a micro GA is a small population GA which evolves for many generations.
When after a number of generations the micro GA population converges, the evolu-
tionary process is reinitialized by preserving the best individual and substituting the
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rest of the population with randomly generated individuals. The first implementation
of a micro GA was reported by Krishnakumar [69], who used a population size
of five individuals, tournament selection, single-point crossover with probability,
elitism, and restart operator. The population was considered converged when less
than 5% of the population bits were different from the bits of the best individual.

A recent GA model, called saw-tooth GA [68], manages a variable population
size with periodic reinitialization following a saw-tooth scheme with a specific
amplitude and period of variation. In each period, the population size decreases
linearly, and at the beginning of the next period, randomly generated individuals are
appended to the population.

Strategies to Maintain Diversity

Pioneer works on the way diversity may be retained throughout the GA run focused
on the design of alternative selection mechanisms. For example, in the linear
ranking selection [8], the chromosomes are sorted in order of raw fitness, and then
the selection probability of each chromosome is computed according to a linear
function of its rank. With this selection mechanism, every individual receives an
expected number of copies that depends on its rank, independent of the magnitude
of its fitness. This may help prevent premature convergence by preventing super
individuals from taking over the subpopulations within a few generations.

Disruptive selection [70] attempts to accomplish this objective as well. Unlike
conventional selection mechanisms, this approach devotes more trials to both better
and worse solutions than it does to moderate solutions. This is carried out by
modifying the objective function of each chromosome, C , as follows: f 0.C / D

jf .C / � Nf j, where Nf is the average value of the fitness function of the individuals
in the population. A related selection method is the fitness uniform selection
scheme (FUSS) [59]. FUSS generates selection pressure toward sparsely populated
fitness regions, not necessarily toward higher fitness. It is defined as follows: if
fmin and fmax are the lowest and highest fitness values in the current population,
respectively, we select a fitness value uniformly in the interval Œfmin; fmax�. Then,
the individual in the population with fitness nearest to this value is selected. FUSS
results in high selection pressure toward higher fitness if there are only a few fit
individuals, and the selection pressure is automatically reduced when the number
of fit individuals increases. In a typical FUSS population, there are many unfit and
only a few fit individuals. Fit individuals are effectively favored until the population
becomes fitness uniform. Occasionally, a new higher fitness level is discovered
and occupied by a new individual, which then, again, is favored. Finally, another
technique being worthy of mention is the repelling algorithm [114], which modifies
the fitness function to increase the survival opportunity of chromosomes with rare
alleles.

There are different replacement strategies for steady-state GAs that try to
maintain population diversity as well. In [77], the authors propose a replacement
strategy that considers two features of the individual to be included into the
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population: a measure of the contribution of diversity to the population and the
fitness function. It tries to replace a chromosome in the population with worst values
for these two features. In this way, the diversity of the population increases and the
quality of the solutions improves, simultaneously. The goal of this strategy is to
protect those individuals that preserve the highest levels of useful diversity.

Other replacement methods to promote population diversity are the crowding
methods [97]. They work as follows: new individuals are more likely to replace
existing individuals in the parent population that are similar to themselves based on
genotypic similarity. In this manner, the population does not build up an excess of
similar solutions. Crowding methods promote the formation of stable subpopula-
tions in the neighborhood of optimal solutions (niches), favoring the preservation
of multiple local optima in multimodal problems. An effective crowding method is
the restricted tournament selection (RTS) [52]. RTS initially selects two elements at
random, A and B , from the population and perform crossover and mutation on these
two elements resulting in a new element A0. Then, RTS scans ! (window size) more
members of the population and picks the individual that most closely resembles A0

from those ! elements. A0 then competes with this element, and if A0 wins, it is
allowed to enter the population. Another type of crowding methods assumes that
the parents would be those members of the population that are closer to the new
elements. In this way, children compete with their parents to be included in the
population, i.e., a family competition is held. These methods include deterministic
crowding [78] and elitist recombination [106].

Some GA models were proposed in the literature that explicitly avoid the
existence of duplicate individuals in the population, as a way to encourage diversity.
In fact, early empirical studies confirmed that duplicate removal can enhance the
performance of GA significantly [80]. For example, the non-revisiting GA [119]
guarantees that no revisits ever occur in its fitness evaluations. It achieves this by
interacting with a dynamically constructed binary space partitioning archive that is
built up as a random tree for which its growth process reflects the evolution history
of the GA and is a quick method to query whether there is a revisit. The entire
previous search history is then used to guide the search to find the next unvisited
position. A similar approach may be found in [51].

Finally, it is worth to mention that diploid GAs [67, 109] are evolutionary
algorithms that manipulate a specific kind of diversity that becomes profitable
to deal with dynamic optimization problems (in which some elements of the
underlying model change over the course of the optimization). Most organisms
in nature have a great number of genes in their chromosomes, and only some of
the dominant genes are expressed in a particular environment. The repressed genes
are considered as a means of storing additional information and providing a latent
source of population diversity. Diploid GAs use diploid chromosomes which are
different from natural ones in that the two strands of the diploid chromosomes
are not complementary. Only some genes in a diploid chromosome are expressed
and used for fitness evaluation by some predetermined dominance rules. Unused
genes remain in the diploid genotype until they may later become useful (latent
diversity).
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The Crossover Operator as Diversification Agent

The mating selection mechanism determines the way the chromosomes are mated
by applying the crossover to them. In the conventional GA, no mating strategy is
applied to the results of selection; that is, parents are approved without any further
examination after they are chosen at random or just by fitness. However, mates can
be selected so as to favor population diversity [32, 107]. A way to do this is the
negative assortative mating mechanism. Assortative mating is the natural occurrence
of mating between individuals of similar genotype more or less often than expected
by chance. Mating between individuals with similar genotype more often is called
positive assortative mating and less often is called negative assortative mating.
Fernandes et al. [35] assume these ideas in order to implement a parent selection
mechanism for the crossover operator. A first parent is selected by the roulette
wheel method, and nass chromosomes are selected with the same method. Then,
the similarity between each of these chromosomes and the first parent is computed.
If assortative mating is negative, then the one with less similarity is chosen. If it
is positive, the genome that is most similar to the first parent is chosen to be the
second parent. Clearly, the negative assortative mating mechanism increases genetic
diversity in the population by mating dissimilar genomes with higher probability.

The crossover operator has always been regarded as one of the main search
operators in GAs [66] because it exploits the available information in previous
samples to influence future searches. This is why research has been focused on
developing crossover operators with an active role as effective diversification agents.
The half-uniform crossover used in the CHC algorithm [32] is a highly disruptive
crossover that crosses over exactly half of the nonmatching alleles (the bits to be
exchanged are chosen at random without replacement). This way, it guarantees that
the two offspring are always at the maximum Hamming distance from their two
parents, thus proposing the introduction of a high diversity in the new population
and lessening the risk of premature convergence. It is worth of mention that CHC
applies this operator along with (1) a reproduction restriction that assures that
selected pairs of chromosomes would not generate offspring unless their Hamming
distance is above a certain threshold and (2) a conservative selection strategy with
high selective pressure (it keeps the N best elements appearing so far). In fact,
Kemenade et al. [110] suggest that higher selection pressures allow the application
of more disruptive recombination operators.

A crossover operator that was specifically designed with the aim of diversifying
the search process of the real-coded GAs is BLX-˛ [34] (see also Crossover
Operator section where its operation is described and, moreover, an illustrative
example is presented). Nomura et al. [86] provide a formalization of this operator
to analyze the relationship between the chromosome probability density functions
before and after its application, assuming an infinite population. They state that

BLX-˛ spreads the distribution of the chromosomes when ˛ >
p

3�1
2

or otherwise
reduces it. This property was verified through simulations. In particular, the authors
observed that BLX-0.0 makes the variances of the distribution of the chromosomes
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decrease, reducing the distribution, whereas BLX-0.5 makes the variances of the
distribution increase, spreading the distribution.

BLX-˛ has a self-adaptive nature in that it can generate offspring adaptively
according to the distribution of parents without any adaptive parameter [12]. BLX-˛
uses probability distributions that are calculated according to the distance between
the decision variables in the parents. If the parents are located closely to each other,
the offspring generated by this operator might be distributed densely around the
parents. On the other hand, if the parents are located far away from each other,
then the offspring will be sparsely distributed around them. Therefore, it may fit
their action range depending on the diversity of the population by using specific
information held by the parents. In this way, depending on the current level of
diversity in the population, it may favor the production of additional diversity
(divergence) or the refinement of the solutions (convergence). This behavior is
achieved without incurring into extra parameters or mechanisms to achieve the
mentioned behavior.

Diversification by Adapting GA Control Parameters

Finding robust control parameter settings (such as mutation probability, crossover
probability, and population size) is not a trivial task, since their interaction with GA
performance is a complex relationship and the optimal ones are problem dependent.
Furthermore, different control parameter values may be necessary during the course
of a run to induce an optimal exploration/exploitation balance. For these reasons,
adaptive GAs [30, 54, 63, 99, 108] have been built to dynamically adjust selected
control parameters or genetic operators during the course of evolving a problem
solution. Their objective is to offer the most appropriate exploration and exploitation
behavior.

Some adaptive techniques were presented to endow the GA with useful diversity.
Specifically, the mutation probability (pm) was considered as a key parameter to
accomplish this task [89, 119]. Next, we describe different adaptive mechanisms
presented in the GA literature to control this parameter.

• Deterministic control of pm. A direction followed by GA research for the
variation of pm lies in the specification of an externally specified schedule which
modifies it depending on the time, measured by the number of generations.
One of the most considered schedules consists in decreasing pm during the
GA run [36]. For example, [57] suggested the equation pm D 0:1 � 0:09 � g

G
,

where g is the generation number from 1 to G. This schedule follows the
heuristic “to protect the exploration in the initial stages and the exploitation later,”
which has been considered to design other metaheuristics, such as simulated
annealing.

• Adaptive control of pm. In [101], a technique for the adaptive control at individual
level of pm was proposed, in which pm is varied depending on the fitness values
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of the solutions. Each chromosome Ci has its own associated pm value, pi
m,

which is calculated as (maximization is assumed):

pi
m D

fmax � fi

fmax � Nf
if fi � Nf ; and pi

m D 1 if fi < Nf ;

where fi is the chromosome’s fitness, fmax is the population maximum fitness,
and Nf is the mean fitness. In this way, high-fitness solutions are protected
(pi

m D 0), while solutions with subaverage fitnesses are totally disrupted
(pi

m D 1). This technique increases pm when the population tends to get stuck at
a local optimum and decreases it when the population is scattered in the solution
space.

• Self-adaptive control of pm. An extra gene, pi
m, is added to the front of each

chromosome, Ci , which represents the mutation probability for all the genes in
this chromosome. This gene evolves with the solution [7,108]. The values of pi

m

are allowed to vary from pl
m to ph

m. The following steps are considered to mutate
the genes in a chromosome Ci :

1. Apply a meta-mutation on pi
m obtaining qi

m. This is carried out by choosing
a randomly chosen number from the interval Œpi

m � d; pi
m C d�, where d is a

control parameter.
2. Mutate the genes in Ci according to the mutation probability qi

m.
3. Write the mutated genes (including qi

m value) back to the chromosome.

Crossover is presently applied only to the chromosome and has no impact on
pi

m. Each offspring resulting from crossover receives the pi
m value of one of its

parents. The initial pi
m values are generated at random from Œpl

m; ph
m�.

The self-adaptive control of GA parameters attempts to exploit the indirect
link between favorable control parameter values and fitness values, with the
parameters being capable of adapting implicitly, according to the topology of
the objective function [7].

Diversity Preservation Based on Spatial Separation

GA models based on the spatial separation of individuals were considered as
an important way to research into mechanisms for dealing with the premature
convergence problem. One of the most important representatives are the distributed
GAs (DGAs) [4,31,53]. Their premise lies in partitioning the population into several
subpopulations, each one of them being processed by a GA, independently of the
others. Furthermore, a migration mechanism produces a chromosome exchange
between the subpopulations. DGAs attempt to overcome premature convergence
by preserving diversity due to the semi-isolation of the subpopulations. Another
important advantage is that they may be implemented easily on parallel hardware.
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Moreover, we should also point out that it is possible to improve the diversification
in DGAs by designing specific migration policies [6].

Making distinctions between the subpopulations of a DGA through the appli-
cation of GAs with different configurations (control parameters, genetic operators,
codings, etc.), we obtain the so-called heterogeneous DGAs [53]. They are suitable
tools for producing parallel multiresolution in the search space associated with the
elements that differentiate the GAs applied to the subpopulations. This means that
the search occurs in multiple exploration and exploitation levels. In this way, a
distributed search and an effective local tuning may be obtained simultaneously,
which may allow premature convergence to be avoided and approximate final
solutions to be reached. An outstanding example is GAMAS [90], a DGA based
on binary coding that uses four subpopulations, denoted as species I–IV. Initially,
species II–IV are created. Species II is a subpopulation used for exploration. For
this purpose, it uses a high mutation probability (pm D 0:05). Species IV is a
subpopulation used for exploitation. So, its mutation probability is low (pm D

0:003). Species III is an exploration and exploitation subpopulation; the mutation
probability falls between the other two (pm D 0:005). GAMAS selects the best
individuals from species II–IV and introduces them into species I whenever those
are better than the elements in this subpopulation. The mission of species I is to
preserve the best chromosomes appearing in the other species. At predetermined
generations, its chromosomes are reintroduced into species IV by replacing all of
the current elements in this species.

The cellular GA (cGA) [3] is another kind of decentralized GA in which
the population is arranged in a toroidal grid, usually of dimension two. The
characteristic feature of cGAs is a neighborhood for each individual that is restricted
to a certain subset of individuals in the immediate vicinity of its position. Individuals
are allowed to interact only with other individuals belonging to their neighborhood.
The overlapped small neighborhoods of cGAs help in exploring the search space
because the induced slow diffusion of solutions through the population provides a
kind of exploration (diversification). In contrast, the exploitation (intensification)
is provided inside each neighborhood to improve the quality of solutions and
could be controlled by the use of appropriate genetic operators. Several studies
have been carried out in order to investigate mechanisms to dynamically control
the exploration/exploitation trade-off kept by cGAs. This task may be achieved
through tuning the relationship between the size and/or shape of the neighborhood
and the grid [2] or by adjusting the local selection method [5]. Finally, it is
worth remarking that since cGAs only require communication between few closely
arranged individuals, they are very suitable for a parallel implementation, as well.

Hybrid GAs

Over the last few years, a large number of search algorithms were reported
that do not simply follow the paradigm of one single classical metaheuristic
but they combine several components of different metaheuristics or even other
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kind of optimization methods. These methods are commonly known as hybrid
metaheuristics [14,15,49,75,103]. The main motivation behind the development of
hybrid metaheuristics is to take advantage of the complementary character from a
set of metaheuristics and other optimization methods to produce a profitable synergy
[96] from their combination.

In particular, the hybridization of GAs, and evolutionary algorithms in general, is
becoming popular due to its ability to handle several problems involving complex
features such as complexity, noise, imprecision, uncertainty, and vagueness [49, 79,
92, 112]. We may also highlight that many different instantiations of hybrid GAs
have been presented to solve real-world problems in many different fields such as
protein structure prediction [105], image processing [13], job-shop scheduling [38],
and machine learning [87], to name but a few.

The flexibility offered by the GA paradigm allows specialized models to be
obtained with the aim of providing intensification and/or diversification, i.e., GAs
specializing in intensification and/or diversification. The outstanding role played by
GAs at present along with the great interest raised by their hybridizations with other
algorithms endorse the choice of their specialist approaches as suitable ingredients
to build hybrid metaheuristics with others search techniques [75].

The purpose of this section is to illustrate the different strategies used success-
fully in the literature to hybridize GAs and classify them according to a taxonomy
based on those proposed by [103] and [93] for hybrid metaheuristics.

We firstly have split the different instances of hybrid metaheuristics into two
main groups according to the architecture of the algorithms:

• Collaborative hybrid metaheuristics. In this category, different self-contained
metaheuristics interchange information between them running sequentially or in
parallel. These hybrid metaheuristics can be considered as black boxes, and the
only cooperation takes place through the exchange of solutions, parameters, and
so on from time to time.

• Integrative hybrid metaheuristics. In this case, one algorithm is in charge of the
search process, whereas a subordinate method is embedded as a component of
the master metaheuristic. This kind of hybridization addresses the functional
composition of a single optimization method, replacing or improving a particular
function within a metaheuristic with another metaheuristic.

At the same time, according to the way metaheuristics are executed, collaborative
metaheuristics can be subdivided into two different categories:

• Collaborative teamwork. There are several metaheuristics that work in parallel
and exchange some kind of information once in a while.

• Collaborative relay. Several metaheuristics are executed in a pipeline fashion.
The output of each algorithm becomes the input of the next one.

Integrative hybrid metaheuristics can be also subdivided into teamwork or relay
categories:
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• Integrative teamwork. One metaheuristic (subordinate) becomes a component of
another population-based metaheuristic (master) [103].

• Integrative relay. This kind of hybrid metaheuristics represents algorithms in
which a given metaheuristic is embedded into a trajectory-based metaheuristic
[103].

Collaborative Teamwork Hybrid GAs

In the case of collaborative teamwork hybrid GAs, we can highlight two schemes
commonly used in the literature. In the first scheme, a single population is decen-
tralized by partitioning it into several subpopulations (islands or demes), where
island GAs are run performing sparse exchanges (migrations) of individuals. These
kinds of models are usually referred to as distributed GAs [53] (see also Diversity
Preservation based on Spatial Separation Section). Specifically, in this work several
subpopulations are processed by GAs with different exploration or exploitation
degrees. With this mechanism, refinement of the best solutions and expansion of
the most promising zones are achieved in a parallel way. Communication between
different GAs is done by sending the best solution of each population to the
neighboring populations every five iterations.

In the second scheme, a set of heterogeneous metaheuristics including GAs is
executed in parallel. For example, [104] combine a GA, tabu search, and a local
search procedure that communicate through an adaptive memory that contains
the search history. Multiple independent tabu search tasks run in parallel without
any direct cooperation. However, the adaptive memory maintains a history of the
search performed by these tabu search tasks. This information is used by the GA to
generate individuals in unexplored regions. At the same time, elite solutions from
the adaptive memory are improved with the local search procedure.

Collaborative Relay Hybrid GAs

In the collaborative relay hybrid GAs, a GA is executed, in a pipeline fashion, with
another GA or other types of metaheuristic so that the output of each algorithm is
used as input of the next one. Most instances of collaborative relay GAs follow the
principle of favor exploration in the initial stages and exploitation later, inspired by
the design of classical metaheuristics such as simulated annealing [75]. In this line,
[17] presented an hybrid GA that combines a GA specialized for diversification
and a local search process that improves the best individuals found by the GA.
Whereas, [40] proposed a collaborative relay hybrid GA where the local refinement
of solutions is performed by a specialized GA. They run a global real-coded GA
during a determinate percentage of the available evaluations, and then they perform
the local real-coded GA. The initial population for the local algorithm includes the
best individuals of the global one.
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Integrative Teamwork Hybrid GAs

In the case of integrative teamwork hybrid GAs, we can find two different ap-
proaches: memetic algorithms [84] and GAs with metaheuristic-based components.
The classic scheme of memetic algorithms applies a local search method to solutions
obtained by the GA that is in charge of the global search. The idea behind memetic
algorithms is to provide an effective and efficient optimization method by achieving
a trade-off between global exploration of GAs and local exploitation of local
search procedures [83]. However, memetic algorithms also include combinations of
GAs with problem-dependent heuristics, approximate algorithms, truncated exact
methods, specialized recombination operators, etc. [84].

Many different instantiations of memetic algorithms have been presented to
deal with a wide variety of application domains. However, the additional fitness
function evaluations required for the local search method can increase significantly
the computational cost of memetic algorithms. In order to mitigate this drawback,
[83] proposed a memetic algorithm with local search chains that aims at focusing
the local search action on promising areas of the search space. This is addressed by
retaking the local search from solutions obtained in a previous application of the
local search method, adopting also the former final strategy parameter values as its
initial values.

In this line, we can find memetic algorithms in which the refinement procedure
is performed by another GA instead of the classical local search procedure. With
this idea, there have been presented several memetic algorithms that use GAs
with a small population and short evolution or micro GAs (�GA) [64, 76, 85]
(see also Diversification Techniques for GAs Section) to locally improve solutions.
�GA models provide some advantages over classical local search methods. Most
local search techniques find difficulties in following the right path to the optimum
in complex search spaces. However, it was observed that �GAs are capable of
following ridges of arbitrary direction in the search space regardless of their
direction, width, or even discontinuities [64]. For example, the �GA presented in
[64] is a GA with five individuals that encode perturbations. Aptitude values of
these individuals depend on a solution given by the master GA. This feature ensures
that search is focused on the neighborhood of the given solution, whereas low-sized
population promotes high selection pressure levels.

With regard to GAs with metaheuristic-based components, we can find in the
literature several proposals where the selection mechanism, the crossover, and the
mutation operators of GAs have been replaced or extended by another classical
metaheuristic. The approach proposed in [1] combines simulated annealing with
a GA by extending the mutation and crossover operators with simulated annealing.
Mutated and recombined solutions are accepted according to the standard simulated
annealing acceptance condition. Kurahashi and Terano [71] proposed a tabu-based
GA where after evaluating individuals in each iteration, they store the best individual
of the generation into both long-term and short-term tabu lists. Then, the GA
selection refers to the tabu lists in order to select individuals with dissimilar
genotypes and consequently avoid premature convergence to local optima.
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Integrative Relay Hybrid GAs

Finally, we undertake the study of integrative relay hybrid GAs. In this scheme,
usually, a GA is used to perform one or more functions in the master metaheuristic.
García-Martínez et al. [41] presented a GA designed specifically to play the role
of the simulated annealing neighborhood operator. In particular, a steady-state GA
creates one single candidate solution at each iteration, by crossing over the current
solution of the master simulated annealing and another one from the population.
Afterward, the master simulated annealing applies an acceptance mechanism to
decide which solution becomes the new current solution, either the candidate
solution or the current one. The other solution is inserted into the population by
a replacement strategy. Another approach following this scheme was presented in
[75]. In this work, the authors present an iterated local search with a perturbation
operator based on a �CHC algorithm. CHC provides high diversity by means of
high selective pressure, allowing diverse and promising solutions to be maintained.
This behavior is desirable for a GA assuming the work of a perturbation operator.

GA Applications

GAs have had a great measure of success in search and optimization problems. The
reason for a great part of their success is their ability to exploit the information
accumulated about an initially unknown search space in order to bias subsequent
searches into useful subspaces, i.e., their adaptation. This is their key feature,
particularly in large, complex, and poorly understood search spaces, where clas-
sical search tools (enumerative, heuristic, etc.) are inappropriate, offering a valid
approach to problems requiring efficient and effective search techniques.

With the aim of showing the broad variety of GA applications, we have searched
for papers from scopus with the keywords “genetic algorithm” in the title (the
query was submitted on May 2015). Table 6 outlines the number of documents
belonging to different subject areas. The huge amount of papers (43,180) and the
wide spectrum of subject areas with GA applications allow us to say that the
research on GAs has reached a stage of great maturity, and there is an active and
vibrant worldwide community of researchers working on these algorithms, as it may
be confirmed in Fig. 3, which illustrates the number of publications appeared in each
year in the period 1970–2014. Specifically, we may see that from approximately the
last teen years, GAs involved more than 2,500 publications per year (reaching a
peak of over 3,500 in 2010).

An additional remark from Table 6 concerns the outstanding activity coming
from the engineering field, where challenging hard optimization problems arise,
which are characterized by having multiple objectives, by being dynamic problems,
by the high number of implied decision variables and the complex relationships
among them, and, in many cases, by the strict feasibility constraints. To effectively
face problems with such a diverse nature, the original GA scheme was extended in
different ways:
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• Multiobjective GAs. Multiobjective optimization problems require the simulta-
neous optimization (maximization or minimization) of several objectives that
cannot be compared easily with each other. The goal of solving these problems
is not to find an optimal solution but rather to find a set of nondominated
solutions, the so-called Pareto set. Since the 1980s, the application of GAs
in solving multiobjective optimization problems has been receiving a growing
interest, and they are still one of the hottest research areas in the field of
evolutionary computation [19, 24]. By evolving a population of solutions, these
GA approaches are able to capture a set of nondominated solutions in a single
run of the algorithm [25].

Table 6 Research papers on GAs by subject areas

Subject area Documents

Engineering 24,095

Computer science 19,235

Mathematics 7,062

Physics and astronomy 3,058

Materials science 2,140

Energy 1,871

Decision sciences 1,863

Biochemistry, genetics, and molecular biology 1,615

Earth and planetary sciences 1,326

Chemical engineering 1,308

Environmental science 1,267

Social sciences 1,152

Chemistry 1,064

Business, management, and accounting 926

Agricultural and biological sciences 634

Medicine 589

Multidisciplinary 421

Economics, econometrics, and finance 204

Neuroscience 175

Pharmacology, toxicology, and pharmaceutics 140

Immunology and microbiology 100

Health professions 89

Arts and humanities 57

Psychology 25

Undefined 22

Nursing 7

Veterinary 5

Dentistry 2

Total 43,180
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• Constrained GAs. In many science and engineering disciplines, it is common to
encounter a large number of constrained optimization problems. Such problems
involve an objective function that is subject to various equality and inequality
constraints. The challenges in this optimization scenario arise from the various
limits on the decision variables, the constraints involved, the interference among
constraints, and the interrelationship between the constraints and the objective
functions. Classical gradient-based optimization methods have difficulties in han-
dling this kind of problems, as constrained optimization problems may usually
lack an explicit mathematical formulation and have discrete definition domains.
GAs are unconstrained search methods and lack of an explicit mechanism to bias
the search in constrained search space. However, researchers have been able to
tailor constraint handling techniques into GAs [18, 82, 111].

• GAs for dynamic optimization problems. In dynamic environments, the fitness
landscape may change over time as a result of the changes of the optimization
goal, problem instance, and/or some restrictions. Alternatives that were bad
in the past can be good nowadays or vice versa; criteria that were important
before become irrelevant now, etc., and moving in these dynamic scenarios
is a challenge. For these cases, the goal of an optimization algorithm is no
longer to find a satisfactory solution to a fixed problem, but to track the moving
optimum in the search space as closely as possible. This poses great difficulties to
standard GAs, because they cannot adapt well to the changing environment once
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converged. Over the past decade, an important number of GA approaches have
been developed to face problems with these features, and readers are referred to
[21, 62, 116] for a comprehensive overview.

• Multimodal GAs. Many real-world problems require an optimization algorithm
that is able to explore multiple optima in their search space. However, given a
problem with multiple solutions, a simple GA shall tend to converge to a single
solution. As a result, various mechanisms have been proposed to stably maintain
a diverse population throughout the search [73,74,117], thereby allowing GAs to
identify multiple optima reliably in these multimodal function landscapes. Many
of these methods work by encouraging artificial niche formation through sharing
[46] and crowding [52, 97, 106] (see section “Strategies to Maintain Diversity”).

Conclusions

GAs have become a tool of choice since they offer practical advantages to
researchers facing difficult optimization problems because they may locate high-
performance regions of vast and complex search spaces. Other advantages include
the simplicity of the approach, their flexibility, and their robust response to changing
circumstances. In the previous sections, we firstly provided a comprehensive guide
for newcomers, revising the basic ingredients for designing a GA and presenting the
classical GA approaches to solve three widely known optimization problems with
very different characteristics. Then, we undertook the study of more complex GA
instances through two fruitful research lines in this field such as the preservation
of diversity in GAs and the hybridizations of GAs with other metaheuristics. With
regard to the former, we analyzed the premature convergence problem in GAs and
outlined different approaches that have been proposed to introduce new methods and
operators that attempt to favor the diversity in GAs. Similarly, we described different
schemes in the literature to hybridize GAs with other metaheuristics and presented
different instantiations of these schemes that have been successfully applied. Finally,
we reviewed the current activity in the GA field in terms of number of publications
and areas of interest, which shows the high level of interest in the field of GAs and
predicts a promising evolution of this research area.

Cross-References
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Abstract

GRASP (greedy randomized adaptive search procedure) is a multistart meta-
heuristic for computing good-quality solutions of combinatorial optimization
problems. Each GRASP iteration is usually made up of a construction phase,
where a feasible solution is constructed, and a local search phase which starts
at the constructed solution and applies iterative improvement until a locally
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optimal solution is found. Typically, the construction phase of GRASP is a
randomized greedy algorithm, but other types of construction procedures have
been also proposed. Repeated applications of a construction procedure yields
diverse starting solutions for the local search. This chapter gives an overview
of GRASP describing its basic components and enhancements to the basic
procedure, including reactive GRASP and intensification strategies.

Keywords
GRASP � Combinatorial optimization � Metaheuristics � Local search �

Path-relinking � Hybrid metaheuristics

Introduction

Given a finite, or countably infinite, solution set X and a real-valued objective
function f W X ! R, in any combinatorial optimization problem, one seeks a
solution x� 2 X with f .x�/ � f .x/, 8 x 2 X . Several of these problems can be
solved in polynomial time, but many of them are computationally intractable, since
exact polynomial-time algorithms to solve them are unknown [59]. Furthermore,
most real-world problems found in industry and government are either computa-
tionally intractable by their nature or sufficiently large so as to preclude the use
of exact algorithms. In such cases, heuristic methods are usually employed to find
good, but not necessarily guaranteed, optimal solutions. The effectiveness of these
methods depends upon their ability to adapt to avoid entrapment at local optima
and exploit the basic structure of the problem. Building on these notions, various
heuristic search techniques have been developed that have demonstrably improved
our ability to obtain good solutions to difficult combinatorial optimization problems.
The most promising of such techniques include simulated annealing [78], tabu
search [61, 62, 65], genetic algorithms [69], biased random key genetic algorithms
[70], scatter search and path-relinking [66], variable neighborhood search [72], and
GRASP (greedy randomized adaptive search procedure) [42, 43].

GRASP (greedy randomized adaptive search procedure) is a multistart meta-
heuristic for producing good-quality solutions of combinatorial optimization prob-
lems. Unlike ant colony [38] and evolutionary algorithms [19], GRASP is not nature
inspired, i.e., it is not inspired by the principles of natural evolution in the sense
of nature’s capability to evolve living beings to keep them well adapted to their
environment. Instead, GRASP proceeds in iterations, and each GRASP iteration
is usually made up of a construction phase, where a solution (feasible or even
unfeasible) is constructed, and a local search phase that starts at the constructed
solution and applies iterative improvement until a locally optimal solution is found.
While, in general, the construction phase of GRASP is a randomized greedy
algorithm, other types of construction procedures have been proposed. Repeated
applications of a construction procedure yield diverse starting solutions for the
local search, and the best local optimal solution found over all GRASP iterations
is returned as final solution.
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Table 1 Applications of GRASP: operations research problems

Routing [15, 18, 23, 30, 81]

Logic [37, 56, 100, 108, 113]

Covering and partition [13, 14, 42, 60, 71, 107]

Location [1, 34–36, 79, 126]

Minimum Steiner tree [29, 90, 91, 118]

Optimization in graphs [2, 17, 45, 85, 99, 109]

Assignment [5, 41, 58, 86, 93, 101, 102, 112, 122]

Timetabling and scheduling [4, 7, 10, 11, 26, 40, 44, 46, 82, 88, 117, 119–121]

Table 2 Applications of
GRASP: some industrial
applications

Manufacturing [6, 21, 22, 27, 80, 96]

Transportation [15, 20, 41, 123]

Telecommunications [8, 9, 33, 79, 87, 103, 106, 124]

Graph and map drawing [54, 55, 84, 89, 109]

Power systems [24, 25, 39]

Computational biology [49, 67, 75]

VLSI [12, 13]

This chapter overviews GRASP by describing its basic components along with
some among the most fruitful proposed enhancements, including reactive GRASP,
intensification strategies, and hybridization with other metaheuristics. The chapter
is organized as follows. Basic components, alternative construction mechanisms,
and local search characteristics are described in the next section. Enhancements
to the basic procedure, including reactive GRASP and intensification strategies,
are discussed in the section “Enhancements”. Section “Hybridizations” describes
several state-of-the-art hybridizations of GRASP with other metaheuristics, while
in section “Automatic Tuning” a few techniques are described to automatically
tune the typical GRASP parameters. Tables 1 and 2 report a number of GRASP
implementations that have appeared in the literature, covering a wide range of
applications in several and heterogenous fields. The reader can refer to [50, 52, 53],
which contain annotated bibliographies of the GRASP literature from 1989 to 2008.

Basic Components

Given a finite solution set X and a real-valued objective function f W X ! R to be
minimized, a basic GRASP metaheuristic [42,43] is a multistart or iterative method,
in which each iteration consists of two phases: construction of a solution and local
search.

The construction phase builds a solution x, usually feasible, but optionally
also infeasible. If x is not feasible, a repair procedure may be invoked to obtain
feasibility. Once a solution x is obtained, its neighborhood is investigated by the
local search until a local minimum is found. The best overall solution is kept as the
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algorithm GRASP(f(·), g(·), MaxIterations, Seed)

1 xbest:=∅; f(xbest):=+∞;

2 for k = 1, 2, . . . ,MaxIterations→

3 x:=ConstructGreedyRandomizedSolution(Seed, g(·));

4 if (x not feasible) then

5 x:=repair(x);

6 endif

7 x:=LocalSearch(x, f(·));

8 if (f(x) < f(xbest)) then

9 xbest:=x;

10 endif

11 endfor;

12 return(xbest);

end GRASP

Fig. 1 Pseudo-code of a basic GRASP for a minimization problem

result. An extensive survey of the literature is given in [50]. The pseudo-code in
Fig. 1 illustrates the main blocks of a GRASP procedure for minimization, in which
MaxIterations iterations are performed and Seed is used as the initial seed for
the pseudorandom number generator.

Construction Phase

Starting from an empty solution, a complete solution is iteratively constructed
in the construction phase, one element at a time (see Fig. 2). The basic GRASP
construction phase is similar to the semi-greedy heuristic proposed independently
by [74]. At each construction iteration, the choice of the next element to be added
is determined by ordering all candidate elements (i.e., those that can be added to
the solution) in a candidate list C with respect to a greedy function g W C ! R.
This function measures the (myopic) benefit of selecting each element. The heuristic
is adaptive because the benefits associated with every element are updated at each
iteration of the construction phase to reflect the changes brought on by the selection
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procedure ConstructGreedyRandomizedSolution(Seed, g(·))

1 x:=∅;

2 Sort the candidate elements i according to their incremental costs g(i);

3 while (x is not a complete solution)→

4 RCL:=MakeRCL();

5 v:=SelectIndex(RCL, Seed);

6 x := x ∪ {v};

7 Resort remaining candidate elements j according to g(j);

8 endwhile;

9 return(x);

end ConstructGreedyRandomizedSolution;

Fig. 2 Basic GRASP construction phase pseudo-code

of the previous element. The probabilistic component of a GRASP is characterized
by randomly choosing one of the best candidates in the list, but not necessarily
the top candidate. The list of best candidates is called the restricted candidate list
(RCL). This choice technique allows for different solutions to be obtained at each
GRASP iteration, but does not necessarily compromise the power of the adaptive
greedy component of the method.

The most used technique to build the RCL applies the min max �˛ percentage
rules, which will be explained in the following.

At any GRASP iteration, let gmin and gmax be the smallest and the largest
incremental costs, respectively, i.e.,

gmin D min
i2C

g.i/; gmax D max
i2C

g.i/: (1)

The RCL is made up of elements i 2 C with the best (i.e., the smallest)
incremental costs g.i/. There are two main mechanisms to build this list: a
cardinality-based (CB) and a value-based (VB) mechanism. In the CB case, the
RCL is made up of the k elements with the best incremental costs, where k is a
parameter. In the VB case, the RCL is associated with a parameter ˛ 2 Œ0; 1� and
a threshold value � D gmin C ˛.gmax � gmin/. All candidate elements i whose
incremental cost g.i/ is no greater than the threshold value are inserted into the
RCL, i.e., g.i/ 2 Œgmin; ��. Note that the case ˛ D 0 corresponds to a pure greedy
algorithm, while ˛ D 1 is equivalent to a random construction. The pseudo-code in
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procedure ConstructGreedyRandomizedSolution(Seed, α, k, g(·))

1 x:=∅;

2 Initialize the candidate set C by all elements;

3 Evaluate the incremental cost g(i) for all i ∈ C;

4 while (|C| > 0)→

5 gmin := mini∈C g(i); gmax := maxi∈C g(i);

6 if (CB RCL is used) then

7 Sort candidate elements i ∈ C according to g(i);

8 RCL:=C[1 · · · k];

9 else RCL:={i ∈ C | g(i) ≤ gmin + α(gmax − gmin)};

10 endif;

11 v:=SelectIndex(RCL, Seed);

12 x := x ∪ {v};

13 Update the candidate set C;

14 Reevaluate the incremental costs g(i) for all i ∈ C;

15 endwhile;

16 return(x);

end ConstructGreedyRandomizedSolution;

Fig. 3 Refined pseudo-code of the GRASP construction phase

Fig. 3 is a refinement of the greedy randomized construction pseudo-code shown in
Fig. 2.

Prais and Ribeiro in [104, 105] observed the behavior of GRASP and the quality
of the GRASP output solutions for different RCL construction mechanisms, based
on different strategies for the variation of the value of the parameter ˛:

(a) ˛ is randomly chosen from a uniform discrete probability distribution;
(b) ˛ is randomly chosen from a decreasing nonuniform discrete probability

distribution;
(c) Fixed value of ˛, close to the purely greedy choice.
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The authors incorporated these three strategies into the GRASP procedures devel-
oped for four optimization problems: (1) matrix decomposition for traffic assign-
ment in communication satellite [106], (2) set covering [42], (3) weighted MAX-
SAT [113,114], and (4) graph planarization [109,115]. The resulting heuristics were
tested on a subset of state-of-the-art instances for each type of problem. The total
number of iterations performed was fixed at 10,000. The observed conclusions can
be summarized as follows. Strategy (c) presented the shortest average computation
times for three out the four problem types. It was also the one with the least variabil-
ity in the constructed solutions and, consequently, found the best solution the fewest
times. Strategy (a) presented a high number of hits, and this behavior also illustrates
the effectiveness of strategies based on the variation of the RCL parameter.

In [104, 106], Prais and Ribeiro also tested GRASP with a further RCL
construction mechanism, in which the parameter ˛ is self-adjusted and its value is
periodically modified according to the quality of the obtained solutions. This exten-
sion of the basic GRASP is called reactive GRASP and will be described in detail in
the next section devoted to the description of the enhancements to the basic GRASP.

Local Search Phase

As is the case for many deterministic methods, the solutions generated by a
GRASP construction are not guaranteed to be locally optimal with respect to simple
neighborhood definitions. Hence, it is almost always beneficial to apply a local
search to attempt to improve each constructed solution. A local search algorithm
works in an iterative fashion by successively replacing the current solution by a
better solution in the neighborhood of the current solution. It terminates when no
better solution is found in the neighborhood. The neighborhood structure N for a
problem relates a solution s of the problem to a subset of solutions N .s/. A solution
s is said to be locally optimal if there is no better solution in N .s/ with respect
to the objective function value. The key to success for a local search algorithm
consists of the suitable choice of a neighborhood structure, efficient neighborhood
search techniques, and the starting solution. Figure 4 illustrates the pseudo-code of
a generic local search procedure for a minimization problem.

In a GRASP framework, a local search starts from an initial solution x0 2 X

and iteratively generates a sequence of improving solutions x1; : : : ; xM , where
M D MaxIterations. At the k-th iteration, k D 1; : : : ; M , xk is locally optimal
respect to the neighborhood N .xk�1/ since N .xk�1/ is searched for an improving
solution xk such that f .xk/ < f .xk�1/. If such a solution is found, it is made the
current solution. Otherwise, the search ends with xk�1 as a local optimum.

The effectiveness of local search depends on several factors, such as the
neighborhood structure, the function to be minimized, and the starting solution.
It has been experimentally shown that randomly generated solutions are of poor
quality on average. On the other hand, greedy algorithms usually produce solutions
of better quality than those of randomly generated solutions. Therefore, using
greedy solutions as starting points for local search in a multistart procedure will
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procedure LocalSearch(x, f(·))

1 Let N(x) be the neighborhood of x;

2 H :={y ∈ N(x) | f(y) < f(x)};

3 while (|H| > 0)→

4 x:=Select(H);

5 H :={y ∈ N(x) | f(y) < f(x)};

6 endwhile

7 return(x);

end LocalSearch

Fig. 4 Pseudo-code of a generic local search procedure

usually lead to good, though, most often, suboptimal solutions. This is because the
amount of variability in greedy solutions is small and it is less likely that a greedy
starting solution will be in the basin of attraction of a global optimum than a random
solution. A greedy randomized construction as the one embedded in GRASP adds
variability to the greedy algorithm.

In [110], besides analyzing the quality of the solution obtained by varying
between randomness and greediness in the VB mechanisms of the GRASP construc-
tion procedure, Resende and Ribeiro also analyzed the quality of the solution output
of the local search starting from solutions obtained by applying VB mechanisms
with different values for the ˛ parameter. As result of this analysis, the variance of
the overall solution diversity, final solution quality, and running time increased with
the variance of the solution values obtained in the construction phase. Moreover,
it emerged that it is unlikely that GRASP finds an optimal solution if the average
solution value is low, even if there is a large variance in the overall solution values,
such as is the case for ˛ D 0. On the other hand, if there is little variance in the
overall solution values, it is also unlikely that GRASP finds an optimal solution,
even if the average solution is high, as is the case for ˛ D 1. Good solutions are
usually obtained in the presence of relatively high average solution values and of a
relatively large variance, such as is the case for ˛ D 0:8.

Enhancements

To improve the performance of the basic GRASP framework, most efforts have
focused on construction mechanisms. Since Mockus et al. [95] pointed out that
GRASP with a fixed nonzero RCL parameter ˛ is not asymptotically convergent
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to a global optimum (During construction, a fixed RCL parameter may rule out a
candidate that is present in all optimal solutions.), several remedies have been pro-
posed to get around this problem. They include reactive GRASP, cost perturbations
in place of randomized selection, bias functions, memory and learning, and local
search on partially constructed solutions.

Reactive GRASP

The results of the study conducted in [104, 106] involving variation of the value
of the RCL parameter ˛ motivated the proposal of the extension of the basic
GRASP called reactive GRASP. Prais and Ribeiro in [106] have shown that using
a single fixed value for the value of RCL parameter ˛ very often hinders finding a
high-quality solution, which eventually could be found if another value was used.
Moreover, one drawback of the basic GRASP is the lack of learning from the history
of solutions found in previous iterations. The basic algorithm discards information
about any solution encountered that does not improve the incumbent. Instead, it is
worth to use information gathered from good solutions leading to memory-based
procedures. Information about the quality of previously generated solutions can
influence the construction phase, by modifying the selection probabilities associated
with each element of the RCL.

In this paragraph, we describe reactive GRASP, the first enhancement that
incorporates a learning mechanism in the memoryless construction phase of the
basic GRASP. In reactive GRASP, the value of the RCL parameter ˛ is selected in
each iteration from a discrete set of possible values with a probability that depends
on the solution values found along the previous iterations. One way to accomplish
this is to use the rule proposed in [106]. Let A D f˛1; ˛2; : : : ; ˛mg be the set of
possible values for ˛. At the first GRASP iteration, all m values have the same
probability to be selected, i.e.,

pi D
1

m
; i D 1; 2; : : : ; m: (2)

At any subsequent iteration, let Oz be the incumbent solution, and let Ai be the
average value of all solutions found using ˛ D ˛i , i D 1; : : : ; m. The selection
probabilities are periodically reevaluated as follows:

pi D
qi

Pm
j D1 qj

; (3)

where qi D Oz=Ai , i D 1; : : : ; m. If values of ˛ D ˛i (i 2 f1; : : : ; mg) lead to the
best solutions on average, then the value of qi is increased, and larger values of qi

correspond to more suitable values for ˛. The probabilities associated with these
more appropriate values will then increase when they are reevaluated.
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Due to greater diversification and less reliance on parameter tuning, reactive
GRASP has led to improvements over the basic GRASP in terms of robustness
and solution quality. In fact, it has been successfully applied in power system
transmission network planning [24] and in a capacitated location problem [36].

Cost Perturbations

Another step toward an improved and alternative solution construction mechanism
is to allow cost perturbations. The idea is to introduce some “noise” in the original
costs in a fashion that resembles the noising method of Charon and Hudry [31, 32].
Cost perturbations are effective in all cases when the construction algorithm is not
very sensitive to randomization, as, for example, in the case of the Steiner problem
in graphs. To solve this problem, the hybrid GRASP procedure proposed by Ribeiro
et al. in [118] was used as one of the main building blocks of the construction phase,
the shortest path heuristic of Takahashi and Matsuyama [125].

Another situation where cost perturbations can be effective is when there is no
greedy algorithm available for the problem to be solved, as, for example, in the
case of the prize-collecting Steiner tree problem. To solve this problem, the hybrid
GRASP procedure proposed by Canuto et al. in [29] used the primal-dual algorithm
of Goemans and Williamson [68] to build initial solutions using perturbed costs.
More in details, in [29], at each iteration a new solution for the prize-collecting
Steiner tree problem is built using node prizes updated by a perturbation function,
according to the structure of the current solution. Two different prize perturbation
schemes are used to enforce search diversification, as described in the following.

Perturbation by eliminations: The primal-dual algorithm used in the construction
phase is driven to build a new solution without some of the nodes appearing in
the solution constructed in the previous iteration. This is done by changing to
zero the prizes of some persistent nodes, which appeared in the last solution built
and remained at the end of the local search. A parameter � controls the fraction
of the persistent nodes whose prizes are temporarily set to zero;

Perturbation by prize changes: Similarly to the noising method of Charon and
Hudry [31, 32], some noise is introduced into the node prizes, resulting in
a change of the objective function as well. For each node i , a perturbation
factor ˇ.i/ is randomly generated in the interval Œ1 � a; 1 C a�, where a is
an implementation parameter. The original prize �.i/ associated with node i

is temporarily changed to �.i/ D �.i/ � ˇ.i/.

Experimental results have shown that embedding a strategy of costs perturbation
into a GRASP framework improves the best overall results. The hybrid GRASP with
path-relinking proposed for the Steiner problem in graphs by Ribeiro et al. in [118]
uses this cost perturbation strategy and is among the most effective heuristics cur-
rently available. Path-relinking will be described in detail in the subsequent section
devoted to the description of hybrid GRASP with other heuristic frameworks.
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Bias Functions

Another construction mechanism was proposed by Bresina [28]. Once the RCL
is built, instead of choosing with equal probability one candidate among the
RCL elements, Bresina introduced a family of probability distributions to bias the
selection toward some particular candidates. A bias function is based on a rank
r.x/ assigned to each candidate x according to its greedy function value and
is evaluated only for the elements in RCL. Several different bias functions were
introduced:

i. Random bias: bias(r.x/) = 1;
ii. Linear bias: bias(r.x/) = 1=r.x/;

iii. Log bias: bias(r.x/) = log�1Œr.x/ C 1�;
iv. Exponential bias: bias(r.x/) = e�r ;
v. Polynomial bias of order n: bias(r.x/) = r�n.

Let bias(r.x/) be one of the bias functions defined above. Once these values have
been evaluated for all elements of the RCL, the probability px of selecting element
x is

px D
bias(r.x/)

P
y2RCL bias(r.y/)

: (4)

A successful application of Bresina’s bias function can be found in [26], where
experimental results show that, although valid on all candidates, the evaluation of
bias functions may be restricted only to the elements of the RCL.

Reactive GRASP has been the first and very simple attempt to enhance the
basic GRASP in order to save and use history from previous iterations. Another
very simple attempt is due to Fleurent and Glover [58] who proposed improved
constructive multistart strategies that besides defining a special bias function also
maintains a pool of elite solutions to be used in the construction phase. To become
an elite solution, a solution must be either better than the best member of the pool
or better than its worst member and sufficiently different from the other solutions
in the pool, in order to preserve not only solution quality but also the diversity
of solutions. Fleurent and Glover defined: (1) a strongly determined variable as
one that cannot be changed without eroding the objective or changing significantly
other variables, (2) a consistent variable as one that receives a particular value in
a large portion of the elite solution set, and (3) for each solution component i , a
measure I .i/ of its strongly determined and consistent features that becomes larger
as i appears more often in the pool of elite solutions. The intensity function I .i/ is
used in the construction phase as follows. Recall that g.i/ is the greedy function,
i.e., the incremental cost associated with the insertion of element i into the solution
under construction. Let K.i/ D F .g.i/; I .i// be a function of the greedy and the
intensification functions. The idea of Fleurent and Glover is to define a special bias
function that depends on K.�/. In fact, the intensification scheme biases selection
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from the RCL to those elements i with a high value of K.i/ by setting its selection
probability to be

pi D
K.i/

P
y2RCL K.y/

: (5)

They suggested K.i/ D �g.i/ C I .i/, with K.i/ varying with time by changing
the value of �, e.g., initially � may be set to a large value that is decreased when
diversification is called for. Rules and procedures for changing the value of � are
given by Fleurent and Glover [58] and Binato et al. [26].

POP in Construction

The intuitive idea behind the proximate optimality principle (POP) is that “good
solutions at one level (stage of the algorithm) are likely to be found ‘close’ to
good solutions at an adjacent level.” Given the combinatorial character of the
problem to be solved, Fleurent and Glover [58] proposed a GRASP for the quadratic
assignment problem that applies local search not only at the end of each construction
phase but also during the construction itself on a subset of components of the
solution under construction. This further application of local search aims to “iron
out” from the current solution its “bad” components. Nevertheless, experimental
investigation conducted in the literature has shown that applying the POP idea
at each construction iteration is excessively running and time consuming. One
possibility to implement the idea in a more efficient way is to apply local search
during a few points in the construction phase and not during each construction
iteration. In Binato et al. [26], local search is applied after 40 % and 80 % of the
construction moves have been taken, as well as at the end of the construction phase.

Hybridizations

As enhancements to its basic framework, different hybridizations of GRASP with
several other metaheuristics have been studied and proposed in the literature. In this
section, some of them are surveyed and briefly described.

Laguna and Gonzalez-Velarde in 1991 [82] have first studied hybridization of
GRASP with tabu search. Later, in 1999, Delmaire et al. [36] proposed a reactive
GRASP whose local search have been strengthened by tabu search. In particular,
they have proposed two approaches. In the first, GRASP is applied as a powerful
diversification strategy in the context of a tabu search procedure. The second
approach is an implementation of the reactive GRASP algorithm, in which the local
search phase is strengthened by tabu search. Results reported for the capacitated
location problem show that the hybrid approaches perform better than the pure
methods previously used.
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GRASP has been used also in conjunction with genetic algorithms. Basically,
the feasible solution found by using a GRASP construction phase has been used as
initial population by a genetic algorithm, as, for example, in [16] and in [3], where
a greedy genetic algorithm is proposed for the quadratic assignment problem.

Another interesting hybridization of GRASP involves VNS (variable neigh-
borhood search) and variable neighborhood descent (VND) proposed by Hansen
and Mladenović [73, 94]. Almost all randomization effort in the basic GRASP
algorithm involves the construction phase, while local search stops at the first
local optimum. On the other hand, strategies such as VNS and VND rely almost
entirely on the randomization of the local search to escape from local optima. With
respect to this issue, probabilistic strategies such as GRASP and VNS may be
considered as complementary and potentially capable of leading to effective hybrid
methods.

VNS is based on the exploration of a dynamic neighborhood model. Contrary
to other metaheuristics based on local search methods, VNS allows changes
of the neighborhood structure along the search. It explores increasingly distant
neighborhoods of the current best found solution x. Each step has three major
phases: neighbor generation, local search, and jump. Let Nk , k D 1; : : : ; kmax be
a set of predefined neighborhood structures, and let Nk.x/ be the set of solutions in
the kth-order neighborhood of a solution x. In the first phase, a neighbor x0 2 Nk.x/

of the current solution is applied. Next, a solution x00 is obtained by applying local
search to x0. Finally, the current solution jumps from x to x00 in case the latter
improved the former. Otherwise, the order of the neighborhood is increased by one,
and the above steps are repeated until some stopping condition is satisfied.

A first attempt in the direction of integrating VNS into GRASP was done by
Martins et al. [92]. The construction phase of their hybrid heuristic for the Steiner
problem in graphs follows the greedy randomized strategy of GRASP, while the
local search phase makes use of two different neighborhood structures as a VND
strategy. Their heuristic was later improved by Ribeiro, Uchoa, and Werneck [118],
one of the key components of the new algorithm being another strategy for the
exploration of different neighborhoods. Ribeiro and Souza [116] also combined
GRASP with VND in a hybrid heuristic for the degree-constrained minimum
spanning tree problem. Festa et al. [55] studied different variants and combinations
of GRASP and VNS for the MAX-CUT problem, finding and improving some of
the solutions that at the time were the best known solutions for some open instances
from the literature. In [47], the authors studied several hybridizations of GRASP,
including VNS, for the far from most string problem.

At last, we devote the remainder of this section to the combination of the
basic GRASP with path-relinking. Path-relinking was originally proposed by
Glover [63] as an intensification strategy exploring trajectories connecting elite
solutions obtained by tabu search or scatter search [64–66]. It can be traced back
to the pioneering work of Kernighan and Lin [77]. Starting from one or more elite
solutions, paths in the solution space leading toward other guiding elite solutions are
generated and explored in the search for better solutions. This is accomplished by
selecting moves that introduce attributes contained in the guiding solutions. At each
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iteration, all moves that incorporate attributes of the guiding solution are analyzed,
and the move that best improves (or least deteriorates) the initial solution is chosen.

The first proposal of a hybrid GRASP with path-relinking was in 1999 due to
Laguna and Martí [83]. It was followed by several extensions, improvements, and
successful applications [5,29,47,48,51,55,56]. Path-relinking is applied to a pair of
solutions x and y, where one can be the solution obtained from the current GRASP
iteration and the other is a solution from an elite set of solutions. x is called the
initial solution and y the guiding solution. The set E of elite solutions has usually
a fixed size that does not exceed MaxElite. Given the pair x; y, their common
elements are kept constant, and the space of solutions spanned by these elements is
searched with the objective of finding a better solution. The size of the solution space
grows exponentially with the distance between the initial and guiding solutions, and
therefore only a small part of the space is explored by path-relinking. The procedure
starts by computing the symmetric difference �.x; y/ between the two solutions,
i.e., the set of moves needed to reach y (target solution) from x (initial solution).
A path of solutions is generated linking x and y. The best solution x� in this path
is returned by the algorithm. Since there is no guarantee that x� is locally optimal,
often local search is applied, starting from x�, and the resulting locally optimal
solution is returned.

Let us denote the set of solutions spanned by the common elements of the n-
vectors x and y as

S.x; y/ WD fw feasible j wi D xi D yi ; i … �.x; y/g n fx; yg: (6)

Clearly, jS.x; y/j D 2n�d.x;y/ � 2, where d.x; y/ D j�.x; y/j. The underlying
assumption of path-relinking is that there exist good-quality solutions in S.x; y/,
since this space consists of all solutions which contain the common elements of two
good solutions x and y. Since the size of this space is exponentially large, a greedy
search is usually performed where a path of solutions

x D x0; x1; : : : ; xd.x;y/; xd.x;y/C1 D y; (7)

is built, such that d.xi ; xiC1/ D 1; i D 0; : : : ; d .x; y/, and the best solution from
this path is chosen. Note that, since both x and y are, by construction, local optima in
some neighborhood N .�/ (Where the same metric d.x; y/ is usually used.), then in
order for S.x; y/ to contain solutions which are not contained in the neighborhoods
of x or y, x and y must be sufficiently distant from each other.

Figure 5 illustrates the pseudo-code of the path-relinking procedure applied to
the pair of solutions x (starting solution) and y (target solution). In line 1, an initial
solution x is selected at random among the elite set elements, and usually it differs
sufficiently from the guiding solution y. The loop in lines 6 through 14 computes
a path of solutions x1; x2; : : : ; xd.x;y/�2, local search is applied in line 15, and the
solution x� with the best objective function value is returned in line 16. This is
achieved by advancing one solution at a time in a greedy manner. At each iteration,
the procedure examines all moves m 2 �.x; y/ from the current solution x and
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algorithm Path-relinking(f(·),x, E)

1 Choose, at random, a pool solution y ∈ E to relink with x;

2 Compute symmetric difference Δ(x,y);

3 f ∗ := min{f(x), f(y)};

4 x∗ := arg min{f(x), f(y)};

5 x := x;

6 while (Δ(x,y) = ∅) →

7 m∗ := arg min{f(x ⊕ m) | m ∈ Δ(x,y)};

8 Δ(x ⊕ m∗,y) := Δ(x,y) \ {m∗};

9 x := x ⊕ m∗;

10 if (f(x) < f ∗) then

11 f ∗ := f(x);

12 x∗ := x;

13 endif ;

14 endwhile;

15 x∗ := LocalSearch(x∗, f(·));

16 return (x∗);

end Path-relinking

Fig. 5 Pseudo-code of a generic path-relinking for a minimization problem

selects the one which results in the least cost solution (line 7), i.e., the one which
minimizes f .x ˚ m/, where x ˚ m is the solution resulting from applying move
m to solution x. The best move m� is made, producing solution x ˚ m� (line 9).
The set of available moves is updated (line 8). If necessary, the best solution x�

is updated (lines 10–13 ). The procedure terminates when y is reached, i.e., when
�.x; y/ D ;, returning the best solution found.

We now describe a possible way to hybridize with path-relinking the basic
GRASP described in section “Basic Components”. The integration of the path-
relinking procedure with the basic GRASP is shown in Fig. 6. The pool E of elite
solutions is initially empty, and until it reaches its maximum size, no path-relinking
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procedure GRASP+PR(f(·), g(·), MaxIterations, Seed, MaxElite)

1 xbest:=∅; f(xbest):=+∞; E := ∅

2 for k = 1, 2, . . . ,MaxIterations→

3 x:=ConstructGreedyRandomizedSolution(Seed, g(·));

4 if (x not feasible) then

5 x:=repair(x);

6 endif

7 x:=LocalSearch(x, f(·));

8 if (k ≤MaxElite) then

9 E := E ∪ {x};

10 if (f(x) < f(xbest)) then

11 xbest:=x;

12 endif

13 else

14 xp:=Path-relinking(f(·),x, E);

15 AddToElite(E ,xp);

16 if (f(xp) < f(xbest)) then

17 xbest:=xp;

18 endif

19 endif

20 endfor;

21 return(xbest);

end GRASP+PR

Fig. 6 Pseudo-code of a basic GRASP with path-relinking heuristic for a minimization problem
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takes place. After a solution x is found by GRASP, it is passed to the path-relinking
procedure to generate another solution. The procedure AddToElite(E ; xp) at-
tempts to add to the elite set of solutions the solution that was just found. Since
we wish to maintain a pool of good but diverse solutions, each solution obtained
by path-relinking is considered as a candidate to be inserted into the pool if it is
sufficiently different from every other solution currently in the pool. If the pool
already has MaxElite solutions and the candidate is better than the worst of them,
then a simple strategy is to have the former replace the latter. Another strategy,
which tends to increase the diversity of the pool, is to replace the pool element
most similar to the candidate among all pool elements with cost worse than the
candidate’s.

More formally, in several papers, a solution xp is added to the elite set E if either
one of the following conditions holds:

1. f .xp/ < minff .w/ W w 2 Eg,
2. minff .w/ W w 2 Eg � f .xp/ < maxff .w/ W w 2 Eg and d.xp; w/ >

ˇn; 8w 2 E , where ˇ is a parameter between 0 and 1 and n is the number
of decision variables.

If xp satisfies either of the above, it then replaces an elite solution z
no better than xp and most similar to xp , i.e., z D argminfd.xp; w/ W

w 2 E such that f .w/ � f .xp/g.
Figure 6 shows the simplest way to combine GRASP with path-relinking, which

is applied as an intensification strategy to each local optimum obtained after the
GRASP local search phase.

More generally, two basic strategies can be used:

i. Path-relinking is applied as a post-optimization step to all pairs of elite solutions;
ii. Path-relinking is applied as an intensification strategy to each local optimum

obtained after the local search phase.

Applying path-relinking as an intensification strategy to each local optimum
(strategy ii.) seems to be more effective than simply using it as a post-optimization
step [111].

Automatic Tuning

An annoying drawback of heuristics is the large number of parameters that need
to be tuned for good performance. The tuning phase can take several hundreds of
experiments and can be a labor-intensive activity. Moreover, the performance of a
heuristic depends on the instance being solved, so a tuned set of parameters obtained
for one instance may not result in a good performing heuristic for another instance.
When documenting a heuristic, a description of the tuning process is often left out,
and therefore it is often difficult to reproduce computational results. These are some
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of the factors that point to the need for an algorithmic approach to parameter tuning.
Unfortunately, still nowadays very few attempts have been made in the design of
efficient automatic tuning procedures for GRASP. In [57,97], the authors proposed a
scheme for automatic tuning of GRASP with evolutionary path-relinking heuristics
and tested for the generalized quadratic assignment problem and for the set covering,
the maximum cut, and the node capacitated graph partitioning, respectively. Simi-
larly to IRACE (Iterated Race for Automatic Algorithm Configuration) [98] and
ParamILS [76], both the proposed scheme consist of two phases. In the first phase,
a biased random-key genetic algorithm searches the space of parameters for a set of
values that results in a good performance of the heuristic. In the second phase, the
GRASP+PR heuristic is run using the parameters found in the first phase. For all the
optimization problems selected, the authors conducted rigorous experiments whose
results showed that the two-phase approach is a robust hybrid heuristic.

Conclusions

The goal of this chapter was to provide an overview of GRASP describing its basic
components and enhancements to the basic procedure, including reactive GRASP,
intensification strategies, and its hybridizations with different metaheuristics.
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Abstract

This chapter presents a literature review of the main advances in the field of
hyper-heuristics, since the publication of a survey paper in 2013. The chapter
demonstrates the most recent advances in hyper-heuristic foundations, method-
ologies, theory, and application areas. In addition, a simple illustrative selection
hyper-heuristic framework is developed as a case study. This is based on the
well-known Iterated Local Search algorithm and is presented to provide a tutorial
style introduction to some of the key basic issues. A brief discussion about the
implementation process in addition to the decisions that had to be made during
the implementation is presented. The framework implements an action selection
model that operates on the perturbation stage of the Iterated Local Search
algorithm to adaptively select among various low-level perturbation heuristics.
The performance and efficiency of the developed framework is evaluated across
six well-known real-world problem domains.

Keywords
Hyper-heuristics � Heuristics � Meta-heuristics � Evolutionary computation �
Optimization � Search � Machine learning � Multi-objective optimization �
Combinatorial optimization � Black box optimization � Dynamic optimization �
Scheduling � Timetabling � Packing � Iterated local search

Introduction

Over the last 50 years or so, heuristic search methodologies have been successfully
applied to address various real-world complex optimization problems. Computa-
tionally challenging optimization problems arise in various disciplines such as
operational research, computer science, finance, bioinformatics, industrial infor-
matics, engineering, and data sciences. Representative examples of optimization
problems can be found in scheduling, timetabling, planning, resource and space
allocation, cutting and packing, software design, hardware design, and engineering
design problems. Such optimization problems can be addressed by exact or heuristic
methodologies (or a hybridization). The main difficulty of solving such problems
occurs from the often remarkably large and possibly heavily constrained search
space. In such problems, or in noisy and dynamic real-world problem scenarios,
finding optimal solutions by exact methods might be impossible. Therefore, in
practice, heuristic search methodologies are often developed or applied that seek
to find solutions of acceptable quality in reasonable time, but without having any
guarantee of optimality.

Over the last few decades, a broad spectrum of different heuristics have been pro-
posed and successfully applied to a wide variety of problems. However, heuristics
are usually designed to solve specific optimization problems. Such heuristics are
bespoke problem-specific methods that often demand significant time to design and
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tune. They are also often expensive to implement and maintain. Hyper-heuristics
have been motivated by the aim of raising the level of generality at which search
algorithms can operate, as well as automating the design and tuning of heuristic
algorithms [32–34,36,38,102,106,107]. The main characteristic of a hyper-heuristic
method is that it operates on a space of heuristics rather than on a space of solutions.
As such, a hyper-heuristic methodology attempts to find or generate the appropriate
method or sequence of low-level heuristics instead of directly solving a particular
problem. A hyper-heuristic can be characterized as a high-level methodology which
automatically generates or combines low-level search components (heuristics) to
effectively solve a given problem instance or class of problems.

The following definition has been provided in the literature:

A hyper-heuristic is a search method or learning mechanism for selecting or generating
heuristics to solve computational search problems [34, 36].

The use of the term of hyper-heuristics goes back to 2001 [40]. However, the
idea of automating the design and/or selection of heuristics has existed in the
literature for more than 50 years [41, 52]. It is possible to characterize hyper-
heuristic methodologies by considering two dimensions [34]: the characteristics
of the heuristics’ search space and the feedback information from the search
process. The heuristic search space can be further divided into heuristic selection
and heuristic generation. The first category represents methodologies or models
that select among a set of available heuristics, while the latter category covers
methodologies that generate new heuristics from existing heuristic components. A
further refinement in both categories can be made based on the characteristics of the
utilized search heuristic, i.e., constructive and perturbative search paradigms [60].

Hyper-heuristics can be further distinguished by looking at how they handle
feedback information from the search process. Two main categories can be currently
observed: methodologies that learn from the feedback and the ones that do not learn
from it. The first category can be further refined based on the source of learning:
online or off-line learning. When considering online learning hyper-heuristics, the
learning phase takes place during the search procedure. Thus, timely feedback
information can be exploited by the learning mechanism to study the trends and
behavior of the underlying components. In the case of off-line learning (off-line
learning hyper-heuristics), all information about the process is known a priori. As
such, the learning mechanism is able to gather knowledge and learn from a training
set of problem instances and then apply its knowledge on a test set of unseen
instances. The aim of such a procedure is to generalize from the training information
to unseen problem instances in an expected way. Methodologies that do not learn
from the feedback information usually simply discard it.

The aforementioned classification reflects the majority of the past and the current
research trends that can be widely found in the literature. Nevertheless, interesting
example methodologies can be found that represent an interplay between the
categories of heuristics, i.e., combinations of selection and generation heuristic
search procedures [112, 122].
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Over the last few years, various introductory tutorials, review, and survey articles
have been published on the area of hyper-heuristics. The first book chapter that
appeared in 2003 [32] introduces the general idea of hyper-heuristics and provides
a brief historical overview of the field at that time. In particular, the chapter focuses
on one of the main objectives of hyper-heuristics, which is to increase the level of
generality at which a search methodology can operate. The overview demonstrates
the history as well as the developments and trends in the field at that time, through
detailed descriptions of the representative applications and methodologies.

An introductory tutorial of the area was presented in [106] that effectively
demonstrated the development process of a hyper-heuristic approach, through
useful guidelines and characteristic examples. It additionally pinpoints potential
application areas and discusses some issues and possible future research pointers
in the area. A second-edition tutorial with enriched material and information was
recently published in [107].

A classification of the field and a discussion of developments at that time
were published in 2008 [38]. The chapter emphasizes the real-world applica-
tions that have been tackled by hyper-heuristic approaches and presents three
criteria that characterize a hyper-heuristic methodology: operating at a higher
level and managing low-level heuristics, searching the heuristic space rather than
the solution space, and limited access to problem domain information, i.e., an
increased level of generality. The authors identified the last criterion as a particularly
important one for the general applicability and robustness of a hyper-heuristic
approach.

An overview chapter was published in 2009 [33] that discusses hyper-heuristic
methodologies that are able to generate new effective heuristics that are not known
beforehand. The chapter addresses the concept of automatically designing heuristics
and describes a methodology to generate new heuristics. Several representative
case study examples are also provided. In addition, the presented methodology
emphasizes the main algorithmic component of this class which is the genetic
programming algorithm. Moreover, it briefly covers the related literature and
discusses the characteristics and issues of this class of approaches.

A unified classification and definition of the field were presented in 2010 [34].
The chapter provides an overview of the previous categorizations of the area and
determines a unified classification and definition of hyper-heuristics that captures
the current and potential future directions of hyper-heuristics. Two main classes of
hyper-heuristic approaches are recognized in the categorization, heuristic selection
and generation approaches. Several characteristic examples are presented and
discussed for both categories.

A recent survey of hyper-heuristics was published in 2013 [36]. The article
presents the state of the art of the field up to 2012 by providing examples of
the main and most representative methodologies and application areas. It also
discusses the origins and intellectual roots of the field as well as provides a critical
discussion of the literature. Various potential research trends are briefly discussed,
and several future directions are highlighted. Finally, the most recent overview of
hyper-heuristics was published in 2014 [102]. The article presents an overview
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and critical analysis of hyper-heuristics specifically for educational timetabling
problems.

Building upon the aforementioned overview articles that have been recently
published, this chapter aims to provide a thorough literature review of the main
very recent advances in the field of hyper-heuristics, since the publication of [36]
in 2013. An additional objective is to provide a case study for the development
process of a simple but highly efficient selection hyper-heuristic framework as
a tutorial-style introduction to the field. The performance and efficiency of the
developed framework is evaluated across six well-known real-world problem
domains.

The remainder of the chapter is organized into three main parts. The first part
will present a timely overview of the current developments in the field of hyper-
heuristics (section “Recent Advances in the Field of Hyper-heuristics”). The second
part presents the development of a simple selection hyper-heuristic framework as
a case study (section “Case Study: A Selection Hyper-heuristic-Based Iterated
Local Search”). The last part evaluates the generality and performance of the
developed framework on six different problem domains (section “Computational
Results”). The chapter concludes with a brief discussion that summarizes the
presented work (section “Conclusions”).

Recent Advances in the Field of Hyper-heuristics

This literature review covers and discusses the latest articles that have been
published in the field. It aims to cover as many of the current advances and trends
as possible, without presenting overlapping material with relatively recent overview
and survey papers [32–34, 36, 38, 102, 106, 107]. The main aim of this review is to
cover the period since the publication of [36] in 2013.

The latest trends and directions regarding foundational and methodological
aspects of hyper-heuristics are firstly presented in the literature review (section “Re-
cent Advances on the Methodology of Hyper-heuristics”). Then it proceeds with
discussion on the automatic design of algorithms (section “Automatic Design of Al-
gorithms”) and the latest theoretical works in the area (section “Recent Theoretical
Results in Hyper-heuristics”). Hyper-heuristic developments in multi-objective and
dynamic problem formulations are then reviewed (sections “Multi-objective Op-
timization” and “Hyper-heuristics in Dynamic and Uncertain Environments”). The
intersection between machine learning and hyper-heuristic methodologies is studied
in section “Machine Learning Methodologies”, while section “Automated Parame-
ter Control and Tuning” presents the recent advancements in hyper-heuristics for
automatic parameter control. Finally, the most recent developments in application
areas of hyper-heuristics are presented that include scheduling, timetabling, games,
and various other areas (sections “Hyper-heuristics for Scheduling Problems”,
“Recent Educational Timetabling Applications of Hyper-heuristics”, “Games and
Education”, and “Other Recent Developments”).
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Recent Advances on the Methodology of Hyper-heuristics

Starting from the foundations of hyper-heuristics and by studying the classifications
of the area, the authors of [128] reformulate the mathematical definition of a hyper-
heuristic. It is specifically exhibited that the new presented formulation naturally
leads to a recursive definition of a hyper-heuristic. The authors draw parallels
between the new hyper-heuristic formulation and a blackboard architecture from
artificial intelligence, in which heuristics are able to annotate a shared workspace
with information that can be exploited by other heuristics. In such a formulation,
heuristics can share information at any level, which suggests that the domain barrier
can be relaxed at any level required, without the loss of generality. A detailed
description of the proposed formulation and its developments can be found in [128].
A concrete example application on the 3-SAT problem domain has been presented
as a case study, which exhibits the improvements of the proposed idea over a wide
set of problem instances. Other extensions of the existing formulations of hyper-
heuristics have been proposed in [108]. This study advocates the need to reconsider
the existing approaches to be able to produce self-organizing heuristics that will be
able to automatically self-adapt to the environment when the underlying problem
domain changes.

The need for more general and cross-domain efficient methodologies [36, 103,
107] has led to novel studies that try either to introduce unified representations or to
embed common domain knowledge across various problem domains [49, 129].

In particular, the authors in [49] do not employ a high-level barrier across
domains that are used in much of the hyper-heuristic literature. Instead, they
propose an evolutionary memetic computing paradigm that is capable of embedding
domain knowledge in memes across different but related problem domains. To
improve search efficiency, the memetic paradigm is capable of learning and evolving
knowledge memes on two different problem domains that can share a common
representation, the capacitated vehicle and arc routing problems. Thorough analyses
and experimental results show that the evolutionary search can benefit from different
relevant problem domains. The knowledge that a meme has is crucial for the search
procedure. It was observed that low discrepancy in the common feature space,
between the problem domains, is able to enhance the evolutionary search procedure.

Furthermore, a general-purpose hyper-heuristic approach has been proposed that
has the ability to solve combinatorial problems with minimal effort [129]. A unified
representation and a set of domain-independent low-level heuristics are essentially
proposed under a hyper-heuristic framework. To demonstrate the generality of the
approach, the framework has been applied on different problem domains that share
common characteristics but vastly differ as applications. An analysis reveals that the
unified framework is very competitive in performance with state-of-the-art tailor-
made heuristics for each problem domain.

The aforementioned studies suggest that both high and low levels of abstraction
in the problem domain can enhance the search efficiency of hyper-heuristics. Such
approaches demonstrate the real power of hyper-heuristic techniques. It is possible
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to develop approaches that have enough generality and efficiency to enable them to
produce competitive performance against tailor-made search algorithms for either a
given problem class or across problem domains.

Various recent developments include novel hyper-heuristics that operate across
the main categories of hyper-heuristics. Such an approach was introduced in [112].
It combines both heuristic selection and generation approaches. Specifically, it in-
corporates a dynamic multi-armed bandit with extreme credit values to online select
the most appropriate low-level heuristic for the problem on hand. In parallel, instead
of using a fixed acceptance criterion, it gradually generates new acceptance criteria
for each problem instance through a gene expression programming framework. The
effectiveness and generality of the approach are evaluated on exam timetabling
instances from the 2007 International Timetabling Competition and on dynamic
vehicle routing problem instances from the literature. Empirical results suggest
that the introduced method shows competitive and general performance across both
domains, compared with several state-of-the-art algorithms.

An automatic design framework was introduced in [110]. It automatically
generates high-level heuristics for hyper-heuristic methodologies. The framework
utilizes a gene expression programming algorithm to create high-level heuristics
during the searching process. It captures information from the current state of
the given problem and determines the low-level heuristic selection rule, as well
as the solution acceptance criterion. As such, possibly new high-level rules can
be produced for each problem instance. Experimental analyses on six problem
domains exhibit its generality and competitive performance with state-of-the-art
hyper-heuristic methodologies across all problem domains.

Techniques have been developed that are capable of learning and self-adapting
their behavior based on the learned knowledge. More specifically, a hyper-heuristic
system that embraces the concept of lifelong learning has been considered in [57,
120–122]. The system is based on a self-reliant network of interacting components
inspired by artificial immune systems. It has the ability to continuously learn over
time how to solve combinatorial optimization problems. It is capable of generating
new heuristics continuously as well as sample problems from its environment. The
core of the system is adaptable to its environment and has the intelligence to save and
learn characteristic problem instances and heuristics from it. These characteristics
result in an intelligent platform that exploits existing knowledge and quickly gener-
ates promising solutions of a given problem, as well as generalizing and adapting to
new unseen problems with different properties. A rigorous experimental analysis on
the bin packing domain demonstrates its excellent performance and generalization
capabilities across a wide range of different problem instances. The dynamic and
adaptive nature of the system makes it computationally efficient and scalable.

Various studies have been proposed that carefully investigate intrinsic character-
istics of hyper-heuristics, such as diversity in the heuristic space, or understanding
the behavior of the low-level heuristics. In particular, in [55], the impact and
effect of a diverse set of available heuristic algorithms on the performance of a
selection hyper-heuristic is studied. The study firstly makes an attempt to define
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and measure the diversity of heuristic spaces and then proceeds to investigate the
impact in performance of a hyper-heuristic that utilizes various strategies to manage
the measured diversity. The diversity concept is studied with a hyper-heuristic that
employs as low-level heuristic various black box optimization methods that operate
on continuous spaces (see also [54]). The evaluation of the proposed method on
a wide range of benchmark functions suggests that the heuristic space diversity
significantly impacts upon the performance of the method.

The performance of low-level heuristics plays a crucial role in the performance
of a hyper-heuristic methodology. In [115], the authors try to understand the
performance efficiency of each low-level heuristic when it operates individually
or in combination with other heuristics. As such, the concepts of competence and
affinity (in terms of heuristics) have been defined and qualitatively estimated on
a problem-specific hyper-heuristic approach. The resulting information from this
process is exploited and used to improve the performance of problem-specific
hyper-heuristics for the hybrid flow-shop scheduling problem. The tailor-made
hyper-heuristics exhibit promising performance on the studied instances.

In parallel, novel search approaches have recently been incorporated within
hyper-heuristic approaches. A novel diversification method is introduced in [105].
The method perturbs the problem instance under investigation to create justifiable
new search directions. As such, various low-level heuristics that act upon this
idea are proposed under a hyper-heuristic framework. The low-level heuristics
are guided through an expressive grammar high-level strategy that has the
ability to easily satisfy the problem constraints and thus easily produce feasible
solutions. An experimental evaluation and analyses on the Ising spin glass
and the p-median problem demonstrate its efficiency and its competitive
performance.

When considering selection hyper-heuristics, each of the available search low-
level heuristics (to be selected) is scored by a credit assignment mechanism. The
credit assignment mechanism is responsible for assigning a reward, or credit value,
to the applied heuristic, based on measurable feedback from the search procedure.
The feedback may represent a measurement or qualitative characterization of the
applied heuristic effects on the current state of the search process. The role of the
credit value is crucial for the performance of the hyper-heuristic search algorithm,
since it is the main information that guides the search procedure. Recently, different
new types of feedback information have been introduced, based on landscape
analysis techniques.

In [124], the evolvability of a search operator has been considered. The evolv-
ability metric uses local characteristics of the fitness landscape to approximate the
potential of a search component to generate improved solutions, from the current
state of the search. An experimental study on benchmark problems reveals that
evolvability feedback has significant potential to improve the performance of a
hyper-heuristic, when compared against simple fitness improvement feedback.

Additionally, a novel selection hyper-heuristic methodology has been introduced
in [39] to address the Capacitated Arc Routing problem. In the higher level, an
online learning algorithm has been considered, the Dynamic Weighted Majority
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method, to predict and determine the most appropriate search mechanism. The
learning mechanism selects a crossover operator from an available set. Each of
the available choices does not rely on its ability to improve the fitness of the
generated solution. Instead, each operator can be scored based on four different
fitness landscape analysis techniques. The analysis takes into account dispersion
and neutrality as well as evolvability measures. Extensive comparisons on a set
of benchmark problems verify the efficiency of the proposed methodology against
state-of-the-art techniques.

Automatic Design of Algorithms

A comparison of the fields of meta-learning and hyper-heuristics has been recently
proposed in [100]. The study draws parallels between methodologies and concepts
from the two fields and advocates the common objective of automating the algorithm
design process. A brief historical overview of automated algorithm design is
presented along with a discussion on the similarities and differences between super-
vised machine learning and hyper-heuristics. Various issues are discussed, including
the different levels of automation and generality, the problem and algorithm space,
and various measures of performance.

The automatic design process was used to generate simple, general, modular,
and efficient Iterated Local Search-based methodologies in [5, 6]. The generated
methodologies are very competitive with the state-of-the-art methodologies in
domain-independent meta-heuristic search [6]. Other hyper-heuristics based on
Iterated Local Search that have been recently proposed include [97] in addition
to the case study presented in the sections below. In parallel, a novel grammar
representation has been introduced in [90] to be used for the automatic design
of heuristic algorithms for hard combinatorial optimization problems. The pro-
posed representation of the grammar includes a sequence of categorical, integer,
and real-valued parameters and incorporates an off-line parameter configuration
tool to search for algorithms for a given problem. Extensive experimentation on
one-dimensional bin packing and on permutation flow-shop problems demon-
strates the efficiency of both the grammar and the parameter configuration tools
against an established grammatical evolution algorithm for automatic design.
An extension of the methodology was able to build more complex algorithmic
schemes from a composition of problem-dependent and problem-independent
grammars [85].

A unified selection hyper-heuristic framework that handles one- and two-
dimensional regular packing as well as two-dimensional irregular packing and
cutting problems has been proposed in [80]. The framework utilizes several different
stages to generate fast algorithms with competitive performance against the best
problem-specific heuristic for a given problem. The framework generates different
hyper-heuristic algorithms, by representing them as variable-length chromosomes
of low-level heuristics that are being evolved by a messy genetic algorithm. A data
mining-based feature selection procedure is used to determine the most relevant
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features in the problem-state representation, and an off-line analysis is employed to
discover the most representative set of well-performing heuristics. The framework
has been evaluated on a large set of problem instances, and the experimental
results show that it is able to generate very competitive hyper-heuristics for the
given problem. In addition, the performance of the produced hyper-heuristics is
comparable or even better than the application of the single low-level heuristics on
their own. Moreover, an automatic design process has been proposed to efficiently
solve two-dimensional rectangular blocks for packing [132].

Recently, the commonalities of certain areas of memetic computing and hyper-
heuristics have been reviewed in [48]. This has led to the development of a new
framework that combines a multi-meme approach with an adaptive operator selec-
tion hyper-heuristic to address continuous optimization problems. The framework
rewards and adaptively selects the most suitable heuristics/memes during the search
procedure. Although it has a simple structure, it exhibits high-performance gains
against state-of-the-art search algorithms in a wide range of benchmark problems.

To avoid stagnation to local optima solutions, a multi-objective formulation
has been proposed to formulate the single-objective two-dimensional packing
problem [116]. A new memetic algorithm along with a parallel hyper-heuristic
approach has been introduced to search the new formulation of the problem. The
behaviors of the proposed methodologies are analyzed, and experimental results on
two-dimensional packing problem instances suggest that the parallel hyper-heuristic
is very competitive since it has found new best solutions for some problem instances.

The effectiveness and generality of a well-designed hyper-heuristic approach
that outperforms human-designed problem-specific algorithms are demonstrated
in [125]. Specifically, an Iterated Local Search-based hyper-heuristic methodology
that learns from feedback of the problem at hand and dynamically selects among the
available search operators is developed. An off-line learning approach is compared
and contrasted with an online learning model on a large set of real-world problem
instances from the first and second international timetabling competition. The online
learning approach demonstrates superior performance over the off-line (static)
model and is competitive with the state-of-the-art algorithms in the field.

Recent Theoretical Results in Hyper-heuristics

Although there is a significant growth of research in the field of hyper-heuristics,
most studies are empirical. The theoretical foundations of hyper-heuristics are
largely unexplored. Prominent examples of recent theoretical work in the field
include mostly runtime analysis. A rigorous runtime analysis of hyper-heuristics
has been presented in [74]. The analysis considers selection hyper-heuristics that
operate on a predefined set of low-level heuristics. It reveals that the combination
of heuristics can lead to exponentially faster search than deterministically chosen
heuristics for a given problem. However, the analysis shows that an appropriate
mixing distribution should be carefully selected.
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A runtime analysis on some very common learning mechanisms has been
performed in [8]. In particular, the analysis considers the simple random, random
gradient, greedy, and permutation learning mechanisms in the case of selection
hyper-heuristics. The analysis shows that the learning mechanisms behave similarly,
which suggests that they do not necessary improve the performance of the hyper-
heuristics in the studied cases.

Multi-objective Optimization

A wide range of real-world problems require high-quality decisions for more than
one objective. In general, an effective multi-objective algorithm should possess good
search characteristics in terms of both solution diversity and convergence on the
Pareto-front set. Several very effective multi-objective search algorithms have been
proposed in the literature. They have different search dynamics, characteristics,
advantages, and disadvantages. Hyper-heuristic approaches have also been explored
within the context of multi-objective search (multi-objective hyper-heuristics).

The choice function approach has been used as a selection hyper-heuristic for
a number of years. Interestingly, it still continues to be a promising and effective
approach. The choice function along with the great deluge and late acceptance as
nondeterministic move acceptance mechanisms has been investigated to address
multi-objective optimization problems in [84]. The method utilizes the hyper-
volume metric during the move acceptance process to effectively guide the search
in promising areas and enhance both diversity and convergence characteristics of
the method. The proposed method has been applied to traditional multi-objective
benchmark problems in addition to the vehicle crashworthiness design problem [78].
Experimental analyses and results indicate that the proposed hyper-heuristic ap-
proach has the ability and potential to efficiently solve continuous multi-objective
optimization problems.

Similarly, a hyper-heuristic method that combines the strengths of three well-
known multi-objective algorithms has been introduced in [83]. The proposed
approach implements an online learning choice function as a selection hyper-
heuristic to combine the underlying algorithms. The choice function adaptively
ranks the performance of the algorithms and determines which algorithm to apply
at the next step. The introduced hyper-heuristic framework exhibits very effective
performance on a wide range of multi-objective benchmark functions and on a real-
world problem case, the vehicle crashworthiness design problem. The employed
online learning mechanism greatly enhances the performance of the hyper-heuristic
algorithm which is able to efficiently combine and exploit the advantages of the
multiple low-level multi-objective algorithms.

In parallel, a multiple evolutionary algorithm portfolio has been developed
in [139]. This approach utilizes simultaneously multiple algorithms for solving
multi-objective optimization problems. The performance of each algorithm is
evaluated by a score function, and the hyper-heuristic approach selects which
to apply in the next step based on its score. The developed approach exhibits
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promising results. Another example of a recently proposed hyper-heuristic has been
presented in [93]. This method includes diversity-based techniques to solve the
patrol scheduling problem.

The concept of adaptive operator selection in multi-objective algorithms was
introduced in [76]. This utilizes state-of-the-art models for adaptive operator
selection to select the most suitable operator at each stage of the algorithm. The
methodology extends the well-known MOEA/D algorithm, which decomposes the
multi-objective problems to single-objective problems and optimizes them simulta-
neously. Thorough experimental analyses indicate that the proposed methodology
is robust, its performance is significantly better than other state-of-the-art multi-
objective algorithms, and the operator selection process works effectively. Likewise,
a hyper-heuristic approach has been recently incorporated into the Multi-Objective
Particle Swarm Optimization algorithm [37]. This is a particle swarm optimization
variant for multi-objective problems. Its main characteristic is that it has to employ
a leader selection strategy and an archiving mechanism.

In [91], a genetic programming-based hyper-heuristic is proposed to solve
the bi-objective aspect of the water distribution network design problem. The
goal here is to find the optimal pipe sizes required by a network to provide
best service with minimal costs. The objective of the proposed hyper-heuristic
methodology is to generate efficient search operators (mutation operators) for multi-
objective algorithms applied to solve the bi-objective formulation of the problem.
Interestingly, the generated mutation operators reveal useful information for the
designer. For example, an evolved operator incorporates domain-specific knowledge
(pipe smoothing), while others are able to reproduce well-known operators from
the literature. The methodology exhibits significant potential on various problem
instances, while the evolved operators are general and can be used as new
algorithmic components for future multi-objective algorithms. A further analysis
of the strengths of various search operators along with the features of the problem
is provided in [92].

Hyper-heuristics in Dynamic and Uncertain Environments

In the last few years, hyper-heuristic methodologies have been employed to address
applications that are inherently dynamic and uncertain. This poses a major challenge
for the research community since the majority of the developed methodologies that
operate on static environments cannot easily cope with the dynamic and uncertain
aspects of some applications. Various recent hyper-heuristic methodologies embrace
adaptivity and are able to cope with dynamically changing problem scenarios.

A hybrid hyper-heuristic has been introduced to consider dynamic optimization
problems [133]. This combines a selection hyper-heuristic and a memory/search
algorithm. The hyper-heuristic is able to select between the available low-level
heuristics for the problem instance in hand. To evaluate its performance efficiency,
the following two problems have been considered: the dynamic generalized assign-
ment problem and the moving peaks benchmark. Experimental results indicate that
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the hyper-heuristic framework performs significantly better than the memory/search
algorithm in the majority of the tested cases. From the considered selection
heuristics, the choice function with the only improving acceptance criterion seems
to have the most promising performance, since it is able to track changes in the
environment and it can rapidly react to different types of changes.

An additional recent study on hyper-heuristics in dynamic environments in-
cludes [126]. This approach analyzes the performance of a hyper-heuristic method-
ology that utilizes specialized meta-heuristics across different types of dynamic
environment. An interesting real-world problem with uncertainty has recently been
efficiently addressed by a hyper-heuristic approach [7]. This is the online path
planning for autonomous unmanned aerial vehicles. Online path planning is a
challenging problem that includes problem scenarios in uncertain or unknown
environments. A hyper-heuristic methodology has been implemented to navigate
these unmanned vehicles using a 3-D online path planning model with sensing
uncertainty. An experimental study on various terrains with different characteristics
demonstrates the efficiency of the methodology to create efficient navigation path
plans.

Machine Learning Methodologies

Machine learning methodologies play an important role in the field. Various method-
ologies have been incorporated mostly into the higher level of hyper-heuristics to
learn the behavior of the underlying heuristics and to make effective decisions to
guide the search procedure toward the most promising areas of the search space.
In parallel, the automatic design concept in hyper-heuristics is widely applicable in
the machine learning field to generate novel and more efficient machine learning
methodologies for specific classes of problems or tasks. Recent advances include a
wide range of methodologies.

A new machine learning approach based on tensor analysis was introduced
in [18, 19]. It utilizes tensor analysis techniques and in particular tensor fac-
torization to reveal latent relationships between the low-level heuristics and the
hyper-heuristic. Intuitively, it models the history trace of the considered hyper-
heuristic method and tries to identify the low-level heuristics that exhibit promising
performance. Tensor analysis and factorization are employed to identify promising
interactions and features between low-level heuristics as the search method operates,
by observing feedback from the search history and performance. The method then
exploits the knowledge learned to improve its overall search ability.

Inspired by Inverse Reinforcement Learning theory, the authors in [17, 21]
explored apprenticeship learning for generalizing experts’ behavior. Apprenticeship
learning or imitation learning or learning by demonstration has been widely applied
in control and robotic applications. The main goal of apprenticeship learning is to
learn by observing experts while they are in action. Within the context of hyper-
heuristics, apprenticeship learning has been applied to learn expert behavior in
vehicle routing [17] and online bin packing problem domains [21]. The learning
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procedure has been trained with diverse experts on small problem instances, and
it has been tested on larger instances with different characteristics to test its gen-
eralization ability. The learning procedure successfully captures experts’ different
actions and generalizes them on unseen problem instances. Experimental results
and analyses suggest that the novel learning mechanism demonstrates outstanding
performance gains in both problem domains.

Monte Carlo Tree search has been used in [111] to search the space of low-
level heuristics for various problem domains. In particular, it models sequences
of low-level heuristics as trees and searches for optimal sequences to be applied
at the corresponding state of the search procedure. Experimental results on six
problem domains demonstrate the generality of the method as well as its competitive
performance.

An automated design of classification algorithms tailored to deal with both
balanced and imbalanced data has been proposed in [25]. This aims to automatically
design decision-tree induction algorithms. A thorough analysis is firstly performed
to determine the impact of different kinds of fitness functions on the performance
of the proposed methodology for both balanced and imbalanced datasets. The
best-performing fitness function is then used for the automatic design process.
The evolved decision-tree induction algorithm is compared against traditional
decision-tree induction algorithms on a wide selection of datasets. The experimental
analysis suggests that the proposed method significantly outperforms the other
methods.

A grammatical evolution-based hyper-heuristic has recently been introduced
for designing automatically split criteria in decision trees for data classification
tasks [27]. A hyper-heuristic evolutionary algorithm to automatically build Bayesian
Network Classifiers tailored to a specific dataset [109] represents another recent
addition to the literature.

Automated Parameter Control and Tuning

Automated parameter control represents one of the major applications of hyper-
heuristics. A recent overview of the trends and future directions of the area can be
found in [67].

Two interesting parameter control methods based on hyper-heuristics and fuzzy
logic have been recently proposed in [118, 119]. They investigate the impact of
solving single-objective optimization problems with multi-objective approaches.
The utilized methodology is a bi-objective approach that uses diversity as a second
objective. A probabilistic selection hyper-heuristic and a fuzzy logic method have
been utilized to control the parameters of the bi-objective methodology. Experimen-
tal analysis on a wide range of problems reveals the efficiency of both parameter
control methods against several static parameter settings and self-adaptive rules.
Overall, the resulting method is computationally efficient and is able to outperform
the single-objective scheme in most of the tested cases. A similar approach has
been applied to address the frequency assignment problem [117]. Additionally,
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fuzzy system methods have been investigated as selection hyper-heuristics to control
parameters [62]. Off-line parameter tuning has been employed to fine-tune and
successfully generate efficient heuristics for online bin packing [137].

A reinforcement learning-based parameter controller has recently been published
in [64] to dynamically adapt the control parameters of evolutionary algorithms. The
method is a generic and parameter-independent controller that can be easily adapted
on any evolutionary algorithm. Experimental analysis that incorporates the proposed
parameter control method on various state-of-the-art evolutionary algorithms, to
address several continuous optimization problems, suggests that the method is
capable of good performance. The controller is able to improve the quality of the
solutions found by the algorithms with minimal effort and additional computational
resources. Similar approaches include entropy-based controllers [9]. Furthermore, a
recent study investigates the impact in performance of various feedback mechanisms
that have been used for adaptive parameter control in evolutionary algorithms [10].
The study considers indicative feedback measures for both single- and multi-
objective optimization problem formulations.

Time series prediction methodologies have recently been used [11] as parameter
controllers to accurately predict suitable parameter values during the search process.
In particular, various prediction methods have been utilized to predict future
parameter values based on historical data from the search procedure. Evaluation of
the considered methodologies on evolutionary algorithms suggests that the simple
linear regression performs quite well, but without having a significant difference
against the studied methods. The impact in performance of predictive parameter
control methods is evident only when the performance data complies with the
required assumptions of the prediction model, resulting in significant performance
differences when compared against state-of-the-art parameter controllers. Other-
wise, the prediction method does not exhibit any evident impact on the performance
of the considered algorithm.

Hyper-heuristics for Scheduling Problems

As widely identified in previously published overview and survey articles [32–34,
36, 38, 106, 107], scheduling problems have played a major role in the development
of hyper-heuristic approaches.

The automatic design of dispatching rules has been the subject of recent research
attention because of the time-consuming process of manually designing such rules.
An analysis of the representation of dispatching rules has been recently undertaken
in [31]. The representation of dispatching rules essentially determines the search
space and its complexity. As such, efficient representations highly impact upon
the search process. Three different kinds of representations have been discussed
in [31]: a linear combination of attributes, artificial neural networks, and a tree-
based representation. Empirical analysis on the suitability of each representation in
dynamic stochastic job-shop scenarios suggests that the tree representation, evolved
with a hyper-heuristic genetic programming method, is the most efficient. Artificial
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neural network representations operate well mostly on processes with a small
computational budget, while linear representations operate competitively only on
quite small computational budgets.

Dispatching rules for semiconductor manufacturing have been also automatically
generated with genetic programming [58]. Grammatical evolution has been suc-
cessfully applied as a hyper-heuristic methodology to address capacitated vehicle
routing problems [87, 88]. Comparisons between adaptive and grammar-based
hyper-heuristic approaches have been recently performed for various problem
domains [86]. Moreover, a genetic programming-based hyper-heuristic has been
considered in [101] to tackle order acceptance and scheduling problems in make-
to-order manufacturing systems. This automatically generates dispatching rules
that have stochastic behavior in order to improve the search procedure. The
evolved rules exhibit high-performance gains compared to rules produced by either
tailor-made heuristics or a simple version of the considered genetic programming
method.

Several novel multi-objective genetic programming-based hyper-heuristics have
recently been proposed that are able to generate scheduling policies in job-shop
environments [96]. This paper proposes an automatic design approach to generate
dispatching and due-date assignment rules for a dynamic version of the multi-
objective job-shop scheduling problem. Having identified the complexity and the
labor needed to manually design an effective scheduling policy, four multi-objective
algorithms are developed to automate the process. All approaches are capable
of handling multiple scheduling decisions in parallel. Thorough experiments and
analyses demonstrate that the evolved Pareto sets represent effective scheduling
policies that dominate policies from combinations of existing dispatching rules.
These policies also have promising performance on unseen scenarios with various
shop configurations. Generally all proposed methodologies exhibit not only effec-
tive but also very meaningful scheduling policies that help the decision-maker to
understand their characteristics.

A two-phase search approach has been introduced in [95] to tackle the Workover
Rigs Scheduling problem for maintenance services in onshore oil wells. The prob-
lem can be characterized as a parallel heterogeneous machine scheduling problem
derived from the maintenance planning of heterogeneous wells. This problem is to
find schedules for a small number of work-over rigs that minimize the production
loss associated with the large number of wells waiting for service. The first phase of
the proposed approach is a selection hyper-heuristic that searches for a promising
initial solution to warm-start the second stage, which utilizes an exact branch, price,
and cut approach. The considered hyper-heuristic uses learning mechanisms to learn
from feedback during search and select the most effective low-level heuristic to
apply in the next step. Having applied the abovementioned methodology to a variety
of real-world problem instances from Petrobras, the Brazilian National Petroleum
Corporation, the authors were able to identify classes of heuristics, which seem
to be more efficient for solving the problem. In general, it was observed that the
learning mechanisms were very effective and able to guide the search to promising
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areas of the solution space. It is worth noting that the hyper-heuristic approach
generated solutions that were very near to the optimal solutions found by the exact
algorithm.

An interesting analysis has been performed in [94] that investigates the perfor-
mance impact of heuristics while solving a problem with routing and rostering
characteristics. The implemented hyper-heuristics act as analysis tools on the
heuristic behavior. The aim is to analyze the behavior of the available heuristics
and determine the requirements that a heuristic should consider to solve such
problems. The following three different scheduling and routing problems have been
considered: home care scheduling, routing and rostering of security guards, and
maintenance personnel scheduling. The analysis revealed that some specific features
of the problems under investigation significantly affect the performance of the
heuristics. These features are the number of activities, the number of resources, and
the planning horizon. The observed information of such analysis can be exploited
and used in future search approaches to efficiently solve similar problems that share
common characteristics. As such, hyper-heuristics can be employed as analysis tools
for a particular problem class under investigation and may offer novel information
on the characteristics of the problem class.

Nurse rostering is one of the applications where hyper-heuristics find wide
applicability, with recent works including research in selection hyper-heuristics [14,
24]. A generic cooperative agent-based search framework has recently been in-
troduced [89] that is able to incorporate the search strengths of various meta-
heuristics to efficiently solve nurse rostering problems. The framework promotes
the asynchronous cooperation of effective agents using pattern matching and
reinforcement learning techniques. This enables the exploration of different fair-
ness objectives across several real-world rostering problem instances. A thorough
experimental analysis demonstrates the efficiency of such frameworks to generate
high-performance rostering solutions in minimal time.

Several hyper-heuristic methodologies draw upon swarm intelligence tech-
niques, such as particle swarm and ant colony optimization. A particle swarm
optimization-based hyper-heuristic approach has been introduced to address the
resource-constrained project scheduling problem [72]. This operates on the heuristic
space by representing its particles as ordered sequences of heuristics to apply for
the given problem. Subsequently, a feasible solution is constructed by a serial
scheduling construction mechanism, while the generated solution is improved by
double justification local search. Several problem instances from the well-known
PSPLIB library have been used to test and compare the hyper-heuristic algorithm
with other algorithms. Computational results verify its efficiency and competitive
performance.

The problem of intercell scheduling with single-processing machines and batch-
processing machines has been tackled in [75] with an ant colony optimization hyper-
heuristic search method. Generally, intercell transfers in cellular manufacturing
systems are essential to substantially reduce production costs. The formulation of
this scheduling problem considers the following three subproblems in parallel: an
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assignment, a sequencing, and a batch subproblem. An ant colony hyper-heuristic
has been adapted to search among different assignment heuristic rules for both
parts and machines simultaneously. Subsequently, the discovered rules are applied
to generate schedules. The efficiency of the proposed method is evaluated on
randomly generated problem instances. The experimental results indicate that the
method is significantly more efficient than CPLEX and genetic algorithms. Channel
scheduling in multicell networks has also been addressed recently with hyper-
heuristic methodologies [42].

A novel hyper-heuristic methodology has been proposed in [134] to solve task
scheduling in cloud computing systems. Usually, rule-based scheduling algorithm
is used for task scheduling in such systems. The method presented here is able to
learn from the performance of several available scheduling algorithms and select
the most suitable algorithm to apply. It incorporates a diversity and fitness detection
strategies to efficiently balance the diversification and intensification behavior of
the search procedure. This approach significantly outperforms several state-of-
the-art scheduling algorithms on both simulation and real system scenarios. It
produces solutions that have a significantly better makespan compared against other
scheduling algorithms.

The problem of resource provisioning-based scheduling tasks in large-scale
distributed environments, such as grids, has been addressed by exploring a hyper-
heuristic scheduling method [16]. The main goal of this methodology is to ef-
ficiently schedule jobs on the available resources in order to simultaneously
minimize execution time and increase security and reliability. The proposed hyper-
heuristic algorithm is a particle swarm optimization-based algorithm that has
been specifically developed to efficiently schedule jobs on available resources
while addressing security requirements and constraints. A thorough experimental
analysis reveals that the hyper-heuristic algorithm outperforms the state-of-the-art
approaches, in terms of minimizing time, cost, and the makespan of the scheduling
process.

Hyper-heuristics also have wide applicability in transportation scheduling. Mo-
tivated by a real railway-based disaster transportation relief scenario in the area
of China, a selection hyper-heuristic search method [140] has been proposed
to tackle emergency railway transportation problems. The evolutionary hyper-
heuristic utilizes various search strategies as low-level heuristics and rewards
each search strategy by assessing its ability to generate successful movements
in the search space. The method has been compared with various state-of-the-
art evolutionary algorithms on several problem instances, which have been cre-
ated from disaster rescue operations data in China. Experimental results show
high-performance gains across all instances against the considered evolutionary
algorithms. The method has also been successfully applied on a real emergency
during the 2013 Dingxi earthquake in China, producing a very satisfactory solu-
tion.

Another recent application of hyper-heuristic methodologies is the dial-a-ride
transportation problem with time windows [135]. This is concerned with schedul-
ing a set of available vehicles to pick up customers from an origin location
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and deliver them to a destination. It considers a range of constraints. The pro-
posed hyper-heuristic methodologies are efficient and result in competitive per-
formance against state-of-the-art approaches from the literature. Moreover, coop-
erative hyper-heuristics have been successfully applied to bus driver scheduling
problems [77].

Recent Educational Timetabling Applications of Hyper-heuristics

A recent overview and critical analysis of the literature on the hyper-heuristic
methodologies applied to educational timetabling problems have been published
in [102]. The article focuses on the hyper-heuristic research in three general
educational timetabling problems, the university examination, the university course,
and the school timetabling problems, as well as proposes several future research
directions on the subject.

An estimation of distribution algorithm has recently been introduced [104] as a
general hyper-heuristic approach to address exam timetabling problem instances.
The objective was to develop a hyper-heuristic with increased generality over
different problem instances. The hyper-heuristic operates on sequences of low-level
exam-selection heuristics that construct a timetable, based only on non-domain-
specific knowledge. The resulting algorithm is capable of guiding the search to
very promising areas. It generates efficient sequences of timetabling heuristics.
Experimental results on various real-world exam timetabling and graph coloring
problem instances suggest that the hyper-heuristic is generic across all problem
instances, with competitive performance against other hyper-heuristic approaches.
In addition, the developed approach is capable of learning the most promising
heuristic for the problem at hand.

A two-stage hybrid hyper-heuristic approach has recently been proposed to solve
timetabling problems [35]. The two-stage hybrid approach utilizes a Kempe chain
move heuristic and the time-slot swapping heuristic as search operators. Firstly,
it generates and automatically analyzes random heuristic sequences. The analysis
keeps the repeated heuristics of the best sequence and empties the remaining
positions to be processed in the next stage. The second stage randomly assigns
sequences if heuristics are in the empty positions in order to search for high-
quality sequences of heuristics. The constructed ones are used for the given problem.
The hybrid method is evaluated on two challenging sets of problems, the Toronto
benchmark and the exam timetabling set of problems from the second International
Timetabling Competition. The method exhibited competitive performance against
the state-of-the-art methodologies for both problem sets.

New selection hyper-heuristic approaches that are based on simple stochastic
search methods have exhibited outstanding performance in the recent high school
timetabling competition [69]. Indeed, such approaches have provided exceptional
results and new best solutions to very challenging problem instances. A hybrid
hyper-heuristic which utilized sequences of low-level heuristics has also been
applied recently in examination timetabling problems [15].
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Games and Education

Hyper-heuristic methodologies have recently been proposed in the areas of games
and education. A recent study focuses on solving the Jawbreaker puzzle [113].
The evolutionary process operates on the low-level heuristic space and produces
sequences of low-level heuristics that can be applied to solve the given puzzle.
The resulting methodology is able to efficiently solve instances of the puzzle with
various sizes and levels of difficulty, including very difficult levels.

An educational game-based software tool has been introduced in [114] to teach
the intrinsic operational characteristics of hyper-heuristics to engineering students.
The tool is based on the Bubble Breaker puzzle, and it represents a strong synergy
with the concept of selection hyper-heuristics. In addition, a hyper-heuristic method
is used, under a context-aware ubiquitous learning environment, to maximize the
learning efficacy of students [138]. The main goal of the search method is to locate
quality learning paths for students by considering real-world context and constraints.
The proposed approach is evaluated on real-world scenarios.

Other Recent Developments

The general character and the wide applicability of hyper-heuristics enable them
to efficiently address a wide variety of applications. Here, the most recent devel-
opments in various scientific fields are presented, from linear algebra to aircraft
structural design applications. A genetic programming-based hyper-heuristic is
introduced in [71] to evolve the structure of the Sloan algorithm that aims to find a
reduced envelope size of matrices. The envelope is the sum of the distances between
each element of the matrix and its main diagonal. Its size has a major impact
on the performance of large linear systems solvers. The best evolved algorithm
(with the addition of a local search method) exhibits substantial performance gains
and significantly outperforms state-of-the-art algorithms in the literature on classic
problem sets.

The magic square problem has been efficiently tackled by a wide range of selec-
tion hyper-heuristic approaches [68] that utilize perturbative low-level heuristics.

A modified version of the well-known and widely used choice function has been
successfully hybridized with a late acceptance strategy hyper-heuristic to tackle
the multidimensional 0–1 knapsack problem [43]. In addition, a stochastic hyper-
heuristic version of the choice function has been utilized to address the winner
determination problem in [30, 73].

Another interesting application of hyper-heuristics is the real-world warehouse
storage location assignment problem [136], in which a genetic programming
methodology is employed to generate matching functions that guide the selection of
subsets of items for a given problem. The methodology is able to locate high-quality
solutions on the training problem cases. It is also able to perform well on unseen
scenarios in the testing phase. This indicates that the evolved heuristics are reusable
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and can be directly applied to similar problem scenarios. Furthermore, aircraft
structural design optimization problems have recently been efficiently addressed by
hyper-heuristic methodologies [12, 13].

The problem of distributing resources among multiple threads in a processor has
been studied in [56]. A learning hyper-heuristic that predicts the best-performing
heuristic between a set of available heuristics has successfully been applied to the
problem. On average, its performance is comparable or significantly better than the
state-of-the-art techniques in the field.

Case Study: A Selection Hyper-heuristic-Based Iterated
Local Search

In this section, a simple selection hyper-heuristic framework is demonstrated to
provide a tutorial-style introduction to hyper-heuristic development. Specifically,
a hyper-heuristic framework is developed that is based on the well-known Iterated
Local Search algorithm. The development process and the decisions that had to be
made during implementation are briefly discussed (section “Iterated Local Search
with Adaptive Heuristic Selection”). The framework implements an action selection
model that operates on the Iterated Local Search algorithm to adaptively select
among various search low-level perturbation heuristics (section “Action Selection
Models”). It is based on the HyFlex platform which can be used to easily implement
prototypes of hyper-heuristic search methods without having to be concerned about
the implementation of problem domain low-level heuristics (which are available
from the HyFlex site) (section “The HyFlex Framework”).

The HyFlex Framework

HyFlex is a Java-based software framework that enables the easy development
and testing of cross-domain hyper-heuristic search methodologies. The framework
implements a common software interface to provide all the essential ingredients for
easily developing a general-purpose search algorithm, without having to implement
specific problem domain knowledge.

The framework implements six different combinatorial optimization problems,
namely, maximum satisfiability (Max-SAT), one-dimensional bin packing, person-
nel scheduling, permutation flow-shop scheduling, the traveling salesman problem,
and the vehicle routing with time windows problem. For each problem domain, there
are 10 to 12 available problem instances, including both challenging benchmark
and real-world industrial problem instances. The framework additionally exposes
the user to a broad set of state-of-the-art low-level heuristic search operators
with different search dynamics and characteristics. For all problem domains and
all instances, appropriate evaluation functions have been implemented to easily
evaluate generated solutions.
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HyFlex currently has two main versions, 1.0 and 1.1. The first version includes
the main functionality described above, while the second version adopts the
concept of batch-mode hyper-heuristics, i.e., allowing the developed hyper-heuristic
methodology to operate on a whole set of instances for each run, instead of using a
single instance. A description of the APIs and documentation for both versions can
be found in [20,98] and in [1,3,4]. The HyFlex framework has been utilized in two
cross-domain search challenges, CHeSC 2011 [1] and CHeSC 2014[3].

In this chapter, the first version of the framework has been adopted to develop
the hyper-heuristic presented in the next section.

Iterated Local Search with Adaptive Heuristic Selection

This section discusses the motivation (and provides a detailed description) for
designing a simple and general applicable hyper-heuristic search algorithm. How-
ever, the main purpose of this section is not to design a hyper-heuristic that has
the best performance obtained in the literature so far. Instead, the goal of this
section is to demonstrate how a simple search algorithm can be seen as a general
hyper-heuristic approach. Moreover, it aims to show how the search algorithm can
easily be applied to different problem domains without considering many unusual
and made-to-measure design choices. The resulting approach can be easily fine-
tuned on the application domains at hand and produce state-of-the-art performance
gains [5, 6, 90].

The developed approach is based on a simple, general, and highly successful
local search algorithm, the Iterated Local Search algorithm [29, 60, 82]. Iterated
Local Search (ILS) is a single-point local search method that belongs to the wide
category of stochastic local search methods [60]. The main idea behind its structure
is to “iteratively create a sequence of potential solutions produced by a given
heuristic search method, that leads to much better solution quality, than performing
repeated random executions of it” [29, 60, 82]. In general, ILS includes four main
stages in its structure. Firstly, ILS generates an initial solution for the problem at
hand and then iteratively improves the current solution by applying a diversification
(perturbation) and an intensification (local search) operation. Diversification is
accomplished by applying a perturbation heuristic on the current solution, while
intensification is achieved by employing a local search method on the perturbed
solution. Having performed these two search operations, ILS determines whether
the new solution is accepted to the next iteration, via an acceptance criterion. As
such, in order to create an effective ILS variant, one should carefully determine
the perturbation heuristic, the local search, and the acceptance criteria. A vast
amount of available choices for various problem domains can be found in the
literature [29, 60, 82].

Notice that the strength of perturbation heuristics varies among the available
heuristics and greatly influences the behavior of the algorithm. For example, strong
perturbations vastly increase the diversification of the search and might lead to
a random restart-like behavior, i.e., there is a very low probability to find better
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solutions. In contrast, perturbations with small strength might lead to very similar
solutions that will not help the local search procedure find a better solution. Instead,
the local search might revisit its previous solutions. Similarly, acceptance criteria
can influence the balance between the intensification and diversification search
abilities of the algorithm. For example, the acceptance of improving solutions will
increase the intensification behavior of the algorithm, while accepting worsening
moves will increase diversification.

Naturally, several ILS variants adapt their search strategies as well as their
properties during the search procedure to react on the respective stage of the search.
Representative reactive search principles can be found in [28, 29, 60]. Arguably
this is the essence of a hyper-heuristic methodology [32–34, 36, 38, 102, 106, 107].
Motivated by these findings, this approach is adopted to develop a simple and
general hyper-heuristic search framework and apply it to various problem domains.
In particular, a simple framework of Iterated Local Search-based hyper-heuristic
(HHILS) is implemented to exhibit the development process and the design choices
that an interested researcher, or practitioner, might be faced with during the
development phase of the hyper-heuristic search methodology.

In general, the HHILS framework follows the basic algorithmic structure of an
Iterated Local Search methodology and enhances its reactive search ability with
an action selection and a credit assignment module. The action selection module
is devoted to efficiently predict and select the most suitable action to apply in
the next step, while the credit assignment module is responsible for assigning a
reward, or a credit value to the applied action, based on feedback from the search
procedure. Arguably, the action selection module can be applied on any level or
combination of levels within the search procedure, i.e., it can select among different
perturbation heuristics, local search methodologies, and acceptance criteria, or
any possible combination of them. This design choice is based on the level of
adaptivity or reactivity that the researcher/practitioner is willing to incorporate in
the search algorithm. In many cases, this decision will have a major impact on the
performance of the resulting search methodology, since the adaptive procedure may
rapidly change the dynamics of the search procedure, i.e., the diversification and
intensification levels of the search. Here, a simple case is adopted in which the
action selection module will operate only in the perturbation phase of the algorithm,
i.e., it will be able to select from a set of available perturbation low-level heuristics.

The selected and applied action is scored based on the credit assignment module.
The main role of the credit assignment module is to assign a reward, or credit value,
to the applied action, based on feedback from the search procedure. The feedback
can be seen as one or more measurements (or qualitative characterizations) of the
applied action effects on the current state of the search process. The most common
measurement for a search action is the quality improvement of its state (e.g., the
difference in fitness value between the previous and the current state). However,
various other qualitative different characterizations may be used, such as ranking
successful movements [50], and evolvability [39, 124] of the search procedure.
Such feedback is able to change the search characteristics of the algorithm and
thus guide the search based upon different objectives. For example, the resulting
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Algorithm 1: Pseudo code of the HHILS framework of ILS based hyper-heuristics.
1: Initialize the action selection, and the credit assignment module as well as create

all data structures required by HHILS.
2: scur  GenerateInitialSolution() /* Generate Initial Solution: Initialize or

construct a solution for the problem instance at hand. */
3: while termination criteria do not hold do
4: selectedl lh  ActionSelection(st r) /* Action Selection: Select a low-level

heuristic with the st r-th action selection model. */
5: stmp  ApplyAction(scur , selectedl lh) /* Perturbation: Perturb the current

solution (scur ) with the selected low-level heuristic (selectedl lh). */
6: stmp  ApplyLocalSearch(stmp) /* Local Search: Apply a local search

procedure on the temporary solution stmp . */
7: scur  AcceptanceCriterion(scur , stmp) /* Acceptance: Accept which solu-

tion, between scur , and stmp , will survive to the next iteration based on an
Acceptance criterion. */

8: CreditAssignment(selectedl lh) /* Credit Assignment: Score the used action
(selectedl lh) based on feedback from the problem at hand. */

9: end while
10: Return: the best solution found so far scur .

algorithm will have more diversification characteristics or will avoid stagnating
during the search procedure. Arguably, the quality of the feedback has a major
impact on the performance and the success of the action selection model. As such,
the literature includes various different attempts to investigate the impact of different
feedback characterizations, like fitness improvement [46, 50, 53, 99], successful
movements [47], rank based improvements [50], and evolvability [39, 124]. The
selected feedback for the HHILS framework is based on the mean improvement of
the applied perturbation heuristics and will be explained in detail below.

A family of different HHILS variants can be easily produced by adopting
new action selection models and different credit assignment feedback functions.
Algorithm 1 presents the general structure of the HHILS framework. Although
some design choices have been made based on specific details related to the HyFlex
framework (which was used for the implementation of HHILS), the algorithmic
structure of the HHILS framework is relatively general and can be easily adapted to
any other available framework.

HHILS firstly initializes all the necessary modules and data structures that are
required by the algorithm to run properly (line 1 of Algorithm 1). This procedure
includes the initialization of the credit assignment module with an empty or zero
initial reward as well as the initialization of the action selection module that sets
all actions to have equal chances to be selected. Next, HHILS initializes a solution
(scur ) for the problem instance at hand (line 2). The initial solution can be either
generated randomly or constructed with a constructive heuristic. This depends on
the problem domain and the available method to initialize, or construct, a feasible
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solution. HyFlex provides such functionality for all problem domains which is
convenient for easily constructing an initial solution independently of the problem
domain.

Having found an initial solution, each iteration of HHILS performs the following
five main steps. Let set S define the � available perturbation low-level search heuris-
tics S D fl lh1; l lh2; : : : ; l lh�g, for the problem domain in hand. In HyFlex, the
developer has the option to select between greedy and non-greedy heuristics. Here,
all available non-greedy heuristics for the current domain have been considered,
which correspond mainly to mutation- and ruin-and-recreate-type-based heuristics.
HHILS employs an action selection method (ActionSelection(st r), line 4)
to predict and select the most appropriate perturbation low-level search heuristics to
apply at the next step (selectedl lh 2 S). The ActionSelection method might
include various models, such as uniform selection and proportionate selection based
on the reward values. The user is able to define which model to use with the st r

variable st r 2M, where M is the set of the available m action selection models,
M D f�1; �2; : : : ; �mg. Section “Action Selection Models” briefly describes the
models used in this chapter.

After selecting the selectedl lh perturbation low-level heuristic, HHILS proceeds
with its application on the current solution scur to perturb its current position and
create a new solution, stmp (line 5). The new position (stmp) is being immediately
refined by the ApplyLocalSearch(stmp) procedure, which applies a greedy
local search heuristic. In HyFlex, greedy local search heuristics belong in the
local search category and have the property that they are not able to produce a
worse solution than the given one. To avoid making a poor choice for the current
problem instance, all of the available local search methods are applied in an iterative
way [6]. More specifically, given a list L of the available � local search heuristics,
L D fl1; l2; : : : ; l�g, at each iteration, a local search method is selected in a uniform
random way and is applied to the current solution (stmp). If the application of the
selected local search method does not lead to a better position (fitness improvement),
it is excluded from the active list, until another local search heuristic finds an
improved solution. If all the local search methods in the active list do not lead to an
improved solution, then a local optimum has been reached. In this case, the iterative
process will finish with the best solution found so far (stmp). The algorithmic scheme
of the iterative local search procedure is illustrated in Algorithm 2.

Having applied the aforementioned transformations on scur , a new temporary
solution stmp has been created. In the next step, HHILS employs an acceptance
criterion AcceptanceCriterion(scur ; stmp) (line 7 of Algorithm 1) procedure
that is responsible to decide which of the two solutions will be accepted for the next
iteration. In the literature, there are various choices available for the acceptance
criterion [60], where the most common ones are to accept only improved solutions
or to accept worsening solutions based on a probability distribution. These criteria
will affect the diversification and intensification abilities of the current search
method, for the given problem. Their impact depends on the landscape structure of
the problem at hand. HHILS utilizes a Metropolis-based acceptance condition that
accepts a worse solution based on a probability distribution. Intuitively, the greater
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Algorithm 2: Pseudo code for the HHILS ApplyLocalSearch(stmp) method.

1: Lactive  L
2: while Lactive is not empty do
3: i  uniformly random select a local search from Lactive

4: sls  li .stmp/ W Apply li local search on stmp

5: if f .sls/ < f .stmp/ then
6: stmp  sls

7: else
8: Lactive D Lactivenfig

9: end if
10: end while
11: Return: the best solution found so far stmp .

the fitness improvement, the greater the probability, or the greater the worsening
fitness, the smaller the likelihood to accept the worse solution. A representative
example of such an acceptance condition is the simulating annealing method [70].

Specifically, the probability density function of acceptance is defined as

p.f .scur /, f .stmp/; T; �i / D e
f .scur /�f .stmp/

T ��i , where f .scur / and f .stmp/ are
the objective value of the scur and stmp solutions, respectively, T is a constant
temperature value with T 2 R, and �i is the mean improvement of the improving
iterations [6]. The role of �i is to normalize the objective value difference by a
quantity that does not depend on the problem at hand. Notice that the value of
the temperature parameter is problem dependent and has to be fine-tuned for the
considered problem in order to obtain optimal performance. Here, the temperature is
fixed in all experiments to T D 2. A short and interesting study on the temperature
behavior can be found in [6].

By this stage, HHILS has finished with the searching operations, and the
applied low-level perturbation heuristic can be scored based on its search behavior.
The final step of HHILS, before proceeding to the next iteration, is to employ
the credit assignment module CreditAssignment(selectedl lh) to score
the selected perturbation heuristic, selectedl lh (line 8 of Algorithm 1). As such,
HHILS defines the reward of an action as the improvement moves performed by
the action, normalized by the total time it spends on them. Such a reward is a
representative score for the improvement rate of each action over the time spend
for each improvement. Specifically, let A D fa1; a2; : : : ; a˛g be the available set of
˛ actions (note that in HHILS A D S) and t˛i be the time consumed by action
˛i on searching the solution space (initially t˛i D 0;8˛i 2 A). Then at each
iteration, the time spent for the applied action, i , is calculated as ti D ti C t

spent
i ,

where t
spent
i is the time of action i spent on the current iteration. The reward value

(ri ) of the applied action .i/ can be calculated according to ri D
1Cimprovementi

ti
,

where improvementi D f .scur / � f .stmp/. In general, various different reward
approaches can be used at this point, such as the instantaneous latest reward or the
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average or a ranked-based reward [50]. However, some of them tend to be unstable
and noisy estimations of credit due to the stochastic nature of the search process. To
alleviate this drawback, the empirical quality of an action is estimated by utilizing
the average value of a sliding window of its latest w rewards. More specifically, let
Wi be a set of the latest w improvement rewards (ri ) achieved by the action ai during
the time step t of the hyper-heuristic. The final credit assignment value rai .t/ is the
average reward of the sliding window Wai , which can be determined by

rai .t/ D

PjWai j

j D1 Wai .j /

jWai j
(1)

where jWai j indicates the cardinality of the set Wai .
Finally, the algorithm will iterate until one or more termination criteria hold.

Here, the maximum allowed CPU wall clock time is used as termination criterion,
tal lowed, which the algorithm may consume to solve the problem under investigation.
It is worth noting that the HHILS framework does not consider whether the
algorithm gets trapped in a particular position of the solution space for a long
period of time. This is a very common situation in which either the algorithm is
in a local optimum or the search operators are not able to find a better solution for
a long period of time. In such cases, a restarting procedure is essential to help the
searching capabilities of the algorithm to diversify the current solution. However, a
restarting procedure requires specific design choices that for the sake of simplicity
are overlooked in this tutorial demonstration.

Action Selection Models

As discussed previously, HHILS is a general framework that has the ability to adopt
any action selection model. The literature includes various action selection models
from different scientific fields such as statistics, filter theory, artificial intelligence,
and machine learning. Each model has different advantages and disadvantages that
depend on the properties of the underlying reward distribution that it is trying to pre-
dict. Representative examples of such models that have been used for this purpose
include probability matching [130, 131], adaptive pursuit [130, 131], statistical-
based models like the multinomial distribution with history forgetting [46, 47],
evolutionary meta-learning methods [44, 45, 79, 123], and reinforcement learning
approaches [50, 51, 127].

In this chapter, five different models have been utilized: the uniform selection
model, the proportional selection model, the probability matching [130, 131], the
adaptive pursuit [130, 131], and the upper confidence-bound multi-armed bandit
methodology [50, 127].

The first two models are very simple and act as baseline models for the HHILS
framework. The uniform selection model simply selects between the available
actions randomly by following a uniform distribution. In this case, the scores
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assigned to each action do not have any impact on the selection process. This
is the baseline methodology that will provide insights into the usefulness and
impact of applying an action selection model on HHILS. Notice that several studies
have identified the usefulness of random variation in either action or parameter
spaces [63, 65, 66]. The second model performs proportional selection among the
available actions based on their assigned scores from the credit assignment module.
Intuitively, this model provides proportional chances to each action based on their
reward scores during the optimization phase, i.e., the most successful will have more
chances to be selected again in the next step. The proportional selection is performed
by applying a simple roulette wheel selection [23].

Probability matching (PM) [50, 130, 131] is a simple probabilistic model that
updates the selection probability of each action proportionally to its empirical qual-
ity with respect to the other actions. Specifically, given a set A D fa1; a2; : : : ; a˛g

of the available ˛ actions (here A D S), let P .t/ D fpa1.t/; pa2.t/; : : : ; pa˛ .t/g

be the selection probability vector of all actions, where initially pai D 1=˛;8ai

2 A. After the application of the perturbation, the local search, and the accep-
tance criterion stages, a reward (rai .t/) is measured from the credit assignment
module. Notice that in the general case, the reactive procedure operates on a
nonstationary environment where the estimation of the empirical quality of an
action might be more accurate and reliable if the more recent rewards influence
the empirical quality more than the past ones. Therefore, in such cases, it is a
common practice by various action selection models to estimate the empirical
quality qai .t/ of each action (ai ) in accordance with the following relaxation
mechanism:

qai .t C 1/ D qai .t/C �.rai .t/ � qai .t// (2)

where � 2 .0; 1� is the adaptation rate (here � is fixed to 0:1) [50, 130, 131].
Having calculated the empirical quality of each action (ai ), PM adapts its selection
probability (pai ) using the following rule:

pai .t C 1/ D pmin C .1 � ˛ � pmin/
qai .t C 1/

P˛
iD1 qai .t C 1/

(3)

where pmin 2 Œ0; 1� is the minimum probability value of each action. pmin is
responsible for ensuring that each action will always have a small probability (here
pmin D 0:05) [130, 131]. Having estimated the probabilities of each action, PM
utilizes a stochastic proportional selection mechanism, based on these probabilities,
to select which action will be applied in the next step.

Notice that PM allows the inefficient actions to have at least pmin selection
probability. Thus, the best action will be selected with probability pmax D .1 �

.˛ � 1/ � pmin/ However, this hinders the efficiency and performance of PM,
since all inefficient actions keep being selected. Therefore, the adaptive pursuit
(AP) strategy [130, 131] addressed this drawback by embracing a winner-takes-all
strategy. In detail, AP, instead of updating proportionally the action probabilities,



17 Hyper-heuristics 517

increases the probability of the corresponding best action (ai? ), while in parallel, it
decreases the probabilities of the other actions according to the following equations:

ai? D arg max
iD1;2;:::;˛

fqai .t C 1/g (4)

pai .t C 1/ D

�
pai .t/C ˇ.pmax � pai .t//; if ai D ai?

pai .t/C ˇ.pmin � pai .t//; otherwise
(5)

where ˇ 2 Œ0; 1� is a learning rate that manipulates the greediness of the winner-
takes-all strategy (here ˇ D 0:8). Intuitively, AP first finds the best action of the
current step and then updates the probabilities by being in favor of the best action.

The last action selection model used in this chapter formulates the action
selection model as a multi-armed bandit (MAB) problem and utilizes the upper
confidence-bound (UCB) algorithm to solve it. The MAB problem considers � one-
arm slot machines and a player that has to decide which arm to pull, how many
times to pull it, and in which order to choose between the available arms, having in
mind that each machine provides a random reward. Intuitively, the MAB problem
faces the well-known trade-off of exploration versus exploitation, where each time
the player has to decide either to “exploit” its current knowledge, i.e., to pull the arm
that gives the highest expected payoff, or to “explore” the available choices, i.e., to
acquire more information about the expected payoff of the other arms.

More specifically, let us have � arms (one-arm slot machines), where each arm
(i -th) has a fixed unknown reward probability pi 2 Œ0; 1�;8i 2 f1; 2; : : : ; �g.
Assume that the arms are independent and that the associated rewards with each arm
are independently and identically distributed. At each time step (t ), the player selects
an arm (j) and obtains a reward rt D 1 with probability pj or r D 0 otherwise. At
any stage of the procedure, the performance of the MAB algorithm is estimated
either by calculating the cumulative reward at the current stage or by employing a
regret measure, i.e., the difference in performance between the current and the best
arm. As such, the main objective of the selection algorithm at any stage is to either
maximize the cumulative reward of the procedure or minimize its regret. In such a
context, an “optimal” algorithm will have the best possible performance if at each
time step it is able to select the best (unknown) arm, i.e., the arm with the maximum
probability of obtaining a reward.

The upper confidence-bound (UCB) algorithm is implemented to solve the MAB
problem [22, 50, 51]. It is worth mentioning that UCB achieves an optimal regret
rate on the aforementioned formulation. Specifically, let qai .t/ be an estimation of
the empirical quality of action ai on time step t , and let ci be a confidence interval
associated with the empirical quality of action ai that depends on the amount of
times ni .t/ action i has been tried until the current step t . Then, at each time
step, UCB deterministically selects the next action (selectedl lh) with the optimal
upper bound of the confidence interval ci . The selection process can be calculated
according to
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selectedl lh D arg max
iD1;2;:::;˛

 

qai .t/C C �

s
2 log

P
k nk.t/

ni .t/

!

(6)

ni .t C 1/ D ni .t/C 1 (7)

qai .t C 1/ D
.ni .t/ � 1/ � qai .t/C rai .t/

ni .t/
(8)

where C is a user-defined scaling factor that balance the trade-off between ex-
ploitation and exploration ability of the model (here C D 0:8). Intuitively, the first
term of Equation 6 favors the action with the best empirical quality (exploitation),
while the second term benefits the trial of the other actions (exploration). UCB thus
selects mostly the action that potentially provides the best reward, while giving the
opportunity for infrequently tried actions to be applied regularly.

An analysis of the behavior and adaptability of the applied models should provide
useful insights into the behavior of each model and its impact on the respective
algorithm that incorporates it. However, this issue is beyond the scope of this tutorial
chapter.

Computational Results

This section demonstrates a thorough analysis of the performance of the developed
hyper-heuristics by evaluating them on a wide range of problem domains with
different characteristics. The experimental protocol used in the experiments is
firstly defined, and then two qualitative different analyses are presented. The first
study provides comprehensive experimental results and statistical analyses of the
developed hyper-heuristics on each of the considered problem domains separately,
while the second study follows the experimental protocol used in the CHeSC
2011 [1] competition and compares the developed hyper-heuristics with the state-
of-the-art approaches of the competition.

Experimental Protocol

Five different hyper-heuristic approaches have been developed that are based on
the HHILS framework described previously in section “Iterated Local Search with
Adaptive Heuristic Selection”. The difference between the hyper-heuristics mostly
lies in the action selection mechanism used to select among the available low-level
perturbation heuristics. As such, comparisons between the following five hyper-
heuristics are conducted:

• HHILS: The simplest HHILS variant that selects the available perturbation low-
level heuristics randomly following a uniform distribution.



17 Hyper-heuristics 519

• HHILS-SA: An HHILS variant that proportionally selects which perturbation
low-level heuristic to apply, based on their reward value.

• HHILS-PM: An HHILS variant that utilizes the probability matching selection
method to select the perturbation low-level heuristics.

• HHILS-AP: An HHILS variant that utilizes the adaptive pursuit selection method
to select the perturbation low-level heuristics.

• HHILS-MAB: An HHILS variant that utilizes the upper confidence-bound multi-
armed bandit methodology to select the perturbation low-level heuristics.

All HHILS variants have been implemented in the Java programming language,
based on the functionality provided by the HyFlex framework. Although their
implementation details are specific for the HyFlex framework, their algorithmic
design is general and can be easily adapted and developed in any other framework.
To motivate the usage and further development of the HHILS variants, their source
code is available at https://github.com/mikeagn/hhils.

To maintain a fair and reliable comparison, the same parameter configuration is
used for the common parameters of all algorithms. In addition, for the different
action selection models that have been incorporated in the HHILS variants, the
default parameter settings are used as proposed in the literature. Specifically, all
HHILS variants employ a temperature value of T D 2:0, while the action selection
models employ the default values used in the literature as described in the previous
section. Notice that it has not been performed any fine-tuning process to obtain high-
quality parameter configurations. However, such parameter configuration values can
be found by performing either manual or automatic tuning and sensitivity analyses.
This tuning process might lead to superior performance gains; nevertheless, this
is out of the scope of the current tutorial demonstration. Prominent examples of
successful off-line automatic tuning tools among others are the irace [81], the
SPOT [26], and the SMAC [61] tools.

Six different problem domains have been implemented within the HyFlex
framework, namely, the Max-SAT (SAT), the bin packing (BP), the personnel
scheduling (PS), the Flow Shop (FS), the traveling salesman problem (TSP), and
the vehicle routing with time windows problem (VRP). For each problem domain,
the HyFlex framework provides 10–12 problem instances. A problem instance
corresponds to either a real-world realization or a well-known and challenging
benchmark case of the considered problem domain. More information about the
available instances can be found online in [2]. To evaluate the performance of an
algorithm on a given problem instance, the best objective value achieved by the
algorithm within a prespecified available time budget is used. Problem domains
have been modeled as minimization problems. As such, the lower objective value
indicates a better performance. The first part of the experimental analyses provides
extensive experimental results for all available instances per problem domain.

For fair comparisons, a benchmarking program is provided on the CHeSC 2011
website [1]. This determines the allowed time limit (tal lowed ) of each run under the
specific hardware architecture tal lowed which corresponds to 10 min of CPU time on
the machine used during the competition. All experiments in this study have been

https://github.com/mikeagn/hhils
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conducted on an AMD Opteron CPU of 2.2 GHz machine with 32 GB of RAM
running GNU/Linux operating system. For this machine, the allowed time limit is
624 s .tal lowed D 624 s/.

Finally, the second part of the analyses strictly follows the rules of the CHeSC
2011 competition in order to provide an easy and fair comparison between all hyper-
heuristic search methodologies. A thorough description of the experimental setup
used in section “Comparison to HyFlex State-of-the-Art Hyper-heuristics” can be
found in [98].

Experimental Results

In this section, the HHILS variants are evaluated on the six available problem
domains provided by the HyFlex framework. Specifically, the performances of
the five developed HHILS variants are compared on all available instances per
problem domain. Firstly the performance gains obtained by each algorithm are
described separately, for each problem domain. Then, their overall performance is
summarized, and the observed behavior is verified by statistical analysis.

Tables 1, 2, 3, 4, 5, and 6 show statistics on the performance of each algorithm per
problem domain, in terms of the best objective value obtained over 31 independent
runs. For each algorithm and each problem instance (I), the following statistics are
provided: the best (min), the median (m), the mean objective value (�), and the
standard deviation (� ) from the mean objective value obtained by the algorithm at
hand. The cases where either the best, the median, or the mean objective value is the
smallest (i.e., best performance) across all algorithms for a problem instance in hand
are highlighted with boldface. In general, it can be observed that, although each
algorithm behaves differently across the various problem domains, some algorithms
exhibit robust performance across the majority of the domains, such as the HHILS-
AP and the HHILS-SA.

More specifically, it can be easily observed that HHILS-AP shows superior
performance against the other algorithms in three different domains, BP, FS, and
TSP. As presented in Tables 1, 2, and 5, for at least 60% of the problem instances,
HHILS-AP shows superior mean and median performance, while it is able to find
the best objective value against the other algorithms in 6, 8, and 7 instances for the
BP, FS, and TSP, respectively. Regarding the VRP problem domain, although there
are three instances where the observed median and mean value are the smallest, in
the majority of the remaining cases, it is not able to show competitive performance
against the first-ranking algorithms in the domain (HHILS-SA, HHILS-PM).

The next most promising hyper-heuristic is HHILS-SA, which is able to achieve
best performance, in terms of both mean and median objective values, in three
problem domains FS, PS, and VRP. HHILS-SA also demonstrates the best perfor-
mance in several problem instances across the majority of problem domains, i.e.,
11; 6; 4; 4, and 2 in SAT, VRP, FS, PS, and TSP, respectively. The remaining HHILS
variants perform similarly for the majority of the considered domains. HHILS and
HHILS-MAB do not exhibit observable performance differences for the majority
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of the studied cases, while HHILS-PM shows slight improvement gains against
them for the BP, FS, and TSP domains (in terms of mean and median objective
values). However, in general, the performance of HHILS-PM is more robust when
compared with both HHILS and HHILS-MAB, since the mean objective values and
their standard deviations are lower for the majority of the considered benchmarks.

It is worth noting that in the SAT problem domain, most of the HHILS variants
behave equally well, since for the majority of the problem instances, they exhibit
similar mean and median performance values. In addition, for most of the problem
instances, they successfully reach the best objective value achieved in this study.
Notice that observable performance gains have been shown mostly by HHILS-SA
which reached the smallest (min) objective value for all problem instances.

To facilitate easy comparisons of the performance of each algorithm across
all problem domains, instances, and independent runs, their objective values are
normalized in a common range of values. As such, for a given problem instance, the
obtained objective values of all algorithms defined on a range O D ŒOmin; Omax� are
transformed linearly to the normalized range N D ŒNmin; Nmax�, where Omin and
Omax are the smallest and the largest objective value observed by the considered
algorithms, and NminandNmax are the lower and upper bound of the new normalized
range. Here, the normalized range N D Œ0; 1� has been used to keep calculations
simple. Strictly speaking, let y 2 O � R be an objective value obtained by
an algorithm for a given instance, and let f W O ! N be a linear function
that transforms its input according to � D f .y/ D .y � Omin/=.Omax � Omin/.
As such, the performance of each algorithm now can be computed by the set
YAlg D f�1; �2; : : : ; �ng that consists of the normalized objective values across all
problem domains, problem instances, and independent execution runs, where n

indicates the total number of sample values and is equal to the number of problem
instances for each domain, times the number of independent runs, summed up
over all problem domains. Notice that this normalization enables a summarizing
comparison of the algorithms across all problem domains and instances. Intuitively,
the smallest normalized objective values indicate better performance.

To graphically demonstrate the distributions of the performance for each algo-
rithm per problem domain, a summarizing illustration is also provided in Fig. 1.
This demonstrates box-plot graphs of the normalized performance for the developed
hyper-heuristics across all domains. In each box-plot graph, the mean value of the
underlying distribution is additionally marked with a diamond.

Notice that the previously described behavior is clearly captured by the sum-
marizing box plots illustrated in Fig. 1. On the whole, it can be easily identified
that HHILS-AP exhibits great performance gains in three problem domains (BP,
FS, and TSP), while HHILS-SA in two problem domains (VRP and PS). The
next best-performing algorithm seems to be HHILS-PM which exhibits competitive
performance in BP, PS, SAT, and VRP. HHILS and HHILS-MAB behave quite
similarly, and their performance gains cannot be distinguished by the graphical
illustration. Interestingly, it can be additionally observed that the performance
distribution of HHILS is the most robust against the remaining HHILS variants on
the SAT domain.



528 M. G. Epitropakis and E. K. Burke

BP FS PS

SAT TSP VRP
0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

HHILS

HHILS
−A

P

HHILS
−M

AB

HHILS
−P

M

HHILS
−S

A
HHILS

HHILS
−A

P

HHILS
−M

AB

HHILS
−P

M

HHILS
−S

A
HHILS

HHILS
−A

P

HHILS
−M

AB

HHILS
−P

M

HHILS
−S

A

N
or

m
al

iz
ed

 o
bj

ec
tiv

e 
va

lu
e

Fig. 1 Boxplot of the normalized objective values of all hyper-heuristics per problem domain

To assess the existence of statistically significant differences, of the observed
performance values, between at least two hyper-heuristics across all considered
problem domains and instances, the Friedman rank sum test is applied [59]. For each
algorithm, the distribution sample of its mean normalized performance per problem
instance across all instances and all domains considered in this study is used. The
null hypothesis of the Friedman test states that the distributions of all samples are
the same, against the alternative hypothesis which states that at least two samples are
not the same [59]. Given the existence of significant differences in performance, a
post hoc analysis is employed to determine which two algorithms exhibit significant
differences in performance. As such, pairwise comparisons are conducted, and for
each comparison, the p-values (pw) calculated by the nonparametric Wilcoxon-
signed rank test are reported, since the underlying sample distributions do not
follow a normal distribution (tested with the Shapiro-Wilk normality test [59]).
Furthermore, to alleviate from the problem of having type I errors in multiple
comparisons with a higher probability, the Bonferroni correction method is applied,
and the adjusted p-values (pbonf ) are reported.

The Friedman test strongly suggests the existence of statistically significant
differences in the performances between the studied hyper-heuristics (p D 0:0000,
with 	2 D 83:071). Therefore, a post hoc statistical analysis is employed to de-
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termine which two algorithms significantly differ in performance. Table 7 presents
summarizing statistics and p-values from pairwise statistical significance tests for
all considered hyper-heuristics over all problem domains and instances. The left-
hand side of Table 7 demonstrates the median (mf ), the mean (�f ), and the
standard deviation (�f ) of the normalized objective values over all problem domains
and instances, while the right-hand side presents the p-values obtained from
the Wilcoxon-signed rank test (pw) and the corresponding Bonferroni correction
method (pbonf ). The presented statistics show that, on average, HHILS-SA and
HHILS-AP are the most promising approaches. However, the statistical tests reveal
that there are not statistically significant differences between their performances for
the studied cases. Additionally, the pairwise comparisons indicate that HHILS and
HHILS-MAB behave equally, while there exist statistically significant differences
in performances for the remaining pairs of hyper-heuristics. This verifies the
aforementioned reported performances observed in the analyses on each problem
domain.

To further demonstrate the underlying performance distribution of the consid-
ered hyper-heuristics, Fig. 2 presents two graphical illustrations of their overall
performances: a box-plot graph (left) and an empirical cumulative distribution
function (ECDF) graph (right) on their normalized objective values over all the
considered problem domains and instances. Such graphical illustrations are useful
in displaying the characteristics of the distribution and the frequency of the observed
performance values. Specifically, having measured a set of performance values (e.g.,
the normalized objective values) for an algorithm A, MA D f�1; �2; : : : ; �ng, the
ECDF is defined as Fn.�/ D 1

n

Pn
iD1 I.�1;��.�i /, where I.�1;��.�/ is the indicator

function which equals to one if �i � � and to zero otherwise. Intuitively, ECDF
captures the empirical probability of observing a value that is less than or equal
to � . The larger a ECDF value corresponding to a given value � , the higher is the
empirical probability of observing � in YA.

The box-plot graph (on the left-hand side of Fig. 2) clearly illustrates the
differences between the performance distributions of the considered algorithms.
Based on the illustrated distributions as well as the previous mentioned results
and statistical analyses, it can be safely concluded that HHILS-AP and HHILS-
SA demonstrate the most promising performance across all domains. Although,
from the analyses conducted per problem domain, HHILS-PM has not exhibited
any superior performance gains, it can be observed that its average performance is
very promising. Finally, the remaining two hyper-heuristics HHILS and HHILS-
MAB perform on average quite similarly. Moreover, the ECDF graph interestingly
reveals that almost all algorithms are able to reach best-performing results with
quite similar frequency across all problem domains and instances. However, it has
to be noticed that HHILS-AP, HHILS-SA, and HHILS-PM have more chance to
locate a better solution for the problem under investigation. For example, HHILS-
AP has a chance of more than 50% to achieve a quite competitive performance value
across all studied problem domains, i.e., there is a 50% chance that the obtained
performance value will be in the first quartile of the observed performance values
of all algorithms across all studied problem domains.
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Fig. 2 Summarizing graphical illustrations: (Left) Box-plot graph, (Right) ECDF graph of the
normalized objective values of all hyper-heuristics over all problem domains and instances
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Comparison to HyFlex State-of-the-Art Hyper-heuristics

In this section, the performance of the HHILS variants is studied and compared
against several state-of-the-art hyper-heuristics that participated in the CHeSC 2011
competition. To this end, the same experimental setup has been implemented
as provided and described in the website of the CHeSC 2011 competition [1].
Specifically, five problem instances have been chosen (three tests and two hidden
instances) for each of the six problem domains, resulting in total 30 different
problem instances. Each hyper-heuristic is applied to solve the problem instance
at hand for an allowed time period. To calculate the performance of each hyper-
heuristic, 31 independent runs are conducted for each problem instance. The median
objective value obtained out of these independent runs corresponds to the score
of the hyper-heuristic for the specific problem instance at hand. As such, the
competition entries are ranked based on their median objective value according to a
Formula 1 pointing system. A thorough description of the methodology used for the
CHeSC 2011 competition can be found in [98].

Table 8 lists the total and the per-problem domain ranking scores of the CHeSC
2011 competition entries along with the HHILS variants. Specifically, the rows of
the table are sorted based on the total score (total) of each hyper-heuristic and rank
them (rank) based on a descending order of their overall score. The remaining
columns represent the obtained score of each hyper-heuristic across the different
problem domains (for clarity, abbreviations SAT, BP, PS, FS, TSP, and VRP stand
for Max-SAT, bin packing, personnel scheduling, flow shop, traveling salesman
problem, and vehicle routing with time windows problem domain, respectively).

The scores in Table 8 suggest that the most competitive hyper-heuristics devel-
oped in this study, HHILS-SA and HHILS-AP, exhibit very competitive perfor-
mance compared against CHeSC 2011 entries. HHILS-SA and HHILS-AP hold
the second and third position, respectively, on the leaderboard. Notice that the
score difference between HHILS-SA/HHILS-AP and the first ranked approach
(AdaptHH) is small (9–11 units difference), while there is a large gap between
them and the fourth entry (ML), (35–38 units difference). AdaptHH algorithm
produces the best performance in two out of the six problem domains (BP and
TSP), and it performs really well on the instances used for the FS domain. HHILS-
SA exhibits superior performance in the PS and the VRP problem domains and
high-performance gains in the SAT problem domain. Similarly, HHILS-AP shows
superior performance in the SAT problem domain, while it shows quite competitive
scores for the PS, the FS, and the VRP cases.

HHILS-PM is able to exhibit promising performance only in the SAT domain and
high scores in the PS and VRP cases, while its contribution to the other domains
is minimal. Notice that almost all HHILS variants show superior performance in
the SAT domain, with HHILS-AP and HHILS-PM to share the first position in the
ranking for this specific domain. In general, it can be observed that the HHILS
variants were competitive entries for the SAT, PS, FS, and VRP domains. However,
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Table 8 Total and per problem domain ranking scores of the developed hyper-heuristics as
competitors on the CHeSC 2011 competition

Rank Algorithm Total SAT BP PS FS TSP VRP

1 AdaptHH 137:25 8:50 45:00 3:50 33:00 38:25 9:00

2 HHILS-SA 128:35 31:85 12:00 37:50 11:00 4:00 32:00

3 HHILS-AP 125:95 32:95 8:00 25:50 21:50 10:00 28:00

4 ML 90:50 1:00 6:00 23:50 35:00 12:00 13:00

5 VNS-TW 86:75 11:00 2:00 24:50 31:00 16:25 2:00

6 HHILS-PM 78:45 32:95 3:00 24:50 0:00 0:00 18:00

7 EPH 68:75 0:00 6:00 3:00 16:50 34:25 9:00

8 PHUNTER 68:75 1:00 3:00 7:50 8:00 24:25 25:00

9 NAHH 63:60 6:60 19:00 0:00 22:00 12:00 4:00

10 HHILS 50:45 29:45 0:00 17:00 0:00 0:00 4:00

11 ISEA 48:00 0:00 28:00 11:00 0:00 9:00 0:00

12 HAEA 36:33 0:00 2:00 0:00 5:33 11:00 18:00

13 HHILS-MAB 35:10 23:10 8:00 0:00 0:00 3:00 1:00

14 ACO-HH 32:33 0:00 18:00 0:00 8:33 6:00 0:00

15 HAHA 19:33 7:00 0:00 7:00 0:33 0:00 5:00

16 KSATS-HH 19:00 3:00 8:00 0:00 0:00 0:00 8:00

17 DynILS 18:00 0:00 7:00 0:00 0:00 11:00 0:00

18 GenHive 16:00 0:00 9:00 0:00 3:00 1:00 3:00

19 XCJ 15:00 0:00 11:00 0:00 0:00 0:00 4:00

20 GISS 10:00 0:00 0:00 4:00 0:00 0:00 6:00

21 AVEG-Nep 9:60 6:60 0:00 0:00 0:00 0:00 3:00

22 SA-ILS 9:50 0:00 0:00 6:50 0:00 0:00 3:00

23 SelfSearch 3:00 0:00 0:00 0:00 0:00 3:00 0:00

24 Ant-Q 0:00 0:00 0:00 0:00 0:00 0:00 0:00

25 MCHH-S 0:00 0:00 0:00 0:00 0:00 0:00 0:00

they were not successful in producing a competitive performance, against the other
entries, in the BP and TSP cases.

It is worth noting that most of the CHeSC 2011 competitors have a very
complex structure that demands a lot of time, effort, and experimentation in the
development process, which is a natural process for participating in a competition.
However, as suggested by the ranking scores, simple approaches, such as the
tutorial demonstration hyper-heuristics in this chapter, might lead to quite efficient
search methodologies with competitive performance gains. Notice that several
approaches in the class of generation hyper-heuristics try to (semi-)automate
the design algorithmic phase in order to alleviate the researcher from having
to fine-tune the considered search methodology for a specific (or not) class of
problems. Representative examples of automatic algorithmic design can be found
in [33, 34, 36].
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Conclusions

Hyper-heuristics range over a broad class of search methodologies. Many hyper-
heuristic methods can be characterized by their general applicability and robustness
across different application domains. The main feature of a hyper-heuristic is that
it operates on a space of heuristics rather than on a solution space. Although there
has been a significant level of research on hyper-heuristics during the last 15 years
or so, several important and challenging research directions in the field are in their
infancy and demand further exploration.

This chapter presents a timely and thorough literature review of the main
advances in the field of hyper-heuristics since the publication of [36] in 2013. In
addition, a simple hyper-heuristic framework has been developed and evaluated as a
tutorial-style introduction to the field. The chapter has been divided into three parts.
The first part reviews a wide spectrum of advances in the field of hyper-heuristics
since 2012 and discusses the current trends and ideas that have been considered by
the community. In particular, various studies have been identified that investigate the
foundational ideas of the field, consider novel methodologies for automatic design
of algorithms and parameter control, provide theoretical analysis, introduce novel
hyper-heuristic methodologies and algorithms, develop hyper-heuristic frameworks
in multi-objective and dynamic problem formulations, and successfully tackle real-
world applications in various fields.

In the second and third parts, a simple but efficient selection hyper-heuristic
framework is developed, as a tutorial-style introduction to the field, and evaluates its
performance on six problem domains. The hyper-heuristic framework incorporates
into the iterated local search algorithm an action selection model to adaptively
choose the most promising perturbation heuristic based on feedback during the
search process. Various state-of-the-art action selection models have been employed
and evaluated. Experimental results and statistical analyses on six different problem
domains verify its efficiency and performance. Comparisons with state-of-the-art
hyper-heuristics in the field demonstrate its strength despite its relative simplicity.

The literature review highlights various interesting advances and limitations of
the current state of the art, which can be summarized as follows.

The current formulation and classification of hyper-heuristics have stimulated
the interest of the community. In particular, reformulations and extensions of the
definition of hyper-heuristics have been proposed (see, e.g., [128]). A productive
criticism on the level of the domain barrier revealed that both high and low levels
of abstraction in the problem domain can enhance the search efficiency of hyper-
heuristics. Problem domain information is sometimes able to strengthen the search
dynamics of a hyper-heuristic without limiting its generality and robustness. Recent
advances include unified representations as well as the embedding of mechanisms
of common knowledge across different problem domains (see, e.g., [49, 129]).

From the methodological point of view, a variety of novel algorithms and
frameworks have recently been published. Heuristic generation methodologies
have been developed not only as hyper-visors to generate low-level heuristics
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but also as mechanisms to generate high-level models [110]. Moreover, hyper-
heuristic frameworks that are able to learn the feature space of a problem class
and its representative search strategies have been proposed [57, 120–122]. These
frameworks are capable of generating new search strategies and self-adapting
their search characteristics based on new problem instances. Furthermore, various
analyses have been published that study either the characteristics of the heuristic
space, such as its diversity, or the feedback information that can be obtained through
the search process (e.g., see [39, 54, 55, 115, 124]). It has also been identified
that current developments in the field are mostly empirical, while the theoretical
foundations and analyses of hyper-heuristics represent significant open research
challenges. A few representative examples of recent theoretical work include the
runtime analysis of hyper-heuristic algorithms [8, 74].

A comparison between the fields of meta-learning and hyper-heuristics has been
performed that advocates their common objective of automating the algorithm
design process [100]. Recent advances in the automatic design of algorithms include
various simple, general, and efficient frameworks based on stochastic local search
algorithms and novel gramma-based representations of heuristic algorithms among
others (e.g., see [6,80,85]). Additionally, the commonalities in memetic computing
and hyper-heuristics have been reviewed, and new frameworks that combine ideas
from both fields have been presented [48]. Various other recent developments in the
automated design of algorithms generate efficient algorithms for specific classes of
problems, including (among others) packing and cutting problems [116, 132].

A significant number of real-world applications demand high-quality decisions.
However, their formulations might include multiple objectives, uncertainty, or
dynamically changing environments. Recent trends in the field promote research
on both multi-objective and dynamic or uncertain problems. An effective multi-
objective algorithm should possess good search characteristics in terms of both
solution diversity and convergence on the Pareto-front set. Current developments
include multi-objective hyper-heuristic approaches that operate on search strategies
to efficiently guide search to diverse Pareto sets that converge to the Pareto front
(e.g., see [37, 76, 83, 84, 91, 92, 139]). Current methodologies mostly include
selective mechanisms that combine the strengths of predefined search operators
or algorithms, while heuristic generation approaches are in their infancy. Clearly,
selection hyper-heuristics play a major role in this direction of research. However,
the design of a multi-objective algorithm demands expert knowledge of the field, and
it is a very demanding and time-consuming development process. Thus, automatic
design processes that will efficiently address major issues will arguably have a
tremendous impact on the multi-objective community. Hyper-heuristic method-
ologies for automatically designing and generating multi-objective algorithms are
definitely a worthwhile (and growing) research direction.

Hyper-heuristic methodologies that employ adaptivity and cope with dynam-
ically changing problem scenarios have been recently developed to address ap-
plications with uncertainty and dynamic changes in time. Most of the developed
approaches utilize heuristic selection mechanisms of specialized meta-heuristics



536 M. G. Epitropakis and E. K. Burke

that address dynamic problems across different types of dynamic environments [7,
126, 133]. Exploration of this area is only just beginning.

A major direction that draws upon the interdisciplinary scope of hyper-heuristics
is the incorporation of machine learning methodologies to enhance hyper-heuristic
efficiency and effectiveness. Machine learning methodologies have been incor-
porated mostly into the higher level of hyper-heuristics. The main aim of such
methodologies is to learn the behavior of the underlying heuristics and be able
to make effective decisions to guide the search toward the most promising areas
of the search space. Recent advances include methodologies that consider tensor
analysis, Inverse Reinforcement Learning theory, Monte Carlo Tree search, and
grammatical evolution (among others, e.g., [17–19,21,25,27,109,111]). Moreover,
hyper-heuristics and the automatic design of algorithms have influenced the machine
learning community too. Various developed methodologies include the automatic
design of classification algorithms, such as decision trees, to generate more general
and robust methodologies for specific class of problems. Clearly, established
methodologies in machine learning can potentially boost the strength of hyper-
heuristic approaches. As foreseen in [34], it can be recognized that research at
the interface of machine learning and hyper-heuristic methodologies has significant
potential.

Hyper-heuristics have been successfully applied in a wide variety of diverse
application areas. Complex applications that can be modeled as combinatorial
optimization problems such as scheduling, timetabling, cutting, and packing prob-
lems represent the early adopted application areas of hyper-heuristic approaches.
Recent developments not only continue to study these application domains but are
also successfully applied to a wide variety of other applications, such as games,
engineering, informatics, and parallel and/or distributed applications.

Hyper-heuristic research lies at the interface between operational research and
computer science, and it has an impact on a broad spectrum of interdisciplinary
application areas. The interdisciplinary character of the field promotes research that
combines advanced knowledge from a variety of research areas with the common
objective of successfully solving complex real-life optimization problems.
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Abstract

Iterated greedy is a search method that iterates through applications of con-
struction heuristics using the repeated execution of two main phases, the partial
destruction of a complete candidate solution and a subsequent reconstruction of
a complete candidate solution. Iterated greedy is based on a simple principle,
and methods based on this principle have been proposed and published several
times in the literature under different names such as simulated annealing, iterative
flattening, ruin-and-recreate, large neighborhood search, and others. Despite
its simplicity, iterated greedy has led to rather high-performing algorithms.
In combination with other heuristic optimization techniques such as a local
search, it has given place to state-of-the-art algorithms for various problems.
This paper reviews the main principles of iterated greedy algorithms, relates
the basic technique to the various proposals based on this principle, discusses
its relationship with other optimization techniques, and gives an overview of
problems to which iterated greedy has been successfully applied.

Keywords
Stochastic local search � Metaheuristics � Iterated greedy � Greedy methods �

Local search � Constructive search

Introduction

Many effective algorithms for NP-hard combinatorial optimization problems rely
on the efficient, repeated execution of some simple, underlying mechanisms. A com-
mon example is perturbative search methods that iterate over neighborhood searches
or iteratively apply underlying iterative improvement procedures. Examples of such
methods include simulated annealing, tabu search, iterated local search, memetic al-
gorithms, or dynamic local search [41,48]. In fact, simulated annealing, tabu search,
or dynamic local search at each step explore the neighborhood of a current solution,
while iterated local search and memetic algorithms can be seen as iterating across
repeated applications of improvement algorithms. Less frequently, stochastic local
search (SLS) methods make use of the iterative application of solution construction
algorithms. Examples for these latter methods are ant colony optimization (ACO)
[23, 24], greedy randomized adaptive search procedures (GRASP) [30, 31], or the
pilot and rollout method [11, 27].

In this chapter, we review another SLS method that relies on the iterative
application of solution construction procedures: iterated greedy. The method builds
a sequence of solutions by iterating through phases of (partial) solution destruction
and subsequent reconstruction of a complete candidate solution. A first complete
solution in this sequence is generated by some constructive method. Then the
following three steps are iteratively executed. First, components of a complete
candidate solution s are removed, resulting in a partial solution sp . Second, starting
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from sp , a complete candidate solution s0 is rebuilt. Third, an acceptance criterion
decides whether to continue this process from s or s0.

Iterated greedy has a clear underlying principle, and it is generally applicable to
any problem for which constructive methods can be conceived. As such, iterated
greedy is clearly a general-purpose method. Iterated greedy is a rather simple
method that needs typically only short development times, especially if already a
constructive heuristic is available. Iterated greedy provides also a rather simple way
of improving over the single application of a constructive method, and for various
problems very high-quality solutions are generated. Additionally, basic versions of
iterated greedy do only incur few main parameters, and their impact on the search
process is rather intuitive to understand. All these reasons make iterated greedy a
desirable technique for developers of heuristic algorithms.

Given the simple underlying principle, it is maybe also not surprising that the
method that we here call iterated greedy has been (re-)discovered and applied a large
number of times under different names by different authors (including ourselves).
Algorithms that rely to a significant extent on the same underlying principle have
been given names such as simulated annealing [50], evolutionary heuristic [62],
iterative flattening [17], ruin-and-recreate [95], iterative construction heuristic [86],
large neighborhood search [96], or, as here, iterated greedy [48, 92]. We will
review these different developments and other related procedures in section “IG
Applications: Historical Development.”

Despite the possible confusion that may arise for the reader due to the different
names and the in part different views on the method, we want to stress that the
really important aspect is the principle that underlies all these algorithms. In fact,
in all these proposals a repeated usage of constructive methods is made that start
from some intermediate, partial candidate solutions. This principle is a generic
one of a potential large utility, and it should be understood as one of the basic
principles that can be used to develop optimization algorithms. This basic principle
may also be only one of the principles that is used in the development of a
hybrid optimization algorithm that combines elements from different techniques.
For example, several algorithms that make use of the iterated greedy principle
include also a local search phase that may improve the solutions generated by the
constructive mechanisms [92].

The structure of the chapter is as follows. In section “Iterated Greedy” we
review the basic principles of iterated greedy algorithms. Next, in section “Some
Simple Examples of Iterated Greedy Algorithms,” we give some concrete examples
of iterated greedy algorithms. In section “Case Study: Iterated Greedy for Flow
Shop Scheduling” we give some results of an experimental study that discusses the
main trade-offs in the design of an iterated greedy algorithm for the permutation
flow shop problem. We then present other algorithms that make use of the
same principle as iterated greedy in section “IG Applications: Historical Devel-
opment.” The relationship of iterated greedy to some other methods is discussed
in section “Relationship to Other Approaches.” References to some noteworthy
applications of iterated greedy are given in section “Applications,” and we conclude
in section “Conclusions.”
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Iterated Greedy

Greedy Construction Heuristics

Constructive algorithms build candidate solutions to optimization or decision prob-
lems step by step, starting from an empty solution. At each step, they add a solution
component to the current partial solution and repeat these steps until a complete
candidate solution is obtained. Commonly, constructive algorithms use a heuristic
function that estimates for each solution component the benefit of including it into a
partial candidate solution. A baseline construction algorithm is formed by so-called
greedy (constructive) algorithms that at each step add a solution component for
which the value of the heuristic function is the best (see also Fig. 1). If more than
one solution component has the same best heuristic value, a tiebreaking criterion
is used to decide which solution component is actually added; in the simplest case,
this tiebreaking is done uniformly at random, but it also may be done by a secondary
heuristic function.

Greedy construction heuristics are frequently used when tackling combinatorial
optimization problems due to a number of reasons. First, greedy construction
heuristics are rather fast, and at the same time they generate solutions that are
usually much better than those generated uniformly at random or by a randomized
but heuristically biased construction. Second, these algorithms are often used to
seed (perturbative) local search methods such as iterative improvement algorithms;
more sophisticated SLS methods such as tabu search and simulated annealing; or
population-based methods such as memetic algorithms. In the latter case, typically
some members of the population are generated by greedy constructive methods,
while others may be randomly generated. Seeding perturbative local search methods
with solutions from greedy construction algorithms can incur advantages such as
improved quality of local optima, faster identification of local optima, and a better
trade-off between computation times and solution quality, that is, better anytime
behavior [114]. Third, sometimes one can prove guarantees on the quality of the
solutions that are generated in the worst case, leading to so-called approximation
algorithms. Often, the best provable guarantees that can be obtained even for more
complex SLS algorithms are the guarantees that directly stem from those of the
initial greedy construction. Fourth, for various polynomially solvable problems,
greedy algorithms are also guaranteed to generate optimal solutions, the Kruskal
algorithm for minimum spanning trees being a well-known example. However,
for NP-hard problems, this is not the case. Finally, they build the basis for a

Fig. 1 Algorithmic outline
of a greedy heuristic
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number of other methods such as GRASP [30, 31], ACO [23], or squeaky wheel
optimization [52].

One straightforward way to improve over the generation of a single greedy
solution is in some cases the repeated application of a greedy heuristic to generate a
variety of different candidate solutions and then to choose the best one. Obviously,
repetition in this sense is only reasonable if in the construction process different
solutions can be generated. For example, for the well-known nearest neighbor
heuristic for the traveling salesperson problem (TSP), n distinct nearest neighbor
tours may result (assuming no random tiebreaking is done); for each of the n

possible cities that may be chosen (randomly) as the initial city for the solution
construction, a different tour may result. However, in other cases where the greedy
construction is fully deterministic, additional randomization of the construction
process, as proposed in the semi-greedy heuristics [45] and in GRASP [30, 84],
may be required to generate different solutions.

Repeated construction of solutions also has inherent disadvantages. Constructing
a full solution is relatively time-consuming as especially the initial construction
steps require a large amount of computation when compared to later construction
steps. Furthermore, no information is taken from one solution construction to
another one, and thus such a repeated construction does not exploit knowledge
gained from previous solutions. A method that alleviates these problems and
that allows to invest, in principle, arbitrary computing times to generate different
solutions by constructive heuristics is iterated greedy.

Iterated Greedy Framework

The main principle of iterated greedy is to iterate over (greedy) construction
methods by first generating a complete candidate solution and then cycling through
a main loop that consists of two main steps. In the first step, some solution
components are removed from the current complete candidate solution s to result
in some intermediate partial candidate solution sp . We call this the destruction step.
In the next step, starting from sp , a construction heuristic is used to generate a
new complete solution s0. We call this step the construction step. An acceptance
test then decides from which of the two solutions, s or s0, the next destruction
step applies. While in the simplest case, the acceptance test may accept only
improved solutions, other choices may lead to more search diversification and, thus,
to possibly better results when many iterations of the iterated greedy algorithm are
done.

An algorithmic outline of an IG algorithm is given in Fig. 2. It starts by first
generating an initial candidate solution using a procedure GenerateInitialSolution
and then iterates through a main loop that consists of the application of the
three procedures Destruction, Construction, and AcceptanceCriterion. Note that the
construction procedures used in GenerateInitialSolution and Construction may be
different and, hence, may also use different greedy heuristics. In the simplest case,
however, they may be the same procedures.
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Fig. 2 Algorithmic outline
of Iterated Greedy (IG)

A simple default version of an iterated greedy algorithm could use the following
choices. As constructive heuristic one may take one that is either already available or
implement a known state-of-the-art constructive heuristic. The solution destruction
may delete some randomly chosen solution components, where the number d of
solution components to be removed is a parameter of the algorithm. As acceptance
criterion, one may force the cost to decrease by only accepting improved or equal
quality candidate solutions.

The iterative process around construction heuristics gives IG some specific
advantages when compared to the repeated construction of complete candidate
solution from scratch. In fact, by starting from a partial solution, one may reduce
significantly the time necessary to generate a new candidate solution as less
constructive steps need to be done, and the time per construction decision is also
reduced as the number of available solution components to choose from is smaller
the larger the partial solutions. In addition, through the potential bias exerted by the
acceptance criterion, the search process can more easily intensify around the best
solutions found in the search process.

When trying to develop a more performing version of an iterated greedy
algorithm, many different options for each of the specific operators may be taken
into account. Some of the main relevant issues to be considered will be discussed
in the following. Other ideas will be discussed also later when considering the
relationship of iterated greedy to other methods or when discussing applications
of iterated greedy algorithms.

Destruction There are a number of different possible choices for the solution
destruction. A first consideration concerns the number of solution components that
should be removed, as defined by a parameter d . The extreme settings would
correspond to removing only a single component, that is, d D 1 or all of them.
Even if one may argue that the resulting algorithms should be considered as iterated
greedy algorithms, these parameter settings would not correspond to the main
ideas underlying iterated greedy. The first case would be akin to a randomized
local search, while the latter be akin to a repeated application of a construction
heuristic. (We discuss these relationships in more depth in section “Relationship to
Other Approaches.”) Intermediate values of d result in a trade-off between search
intensification and diversification: removing a large number of solution components
allows to jump to rather distant solutions in the construction phase, while removing
few components leads to a more localized search.
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Another choice is whether to leave the number of solution components to be
removed fixed or variable during the algorithm run. In the case d is left variable,
a scheme of how to adapt its value is required. If the value of d is left fixed, it
requires proper tuning. Possibilities for varying the value of d could be to modify
this value randomly within some interval every few iterations, to choose the value
according to a scheme similar as those introduced for variable neighborhood search
[44] or to adapt the value of d at computation time, exploiting ideas of reactive
search [9].

Once it is known how many components are to be removed, which ones should
be chosen? There are a number of possible answers to this question. Intuitively,
a randomized destruction is preferable over deterministic choices to reduce the
danger of cycling. If a stochastic destruction is used, the simplest case is to choose
components uniformly at random. More involved could be choices that take into
account cost measures on the components or the partial solutions that remain, thus
introducing a bias in the choice. In that case, solution components that have a strong
contribution to the cost of a solution would then have a larger probability of being
removed than low cost components. Alternatively, one may use lower bounds on the
partial solutions resulting after having removed a component: the smaller the lower
bound, the higher the probability.

Construction One of the crucial ideas of IG is that restoring a fully specified
solution is done by some form of (greedily biased) constructive mechanism. Hence,
the usage of a constructive mechanism is essential. Using a random perturbation
(corresponding to a move to a random solution in a large neighborhood) is more in
the spirit of reduced variable neighborhood search than in the spirit of IG.

The naming iterated greedy suggests that the construction heuristics used in the
algorithm are greedy construction heuristics and typically deterministic (modulo
random tiebreaking). In fact, in many implementations of iterated greedy algo-
rithms, this is also the case. However, we want to emphasize here that this need not
necessarily be the case as, in principle, any suitable constructive mechanism that
starting from some partial candidate solution sp can generate a complete candidate
solution – be it deterministically greedy, probabilistically greedy, or else – may be
used as the underlying construction mechanism in an iterated greedy algorithm.

Among the construction rules, one may distinguish between adaptive heuristics
and static ones. In the first case, the heuristic value assigned to a particular
choice in the solution construction depends on the partial solution. Typically,
adaptive construction heuristics will result in better quality solutions than static
ones; however, this improved solution quality is often reached at the cost of higher
computation times.

In the simplest case, the solution construction is done following a deterministic
construction heuristic – deterministic except of maybe random tiebreaking. Depend-
ing on the construction mechanism, it is possible to apply a deterministic rule: by
applying stochastic destruction, either the order in which solution components are
added is modified or, if adaptive construction heuristics are used, their heuristic
evaluation.
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Such basic considerations about solution construction in iterated greedy algo-
rithms can be extended in many natural ways by adopting techniques that have been
proposed in other methods. One may take inspiration from other constructive meth-
ods and use randomized selection in candidate lists built at each construction step as
in GRASP algorithms, use biased constructive decisions exploiting past experience
such as the pheromone trails in ACO, or use prohibitions by avoiding adding again
solution components that have been removed in the solution destruction, taking
ideas from tabu search. Another option may be to choose among different possible
construction rules and use ideas from the hyperheuristics community for this task
[15]. In fact, all kind of methods and techniques that are compatible with the
idea of constructing solutions may be adopted within iterated greedy algorithms
if this seems promising, making iterated greedy in this sense also a very flexible
technique.

Acceptance criterion. The acceptance criterion has a strong influence on the
diversification/intensification behavior of an IG algorithm. On the extreme cases
are the possibilities of accepting any new solution independent of its solution
quality or to only accept solutions that improve over the previous one. There
are many intermediate choices such as occasionally accepting worse solutions or
allowing backtracks to previously seen solutions. A popular choice when accepting
worse solutions is to use acceptance criteria from simulated annealing such as the
Metropolis criterion: if a new solution is better or equal, it is accepted; otherwise
it is accepted with a probability expf.f .s/ � f .s0//=T g, where T is a parameter
called temperature. More elaborated approaches might probably make use of short-
term memory as in tabu search. The acceptance criterion, whatever it might be, does
not need to be applied at every iteration, i.e., a given incumbent solution can be
destructed and reconstructed a number of times before deciding on its value. For the
choice of the acceptance criterion, very much the same issues arise as in iterated
local search [82], and an appropriate choice may be crucial to an IG algorithm’s
performance.

Hybridization with local search. Iterated greedy algorithms can form directly the
basis of hybrid algorithms that combine various search mechanisms. In fact, for
constructive heuristics a natural extension is to improve the generated solutions by
the application of a (perturbative) local search method, in the simplest case this
being an iterative improvement algorithm. Such an extension is also straightforward
to be adopted in an iterated greedy algorithm and actually has been done in a number
of such approaches. This extension results in an outline of iterated greedy as given
in Fig. 3. With this additional local search phase, the IG algorithm also strongly
resembles iterated local search (ILS) algorithms [82]. In fact, the destruction and
construction phases implement a solution perturbation in the ILS sense. However, a
minor difference is that ILS often makes use of perturbations that are randomly
chosen from some large neighborhood, while in IG algorithms an underlying
constructive method is exploited. More importantly, IG can also reach very high
performance when used without the local search phase, which is not necessarily
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Fig. 3 Algorithmic outline
of an IG with an additional
local search step

true for ILS algorithms. More on relations of IG to other methods is given in
section “Relationship to Other Approaches.”

In any case, for an algorithm to qualify as an iterated greedy algorithm, it
is necessary that one can distinguish between a clearly available construction
mechanism and a clear destruction mechanism that are repeatedly applied in an
alternating order. An acceptance criterion may be used in an explicit way or in an
implicit way; the latter is the case, for example, if every new solution is accepted
and no mentioning of an acceptance criterion is done. In that case, the acceptance
criterion would correspond to a “random walk-type” acceptance criterion used
sometimes in ILS algorithms [82].

Some Simple Examples of Iterated Greedy Algorithms

Let us consider a few examples of constructive heuristics for basic combinatorial
problems that will serve throughout the chapter for illustrating various details of
IG algorithms. We consider here three examples for the traveling salesman problem
(TSP), the set covering problem (SCP), and the permutation flow shop problem
(PFSP). We first shortly introduce the problem and then describe a basic constructive
heuristic and basic IG algorithms.

TSP Example

Traveling salesman problem (TSP). The TSP is given a graph G D .N; E/ where N is the
set of n D jN j nodes and E is the set of edges that fully connects the nodes. To each edge
.i; j / is associated a distance dij . Here we assume that the distance matrix is symmetric,
that is, we have dij D dji for all .i; j / 2 E; this type of TSP instances are called symmetric
and are among the most widely studied types of TSP instances. The objective in the TSP
is to determine a Hamiltonian cycle of minimal length. Such a cycle can be represented
by a permutation � D h�.1/; : : : ; �.n/i, where �.i/ is the node index at position i . The
objective function to be minimized is

min
�2S

d�.n/�.1/ C

n�1X

iD1

d�.i/�.iC1/ (1)

where S is the search space consisting of the set of all permutations.
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Probably the best known constructive heuristic for the TSP is the nearest
neighbor heuristic. It chooses randomly a first node to start from to obtain a partial
tour h�.1/i. Then at each step it appends to the partial tour h�.1/ : : : �.l/i, a still
unvisited node that has minimum distance to �.l/. Once all nodes are visited,
the tour is completed by closing the tour and going back to �.1/. The nearest
neighbor heuristic usually contains subtours that may be close to optimal ones but
also contains long edges that are added often toward the end of the construction.
Empirically, for Euclidean two-dimensional TSP instances, the nearest neighbor
heuristic generates tours that are about 20–40% above optimal (see [51]).

One possibility to build an iterated greedy algorithm on top of the nearest
neighbor heuristic would be to remove a subtour of d consecutive cities of a tour,
resulting in one subtour of n � d cities and to restart the nearest neighbor heuristic
from it. Another possibility would be to remove randomly cities, reconnect the
remaining subtours, and then restart the nearest neighbor heuristic. However, it is
unclear what the performance of such an algorithm would be.

Another simple constructive heuristic for the TSP is the random insertion heuris-
tic (RIH). It starts by choosing randomly two nodes that are ordered arbitrarily.
At each construction step, a next node is chosen randomly and inserted into a
position in the current path such that the cost increase is minimum. The RIH is
one of simplest heuristics for the TSP; however, it is among the best performing
constructive algorithms for the TSP [51].

IG can be used on top of the RIH as follows. The first solution is constructed
by RIH. The procedure Destruct would remove l nodes that are chosen uniformly
at random. Next, Construct adds the removed nodes using again the same rules as
in the RIH. Finally, AcceptanceCriterion could be chosen to only accept improved
solutions. This means that the solution destruction would be applied to the best tour
found so far. Different choices for iterated greedy algorithms based on such steps
have also been experimentally examined by [95].

SCP Example

Set covering problem (SCP). The set covering problem (SCP) is given a set A D
fa1; : : : ; ang of items and a set B D fB1; : : : ; Bmg of subsets of elements of A that covers
A; in other words, we have that for each Bi � A and

Sm
iD1 D A. A set Bi covers an item

aj if aj 2 Bi . Each set Bi has a cost of ci . The objective in the SCP is to find a subset C

of the sets in B that covers each element in A and that is of minimal total cost.

For the SCP, constructive heuristics differ in the choice of the heuristic function
that is used. A standard heuristic function is to compute the cover value of the sets
in B , which is defined as �i D ci =bi , where bi is the number of items that would
be covered when adding subset Bi to a current partial cover. Note that when starting
with an empty solution, that is, none of the subsets Bi is chosen to be in the cover
C , we have that bi D jBi j. However, each time a subset is chosen, bi needs to
be updated taking into account the items already covered in a partial cover Cp .
The cover value is an example of an adaptive heuristic, where the heuristic values
depend on the partial solution already generated. Adaptive heuristics require higher
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computation times than their corresponding static heuristics, which do not update
heuristic values in dependence of the partial solution, but typically lead also to better
quality solutions. Once a complete cover is obtained, some of the subsets may have
become redundant if all the items they cover are also covered by other subsets;
removing such redundant subsets then improves the solution cost of the generated
cover. Note that the removal of redundant subsets is not yet a destruction step as
through the removal of redundant subsets the candidate solution remains a complete
cover. The destruction step then may remove a number of subsets from a complete
solution, resulting in a partial cover Cp , from which again the construction heuristic
starts.

A first IG algorithm for the SCP has been proposed by [50]. They construct
the first solution using a simple greedy construction heuristic [7] that at each step
first selects a random, not covered item and adds the least cost subset that covers
that item. Once a complete cover is found, redundant columns are removed. The
solution destruction removes k1 � jC j subsets that are chosen uniformly at random;
here 0 < k1 < 1 is a parameter, and jC j is the number of subsets on the cover and
the cover size. The solution construction uses the heuristic based on cover values
explained above. (The iterated greedy algorithm by [50] is, hence, a first example
where the constructive heuristics for generating the initial solution and for extending
partial solutions in the main loop differ.) However, the subsets to be considered are
limited to a candidate set that comprises all those subsets that have a cost less than
k2 � maxfci ji 2 C g, where k2 > 0 is a parameter that influences the size of the
candidate set and C is the current cover. At each step of the construction, a subset
with a minimum cover value is added to the current partial solution, breaking ties
uniformly at random. Once a complete cover is obtained, redundant columns are
removed as explained above. The acceptance criterion of a new cover C

0

is based on
the Metropolis condition that is frequently used in simulated annealing algorithms.
This simple IG algorithm for SCP obtained very high performance improving over
several earlier proposed SCP heuristics.

PFSP Example

Permutation flow shop scheduling problem (PFSP). In the PFSP, n jobs have to be
scheduled on m machines. All jobs visit the machines in the same order, each job having
an operation at each machine. Time pij denotes the nonnegative, known, and deterministic
processing time that job j needs on machine i . In the PFSP the same processing sequence
of the jobs is maintained throughout all machines, and hence the processing sequence is
obtained as a permutation of the jobs. The standard objective is to minimize the completion
time of the last job in this order, which is also known as makespan (Cmax). The PFSP arises
in many practical situations as it is common to have production lines where machines are
disposed in series. The PFSP is a thoroughly studied problem in the scheduling literature
with literally hundreds of papers published each year. The minimization of the makespan
is the most used criterion in the literature, but not so in practice [36]. Some reviews on the
PFSP are [35, 47, 91].

A popular and high performing constructive heuristic for the PFSP is the NEH
heuristic [68], named after the initials of the last names of the paper’s authors. NEH
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is an insertion heuristic, a kind of heuristics that iteratively extends a permutation
by inserting at each step one new element into the current partial solution. The NEH
heuristic first computes for each job j its sum of the processing time Pj D

Pn
iD1 pij

and then orders them according to nonincreasing Pj values, resulting in a sequence
�.1/ : : : �.n/. The first two jobs according to that order are taken, their two possible
sequences h�.1/�.2/i and h�.2/�.1/i are evaluated, and the better of the two is
adopted. Then at each step l , the job �.l/ is considered and tentatively inserted
in all possible l positions in the current partial solution �.1/ : : : �.l � 1/. Among
these tentative insertions, the one resulting in the least increase of the makespan is
taken. These steps are repeated until all jobs are inserted. Note that there might be
two levels of ties, both at the ordering of the Pj values and at the insertion phase.
The NEH heuristic has a computational complexity of O.n3m/ which is lowered
to O.n2m/ using the efficient implementation of [97]. There is a rich literature of
methods that propose variants of the NEH heuristic, mainly proposing mechanisms
to break ties or reinsertions. As shown by [91] and more recently by [32], the NEH
is a state-of-the-art constructive heuristic for the PFSP.

A simple IG algorithm for the PFSP has been proposed by [92]. It is based
on insertion heuristics such as NEH. In fact, this iterated greedy algorithm uses
NEH to construct an initial solution. At each destruction step, it removes a number
of jobs that are chosen uniformly at random from the current permutation. In the
construction step, these jobs are then reinserted in the same order in which they
have been removed. For the insertion of the jobs, the same procedure as described
for the NEH heuristic is followed. The acceptance criterion accepts a new candidate
solution using the Metropolis condition known from simulated annealing algorithms
but with the temperature T set to a constant value. The performance of this simple
IG algorithm was very good, outperforming many metaheuristic algorithms for
the PFSP. When combined with a local search phase, the proposed IG algorithm
was shown to be a new state-of-the-art algorithm for the PFSP [92]. The IG
implementation of [32] has given some further improvements of the above presented
iterated greedy algorithm. Currently, the top-performing iterated greedy algorithm
for the PFSP is the variant of [26], which additionally adds a local search on the
partial solution that is obtained after the destruction step. As a matter of fact, this
IG method has shown to outperform other more recent, and arguably much more
complex, approaches.

Case Study: Iterated Greedy for Flow Shop Scheduling

The development of an effective iterated greedy algorithm requires the algorithm
designer to choose which of the various possible implementation choices to take.
In this section, we exemplify the development of an iterated greedy algorithm for
the PFSP and study the impact specific alternative choices have on iterated greedy
performance. Here we examine the impact of various alternative choices for the
iterated greedy algorithm by [92] that we presented in the previous section.
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In particular, we consider the following design choices in our experimental
analysis.

Initial solution. It may seem advisable to start from an as good initial solution
as possible. For the PFSP, this would be the NEH heuristic [32, 91] using the
accelerations of [97]. However, at least for some instances, it is not clear whether
a random or heuristic initialization of iterated greedy provides the best results. In
fact, [81] study cases in which only for hard instances and in short CPU times it
is advisable to use NEH (or extensions of the NEH) to obtain competitive results.

Destruction strength. A first and foremost decision to be taken is how many
elements of a complete candidate solution should be removed. Here, we consider
different fixed values for this parameter d , although it may also be interesting to
consider schemes of how to vary the value of d at run-time.

Destruction type. The type of destruction determines which components of the
incumbent solution are removed. In the simplest case, one may remove compo-
nents of a solution uniformly at random. Alternatively, one may remove blocks
of consecutive elements. In this case, a random block of d jobs could be removed
from the sequence. Note that for a same solution � and a block-based destruction,
there are only n � d C 1 possible choices for the destruction move. These two
latter possibilities will be examined here.

However, one may consider a biased destruction, where components of the
incumbent solution may be chosen randomly but in a biased way. For the PFSP,
for example, jobs generating a large idle time at machines before or after their
processing might be disrupting the sequence and are therefore likely to have been
misplaced. We leave the study of such a destruction operator for future work.

Construction type. Similarly to the type of destruction move, different ways of
how to construct a solution could be examined. The default choice in the iterated
greedy algorithm is to insert jobs using the NEH heuristic. As an alternative,
we consider a random insertion of the removed jobs, which could be used if
no efficient greedy heuristic is available. However, in this case, the difference
between iterated greedy and ILS becomes somewhat blurry, especially when
additional local search is used.

Acceptance criterion. The acceptance criterion has a direct impact on the balance
between intensification and diversification of the search. A simple idea is
to accept only better quality solutions, while alternatively one may use the
Metropolis condition that occasionally also accepts worse candidate solutions.

Acceptance iterations. Instead of applying the acceptance criterion at each itera-
tion, one may apply an acceptance criterion only each l iterations. This would
correspond to accepting for a few iterations every new candidate solution that is
generated and only applying the acceptance test after each sequence of l steps.

Local search. Finally, it is well known that local search can have a tremendous
impact on the quality of the results achieved, even though iterated greedy
algorithms may reach high-quality solutions even without local search.
Hence, it may be worthwhile to test the impact of an additional local search
phase.
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Table 1 Summary of the factors and the levels studied in the experimental analysis

Factor Abbreviation Level one Level two

Initial solution Initialization NEH Random

Destruction strength Destruct 4 6

Destruction type Destruction_T Random Block

Construction Reconstruction_T NEH Random

Acceptance criterion Acceptance_C SA Descent

Acceptance iterations Iterations_Acc 1 5

Local search LS No Yes

In order to study the different design and implementation alternatives, we have
carried out a design of experiments (DOE) approach [67] where the previous factors
are analyzed. Seven factors are coded and tested at two levels each, as summarized
in Table 1. As a result, a total of 27 D 128 combinations are to be tested in a full
factorial experimental design. However, we use a half fractional design, which has
most of the power of a full factorial one but requires only half of the runs. We use a
27�1

VII design, which has a high resolution VII : interactions between four factors are
aliased (confounded) with interactions between three factors, interactions between
five factors aliased with interactions between two factors, and so on. As a result, we
can safely study the experimental data since it is highly unlikely that two high-level
interactions might be significant. More elaborated techniques for the analysis and
calibration of algorithms than the simple exploratory analysis we perform here have
been published elsewhere [8]. Each studied combination has been tested on 30 of
the hardest instances from Taillard’s benchmark (99). This benchmark is composed
of 12 groups of 10 instances, each ranging from 20 jobs and 5 machines to 500 jobs
and 20 machines. The instances of one particular group are denoted as n�m. For the
tests we pick three of the hardest groups, namely, 50 � 20, 100 � 20, and 200 � 20.
We are interested in these instances since for most of the remaining problems, the
optimum solution is already known, and today’s state-of-the-art methods are capable
of obtaining near optimum solutions.

Each combination is run five independent times (replicates) with each instance.
We also control the number of jobs (n) as a blocking factor with three levels in the
experiment. Therefore, the experimental design contains 27�1 � 3 D 192 treatments,
192 � 10 D 1 920 experimental units (for ten instances), and 1 920 � 5 D 9 600

experiments (for five replicates).
The basic iterated greedy algorithm along with all studied alternatives has been

implemented in Delphi language and run during a predefined CPU time which is
fixed to 30, 60, and 120 s for the instances of 50, 100, and 200 jobs, respectively.
The machine used for the tests is a Pentium IV PC/AT computer running at 3.2 GHz
with 2 GBytes of RAM memory. The performance measure and response variable of
the experimental design are the so-called relative percentage deviation (RPD) over
the optimum or best known solution (upper bound) for each tested instance:
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Relative percentage deviation .RPD/ D
Heusol � Bestsol

Bestsol
� 100 (2)

where Heusol is the solution given by any of the replicates of any iterated greedy
variation for a given instance and Bestsol is the optimum solution or the lowest
known upper bound for that specific Taillard’s instance as of November 2015. The
results are analyzed by means of the parametric ANOVA technique. Notice that in
this case, the three assumptions of this parametric test (normality, homoscedasticity,
and independence of the residual) have to be satisfied. In our experiment, the
factor LS results to be extremely significant, and it creates large differences in the
response variable. As expected, applying the local search results in a statistically
significant difference in the average RPD of 1.46 considering all results, compared
with the average RPD of 3.73 without local search. Such a large difference
generates normality problems. In order to avoid this situation, we study two separate
ANOVAs, one for each level of the LS factor.

Results of the Simple Iterated Greedy Without Local Search

All remaining factors after fixing the local search have p-values very close to zero in
the resulting ANOVA table. As a result, we focus on the F-Ratio, which is the ratio
between the variance generated by a given factor and the residual variance in the
studied two-level interaction linear model. The higher this ratio, the more significant
the factor or interaction is. Figure 4 shows the means plots for the remaining six
factors in order of importance.

From Fig. 4 we can observe how all six studied factors have levels and variants
that result in statistically significant differences. Observed differences in the average
performance of the iterated greedy when a factor has been set to a given level
or variant are depicted with nonoverlapping confidence intervals in the plots. The
importance of the F-Ratio is shown in Fig. 4 with the most significant factors to the
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left of the figure and the least significant to the right. As can be seen, without local
search, it is clearly preferable to greedily reconstruct the solution as the difference
in performance is extremely large. This is one of the main keys behind the iterated
greedy algorithm. A random reconstruction of jobs means that first the jobs are
randomly extracted and then randomly inserted. This is more or less a sequence of
insertion moves. Too many moves (and no local search) result in an algorithm that
is not performing well.

The second factor in importance is Destruct or d , the number of jobs to be
removed in the destruction phase. Following the previous discussion, six jobs
impose a rather large overall disruption, and removing only four jobs gives much
better results. Notice that a similar conclusion was reached by [92] in their
calibration of the iterated greedy for the PFSP. Although not shown here, removing
four jobs is better for all the studied instances with 50, 100, and 200 jobs.

The third most important factor results to be Iterations_Acc. Among the two
tested levels, applying the acceptance criterion at every iteration gives substantially
better results. The analysis is continued until all factors have been fixed through
the most important effects in the response variable. For example, the third most
significant effect in the ANOVA is not a single factor but the interaction between
factors Destruction_T and Reconstruction_T. It is shown in the fourth plot from the
left in Fig. 4. We see that both factors interact greatly. When Reconstruction_T is
set to random, the block destruction appears to be slightly better. However, when
Reconstruction_T is set to NEH, as in the original NEH method, the destruction
has to be done randomly as much better results are obtained. Initialization is best
set at NEH, but we observe that the difference in performance with the random
initialization is rather small. Finally, the acceptance criterion factor (Acceptance_C)
is also slightly better at SA, but the difference with descent is very small, even
though it is statistically significant. More specifically, the average RPD given by
the simple iterated greedy across all factors with a SA-like acceptance criterion is
3.69%, whereas for the descent criterion it is 3.77%. It is interesting to note that
most results confirm the choices made in previous studies as in [92].

Results of the Simple Iterated Greedy with a Local Search Step

Now we proceed with the analysis of the experimental data after focusing on
the results of the simple iterated greedy with the local search enabled. In this
experiment, the first interesting result is that the observed differences as regards
RPD among the levels of the factors are much smaller than in the previous one.
It is safe to say that the local search is capturing much of the variability of the
experiment. Figure 5 contains the means plots for the six factors, in order of
importance according to their F-Ratios.

As can be seen, the relative importance of the studied factor is not the same when
compared to the previous experiment without local search. The most important
factor is now Iterations_Acc. Similar to the previous experiment, applying the
acceptance criterion at each iteration improves results significantly. The next factor
in importance is Reconstruction_T. The plot is similar to the previous experiment
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and represents an important result. Considering that the algorithm already carries
out a local search step after reconstruction, it could be argued that a random
reconstruction might suffice. However, this is not the case. Carrying out a local
search step from a randomly reconstructed solution yields, on average, much worse
results than if the local search is carried out on a greedily (and therefore, of
higher quality) reconstructed solution. This supports the point that iterating over
greedy heuristics gives very good results. The remaining factors per importance are
Destruct and Acceptance_C. The last two remaining factors, Destruction_T and
Initialization, are not statistically significant at a 99% confidence level as it can be
seen by the fact that their corresponding means plots overlap. Hence, among the
two tested types of destruction, it is not important how the jobs are removed. This
is probably due to the fact that even though jobs are removed in blocks, they are
reinserted one by one. As for the initialization, the advantage gained by an NEH
initialization is nullified during the run of the iterated greedy algorithm, confirming
the observation of [81].

As a conclusion from this study, the most significant factor is the local search and
the NEH reconstruction. Most other factors have less importance. Iterated greedy
can even do without a full NEH initialization for the hardest instances of Taillard in
the PFSP problem.

IG Applications: Historical Development

Among the examples of iterated greedy algorithms in section “Some Simple Ex-
amples of Iterated Greedy Algorithms,” we had described an algorithm for the SCP
by [50] who have actually called their algorithm a simulated annealing algorithm.
This naming is probably due to the use of the Metropolis condition as an acceptance
criterion, which was also used in the first proposals of simulated annealing [56].
This algorithm has later been extended by the same authors [14]. Somehow related
is the more complex algorithm by Marchiori and Steenbeek [62] for the SCP; in
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this algorithm a construction starts from a partial solution following the steps of
the iterated greedy method; however, instead of obtaining the partial solution by
choosing the subsets to be removed, they use a mechanism to choose the subsets of
the best solution found so far that are maintained in the partial solution. Maybe
surprisingly, in that paper the proposed algorithm is viewed as an evolutionary
algorithm. This algorithm is preceded by another algorithm for the unweighted SCP
[61], which more directly follows the ideas of the iterated greedy method.

Interestingly, the abovementioned algorithms for the SCP are not the only ones
that are directly based on the same destruction–construction process that is the basis
of iterated greedy algorithms. In fact, a large number of other algorithms are based
on the same principle. However, different names have been used for the underlying
method or no specific name at all, which complicates the transfer of knowledge to
other researchers.

Probably the earliest techniques that use some mechanism akin to the
destructive–constructive moves of iterated greedy are found in the VLSI design
automation community and, in particular, in the routing step, where components are
connected by wires trying to obey design rules for integrated circuits. In the rip-up
and reroute approach [20, 90], some routes related to bottlenecks are removed, and
components are reconnected in a different order. The rip-up and reroute technique is
commonly used in the design automation community, but the principle underlying
this method seems not to have been generalized to the level of metaheuristic for
tackling a wide variety of other optimization problems.

The possible use of destructive–constructive moves has also been mentioned
earlier in the context of the type of techniques that have become known as strategic
oscillation [38–40]. These types of approaches are often embedded into algorithms
that make use of tabu search features to provide additional guidance to the search.
Some examples of such implementations that have also a clear component related
to the iterated greedy methodology are [42, 43, 59].

Among the first researchers to identify the potential of the principles underlying
iterated greedy and to formulate these as a general-purpose SLS method are [95].
They called their method ruin-and-recreate, where the ruin stands for the solution
destruction and the recreate for the reconstruction of a complete solution.1 In
their seminal article, they applied ruin-and-recreate to the symmetric TSP, the
vehicle routing problem with time windows, and to a network design problem,
reporting good overall performance of the method. Following this work, a number
of other papers have been published using the name ruin-and-recreate; however,
not all papers that use the name ruin-and-recreate should be considered as iterated
greedy algorithms; for example, [65, 66] essentially uses a random mutation of a
current solution instead of a clearly separable destruction phase and greedy solution
reconstruction.

1Ruin-and-recreate is protected by US patent Optimization with ruin recreate No. 6418398; see
http://www.patentstorm.us/patents/6418398-fulltext.html.

http://www.patentstorm.us/patents/6418398-fulltext.html
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Ahmadi and Osman [3] study the capacitated clustering p�median problem.
Among different proposed methods and heuristics, the authors introduce a periodic
construction–deconstruction procedure, which is basically a simple form of iterated
greedy. After a given number of clusters have been built in the constructive method,
some of them are randomly deconstructed, and the constructive method is reapplied.

Richmond and Beasley [86] have presented an iterative construction heuristic
for a problem arising in ore selection. In this problem, processing options needs
to be chosen for a number of mining blocks. The destruction operator deletes the
processing option for some mining blocks; the size of the destruction is chosen
randomly following a uniform distribution in some interval. After the reconstruction
of a complete solution, the algorithm accepts only better quality solutions as new
incumbent ones. It should be clear from the description that the algorithm follows
directly the very same principles of iterated greedy.

Cesta et al. [17] describe an algorithm for a capacitated scheduling problem
that makes usage of the ideas underlying the concept of iterated greedy algorithms.
They have developed a method that uses a greedy constructive heuristic to generate
feasible schedules by introducing precedence constraints. In the destruction phase
(called retraction in the chapter), they remove some of the introduced precedence
relations to obtain a partial solution and then reconstruct a complete feasible one.
They call their method iterative flattening, where flattening refers to the reduction of
resource conflicts, which is an effect of the introduced precedence constraints. The
term iterative flattening has gained some popularity, and several follow-up articles
have been published on improvements of the algorithm [63], studies of combinations
of basic algorithm components [69], or applications to other problems [70, 71].

The authors of iterative flattening characterize the method in their initial paper as
a local search method. Few years before, [96] has proposed the large neighborhood
search method. The initial proposal consists in the removal of solution components
and the reinsertion of solution components by using constraint programming
techniques that exploit a tree search and constraint propagation techniques. Even
though the method was proposed in a constraint programming framework, where
a tree search is used to restore a complete solution instead of simple constructive
heuristic, the latter is mentioned as one possible option. In fact, in many later
articles on large neighborhood search, simple constructive heuristics are used [78],
implementing, hence, directly an iterated greedy method.

Finally, the name iterated greedy has been used by [92] and also in [48] to
denominate the type of SLS method we describe in this chapter. However, these
are not the first publications that are using the name iterated greedy. A much earlier
mentioning of the term iterated greedy is by Culberson [19]. His iterated greedy
algorithm for graph coloring uses a greedy algorithm for generating a coloring,
removing the color of all nodes and then reapplying the greedy algorithm using
a specific ordering of the nodes that guarantees the next generated coloring to be
not worse than the previous one but potentially better. This algorithm may be seen
as an extreme case of iterated greedy where the destruction operator destroys the
complete solution. However, our view is rather that it is a specific algorithm that
works in the way it is proposed mainly for graph coloring.
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Relationship to Other Approaches

Iterated greedy is a general-purpose SLS method that has many links to other SLS
methods. In the following, we discuss similarities and differences to a number of
SLS methods considering other constructive methods, local search methods, and
tree search algorithms. These relationships also open up many possibilities for
combining techniques proposed for different methods.

Repeated (Greedy) Construction Algorithms

Iterated greedy has natural connections to other methods that repeatedly construct
complete candidate solutions. A key difference between iterated greedy and few
other repeated construction methods is that the solution construction in iterated
greedy usually starts from a (nonempty) partial solution, while the other methods re-
peatedly generate new candidate solutions starting from empty candidate solutions.

A well-known simple such method is the greedy randomized adaptive search
procedures (GRASP) that combines a greedily biased but randomized solution
construction with a subsequent improvement of the generated candidate solutions
by a local search procedure [30, 84]. GRASP in turn extends on some initial ideas
of how to generate different solutions by a randomized greedy heuristic [45]. While
GRASP does not start the construction from partial solutions, it is an example of
a (simple) randomization scheme during the solution construction, which could be
included directly in iterated greedy algorithms. An appealing feature of GRASP is
the usage of adaptive constructive procedures, and the large number of articles on
GRASP [84] may be a source for randomized greedy heuristics to be used in iterated
greedy algorithms.

Many useful ideas that underlie other constructive methods may be adopted
into iterated greedy algorithms. One such possibility is ways of how to improve
the constructive mechanisms, for example, through look-ahead methods or, when
taking look-ahead to an extreme, as advocated in the rollout [11] and pilot method
[27]. In the rollout and pilot methods for each constructive decision to be taken,
a full solution is constructed (or at least well approximated), and the construction
decision that results in the best complete solution is taken as the next one. This
process is repeated for each construction decision, resulting in a relatively time-
consuming constructive approach. However, starting the rollout/pilot method from
partial solutions with the resulting reduction in computation time may make this
approach promising inside an iterated greedy algorithm.

Squeaky wheel optimization (SWO) [52] uses the idea of biasing the solution
construction by information that was gained by analyzing complete candidate
solutions. This is done by assigning priorities to specific solution components.
The solution reconstruction in SWO is done, differently from iterated greedy,
from empty initial solutions corresponding to a complete destruction of the current
candidate solution. Within the SWO framework, Aicklin et al. [5] proposed the idea
of seeding the reconstruction of a full candidate solution by some partial solution
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that was obtained by removing some of the solution components of a complete
candidate solution, making it a variant of iterated greedy.

A rather different way of biasing the solution construction is underlying the
ant colony optimization (ACO) metaheuristic [23, 24]. In ACO, (artificial) ants
implement stochastic solution construction heuristics that make their constructive
decisions based on so-called pheromone information and heuristic information
associated to specific solution components. The pheromone information tries to bias
solution construction toward the best solutions that have been found so far. Again,
differently from iterated greedy algorithms, the ants start their solution construction
from empty candidate solutions. However, there have been a number of proposals in
the ACO area that suggest starting the solution construction from partial solutions
that are either stored [1, 2] or obtained by deconstructing complete solutions
[103, 104, 109] in a way akin to iterated greedy algorithms. These approaches
generally try to transfer the advantages of iterated greedy to ACO algorithms, and
for several of these approaches, positive results are reported.

(Perturbative) Local Search Techniques

Iterated greedy has tight links to local search algorithms and, in particular, to very
large-scale neighborhood searches [4]. In fact, as also mentioned in section “IG
Applications: Historical Development,” one of the proposals of iterated greedy style
algorithms called the method large neighborhood search Shaw [78]. The analogy
stems from the fact that the removal of k solution components in the destruction
step and the subsequent reconstruction of a complete candidate solution can be
seen as a move in a large neighborhood that is implicitly defined by the number
of components to be removed and/or added.2 The (greedy) reconstruction of a
complete candidate solution typical for iterated greedy algorithms can then be seen
as a heuristic examination of the neighborhood either in a fully greedy way or
using randomization steps–details that simply depend on the particular design and
implementation of the construction step in an iterated greedy algorithm. By varying
the value of k, the size of the implicitly defined neighborhood is varied. Such
changes may be done either (i) randomly within some limited range Œkmin; kmax�

resembling known strategies in local search methods such as robust tabu search
[98], where one tries to avoid overcommitment to a single value for a parameter, (ii)
in a more systematic way such as advocated in the strategies defined for variable
neighborhood search [44], or (iii) by using feedback from the search performance
such as advocated in reactive search methods [9]. An interesting possibility for
exploring the neighborhoods is used in the adaptive large neighborhood algorithms

2Note that the number of solution components removed in a destruction step may be different from
the number of solution components added in the construction step and so we refrain from talking
of k-exchange neighborhoods here. A common example where this happens is subset problems
such as the SCP we discussed earlier.
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by [77, 89], who propose to consider different heuristics to be used in the solution
reconstruction. In their method, they additionally adapt the probability with which
specific heuristics are chosen over the run-time of the algorithm based on the
feedback of the search process.

An alternative to the heuristic exploration of neighborhoods provides methods
that try to determine the best possible solution that can be reached from the current
one, akin to best-improvement neighborhoods. In the case of large neighborhood
searches, this corresponds to an exact examination of all the possible solutions that
can be reached from a current partial candidate solution [4, 28]. The original pro-
posal of large neighborhood search by Shaw [96] actually considered such an exact
exploration of the resulting neighborhood by means of an constraint programming
approach embedded within a branch-and-bound scheme. Due to the large variation
in computation time that such a scheme however incurs, alternatives have been
tested such as pure insertion-based reconstruction or limited enumeration schemes.

If we consider other local search-based SLS methods, the closest related one is
certainly iterated local search [83], especially when iterated greedy algorithms ex-
ploit additional (perturbative) local search methods to improve candidate solutions,
as outlined in Fig. 3. In that case, the destruction–construction cycle corresponds to
what in ILS terms would be a solution perturbation. In general, it seems to be com-
mendable in ILS to apply problem-specific perturbations whenever possible, and the
destruction–construction cycle in iterated greedy introduces such problem-specific
information through the use of heuristic information. Basic variable neighborhood
search is an ILS-type algorithm that systematically varies the strength of the
perturbation, and thus the link to iterated greedy is also immediate.

Besides the fact that complete solutions may be improved by an additional
local search phase in iterated greedy algorithms, it could be worthwhile to also
consider the local re-optimization of the partial solutions that are obtained during the
destruction and reconstruction process. It is noteworthy that such occasional local
re-optimization of partial candidate solutions has shown to be useful in a number of
other contexts such as vehicle routing [16].

Tree Search Algorithms

Constructive mechanisms can be extended to an exhaustive search method by
adding a simple backtracking mechanism; adding further bounding schemes, one
quickly comes to methods such as branch-and-bound or, more in general, tree search
techniques [48]. Hence, it is clear that iterated greedy algorithms also share some
relationships to such methods.

Some links have already been mentioned in the previous section, when exact
methods are exploited to generate the best possible completion of a partial candidate
solution. Such a completion may be generated using tree search methods, and
various of these ideas have been explored [96]. Even if tree search is used, the search
need not be necessarily complete. For example, Shaw [96] has considered the usage
of limited discrepancy search [46], which consists in examining a limited number
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of alternative choices in the decision points during the tree generation. Any other
variants such as depth-bounded discrepancy search [108] could also be interesting.
Another alternative that does not seem to have been applied so far would be to apply
beam search [72].

Yet another connection to tree search techniques could rely on the exploitation
of lower bound information to generate heuristic information or to prune choices
that are guaranteed not to lead to improved solutions. So far, we are not aware of
an exploitation of such ideas inside iterated greedy algorithms, although in other
constructive SLS algorithms, such uses have been explored [12, 60].

Applications

In this section, we give a short overview of the applications of iterated greedy
algorithms. Few applications have already been mentioned in section “IG Appli-
cations: Historical Development” when discussing other methods that use the same
principle as iterated greedy. Here, we focus mainly on applications that identified
their algorithm as an iterated greedy algorithm. In fact, depending on the class of
problems for which the respective methods have been proposed, the usage of names
to refer to iterated greedy-type methods differs. For example, in the scheduling area,
the excellent results of the iterated greedy algorithms for the permutation flow shop
scheduling problem have spawned a lot of follow-up work on similar problems,
while the name large neighborhood search is frequently found in application to
vehicle routing problems, given the prominent role these algorithms have played
in that domain.

Iterated Greedy for Scheduling Problems

As mentioned, iterated greedy, as defined in this chapter, was initially applied to
the permutation flow shop scheduling problem by [92], so many applications to
other scheduling problems were published after that.3 [93] extended their iterated
greedy algorithm to tackle the permutation flow shop scheduling problem when
considering additional sequence-dependent setup times and other objectives than
makespan, namely, the total tardiness. Other variants of flow shop problems have
been studied in [85, 101] (blocking), [75] and [22] (no-wait), [94, 100], and [74]
who studied no-idle and mixed no-idle problems. Non-permutation flow shops
were approached by [111] or [10]. Distributed flow shop scheduling problems have
been solved with iterated greedy algorithms in [57] and [33]. Iterated greedy has
also proven valuable in other optimization criteria apart from makespan. Tardiness
is studied in [34] or total flowtime in [73] to name just a few. Multi-objective

3Various applications of iterative flattening to scheduling problems have been referenced in
section “IG Applications: Historical Development”.
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extensions of iterated greedy have proven effective for Pareto flow shops without
and with setups in [64] and in [18], respectively; [25] have embedded an iterated
greedy algorithm into the two-phase local search framework to tackle various bi-
objective flow shop problems. Parallel machine problems were successfully tackled
with iterated greedy algorithms [6, 29, 88]. Iterated greedy algorithms are effective
for various single-machine scheduling problems as shown in [21, 112]. Some other
more complex problems have been studied, including job-shop scheduling with
blocking constraints [80], job-shop scheduling with sequence-dependent setup times
and job families [55], hybrid flow shops [110], and real-life problems [105–107].

Iterated Greedy for Routing Problems

As mentioned above, in the context of vehicle routing problems, several algorithms
that follow the main structure of an iterated greedy algorithm have been applied
but usually using branding under the name large neighborhood search. The article
making these approaches popular has already been mentioned [96]. A major impact
in that line of applications had the adaptive large neighborhood search approaches
[77,89], which led to a large number of follow-up work mainly in the vehicle routing
domain. Some overview is also given in [78]. In fact, the usage of such iterated
greedy-type methods as local searches inside SLS algorithms for vehicle routing
problems is increasingly widespread and can by now be considered a standard
in this area. Apart from vehicle routing, also iterated greedy approaches have
been proposed to few other routing-type problems such as scheduling and routing
problems of freight trains [113] or in the context of TSP variants [54].

Iterated Greedy for Other Problems

There have been a number of other applications where explicitly iterated greedy
algorithms have been devised as the main solution techniques. Lozano et al. [58]
presented an iterated greedy approach to the maximum diversity problem, where
from a set of elements a subset with maximum diversity has to be chosen. After
proper tuning, the algorithm was shown to perform better than various competing
algorithms and was established as a new state-of-the-art algorithm. García-Martínez
et al. [37] have developed an iterated greedy algorithm enhanced by a short tabu
list in the destructive phase for the quadratic multiple knapsack problem. Lozano
et al. [59] have developed also another iterated greedy algorithm for the quadratic
minimum spanning tree problem obtaining excellent results on large instances;
further embedding the algorithm into a strategic oscillation approach by essentially
extending it with tabu criteria led to further improvements on some problem instance
classes. Early implementations of similar ideas for binary quadratic programming
have been presented before [43]; more recently, Toyama et al. [102] apply iterated
greedy to the same problem tackling also very large-scale instances successfully.
Kang et al. [53] study the problem of allocating parallel tasks to processors
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in computing systems that are distributed and heterogeneous. Population-based
iterated greedy algorithms and iterated greedy algorithms that exploit further exact
solutions to large neighborhood searches have been proposed for the maximal
covering location problem [87], the goal of which is to cover clients such that the
largest amount of demand possible is satisfied. A problem in market segmentation,
where a company asks to partition a set of customers subject to some specific
requirements related to homogeneity of customers and compactness of the areas is
tackled by Huerta-Muñoz et al. [49]. A population-based iterated greedy algorithm
has also been applied for delimiting and zoning rural settlements [79] and to the
minimum weight vertex cover problem [13]. First applications of iterated greedy
algorithms for machine learning tasks, in particular the generation of classification
rules, have been explored [76].

Given the wide applicability, the flexibility, and the often high performance
of iterated greedy, we would expect this list of applications to further grow
significantly in the future.

Conclusions

The main principle of iterated greedy is to build a sequence of solutions by
iterating over constructive algorithms through a loop of solution destructions
and (re-)constructions. Deconstruction removes solution components resulting in
partial solutions from which again full solutions are reconstructed. This loop may
be extended by an additional local search phase, where the generated complete
candidate solutions are further improved, and by many other techniques from other
heuristic and exact search techniques, making iterated greedy a very flexible and
malleable method.

We prefer to call this principle iterated greedy because (i) this name directly
refers to what the principle implies, namely, making iterative use of construction
methods, (ii) it does not obfuscate the name with natural or unnatural analogies,
(iii) it is a short and punchy name describing the essence of the method, and (iv)
and it has by now been used in a large number of publications. A bit unfortunate
is that in the literature there have been proposed several methods under different
names that make use of the same (or a very similar) principle including large
neighborhood search [78,96], simulated annealing [50], evolutionary heuristic [62],
ruin-and-recreate [95], iterative construction search [86], or iterative flattening [17].
The multitude of different names for the same kind of approach can probably be
explained in two ways. First, different researchers have a different perspective on the
same method, and, thus, the iterated greedy principle can be viewed and proposed,
for example, from the perspective of a (perturbative) neighborhood search leading to
the heuristic or exact exploration of large neighborhoods or from the perspective of
a (constructive) algorithm background where the method is simply iterating through
applications of constructive algorithms. Second, the method has been proposed
in somewhat different communities such as ruin-and-recreate in a physics journal
[95], large neighborhood search at a constraint programming conference [96], and
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iterative flattening at an artificial intelligence conference [17], and publications
using other names have appeared in operations research journals [50, 86, 92]. It
apparently has taken a significant amount of time that these ideas transpired from
one community to another.

Even if this leads to some confusion and we maybe contribute to this confusion,
we think that what is really important is (i) the principle underlying these methods,
(ii) the fact that the iterated greedy principle can lead to very powerful algorithms,
and (iii) the fact that iterated greedy is a very flexible method that can easily be
combined with other techniques. By making the relationship among the different
proposals clear, we hope to contribute also to a transfer of experience between
these different algorithms. In any case, we hope that this review chapter will be
useful for other researchers in stochastic local search methods by clearly identifying
the potential of iterated greedy and in this way also contribute to its further
development.
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Abstract

Iterated local search is a metaheuristic that embeds an improvement heuristic
within an iterative process generating a chain of solutions. Often, the improve-
ment method is some kind of local search algorithm and, hence, the name of
the metaheuristic. The iterative process in iterated local search consists in a
perturbation of the current solution, leading to some intermediate solution that
is used as a new starting solution for the improvement method. An additional
acceptance criterion decides which of the solutions to keep for continuing this
process. This simple idea has led to some very powerful algorithms that have
been successfully used to tackle hard combinatorial optimization problems. In
this chapter, we review the main ideas of iterated local search, exemplify its appli-
cation to combinatorial problems, discuss historical aspects of the development
of the method, and give an overview of some successful applications.
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Introduction

One important rationale of a large number of metaheuristics is to overcome the
limitations of local optimality incurred by iterative improvement methods [40].
Several concepts for this task have been considered in the prolific literature on
metaheuristics that include the occasional acceptance of worsening moves within
a local search process, an idea underlying methods such as simulated anneal-
ing [20, 64] or tabu search [40], the usage of populations as a simple means for
increasing the exploration of the search space as in evolutionary algorithms [7] or
ant colony optimization [29], or the introduction of penalties in the search process
as in dynamic local search methods [53].

Certainly, one of the simplest ideas is to call iterative improvement methods
several times with new starting solutions to sample possibly new and better local
optima. Doing so by generating new starting solutions uniformly at random from the
search space is known to be an ineffective approach, especially when instance size
increases [100]. Iterated local search (ILS) instead exploits the idea of generating
a chain of solutions by creating new starting solutions from a perturbation of
some of the previously found solutions; in this way, it creates a biased sampling
of starting solutions [74]. An acceptance criterion determines whether the new
locally optimal solution is taken as the new incumbent or whether the previous
solution is maintained. This basic idea underlying ILS has been implemented in
a number of early papers on the method [10, 11, 60, 79, 80]. The method has been
extended in several directions in follow-up research, and a number of new variants
and generalizations have been considered. In fact, a first generalization is that the
underlying improvement heuristic need not be necessarily an iterative improvement
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algorithm but can be any method that takes some solution as input and returns
a possibly improved solution. Other variants concern the introduction of rather
elaborate perturbation mechanisms or the consideration of different acceptance
criteria. Nevertheless, what characterizes an ILS algorithm is that a chain of
solutions is built through a process that involves as main sub-procedures some
form of solution perturbation, an improvement method of whatever type, and an
acceptance criterion.

In this chapter, we review the main ideas underlying ILS and illustrate its main
principles using some example applications to well-known combinatorial optimiza-
tion problems in section “Some Examples of Iterated Local Search Algorithms”.
We then shortly highlight, in section “Historical Development of Iterated Local
Search”, the main developments on the method from a historical perspective, which
also shows that ILS is among the oldest metaheuristic techniques. We discuss the
most relevant links ILS has to other metaheuristics in section “Relationship of ILS
to : : :”. We end with an overview of various noteworthy applications of ILS, which
complements some earlier reviews on ILS [74,75], and some concluding remarks in
section “Conclusions”.

Iterated Local Search

Here, we first introduce basic notions of local search and then elaborate on the main
mechanisms ILS uses to steer the search process.

Local Search Heuristics

Many heuristics for tackling hard optimization problems rely on (perturbative) local
search [1, 53]. The idea underlying local search is to replace the current candidate
solution s within a search space S of complete candidate solutions by some
neighboring candidate solution. The neighborhood N .s/ of a candidate solution
s 2 S is defined by all candidate solutions that can be obtained by applying specific
modifications or “movements” to s.

Neighborhoods are problem specific, but for many problems, standard neighbor-
hood concepts can be applied. One of these standard neighborhood concepts is the
so-called k-exchange neighborhoods, where two candidate solutions are neighbored
if they differ in at most k solution components. For implementing such neighbor-
hoods, one needs to identify, for a given problem, appropriate solution components.
Intuitively, a solution component corresponds to an atomic relationship, assignment,
or selection that characterizes a candidate solution. For example, in the well-known
traveling salesman problem (TSP), solution components refer to the fact that a
node j is visited directly after a node i in a tour, that is, to an edge .i; j /; in the
quadratic assignment problem (QAP), a solution component would correspond to
the assignment of a facility to a specific location, that is, an individual assignment.
In a k-exchange move for the TSP, one would change a set of k edges by a different
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set of k edges, and for the QAP, one would change at most k individual assignments
of facilities to locations.

Of critical importance is the size of neighborhoods: large neighborhoods have
the advantage that better-quality candidate solutions may be reached in one step
of the algorithm, which comes, however, with the disadvantage of increasing the
time it takes to actually search for such candidate solutions in large neighborhoods.
To balance these two aspects, over the years a large set of techniques have been
proposed that try to either define special-purpose neighborhood structures that allow
to design algorithms for searching them efficiently or to heuristically explore very
large neighborhoods trying to identify good candidate solutions there but without
guarantee of finding the best one. For an overview of very large neighborhood search
methods, we refer to Ahuja et al. [2].

The widest spread perturbative local search method is probably iterative improve-
ment (also called iterated descent, hill-climbing, etc. in the literature). It replaces
a current candidate solution by an improving neighboring one and repeats these
steps until a locally optimal candidate solution has been found, that is, a candidate
solution without any improving neighbor. In the following, we will indicate by
s� 2 S� a locally optimal candidate solution from the set of locally optimal
candidate solutions S�; more in general, we will refer to the set S� as the possible
output set of search methods that are not necessarily iterative improvement methods.
Various variants of this basic algorithm exist differing in the order in which the
neighborhood of a candidate solution is searched, which neighboring candidate
solution replaces the current one, and so on. The most common mechanisms for
these rules are the so-called best- and first-improvement rules, which, respectively,
replace the current candidate solution by a most-improving candidate solution
in N .s/ or by the first one encountered when scanning the neighborhood. The
specific choice for these pivoting rules can have a significant impact on the
quality of the local optima generated and the computational effort it takes to
reach local optima. Similarly, for local search algorithms, speed-up techniques
such as incremental move evaluations are of crucial importance for their efficiency
[1, 53].

Local optima have an ambivalent importance in optimization. When compared to
the candidate solutions in the full search space S , locally optimal solutions are of,
on average, much better quality, and there are much less candidate solutions in S�

than in S . Hence, identifying local optima by an iterative improvement algorithm
may seem a priori a good idea. However, iterative improvement algorithms are
stuck in local optima, and even when several candidate solutions in S� are sampled
independently, the so sampled local optima may still be of rather poor quality [100].
Thus, other mechanisms than independent sampling in S� are required to allow
a highly performant search process. The search for such mechanisms led to a
large number of proposals and studies of general mechanisms to pursue the local
search beyond the traps of local optimality [40] or on the development and study
of rather different search mechanisms, such as populations, which try to focus on
a more global search behavior. These mechanisms are commonly referred to as
metaheuristics [38, 39] or general-purpose stochastic local search methods [53].
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Within the context of ILS, of particular relevance are trajectory-based metaheuristics
that at each step modify a single solution. This includes methods such as tabu search,
simulated annealing or guided local search. Such metaheuristics can be used in a
straightforward way as an improvement method in ILS algorithms.

Iterated Local Search Framework

The main principle of ILS is to generate a sequence of candidate solutions that
is obtained by iterating through solution perturbations and subsequent applications
of a (local) improvement method. An additional acceptance criterion decides from
which candidate solution seen during the run of the algorithm this sequence is
continued. Typically, the improvement method is an iterative improvement method
or a trajectory-following metaheuristic such as tabu search or simulated annealing.
The goal of the perturbation is to introduce a modification into the current candidate
solution that is larger than the modifications that are done in the local search phase,
thus effectively allowing the search to escape local optima or specific search space
regions.

An algorithmic outline of ILS is given in Fig. 1. After generating an initial
candidate solution and improving it by a local search, the main loop is invoked.
Within the main loop, first a (typically locally optimal) candidate solution s� 2 S�

is perturbed leading to a candidate solution s0 2 S . After improving this solution
and obtaining a new solution s�0 2 S�, an acceptance criterion decides whether to
continue the search from s� or s�0. It is also possible to consider in the perturbation
and the acceptance criterion aspects of the search history, for example, to adjust the
perturbation strength or the choice done in the acceptance criterion; in that case,
one would extend the corresponding procedures to Perturbation.s�; history/ and
AcceptanceCriterion.s�; s�0; history/.

An important advantage of ILS when compared to repeatedly starting the
LocalSearch method from random initial candidate solutions is that (i) intermediate
candidate solutions obtained through the perturbation are often of better quality
and can lead to better locally optimal solutions, and (ii) in the case of iterative
improvement methods, the subsequent local search may terminate more quickly than
when starting from random initial candidate solutions, leading to the exploration of
a larger number of local optima within a given computation time. Hence, more local

Fig. 1 Algorithmic outline
of Iterated Local Search (ILS)
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optima and local optima of a better average quality may be generated in an ILS
algorithm, increasing the chance to find very high-quality solutions.

A further advantage of ILS is its ease of a first implementation, especially if an
improvement method is already available. A first version of an ILS algorithm can
be obtained by adding perturbations in some higher-order neighborhoods than the
ones used in the local search and a reasonable first choice is to accept only better or
equal quality solutions in the acceptance criterion. Such a version can be obtained by
adding few lines of code to an existing improvement method and be the basis for an
algorithm engineering effort to generate a high-performing ILS algorithm. In fact,
ILS is very malleable and can range from very straightforward implementations
to rather well-engineered algorithms when problem-specific details are taken into
account.

Generally speaking, ILS is a modular approach and the behavior of an ILS al-
gorithm is determined by the four procedures GenerateInitialSolution, Perturbation,
LocalSearch, and AcceptanceCriterion and their interaction. In what follows, we
discuss the main issues arising for these procedures.

GenerateInitialSolution. This procedure determines the starting point of the
search and it may have a significant impact during the initial search phase.
Generally, candidate solutions generated by a good constructive heuristic should be
preferable as often the better the quality of the initial candidate solution, the better
is the quality of the local optima encountered. In addition, an iterative improvement
algorithm requires usually less steps to reach a local optimum when starting from
a better-quality solution. However, if the other procedures are well designed, the
influence of the initial candidate solution is expected to be little especially for longer
run-times.

Perturbation. The perturbation transforms one complete candidate solution into
another complete candidate solution. Its task is to modify a current candidate
solution and to generate a new, promising starting solution for the next local search
application. To allow an effective escape from local optima, the perturbation should
be larger than or at least different in nature from the modifications that are applied
in the local search algorithm.

An important factor is the size of the perturbation, which can be measured by
the number of solution components that are changed. If the perturbation is too
small, it may quickly be undone by the next local search. If the perturbation is
too strong, that is, too many solution components are modified, then much of the
quality and the structure of the current candidate solution may be lost; in that case,
the algorithm can become akin to a random restart algorithm, which is known to
be usually of poor performance. Unfortunately, it depends typically on the problem
and often on the specific problem instances how strong perturbations should be
[74]. One possibility to adapt the perturbation strength may be either to do a proper
parameter tuning, an adaptive scheme following ideas of reactive search [9], or to
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adapt the perturbation strength using simple schemes such as those of basic variable
neighborhood search [45].

The simplest way of perturbing a candidate solution is by applying random
perturbation moves. A disadvantage of choosing the perturbing moves uniformly
at random is that one may lose significantly in solution quality. An alternative is to
use biased perturbations and to introduce problem knowledge in this way. Biased
perturbations may make use of heuristic information on the solution components
that are changed. This can be done in various forms, for example, by removing
preferentially solution components that have a high contribution to the cost of a
candidate solution, or by introducing new solution components that have a low cost
contribution. Closely related to ILS is the iterated greedy method that relies on a
destruction and reconstruction cycle that is managed through constructive heuristics
[98]; in fact, this cycle may be seen as a perturbation in the ILS sense. A different
possibility is to introduce more complex perturbations by re-optimizing parts of a
candidate solution [73] or applying data perturbations [21].

LocalSearch. The local search procedure is of crucial importance for the per-
formance of an ILS algorithm, which will benefit strongly from good choices
and implementations for this procedure. A first crucial issue is the quality of the
solutions that the local search algorithm produces. A priori, one may expect that
the better the quality of the solutions that are generated by the local search, the
better the results of the ILS algorithm. However, this reasoning would not take
into account the execution time of the local search. In fact, a crucial aspect for the
appropriate choice of a local search method is the trade-off between the quality of
the solutions it generates and the computation time it takes to find these solutions.
Given a fixed computation time, a fast local search may be applied more often and,
thus, generate a larger number of candidate solutions that may be of less average
quality than candidate solutions obtained by a more time-consuming local search
procedure. Which choice is best, depends on the particular problem or type of
problem instances and has to be determined on an experimental basis.

Another important aspect is whether the local search is used as a black-box or
whether it is open and can be integrated in possibly more profitable ways into an ILS
algorithm. One example is the exploitation of the don’t look bit technique [14, 61];
we refer to section “TSP Example” for more details on this technique and how
to integrate it with the perturbation. Another example requiring access to the local
search is the adoption of techniques of tabu search by declaring solution components
changed by the perturbation as tabu for a number of local search steps; this may help
to avoid immediately undoing the perturbation.

The local search in an ILS algorithm is not limited to an improvement method,
but any (even non-local-search) method that takes as input a complete candidate
solution and returns a potentially improved candidate solution upon completion
could be used. Common examples include the usage of tabu search, simulated
annealing, or dynamic local search algorithms as the local search. One can even
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think of using an ILS algorithm as the local search leading to a hierarchy of ILS
algorithms [55, 74]. However, to allow a sufficient number of iterations of the ILS
algorithm, one needs to define a stopping criterion for the local search method, for
example, by limiting the number of local search steps that are applied or the number
of steps without improvement.

Finally, an advantage of a strong local search is that the sensitivity of the
algorithm to the settings of numerical parameters is often reduced, making in this
way the algorithm itself more robust. In this sense, ILS also benefits from the further
development of local search techniques and the increased availability of powerful
implementations based on very large neighborhoods [2].

AcceptanceCriterion. One interpretation of the search behavior of ILS is that of a
biased random walk in S�, the space of local optima. The acceptance criterion has a
crucial impact on the nature of this walk and, thus, the trade-off between exploration
and exploitation. As the two extremes, one can have the acceptance criterion that
only accepts improved solutions, leading to a search that can be characterized as
a randomized iterative improvement algorithm in S�. On the other extreme is the
acceptance criterion that accepts any new solution independent of its quality, leading
to a random walk in S�. Clearly, there are many intermediate choices between
these extremes, and various have been explored in the literature. One example is
the Metropolis condition [85], which accepts a new, worse solution s�0 with a
probability expff ..s�/ � f .s�0//=T g, where T is a parameter; a better or equal
quality solution is accepted always. The parameter T may be left fixed throughout
a run of ILS or be varied as done in simulated annealing.

Various other choices have been made such as combining short random walks
with occasional backtracks to the best candidate solution found so far [22], resulting
in a specific usage of the search history within the acceptance criterion. Another
simple example for the usage of the search history in the acceptance criterion is the
occasional restart of the search from a new initial candidate solution, which can lead
to much improved algorithm behavior [103, 105].

If one is to reach high performance with an ILS algorithm, the interactions among
the components need to be taken into account. The two main interactions are the
following. First, the perturbation should complement the local search and ideally
introduce moves that cannot be easily done by the local search. This results in two
main advantages: (i) it is easier to avoid returning to the previous locally optimal
candidate solution, and (ii) the structure of the candidate solution may be changed
in a way that is not possible for the local search to do. Second, the acceptance
criterion and the perturbation should be well balanced. In fact, both components can
be biased toward a more explorative or more exploitative search behavior: large vs.
small perturbations or non-strict (random-walk) vs. strict (improvement) acceptance
criteria. Finding the right balance between intensification and diversification of the
search is one of the key issues in the design of any effective SLS algorithm, and one
advantage of ILS is that the impact specific choices of the algorithm components
have on this balance is rather easy to grasp. Thus, ILS is a method for which the
SLS algorithm engineering process [107] can follow a well-guided direction.
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Some Examples of Iterated Local Search Algorithms

We introduce example applications of ILS algorithms to well-known combinatorial
optimization problems, the traveling salesman problem (TSP), the quadratic assign-
ment problem (QAP), and the permutation flow-shop scheduling problem (PFSP).
Example implementations for these ILS algorithms are available from http://iridia.
ulb.ac.be/~stuetzle/Code.

TSP Example

Traveling salesman problem (TSP). The TSP is given as a graph G D .N; E/ where
N is the set of n D jN j nodes and E is the set of edges that fully connects the nodes.
To each edge .i; j / is associated a distance dij . Here we assume that the distance matrix
is symmetric, that is, we have dij D dji for all .i; j / 2 E; this type of TSP instances
are called symmetric and are among the most widely studied types of TSP instances. The
objective in the TSP is to determine a Hamiltonian cycle of minimal length. Such a cycle
can be represented by a permutation � D h�.1/; : : : ; �.n/i, where �.i/ is the node index
at position i . The objective function to be minimized is

min
�2S

d�.n/�.1/ C

n�1X

iD1

d�.i/�.iC1/ (1)

where S is the search space consisting of the set of all permutations.

The TSP is one of the most famous examples of ILS applications, which is
due to the important role it plays in the historical development of the method
[10, 11, 60, 79] and due to the very high performance ILS algorithms have reached
for the TSP [3, 4, 49, 50, 61].

A basic ILS algorithm for the TSP could be the following. The initial candidate
solution is generated by a constructive heuristic such as the nearest neighbor
heuristic or the greedy heuristic. For the local search, a first-improvement method
in a k-edge-exchange neighborhood (typically, k equal two or three) is used.
The perturbation is implemented by the so-called double-bridge move, which is
illustrated in Fig. 2; the double-bridge move removes four edges and replaces them
with four other edges so that in the schematic view of the move, the characteristic
double bridge is formed. The acceptance criterion forces the cost to decrease, that
is, only better-quality candidate solutions are accepted.

Such a basic ILS algorithm for the TSP reaches high-quality tours, but its
performance can be improved by alternative choices for the components. ILS
algorithms for the TSP usually benefit from a local search with better performance.
For example, by replacing the local search algorithm in the two- or three-edge-
exchange neighborhood with the Lin-Kernighan heuristic [70], better performance
is usually achieved. It is interesting to note that the double-bridge move was
considered within the Lin-Kernighan heuristic, but many implementations of it
did not implement it. It is a type of move that cannot be easily achieved by a
concatenation of moves in smaller neighborhoods or by the way complex moves in

http://iridia.ulb.ac.be/~stuetzle/Code
http://iridia.ulb.ac.be/~stuetzle/Code
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Fig. 2 Schematic view of the
double-bridge move. Four
edges (continuous, red lines)
are removed from the current
tour, and the four remaining
tour segments are
reconnected as shown by the
dashed line in the schematic
view of the move

the Lin-Kernighan heuristic are generated, and, thus, it is complementary to standard
local search implementations. A main advantage of the double-bridge move is that it
only leads to a small increase of the tour length as only four edges are replaced and
the subsequent local search typically needs only few improvement steps to reach
a new local optimum. In practice, the double-bridge move has found to be rather
effective even for very large-sized TSP instances with many thousands or millions
of nodes [4, 61].

For speeding-up the search, direct access to the local search through the usage of
the well-known don’t look bit technique [14] was found to be useful. The don’t look
bit technique associates one such bit to each node in a TSP instance and starts a local
search centered around a node for an improving move only if the don’t look bit is set
to one (turned on). If this local search is not successful, the don’t look bit is turned
off by setting it to zero. If a move improves a candidate solution, all end points of
the edges involved will have set their don’t look bit to one again. This technique
leads to a particularly significant speedup, when integrated with the perturbation
by re-setting only don’t look bits to one for nodes that are directly affected by the
perturbation [61] or additionally to some close-by ones [103].

An acceptance criterion that allows only moves to better or equal length tours
leads to a strong intensification behavior of the search. While this results in very
good performance for short and medium run-times, for longer ILS runs, a stronger
diversification through, say, additional restarts improves algorithm performance
[103, 105].

QAP Example

Quadratic assignment problem (QAP). In the QAP we are given two matrices F and D

corresponding to some kind of flow exchanged between items and a distance matrix between
possible locations of the items, respectively. Let fij be the flow exchanged between items i

and j and dkl be the distance between locations k and l . The task in the QAP is to assign
items to locations so that the cost given by the sum of flows times the associated distances is
minimized. Assuming the number of items is equal to the number of locations, a candidate
solution to the QAP can be represented by a permutation � , where �.i/ gives the location
to which item i is assigned. The objective function to be minimized for the QAP can then
be written as
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f .�/ D

nX

iD1

mX

j D1

fij � d�.i/�.j / (2)

Similar to the TSP, the QAP has played a central role in combinatorial optimiza-
tion. Differently from the TSP, for which optimal solutions can be found for very
large instances (the largest being solved optimally having 85,900 nodes [5]), QAP
instances can only be solved optimally for relatively small instance sizes of around
30; there are only few exceptions for very particularly structured instances for which
an instance of size 128 could be solved [34].

A basic ILS algorithm for the QAP can be implemented as follows. An initial
candidate solution for the QAP can be generated uniformly at random, as no
constructive algorithms generate generally very high-quality candidate solutions.
As local search algorithm, an iterative improvement algorithm in the two-exchange
neighborhood, where at each step the locations of two items are exchanged, is used.
More formally, two candidate solutions � and � 0 are neighbored if for exactly one
index pair .i; j / we have � 0.i/ D �.j / and � 0.j / D �.i/ and for all other indices
l ¤ i; j we have � 0.l/ D �.l/. As a perturbation, a random move in a k-exchange
neighborhood, k > 2, can be chosen and, as acceptance criterion, one accepts only
better-quality candidate solutions.

Such a straightforward ILS version was tested by Stützle [103] and Lourenço
et al. [74], and it was shown that its relative performance with respect to other
choices of the main ILS components depended on the specific type of QAP
instances. In fact, the specific structure of QAP instances as identified by different
distributions of the entries of the flow or the distance matrices can induce widely
different behavior [110]. For example, the benchmark instances that have been
generated randomly assuming uniform distributions of the matrix entries result in
landscapes with many local optima that are spread across the whole search space.
Such a landscape requires strong search diversification, which can be achieved
in ILS by using an acceptance criterion that accepts every new local optimum
independently of its quality and helps to improve the performance on such instances
even when using only very small perturbations [74, 104]. Differently, for randomly
generated instances that resemble real-life instances, which exchange most flow
among relatively few items, accepting only better-quality candidate solutions
combined with some occasional restarts was found to result in high performance
[74, 104]. Further studies on the QAP have shown that plain ILS algorithms reach
very high performance for a variety of QAP instances and that population-based
extensions of ILS algorithms are state of the art for tackling various classes of QAP
instances [104].

Permutation Flow-Shop Scheduling Example

Permutation flow-shop scheduling problem (PFSP). The PFSP arises in many practical
situations as it is common to have production lines where machines are disposed in series.
In the PFSP are given n jobs J1; J2; : : : Jn, each consisting of m operations that are to
be executed on m distinct machines M1; M2; : : : ; Mm. Each job needs to be processed on
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every machine and all jobs pass through the machines in the same machine order, that is,
first on machine M1, next on machine M2, and so on until machine Mm. The non-negative,
known and deterministic processing time of job Ji on machine Mj is denoted by pij . The
PFSP enforces that all jobs are processed on every machine in the same order; therefore,
a permutation of the job indices is enough to define the processing sequence. In the basic
PFSP, one assumes that jobs are available for processing at time zero, pre-emption is not
allowed, each machine can process only one job at a time and each job can be processed
by at most one machine at a time, and that the capacity of buffers between machines is
unlimited. A common objective is to minimize the completion time of the last job in the
permutation, also known as makespan (Cmax).

The PFSP with the makespan objective is one of the most widely studied
scheduling problems with hundreds of papers published; for reviews on it, see
[33, 35, 48, 98]. Furthermore, it is the basis of many other variants and extensions.

A first ILS algorithm for this problem has been proposed by Stützle [102]. It used
the NEH heuristic [92] to generate an initial candidate solution. The NEH heuristic
is a state-of-the-art constructive method for the PFSP with some recent variants
being proposed only in 2014 [32]. It is a heuristic that builds a schedule by inserting
at each step a next job in a position of the partial schedule where it least increases
the objective function value. Using the speedup techniques proposed by Taillard
[109], the NEH heuristic has a computational complexity of O.n2m/. As an iterative
improvement method in the ILS algorithm, the insert neighborhood was used, which
exploits the same speedups as implemented for NEH. The insert neighborhood
consists of all sequences that can be obtained by removing a job at position i

and inserting it in all other possible positions; this results in a neighborhood of
size n � .n � 1/. If one removes the job with index �.i/ from position i and
inserts it at a position j , for i < j , one obtains � 0 D .�.1/; : : : �.i � 1/;

�.i C 1/; : : : �.j /; �.i/; �.j C 1/; : : : ; �.n// and for i > j one obtains
� 0 D .�.1/; : : : �.j � 1/; �.i/; �.j /; : : : �.i � 1/; �.i C 1/; : : : ; �.n//. The local
search implemented in Stützle [102] used a kind of first-improvement neighborhood
scan. It removes a job Ji from the sequence and checks all n � 1 possible insertion
positions; if several result in improvements, the position is taken that leads to
the largest reduction in the makespan. One scan of the neighborhood consists in
repetitions of this process for all possible positions i . The neighborhood scans are
then repeated until a local optimum with respect to the insert neighborhood is found.
As the perturbation, a mix of two contiguous swap moves, and one interchange move
was proposed. In a contiguous swap move, a permutation � D .�.1/; : : : ; �.i/;

�.i C 1/; : : : ; �.n// is modified to � 0 D .�.1/; : : : ; �.i C 1/; �.i/; : : : ; �.n//;
in an interchange-move � D .�.1/; : : : ; �.i/; : : : ; �.j /; : : : ; �.n// is modified to
� 0 D .�.1/ ; : : : ; �.j /; : : : ; �.i/; : : : ; �.n//. A further restriction was imposed on
the positions involved in the interchange move by enforcing ji �j j � maxfn=5; 30g

to avoid too strong disruptions. Finally, as the acceptance criterion, the Metropolis
condition with a fixed temperature was suggested.

The performance of this ILS algorithm was found to be superior to the best meth-
ods for the PFSP published until then. The excellent performance was confirmed in
the extensive study of heuristics for the PFSP under makespan minimization by Ruiz
and Maroto [98], where it was found to be the top performing heuristic.
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Historical Development of Iterated Local Search

ILS has a long history, and the ideas underlying the method can be traced back
to several approaches. The most influential have been the early developments for
tackling the TSP. Baum [10, 11] has proposed an algorithm he called iterated
descent, which used an iterative improvement method based on two-exchanges as
the local search and random three-exchanges as the perturbation and forced the tour
length to decrease. His results were not very impressive, but inspired Martin et al.
[79] to propose their large-stop Markov chains (LSMC) algorithm. The name of this
algorithm stems from the acceptance criterion, which corresponds to the Metropolis
condition. In first instantiations, LSMC used a three-exchange neighborhood in
the local search but was later extended to use the Lin-Kernighan heuristic. One
contribution of the LSMC algorithm was the introduction of the double-bridge
move as the perturbation, which is used in many other ILS algorithms for the
TSP. The results with the LSMC algorithm gave a major leap in the performance
of TSP heuristics. Further refinements of this approach, in particular, by Johnson
[60] and Johnson and McGeoch [61] on one side and Applegate et al. [3] on
the other side have defined for a long time the state-of-the-art TSP heuristics.
Differences in these implementations concern, on the high-level ILS side, mainly
the choices for the acceptance criteria and different choices of the perturbation
operators, but decisive are also implementation details of the local search and the
data structures used for tackling large instances. Noteworthy is the experimental
study by Applegate et al. [4] who performed tests on very large TSP instances
with up to 25 million cities and the more recent work of Merz and Huhse [84],
which is particularly well suited for very large TSP instances under severe time
constraints.

In a number of papers, specific choices for ILS algorithms for the TSP have been
considered and analyzed. Codenotti et al. [21] study complex perturbation schemes
based on data perturbation. Hong et al. [51] examined the impact the perturbation
strength has on ILS performance, indicating that for some instances perturbations
larger than those introduced by the double-bridge move are beneficial; they also
studied population-based extensions of ILS algorithms for the TSP. Katayama and
Narihisa [63] proposed to use candidate solutions different from the incumbent
one to generate directed perturbations and showed that this idea can lead to very
competitive results when compared to an iterated Lin-Kernighan algorithm. Stützle
[103] and Stützle and Hoos [105] have analyzed the run-time behavior of ILS
algorithms for the TSP, showing that the most common implementations show
stagnation behavior for long runs. As a simple remedy to this behavior, they have
proposed occasional restarts of the ILS algorithms [103,105]. Finally, there are some
approaches for TSP solving that in their iterated version do not follow necessarily
the main ILS steps but are, say, inspired from it. The most notable example is
probably Helsgaun’s iterated version of his Lin-Kernighan implementation [49].
It generates new starting candidate solution through a constructive mechanism,
which is strongly biased toward generating a candidate solution that is close to the
incumbent candidate solution.
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The ILS principle has been discovered before its first applications to the TSP.
Baxter [12] proposed an algorithm for a location problem that made repeated
use of a data perturbation technique to create new starting solutions for a local
search algorithm. However, it appears that these initial approaches have not been
the main inspiring source for other ILS approaches and that this work has been
overlooked for quite some time. In fact, most early ILS adaptations to problems
other than the TSP seem to have been inspired by the proposals of ILS algorithms
for the TSP.

Among the first problems other than TSP tackled by ILS is graph bi-partitioning.
Martin and Otto [77, 78] reported for specific types of graphs better perfor-
mance with their ILS algorithm than for simulated annealing heuristics. Many
other early applications of ILS algorithms have been for scheduling problems.
Lourenço [73] presented an innovative idea that combined ILS with exact al-
gorithms for job-shop scheduling. In her approach, the exact algorithm is used
to solve exactly subproblems on one or two machines, keeping the sequence
on other machines fixed; the so modified candidate solution is then used as the
perturbed one.

It is important to stress that ILS algorithms have been published and made
popular under a variety of different names, ranging from problem or algorithm
specific names such as iterated Lin-Kernighan [60,61] or chained Lin-Kernighan [4]
to generic names such as large-step Markov chains [79], chained local optimization
[78], iterated descent [10, 11], iterated hill-climbing [90], or others. In the local
search template proposed by Vaessens et al. [114], ILS was referred to as a
multilevel point-based local search. Even today, apparent variations of the ideas
underlying ILS are published under new names such as breakout local search [13],
creating possibly confusion with the earlier proposed breakout method [88], which
relies on a different mechanism for escaping from local optima. A review and
unification of the various papers published in the literature has been proposed
by Lourenço et al. [74] in their 2002 book chapter on ILS. This chapter has
led to a more coherent view of the method, has discussed the main ingredients
of ILS algorithms, and has shown trade-offs in the design of effective ILS
algorithms.

Relationship of ILS to : : :

ILS, being a relatively old method, has a number of links to other well-known
methods, which we will shortly discuss in this section. We focus our discussion on
relationships to simple, hybrid, and population-based metaheuristics (or stochastic
local search methods), following the classification of Hoos and Stützle [53]. Within
this classification, ILS belongs to hybrid SLS methods, which can be characterized
as methods that interleave search steps in different neighborhoods or that combine
different types of procedures in an interleaved fashion. As such, most links of ILS
are within that group.
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: : : Simple SLS Methods

Simple SLS methods typically move within one type of neighborhood. They can be
seen as direct extensions of perturbative local searches that avoid local optima either
by occasionally accepting moves to worse candidate solutions or modifications of
the evaluation function during the search. Well-known examples for the former are
simulated annealing [20, 64] and tabu search [40], while a well-known example for
the latter is guided local search [118].

A first relation is that any of these methods may play the local search part within
an ILS algorithm, replacing simpler iterative improvement methods. While iterative
improvement methods do have a natural stopping condition, namely, hitting a local
optimum, for simple local search methods, in principle, arbitrary computation times
can be invested. This leads to the task of balancing the intensification obtained
through the simple SLS method and the diversification given through perturbation
steps and the acceptance criterion. A main task therefore for the algorithm designer
is to determine an appropriate computation time for the SLS method to obtain a
good trade-off between the computation time and solution quality.

Another relation is the usage of diversification measures in methods such as
tabu search. For example, the random shake-up ideas [38] are directly linked
to perturbations in ILS. The well-known reactive tabu search algorithms invoke
occasional sequences of random moves to provide a means for search diversification
[8], which can directly be seen as a random perturbation whose size is adjusted in
dependence of features of the search process. Several ideas from the area of tabu
search and, in particular, the memory usage explored there [40] may provide a
source of inspiration of how to improve ILS algorithms or to define schemes for
adapting parameters at run-time [9].

: : : Hybrid SLS Methods

Hybrid SLS methods combine more than one basic search strategy into an overall
method. For example, ILS combines typically one search strategy in the local search
with a different type of search strategy in the perturbation. From a high-level per-
spective, one point ILS has in common with many other hybrid SLS methods is that
it combines a local optimization with search steps oriented toward diversification.
These diversifying steps may be based on constructive or perturbative search steps.

Considering hybrid SLS methods that obtain diversification through constructive
procedures, the closest to ILS is the iterated greedy algorithm, if the latter uses a
local search phase. In iterated greedy methods, a new candidate solution is obtained
by removing from a complete candidate solution s 2 S some solution components,
obtaining a partial solution sp , from which in turn a solution construction process is
performed. While such iterated greedy algorithms may result in reasonable perfor-
mance without improving the newly constructed candidate solution by a local search
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phase, in many cases, an additional perturbative local search improves performance.
In that latter case, the destruction–construction cycle may be seen as a (directed)
perturbation in the ILS sense. Another link between the two methods is to see both
as creating an iterative process that in the ILS case iterates across local search ap-
plications and in the iterated greedy case iterates across applications of constructive
algorithms. A different perspective on the mechanism of iterated greedy algorithms
is taken by large neighborhood search techniques [101]. They consider also the
removal of solution components, but then the subsequent completion of the resulting
partial solution may be done with exact techniques, originally taken from constraint
programming, or also construcitve-type approaches. In any case, large neighbor-
hood search interprets the completion of a partial solution as the exploration of a
large neighborhood, hence the name of the method. In a sense, the application of one
iteration of LNS would correspond in ILS terms to one (complex) perturbation that
moves a solution s 2 S (typically a local optimum) to another complete candidate
solution s0 2 S . More details on iterated greedy and further related methods such as
large neighborhood search can be found in the chapter on this topic by Stützle and
Ruiz in this handbook. The use of constructive mechanisms to provide search diver-
sification also underlies greedy randomized adaptive search procedures (GRASP)
[31,96], which in their basic form create many independent starting points for a local
search through randomized greedy constructive searches. GRASP is clearly distinct
from the basic principle underlying ILS, as it does not create a biased walk in the
space of local optima. Later extensions of GRASP add various mechanisms with the
goal of making it more performing. In fact, some extensions reuse parts of candidate
solutions and, hence, move GRASP more toward mechanisms that underlie ILS; see
Resende and Ribeiro [96] for an overview of GRASP.

The hybrid SLS method that shares most similarities with ILS is (basic) variable
neighborhood search (VNS) [45,46,87]. VNS is based on the principle of changing
the neighborhood during the search to avoid getting trapped in local minima with
respect to one specific neighborhood. While the rationale of the main search
mechanism underlying VNS and ILS is rather different, many instantiations of
VNS, in particular those related to basic, skewed, or general VNS, can be seen
directly as specific instantiations of ILS algorithms. For example, in basic VNS, an
iterative improvement process is performed in the smallest neighborhood. Larger
neighborhoods are explored randomly, and this random exploration is interleaved
with the iterative improvement search in the smallest neighborhood. This loop
corresponds to the perturbation and local search steps in ILS algorithms, where
the main specificity of VNS is to modify the strength of the perturbation following
some fixed scheme in which the neighborhoods are explored: the scheme could be
in an increasing or decreasing order and additionally taking into account step sizes.
In early instantiations of a basic VNS, only candidate solutions that improve on
the incumbent candidate solution after the local search phase are accepted, while in
skewed VNS worse candidate solutions are accepted depending on how far the new
candidate solution is from the incumbent one. Finally, general VNS is a variation
of the basic VNS schemes, where the underlying local search can be a variable
neighborhood descent algorithm.



19 Iterated Local Search 595

: : : Population-Based SLS Methods

Population-based SLS methods are characterized by the use of a population of
candidate solutions to drive the search. As such, they are clearly distinct from
ILS, which is based on modifying a single search point. In addition, several
population-based search methods such as evolutionary algorithms [7] and ant colony
optimization [29] do not necessarily make use of local search algorithms. However,
several links exist. In fact, many population-based algorithms can profit from
the introduction of a local search phase as it was clearly shown for ant colony
optimization [29], for scatter search [41], and for many evolutionary algorithms
resulting in methods such as genetic (or evolutionary) local search [90, 112] or
memetic algorithms [89]. ILS as well as the population-based methods can in that
case be seen as sampling candidate solutions in the space of local optima.

ILS and memetic algorithms are linked by taking an extreme parameterization
of the latter, in particular, using a memetic algorithms with a population size of
one. In that case, the mutation operator takes over the role of the perturbation and
the selection scheme used for population replacement the role of the acceptance
criterion. The usage of only mutation to generate candidate solutions has been
called parthenogenetic algorithm [60]. In fact, even when using a population size
of more than one individual and excluding recombination operations, in the context
of memetic algorithms good performance results are reported for some problems
[83]; mutation-only candidate solution modifications are also often used in evolution
strategies.

Considering the usage of populations as a convenient means of providing search
space exploration, several authors have explored population-based variants of ILS
algorithms [51, 103, 104, 111]. The approaches proposed by Hong et al. [51] and
Stützle [103] maintain the usual perturbation scheme, applying perturbation at each
iteration to a single candidate solution. The usage of time-varying distance bounds
among the candidate solutions in the population as a specific diversity mechanism
was explored by Stützle [104], resulting in high solution quality for the quadratic
assignment problem. Thierens [111] uses the population to (i) perturb only solution
components in which pairs of candidate solutions differ, similar to what was done
in the genetic transformations proposed by Katayama and Narihisa [63], and (ii) to
reduce the neighborhood size during the local search.

Applications

This section summarizes some noteworthy applications of ILS in addition to those
mentioned in sections “Some Examples of Iterated Local Search Algorithms”
and “Historical Development of Iterated Local Search”. As the number of appli-
cations of ILS has strongly increased over the recent years, we do not give here an
exhaustive list but mainly refer to recent publications for illustrating the progress
of ILS. Here, we mention only papers where the authors have identified their
algorithms explicitly as ILS algorithms, even though a larger number of published
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algorithms would fit the framework of ILS without this being made explicit in the
respective papers.

Iterated Local Search for Routing Problems

Among the first explicit ILS algorithms for vehicle routing problems (VRPs) are
those proposed by Ibaraki et al. [58] and Hashimoto et al. [47]. In the first paper,
the authors tackle the VRP with time windows, where a dynamic programming
approach minimizes the penalties for time window violations. The ILS algorithm,
which used various neighborhoods in the local search, was shown to reach high
performance on instances with up to 1000 customers. Hashimoto et al. [47] tackle a
VRP with time windows and time-dependent travel times and costs. They introduce
various speedups and neighborhood restrictions and show the effectiveness of
their algorithm compared to previous proposals in the literature. Vaz Penna et al.
[117] consider a variant where the fleet of vehicles is heterogeneous, that is, it
consists of vehicles with different characteristics such as capacities. Melo Silva
et al. [82] consider a VRP where split deliveries are allowed, that is, a customer’s
demand may be satisfied by splitting deliveries across various vehicles or tours;
they report very high performance for their algorithm improving a large number of
benchmark instances. Palhazi Cuervo et al. [94] tackle the vehicle routing problems
with backhauls, where in addition to the consumers who get delivered from the
depot, there are also suppliers that send goods to the depot. The authors propose
a structurally simple ILS algorithm, where the main ingredient is a local search
algorithm that uses multiple neighborhoods and allows oscillations between feasible
and infeasible candidate solutions. Michallet et al. [86] consider a periodic VRP
with time windows under the consideration of malevolence acts, and the goal
becomes spreading the repeated visits to customers across their time windows. A
VRP with multiple, incompatible commodities and multiple trips per work day is
considered by Cattaruzza et al. [19]. They propose an effective ILS algorithm for
this problems, which is shown to perform better than previous approaches. Nguyen
et al. [93] consider a two-echelon location-routing problem, where two types of trips
arise. One type of trips serves from a main depot a number of subordinate depots,
which have to be located appropriately, and a second type of trips delivers goods
to customers from the subordinate depots. Vansteenwegen and Mateo [115] solve
a cyclic inventory routing problem for a single vehicle. The goal is to minimize
the costs of the distribution and the inventory costs at the customers. An efficient
ILS algorithm for this problem was shown to outperform previous approaches for
this problem. Laurent and Hao [68] considered a multiple depot vehicle scheduling
problem, which arises in public transport. Related to routing problems is the team
orienteering problem, which arises commonly as a problem faced by tourists when
planning their trips. Vansteenwegen et al. [116] have tackled a variant of this
problem, which considers time windows, with an effective ILS algorithm that could
reach high solution quality in relatively short computation times and improve, for
31 benchmark instances, the best candidate solutions known at that time.
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Iterated Local Search for Scheduling Problems

Scheduling problems have been among the first problems tackled by ILS algorithms,
and by now a large number of high-performing ILS algorithms have been proposed
for many variants of scheduling problems including single and parallel machine
scheduling problems as well as scheduling problems of flow- and job-shop type.

The first applications of ILS to single- and parallel-machine scheduling problems
are due to Brucker et al. [16, 17]; they have used two neighborhood structures that
are nested, where the outer neighborhood essentially is used for perturbation. ILS
algorithms have reached particularly excellent results for the well-known single-
machine total weighted tardiness problem (SMTWTP), for which the iterated
dynasearch algorithms by Congram et al. [22] and the extension thereof by Grosso
et al. [43] are state-of-the-art algorithms. den Besten et al. [26] have applied an ILS
with a variable neighborhood descent local search also to the SMTWTP. Later ILS
algorithms have been applied to the SMTWTP with additional sequence-dependent
setup times in two independent works, reaching high performance when compared
to other heuristics [108, 120]. A recent application of ILS to the parallel-machine
total weighted tardiness problem has been presented by Della Croce et al. [25].
They use generalized interchange moves, ideas from dynasearch, and new large-
scale machine-based neighborhoods for the local search to improve over the current
state of the art.

ILS algorithms have been proposed to tackle a variety of flow-shop scheduling
problems, starting with the best-known variant that considers the minimization
of the makespan. The first ILS algorithm for this problem [102] has already
been described in section “Permutation Flow-Shop Scheduling Example”. Some
issues in the design of ILS algorithms for the permutation flow-shop problem
have been considered by Juan et al. [62]. ILS algorithms have been adapted by
other researchers to variants of the flow-shop scheduling problem and shown
high performance for the flow-shop problem with flowtime objective [27]. Later,
the authors of [27] further improve their ILS algorithm by including a multi-
restart perturbation strategy, where the ILS is continued from the best of a set of
perturbations obtained from a local optimum [28]. State-of-the-art results for the
same flowtime objective are obtained by [95] with ILS variants, including versions
that entail populations. ILS has been used to solve more complex variants of the
flow-shop problem. Yang et al. [121] presented an ILS algorithm for a flow-shop
variant with several stages in series, where at each stage a number of machines is
available for processing the jobs. Ribas et al. [97] deal with the blocking flow-shop
problem and propose an ILS procedure where the local search combines moves in
different neighborhoods as does the perturbation step. M’Hallah [91] tackles the
flow-shop scheduling problem with the objective of minimizing the earliness and
tardiness, where due dates are distinct. An ILS algorithm is presented, which uses
a variable neighborhood descent in the local search phase. Geiger [36] proposes
the usage of an ILS algorithm for tackling the multi-objective flow-shop scheduling
problem, obtaining promising solution quality despite the simplicity of the proposed
approach. Finally, complex hybrid flexible flowline problems are studied by [113],
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where ILS approaches are intermingled with other schemes to obtain high-quality
candidate solutions for scheduling problems that are very close to real settings found
at production floors.

As mentioned before, the first scheduling problem tackled by ILS was the well-
known job-shop scheduling problem [73]. The ILS algorithm by Kreipl [66] for the
total weighted tardiness job-shop scheduling problem reached high performance,
being surpassed only quite some time later by an evolutionary algorithm that
integrated an ILS algorithm as the local search operator [30]. An ILS algorithm is
underlying the generic approach proposed by Mati et al. [81], which tackles job-
shop problems with regular objectives, that is, objectives whose values increase
along with an increase of the completion times of the jobs. The proposed ILS
algorithm, which uses a perturbation with a size chosen uniformly at random and an
acceptance criterion that accepts every new candidate solution, was shown to reach
very high performance for a number of criteria, including weighted tardiness and
weighted completion time.

Iterated Local Search for Other Problems

ILS algorithms have been applied to tackle many other problems, illustrating the
wide range of possible applications of the ILS principle. Corte and Sörensen [24]
use an ILS algorithm for designing a water distribution network, obtaining excellent
computational results despite the fact that the proposed algorithm has a much
simpler structure than many of the other proposed methods for the same task.
Grosso et al. [44] propose an ILS algorithms for the maximin Latin hypercube
design problem, which consists in assigning positions to n points in a k-dimensional
grid such that no two points have a same coordinate and the distance between the
closest pair of points is maximized. A possibility to improve the state estimation
for the monitoring of power systems is to insert power measure units into the
network at appropriate positions. Hurtgen and Maun [54] propose an ILS algorithm
for minimizing the size of the configuration to reach full observability of the
network. While virtually all ILS applications have been to deterministic problems,
Grasas et al. [42] consider adaptations for ILS to integrate simulation in order to
be able to tackle stochastic combinatorial optimization problems. The approach is
illustrated with some example application of the proposed SimILS framework. The
integration of information from lower bounding techniques into an ILS algorithm is
considered by Buson et al. [18] for solving the fixed-charge transportation problem,
which extends the transportation problem by the consideration of fixed costs for
sending a flow from some origin to a destination. The reduced costs from the
lower bounding are used to guide a restart phase of the algorithm. Lai and Hao
[67] apply ILS to obtain high-quality candidate solutions to the maximally diverse
grouping problem, where the goal is to partition the vertices of an edge-weighted
and undirected complete graph under some constraints on the group size. Wolf and
Merz [119] develop an ILS algorithm to find a symmetric connectivity topology with
minimum power consumption in wireless ad hoc networks. Benchmark results on



19 Iterated Local Search 599

large instances with up to 1000 nodes show that their algorithm outperforms other
heuristics that were previously used to solve this problem. ILS has been applied to
image analysis tasks and Cordón and Damas [23] applied it to image registration,
obtaining promising initial results. Imamichi et al. [59] apply ILS as a method to
improve the placement of irregular polygons in a rectangular surface with the goal
of minimizing, for a fixed width, the length of the container so that no polygon
overlaps with any other or protrudes the container. The proposed approach allows
overlaps but tries to minimize them using nonlinear programming methods and
swaps between polygons. Few papers have considered the adoption of the ideas
underlying ILS for tackling continuous optimization problems. Kramer [65] has
explored a simple continuous optimization algorithm, which embedded Powell’s
methods into an ILS for continuous optimization. Liao and Stützle [69] use ILS
as one of the component algorithms in their hybrid, competition-based approach
for continuous optimization. This approach decides in a preliminary competition
phase which of two continuous optimizers, an ILS algorithm or IPOP-CMAES [6]
to execute and then, in a second phase, continues with the execution of the winning
algorithm. This approach was a winner of the CEC 2013 benchmark competition
for real-parameter optimization.

Conclusions

In the initial phases of metaheuristic research, many efforts were dedicated toward
developing and refining new metaheuristic methods and on studying their perfor-
mance and behavior. As such, the focus was on rather pure applications of the
respective methods to tackle computationally hard problems. Iterated local search
contributed by relying on a clear principle that is easy to identify and that leads
usually to high-performing algorithms. In addition, ILS algorithms are relatively
intuitive to design and at the same time malleable. Therefore, iterated local search
served often as a basis for a larger algorithm engineering effort if high-performing
heuristics are desired. This approach was very successful, as shown by the various
problems for which ILS algorithms have been or still are state of the art. In later
research efforts in the metaheuristics area, often hybrid methods were proposed
that mix in one algorithm concepts from different principles to derive effective
algorithms [15, 76]. Even if this trend somehow blurs the differences behind the
methods, it is nevertheless important to have methods that rely on clear principles
and to have knowledge of their particular strengths, which can be exploited in the
design of hybrid methods.

The research in heuristic search methodologies and metaheuristics, in particular,
has now reached a mature state, and fundamentally new ideas appear more and more
rarely. Within this context, ILS has a clear role as one of the main methods that offers
an excellent trade-off between simplicity and flexibility. As future trends we expect
on one side that the number of applications of ILS increases further, and that more
complex problems and also non-combinatorial problems may be tackled by it. On
the other side, as the development of effective heuristic algorithms is becoming
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increasingly more streamlined, we expect that the clear principles underlying
ILS support well a sound algorithm engineering effort. While traditionally such
an algorithm engineering effort relied in part on the manual configuration and
tuning of the algorithms, over the recent years, the advent of automatic algorithm
configuration tools [52, 106] such as ParamILS [56], SMAC [57], or irace [71, 72]
has helped to alleviate the algorithm designer from the manual algorithm design
and parameter tuning tasks. In fact, we foresee that in the future, the development of
effective ILS algorithms and, more in general, of any other metaheuristic algorithms
will be strongly based on the exploitation of automatic algorithm configuration
techniques.

Cross-References
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the difficulty of developing high-performance universal heuristics by encourag-
ing the exploitation of multiple heuristics acting in concert, making use of all
available sources of information for a problem. This approach has resulted in
a rich arsenal of heuristic algorithms and metaheuristic frameworks for many
problems. This chapter discusses the philosophy of the memetic paradigm, lays
out the structure of a memetic algorithm, develops several example algorithms,
surveys recent work in the field, and discusses the possible future directions of
memetic algorithms.

Keywords
Evolutionary algorithms � Hybridization � Local search � Memetic
computing � Metaheuristics

Introduction

The effectiveness and efficiency of (meta)heuristics – and memetic algorithms
which may be viewed as particularly good heuristics in this sense – rests upon
their ability to explore the solution space thoroughly while avoiding exhaustive
or near-exhaustive searching. If polynomial-time computability is taken as an
approximation of tractability, then a polynomial-time algorithm can be viewed as
a very clever search procedure; in these cases there is a small search space, or
the search space can be reduced drastically. In dealing with intractable problems
however, reducing the search space to a reasonable size is a much more difficult task.
Most central is the problem of local versus global improvement; an improvement to
a solution does not give any guarantee of movement toward the optimum. Actually,
depending upon the problem under consideration, a local improvement may be a
move away from the global optimum (hence the notion of deception in search
algorithms [265]), or at the very least the solution may be getting closer to being
trapped in a nonoptimal configuration for which no simple modification can lead to
an improvement (i.e., a local optimum).

Thus, many (meta)heuristic methods include techniques for allowing non-
improving alterations to a solution or for nonlocal moves across the search space
in order to be able to escape from local optima [28]. Perhaps the most archetypical
example of such a metaheuristic is the genetic algorithm (GA) [99, 110]: inspired
by the principles of natural evolution, GAs maintain a population (i.e., a multiset)
of solutions that are subject to successive phases of selection, reproduction (via
recombination and mutation), and replacement. The use of a population of solutions
provides a better chance of avoiding local optima than maintaining a single solution:
on one hand, the search is driven by operators that (1) allow the search to take non-
improving steps, most notably in the case of mutations, and (2) allow the search to
move to significantly different portions of the search space, particularly by virtue
of recombination. On the other hand, selection and replacement typically work
on a global (population-wise) scale, meaning that non-improving solutions have
a chance of persisting for a nontrivial amount of time, hence allowing escape from
local optima. However, although this heuristic structure has proven quite effective, it



20 Memetic Algorithms 609

relies almost entirely upon recombination mechanisms to improve solution quality,
and evolutionary processes are slow. In particular, they are also less capable of fine-
tuning solutions, that is, the progress toward a fully optimized solution once the
algorithm has located its basin of attraction (i.e., the region of the search space from
which a series of small – local – improvements can lead to a certain local optimum;
see [131,224]) is often sluggish. This is precisely in contrast to local search (single-
solution or trajectory-based) techniques which can readily locate local optima (and
hence are more sensitive to them).

To address this weakness, researchers began developing hybridized metaheuris-
tics [29, 31], that is, metaheuristics which combine ideas from different search
paradigms and/or different algorithms altogether. The underlying idea in such
approaches is obviously trying to achieve some synergetic behavior whereby the
deficiencies of a certain search technique are compensated by the combination with
other techniques and their advantages are boosted due to this very same combi-
nation. This strict interpretation of the term hybrid has been broadened with time
to encompass all forms of non-blind (i.e., not domain-independent) metaheuristics.
Under this broad interpretation, hybridization is the process of augmenting a generic
(problem-independent) metaheuristic with problem (or problem class, i.e., domain)
knowledge. Since this augmentation is often achieved via the blend of different
metaheuristic components, both interpretations are equivalent in most situations.
The broad interpretation has, in any case, the advantage of fitting better into
theoretical results such as those of Hart and Belew [107] and – most conspicuously –
those of Wolpert and Macready [267] in the so-called no-free-lunch theorem, which
states that search algorithms perform strictly in accordance with the amount and
quality of the problem knowledge they incorporate. While these results spurred
controversy in their time and have been refined [69, 70], the bottom line still holds.

Memetic algorithms (MAs) championed this philosophy. The denomination
memetic algorithm was coined in [175] to characterize and codify these hybrid
approaches. The term “memetic” was developed from Dawkin’s [62] notion of a
“meme” (from the Ancient Greek μ́ιμημα, meaning “imitated thing”) as a unit of
cultural inheritance (and hence cultural evolution) – the cultural analogue of a gene.
The use of the term meme was intended to capture the fact that information traits
in human culture are subject to periods of lifetime learning and therefore they are
different when transmitted to what they were when first acquired. This bears a strong
resemblance with the Lamarckian model of evolution, whereby traits acquired
during the lifetime of an individual are transmitted to its offspring. It is therefore not
surprising that MAs are sometimes disguised under other denominations featuring
the terms “Lamarckian” or “hybrid.”

While the initial conception of memetic search did not include the idea of
GAs or evolutionary algorithms (EAs) whatsoever [178], it turned out that these
techniques were ideal recipients for exploiting the metaphor of MAs, namely, having
a collection of “agents” alternating periods of self-improvement with phases of
cooperation and competition, cf. [177]. Indeed, early MAs mixed GAs and EAs
with simulated annealing and tabu search [180, 198], eventually developing the
idea that MAs are EAs endowed with some kind of local search (LS) technique,
leading to the restrictive definition MA = EA + LS [218]. Note however that the
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Algorithm 1: A generic memetic algorithm

1: parfor j WD 1 to � do F Initialise population Pop of search agents
2: popi WD new SearchAgent
3: end parfor
4: repeat
5: parfor j WD 1 to � do F individual learning phase
6: popi .learn()
7: end parfor
8: Pop.cooperate() F cooperation phase
9: Pop.compete() F competition phase

10: until Termination condition is true.

central concept of MAs is not to tie ourselves to a particular heuristic approach
or metaphor, but to provide a coherent structure for employing several heuristics
(including exact methods [30]) that deploy complementary heuristics exploiting
all available knowledge. Thus EA + LS � MA is a consequence of this broader
definition of MAs, cf. [50]. The next section will explore in more detail the structure
of an MA with particular emphasis on the classical characterization of the paradigm.

Structure of a Memetic Algorithm

As mentioned above, early definitions of MAs envisioned the paradigm as a prag-
matic integration of ideas from different metaheuristics. These were orchestrated
in terms of a collection of search agents carrying out individual explorations (i.e.,
lifetime learning) of the space of solutions and engaging in periodic phases of
cooperation and competition [198]. An abstract formulation of such an approach
is provided in Algorithm 1. This pseudocode matches the initial conception of MAs
as an inherently parallel approach whereby a collection of local searchers (simulated
annealing in early developments [178]) run either concurrently or physically in
parallel and establish synchronization points in which information was exchanged
among them. This said, this depiction of MAs is still generic enough to encompass
most actual incarnations of the paradigm as shown later, as it captures the essential
feature of MAs, namely, the carefully crafted interplay between global (population-
based) and local (individual-based) search. It must be noted that the terms global
and local are used in connection to the mechanics of the search rather than to the
ability of eventually (or asymptotically) finding the global optimum. It is certainly
the case that many local search approaches (simulated annealing, tabu search,
etc.) are capable of escaping from local optima and navigate the search space in
order to find the global optimum. The distinctive feature of these techniques (as
opposed to, e.g., genetic algorithms) is that they do this following a trajectory-based
approach.
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Skeleton of a Classical Memetic Algorithm

Following early works in which the population-based aspects of MAs, namely, the
collection of agents and the synchronized stages of cooperation and competition,
were captured by a genetic algorithm [180], the classical memetic model coalesced.
The basic skeleton of such an MA is relatively straightforward, adding little addi-
tional complexity beyond that of a GA. Algorithm 2 gives a pseudocode sketch of
the salient structure, using local search as a placeholder for any particular individual
improvement heuristic including, for instance, a complete exact algorithm like
branch and bound, and others that guarantee optimality of the final solution obtained
when they stop. Although a small structural change to a typical GA, the inclusion of
the individual improvement phase can dramatically alter its performance. This mix
allows the metaheuristic to benefit from the solution diversity engendered by the
evolutionary approach, but to avoid the lethargic pace of improvement via more
directed optimization: instead of relying random processes subjected to fitness-
based selection alone, each individual solution is optimized before the evolutionary
mechanism is applied, significantly increasing the rate at which individual solutions
converge to an optima.

Algorithm 2: A local-search based memetic algorithm

1: Pop WD new Solution [popsize] F Create population Pop

2: for i 2 Pop do
3: i .initialise() F Generate initial solution
4: i .local-search() F Individual improvement. Comprises solution evaluation
5: end for
6: repeat
7: for j WD 1 to #recombinations do F Recombination phase
8: P arents WD Pop.select(numparents) F Select parent set

P arents � Pop

9: c WD P arents.recombine() F Recombine parents to create child c

10: c.local-search()
11: Pop.update(c) F Inserts new solution in the population
12: end for
13: for j WD 1 to #mutat ions do F Mutation phase
14: i WD Pop.select(1);
15: im WD i .mutate() F Mutate solution i

16: im.local-search()
17: Pop.update(im)
18: end for
19: if Pop.converged() then F Refresh population upon convergence
20: Pop.restart()
21: end if
22: until Termination condition is true.
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The structure of an MA is quite flexible, and the performance of the implemen-
tation, both in terms of solution quality and speed, can be affected by a number
of factors. As an evolutionary, population-based metaheuristic, the typical issues
regarding choice and implementation of mutation and recombination operators
are inherited from the GA paradigm. For those familiar with GAs however, it
should be readily apparent that the individual improvement phase is most likely
to be the computational bottleneck – the improvement of every individual and the
subsequence evaluation of every individual are inherently expensive simply because
they are done for every individual (as shown in [167], it can easily take up to
95% of the computational cost of the algorithm). The tradeoff is that with a good
choice of individual improvement heuristic, far fewer generations of mutation and
recombination are required. The careful reader will also notice that the local search
procedure (and, typically, any individual improvement heuristic) is highly amenable
to parallelization. This helps to ameliorate the cost of the individual improvement,
but more importantly lends the MA approach a high degree of scalability.

From the point of view of the different components into which a classical MA
can be dissected, all of which encapsulate some portion of problem knowledge.
Consider, for instance, recombination. This is the component that captures most ap-
propriately the idea of agent cooperation. Such a cooperation is typically established
between a pair of agents but can in general involve an arbitrary number of parents
[76] (notice nevertheless that in this case some forms of heuristic recombination can
be very complex [53]). The generic idea of a knowledge-augmented recombination
operator is to combine, in an intelligent way, pieces of information contained in
the parents. How these pieces are defined is a problem-dependent issue that arises
from the issue of representation in EAs. The underlying objective of an appropriate
representation would be to have solutions described by some structured collection
of objects whose values truly capture solution features of relevance (i.e., ultimately
responsible for determining whether a solution is good or not). Even from the
beginnings of MAs, the importance of developing a suitable representation – in
which evolution of the representation reflects the correlation of elements in the
fitness landscape – was identified [175]. This is a substantial topic for which the
interested reader is referred to, e.g., [226]. Focusing on the smart manipulation
of these information units (however they are defined), that is, processing them in
a problem-specific way instead of using domain-independent templates (such as
those in [217]), the goal is picking the right combination of such units from either
parent. Of course, this is easier said than done (and in fact, doing it is in general
provably hard for arbitrary problems and/or definitions of right combination –
see the discussion on the polynomial merger complexity class in [177, 179]), but
there are numerous heuristic ideas in the literature that can be used to this end.
In many cases – and following design advice already present in classical texts of
hybridization pioneers, e.g., [61] – these ideas are based on the use of problem-
specific heuristics such as greedy algorithms [132,185], backtracking [48], dynamic
programming [123], or branch and bound [55], just to mention a few.

Mutation is another classical operator, well known for its role of maintaining a
continuous supply of genetic diversity that can be subsequently exploited by the



20 Memetic Algorithms 613

remaining operators. In certain EA models, such as evolutionary programming [86],
it actually bears sole responsibility for driving the search. Note that while this
latter philosophy can be also used in an MA context – see section “An Example
Memetic Algorithm for WEIGHTED CONSTRAINT SATISFACTION PROBLEMS” –
it is typically the case that MAs use sophisticated recombination operators such as
those described before. Thus, the criticism of recombination being just a disguised
form of macromutation would not apply to them. Moreover, due to the presence
of a local search stage in the main evolutionary cycle, one has to be careful to
pick a mutation operator whose effects on solutions cannot be trivially undone by
the local search, since that would defeat the very purpose of mutation. Following
this line, in some cases there are MAs that even refrain from using mutation, e.g.,
[163, 262]. While such a decision could be further vindicated by the fact that MAs
usually feature a population-restart procedure (see line 20 in Algorithm 2) and hence
premature convergence is not so troublesome, this is not the most common course
of action. An appropriate mutation operator (i.e., one using a sufficiently different
neighborhood to that used by the local searcher) is often utilized. In fact, it is not
unusual to have more than one such mutation operator, e.g., [152, 231], much like
in metaheuristic approaches such as variable neighborhood search [105] (VNS). In
some cases, these multiple mutation operators are used with the purpose of exerting
different degrees of perturbation (i.e., light and heavy mutations) depending on the
convergence of the population [87].

As to the local search component, it can take the form of any stand-alone
method such as hill climbing, simulated annealing, tabu search, variable neigh-
borhood search, etc. [199]. The choice of a particular technique must take into
account two major issues, namely, its parameterization and its interaction with
the remaining components of the algorithm. Regarding the latter, and in addi-
tion to the issues discussed above in connection to the mutation operator, one
has to consider the interplay between the local searcher and the recombination
operator. For example, a highly intensive local search procedure may be better
suited to interact with a more diversification-oriented recombination operator –
see, e.g., [88]. This heuristic recipe does not necessarily conflict with the use
of a powerful recombination operator (see, e.g., [91]) but underlines that the
knowledge embedded in either component, recombination operator and local
search heuristic, must be complementary in terms of the effect they produce
in the search dynamics (much as was discussed for the mutation operator). An
interesting analysis of these issues from the point of view of fitness landscapes
is provided in [170]. Whatever the definition of the neighborhood is (and notice
that it can be complex, even combining several simpler neighborhood schemes),
it is often crucial to be able to evaluate solutions incrementally for performance
reasons [106]. It is desirable to avoid having to resort to a full evaluation and
only recompute the fitness contribution of the solution components that were
modified. This may require the use of appropriate data structures and is normally
associated to discrete optimization (the high nonlinearity – and sometimes even
the lack of a closed fitness function – often makes this complicated in continuous
optimization).
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The parameterization of the local search heuristic is another complex issue. This
includes both high-level algorithmic aspects as well as low-level parameters. The
high-level aspects include factors such as when to apply local search, to which
solutions it should be applied and which local search operator to apply. The low-
level aspects include parameters such as the breadth (number of neighbors explored
in each iteration of the local search heuristic) and depth (how many iterations of
local search will be performed). Further discussion is given in [245]. Determining an
adequate setting for these parameters is crucial for the performance of the algorithm
since it has been shown theoretically that small parameter changes can turn a
problem from being polynomial-time solvable with high probability to requiring
super-polynomial (even exponential) time [144,244]. Unfortunately, a priori design
guidelines to provably avoid this kind of behavior are ruled out by intractability
results [245]. Thus, design by analogy and empirical testing seem to be the handiest
tools to approach this endeavor (although self-parameterization is an appealing
alternative that is increasingly gaining relevance – see section “Future-Generation
Memetic Algorithms”). In this regard, it has been, for example, shown in several
contexts that partial Lamarckism [112], that is, not applying local search to every
individual but just applying it some probability pLS , can produce notably better
results than a fully Lamarckian approach [49, 126] although the best value of this
parameter is problem dependent. On a related note with regard to the depth of the
local search, it has been also proposed in the literature to save the store of the local
search together with the solution it was applied to, so as to resume the process from
that point if required [173, 174].

The restarting procedure is another important element in an MA. The goal of
this procedure is to perform a warm reinitialization of the population when the
search is deemed stagnated (i.e., the population has converged to a suboptimal state).
Of course, that stagnation can be hindered by taking preventive measures such as
the light/heavy mutation scheme mentioned before, the use of spatial structure in
populations [250] (see also next subsection), or some other diversity-preservation
policy [236] – see also [188]. A more drastic measure may be eventually required
though. For that purpose, a common approach is to keep a certain percentage of
the current population and use the solution creation mechanism (the one used to
create the initial population – line 3 in Algorithm 2) to complete the new population.
Regarding the former, they constitute a seed that allows keeping a part of the search
momentum without having to start from scratch. As to the latter, notice that they
need not be purely random solutions but any available constructive heuristic can be
used for this purpose.

A Note on More Complicated Memetic Algorithms

Although Algorithms 1 and 2 lay out a basic MA framework, the structure can be
made significantly more complex. As the central motivation of MAs is to exploit
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all available information, the restriction of any particular component would be
antithetical. Apart from employing different heuristics, multiple heuristics can be
employed in concert. It is easy to combine different individual improvement heuris-
tics, applying them to different individuals and different populations, in parallel,
in sequence, or even in competition. Similarly the population-based heuristic can
employ multiple improvement techniques – such approaches are well known in the
GA community.

Moscato and Tinetti [181] demonstrate a more complicated MA that uses a
number of heuristics in concert and to achieve different goals within the algorithm.
The algorithm employs a tree-structured population where the population is divided
into subpopulations of size 4, composed in a ternary tree structure:

1. Each subpopulation is divided into a leader node and three supporters. The
supporters are stored one level below their leader.

2. The intermediate nodes in the tree hold an individual that is part of two
populations; it is the leader of the three supporters lower in the tree and a support
of its leader higher in the tree.

3. The number of subpopulations can be manipulated by adding levels to the tree.

Each individual can be optimized using a local search procedure that selects
from a variety of local optimization moves: approximate 2-OPT, One-City Insertion,
and Two-City Insertion [134,156]. Genetic recombination occurs “normally” within
each subpopulation. The leader individual represents the best tour in the subpopula-
tion. Note that the overlap of subpopulations ensures improvement propagates up the
tree. The small subpopulation size, however, can quickly lead to a lack of diversity,
in which case the recombination mechanism switches to an external recombination
procedure for the lowest level of the tree.

In this example a number of variations on the basic structure of an MA are
evident: multiple local search variants, a multipopulation variation of a GA which
itself employs multiple recombination procedures. Another example of a more
complex improvement strategy is given by Moscato [176], where a small population
of individuals is maintained (only 16 individuals, each a binary vector), with a tabu
search procedure for individual improvement. Again, in a small population, a loss of
diversity is a potential drawback. To combat this, each individual notes the 16 best
single-bit-flip moves available. When diversity falls below a given threshold, instead
of following a simple tabu search approach, individual i makes move i from its list
of best moves. This deliberate (potentially) nonoptimal has the effect of spreading
the individuals further across the configuration space, increasing diversity. Once
diversity is restored, the normal tabu search optimization is restored.

The continuation of these ideas has led to the development of what are now
called self-adaptive memetic algorithms, which allow the context-specific, dynamic
application of different heuristics or tuning of search parameters by the algorithm
itself. See section “Future-Generation Memetic Algorithms”.



616 C. Cotta et al.

Memetic Algorithms in Practice

This section presents two extended examples of memetic algorithms for specific
problems – NETWORK ALIGNMENT and WEIGHTED CONSTRAINT SATISFACTION

PROBLEMS – and surveys recent interesting applications of memetic algorithms in
different fields.

An Example Memetic Algorithm for NETWORK ALIGNMENT

The optimization version of the basic NETWORK ALIGNMENT problem takes
as input two networks G1 and G2 and asks for an injective partial mapping
f W V .G1/ ! V .G2/ between the vertices of the two networks that maximizeP

u;v2V .G1/ �f .u; v/ where

�f D

(
1 if uv 2 E.G1/ and f .u/f .v/ 2 E.G2/

0 otherwise

It may be assumed that the mapping is total and bijective by adding “dummy”
vertices to the smaller network. Of course �f is open to variation as are the
precise details of f , leading to many variants of NETWORK ALIGNMENT. The
decision variant of NETWORK ALIGNMENT is NP-complete [138] and WŒ1�-
complete (Mathieson et al., 2015, Using network alignment to uncover topological
structure and identify consumer behaviour modelling constructs, unpublished
Manuscript), suggesting, subject to standard complexity assumptions, that no
suitably efficient exact algorithm for NETWORK ALIGNMENT exists, making it a
prime candidate for heuristic methods.

In developing a memetic algorithm for this (and any) problem, it is necessary
(at a minimum) to select an individual solution representation, mutation, and
recombination operators and an individual improvement heuristic and its attending
concerns.

For NETWORK ALIGNMENT, the most direct individual representation is the
mapping itself. Assuming any necessary dummy vertices have already been added,
the mapping can be represented by, for example, an array of size jV .G1/j storing
a permutation of V .G2/. For ease of representation, it is sufficient to assign each
vertex a unique integer in the range Œ0; jV .G1/j�. An alternative representation
suitable for NETWORK ALIGNMENT would be to store the alignment of the edges,
making computing the basic fitness function simple, but the individual could be
polynomially larger, impacting the efficiency of mutation, recombination, individual
improvement, and even evaluation. Moreover care would need to be taken as to how
to determine which vertices were aligned.

With this individual representation, a simple, reasonable mutation operator is that
of a random shuffle, where each element of an individual is randomly swapped with
another, randomly chosen element, with a given probability. A naïve recombination
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operator is, given two parent individuals, to select a linear segment of the individual
(i.e., a set of contiguous indices) and swap the mappings for those indices between
the parents (with adjustment to take care of duplication of elements), producing
two children. This recombination is commonly known as a partially matched
crossover [100]. However, considering the problem at hand, it is easy to see that
this choice may be somewhat inefficient. The NETWORK ALIGNMENT problem, in
essence, seeks to preserve as much topological structure (i.e., edge matchings) as
possible – in this sense it is a relaxed GRAPH ISOMORPHISM problem. Swapping a
set of arbitrarily chosen indices is unlikely to preserve interesting structure, contrary
to the goal of a recombination operator, which is to produce children of higher
quality than their parents by mixing the better parts of the parents, aiming to place
the child solution closer to the global optima. For NETWORK ALIGNMENT, it is
much more interesting to preserve neighborhoods of vertices in this regard. So a
better choice of recombination operator is to select a vertex and its 2-neighborhood
(all vertices at distance at most 2) as the set of indices which will be swapped.

To complete the GA component, a tournament selection process is employed
to choose the individuals included in the new generation and a restart mechanism
whereby the best solution is recorded and the population is restarted if no improve-
ment has been observed after a given number of generations.

For individual improvement, a local search heuristic is used, where the neighbor-
hood of each individual is the 2-swap neighborhood – the set of individuals obtained
by swapping any two elements. The search is implemented by selecting an element
in the individual and taking the optimal swap in the local neighborhood. If this is
not the identity mapping, the neighbors of the preimage of the swapped vertex are
placed into a list of vertices to swap. If no initial swap is found, the process is
repeated with a new starting point until a swap is found or all vertices have been
tested.

In combination with the skeletons given by Algorithms 1 and 2, these compo-
nents constitute an MA for NETWORK ALIGNMENT. The reader will notice that,
even without considering more complicated approaches, there are a number of
tunable parameters present. These include the probabilities and frequencies which
control mutation and recombination (as in GAs) and, more specifically for MAs,
the frequency and application régime of the individual improvement step. The
individual improvement may be applied, at essentially one extreme, regularly, to all
individuals, or at the other extreme, only when the evolutionary progress slows and
to a select few individuals, or of course in some intermediate régime. As discussed in
section “A Note on More Complicated Memetic Algorithms”, an adaptive approach
could also be taken, allowing the algorithm to adjust these parameters itself.

An Example Memetic Algorithm for WEIGHTED CONSTRAINT

SATISFACTION PROBLEMS

WEIGHTED CONSTRAINT SATISFACTION PROBLEMS (WCSPs) are a general class
of combinatorial problems in which (i) solutions are assignment of values to a
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collection of variables, each of them taken from a possibly different domain, (ii)
there are hard constraints making some particular combinations of variable values
infeasible, and (iii) there are some soft constraints establishing preferences among
solutions. For example, consider a school timetabling problem in which courses
have to be fit into different time slots: no two courses can use the same time slot
if they are taught by the same lecturer (a hard constraint), and lecturer preferences
(e.g., teaching in the morning or in the afternoon) have to be respected if possible.
In essence, both types of constraints can be represented by defining a collection
of integer functions fi , one for each constraint; these functions are used to weight
the fulfillment/violation of the corresponding constraint, and therefore an objective
function F (to be minimized, without loss of generality) can be built by summing
them. Thus, it will be typically the case that hard constraints have a much larger
weight (even infinite if violated) than soft constraints.

Formally, a WCSP can be characterized as a triplet hX ; D ; F /, where each xi 2

X , 1 6 i 6 n is a problem variable whose domain is Di 2 D . Each function
fj 2 F , 1 6 j 6 m has signature fj W Vj ! N, where Vj 2 2X is the subset of
variables involved in the j -th constraint. With this formulation, a naïve evolutionary
approach can be defined by using the Cartesian product S D D1�� � ��Dn as search
space, taking the fitness function to be F .x/ D

P
j

Ofj .x/ (where Ofi is a function
that picks from its argument the variables in Vj and feeds them to fj ), and utilizing
standard operations for recombination and mutation. Such an approach is however
going to perform poorly in general due to the lack of problem-specific knowledge. A
much more sensible approach can be built on the basis of (i) a smart recombination
operator and (ii) a powerful local search technique.

Regarding recombination, it is very easy to define a greedy recombination
mechanism for WCSPs: (1) start from a solution s with all variables unassigned,
(2) sort constraints in some particular order (arbitrary or heuristically selected)
j1; � � � ; jm, and (3) traverse this ordered list of constraints, checking for each jk

the variables in Vjk
that are still unassigned in s, constructing two (or as many

as parents) candidate sets using the assigned values in s plus the values that the
remaining variables in Vjk

take in either parent, and keeping the candidate set v

minimizing fjk
.v/ (which is subsequently used to expand the solution s). This

procedure has been used, for example, in [57] for the construction of Golomb rulers
and in [225] for the construction of balanced incomplete blocks, to cite just two
examples.

It is possible to define a more intensive recombination approach by taking ideas
from complete techniques [59]. More precisely, a complete technique can be used to
explore the set of potential solutions that can be created using a given collection of
parents, returning the best solution attainable. Different possibilities can be used
for this purpose such as branch and bound [55] or integer linear programming
techniques [164]. A more WCSP-specific approach can be found in the use of bucket
elimination (BE) [63]. BE can be regarded as a dynamic programming approach
based on the successive elimination of variables and the use of an auxiliary table
to store the best value of the fitness function for specific variable combinations.
More precisely, BE considers some ordering of the variables (again, arbitrarily or
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heuristically selected – it must be noted that while the particular choice ordering is
irrelevant for correction purposes, it can have a huge impact in the computational
complexity of the algorithm though) i1; � � � ; in. Then, it traverses this sequence and
for each variable xik (1) determines the constraints C � F in which xik is involved;
(2) computes the bucket

Bik D
�
[fj 2C Vj

�
n fxik g;

namely, the collection of variables related to xik in any constraint; (3) determines
for each combination t of values for variables in Bik the value v�

t for xik such that
w D

P
fj 2C

Ofj .t �.xik D v// is minimal; and (4) removes C from F and adds a new

constraint f 0 with domain V 0 D Bik defined as f 0.t/ D
P

fj 2C
Ofj .t � .xik D v�

t //.
When all variables have been eliminated, the optimal cost w is found, and one only
has to trace back the process (using the auxiliary table) to determine the best variable
assignment [93]. This procedure has been used with great success in [91] for solving
the MAXIMUM DENSITY STILL LIFE PROBLEM in conduction with a local search
procedure based on tabu search.

A potential drawback of recombination schemes such as those defined above
is scalability: the use of an exact technique for recombination is less costly than
using it to solve the problem completely from scratch, but its cost will nevertheless
grow with the problem size until becoming impractical at some point. To alleviate
this problem, the granularity of the representation can be adjusted [54], that is,
grouping variables in larger chunks which are subsequently used as basic units
for the purposes of constructing solutions (hence reducing the number of potential
solutions attainable and therefore the computational cost of the exact technique).
In the context of the BE method described before, this approach is termed mini-
buckets [64] and can be readily applied to the recombination mechanism described
above [93]. Another source of difficulties is the existence of symmetries or partial
isomorphisms between solutions. This scenario is typical in many WCSPs in which
variables or groups thereof can be relabeled without altering the solution. In such a
situation, recombination can reduce to macromutation unless it is effectively capable
of identifying correspondences between variables in different parents. This is, for
instance, done with success in [171] in the context of clustering genomic data.
Of course, it may be very complex in general to find a perfect matching between
variables in an arbitrary WCSP with symmetries. In problems for which this is
deemed too complicated or time-consuming, it must be noted that a recombination-
less MA – essentially a population of local searchers subject to interleaved phases
of self-improvement and competition via selection/replacement, much in the line
of go-with-the-winner approaches [8] – can also provide acceptable results. This
is, for example, the case of the SOCIAL GOLFER PROBLEM, a WCSP with a large
degree of symmetry that was successfully attacked using a memetic evolutionary
programming approach [56] (an MA propelled by selection, mutation, and local
improvement).
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A Brief Survey of Recent Memetic Algorithm Applications

In recent years, MAs have become a significant part of the optimization toolkit and
have become particularly well used in recent years. As a rough gauge, the number
of academic papers (found via searching DBLP and ISI Web of Science for relevant
papers with the word “memetic” in their title, abstract, or keywords) published has
risen to over 300 per year since 2011, with thousands of academic publications in
total since 1998. Possibly the most interesting aspect of this expanding interest in
memetic algorithms is the diversity of techniques and application areas.

Memetic Algorithms in the Wild
While many algorithms developed in the areas of Computer Science and Optimiza-
tion are demonstrated via application to practical problems drawn from a variety of
areas, a more reliable indicator of the effectiveness of a technique is the adoption of
the technique as a tool within the communities from which the problems are drawn.
The following briefly surveys some of the areas in which memetic algorithms have
been successfully applied. Table 1 gives an overview of the breadth of application
areas for memetic algorithms, with recent references. Of course this table is far from
exhaustive, even within the application areas mentioned. As a matter of fact, in some
areas the number of memetic applications has deserved individualized treatment in
specialized surveys, e.g., scheduling and timetabling [50], engineering and design
[37], bioinformatics [24], etc. – see also [189] for a recent general application

Table 1 Some recent publications reporting on memetic algorithm applications by field of
application

Application area References

Biology [89, 90, 186, 187, 197, 201, 238–241, 269, 270]

Chemistry [77–80, 108, 194]

Chemical engineering [47, 75, 140, 141, 150, 158, 242, 253–257]

Data compression [146, 169, 246, 271, 275, 280]

Drug design [104, 109, 130, 161, 191, 192, 251, 252]

Electronic engineering [41, 46, 97, 98, 101, 113–118, 135, 200, 205–207, 210, 214, 272]

Finance [15, 45, 71, 243]

Geoscience [36, 258]

Image analysis [66, 127, 162, 228]

Materials science & engineering [14, 25, 124, 125, 222, 260]

Microarray analysis [12, 13, 19, 73, 94, 148, 167, 182, 208, 237, 278]

Computer networking [16, 215, 216, 248, 261, 276]

Oncology [1, 39, 74, 133, 166, 230, 251, 252, 279, 281]

Operations research [2,6,10,22,40,68,95,111,129,159,160,165,209,212,213,219,
227, 259, 266, 268, 274, 277]

Physics [5, 103, 139, 264, 273]

Power engineering [17, 18, 26, 67, 120, 121, 136, 147, 149, 151, 157, 168, 183, 195,
220, 223, 232]
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survey. The breadth of the application areas suggests a significant generality and
flexibility in the memetic paradigm.

Memetic Speciation
Along with a wide set of application areas, memetic algorithms have also embraced
many forms, employing a wide variety of combinations of population-based
heuristics and individual improvement heuristics. Table 2 lists some of the more
prominent combinations, with example references for each. Not only are different
combinations of population-based heuristic and individual improvement heuristic
extant, more exotic memetic algorithms that use heuristics of only one type, or
multiple heuristics of each type, exist. The adaptability of memetic algorithms
to parallel implementation also encourages the use of multiple different types of
heuristics simultaneously – the exploitation of all available knowledge is, after all,
the central idea of the memetic paradigm.

Table 2 Some varietal combinations of heuristics forming memetic algorithms

Population-based
heuristic

Individual improvement heuristic References

Ant colony
optimization

Local search [44, 72, 84, 154]

Bee colony
optimization

– [32, 34]

Random optimization [21]

Nelder-Mead simplex [85]

– Nelder-Mead simplex with bidirectional
random optimization

[4]

Binary differential
evolution

Tabu search [102]

Continuous
differential evolution

Pool of strategies [122, 249]

Hooke-Jeeves-like [211]

Stochastic local search [190]

Cross entropy Hill climbing, tabu search [11]

Genetic algorithm Local search [15, 22]

Tabu search [27, 33, 92, 153, 155, 263]

Mathematical programming [254]

Genetic algorithm
with particle swarm
optimization

– [26, 119]

Particle swarm
optimization

Local search [20, 35, 65, 121, 274]

Variable neighborhood search [9]

Sequential quadratic programming [221]

Particle swarm
optimization with
differential evolution

Nelder-Mead simplex with Rosenbrock
algorithm

[38]
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Future-Generation Memetic Algorithms

Back in the days when MAs were just a nascent approach for optimization, different
visions of what MAs would be in the future were foreseen. Among these, maybe the
one which has come closest to reality refers to the self-? capabilities [23] of the
paradigm and more precisely to self-generation properties. Early works envisioned
that the algorithm could work on two timescales, one in which solutions would
be optimized and another one in which the problem-solving strategies used to
optimize solutions would be themselves optimized [177]. In essence, this has been
a long-standing goal in metaheuristics. It is widely acknowledged that the design
of an effective problem-solving technique is in itself a hard task. Attempting to
transfer a part of this design effort to the actual metaheuristic is just the logical
course of action [58] – see, for example, the corpus of research in hyperheuristics
[42, 60]. This latter approach is actually related to what has been termed “meta-
Lamarckian” learning [202], a memetic approach in which a collection of local
searchers is available and there is a decision-maker that decides which of them
should be applied to specific solutions based on different criteria (e.g., the past
performance of each local searcher, the adequacy of the current solution for being
improved by a certain local searcher according to past experience, etc.). A much
more general approach was provided by multi-memetic or multimeme algorithms
[142, 143, 145]. In this approach an encoding of a local searcher (ranging from the
definition of the neighborhood or pivot rule used up to a full algorithmic description
of the procedure) is attached to each solution and evolves alongside it. Thus, the
algorithm not only looks for improved solutions but also for algorithmic structures
capable of improving the latter. The next natural step is detaching these memes
from the genes and have them evolve in separate populations [233–235], paving
the way for the emergence of complex structures of interacting memes [43]. An
overview of adaptation in MAs is provided in [203]. This view of memes as explicit
representations of problem-solving strategies that interact in a complex and dynamic
way within an evolutionary context for optimization purposes leads to the notion
of memetic computing [193, 204] – see [189] for a literature review on memetic
computing. A further iteration of this concept is to apply metaheuristic approaches
to develop worst-case instances of a problem, which can then be fed back into the
process of optimizing the algorithm. This technique has been explored in regard to
sorting [51] and the TRAVELLING SALESMAN PROBLEM [3].

Another dimension along which some early ideas (farfetched at their time) about
MAs may become a reality is parallel computing. The deployment of metaheuristics
in parallel and/or distributed environments is by no means new [7] and has been
extensively used since the late 1980s; see, for example, [184, 247]. However, the
continuous evolution of computational platforms is dragging these parallel modes
along, forcing them to adapt to new scenarios. Thus, whereas early works often
assumed dedicated local area networks, it is nowadays more common to have
emerging computational environments such as peer-to-peer networks [172] and
volunteer computing networks [229], which are much more pervasive, of a larger
scale and inherently dynamic. Coping with the complex, dynamic structure of the
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computational substrate is undoubtedly a challenge. Fortunately, population-based
metaheuristics have been shown to be intrinsically robust at a fine-grain scale [128]
and can be endowed with appropriate churn-aware strategies if required [196]. They
are therefore ripe for being deployed on these platforms to exploit the possibilities
they offer. In this line – and connected to the previous discussion on meme evolution
and interaction – some initial concepts revolving around “meme pools,” that is,
repositories of problem-solving methods to be used synergistically, acquire a new
scope more akin to service-oriented architectures [96]. Furthermore, to build on
the idea of automated self-design of the MA requires the ability to keep or gather
some sort of distributed knowledge about the state of the search and make design
decisions on its basis. Some ideas from multi-agent systems and epistemic logic
were proposed as potential tools for this purpose [52], but the concept still remains
largely unexplored.

There are also opportunities for the development of MAs (and GAs) at the small
scale. Any use of recombination operators is naturally limited by the expectation
that the recombination step will be performed many, many times during a run of
the algorithm. This leads to the requirement that a recombination operator must
be able to be implemented very efficiently. Traditionally this would mean at most
linear or close to linear time in the size of the individual (of course, ideally constant
time). This immediately rules out the possibility of optimal recombination strategies
for many problems, as typically such strategies would be NP-hard. Parameterized
complexity, for example, offers some opportunity to exploit the naturally arising
parameters in many recombination strategies. If such parameters are small, or can
be made small, then the complexity of optimal recombination may be effectively
reduced to polynomial time [53,81–83]. For further reading on the challenges raised
by evolutionary approaches to optimization, many of the problems posed in [52]
remain open.

Conclusion

Since their primordial conception in the late 1980s, memetic algorithms have de-
veloped to become one of the most adaptable and flexible metaheuristic approaches
available. While many heuristic techniques perform well for some problems, the
No-Free-Lunch theorem [267] guarantees that their performance falters on the
majority of problems. Memetic algorithms, with their insistence on adaptability and
utilitarianism (both on the part of the algorithm and the implementer), are free to
exploit the performance of multiple approaches and choose the best suited for the
problem at hand.

The adaptability, efficiency, and amenability to the current availability of large-
scale parallelism, including traditional parallel architectures along with GPU
computing and cloud- and peer-based approaches, along with a tendency toward
modularity in implementation, have led to their adoption across a broad range of
fields with excellent results. The field of memetic algorithms research has grown
dramatically since 1998. With over 2000 academic papers published at a current rate
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of over 300 per year, the field is vibrant and dynamic. The importance and influence
of memetic algorithms has grown such that Thomson Reuters selected it as one of
the top ten research fronts in Mathematics, Computer Science, and Engineering in
2013 [137]. To put it simply, memetic algorithms are one of the most flexible and
effective tools in the heuristic toolbox and a key technique for anyone involved in
combinatorial optimization to learn.
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Abstract

Particle swarm optimization has gained increasing popularity in the past 15 years.
Its effectiveness and efficiency has rendered it a valuable metaheuristic approach
in various scientific fields where complex optimization problems appear. Its
simplicity has made it accessible to the non-expert researchers, while the
potential for easy adaptation of operators and integration of new procedures
allows its application on a wide variety of problems with diverse characteristics.
Additionally, its inherent decentralized nature allows easy parallelization, taking
advantage of modern high-performance computer systems. The present work
exposes the basic concepts of particle swarm optimization and presents a number
of popular variants that opened new research directions by introducing novel
ideas in the original model of the algorithm. The focus is placed on presenting
the essential information of the algorithms rather than covering all the details.
Also, a large number of references and sources is provided for further inquiry.
Thus, the present text can serve as a starting point for researchers interested in
the development and application of particle swarm optimization and its variants.

Keywords
Particle Swarm Optimization � Swarm Intelligence � Metaheuristics �

Nature-Inspired Algorithms � Stochastic Search � Optimization �

Computational Intelligence

Introduction

Particle swarm optimization (PSO) was introduced in the pioneering works of
Russell C. Eberhart and James Kennedy in [33, 60]. At that time, the wide success
of Evolutionary Algorithms (EAs) motivated researchers worldwide to develop
and experiment with novel nature-inspired methods. Thus, besides the interest
in evolutionary procedures that governed EAs, new paradigms from nature were
subjected to investigation. In this context, the hierarchically organized societies
of simple organisms such as ants, bees, and fishes, which have limited range of
individual responses but fascinating collective behaviors, immediately attracted
scientific interest.

Simulations conducted with modeled populations of such organisms exhibited
traits of intelligent behavior and remarkable problem solving capabilities [12]. The
underlying mathematical models shared concepts with particle physics, enriched
with elements from probability theory and stochastic processes. The theoretical
background along with the potential for developing powerful optimization meta-
heuristics resulted in the emergence of a new category of algorithms under the name
of Swarm Intelligence (SI) [12, 34, 62].

PSO is placed in a salient position among SI algorithms. Its inspiration stemmed
from simulators of social behavior that implement rules such as neighbor velocity
matching and acceleration by distance. These properties were shown to produce
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Fig. 1 Number of publications with the term “particle swarm” in the title (Source: Scopus search
engine, November 2014)

swarming motives in groups of simple artificial agents. The early models were prop-
erly refined to fit the framework of optimization algorithms. The first PSO models
introduced the novelty of using difference vectors among population members to
sample new points in the search space. This novelty diverged from the established
procedures of EAs, which were mostly based on sampling new points from
explicit probability distributions [126]. Nevertheless, it proved to be appealing and,
almost concurrently with PSO, another algorithm with similar structure, namely,
Differential Evolution [131], appeared in the literature. Additional advantages of
PSO were its potential for easy adaptation of operators and procedures to match
the specific requirements of a given problem, as well as its inherent decentralized
structure that promoted parallelization.

PSO has gained wide recognition due to its effectiveness, efficiency, and easy
implementation. This is illustrated in Fig. 1, which reports the number of scientific
works that include the term “Particle Swarm” in the titles for the years 1995–2014,
as returned by the Scopus search engine on a search conducted in November 2014.
The illustrated numbers of papers include all sources provided by the Scopus search
engine (journals, conferences, books, etc.).

The present work aims at introducing the basic concepts of PSO and presenting
a number of its most influential variants, based on the criteria of novelty at the
time of development, popularity, and potential for opening new research directions.
Naturally, neither the selection of variants can be complete nor the presentation
can be thorough within the limited space of a book chapter. For this reason, only
basic information is provided, while further details can be acquired in the reported
references and sources. Thus, the present text can serve as the “Ariadne’s thread”
for researchers with interest in PSO.

The rest of the present chapter is organized as follows: section “Basic Model”
introduces a basic PSO model that is used as reference point for the presented
variants. Section “Convergence and Parameter Setting” outlines the theoretical
properties of PSO and probes interesting aspects such as convergence, parame-
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ter setting, special features of the algorithm, as well as performance-enhancing
techniques. Section “Enhanced and Specialized PSO Variants” presents a number
of enhanced and specialized PSO variants that constitute the state-of-the-art,
while section “Applications” briefly comments on applications. Finally, the paper
concludes in section “Conclusions”. The Appendix at the end of the text offers
additional sources for further inquiry and experimentation with PSO.

Basic Model

PSO was primarily developed for optimization in real-valued search spaces. For this
reason, the general d -dimensional bound-constrained optimization problem,

min
x2X

f .x/; (1)

where,

X D
�
xmin

1 ; xmax
1

�
� � � � �

�
xmin

d ; xmax
d

�
� R

d ; (2)

is henceforth considered as the reference problem for the presentation of the
algorithm. In case of different search spaces, explicit definitions will be given. The
only necessary assumption regarding the objective function f is the availability of
its value f .x/ for every point x 2 X . Smoothness properties such as continuity and
differentiability are not required.

The main search mechanism of PSO is based on a group of search agents, called
particles, which iteratively change their position in the search space X . The particles
retain in an external memory the best positions they have ever visited in X . The
move of each particle is stochastically biased toward its own findings as well as
promising regions of the search space discovered by the rest of the particles. This
implicit information-exchange scheme is responsible for the emergent convergence
properties of the whole group, which is accordingly called a swarm.

Putting it formally, let Ai denote the i -th particle (search agent) and,

S D fA1; A2; : : : ; AN g; (3)

be a swarm of size N (the ordering of the particles is irrelevant). Also, let,

I D f1; 2; : : : ; N g; D D f1; 2; : : : ; dg;

be the sets of indices of the particles and the coordinate directions, respectively, and
t denote the algorithm’s iteration counter (this notation will be henceforth used in
the present work). Then, each particle can be defined by four essential elements,

A
.t/
i D

D
x.t/

i ; v.t/
i ; p.t/

i ; NB
.t/
i

E
; i 2 I:
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The first vector,

x.t/
i D

�
x

.t/
i1 ; x

.t/
i2 ; : : : ; x

.t/

id

�>

2 X ;

defines the current position of the particle in X at iteration t . In many works
in literature, the term “particle” is used to define solely the current position xi .
However, in the author’s opinion, the use of this term to define the search agent
with all its components promotes a more compact presentation, and it is aligned
with notation in similar SI algorithms (e.g., the term “ant” is similarly used to define
search agents in ant colony optimization [12]). The second vector,

v.t/
i D

�
v

.t/
i1 ; v

.t/
i2 ; : : : ; v

.t/

id

�>

;

is an adaptable position shift, also called velocity, which is responsible for the
particle’s move. The third vector,

p.t/
i D

�
p

.t/
i1 ; p

.t/
i2 ; : : : ; p

.t/

id

�>

2 X ;

is the particle’s best position, i.e., the best position it has ever visited in X up
to iteration t . For the reference optimization problem of Eq. (1), the best position
corresponds to the particle’s previous position with the smallest objective value,
i.e.,

p.t/
i D arg minn

x.k/
i ; k6t

o f
�

x.k/
i

�
:

The best position plays the role of attractor that biases the velocity toward the
discovered promising regions of X . However, this sole information would render the
particle an isolated agent with limited search capability that produces trajectories by
oscillating around its best visited points.

For this reason, in addition to its own discoveries, each particle has an implicit
information-exchange mechanism with a subset of the swarm, called its neigh-
borhood. The neighborhood can be formally denoted as a subset of the indices
set I ,

NB
.t/
i � I;

and its cardinality is usually called the neighborhood size. In most PSO variants, the
best position in the neighborhood of the particle, i.e.,

p.t/
gi

D arg minn
p.t/

j ; j 2NB
.t/
i

o f
�

p.t/
j

�
;
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is used as a second attractor for biasing its velocity.
Based on the definitions above, at each iteration of the algorithm, the particles

componentwisely update their current positions and velocities as follows:

v
.tC1/
ij D � v

.t/
ij C C1

�
p

.t/
ij � x

.t/
ij

�
C C2

�
p

.t/
gi j

� x
.t/
ij

�
; (4)

x
.tC1/
ij D x

.t/
ij C v

.tC1/
ij ; (5)

where i 2 I and j 2 D. The scalar parameter � is called the inertia weight
or constriction coefficient, and its role is discussed in section “Convergence and
Parameter Setting”. The stochastic terms C1 and C2 follow continuous uniform
distributions,

C1 � U.0; c1/; C2 � U.0; c2/; (6)

where c1 and c2 are user-defined parameters, called the acceleration constants,
which control the magnitude of attraction toward p.t/

i and p.t/
gi , respectively. The

first difference term
�
p

.t/
ij � x

.t/
ij

�
is called the cognitive term because it involves

only the particle’s own information. Correspondingly, the second difference term�
p

.t/
gi j

� x
.t/
ij

�
is called the social term since it involves information provided by

other particles.
After the current positions and velocities, the best positions are also updated as

follows:

p.tC1/
i D

(
x.tC1/

i ; if f
�

x.tC1/
i

�
6 f

�
p.t/

i

�
;

p.t/
i ; otherwise;

i 2 I: (7)

The algorithm is executed until a predefined stopping condition is fulfilled. The
presented basic PSO model is also known as the Canonical Particle Swarm [59],
and it is summarized in Algorithm 1. The discussion on initialization, boundary
violation, and stopping conditions is postponed until the next section.

A number of issues arise regarding essential decisions that need to be made prior
to the application of the basic PSO algorithm. Specifically, the practitioner shall
address the following questions:

1. How shall the parameters N , �, c1, c2, be set?
2. How shall the neighborhoods be defined?
3. How shall the boundaries violations be handled?
4. How shall the swarm be initialized?
5. What stopping conditions shall be used?
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Algorithm 1: Canonical PSO
Require: Initialize PSO algorithm.

1: while (not stopping condition) do
2: for i D 1 to N do
3: for j D 1 to d do
4: Update vij by using Eq. (4).
5: Check for velocity boundaries violation and correct if needed.
6: Update xij using Eq. (5).
7: Check for search space boundaries violation and correct if needed.
8: end for
9: end for

10: for i D 1 to N do
11: Update pi according to Eq. (7).
12: end for
13: end while
14: Report best solution.

Apparently, each decision can have significant impact on the algorithm’s perfor-
mance. For this reason, careful settings that take into consideration the potential
impact on PSO’s dynamic are of vital importance.

A number of PSO variants have been developed on the basis of using alternative
techniques for configuring the algorithm. These issues are discussed in the next
section. Canonical PSO has constituted the starting point for further developments
and enhancements for almost two decades. Yet, it still remains a popular piece of
the state-of-the-art due to its verified effectiveness and efficiency in a plethora of
applications [106, 112, 127].

Convergence and Parameter Setting

During the last two decades of PSO’s development, a large number of variants
have been proposed. In almost all cases, the motivation for further research has
stemmed from the necessity for more efficient algorithms that tackle the weaknesses
of previous variants. In the core of these developments lie the answers of the basic
questions posed in section “Basic Model” with respect to PSO’s configuration and
parameter setting.

In the following paragraphs, the most significant developments are highlighted
along with insights and suggestions for PSO’s configuration.



646 K. E. Parsopoulos

Early Precursors

The early PSO precursors [33, 60] were not as sophisticated as the Canonical
PSO approach presented in section “Basic Model”. In fact, they were based on a
simplified version of Eq. (4) with � D 1 and NBi D I , i.e.,

v
.tC1/
ij D v

.t/
ij C C1

�
p

.t/
ij � x

.t/
ij

�
C C2

�
p

.t/
gj � x

.t/
ij

�
; (8)

x
.tC1/
ij D x

.t/
ij C v

.tC1/
ij ; (9)

with i 2 I , j 2 D, and p.t/
g be the best position discovered by any particle (also

called the swarm’s overall best) up to iteration t , i.e.,

p.t/
g D arg minn

p.t/

k ; k2I
o f

�
p.t/

k

�
: (10)

Obviously, the magnitude of the position shifts depends on the values of the
parameters c1 and c2 that determine the stochastic terms C1 and C2 according to
Eq. (6).

In [56] the trajectories of the particles were studied by simplifying the system.
The use of the previous velocity v.t/

i in the update equation of the current velocity
results in an oscillatory move of the particle around the weighted average of the two
best positions,

Np.t/
i D

1

C1 C C1

�
C1p.t/

i C C2p.t/
g

�
: (11)

The swarm’s overall best particle, for which it holds that p.t/
i D p.t/

g , updates its
velocity as follows:

v
.tC1/
ij D v

.t/
ij C C

�
p

.t/
j � x

.t/
ij

�
; (12)

where j 2 D, C D C1 C C2, and p.t/ D p.t/
g .

If we consider the trivial case of a single particle and a fixed best position p, it
was shown in [56] that the particle’s trajectory becomes highly dependent on the
values of C, as shown in Fig. 2. Values higher than C D 4:0 are detrimental for
the algorithm’s convergence, since the velocity can grow arbitrarily large (notice
the scaling difference in the vertical axis for C D 4:0 in Fig. 2). This problem was
called the swarm explosion effect, and it was verified also in [87, 88], emphasizing
the necessity for a mechanism to control the amplitude of the velocities.
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Fig. 2 Particle trajectory for fixed value C D 2:5 (upper left), 3:0 (upper right), 3:5 (lower left),
and 4:0 (lower right)

Velocity Clamping and Inertia Weight

The swarm explosion effect led to the first significant improvements of PSO, namely
velocity clamping and the introduction of the inertia weight. Since the main problem
was the arbitrary growth of the velocities, a straightforward solution was their
explicit restriction in acceptable bounds. Specifically, a maximum value vmax

j was
imposed on the absolute value of each velocity component, i.e.,

�vmax
j 6 vij 6 vmax

j ; for all i 2 I; j 2 D:

This way, if a component vij violates one of the boundaries, it is set equal to the
violated boundary’s value, prohibiting the particle from taking large steps away
from the weighted average of best positions of Eq. (11). The user-defined value
vmax

j is usually equal to a fraction of the search space along the j -th coordinate
direction, i.e.,

vmax
j D �j

�
xmax

j � xmin
j

�
; j 2 D; �j 2 .0; 1/: (13)

Naturally, prior information regarding the search space facilitates proper setting
of the maximum velocity. For example, in cases of extremely large number of
minimizers or very narrow regions of attraction around them, smaller velocities
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can offer better search accuracy [129]. Equation (13) is used also in modern PSO
variants, usually assuming identical �j values for all j 2 D. Velocity clamping is
applied in line 5 of the Canonical PSO in Algorithm 1.

Although velocity clamping was effective in hindering divergence, it was proved
to be inadequate to produce convergent behavior of the particles. Obviously,
convergence to a point in the search space requires the gradual decrease of velocities
such that the particles can perform decreasing oscillations around the attractors and,
eventually, settle on a point. This was achieved by introducing an inertia weight
w [128] on the velocity update of Eq. (8), i.e.,

v
.tC1/
ij D wv

.t/
ij C C1

�
p

.t/
ij � x

.t/
ij

�
C C2

�
p

.t/
gj � x

.t/
ij

�
; (14)

x
.tC1/
ij D x

.t/
ij C v

.tC1/
ij : (15)

The parameter w shall be properly set such that the impact of the previous velocity
v.t/

i declines during the execution of the algorithm. This can be achieved by setting
either a fixed value w 2 .0; 1/ or assuming a decreasing value between two extreme
values wmax and wmin, during the algorithm’s run. For example, if tmax is a predefined
maximum number of iterations, the most common linearly decreasing inertia weight
takes values as follows,

w.t/ D wmax �
t

tmax
.wmax � wmin/ :
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Fig. 3 Swarm’s diversity with (solid line) and without (dotted line) inertia weight while minimiz-
ing the 2-dimensional Rosenbrock function using 20 particles with c1 D c2 D 2, vmax D 50,
wmax D 1:2, and wmin D 0:1
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Figure 3 illustrates the swarm’s diversity in terms of the average of the particles’
standard deviations per coordinate direction, without inertia weight as well as with
a linearly decreasing inertia weight, for a well known optimization problem.

Velocity clamping and the introduction of inertia weight boosted PSO research
due to the improved convergence properties of the derived PSO variants. Both these
improvements are still used in modern PSO approaches [106]. Further information
and enhancements can be found in recent works such as [15, 155].

Stability Analysis

The empirical analyses of particles’ trajectories in [56,87,88] and their implications
in PSO’s modeling and parameter setting motivated the systematic theoretical
investigation of the algorithm. The first breakthrough appeared in 2002 due to
M. Clerc and J. Kennedy who conducted a convergence and stability analysis of
the algorithm in multidimensional search spaces [21].

The authors used as starting point the early model of Eqs. (8) and (9) with
velocity clamping. The initial model was manipulated according to Eq. (12) and
further simplified by assuming 1-dimensional particles without stochasticity, i.e., the
two stochastic acceleration terms were assumed to be equal and fixed, C1 D C2 D C.
After dropping some indices and making proper algebraic manipulations, the 1-
dimensional swarm’s update rules can be rewritten in the form [21],

v.tC1/ D v.t/ C Cy.t/; (16)

y.tC1/ D �v.t/ C .1 � C/y.t/; (17)

where y.t/ D Np � x.t/, with Np being the (currently fixed) aggregate best position
defined in Eq. (11) (note that all vectors currently collapse to scalars). This discrete
system can be written also in matrix form,

PtC1 D M Pt D M t P0;

where,

Pt D

�
v.t/

y.t/

�
; M D

�
1 C

�1 1 � C

�
:

Then, the behavior of the system depends on the eigenvalues of M , which are given
by,

�1;2 D 1 �
C
2

˙

p
C2 � 4C

2
:
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The previously identified critical value C D 4 (recall Fig. 2) [56, 88], appears again
as the limit between the case of two different real eigenvalues, one eigenvalue of
multiplicity 2, and two complex conjugate eigenvalues �1;2.

For the case of C 2 .0; 4/, the eigenvalues become complex [21],

�t
1 D cos.t�/ C i sin.t�/; �t

2 D cos.t�/ � i sin.t�/;

and the system exhibits cyclic behavior for � D .2��/=t . On the other hand, values
of C > 4 produce no cyclic behavior and it is proved that Pt has monotonically
increasing distance from the origin [21]. Finally, the limit case C D 4 produces
either oscillatory behavior, i.e., PtC1 D �Pt , if P0 is an eigenvector of M , or
linearly increasing or decreasing kPt k for y0 > 0 or y0 < 0, respectively.

The investigation was further extended to the continuous case by transforming
the simplified model into the recurrent equation [21],

v.tC2/ C .C � 2/v.tC1/ C v.t/ D 0;

which in turn becomes a second-order differential equation,

@2v
@t2

C ln.�1�2/
@v
@t

C ln.�1/ ln.�2/v D 0;

where �1 and �2 are the solutions of the polynomial,

�2 C .C � 2/� C 1 D 0:

Thus, the quantities v.t/ and y.t/ assume the general form [21],

v.t/ D c1�t
1 C c2�t

2;

y.t/ D
�
c1�t

1.�1 � 1/ C c2�t
2.�2 � 1/

	
=C:

The parameters c1 and c2 depend on the initial vectors v.0/ and y.0/. Similar analysis
with the discrete case shows that the system’s explosion depends on whether the
condition,

maxfj�1j; j�2jg > 1;

holds or not [21].
After the analysis above, the employed simplified model was generalized in

order to approximate the actual model of PSO. A number of extended models
were accordingly developed and studied in [21]. The outcome of the study was an
effective model, namely the Canonical PSO model of Eqs. (4) and (5), accompanied
with a proposed parameter setting [21],
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� D 0:729; c1 D c2 D 1:49; (18)

derived from closed-form formulae in order to retain the convergent behavior of the
system. This parameter setting has become the most common choice for off-the-
shelf PSO approaches in numerous applications [106].

The first theoretically sound convergence analysis of PSO in [21] was suc-
ceeded by a number of theoretical studies [49, 54, 113, 124, 143, 147]. These
developments increased our understanding of PSO’s dynamic. Also, they added
merit that, along with its easy implementation and the reported excellent results
in various applications, eventually placed PSO in a salient position among other
established population-based optimization algorithms such as Genetic Algorithms
and Evolution Strategies. Moreover, the dynamic of the Canonical PSO model
motivated recent approaches that spare function evaluations by taking advantage
of the particles’ dynamic [148].

Concept of Neighborhood

Information exchange among the particles is a concept of major importance in
PSO. In the Canonical PSO of Eqs. (4) and (5), the i -th particle adopts the best
position pgi of its neighborhood NBi as an attractor for its move, besides its own
best position. This way, the neighborhood determines the communication channels
among particles and, consequently, the information flow within the swarm. Without
communication, collective behavior cannot emerge and the swarm is downgraded to
a group of isolated search agents with limited search capabilities.

Obviously, the neighborhood’s characteristics have direct impact on PSO’s dy-
namic [57, 132]. Its structure defines the communication channels among particles,
while its size controls the influence of the swarm on each particle. Since the particles
are attracted toward the best positions of their neighbors, it is easily comprehended
that neighborhoods with large number of particles and dense communication
channels are more inclined toward intensification of search around the best detected
positions in the search space. This is ascribed to the rapid diffusion of the discovered
good solutions to the particles and their consequent attraction toward them.

However, this also renders the particles prone to get stuck in deep local minima
that are possibly detected in early steps of the algorithm’s execution. Such minima
are typically updated less frequently than shallow ones. Hence, they can impose
stronger attraction on the particles. On the other hand, less crowded neighborhoods
with sparse connections among particles exhibit slower information diffusion in
the swarm. In this case, the particles are gradually acquainted with good solutions,
retaining higher diversity and exploration capability.

The discussion above suggests that neighborhood’s configuration is highly
responsible for the diversification/intensification (a.k.a. exploration/exploitation)
trade-off of the algorithm. For this reason, it shall be carefully selected. To this
end, prior knowledge on the studied problem can be valuable. For example, smooth
functions with one or few minima can be properly handled through intensification-
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Fig. 4 Graphical
representation of the fully
connected (left) and the ring
(right) neighborhood
topology

oriented neighborhoods. On the other hand, rugged landscapes with a plethora of
minimizers dispersed at distant parts of the search space usually require exploration-
oriented approaches.

In early PSO variants, each particle was assumed to be connected with all the
rest, i.e.,

NB
.t/
i D I; for all i 2 I;

and the best position for all neighborhoods was the overall best of the swarm, as
defined in Eq. (10). Also, the neighborhoods were time-invariant, i.e., they remained
unchanged throughout the execution of the algorithm (hence we can neglect t in
NB

.t/
i notation). This PSO model is also called the global PSO model or simply

the gbest model. The connection scheme among the particles can be elegantly
represented by undirected graphs, where nodes denote the particles and edges denote
communication channels. The corresponding structure is called the neighborhood’s
topology. Apparently, the gbest model corresponds to a fully connected graph since
all particles communicate with each other. This topology is illustrated in the left part
of Fig. 4.

The tendency of the best model to rapidly converge toward the most promising
detected solutions and easily get stuck in local minima led to further experimen-
tation with sparsely connected models. The outcome of these efforts was the local
PSO model or lbest model, which assumes neighborhoods that are proper subsets
of I , i.e.,

NBi � I; for all i 2 I:

The most effective and easily implemented topology of this form is the ring, which
is depicted in the right part of Fig. 4. In this scheme, the particles are assumed to
lie on a ring according to their indices, i.e, neighboring particles have neighboring
indices. Then, each particle is set to communicate only with its immediate neighbors
on the ring. The number of neighbors for each direction (front and back) is called the
neighborhood’s radius. Thus, a neighborhood of radius r < N of the i -th particle
is defined as the set,

NBi D fi � r; i � r C 1; : : : ; i � 1; i; i C 1; : : : ; i C r � 1; i C rg ;
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Fig. 5 Swarm’s diversity for the lbest (solid line) and gbest (dotted line) PSO model on the 10-
dimensional Rastrigin function using 20 particles

where the indices are assumed to recycle after index N , i.e.,

j D

8
<

:

j; if 1 6 j 6 N;

j mod N; if j > N;

N � jj j; if j < 1;

for all j 2 NBi :

The diversity differences between the gbest model and the lbest with ring topology
of radius k D 1 is indicatively depicted in Fig. 5 for a simple run on a well-known
optimization test problem.

The ring topology has become a standard for lbest PSO implementations due
to its successful application in various problems [106]. There is also a multitude
of alternative topologies that have drawn attention, such as random [132], hier-
archical [46], and dynamic [18], but with limited number of applications. Also,
the concept of neighborhood has recently offered the ground for the development
of new PSO variants with sophisticated computational budget allocation based on
information carried by neighborhoods rather than the particles [130].

Initialization, Stopping Conditions, and Boundaries Violation

A basic requirement in the design and development of stochastic optimization
algorithms such as PSO is their tolerance on perturbations of the initial con-
ditions. In practice, this implies that mild perturbations on the initial positions
of the particles shall correspond to similar performance profiles of the algo-
rithm.
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In benchmarking studies, it is commonly assumed that there is no information
available regarding the optimization problem at hand. This is usually called the
black-box optimization problem. In such cases, there is no reason for purposely bi-
asing the particles’ initialization in specific areas of the search space. Consequently,
random and uniform initialization of the particles in the search space is the typical
procedure followed in most studies, i.e.,

x
.0/
ij D p

.0/
ij � U

�
xmin

j ; xmax
j

�
; for all i 2 I; j 2 D:

Accordingly, the velocities are randomly initialized as,

v
.0/
ij � U

�
�vmax

j ; vmax
j

�
; for all i 2 I; j 2 D:

Naturally, if there is prior information regarding promising regions of the search
space, the distributions can be properly adapted to favor the sampling of particles in
these regions.

The effect of initialization has been studied in a number of works for different
PSO variants [25, 31, 36, 100, 137, 157], offering further insight and suggestions
in specific applications. Nevertheless, random initialization remains the standard
approach also due to its minor implementation effort and the availability of uniform
random number generators in almost all hardware platforms.

In contrast to initialization, which is based on the problem’s characteristics,
the termination conditions are rather user- and resources-dependent [106]. The
following are the most common termination criteria:

1. Convergence in search space.
2. Convergence in function values.
3. Limitations in computational budget.
4. Search stagnation.

The first two criteria entail information on the position of the global minimizer or its
value, respectively. Naturally, this information is generally unavailable. However, in
some cases there are estimated bounds for the solution (or its value) and the user
can set the algorithm to stop as soon as it reaches these bounds with a prespecified
tolerance. In this case, the underlying stopping condition takes the form,

IF
�



p.t/

g � x�




 6 "x OR

ˇ
ˇ̌
f .t/

g � f �
ˇ
ˇ̌ 6 "f

�
THEN STOP

where x� and f � are the targets in the search space and function values, respectively,
and "x , "f , are the corresponding user-defined tolerances.

The other two stopping criteria are more common in PSO’s literature. Computa-
tional budget limitations are typically imposed by the maximum available time that
can be spent for solving a problem. This quantity can be explicitly expressed either
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as wall-clock/CPU time or as the number of function evaluations performed by the
algorithm. For benchmarking purposes, the latter is preferable since even the same
algorithm, executed on the same machine at different time instances, may result
in different running times due to irrelevant procedures that may be concurrently
executed on the machine.

On the other hand, the search stagnation criterion can prematurely stop the
algorithm even if the computational budget is not exceeded. Successful application
of this criterion is based on the existence of a proper stagnation measure. Typically,
the number of subsequent iterations without improvement of the best solution and/or
the dispersion of the particles’ current (or best) positions in the search space have
been used as indicators of search stagnation.

Frequently, the aforementioned termination criteria are combined in forms
such as,

IF
�
t > tmax OR tfail > tmaxfail OR dv.t/ < dvmin

	
THEN STOP

where t stands for the iteration number, tfail is the number of subsequent non-
improving iterations, and dv.t/ is a measure of dispersion of the particles (e.g., the
average standard deviation per coordinate component). Moreover, the user shall pay
special attention to the selection of stopping criteria in order to avoid unintentional
premature termination of the algorithm. Recent developments on this issue can be
found in [67].

Another topic of interest is the handling of search space boundaries violations.
Specifically, after the update of a particle’s current position with Eqs. (4) and (5),
there is a possibility that some of the new position’s components violate the
corresponding boundaries of the search space. The most common approach to
restrict the particle in the search space is to set the violated components of the
particle equal to the value of the violated boundary, i.e.,

x
.t/
ij D

8
<̂

:̂

xmax
j ; if x

.t/
ij > xmax

j ;

xmin
j ; if x

.t/
ij < xmin

j ;

x
.t/
ij ; otherwise;

(19)

while simultaneously setting the corresponding velocity component v
.t/
ij to zero.

Different boundary handling techniques (absorbing, bouncing, cyclic search spaces)
have been proposed, although with less popularity. A recent survey on such
techniques can be found in [89].

Performance-Enhancing Techniques

The Canonical PSO has offered satisfactory performance in various problems.
However, it may exhibit declining performance in special problems such as the
detection of multiple local/global minima, constrained, or discrete problems. In
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such cases, the user can either change the algorithm by introducing new, specialized
operators or incorporate external techniques to tackle the problem’s peculiarities.

There are established techniques that have been successfully used with Canonical
PSO. Transformations of the objective function have been used for the alleviation
of local minima and the detection of multiple minimizers. Rounding has been used
for solving discrete optimization problems, while penalty functions can address
constrained optimization problems. In the following paragraphs, basic techniques
that have been combined with the Canonical PSO model are presented. Specialized
variants of the algorithm with ad hoc operators for similar purposes are presented in
subsequent sections.

Alleviating Local Minimizers
In problems with a multitude of local and/or global minimizers, stochastic opti-
mization algorithms such as PSO may approximate a different minimizer in each
independent run. Frequently, the detected solutions are sub-optimal, while the
user either needs more than one such solution or requires the globally best one.
Multistart techniques where the algorithm is subsequently restarted from different
initial conditions have been proposed for these cases and discussed in classical
optimization texts [142]. However, these approaches cannot guarantee that an
already detected minimizer will be avoided after restarting the algorithm.

An alternative approach consists of transforming the objective function into a
new one that excludes the already detected solutions. Well-known examples of this
type are the filled functions [37]. Similar techniques have been recently developed
and successfully used with PSO [95, 100]. The Stretching technique consists of a
two-stage transformation of the objective function [95],

F1.x/ D f .x/ C �1kx � x�k
�
1 C sign

�
f .x/ � f .x�/

	�
; (20)

F2.x/ D F1.x/ C �2

1 C sign .f .x/ � f .x�//

tanh .� .F1.x/ � F1.x�///
; (21)

where f .x/ is the original objective function, x� is the best detected solution of the
algorithm so far and,

sign.z/ D

8
<

:

�1; if z < 0;

0; if z D 0;

C1; if z > 0;

is the three-valued sign function. As soon as a local minimizer (or generally a
sub-optimal solution) is detected, the transformation F1.x/ stretches the objective
function upward, while F2.x/ transforms the detected solution x� into a local
maximizer. Under proper parameter setting, Stretching has the ability to remove
higher local minima than the detected solution x�, while leaving unchanged all
lower minima as well as the global one. This is illustrated in Fig. 6 for an
1-dimensional instance of a well-known test function. Thus, it can be very useful in
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Fig. 6 The Stretching technique applied on the 1-dimensional Rastrigin function for the local
minimizer x� D �1 and parameters �1 D �2 D 20, � D 0:1

problems with a multitude of local minima that can mislead the algorithm after its
re-initialization. Of course, if a better solution is found in a subsequent application
of the algorithm, it can simply replace x� in Eqs. (20) and (21).

However, if Stretching is applied on a global minimizer, all other minimizers
vanish. For this reason, Stretching is inappropriate for detecting multiple global
minimizers (see next section for a relevant technique that tackles this problem).
Also, similarly to its filled functions predecessors, Stretching may introduce new
local minima around the point of application x� [101]. This is also known as the
mexican hat effect and has been addressed in [153] through proper parameterization.
Naturally, the application of Stretching is not limited to the Canonical PSO. It can
be incorporated to any PSO variant or even different algorithms [42].

Detecting Multiple Minimizers
Deflection [78] is a technique that works similarly to Stretching but it has only local
effect on the objective function. Thus, it can be applied in cases where multiple
(global or local) solutions are needed. Deflection has been used with PSO with
promising results in detecting multiple global and/or local minimizers [101].

Let f .x/ be the objective function and x�
1 ; : : : ; x�

k , be k previously detected
solutions. Then, Deflection transforms the objective function as follows [101],

F .x/ D
f .x/

kQ

iD1

Ti

�
x; x�

i ; �i

	
; (22)

where Ti is defined as,



658 K. E. Parsopoulos

−2.5 −2 −1.5 −1 −0.5 0 0.5
0

100

200

300

400

500

X

f(
X

)

f(x)
F(x)

Fig. 7 The Deflection technique applied on the 1-dimensional Rastrigin function for the local
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g D 0 and parameters �1 D �g D 1

Ti

�
x; x�

i ; �i

	
D tanh

�
�i kx � x�

i k
	

; (23)

and �i are relaxation parameters, i D 1; 2; : : : ; k. The idea behind this transforma-
tion is the same as in Stretching, i.e., the transformation of detected minimizers into
local maximizers. However, Deflection changes the objective function only locally,
around the point of application. The magnitude of change depends on the parameters
�i that need proper tuning. Also, Deflection requires strictly positive objective
functions in order to achieve the desirable effect. In cases where the problem at
hand is not strictly positive, it can be simply shifted to positive values by using
f .x/ D f .x/ C c, with a sufficiently large bias c > 0, prior to the application of
Deflection.

Figure 7 illustrates Deflection for the 1-dimensional instance of the Rastrigin test
function. The mexican hat effect appears also in Deflection, although its impact can
be controlled with proper selection of the parameters �i . Moreover, Deflection can
be combined with a repulsion
technique that prevents the particles from visiting the neighborhoods of detected
solutions and possibly get trapped in the artificially introduced local minima [101,
106]. Combined with PSO, Deflection offered previously undetected solutions in
computationally demanding optimization problems [129].

Penalty Functions for Constrained Optimization Problems
Constrained optimization problems are accompanied by a set of constraints that
need to be satisfied at the final solution. In general, such a problem can be defined as,

min
x2X

f .x/ subject to Ci .x/ 6 0; i D 1; 2; : : : ; k; (24)
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where Ci .x/ are inequality constraints. Different forms of constraints can be
equivalently given in the form above as follows,

Ci .x/ > 0 , �Ci .x/ 6 0;

Ci .x/ D 0 , Ci .x/ > 0 and Ci .x/ 6 0:

Penalty functions have been widely used in constrained problems. The main goal is
to penalize all solutions that lie in the infeasible region, such that the algorithm will
be directed again into the search space.

The general form of a penalty function for the problem of Eq. (24) is defined as,

f .x/ D f .x/ C P .x/;

where,

P .x/ D

�
˛ > 0; if Ci .x/ > 0 for at least one i;

0; otherwise:

In the simplest case, the penalty term P .x/ can be constant for all infeasible
solutions. However, this choice is not always the most suitable one, since it neglects
the degree of violation and does not provide any information to the algorithm
regarding the distance of the infeasible solutions from the feasible ones. Thus, the
penalty term is recommended to take into consideration the number of violated
constraints as well as the degree of violation for every infeasible solution. Moreover,
the magnitude of penalties can be time-varying, starting with mild penalties in early
stages and becoming strict in the last phase of the optimization procedure.

The Canonical PSO has been combined with such a penalty function defined as
follows [98, 159],

f .x/ D f .x/ C h.t/H.x/; (25)

where,

H.x/ D

kX

iD1

� .qi .x// qi .x/�.qi .x//; (26)

and,

qi .x/ D max f0; Ci .x/g ; i D 1; 2; : : : ; k:

The weight h.t/ controls the impact of the penalty term H.x/ with the number of
iterations t . The degree of violation is accounted in qi .x/ and manipulated with
the power function �.qi .x// as well as with the multi-stage assignment function
� .qi .x//. An alternative penalty function was proposed in [23],

f .x/ D f .x/ C H.x/;
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with,

H.x/ D w1 HNVC.x/ C w2 HSVC.x/;

where HNVC.x/ is the number of violated constraints and,

HSVC.x/ D

kX

iD1

max f0; Ci .x/g ;

is the sum of violations. The weights w1 and w2 can be either fixed or time-varying
and they determine the importance of each penalty term.

The Canonical PSO updates its best positions according to Eq. (7) by comparing
objective values, solely. However, it is commonly desirable to allow only feasible
best positions in order to avoid oscillations of the particles in the infeasible space.
On top of that, the final solution shall be feasible and, thus, the particles shall
eventually concentrate their search efforts in the feasible region. Yet, in the penalty
functions defined above, it is still possible that an infeasible solution attains lower
value than a feasible one and, therefore, be preferable for inclusion in the best
positions.

In order to prevent such undesirable inclusions, a set of rules can be imposed in
the selection procedure:

1. Between feasible solutions, the one with the smallest objective value is prefer-
able.

2. Between a feasible and an infeasible solution, the feasible one is always
preferable.

3. Between two infeasible solutions, the one with the smallest penalty term H.x/ is
preferable.

These selection rules along with the penalty function approaches have been used
with PSO in various constrained optimization problems with promising results [82,
111].

Tackling Discrete Problems
The Canonical PSO was initially introduced as a continuous optimization method
and its operators are designed to work on real-valued search spaces. In Math-
ematical Programming literature, integer optimization problems can be tackled
with continuous algorithms by extending the discrete problem to a continuous one
and rounding the solutions to the nearest integers. Such approaches have been
used with Branch and Bound algorithms combined with quadratic programming
solvers [69, 79].

A similar approach was used also with PSO for solving integer problems [68].
Specifically, the particles are let to assume real vectors in their current positions,
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although they are rounded to the nearest integer vector when evaluated with
the objective function. Also, the rounded integer vectors are preferable as best
positions, since the final solution shall be integer. Putting it formally, if xi D

.xi1; xi2; : : : ; xid /> is the current position of the i -th particle then its objective
value f .xi / D f .zi / is evaluated on the integer vector zi D .zi1; zi2; : : : ; zid />

defined as,

zij D bxij C 0:5c; i 2 I; j 2 D:

Rounding has effectively worked for various problems of integer and mixed
integer type [68, 82, 92, 111]. Note that in mixed integer problems, no additional
representation scheme is required for the real and the discrete parameters. The
algorithm works by simply rounding the coordinate components that correspond
to integer variables.

Yet, if PSO’s velocities become small enough, it is probable that rounding
will result in search stagnation due to the inability of producing different integer
components. This potential deficiency can be tackled either by restarting the current
positions of the particles (and possibly also the best positions except the overall
best one) as soon as stagnation is identified or by applying gradual truncation of
the decimal digits of the position vectors of the particles as the number of iterations
increases [68].

Another problem category that involves discrete search spaces comprises of
permutation problems. In such problems, the main goal is the detection of an
optimal permutation of fixed elements (e.g., numbers, items, indices, etc.) and they
are frequently met in Combinatorics and Operations Research [11]. Such problems
can be tackled through real-valued algorithms by using the smallest position value
(SPV) representation [138]. Specifically, let,

Z D fZ1; : : : ; Zd g

be an ordered set of the elements of interest Zi , i 2 D. Then, the components of a
real-valued particle are defined as numerical weights that denote the priority of the
corresponding discrete elements according to a predefined mapping. For example,
the components of the i -th particle xi D .xi1; xi2; : : : ; xid /> can be mapped as
follows,

ordered list of (discrete) elements: Z1 Z2 � � � Zd

l l l

particle’s components (weights): xi1 xi2 � � � xid

Then, the weights (particle’s components) are sorted in ascending order and
the corresponding permutation is received by re-arranging the discrete elements
accordingly, i.e.,
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sorted particle’s components (weights): xik1 xik2 � � � xikd

l l l

corresponding permutation: Zk1 Zk2 � � � Zkd

Thus, each particle corresponds to a permutation received after sorting its com-
ponents and PSO’s goal is to find the appropriate weights that produce optimal
or near-optimal permutations. The most common search space in such problems
is X D Œ0; 1	d , i.e., the weights are all assumed to lie in the range Œ0; 1	.
Obviously, there is an infinite number of weight vectors that correspond to a specific
permutation, since it depends only on the relative ordering of the weights and
not their actual values. SPV has been successfully combined with PSO in various
permutation problems [65, 103, 139, 140].

Enhanced and Specialized PSO Variants

This section is devoted to PSO variants that stemmed from the Canonical PSO
as improvements or specialized modifications for specific problem types. The
pluralism of PSO variants in literature renders a complete presentation impossible.
For this reason, a selection is made based on the novelty introduced by each method
as well as the influence for further developments. Chronological order of appearance
of the methods is partially retained.

Binary PSO

The first Binary PSO (BPSO) variant was developed in 1997 [61]. Instead of using
rounding for transforming the real-valued parameters into binary ones, the algorithm
introduced a new interpretation of the velocities. Specifically, each component of
the velocity’s vector is considered as the input of a sigmoid that determines the state
(0 or 1) of the corresponding particle’s position component. Thus, the velocity vi of
the i -th particle is updated according to Eq. (4), while the current position is updated
as follows [61],

x
.t/
ij D

(
1; if R < S

�
v

.t/
ij

�
;

0; otherwise;
(27)

for all i 2 I , j 2 D, and R � U.0; 1/ is a random variable. The sigmoid is defined
as,

S .x/ D
1

1 C exp.�x/
;

clamping the velocity in the range Œ0; 1	 so it can be translated to probability. The
rest of the algorithm follows the basic rules of the Canonical PSO.
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The algorithm was demonstrated on a set of test problems with promising results.
It also exhibits conceptual similarities with reinforcement learning approaches [73].
BPSO is still considered as the basis for the development of modern and ad hoc
binary PSO variants for specific applications [9, 14, 52, 116, 158].

Guaranteed Convergence PSO

The Guaranteed Convergence PSO (GCPSO) was introduced in 2002 [145] based
on the observation that small velocities can prohibit the convergence of the gbest
PSO model with inertia weight. This is ascribed to the cancellation of the attraction
forces of the overall best particle toward its best positions, along with small
velocities that essentially immobilize it in the long run.

The problem was solved by modifying the position update of the overall best
particle (denoted with the index g), as follows [145],

x
.tC1/
gj D p

.t/
gj C � v

.t/
gj C 
.t/.1 � 2R/; (28)

where j 2 D, 
.t/ is a scaling factor, and R � U.0; 1/ is a random variable. The rest
of the particles are updated with the standard rules of Eqs. (4) and (5). The scaling
factor is dynamically adjusted based on the number of consecutive successes and
failures in improving the overall best, i.e.,


.tC1/ D

8
<̂

:̂

2 
.t/; if m
.t/
suc > Tsuc;

0:5 
.t/; if m
.t/
fail > Tfail;


.t/; otherwise;

where m
.t/
suc and m

.t/
fail are counters of the consecutive successes and failures at itera-

tion t , respectively, and Tsuc, Tfail, are the corresponding user-defined thresholds.
The counters are reset whenever the row of consecutive successes or failures is
interrupted by a failure or success, respectively. Convergence of GCPSO was proved
and the values 
.0/ D 1, Tsuc D 15, and Tfail D 5, were recommended in [145],
where GCPSO was shown to be very promising on typical benchmark problems.

Bare Bones PSO

The Bare Bones PSO (BBPSO) was introduced in 2003 [58] as a simplification
of the Canonical PSO. Its main feature is the elimination of the velocity update
of Eq. (4) and its replacement with Gaussian sampling around the best positions.
Specifically, the current position is updated by sampling the Gaussian distribution,

x
.tC1/
ij � N

�
�

.t/
ij ; �2

ij

.t/
�

; (29)
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where,

�
.t/
ij D

1

2

�
p

.t/
gj C p

.t/
ij

�
; �2

ij

.t/
D

ˇ̌
ˇp.t/

gj � p
.t/
ij

ˇ̌
ˇ ;

and g stands for the index of the overall best particle. The rest of the Canonical
PSO’s procedures (such as best position update and boundary violations handling)
are retained.

BBPSO aimed at offering a very simple, parameter-free PSO variant. Its conver-
gence properties were studied in [10,90,115] and enhanced variants were proposed
for applications in various scientific fields [66, 164–166].

Fully Informed PSO

The Fully Informed PSO (FIPS) was introduced in 2004 [80] as a variant of the
Canonical PSO that extends the concept of neighbor influence. Specifically, in FIPS
each particle is influenced by all its neighbors and not only the best one. The
particles’ update scheme of Eqs. (4) and (5) is modified in the following update
rule,

x
.tC1/
ij D x

.t/
ij C �

�
x

.t/
ij � x

.t�1/
ij

�
C

X

k2NBi

Ck

�
p

.t/

kj � x
.t/
ij

�
; (30)

where i 2 I , j 2 D, NBi is the i -th particle’s neighborhood of size si , and Ck �

U.0; c=si / is a random variable. Adapting the analysis of [21] in FIPS, the default
parameter setting of Eq. (18) is used.

FIPS introduced a novel point of view for the concept of neighborhood. The
social influence was enhanced, providing additional attractors to the particles. The
outcome is their stochastic move around a stochastic average of the best positions
of all neighbors. However, this also implies the dependency of the algorithm’s
performance on the selected neighborhood topology. For example, in the gbest PSO
model where the whole swarm is the neighborhood of all particles, their move tends
to be nearly random [59]. A multitude of neighborhood structures (more than 1000)
were tested in [80] and interesting conclusions were derived regarding the potential
of FIPS to improve the Canonical PSO.

Quantum PSO

Quantum PSO (QPSO) was introduced in 2004 [133], putting the algorithm in a
new framework. In QPSO, the swarm is considered as a quantum system where each
particle possesses a quantum state, while moving in a Delta potential well (DPW)
toward a position p. The quantum state depends on the employed wave function.
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Borrowing from previous PSO analyses such as [21], the aforementioned
position p is defined as in Eq. (11). Depending on the considered potential,
different variants of QPSO can be defined. Three established approaches are the
following [81, 133, 135],

Delta Potential Well: x.tC1/
i D p.t/ ˙

ln
�

1
R

	

2 q ln.
p

2/





x.t/

i � p.t/




 ; (31)

Harmonic Oscillator: x.tC1/
i D p.t/ ˙

q
ln

�
1
R

	

0:47694 q




x.t/
i � p.t/




 ; (32)

Square Well: x.tC1/
i D p.t/ C

0:6574

� q
cos�1

�
˙

p
R

� 


x.t/
i � p.t/




 ; (33)

where i 2 I , R � U.0; 1/ is a random number, and � , q, are user-defined
parameters. Despite the identified parameter sensitivity of the algorithm, it was
embraced by the scientific community and extended in a number of interesting
applications [17, 22, 39, 45, 50, 76, 163].

Unified PSO

The Unified PSO (UPSO) was introduced in 2004 [102] as a PSO variant that
harnesses the gbest and lbest PSO models in a unified scheme. The motivation
behind its development lies in the good intensification (exploitation) properties of
the gbest model and the corresponding good diversification (exprolartion) properties
of the lbest model. Their combination can form variants with different trade-offs of
these two properties.

UPSO is based on the update equations of the Canonical PSO with constriction
coefficient. Specifically, let,

L.tC1/
ij D � v

.t/
ij C C1

�
p

.t/
ij � x

.t/
ij

�
C C2

�
p

.t/
gi j

� x
.t/
ij

�
; (34)

denote the velocity update of Eq. (4) for the lbest PSO model, where gi is the index
of the best neighbor of the i -th particle and j 2 D. Also, let,

G.tC1/
ij D � v

.t/
ij C C3

�
p

.t/
ij � x

.t/
ij

�
C C4

�
p

.t/
gj � x

.t/
ij

�
; (35)

be the corresponding velocity update for the gbest PSO model, i.e., g denotes the
overall best particle. Then, the basic UPSO scheme is defined as [102],

v
.tC1/
ij D uG.tC1/

ij C .1 � u/L.tC1/
ij ; (36)
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Fig. 8 The distribution of 3000 possible new positions (light grey points) of the 2-dimensional
particle xi D .0; 0/> (cross) with own best position pi D .1; 2/> (square), neighborhood’s best
position pgi D .5; �3/> (triangle), and overall best pg D .2; 5/> (circle), for different values of
u 2 Œ0; 1	. For simplicity, the velocity vector is set to vi D .0; 0/>

x
.tC1/
ij D x

.t/
ij C v

.tC1/
ij ; (37)

where i 2 I , j 2 D, and u 2 Œ0; 1	 is a user-defined parameter called
the unification factor, which controls the influence of the gbest and lbest term.
Obviously, u D 0 corresponds to the lbest model, while u D 1 corresponds to
the gbest model. All intermediate values define UPSO variants that combine the
diversification/intensification properties of the two models. Figure 8 illustrates the
distribution of new positions of a particle for different values of the unification
factor.

In addition to the main UPSO model, an alternative with increased stochasticity
was also proposed [102]. It came in two forms, namely,

v
.tC1/
ij D R uG.tC1/

ij C .1 � u/L.tC1/
ij ; (38)

which is mostly based on the lbest model, and,

v
.tC1/
ij D uG.tC1/

ij C R .1 � u/L.tC1/
ij ; (39)
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which is based on the gbest model [102]. The stochastic parameter R � N .�; �2/

is normally distributed and imitates the mutation operators in Evolutionary Algo-
rithms.

Theoretical properties of UPSO were studied in [102], while a thorough investi-
gation of its parameter setting and adaptation was offered in [104]. Its performance
has been studied on various problems [3, 38, 41, 65, 83, 84, 106, 144].

Cooperative PSO

Cooperative population-based algorithms [117] are based on the concept of co-
operation between individuals toward a common goal. Cooperation can be either
explicit through direct communication among them or implicit through a shared
memory where information is deposited. Cooperation can be considered in a multi-
or single-population framework. In the first case, each population usually operates
on a subspace of the original search space, e.g., on one coordinate direction of the
solution vector. Thus, its individuals carry partial solutions that are combined with
those of the other populations, forming complete solutions. In the second case, the
individuals usually carry complete solution information that is combined with the
rest by using special recombination schemes [117].

In the context of PSO, one of the first notable attempts to design a Cooperative
PSO (CPSO) took place in 2004 [146]. That version consists of a number d of
swarms (equal to the problem’s dimension), containing Nk particles each, k 2 D,
i.e., according to Eq. (3),

S Œ1	 D
n
A

Œ1	
1 ; : : : ; A

Œ1	
N1

o
; : : : ; S Œd 	 D

n
A

Œd	
1 ; : : : ; A

Œd	
Nd

o
:

Each swarm probes only one coordinate direction of the solution vector, applying
any PSO variant (Canonical PSO was used in the specific one). Yet, the evaluation of
the particles with the objective function requires complete d -dimensional solutions.
Thus, two main issues need to be addressed:

1. How shall particles from different swarms be selected to form complete solu-
tions?

2. How shall particles be awarded or penalized for their contribution in solutions’
quality?

The decisions on these crucial properties have direct impact on the algorithm’s
performance and, thus, require special attention.

In [146] two alternative schemes were proposed. The first scheme, denoted as
CPSO-Sk , introduced a context vector z� for the evaluation of the particles. This
vector constitutes an external memory where each swarm S Œk	 participates with its
1-dimensional overall best at the corresponding k-th direction component, i.e.,
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z� D
�

pŒ1	
g ; pŒ2	

g ; : : : ; pŒd 	
g

�
;

where pŒk	
g is the overall (1-dimensional) best of the k-th swarm [146]. Then, the

evaluation of the i -th particle of the k-th swarm is done by replacing the k-th
swarm’s best in z� with its own information, i.e.,

f
�

xŒk	
i

�
D f

�
z�

Œi;k	

�
;

where,

z�
Œi;k	 D

�
pŒ1	

g ; : : : ; pŒk�1	
g ; xŒk	

i ; pŒkC1	
g ; : : : ; pŒd 	

g

�
;

where xŒk	
i is the current position of the i -th particle of the k-th swarm, which is

under evaluation. Naturally, instead of the overall bests of the swarms, randomly
selected best positions can be used in the context vector. Also, swarms of higher
dimension can be used. However, both these alternatives can radically change
the algorithm’s performance. Obviously, the context vector z� constitutes the best
approximation of the problem’s solution with CPSO-Sk .

The second variant presented in [146], denoted as CPSO-Hk , combines CPSO-Sk

with the Canonical PSO and applies each algorithm alternatively in subsequent
iterations. In addition, information exchange between the two algorithms was con-
sidered by sharing half of the discovered solutions between them. The experimental
assessment revealed that both CPSO-Sk and CPSO-Hk are promising, opening the
ground for further developments such as the ones in [48, 136, 152, 167].

Comprehensive Learning PSO

The Comprehensive Learning PSO (CLPSO) [72] was proposed in 2006 as an
alternative for alleviating gbest PSO’s premature convergence problem, which can
be attributed to the use of the overall best position in the update equation of the
velocities. In CLPSO, each particle can use the best position of any other particle to
independently update its velocity, based on a probabilistic scheme.

Specifically, the velocity update of Eq. (4) is replaced with the following [72],

v
.t/
ij D � v

.t/
ij C C

�
pqŒi;j 	j � x

.t/
ij

�
; (40)

where j 2 D, i 2 I , and qŒi;j 	 2 I is the index of the particle that is used for
the update of the j -th component of the i -th particle’s velocity vector. Naturally,
this particle can be either the i -th particle itself or another particle from the
swarm. This decision is probabilistically made according to predefined probabilities

1; 
2; : : : ; 
d , i.e.,
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qŒi;j 	 D

�
i; if R 6 
j ;

TOURN .I 0/ ; otherwise;
for all j 2 D;

where R � U.0; 1/ is a uniformly distributed random variable, I 0 D I n fig, and
TOURN .I 0/ is an index selected from I 0 through tournament selection [72]. The
latter procedure includes the random selection of two particles from the set I 0. The
best between them, i.e., the one with smallest objective value, is the winner and
participates in the update of vij .

In case of qŒi;j 	 D i , for all j 2 D, one of the components of vij is randomly
selected and determined anew by using another particle. Also, the indices qŒi;j 	 are
updated for each particle after a number of non-improving iterations. CLPSO has
been extensively studied in [72], while a number of improvements, modifications,
and applications in various fields have been proposed in relevant literature [40, 43,
154, 161].

TRIBES

The TRIBES algorithm was proposed in 2006 [19] as a novel PSO variant with
self-adaptation capability. It is based on a special communication scheme between
neighborhoods and admits the update rules of any PSO variant. In TRIBES, the
i -th particle is called informant of the j -th particle if it shares its best position
for the update of the latter. Accordingly, a tribe can be defined as a subset of the
swarm, where each one of its members is informant of all the rest in the same tribe.
Obviously, the swarm is the union set of all tribes.

Each tribe must have at least one communication channel with another tribe.
In other words, between two particles there shall be at least one path in the
neighborhood’s graph that connects them [19]. Also, the algorithm is self-adaptive,
i.e., existing tribes can be deleted and new tribes can be generated. Hence, the
communication channels between tribes also change dynamically. The goodness
criterion for the tribes is related to the performance of their members-particles,
which are characterized as neutral if they have not improved their best position
in the last iteration, good if improvement was achieved in the last iteration, and
excellent if improvement was achieved for more than one consecutive iterations.
Accordingly, a tribe TR that contains sTR particles is characterized as follows,

TR is

(
good; if N

good
TR > R;

bad; otherwise;

where N
good
TR is the number of good particles in tribe TR, and R is a randomly

selected integer in f0; 1; : : : ; sTRg. Moreover, additional rules are applied for the
generation/deletion of particles and tribes as follows:
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1. The worst particle of the best tribe can be eliminated, inheriting its communica-
tion channels to the best particle of its tribe.

2. If a tribe consists of only one particle, it is eliminated if it has an informant with
better performance.

3. Each tribe that was characterized as “bad” generates two new particles. The
first one is randomly generated within the whole search space. The second one
is uniformly generated in the sphere with center the best position of the best
informant of the tribe’s best particle, and radius equal to the distance between
the latter and the sphere’s center.

Adaptations were recommended to occur after a number of iterations so that the al-
gorithm can deploy its dynamic [19]. Promising results were received with TRIBES
under various settings [19]. Although TRIBES is a rather controversial PSO variant,
it has contributed toward the development of self-adaptation mechanisms [25–27]
and has been applied on interesting problems [30].

Niching PSO

Niching algorithms are applied on multimodal optimization problems where the
main goal is the identification of multiple global/local minima. In such problems,
the algorithms must be capable of identifying minima and retaining them until
the end of the search. Although transformation techniques such as the ones
presented in section “Performance-Enhancing Techniques” can be used in these
cases, alternative algorithmic models that do not use external procedures have been
developed.

Two efficient Niching PSO approaches are the Speciation-based PSO
(SPSO) [94] and the Fitness Euclidean-distance Ratio PSO (FERPSO) [70]. In
SPSO, the swarm is divided into subswarms, which are considered as species
represented by the dominant (best) particle in the subswarm. A niche radius is
also specified to define the size of species. Special procedures are applied for
determining species and their seeds, while the global best particle is replaced by
the species best or species seed. Also, all particles in the same species use the same
neighborhood best at each iteration.

On the other hand, FERPSO is based on the lbest PSO model of Eqs. (4)
and (5) [70], where the neighborhood’s best pgi is taken as the particle that
maximizes the fitness Euclidean-distance ratio (FER), defined as,

FERi;k D
˛ .f .pi / � f .pk//

kpi � pkk
; k 2 I;

where the scaling factor ˛ is defined as,
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˛ D

s
dP

lD1

�
xmax

l � xmin
l

	2

f
�
pg

	
� f .pw/

;

with pg and pw being the swarm’s best and worst particles, respectively [70]. The
effectiveness of both SPSO and FERPSO has led to further enhancements such as
the ones in [71, 118, 125].

Standard PSO

The Standard PSO (SPSO) was introduced in an attempt to define a baseline for
the development and assessment of new PSO variants. Although there have been
various versions (2006, 2007, and 2011), only the latest one, SPSO-2011 [20], is
considered here since it cures a number of deficiencies identified in the previous
versions.

A characteristic feature of SPSO-2011 is the independence on the coordinate
system. Let,

P .t/
ij D x

.t/
ij C C1

�
p

.t/
ij � x

.t/
ij

�
; (41)

L.t/
ij D x

.t/
ij C C2

�
p

.t/
gi j

� x
.t/
ij

�
; (42)

with j 2 D, define two points for the i -th particle that are a little “beyond” its own
best position and its neighborhood’s best position, respectively, at iteration t . Then,
the center of gravity between the two points and the particle’s current position is
defined as,

G.t/
i D

1

3

�
x.t/

i C P .t/
i C L.t/

i

�
: (43)

A new point x0.t/
i is randomly (not necessarily uniformly) generated in the hyper-

sphere H.t/
i with center G.t/

i and radius equal to its distance from the actual x.t/
i ,

i.e.,

x0.t/
i 2 H.t/

i

�
G.t/

i ;




G.t/

i � x.t/
i






�

: (44)

Then, the update equations of SPSO-2011 are given as follows [20],

v
.tC1/
ij D � v

.t/
ij C x0.t/

ij � x
.t/
i ; (45)

x
.tC1/
ij D x

.t/
ij C v

.tC1/
ij ; (46)
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where i 2 I and j 2 D. The rest of the algorithm follows the Canonical PSO
approach. The particles are bounded in the search space according to Eq. (19). The
algorithm’s parameters were studied in [162], while a thorough theoretical analysis
was provided in [13].

Memetic PSO

The term Memetic Algorithm [85] is used to describe hybrid algorithms that consist
of population-based metaheuristics with additional local search or learning mech-
anisms. Early Memetic PSO (MPSO) schemes appeared in 2005 [74], hybridizing
PSO with the Solis and Wets local search approach. Later, different schemes were
proposed using alternative local search algorithms, such as the Random Walk with
Direction Exploitation and the Hooke and Jeeves method [108,109]. Recently, PSO
was integrated with gradient-based optimization as well as direct search approaches
in MEMPSODE, an efficient general-purpose software package [149]. Further
enhancements and applications can be found in [5, 44, 150].

Besides the choice of an appropriate local search algorithm, which is mostly
a problem-dependent decision, additional resolutions shall be made prior to the
application of MPSO [106]:

1. When to apply local search?
2. Where to apply local search?
3. What computational budget shall be devoted to local search?

A straightforward choice is the application of local search on the best positions (if
updated) and/or the current positions of the particles at each iteration, until a local
minimum is found. Naturally, this approach would require excessive computational
resources that are hardly available in practice.

For this reason, the following schemes were proposed in [108] after empirical
evaluations on established test problems:

(S1) Application of local search on the overall best position pg , whenever it
changes.

(S2) For each best position pi , i 2 I , local search is applied with a predefined
probability 
.

(S3) Local search is applied both on pg and some randomly selected best positions
pi , i 2 I .

(S4) Local search is applied on pg as well as on the best positions pi that lie in
adequate distance from pg, e.g., kpg � pi k > ", where " > 0 is a predefined
distance usually defined as a fraction of the search space diameter.

In addition, the Shannon information entropy, used as a measure of the swarm’s
information diversity, was employed in [107] along with the above schemes in order
to make swarm-level decisions on the application of local search. Further details
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and extensive results are given in [106], where it is shown that MPSO outperforms
the Canonical PSO (as expected) but also its gbest model can outperform the lbest
model of Canonical PSO. The latter result suggests that local search applied as
above can be beneficial both for PSO’s intensification and diversification properties.

Opposition-Based PSO

The opposition-based algorithms are grounded on the concept of opposite
point [120]. If x D .x1; : : : ; xd /> is a point in the search space X defined
as in Eq. (2), then its opposite is defined as a point x0 D .x0

1; : : : ; x0
d /> with

x0
j D xmin

j C xmax
j � xj , for all j 2 D. Evaluating both points simultaneously and

keeping the best one can accelerate the optimization procedure according to the
study in [120].

This scheme was recently adopted in the framework of PSO, producing the
Generalized Opposition-based PSO (GOPSO) [151]. In GOPSO, there are two
swarms, S and S 0, comprising the particles and their opposites, respectively. The
initial positions x.0/

i , i 2 I , of S are randomly initialized, while for S 0 the initial

positions x0.0/
i are obtained as follows [151],

x0.0/
ij D R

�
˛

.0/
j C ˇ

.0/
j

�
� xij ; (47)

where i 2 I , j 2 D, R � U.0; 1/, and ˛
.0/
j D xmin

j , ˇ
.0/
j D xmax

j . Subsequently,
both swarms are evaluated and merged. The N best particles are then selected to
form the initial swarm.

At each iteration, a probabilistic decision is taken. The algorithm, with a
user-defined probability 
, either chooses to update the boundaries ˛

.t/
j , ˇ

.t/
j , as

follows [151],

˛
.t/
j D min
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n
x

.t/
ij

o
; ˇ

.t/
j D max

i

n
x

.t/
ij

o
; (48)

or applies the update equations of the Canonical PSO defined in Eqs. (4) and (5). The
procedure continues with the best positions update of Eq. (7). The new overall best
undergoes also mutation, where its components are perturbed with random numbers
following a Cauchy distribution [151].

Experimental results have shown that GOPSO can be competitive to other
PSO variants [151]. A number of different opposition-based approaches have been
proposed in various application fields [28, 55, 77, 168].
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PSO in Noisy Environments

Noisy problems arise very often in engineering applications. The use of mea-
surement instruments or approximations based on inaccurate mathematical models
impose uncertainty on the objective function values. Thus, noise-tolerance is a
desirable property for metaheuristic optimization algorithms such as PSO. In [97]
the gbest PSO model was studied on a number of test problems contaminated by
Gaussian noise, exhibiting promising behavior. Various other studies followed in
subsequent years [8, 91, 119].

A common technique for tackling noisy problems is the re-evaluation of the
objective function at each point. Specifically, if the objective function is given as,

f 0.x/ D f .x/ C R;

where R is a random variable following a (usually Gaussian) distribution, then PSO
evaluates the particles by using,

F .x/ D
1

M

MX

mD1

f 0.m/
.x/;

where f 0.m/
.x/ is the m-th re-evaluation of x using f 0.x/. Re-evaluation serves

as a mean for approximating the expected value of the noisy objective function,
i.e., F .x/ � E.f 0.x//. Accuracy increases with the number M of re-evaluations,
although it also increases the computational cost.

Thus, the trade-off between better estimations of the objective values and the
corresponding computational burden shall be tuned. In such cases, specialized
techniques such as the Optimal Computing Budget Allocation (OCBA) [16] have
been used to optimally allocate the re-evaluations budget in order to provide reliable
evaluation and identification of the promising particles [91]. These techniques
can be used along with proper parameter tuning [8] or learning strategies [110]
for improved results. Also, they do not require the modification of the algo-
rithm. Alternatively, specialized operators have been proposed with remarkable
success [47].

Multiobjective PSO

Multiobjective optimization (MO) problems consist of a number of objective
functions that need to be simultaneously optimized. In contrast to the definition of
single-objective problems in Eq. (1), an MO problem is defined as the minimization
of a vector function [24],
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f.x/ D .f1.x/; f2.x/; : : : ; fK.x//> ;

possibly subject to constraints Ci .x/ 6 0, i D 1; 2; : : : ; m. Typically, the objective
functions fk.x/ can be conflicting. Thus, it is highly improbable that a single
solution that globally minimizes all of them can be found.

For this reason, the main interest in such problems is concentrated on the
detection of Pareto optimal solutions. These solutions are nondominated by any
other point in the search space, i.e., they are at least as good as any other point
for all the objectives fk.x/. Formally, if x, y, are two points in the search space
X , then f.x/ is said to dominate f.y/, and we denote f.x/ 	 f.y/, if it holds
that,

fk.x/ 6 fk.y/; for all k D 1; 2; : : : ; K;

and,

fk0.x/ < fk0.y/; for at least one k0 2 f1; 2; : : : ; Kg:

Thus, x� 2 X is a Pareto optimal point if there is no other point y 2 X such
that f.y/ 	 f.x�/. Obviously, an (even infinite) set fx�

1 ; x�
2 ; : : :g of Pareto optimal

solutions may exist. The set ff.x�
1 /; f.x�

2 /; : : :g is called the Pareto front.
There are two main approaches for tackling MO problems. The first one

aggregates the objectives into a single one and solves the problem with the typical
methodologies for single-objective optimization. The second approach requires
vector evaluated operators and it is based on the concept of Pareto dominance. In
the context of PSO, early aggregation approaches appeared in 2002 [99], where the
Canonical PSO was used for the minimization of a weighted aggregation of the
objective functions,

F .x/ D

KX

kD1

wk fk.x/;

KX

kD1

wk D 1:

Both a conventional weighted aggregation (CWA) approach with fixed weights
as well as a dynamic weighted aggregation (DWA) approach [53] were investi-
gated with promising results. Obviously, the detection of many Pareto optimal
solutions through weighted aggregation requires multiple applications of PSO,
since each run provides a single solution of F .x/. From the computational point
of view, this is a drawback since the swarms can simultaneously evolve many
solutions. Yet, it is still a popular approach in applications mostly due to its
simplicity.

A Vector Evaluated PSO (VEPSO) was also proposed in [99] and parallelized
later in [96]. VEPSO uses a number of K swarms, one for each objective fk .
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The k-th swarm Sk is evaluated only with the corresponding objective fk , k D

1; 2; : : : ; K. The swarms are updated according to the gbest model of the Canonical
PSO, although with a slight modification. Specifically, the overall best that is used
for the velocity update of the particles in the k-th swarm comes from another
swarm. Clearly, this is a migration scheme aiming at transferring information among
swarms. The donator swarm can be either a neighbor of the k-th swarm in a ring
topology scheme as the one described in section “Concept of Neighborhood” or it
can be randomly selected [99]. VEPSO was studied on standard MO benchmark
problems with promising results [96].

There is a large number of new developments and applications on multiobjective
PSO approaches in literature [1, 2, 27, 29, 32, 51, 75, 156, 160, 169]. The interested
reader can find comprehensive surveys in [105, 121].

Applications

It would be futile to even try to enumerate all applications of PSO that have
been published so far. From 2005 and on, more than 400 papers with PSO’s
applications appear every year, spanning various scientific and technological fields.
Electrical Engineering concentrates the majority of these works, especially in
the fields of power systems, control, antenna design, electromagnetics, sensors,
networks and communications. Artificial Intelligence also hosts a large number of
PSO-based applications, especially in robotics, machine learning, and data mining.
Bioinformatics and Operations Research follow closely, with numerous works in
modeling, health-care systems, scheduling, routing, supply chain management, and
forecasting.

A number of applications is cited in the previous sections. In addition, the inter-
ested reader can refer to devoted survey papers such as [112], which was probably
the first notable attempt to collect and categorize PSO’s applications. An analytical
survey was published in [127], where a huge number of PSO-based applications
was categorized along with more than 100 PSO variants. Further applications are
reported in relevant books such as [106]. The Appendix at the end of the present
work contains a number of sources for further inquiry on PSO-based developments.

Conclusions

PSO has been established as one of the most popular metaheuristic optimization
algorithms. Its popularity emanates from its nice performance and adequate simplic-
ity that renders it usable even by non-expert researchers. In the previous sections, a
number of variants and improvements were presented. This is only a small fraction
of the existing PSO-related literature, which counts thousands of papers. Thus, a
reasonable question can be put regarding the room left for further developments on
PSO. In the author’s opinion, the answer is: a lot.
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Despite the numerous research contributions, there are still many issues that need
improvement to achieve the main goal of intelligent behavior and self-adaptation.
Moreover, the evolution of computer and web technologies always introduces
new challenges on the design and development of algorithms that can take full
advantage of their properties to solve problems of increasing complexity. For
example, the GPU computing paradigm and modern multicore desktop systems can
offer computational power comparable to small- and medium-size clusters. Cloud
computing and ubuquitous computing environments are other examples. Also, new
ad hoc operators and procedures for specific problems are expected to boost PSO’s
performance.

Closing this chapter, the author would like to quote Albert Einstein’s words
to motivate new researchers toward unconventional thinking, which was the main
ingredient for the development of PSO so far:

You will never solve problems using the same thinking you created them with.

Cross-References

�Adaptive and Multilevel Metaheuristics
�Ant Colony Optimization: A Component-Wise Overview
�Hyper-heuristics
�Memetic Algorithms
�Multi-objective Optimization
�Multi-start Methods
� Parallel Metaheuristic Search

Appendix

A number of sources for further inquiry and experimentation with PSO is reported
below.
Books
[19, 34, 62–64, 86, 93, 106, 134]
Survey papers
[4, 6, 7, 35, 112, 114, 122, 123, 127, 141]
Webpages
Particle Swarm Central
http://www.particleswarm.info/

M. Clerc’s PSO page
http://clerc.maurice.free.fr/pso/

Software
PSO in C (code published in [149])
http://www.cpc.cs.qub.ac.uk/summaries/AELM_v1_0.html

PSO in Matlab

http://www.particleswarm.info/
http://clerc.maurice.free.fr/pso/
http://www.cpc.cs.qub.ac.uk/summaries/AELM_v1_0.html
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http://www.mathworks.com/matlabcentral/fileexchange/7506

http://psotoolbox.sourceforge.net/

PSO in Java
http://jswarm-pso.sourceforge.net/

http://gundog.lbl.gov/GO/jdoc/genopt/algorithm/PSOCC.html
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Abstract

This chapter presents POPMUSIC, a general decomposition-based framework
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that can be partially optimized. The basic idea is to optimize subparts of solutions
until a local optimum is reached. Implementations of the technique to various
problems show its broad applicability and efficiency for tackling especially large-
size instances.

Keywords
Decomposition algorithm � Fix-and-optimize method � Large Neighbourhood
Search � Large-scale optimization � Matheuristics � Metaheuristics

Introduction

A natural way to solve large optimization problems is to decompose them into
independent subproblems that are solved with an appropriate method. However,
such approaches may lead to solutions of moderate quality since the subproblems
might have been created in a somewhat arbitrary fashion. While it is not necessarily
easy to find an appropriate way to decompose a problem a priori, the basic idea
of Partial OPtimization Metaheuristic Under Special Intensification Conditions
(POPMUSIC) is to locally optimize subparts of a solution, a posteriori, once a
solution to the problem is available. These local optimizations are repeated until
a local optimum is found (and possibly beyond). POPMUSIC stands for “partial
optimization metaheuristic under special intensification conditions” [24]. It is a
template, or framework, for creating heuristics repeating partial optimization on
a solution. To apply this template, special conditions must be fulfilled. Among
these conditions, it is supposed that a solution is composed of parts that can be
optimized almost independently. Thus, POPMUSIC may be seen as a “general
purpose” framework which does not need too much problem-specific adaptations
if a reasonable way of decomposing a problem, or a given incumbent solution, is at
hand so that it can be readily applied to a wide spectrum of problem classes.

POPMUSIC typically applies to large-size problem instances, but the template
was also applied successfully to smaller instances. Typical real-life problems usually
contain a very large number of elements. The POPMUSIC template proposes a
solution for dealing with problem instances of that size.

Next, we describe the POPMUSIC template followed by a survey of several
successful applications. Moreover, we provide an overview on a few related
approaches and close with some conclusions and options for future research.

POPMUSIC Template

The idea of decomposing problems of large size into smaller subproblems easier to
solve is certainly very old [8]. In the context of metaheuristics and matheuristics,
this can be accomplished, for instance, by using given incumbent solutions and
optimizing parts of it. In general terms, one may distinguish soft fixing and hard
fixing to attain problems of reduced size that may be solved separately. While in
hard fixing some of the decision variables of a given problem are directly excluded
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(e.g., by fixing them to a certain value), soft fixing refers to adding, say linear,
constraints to the model to cut out all solutions from a problem that are beyond
a certain distance from a given solution. In that way, the search can be intensified
around those parts of a solution space that are not cut out.

To exemplify the POPMUSIC template in detail, we resort to the capacitated
vehicle routing problem (CVRP) as one of the first specific applications of the
template [25]. We emphasize this as POPMUSIC that can be well illustrated on the
CVRP. In its simplest version, it consists of finding a set of vehicle tours, starting
from a depot, servicing customers asking given quantities of goods and coming back
to the depot. Knowing the vehicle capacity and all distances between customers, a
set of tours, visiting each customer exactly once, is searched in such a way that the
total distance of the tours is minimized.

If a solution is available, a tour can be considered as a part of the solution. Each
tour can be interpreted as being independent from the others and can be optimized
independently. Optimizing a tour consists of finding an optimal trip (or tour) of
a traveling salesman problem (TSP). Since the number of customers on a tour of
a CVRP is limited and exact codes for the TSP are available and efficient up to
few dozens of cities and beyond [9], the optimization of single CVRP tours can be
considered as a simple task.

Now, if we consider the subset of customers delivered by a subset of tours of
a given solution, it is also possible to optimize independently the delivery of this
subset of customers. So, a subset of parts of a solution creates a subproblem that
can be optimized independently from the remaining of the problem. For a CVRP,
such a subproblem is a CVRP of reduced size.

If an optimization method is available that can treat CVRP’s with up to r

tours efficiently, larger instances can be tackled by repeating optimizations on
subproblems containing up to r tours. The POPMUSIC template suggests a tactic
for building subproblems that can be potentially improved. Instead of generating
any subproblem with r parts, as done by matheuristics or metaheuristics like large
neighborhood search (LNS), POPMUSIC introduces a notion of proximity between
parts. Subproblems are built by first selecting a part called a seed-part and r of its
closest parts. Figure 1 illustrates the principle of the generation of a subproblem
containing six tours.

Given a solution composed of p parts, there are only p subproblems composed
of r < p parts that can be so built, instead of the pŠ

.p�r/Š�rŠ
possible ones. In

contrast to the LNS template where the user must choose at each step how to
build a subproblem and when to stop the optimization process, POPMUSIC-based
approaches have a natural stopping criterion: when the p subproblems are solved
optimally or with satisfaction, the process can be stopped.

To be specific, in the POPMUSIC template, it is supposed that a solution s can
be decomposed into p parts s1; : : : ; sp and that a proximity measure between two
parts has been defined. Let U with jU j DW p be the set of parts that have not been
used as seed-part for building a subproblem. Initially, U contains all p parts and U

is empty at the end. Let m.R/ be an optimization method that allows to optimize
a subproblem R composed of r parts. With these hypothesis, the POPMUSIC
template can be expressed by Algorithm 1. (Note that in line 8, a slightly modified
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Fig. 1 For the vehicle routing problem, the definition of a part can be a vehicle tour. In this figure,
the size of the disks that represents the customers’ demand and the trips from and to the depot
(square) are not drawn. Here, the proximity between parts is measured by the distance of their
center of gravity. A subproblem is a smaller VRP composed of the customers serviced by six tours

Algorithm 1: POPMUSIC template.
Input: Initial solution s composed of p parts s1; : : : ; sp; subproblem optimization

method m; ; sub-problem size r

Output: Improved solution s

U D fs1; : : : ; spg

while U ¤ ; do
Select sg 2 U // sg: seed-part
Build subproblem R with the r closest parts to sg Optimize R with method m

if R improved then
Update solution s Remove from U the parts that do not belong to s anymore
Insert in U the parts of optimized subproblem R

else // R not improved
Remove sg of U

end
end

version of the template may be obtained as follows. If one improves the solution,
one can either remove all of the parts of s or insert them again.)

POPMUSIC can be seen from different perspectives: as mentioned above, it can
be considered as a large neighborhood search [22] or as a soft fixing approach.
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In this case, the neighborhood considered consists of finding the best way to reshape
the elements of r parts. The neighborhood is qualified as large, in contrast to local
search that modifies only few elements of a solution at each step, allowing explicitly
a complete examination of the neighborhood. When all the elements of r parts must
be optimized, it is not possible to proceed to an explicit examination of the whole
neighborhood, since its size is much too large. So, either an exact method is used,
making POPMUSIC a matheuristic (see [19]), or an approximate algorithm is used,
typically based on a metaheuristic.

To derive a specific POPMUSIC, implementation is described by means of an
explicit application in the next section.

POPMUSIC Adaptation for Location-Routing

The POPMUSIC template requires the programmer to define five components:
the initial solution, a part, the proximity between parts, the seed-part choice, and
an optimization method. This section illustrates how these components can be
implemented for a location-routing problem (LRP). Very briefly, an LRP is a vehicle
routing problem with several depots where the location of the depots must be
decided in addition to the building of vehicle tours.

Initial Solution

A key point for the treatment of large problem instances is to analyze the algorithmic
complexity of each step of the solution method. Examining the POPMUSIC
template, the first question is about the number of times the while loop at
line of Algorithm 1 is repeated. Numerical experiments on different problems
– unsupervised clustering [26], map labeling [3], location-routing [4], and berth
allocation [15, 16] – have shown that this loop is repeated a number of times
that grows quasi-linearly with the problem size. This behavior is typical for
local searches based on standard neighborhoods where the theoretical exponential
complexity is not observed. To lower the algorithmic complexity, the other steps of
the template must be carefully designed.

The step that looks most complex is naturally the optimization of subproblems
at line . Indeed, the computational time for optimizing a subproblem composed of r

parts grows very fast with r , for instance, exponentially if an exact method is used.
The user can control the computational time by modifying the unique parameter r

of the POPMUSIC template. Let us suppose that the user has fixed the value of r

to a value for which the subproblems are sufficiently large for getting solutions of
good quality while limiting the computational time of the optimization method. If
r is fixed, solving a subproblem takes a constant time – maybe large, but constant.
So, if the use of an efficient optimization method is a key point of the POPMUSIC
template, this is not an issue for limiting the algorithmic complexity.
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a b

Fig. 2 Illustration of the decomposition of a problem into
p

n clusters and building a proximity
network between the clusters. (a) Problem decomposition into clusters. (b) Building proximity
network

The choice of the seed-part can be implemented in constant time, for instance,
by making a random choice or by storing set U as a stack or a queue. So, the key
points for limiting the algorithmic complexity of a POPMUSIC implementation are
to use an appropriate technique for producing the initial solution and for building
subproblems from a seed-part. Indeed, without an appropriate data structure,
building a subproblem can take a time proportional to the problem size, leading
to a global complexity being at least quadratic.

Alvim and Taillard [4] presented how to build in O.n3=2/ a solution to a location-
routing problem while building a data structure allowing to build a subproblem
in O.r/. The idea of the construction is the following: Let us suppose that it is
possible to advise a distance measure between the entities or solution components
of the problem. For the LRP, this distance is part of the problem data: it is simply
the distance between customers. The entities of the problem are grouped into

p
n

clusters by means of a heuristic method for the p-median problem. Although being
NP-hard, the p-median problem can be approximately solved with an empirical
complexity of O..p � n C . n

p
/2/ where p is the number of desired clusters. In this

problem, the clusters are built by choosing p central elements and assigning all
remaining elements to the closest center. By choosing p D

p
n, it is possible to

cut a problem of size n into
p

n clusters containing approximately
p

n elements in
O.n3=2/. This method is illustrated in Fig. 2.

Then, all centers can be compared 2 by 2 to create proximity relations. Figure 2b
illustrates the proximity relation obtained by considering that clusters a and b are
neighbors if an entity of one of these clusters has the center of the other one as the
second closest center. Each cluster can then be decomposed into O.

p
n/ clusters

to create a total of O.n/ small clusters containing a constant number of elements.
So, it is possible to create proximity relations between every entity of a problem of
size n in O.n3=2/. In the context of the LRP, a vehicle tour can be assigned to the
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entities of a small cluster. The proximity relations can be exploited in POPMUSIC
for finding efficiently the closest r parts to a given seed-part.

However, if no versatile method for finding incumbent solutions is at hand, any
type of heuristic or even a randomized approach may be used to derive them.

Part and Subproblem Definitions

The definition of a part strongly depends on the problem under consideration
and on the procedure available for optimizing subproblems. For vehicle routing
problems, [4, 20, 25] have defined the customers serviced by a vehicle tour as a
part. This definition is justified by the fact that the subproblems built around a
seed-part are smaller VRPs or multi-depot VRPs that can be efficiently optimized
with a metaheuristic-based algorithm, like a basic tabu search or genetic algorithm
hybridized with a variable neighborhood search. Several guidelines or proposals
have been adopted for the proximity between parts: for Euclidean instances,
the distance between the center of gravity of tours can be used; generally, the
technique presented in section “Initial Solution” can be used for defining the
proximity.

Seed-Part Selection

Very few works have studied the impact of the seed-part selection procedure. In
many applications, subproblems are generated around a seed-part arbitrarily chosen
in U (next available, random one, . . . ). Preliminary results in [4] have shown that a
set U managed as a stack (last part entered in U is selected) seems to be better than
an arbitrary selection.

Empirical Complexity

In [4], problem instances 10,000 times larger than those usually treated in the
literature have been tackled. As mentioned above, the most complex part is the
generation of an initial solution in O.n3=2/. The subproblem optimization is less
complex, almost linear. Figure 3 shows the evolution of the computational effort
as a function of problem size for different POPMUSIC phases (or iterations).
The increase of computational time is higher for the steps of generating the
initial solution (solving a p-median problem with two levels, as presented in
section “Initial Solution”) than for the subproblem optimization. However, this last
phase still takes most of the computational effort, even with instances with two
millions of entities.
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Fig. 3 Evolution of the computational effort as a function of problem size for various parts of the
algorithm: building large clusters, decomposing large clusters into small ones containing subsets
of customers that can be delivered by the same vehicle, finding positions for the depots, and
optimizing subproblems

POPMUSIC Applications

While we have used the CVRP and a location-routing problem to clarify concepts, in
this section, we summarize a few additional successful applications of POPMUSIC.
Other applications not specifically mentioned refer, e.g., to the turbine runner
balancing problem [24] or the p-cable trench problem [17].

Application of POPMUSIC to Clustering

The POPMUSIC template is particularly well adapted to solve large clustering
problem instances. The goal of clustering is to create groups of entities as well
separated as possible while containing entities as homogeneous as possible. This
means that metrics are available for measuring the similarity or the dissimilarity
between elements. If the number of clusters is relatively large, using the POPMUSIC
template is interesting. In this case, a part of a solution can be constituted as the set
of entities belonging to the same cluster. The measure of the separation between
groups can be used for defining the proximity between parts.

This technique was successfully applied to unsupervised clustering with cen-
troids (sum-of-squares clustering, p-median, multisource Weber) in [26]. Figure 4
illustrates the construction of a subproblem from a solution to a p-median problem.
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Fig. 4 Building a subproblem from a seed-part in the case of a p-median problem. Clusters that
are well separated can be considered as independent and should not be involved in the same
subproblem

Application of POPMUSIC to Max Weight Stable Set Problems

The POPMUSIC template is also well suited for the search of a stable set with
maximum weight in a graph. Several practical problems can be modeled under
this form. For instance, the map labeling problem can be formulated as a stable
set with maximum weight. The problem is the following: given objects on the
Euclidean plane, one wants to place a label around them to identify them. For
instance, when drawing a map, an object can be the top of a mountain and label
the name of the mountain. The label can be placed at several predefined positions.
The problem consists of finding a position for each label in such a way that no
label partially covers another one. If it is not possible to label all objects without
superposition, it is searched to maximize the number of labels correctly placed. For
typographic reasons, a different weight is associated to each label position, reflecting
the positioning preferences or the importance of the object.

The problem can be formulated as the search of a stable set with maximum
weight in a graph. The graph is built as follows: a node is associated with every
label position, with a weight corresponding to the preference. An edge connects two
nodes if the corresponding labels are incompatible: either they are associated with
the same object (every object must be labeled at most once) or they overlap. Figure 5
illustrates the construction of a graph for labeling three objects with four possible
label positions for each of them.
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Fig. 5 Formulation of the problem of map labeling under a stable set

Applying the POPMUSIC template to this problem can be done as follows: a part
is an object to label, so, the set of all nodes representing the different possible label
positions for this object. The distance between two objects (interpreted as parts) is
the minimum number of edges needed to connect two nodes associated to labels of
the objects they identify. A subproblem is constituted by r objects for which the
label position can be modified. A subproblem must also consider other labels of the
current solution that may overlap, but without searching to modify the position of
these labels.

The optimization procedure is a re-implementation of a tabu search proposed by
[28] for which the parameters were tuned for solving at best problem instances with
few dozens of objects. [2] have shown that excellent solutions can be obtained for
problem instances with one thousand objects and that the method can still be used
for instances with millions of objects.

This work was continued by [18] for allowing the labeling of cartographic
maps containing non-punctual objects like lines (streets, rivers) or polygons (states,
countries). The subproblem optimization used in this reference is based on ejection
chains. The algorithms developed by [18] have been integrated in the QGIS open-
source software (http://www.qgis.org/en/site/).

Various problems in the domain of transportation can be formulated as a map
labeling (or a maximum weight stable set). The assignment of cruising levels of
commercial aircraft is one of them. Knowing the departure hour and horizontal
trajectory of every aircraft at a continent level, it is required to assign each of them
a cruising level in order to avoid the collision between aircraft. The label shape
is determined in this case by the possible position of the aircraft for a given time
interval. The exact position of the aircraft cannot be determined, since the departure
hour may fluctuate (traffic delay in the airport) and the weather conditions may
affect the speed and position of the aircraft (wind, clouds, storm, etc.). For a time
interval, it is required to find a level for each label in such a way that no label covers
another one.

Application of POPMUSIC to Berth Allocation Problems

The POPMUSIC template was used in [15, 16] for the dynamic berth allocation
problem with and without the consideration of tidal constraints. In those works,
the optimization procedure is an exact method, thus applying POPMUSIC as a
matheuristic.

http://www.qgis.org/en/site/
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The berth allocation problem (BAP) is a well-known optimization problem
within maritime shipping. It aims at assigning and scheduling incoming vessels to
berthing positions along the quay of a container terminal. Lalla-Ruiz and Voß[15]
propose two POPMUSIC approaches that incorporate an existing mathematical
programming formulation based on modeling the problem as a set partitioning prob-
lem. The computational experiments reveal state-of-the-art results outperforming all
previous approaches regarding solution quality.

To be specific, [15] study the application of POPMUSIC for solving the discrete
dynamic berth allocation problem (DBAP). In the DBAP, one is given a set of
incoming container vessels, N , and a set of berths, M . Each container vessel, i 2 N ,
must be assigned to an empty berth, k 2 M , within its time window (TW), Œti ; t 0

i �,
and the assigned berth time window, Œsk; ek�. A simplified assumption is that each
berth can handle at most one vessel at a time. For each container vessel, i 2 N ,
its handling time, �ik , depends on the berth k 2 M where it is assigned to, that is,
the service time of a given vessel differs from one berth to another. Moreover, some
vessels may have forbidden berths in order to model water-depth or maintenance
constraints. Finally, each vessel i 2 N has a given service priority, denoted as vi ,
according to its contractual agreement with the terminal.

A natural way to define parts is by means of the berths themselves. If a restricted
number of berths (and assigned vessels) can be handled with an exact approach,
this allows for efficient subproblem solving. Moreover, it is also easy to define the
proximity between berths, taking real distances.

An interesting observation deduced from solving the DBAP and extensions by
means of POPMUSIC also reveals some general lessons learned regarding the
definition of parts. Let us assume a problem extension as the berth allocation
problem under time-dependent limitations (BAP-TL) [16]. In this problem, in order
to assign a vessel to a berth, terminal managers might have to take into account not
only the berthing place and vessel draft but also the arrival and berthing time of an
incoming vessel while observing changing environments due to tidal changes. Note
that in the DBAP, the decisions about to which berth the vessel should be assigned
to are relevant since there are different handling times depending on the berth. This
is relaxed in the BAP-TL, i.e., all the berths provide the same handling time, having
also an important implication on the proper definition of parts. Note also that in
the BAP-TL, the berthing time is important due to the tidal constraints. Thus, it
makes sense to define the parts not necessarily following the berths delimitation,
but defining the parts as intervals of time. Numerical results are given in [16].

To end this subsection, we should point out an interesting analogy which may
be drawn between the pure (and possibly simplified) berth allocation problem and
the map labeling problem. In this case, the width of a label corresponds to the time
interval during which the vessel must be at the berth for being loaded/unloaded.
The height of the label is the vessel length. A label can be placed at different
positions along the berth. Figure 6 provides an example of the transformation of a
small problem with four vessels (represented by different colors or shades of gray)
arriving at different times and that can be placed at few different positions along a
berth.
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Fig. 6 Transformation of a berth allocation problem instance to a map labeling one

Related Approaches

For large optimization problems, it is often possible to interpret a solution as
composed of parts or chunks [27] as can also be found under the term vocabulary
building. Suppose that a solution can be represented as a set of parts as seen above,
some parts are more in relation with some other parts so that a corresponding
heuristic measure can be defined between two parts.

The corridor method (CM) has been presented by [23] as a hybrid metaheuristic,
linking mathematical programming techniques with heuristic schemes. The basic
idea of the CM relies on the use of an exact method over restricted portions of
the solution space of a given problem. Given an optimization problem, the basic
ingredients of the method are a very large feasible space and an exact method that
could easily solve the problem if the feasible space was not large.

The basic concept of a corridor is introduced to delimit a portion of the solution
space around the incumbent solution. The optimization method is then applied
within the neighborhood defined by the corridor with the aim of finding an improved
solution. Consequently, the CM defines method-based neighborhoods, in which a
neighborhood is built taking into account the method used to explore it.

As mentioned before, POPMUSIC may be seen as a soft fixing approach as does
the CM. Food for thought might be considered putting POPMUSIC into perspective
regarding other methods like large neighborhood search, adaptive randomized
decomposition, kernel search, etc. An older research which may serve as motivation
relates to solving the job shop problem by means of the shifting bottleneck heuristic
[1]. The idea of developing heuristics identifying a small/moderate size subset of
variables in order to intensify the search in a promising region of the solution space
has been used in other contexts. In the knapsack problem family, for instance, [7]
propose the idea of selecting a small subset of items (called the core) and solving
exactly a restricted problem on that subset. The use of an expanding method to
modify the size of the core during the algorithm execution is proposed by [21].
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A heuristic framework called kernel search has been proposed for the solution of
mixed integer linear problems in [5, 6]. The kernel search framework is based on
the idea of exhaustively exploring promising portions of the solution space. Kernel
search is similar to POPMUSIC since “buckets,” analogous to parts, are defined
at the beginning of the search. During the execution, the algorithm revises the
definition of the core problem, called “kernel,” by adding/removing buckets to/from
the current problem. Once the current kernel is defined, an exact method is applied
to the restricted problem.

Local branching [10] is another soft fixing technique, in which the introduction
of linear constraints is used to cut solutions from the feasible space. The feasible
space of the constrained problem includes only solutions that are not too far away
from the incumbent. When presented, local branching was used within a branch
and bound framework. A generalized local branching concept has been proposed
by [14].

Variable neighborhood decomposition search is in line with the strategy em-
ployed by POPMUSIC. Neighborhoods around an incumbent are defined using a
distance metric and explored via any method. If a local optimum better than the
incumbent is found in the current neighborhood, the neighborhood is re-centered
around the new incumbent, and the mechanism moves on to the exploration of
the new neighborhood. If no improvement occurs, the search moves to the next
neighborhood defined around the same incumbent. An interesting modification of
variable neighborhood decomposition is provided in [13], where variable neighbor-
hood search is coupled with local branching. Neighborhoods are defined imposing
linear constraints on a mixed integer linear programming model, as done in local
branching, and then explored using a general purpose solver as black box.

Fischetti et al. [11] propose a similar method called diversification, refining, and
tight-refining (DRT). It is aimed at solving problems with two-level variables, in
which fixing the value of the first-level variables leads to an easier to solve, but
still hard, subproblem. Finally, another way to see POPMUSIC is to exploit the
proximate optimality principle (POP, see, e.g., [12]). In tabu search, the POP notion
is exploited by performing a number of iterations at a given level before restoring
the best solution found to initiate the search at the next level. In that context, a level
corresponds to the optimization of a subproblem in the POPMUSIC terminology.

Conclusion

The main strengths of POPMUSIC are its simplicity, the fact that it has a unique
parameter, and its ability to solve large problem instances. So, the main effort when
implementing a POPMUSIC-based procedure is not devoted to parameter tuning as
it can be the case for other metaheuristics. But there is no free lunch. The requisite
of POPMUSIC is that an initial solution with a structure adapted to the template
must be available as well as an optimization procedure for the subproblems. These
points may make POPMUSIC less general and more problem-specific than other
metaheuristics. However, this can be outweighed by the fact that exact approaches
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may be applicable within the framework. Adapting POPMUSIC to various hard
problems which are not easy to decompose is a first research avenue.

Up to now, very few works have been devoted to study the influence of
POPMUSIC options, such as the way the seed-part is chosen or the procedure used
for optimizing subproblems. These are other promising research areas for the future.
It can also be interesting to revisit existing methods that are somewhat based on
decomposition principles under the form of the POPMUSIC template. (An example
would be the well-known Lagrangean decomposition concept.) This could lead to
simplifications and/or efficiency improvements.

The POPMUSIC template may be adapted to parallel implementations. Our
first works on the vehicle routing problem were primarily devoted to parallel
implementations of metaheuristics. A relatively easy issue is to use the few cores of
CPU in parallel. However, implementing a POPMUSIC with a number of processors
dependent on the problem size is less trivial. Another research avenue is to see how
to exploit the large number of processors of graphic process units in the context of
POPMUSIC.
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Abstract

A random-key genetic algorithm is an evolutionary metaheuristic for discrete
and global optimization. Each solution is encoded as an array of n random keys,
where a random key is a real number, randomly generated, in the continuous
interval Œ0; 1/. A decoder maps each array of random keys to a solution of the
optimization problem being solved and computes its cost. The algorithm starts
with a population of p arrays of random keys. At each iteration, the arrays are
partitioned into two sets, a smaller set of high-valued elite solutions and the
remaining nonelite solutions. All elite elements are copied, without change, to the
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next population. A small number of random-key arrays (the mutants) are added to
the population of the next iteration. The remaining elements of the population of
the next iteration are generated by combining, with the parametrized uniform
crossover of Spears and DeJong (On the virtues of parameterized uniform
crossover. In: Proceedings of the fourth international conference on genetic
algorithms, San Mateo, pp 230–236, 1991), pairs of arrays. This chapter reviews
random-key genetic algorithms and describes an effective variant called biased
random-key genetic algorithms.

Keywords
Random keys � Biased � Genetic algorithms

Introduction

Bean [6] described a new class of genetic algorithms for combinatorial optimization
problems whose solutions can be represented by a permutation. These algorithms,
called random-key genetic algorithms (RKGA), represent a solution of the optimiza-
tion problem as an array of random keys. A random key is a real number, generated
at random in the continuous interval Œ0; 1/.

A decoder is a procedure that maps an array of random keys into a solution of the
optimization problem and computes the cost of this solution. The decoder proposed
by Bean [6] simply orders the elements of the array of random keys, thus producing
a permutation corresponding to the indices of the sorted elements.

A RKGA evolves a population, or set, of p arrays of random keys applying
the Darwinian principle of survival of the fittest, where the fittest individuals (or
solutions) of a population are more likely to find a mate and pass on their genetic
material to future generations. The algorithm starts with an initial population of p

arrays of n random keys and produces a series of populations. In the k-th generation,
the p arrays of the population are partitioned into a small set of pe < p=2 arrays
corresponding to the best solutions (this set is called the elite set) and another
set with the remainder of the population (called the nonelite set). All elite arrays
are copied, unchanged, to the population of the k C 1-st generation. This elitism
characterizes the Darwinian principle in an RKGA. Next, pm arrays of random keys
are introduced into the population of the k C 1-st generation. These arrays, called
mutants or immigrants, play the same role as the mutation operators of classical
genetic algorithms, i.e., they help avoid convergence of the population to a non-
global local optimum. To complete the p elements of the population of the kC 1-st
generation, p � pe � pm arrays are generated, combining pairs of arrays from the
population of the k-th generation with a parametrized uniform crossover [59]. Let
a and b be the arrays chosen for mating and let c be the offspring produced. In the
crossover of Spears and DeJong [59], cŒi �, the i -th component of the offspring array
receives the i -th key of one of its parents. It receives the key aŒi � with probability
�a and bŒi � with probability �b D 1 � �a.
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Biased Random-Key Genetic Algorithms

As seen in section “Introduction” of this chapter, Bean’s algorithm limits itself to
elitism to simulate Darwinism. A biased random-key genetic algorithm (or BRKGA
[24]), on the other hand, not only uses elitism to simulate survival of the fittest but
also makes use of mating. A BRKGA differs from Bean’s algorithm in the way
parents are selected for crossover and how crossover is applied.

Both algorithms choose parents at random and with replacement. This way a
parent can have more than one offspring per generation. While in Bean’s algorithm
both parents are chosen from the entire population, in a BRKGA one parent is
always chosen from the elite set, while the other is chosen from the nonelite set
(or, in some cases, from the entire population). Since pe < p=2, an elite array in
a BRKGA has a probability of 1=pe of being selected for each crossover. This is
greater than 1=.p � pe/, the probability that a nonelite array has on being selected.
For the same reason, the probability that a specific elite array is chosen in a BRKGA
is greater than 1=p, the probability that a given elite array is chosen in Bean’s
algorithm.

Both algorithms combine parents a and b using parametrized uniform crossover
[59] to produce the offspring c. While in Bean’s algorithm each parent can be parent
a or b, in a BRKGA a is always the elite parent, and b is the nonelite parent. Since
�a > 1=2, in a BRKGA the offspring c has greater probability of inheriting the keys
of the elite parent, while in Bean’s algorithm this is not necessarily true.

This small difference between the two algorithms almost always results in
BRKGA outperforming Bean’s algorithm [34]. Figure 1 compares iteration count
distributions to a given target value for a BRKGA and an implementation of Bean’s
for a covering by pairs problem [7]. The figure clearly shows the dominance of the
biased variant of the RKGA over the unbiased variant on this instance and for this
target value. Though there has been at least one instance where the unbiased variant
was slightly superior to the biased variant, the dominance of the biased variant over
the unbiased variant is well established [34].

A Model for the Implementation of a BRKGA

Algorithm 1 shows a pseudo-code of a BRKGA for the minimization of f .x/, where
x 2 X and X is a discrete set of solutions and f W X ! R. This implementation is a
multi-start variant of a BRKGA where several populations are evolved in sequence
and a best solution among all in the population is returned as the output of the
algorithm. After describing the pseudo-code, we will justify its multi-start nature.

In line 2, the value f � of the best solution found is initialized to a large value,
i.e., not smaller than f .x0/, where x0 2 X is some feasible solution to the problem.
Evolution of each population is done in lines 3–28. The algorithm halts when some
stopping criterion in line 3 is satisfied. This criterion can be, for example, number
of evolved populations, total time, or quality of the best solution found.
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Fig. 1 Iteration count distributions to a given target solution value for a BRKGA and Bean’s
algorithm

In line 4, the population being evolved is initialized with p D jPj arrays of
random keys. Evolution of population P takes place in lines 5–27. This evolution
ends when a restart criterion is satisfied in line 5. This criterion can be, for example,
a maximum number of generations without improvement in the value of the best
solution in P . At each generation, or iteration, the following operations are carried
out: in line 6 all new solutions (offspring and mutants) are decoded and their costs
evaluated. Note that each decoding and evaluation in this step can be computed
simultaneously, i.e., in parallel. In line 7, population P is partitioned into two
subpopulations Pe (elite) and PNe (nonelite), where Pe is such that jPej < jPj=2

and contains jPej of the best solutions in P and PNe consists of the remaining
solutions in P , that is, PNe D P n Pe . PC is the population of the next generation.
It is initialized in line 8 with the elite solutions of the current generation. In
line 9, the mutant subpopulation Pm is generated. Each mutant is an array of n

random keys. The number of generated mutants in general is such that jPmj <

jPj=2. This subpopulation is added to population PC of the next generation in
line 10.

With jPej C jPmj arrays inserted in population PC, it is necessary to generate
jPj � jP2j � jPmj new offspring to complete the jPj arrays that form population
PC. This is done in lines 11–20. In lines 12 and 13, parents a and b are chosen,
respectively, at random from subpopulations Pe and PNe . The generation of offspring
c from parents a and b takes place in lines 14–18. A biased coin (with probability
�a > 1=2 of flipping to heads) is thrown n times. If the i -th toss is a heads, the
offspring inherits the i -th key of parent a. Otherwise, it inherits the i -th key of
parent b. After the offspring is generated, c is added to population PC in line 19.



23 Random-Key Genetic Algorithms 707

Algorithm 1: Model for biased random-key genetic algorithm with restart
BRKGA(jPj; jPej; jPmj; n; �a)
Initialize value of the best solution found: f �  1;
while stopping criterion not satisfied do

Generate a population P with n arrays of random keys;
while restart criterion not satisfied do

Evaluate the cost of each new solution in P;
Partition P into two sets: Pe and PNe;
Initialize population of next generation: PC  Pe;
Generate set Pm of mutants, each mutant with n random keys;
Add Pm to population of next generation: PC  PC [ Pm;
foreach i  1 to jPj � jPej � jPmj do

Select parent a at random from Pe;
Select parent b at random from PNe;
foreach j  1 to n do

Throw a biased coin with probability �a > 0:5 of resulting heads;
if heads then cŒj � aŒj � ;
else cŒj � bŒj �;

end
Add offspring c to population of next generation: PC  PC [ fcg;

end
Update population: P  PC;
Find best solution �C in P: �C  argminff .�/ j � 2 Pg;
if f .�C/ < f � then

��  �C;
f �  f .�C/;

end
end

end
return ��

The generation of PC ends when it consists of jPj elements. In line 21, PC is
copied to P to start a new generation. The best solution in the current population
in evolution is computed in line 22 and if its value is better than all solutions
examined so far, the solution and its cost are saved in lines 24 and 25 as �� and
f �, respectively. ��, the best solution found over all populations is returned by the
algorithm in line 29.

Restarting a Random-Key Genetic Algorithm

As with most stochastic search methods, the continuous random variable time to
target solution of a RKGA has an empirical distribution that approximates a shifted
exponential distribution. The discrete random variable iterations to target solution,
on the other hand, has an empirical shifted geometric distribution.
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Fig. 2 Iteration count distribution to target solution of a BRKGA without restart

Consider, in Fig. 2, the empirical distribution of number of iterations of a
BRKGA to find an optimal solution of instance of Steiner triple covering problem
stn243 [51].

The iterations-to-target-solution plot [1] is generated by running the BRKGA
100 times, each time using a different seed for the random number generator and
recording the number of iterations that the algorithm took to find a solution as least
as good as the target (in this case an optimal solution). The figure shows that 25% of
the runs needed no more than 55 iterations to find an optimal solution, 50% took at
most 74 iterations, and 75 % at most 245. However, 10% of the runs required more
than 4597 iterations, 5% more than 5532 iterations, 2% more than 7061, and the
longest run took 9903 iterations. This is the typical behavior of a random variable
com a shifted geometric distribution.

Let I be the random variable number of iterations to a given target solution.
For instance stn243, a visual examination of Fig. 2 suggests that Pr.I � 246/ �

1=4. Restarting the algorithm after 246 iterations and assuming independence of
the runs, Pr.I � 492 j I � 246/ � 1=4. Therefore, Pr.I � 492/ D Pr.I �
246/ � Pr.I � 492 j I � 246/ � 1=42. One can easily show, by induction, that
the probability that the algorithm will take fewer than k cycles of 246 iterations
is approximately 1=4k . For example, the probability that the algorithm with restart
will take more than 1230 iterations (five cycles of 246 iterations between restarts)
is approximately 1=45 D 1=1024 � 0:1%. This probability is considerably smaller
than the approximately 20% probability that the algorithm without restart will take
more than 1230 iterations.
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Fig. 3 Iteration count distribution to a target (optimal) solution of variants of BRKGA with and
without restart on Steiner triple covering instance stn243

The above analysis uses a restart strategy that differs slightly from the one
proposed here for random-key genetic algorithms. In the proposed strategy, similar
to the restart strategy for GRASP with path relinking proposed by Resende and
Ribeiro [50], instead of restarting each k iterations, it restarts after kr iterations
without improvement of the value of the best solution found since the previous
restart.

Figure 3 compares a BRKGA without restart with one which restarts every
246 iterations without improvement of the value of the best solution found on
Steiner triple covering instance stn243. The figure clearly shows that both
the average number of iterations to an optimum and the corresponding stan-
dard deviation are smaller in the variant with restart than in the one without
restart.

RKGA with Multiple Populations

The description of random-key genetic algorithms so far involved a single pop-
ulation. However, it is possible to implement a RKGA with more than one
population [25].

Suppose that the RKGA has � populations, P1;P2; : : : ;P� , each with p

arrays of random keys. In this case, the � populations are initially populated,
each independently of the others, with p arrays of random keys in line 4 of
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the pseudo-code of Algorithm 1, and the loop in lines 6–26 is applied to each
of these � populations. The populations exchange information every kp itera-
tions of the loop in lines 5–27 of Algorithm 1. In this exchange, the km best
solutions from each population replace the .� � 1/km worst solutions of each
population.

Specifying a RKGA

The specification of a RKGA requires defining how a solution is represented, or
encoded, how decoding is done, and what are the parameters of the algorithm.

Since each solution is represented as an array of n random keys, it is necessary
only to specify a value for n.

The decoder is a deterministic algorithm that takes as input an array of n random
keys and produces as output a solution of the optimization problem as well as its
corresponding cost. A decoder is, in general, a heuristic. If it makes use of local
search, then it is recommended but not strictly necessary that an array adjustment
procedure be specified such that when the decoder is applied to an array of random
keys corresponding to a local optimum, the decoder will produce the local optimum
without applying the local search phase of the decoder. See Resende et al. [51] for
a simple example of array adjustment.

Several parameters need to be specified. Table 1 lists these parameters and offers
value ranges which in practice have proven to be satisfactory [24].

Table 1 Parameters and recommended values

Parameter Recommended value

p: size of population p D maxf3; b�p � ncg, where �p > 0

pe : size of elite partition of population pe D maxf1; b�e � pcg, where �e 2

Œ0:10; 0:25�

pm: size of mutant partition of population pm D maxf1; b�m � pcg, where �m 2

Œ0:05; 0:20�

�a: probability of inheriting key from elite parent �a > 1=2

kr : iterations without improvement for restart kr D argmin {Pr (k iterations to target
solution) � 0:75 }

� : number of parallel populations � 2 f1; : : : ; 5g

kp : frequency for population interchange kp 2 f50; : : : ; 100g

km: number of exchanged solutions km 2 f1; 2; 3g

Stopping criterion (examples) Running time

Maximum number of iterations

Maximum number of restarts

Finding a solutions as good
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API for BRKGA

To simplify the implementation of BRKGAs, Toso and Resende [62] proposed an
application programming interface (API), or C++ library, for BRKGA. The API
is efficient and easy to use. The library is portable and automatically deals with
several aspects of the BRKGA, such as management of the population and of the
evolutionary dynamics. The API is implemented in C++ and uses an object-oriented
architecture. In systems with available OpenMP [45], the API enables parallel
decoding of random-key arrays. The user only needs to implement the decoder and
specify the stopping criteria, restart and population exchange mechanisms, as well
as the parameters of the algorithm.

The API is open source and can be downloaded from http://github.com/
rfrancotoso/brkgaAPI.

Conclusions

This chapter reviewed random-key genetic algorithms, covering both their unbiased
and the biased variants. After introducing the algorithm of Bean [6], on which
the BRKGA is based, the chapter points to two small differences between the
two variants that lead to improved performance of the BRKGA with respect to
Bean’s original random-key genetic algorithm. A model for the implementation of a
BRKGA is described, and issues such as restart and use of multiple populations are
discussed. The chapter ends by illustrating how a BRKGA is specified and presents
an C++ API for BRKGA that allows for easy implementation of the algorithm.

The BRKGA metaheuristic has been applied to many optimization problems,
such as:

• Telecommunications: Ericsson et al. [15], Buriol et al. [8], Noronha et al. [44],
Reis et al. [48], Ruiz et al. [53], Pedrola et al. [47], Goulart et al. [35], Resende
[49], Morán-Mirabal et al. [41], Pedrola et al. [46], Duarte et al. [14], and
Andrade et al. [3].

• Transportation: Buriol et al. [10], Grasas et al. [36], Stefanello et al. [60], and
Lalla-Ruiz et al. [37].

• Scheduling: Gonçalves et al. [30, 31, 32], Valente et al. [64], Valente and
Gonçalves [63], Mendes et al. [39], Tangpattanakul et al. [61], Gonçalves and
Resende [28], and Marques et al. [38].

• Packing/layout: Gonçalves [20], Gonçalves and Resende [25, 26, 27, 29].
• Clustering: Festa [16] and Andrade et al. [5].
• Covering: Breslau et al. [7] and Resende et al. [51].
• Network optimization: Andrade et al. [2, 3], Buriol et al. [9], Fontes and

Gonçalves [18, 19], Coco et al. [12], Ruiz et al. [54], and Coco et al. [13].
• Power systems: Roque et al. [52].

http://github.com/rfrancotoso/brkgaAPI
http://github.com/rfrancotoso/brkgaAPI
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• Industrial engineering: Gonçalves and Beirão [22], Gonçalves and Almeida [21],
Gonçalves and Resende [23], Moreira et al. [43], Morán-Mirabal et al. [42],
Gonçalves et al. [33], and Chan et al. [11].

• Automatic tuning of parameters in heuristics: Festa et al. [17] and Morán-
Mirabal et al. [40].

• Combinatorial auctions: Andrade et al. [4].
• Global continuous optimization: Silva et al. [55, 56, 57, 58].

Cross-References

�Biased Random-Key Genetic Progamming
�Genetic Algorithms
�GRASP
�Multi-start Methods
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It uses strategies for combining solution vectors, making limited use of ran-
domization, that have proved effective in a variety of problem settings. The
fundamental concepts and principles were first proposed in the 1960s and
1970s as an extension of mathematical relaxation techniques for combinatorial
optimization problems. Its framework is flexible, allowing the development of
implementations with varying degrees of sophistication.

This chapter provides a grounding in the scatter search methodology that will
allow readers to create successful applications of their own. To illustrate this, we
present a scatter search implementation for a NP-hard variant of the classic p-
hub median problem, for which we describe search elements, mechanisms, and
strategies to generate, combine, and improve solutions.

Keywords
Scatter search � Metaheuristic � Combinatorial optimization � p-hub

Introduction

Scatter search (SS) was conceived as an extension of a heuristic in the area of math-
ematical relaxation, which was designed for the solution of integer programming
problems: surrogate constraint relaxation. The following three operations come
from the area of mathematical relaxation, and they are the core of most evolutionary
optimization methods including SS and genetic algorithms (GAs):

• Building, maintaining, and working with a population of elements (coded as
vectors).

• Creating new elements by combining existing elements.
• Determining which elements are retained based on a measure of quality.

Two of the best-known mathematical relaxation procedures are Lagrangean
relaxation [9] and surrogate constraint relaxation [12]. While Lagrangean ap-
proaches absorb “difficult” constraints into the objective function by creating linear
combinations of them, surrogate constraint relaxations generate new constraints to
replace those considered problematic. The generation of surrogate constraints also
involves the combination of existing constraints using a vector of weights. In both
cases, these relaxation procedures search for the best combination in an iterative
manner.

Scatter search is more intimately related to surrogate relaxation procedures,
because not only surrogate relaxation includes the three operations outlined above
but also has the goal of generating information from the application of these
operations. In the case of surrogate relaxation, the goal is to generate information
that cannot be extracted from the original constraints. Scatter search takes on the
same approach, by generating information through the combination of two or more
solutions. It strategically explores the solution space of an optimization problem by
evolving a set of reference points. These points define a set, known as reference set
(RefSet), which consists of good solutions obtained by prior solving efforts.
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SS and GAs were both introduced in the seventies. While Holland [20] intro-
duced genetic algorithms and the notion of imitating nature and the “survival of the
fittest” paradigm, Glover [13] introduced scatter search as a heuristic for integer
programming that expanded on the concept of surrogate constraints as mentioned
above. Both methods fall in the category of evolutionary optimization procedures,
since they build, maintain, and evolve a set (population) of solutions throughout
the search. Although the population-based approach makes SS and GAs part of
the so-called evolutionary methods, there are fundamental differences between the
two methodologies. Typical differences between the scatter search methodology and
other evolutionary methods rely on the use of randomization and the size of the
population of solutions. Specifically, SS mainly implements deterministic strategies
to generate, combine, and improve solutions, while other evolutionary methods,
such as GAs, generally introduce random elements in their strategies. On the other
hand, in SS, the RefSet tends to be small, usually around 10 solutions, while in GAs
the population tends to be much larger, usually around 100.

The following principles can be seen as the foundations of the scatter search
methodology:

• Useful information about the characteristics of optimal solutions is typically
contained in a suitable diverse collection of elite solutions.

• This information is exploited by the combination of the elite solutions.
• The purpose of the combinations is to incorporate to the elite set both di-

versity (in terms of solutions’ attributes) and quality (in terms of objective
value).

• Search mechanisms and strategies are not limited to combinations but include
solution generation and improvement combination methods.

The scatter search framework is flexible, allowing the development of alternative
implementations with varying degrees of sophistication. It is based on the idea of
limiting the scope of the search to a selective group of combination types, as a
mechanism for controlling the number of possible combinations in a given reference
set. A comprehensive examination of this methodology can be found in the book of
Laguna and Martí in [32]. In the following subsection, we review the most relevant
recent applications to illustrate the impact of this methodology.

Past and Present

As mentioned before, scatter search was first introduced in 1977 [13] as a heuristic
for integer programming. However, it seems that it was never applied or studied
again until 1990, when it was presented at the EPFL Seminar on Operations
Research and Artificial Intelligence Search Methods (Lausanne, Switzerland). An
article based on this presentation was published in 1994 [14], in which the range
of applications was expanded to nonlinear (continuous) optimization problems,
binary and permutation problems. The algorithmic principles and the structure of the
method were finally proposed in the so-called scatter search template [15]. In a way,
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Fig. 1 Publication counts for the query “scatter search” on Google Scholar

this template was a simplification of the previous descriptions and served as the main
reference for most of the scatter search implementations up to date. There are two
important milestones in the scatter search publications since then. In 2002, a book on
this methodology was published by Kluwer [32], which included implementations
in C to help the reader to create his/her own applications. In 2006, a special issue of
the European Journal of Operational Research [1] was devoted to successful scatter
search applications.

The scatter search methodology has become the method of choice for the design
of solution procedures for many NP-hard combinatorial optimization problems. Its
use has been steadily increasing as shown in Figs. 1 and 2. Those figures show the
number of yearly publications from 1994 to 2014 on scatter search. Figure 1 shows
the number of cites or references for the query “scatter search” on Google Scholar
(http://scholar.google.com), while Fig. 2 shows the counts for the same query on
the Science Citation Index database of Thomson Reuter’s Web of Science, which
corresponds to the publications in this topic (http://thomsonreuters.com/thomson-
reuters-web-of-science/). To restrict our search, we looked up on the Scopus website
(http://www.scopus.com) the number of publications with the query “scatter search”
in the title and found that it was 298. We have shortlisted the most recent ones
(from 2012 to 2014) that refer to journal papers and deal with practical applications
solved with scatter search. Table 1 summarizes the most relevant articles classified
into six categories, according to the class of problem being solved. In particular
we consider classical problems such as TSP, VRP, and knapsack; scheduling and
sequencing problems such as flowshop, jobshop, and project scheduling; manufac-

http://scholar.google.com
http://thomsonreuters.com/thomson-reuters-web-of-science/
http://thomsonreuters.com/thomson-reuters-web-of-science/
http://www.scopus.com
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turing problems ranging from NoC mapping to coal and steel production; planning
problems such as territory design and location problems; statistics and finance
problems such as credit scoring and protein information prediction; and image
registration problems such as image registration and segmentation and craniofacial
superimposition.

Although we can consider that the scatter search methodology is nowadays well
established, and that it has been used in many applications, if we compare SS with
other metaheuristics, we can see that there is still significant room for improvement.
In particular, a Scopus search with the query “genetic algorithm” returned almost
40,000 entries, while “tabu search” gave 2,273 hits. Consequently, one of this
chapter’s goals is to trigger the interest of researchers and practitioners to apply
the scatter search methodology.

The Five Main Components

In scatter search, the search process is performed to capture information not
contained separately in the original solutions. It takes advantage of auxiliary
heuristic methods for selecting the elements to be combined and generating new
solutions. The combination strategy is devised with the belief that this information
can be better exploited when integrated rather than treated in isolation. In general,
the decision rules created from such combination strategies produce better empirical
outcomes than the standard applications of local decision rules.
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Table 1 Journal papers
published between 2012 and
2014

Classical problems

TSP [46]

VRP [2, 54, 59, 61]

Linear ordering [22]

Knapsack [36]

4-color mapping [51]

Cutwidth minimization [47]

Global optimization and black-box [23, 31]

Scheduling and sequencing

Flowshop [19, 44]

Assembly lines [39]

Jobshop [7]

Task scheduling [27, 53]

Project scheduling [55]

Manufacturing

NoC mapping [33, 34]

Aircraft conflict resolution [37, 56]

Cellular manufacturing systems [25]

Grid resources selection [4]

Coal production planning [49]

Steel industry [41]

Disassembly sequence [17]

SONET problems [3]

Environmental–economic dispatch [6]

Planning

Layout [26, 29, 30]

Transmission expansion planning [18, 43]

Commercial territory design [52]

Location [35, 42]

Statistics and finance

Credit scoring [58]

Distribution fitting [21]

Parameter determination [38]

Protein information prediction [28]

Image registration

Intensity-based image registration [57]

Image segmentation [5]

Craniofacial superimposition [24]

As mentioned, scatter search operates on a set of solutions, RefSet, combining
them to create new ones. The method basically performs iterations over the RefSet
and can be summarized in three steps: select the solutions, combine them, and
update the RefSet with the resulting solutions. As in many other metaheuristics, an
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Fig. 3 Selective scatter search scheme

improvement method, or local search, can also be applied to improve the generated
solutions. Here, the outcome of the combination method can be sent to a local search
procedure to obtain a local optima.

Although the scatter search origins are linked with the mathematical program-
ming area, in which convex combinations are very popular, convex and non-convex
combinations are used in this method to generate new solutions. The non-convex
combinations project new “centers” into regions of the solution space that are
external to the original RefSet solutions, a strategy that is based on the principle
of input diversity in the search, to avoid getting trapped in local optima.

The scatter search template provides a concise and direct description about how
to implement the methodology. Figure 3 shows the scheme of our selective scatter
search in which the improvement method is only applied at the end of the search.
The methodology basically consists of five elements or methods and their associated
strategies and may be sketched as follows:

• A diversification generation method (DGM):
The DGM can be seen as the mechanism that creates the initial set of solutions

P of an optimization problem. This is what we would call “a first generation”
in the evolutionary terminology. If the attributes of this first generation are
good, there is some confidence of getting better solutions in the following
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iterations after strategically combining these initial solutions. The DGM typically
implements frequency-based memory to generate P and employs controlled
randomization. As opposed to the GAs, which usually rely in randomization
to generate the initial population, the DGM samples the solution space in a
systematic fashion. The size of P , jP j, is denoted as P size.

• An improvement method (IM):
The IM transforms a given solution of the problem, s, into an enhanced

solution s0. Usually, both solutions are expected to be feasible, but this is not
a requirement of the methodology. The IM generally relies on local search
(LS) procedures (also known as iterative improvement procedures). As it is well
known, given s, the local search tries to improve it by making “small changes” in
its structure. These changes typically consist of adding elements to s, removing
elements from s, changing the way in which elements are grouped in s, or
changing their order, to mention a few. If an improvement is achieved in this way,
then a new solution s0 is obtained. This process of small changes is continued
until no further improvement can be obtained or a time bound is elapsed. If no
improvement of s was found, s would be the output.

• A reference set update method (RSUM):
This method builds RefSet for the first time using a reference set creation

subroutine (RSCsr) and updates RefSet during the search process. In the RSCsr,
a given solution from P enters RefSet according to its quality or diversity. Many
of the implementations of SS indicate that a good trade-off is to build 50% of
RefSet by quality criterion, and the remaining 50% by a diversity criterion, but
these proportions can be modified depending on the problem being solved.

A standard mechanism to build the initial RefSet, whose size will be denoted
by b, follows. The construction starts with the selection of the best b=2 solutions
from P . For each solution in P n RefSet, the minimum of the distances to the
solutions in RefSet is computed. Then, the solution that maximizes the minimal
distances is selected. This solution is added to RefSet and deleted from P , and the
minimal distances are updated. This process is repeated b=2 times. The resulting
reference set has b=2 high-quality solutions and b=2 diverse solutions.

The update operation consists of maintaining a record of the b best solutions
found, where the value of b is treated as a constant search parameter.

• A subset generation method (SGM):
The SGM creates subsets of two or more solutions belonging to RefSet.

These subsets will be subjected to the next SS process, the combination method.
The general SS framework considers the generation of subsets with two, three,
and four solutions but only generates a given subset if its solutions are being
used to create this subset for the first time. This situation differs from those
considered in the context of genetic algorithms, where the combinations are
typically determined by the spin of a roulette wheel and are usually restricted
to the combination of only two solutions.

• A solution combination method (SCM):
The SCM creates new solutions from any subset of solutions previously

created by the SGM. Although the process of creating new solutions that derive
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from other solutions can be achieved by a black-box procedure, it is generally
more effective to design the SCM as a problem-specific mechanism, because it is
directly related to the way we represent a solution in a problem. Depending on the
specific form of the SCM, each subset can create one or more new solutions. This
creation can be done in different ways, but the most common ones are systematic
combinations of decision rules, path-relinking, and randomization. We refer the
reader to [16, 50] for some combination methods within SS.

In this chapter, we illustrate the SS methodology by implementing its under-
lying framework to solve the uncapacitated r-allocation p-hub median problem
(UrApHMP). Although we target here a specific variant of the well-known p-hub
median problem, our results show that the scatter search methodology is well suited
for solving this type of location problems. In line with our comment above, i.e., to
encourage the reader to apply this methodology, here we can find a large family of
problems in which the application of SS can result in a promising research area.

The Uncapacitated r-Allocation p-Hub Median Problem

Let G D .V; E/ be a network with set of nodes V and set of edges E. In the
uncapacitated r-allocation p-hub median problem (UrApHMP), for each pair of
nodes i and j 2 V , there is an amount of traffic tij (generally of people or goods)
that needs to be transported using this network. The cost of sending a unit of traffic
from i to j is denoted by cij . It is assumed that direct transportation between i and
j is not possible. This well-known assumption is based on the empirical evidence
that it is not physically and/or economically viable, for example, to schedule a flight
between any two pairs of cities or to add a link between any two computers for data
transmission, since this would require a large amount of resources. Therefore, the
traffic tij is routed along a path i ! k ! l ! j , where nodes k and l 2 V are used
as intermediate points for this transportation. Examples of these intermediate nodes
are some connecting airports such as JFK in New York, ORD in Chicago, and LHR
in London; they all serve as transit points where passengers can connect from one
flight to another in order to reach their final destinations. The UrApHMP consists
of choosing a set H of nodes, (H � V , jH j D p), assigning r nodes in H to each
node, and minimizing the total transportation cost of all the traffics of the network.
The nodes in H , which can be used as intermediate transfer points between any pair
of nodes in G, are commonly called distribution centers or hub nodes. The other
nodes in the network are known as terminal nodes. For the sake of simplicity, we
call them hubs and terminals, respectively.

Three optimization subproblems arise when solving the UrApHMP: a location
problem to choose the best locations for the hubs, an assignment problem of each
terminal to r of the hubs, and a routing problem to obtain the minimum cost route
to use for transporting the traffics between any given pair of nodes. Regarding
the allocation strategy in the assignment process, the UrApHMP generalizes two
extensively studied versions of the p-hub location problem: the single and multiple



726 R. Martí et al.

versions. In the single version (r D 1), each terminal is assigned to only one of the
p hubs, thus allowing to send and receive the traffics through this hub. In contrast,
in the multiple version (r D p), each terminal can send and receive traffics through
any of the p hubs. In the version considered here, the r-allocation, each terminal is
allowed to be allocated to r of the p hubs. The motivation of this version comes from
the fact that the single allocation version is too restricted for real-world situations,
while the multiple allocation version results in high fixed costs and complicated
networks, which does not reflect the real models either. Yaman presented in [60] a
study of allocation strategies and introduced the r-allocation version of the problem.
The uncapacitated r-allocation p-hub median problem is formulated in [60] in terms
of the following variables: Given a node k 2 V , zkk D 1 if node k is set to be a
hub (i.e., if a hub is located at this node), and zkk D 0 otherwise. Given a non-hub
node i 2 V , zik D 1 if node i is assigned to node k and 0 otherwise. Finally, fijkl

is the proportion of the traffic tij from node i to node j that travels along the path
i ! k ! l ! j , where k and l are the nodes that will be used as hubs. With these
variables, the problem is formulated as follows:

Min
X

i2V

X

j 2V

X

k2V

X

l2V

tij .�cik C ˛ckl C ıclj /fijkl (1)

X

k2V

zik � r; 8i 2 V (2)

zik � zkk; 8i; k 2 V (3)
X

k2V

zkk D p (4)

X

k2V

X

l2V

fijkl D 1; 8i; j 2 V (5)

X

l2V

fijkl � zik; 8i; j; k 2 V (6)

X

k2V

fijkl � zjl ; 8i; j; l 2 V (7)

fijkl � 0; 8i; j; k; l 2 V (8)

zik 2 f0; 1g; 8i; k 2 V; (9)

where �, ˛, and ı are unit rates for collection (origin-hub), transfer (hub-hub)
and distribution (hub-destination), respectively. Note that constraints (2) ensure that
each node is allocated to at most r hubs, where hubs are selected according to (3).
In addition, constraint (4) limits to p the number of hubs. Finally, constraints (5),
(6), and (7) are associated with the routing of the traffic between each pair of nodes
i; j through their corresponding hubs k; l .
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A Small Example with Real Data

With the aim of illustrating the UrApHMP in detail, we introduce a small instance
of a network with ten nodes that can be used as the input data. Table 2 contains the
traffics tij and the unitary transportation costs cij for any pair of nodes .i; j / of this
network. The number of nodes to be used as hubs, p, is an input of the problem,
as well as r , the number of hubs a given terminal can be assigned to. Assume that
p D 3 and r D 2 and that nodes 3, 6, and 8 will be used as hubs, i.e., H D f3; 6; 8g.
For any pair of nodes, for example, nodes 2 and 5, t2;5 D 18 is obtained from the
table, which means that there are 18 passengers that need to be transported from
node 2 to node 5. To compute the cost of transporting t2;5, we first need to assign
each terminal to r of the p hubs and each hub to all the hubs including itself. For
this example, let terminal 2 be assigned to hubs 3 and 6 and terminal 5 to hubs 3 and
8. If we denote by H i the set of hubs to which node i is assigned to, H 2 D f3; 6g

and H 5 D f3; 8g. Then, to transport the corresponding traffics, we need to explore
all possible paths in order to know the most inexpensive one. This information is
summarized in Table 3, where costs are separated into the three terms described
above: cik , ckl , and clj . Then, the cost is computed for each path, by applying the
unit rate coefficients � D 3, ˛ D 0:75, and ı D 2. As can be seen in this table,
path 2 ! 6 ! 3 ! 5 is the one with the minimum transportation cost (73.25).

Table 2 Example of a traffic and cost matrices derived from an AP instance

i; j 1 2 3 4 5 6 7 8 9 10

1 75 37 55 19 20 18 57 17 19 16

2 26 38 25 27 18 23 38 20 12 17

3 67 39 51 22 24 21 71 20 23 19

4 17 33 19 25 16 23 40 23 11 19

tij 5 17 25 21 19 23 18 73 20 24 19

6 12 18 12 16 11 17 37 22 10 18

7 82 78 90 68 95 73 312 99 110 110

8 35 42 36 48 36 58 173 90 41 92

9 12 12 15 10 19 11 68 15 24 20

10 22 25 23 28 23 33 109 51 30 63

1 0 20 16 23 23 30 32 33 36 36

2 20 0 20 13 25 15 30 25 38 31

3 16 20 0 14 7 19 16 18 21 21

4 23 13 14 0 14 7 18 13 27 18

cij 5 23 25 7 14 0 16 9 13 14 14

6 30 15 19 7 16 0 16 8 25 13

7 32 30 16 18 9 16 0 9 10 7

8 33 25 18 13 13 8 9 0 18 5

9 36 38 21 27 14 25 10 18 0 14

10 36 31 21 18 14 13 7 5 14 0
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Table 3 Possible paths and their associated costs between terminals 2 and 5

Path Collect Transfer Dist. Cost computation

2 ! 3 ! 8 ! 5 20 18 13 .3 � 20/ C .0:75 � 18/ C .2 � 13/ D 99:50

2 ! 3 ! 3 ! 5 20 0 7 .3 � 20/ C .0:75 � 0/ C .2 � 7/ D 74:00

2 ! 6 ! 3 ! 5 15 19 7 .3 � 15/ C .0:75 � 19/ C .2 � 7/ D 73:25

2 ! 6 ! 8 ! 5 15 8 13 .3 � 15/ C .0:75 � 8/ C .2 � 13/ D 77:00

It is therefore the selected path to route the traffic t2;5. Note that there is a path
(2 ! 3 ! 3 ! 5) in which both terminals share a common hub, but it is not the
most inexpensive one.

The process of checking the paths between any two pair of nodes i; j 2 V needs
to be computed for any possible assignments and for any possible set of hubs, in
order to find the combination minimizing the total cost of transporting all the traffics
in the network. This massive calculation gives an idea of the combinatorial nature
of the problem. Even when the set of hubs is given, the subproblem of assignment
of terminals to hubs is also NP-hard [40].

To illustrate how large is the search space that we are exploring in this problem,
consider a medium size instance in which n D 100, p D 5, and r D 3. The
location problem, in which we have to select the 5 hubs out of the 100 nodes,
gives us 75,287,520 combinations. Then, for each combination we have to solve
the assignment problem, in which we have to assign each node to 3 of the 5 hubs
selected, giving 10 combinations for each node, which makes 950 possibilities.
Finally, for each combination, and each assignment, we have to solve the routing
problem. To do that, we have to consider that each node is assigned to 3 hubs, and,
therefore, for each pair of nodes, we have 9 routes, which makes a total of 89,100
possible routes in this network with 100 nodes. The total number of combinations,
or solutions in the search space, is therefore 75;287;520�950�89;100 D 6:3�1015.
This example also illustrates that the main source of difficulty comes from the first
problem, the location, which contributes with the largest factor in this computation.

Scatter Search for the p-Hub Problem

As described in section “The Diversification Generator Method”, and shown in
Fig. 3, the SS method starts by generating a set P of diverse solutions. Then, b

of them are selected to create RefSet. In our implementation for the UrApHMP,
we follow the standard design of selecting the best b

2
solutions in P and then

the most diverse b
2

solutions with respect to the solutions already in RefSet (see
section “Reference Set Initialization”). The main loop of the method consists of
applying the combination method to all pairs of solutions in RefSet, and update this
set with the new solutions obtained from these combinations. The method finishes
when no new solutions are added to RefSet.
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The Diversification Generator Method

Recall that three optimization subproblems arise when solving the UrApHMP. We
base our solution representation in these three subproblems: location, assignment,
and routing. Specifically, a solution s is coded as:

• An array H containing the set of nodes to be used as hubs.
• For any node i of the network, an array H i � H containing the hubs to which

node i is assigned to.
• For any given pair of nodes .i; j /, the pair of hubs that have been used to route

tij .

With this representation, it is easy to see that a straightforward approach to
construct a feasible solution for the problem is to select first the nodes to be used
as hubs, to assign then each terminal to r of the p hubs, and, finally, to route the
traffics through the network. Following this rationale, we create a population P
of feasible solutions. To do this, we have developed and tested three constructive
methods. Two of them are based on a greedy randomized construction [10,11] based
on different expressions for the evaluation of the candidate nodes to be hubs. The
third one is simply a random construction to provide diversity to P. Each hub of a
solution is selected by evaluating all nodes with respect to a greedy function g that
measures their attractiveness to be hub. Only the q elements with best g values are
placed in a restricted candidate list (RCL), where q is a search parameter. Lower q

values favor greedy selection. Then, an element in the RCL is randomly selected,
according to a uniform distribution, to become part of the solution. The values of
g are updated at each iteration to reflect the changes brought on by the selection of
previous elements.

Let h 2 V be a candidate node to be a hub. In that case, it would be used for
the transportation of the traffics among some terminals, let say the b n

p
c terminals

(i1; : : : ; ib n
p c) with the lowest assignment cost to h. We then compute g.h/ as

g.h/ D

sDb n
p cX

sD1

cost.is; h/; 8h 2 V;

where cost.i; h/ represents the assignment cost of terminal i to hub h, and can be
computed in two ways, leading to constructive methods DGM1 and DGM2.

DGM1 In this method, cost.i; h/ is computed as the cost of sending and receiving

the traffics of i through h, i.e., cost.i; h/ D cih

�!
Ti C chi

 �
Ti , where

�!
Ti D

P
j 2V tij is

the sum of all the traffics from i to all nodes j and
 �
Ti D

P
j 2V tj i is the sum of all

the traffics from all nodes j to node i .
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DGM2 In this method, cost.i; h/ is computed considering the discounting factors
that are usually present in the UrApHMP. To do this, we modify the cost expression

to cost.i; h/ D �cih

�!
Ti C

˛ C ı

2
chi

 �
Ti .

DGM3 The third method to generate solutions is based on the notion of construct-
ing solutions by simply generating random sets of p hubs. Its purpose is to create
a limited amount of solutions not guided by an evaluation function to just bring
diversity into P.

Once the p hubs are selected, the next step is to allocate r of the p hubs to each
terminal. For any terminal i , we compute the following estimation of the assignment
cost of i to a hub h as

assignment.i; h/ D cih

�!
Ti C

X

j 2V

chj tij :

Then, we assign i to the hub ha with the lowest assignment cost, and the above
expression is updated to reflect previous assignments:

assignment.i; h/ D cih

�!
Ti C

X

j 2V nH i

chj tij �
X

u2H i

ciutiu; 8h 2 H nH i :

This process is performed in a greedy way, selecting at each iteration the lowest
assignment cost. Note that the assignment expressions are estimations, because they
assume that there is only one hub h in the path between any pair of nodes i and j ,
which is not necessarily true.

Finally, we route all the traffics at their minimum cost. For each pair of nodes i

and j , we have to determine the hubs k 2 H i and l 2 H j minimizing the routing
cost of the traffic sent from i to j . In mathematical terms, given k 2 H i and l 2 H j ,
we denote as routecostij .k; l/ the cost of transporting the traffics from i to j through
hubs k and l , i.e.,

routecostij .k; l/ D tij .�cik C ˛ckl C ıclj /:

The routing cost from i to j , routecostij , is then obtained by searching the hubs
k 2 H i and l 2 H j minimizing the expression above, i.e.,

routecostij D min
k2H i ;l2H j

routecostij .k; l/:

Note that the time complexity of evaluating the routing costs if � ¤ ı is O.n2r2/,
since the path from j to i does not necessarily involve the same hubs, k and l , than
the path i ! k ! l ! j .

Once the p hubs have been located, r hubs have been assigned to each node, and
all the traffics have been routed, we have a feasible solution s for the UrApHMP. It
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is denoted as s D .H; A/, and its cost by f .s/, where H D fh1; : : : ; hpg � V is
the set of hubs in the solution and A is the matrix whose rows contain the r hubs
assigned to each node.

Reference Set Initialization

As mentioned above, to create the reference set, RefSet, the notion of best solutions
is not limited to their quality, as measured by the objective function, since it also
considers their diversity. In particular, our method first chooses b

2
solutions attending

to their quality. We simply order the solutions in P by their costs, and introduce
them, one by one, in RefSet, if there is no other solution already in RefSet with the
same cost. We stop this selection process after examining the 50% of the solutions
in P, even if those selected are less than b

2
solutions. The rest of the solutions of the

RefSet are then selected from P by a diversity criterion as follows.
Given s … RefSet and t 2 RefSet, let C D fh W h 2 Hs \ Htg be the set of

common hubs in solutions s and t . We define dH .s; t/ D p � jC j as the number
of hubs in s not present in t (and vice versa). Note that the lower the value of
dH .s; t/ is, the closer s and t are. To select the solution s 2 P to be included in
RefSet, we define dist.s; RefSet/ D mint2RefSet dH .s; t/. This distance is computed
for all solutions in P, and the solution s� with maximum value of dist.s; RefSet/ is
introduced in RefSet.

The Subset Generation Method

The SGM we propose works by generating subsets defined by any two different
solutions in RefSet. To avoid the repetition of previously generated subsets in
previous iterations, each subset is generated only if at least one of its solutions was
introduced in RefSet in the preceding iteration. Suppose that m subsets were not
considered for this reason, then the number of resulting subsets at each iteration for
which the combination method will be applied is b2�b

2
�m.

The Solution Combination Method

Other methodologies, such as genetic algorithms, base their designs on “generic”
combination procedures, also called context independent or black-box operators. On
the contrary, scatter search is based on specific combination methods that exploit
the characteristics of the problem being solved. The solutions obtained from the
combinations in each subset are stored in a set called Pool .

Let U D fh W h 2 Hs [ Htg and I D fh W h 2 Hs \ Htg. We propose two
combination methods for a pair .s; t/ of solutions in a subset. They are described in
what follows:
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• Method 1: This method is applied when jU j > p. It creates a solution with
the hubs in U . It can be considered as a “convex combination” of s and t .
In particular, it selects the p elements in U with best evaluation to be hubs,
where candidates are evaluated with the same g function introduced in the
diversification generation method.

• Method 2: This method is applied when jI j < p. It creates a solution by
including all the elements in I as hubs and selects the rest p � jI j hubs from
V n I . As in Method 1, candidate hubs are evaluated with g and the best ones
are selected in a greedy fashion. The output can be considered as a “non-convex
combination” of solutions s and t .

The Reference Set Update Method

The RefSet update operation consists of maintaining a record of the b best solutions
found so far by the procedure. The issues related to this updating function are
straightforward: All the solutions in RefSet that are worse than those in the current
Pool will be replaced by these ones, with the aim of keeping in RefSet the b best and
most different solutions found so far. Let s 2 Pool and w 2 RefSet such that the
objective function value of s is less than that of w. In this case, s will replace w if s

is different from all other solutions in RefSet. Note that the update method focuses
on quality. In other words, although RefSet was created considering both quality
and diversity, when updating it, we only consider the objective function value of the
candidate solutions obtained from the combination method. In particular, once all
the combinations have been performed and the new solutions have been moved to
Pool , the new RefSet simply contains the best b solutions in the set formed with the
previous RefSet [ Pool . This strategy, based on quality, favors the convergence of
the method.

The Improvement Method

As mentioned in section “The Uncapacitated r-Allocation p-Hub Median Problem,”
three optimization subproblems arise when solving the UrApHMP. Since we solve
the routing subproblem optimally, we propose two improvement procedures based
on local search strategies for the other two subproblems: LSH for the hub selection
and LSA for the terminal allocations. Both are based on the local search procedures
proposed in [48].

LSH implements a classical exchange procedure in which a hub hi is re-
moved from H and a non-hub h0

i 2 NnH replaces hi , thus obtaining H 0 D

fh1; h2; : : : ; h0
i ; : : : ; hpg. When hub hi is replaced with h0

i , we have to reevaluate
the hub assignment for the vertices assigned to hi . Moreover, the routes for the
traffics are not necessarily optimal for the new set of hubs H 0, and, hence, they have
to be recomputed. The local search procedure LSH performs moves as long as the
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cost improves. We have implemented here the so-called first strategy, in which the
first improving move in the neighborhood is performed.

The local search procedure LSA is similar to LSH , but it considers
changes in the assignment of terminals to hubs. In particular, for a node
i with H i D fhi1; : : : ; hia; : : : ; hirg, this procedure exchanges an assigned
hub with a non-assigned one. In mathematical terms, we replace hia with
Nhia 2 HnH i , thus obtaining NH i D fhi1; : : : ; Nhia; : : : ; hirg. As in LSH , the
method performs moves while improving and returns the local optimum reached as
its output.

Computational Experiments

This section describes the computational experiments performed to first find the
parameter values of the scatter search method, and then study its performance,
especially with respect to previous approaches. The procedure has been imple-
mented in C using GCC 4.8.2, and the results reported in this section have been
obtained with an Intel Core i7–3770 at 3.40 GHz and 16 GB of RAM under Ubuntu
14.04 GNU/Linux – 64-bit operating system. The metrics we use to measure the
performance of the algorithms are:

• Dev: Average percentage deviation with respect to the best solution found (or
from the optimal solution, if available).

• # Best: Number of best solutions found.
• CPU: Average computing time in seconds.

We have tested our algorithms on the three sets of instances previously reported
[8, 45, 48]. The CAB (Civil Aviation Board) data set, based on airline passenger
flows among some important cities in the United States, consists of 23 instances
with 25 nodes and p D f1; : : : ; 5g and r D f1; : : : ; pg. The AP (Australian Post)
data set is based on real data from the Australian postal service. We have extended
this set by generating, from the original file, 311 instances with 40 � n � 200 and
1 � p � 20. The third data set, USA423, consists of a data file concerning 423 cities
in the United States, where real distances and passenger flows for an accumulated
3 months’ period are considered. From the original data, 30 instances have been
generated with p 2 f3; 4; 5; 6; 7g. The total set of 264 instances has been divided
into three subsets: small .25 � n � 50/, medium .55 � n � 100/, and large
.105 � n � 200/. The entire set of instances is available at www.optsicom.es.

The experiments are divided into two main blocks. The first block, described in
section “Parameter Calibration”, is devoted to study the behavior of the components
of the solution procedure, as well as to determine the best values for the search
parameters. The second block of experiments, reported in section “Comparison
with a GRASP Algorithm”, compares our procedure with the best published
methods.

www.optsicom.es
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Parameter Calibration

The first set of experiments to calibrate our method is performed on a subset of
47 instances: five instances from the CAB set with n D 25 and 42 instances with
40 � n � 200 from the AP set. We refer to these 47 instances as the training set
and to the remaining instances as the testing set.

The Size of P
First, we study the value of the parameter used in the diversification generator
method, Psize, which determines the number of solutions in P. We have tested four
values: 50, 100, 150, and 200. For each instance, we generate PSize=3 solutions
with each diversification generation method (DGM1, DGM2, and DGM3, respec-
tively). In order to evaluate DGM methods in isolation (without the combination
and improvement methods), this experiment only considers the constructive phase.
The results on the training set are shown in Table 4.

As expected (see Table 4), the best solutions in terms of quality are obtained with
P size D 200. In this case, the algorithm obtains an average percentage deviation
of 1.6% and 20 best-known solutions. The CPU time for P size D 200 is still
reasonable, with virtually no difference in small and medium instances. Although
for the large instances, the CPU values are slightly larger, we consider that the
improvement of the results deserves the CPU effort, so we set P size D 200 in
the rest of the experiments.

The Size of RefSet
In order to study the size of RefSet, b, we include all the elements of scatter
search in the algorithm except the local search procedures (to avoid the effects of
the improvement methods). Table 5 shows the results for different values of this
parameter (b D 5; 6; : : : ; 10). As it can be seen, the higher the value of b, the
better are the results. Obviously, this implies higher computing times. So, we choose
b D 6, since this value results in a good trade-off between solution quality and CPU
time.

Local Search Methods
We now study the effect of the improvement procedures described in section “The
Improvement Method”. Recall that two local searches have been proposed, one for

Table 4 Calibration of Psize

Dev (%) CPU # best

Size # inst 50 100 150 200 50 100 150 200 50 100 150 200

Small 8 3:8 2:5 0:7 1:6 0:01 0:02 0:03 0:03 0 3 5 4

Medium 27 3:8 3:9 2:6 1:4 0:08 0:16 0:24 0:33 1 4 8 14

Large 12 4:2 1:9 2:0 2:2 0:47 0:95 1:45 1:96 3 4 3 2

Summary 47 3:9 3:2 2:1 1:6 0:17 0:34 0:51 0:69 4 11 16 20
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Table 5 Calibration of b

Dev (%) CPU # best

Size # inst 5 6 7 8 9 10 5 6 7 8 9 10 5 6 7 8 9 10

Small 8 0.1 0.1 0.1 0.0 0.0 0.1 0.04 0.03 0.04 0.05 0.05 0.06 7 7 7 8 8 7

Medium 27 3.1 2.4 2.5 1.5 1.0 0.8 0.31 0.35 0.38 0.42 0.45 0.51 4 6 6 12 12 12

Large 12 1.6 1.7 1.6 0.4 0.3 0.7 1.81 1.97 2.11 2.32 2.57 2.65 3 5 6 9 10 7

Summary 47 2.2 1.8 1.8 1.0 0.7 0.6 0.65 0.71 0.77 0.84 0.92 0.98 14 18 19 29 30 26

Table 6 Comparison of strategies SSA and SSB

Dev (%) CPU # best

Size # inst SSA SSB SSA SSB SSA SSB

Small 8 0:0 0:6 0:23 0:06 8 4

Medium 27 0:0 0:1 6:32 1:01 27 17

Large 12 0:0 0:1 57:15 8:84 12 7

Summary 47 0:0 0:2 18:26 2:85 47 28

the hub selection (LSH ) and another for the terminal allocations (LSA). Although
the standard SS design specifies to apply the improvement method to all the
solutions resulting from the combination method, considering that the local searches
for the p-hub problem are quite time consuming, we limit their application to the
best solutions across all the global iterations. In particular, we only apply LSH and
LSA to the solutions in the final RefSet (i.e., just before the end of the algorithm).
To evaluate the efficiency of this selective strategy, we have studied the following
two variants:

SSA: LSH and LSA are applied to all the solutions in the final RefSet.
SSB : LSH and LSA are applied only to the best solution in the final RefSet.

Table 6 shows the results obtained on the 47 instances of the training set with
both methods. The results indicate that applying the improvement methods to all
the solutions in RefSet substantially improves their value. Variant SSA exhibits a
larger number of best solutions found compared to variant SSB . Nevertheless, this
exhaustive application of the local searches results in much higher CPU times (from
2.85 to 18.26 s in average). Despite the fact that variant SSB is not able to get some
of the best-known solutions, its average deviation is very small (from 0.1% to 0.6%).
We keep both variants in the following comparison with a previous method.

To complement the analysis above, we now explore the contribution on the
quality of the final solution of the three main methods in SS: construction,
combination, and improvement. Figure 4 shows, for six representative instances,
the value of the best solution obtained with the diversification generation method
(DGM), the value of the best solution obtained with the combination method (REF),
and the value after the application of the local search to the solutions in the final
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Fig. 4 Search profile for six different instances

Table 7 Comparison between the SS and a GRASP method

Dev (%) CPU # best

Size # inst SSA SSB GRASP SSA SSB GRASP SSA SSB GRASP

Medium 116 0:00 0:10 0:28 3:8 0:6 17:1 98 73 18

Large 48 0:00 0:09 0:31 34:3 4:5 31:6 43 21 5

Extra-large 30 0:21 4:42 4:54 679:5 91:4 607:4 19 4 11

Summary 194 0:03 0:77 0:95 115:8 15:6 112:0 160 98 34

RefSet. This clearly illustrates how the three methods contribute to reach the final
high-quality solutions.

Comparison with a GRASP Algorithm

After the calibration process described before, we now compare the performance of
our SS algorithms with the GRASP proposed in [48], which as far as we know is
the best heuristic algorithm for the UrApHMP. All the methods under comparison
are run in the same computer on the entire set of 194 instances. The results of both
scatter search variants, SSA and SSB , and the GRASP are summarized in Table 7.
This table clearly shows that our SS procedures outperform the previously proposed
GRASP method in terms of quality and number of best solution found. In particular,
both SS procedures obtain a larger number of best solutions and a lower average
deviation than GRASP. SSB is very competitive since it is able to obtain very good
solutions in short computing times.



24 Scatter Search 737

Conclusions

In this chapter, we summarize our experiences on the subject of implementing
scatter search. We have experimented with this methodology for a number of years,
and as a result of implementing different search strategies, and performing extensive
experimental testing, we have learned some valuable lessons condensed above. As
it is well known, metaheuristic methodologies are based on principles and not
necessarily on theory that can be spelled out with theorems and proofs. Hence,
to illustrate and prove the efficiency of search mechanisms, strategies, and key
elements in scatter search, we have shown how to solve an important and difficult
combinatorial optimization problem: the uncapacitated r-allocation p-hub median
problem. In particular, we describe in detail how to construct, improve, and combine
solutions for this NP-hard problem in an efficient way, i.e., with fast methods that
are able to produce high-quality solutions. These research opportunities carry with
them an emphasis on producing systematic and strategically designed rules, rather
than following the policy of relegating decisions to random choices, as often is
fashionable in evolutionary methods.

Cross-References
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�Genetic Algorithms
�Network Optimization
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Abstract

Tabu search (TS) is a solution methodology within the area of metaheuristics.
While the methodology applies to optimization problems in general, most TS
applications have been and continue to be in discrete optimization. A key and
distinguishing feature of tabu search is the use of special strategies based on
adaptive memory. The underlying philosophy is that an effective search for
optimal solutions should involve a flexible process that responds to the objective
function landscape in a manner that allows it to learn appropriate directions to
exploit specific areas of the solution space and useful departures to explore new
terrain. The adaptive memory structures of tabu search enable the implementation
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of procedures that are capable of searching effectively and produce solutions of
suitable quality within reasonable computational effort.

Keywords
Heuristic search � Metaheuristics � Optimization

Introduction

Tabu search (TS) has its origins in Fred Glover’s seminal 1977 paper Heuristics
for Integer Programming Using Surrogate Constraints. This article introduced
three key concepts: (1) scatter search, (2) oscillating assignment, and (3) strongly
determined and consistent variables. Scatter search was later developed into a full-
blown metaheuristic that is now well-established in the literature. Once tabu search
was fully developed, oscillating assignment became the TS mechanism known as
strategic oscillation. The concept of strongly determined and consistent variables
became part of the tabu search long-term memory strategies, as described below.
Without using the term tabu, the knapsack heuristic in [1] illustrates the use of
short-term memory. The tabu search name was coined in [2], where the method
was introduced as a “metaheuristic superimposed on another heuristic.” It was also
the first time that “metaheuristic” was used in the literature.

A tabu search starts from an initial solution and explores the solution space
by making transformations to move from one solution to the next. That is, TS
belongs to the family of metaheuristic methodologies that are based on single-
solution searches. This family includes methodologies such as simulated annealing
and variable neighborhood search. In contrast, genetic algorithms and scatter search
belong to population-based metaheuristics, which create, maintain, and evolve a
population of solutions as a means to explore the solution space. TS is based on the
premise that problem-solving, in order to qualify as intelligent, must incorporate
adaptive memory and responsive exploration.

The choices to determine how to transform a solution are guided by information
collected during the search through adaptive memory structures that minimize the
reliance in the sampling techniques that are typically employed by memoryless
designs. Adaptive memory contrasts with rigid memory designs characteristic of
branch and bound strategies. Responsive exploration integrates the basic principles
of intelligent search, i.e., exploiting good solution features while exploring new
promising regions. Tabu search is concerned with finding new and more effective
ways of taking advantage of the mechanisms associated with both adaptive memory
and responsive exploration.

Short-Term Memory

Tabu search can be applied directly to verbal or symbolic statements of many
kinds of decision problems, without the need to transform them into mathematical
formulations. Nevertheless, it is useful to introduce mathematical notation to express
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a broad class of these problems, as a basis for describing certain features of tabu
search. We characterize this class of problems as that of optimizing (minimizing
or maximizing) a function f .x/ subject to x 2 X , where the set X summarizes
constraints on the vector of decision variables x, including those that compel all or
some components of x to receive discrete values. The problem of interest may not
have an easy mathematical representation, but the verbal stipulations could be coded
as rules.

Tabu search begins in the same way as ordinary local or neighborhood search,
proceeding iteratively from one point (solution) to another until a chosen termi-
nation criterion is satisfied. Each solution x 2 X has an associated neighborhood
N .x/ � X , and each solution x0 2 N .x/ is reached from x by an operation called
a move. Hence, x0 is said to be a neighbor of x.

In a minimization problem, best improving refers to the strategy of identifying
x� 2 N .x/ such that f .x�/ < f .x0/ for all x0 2 N .x/. The move value is the
change in the objective function value from the current solution to the solution after
the move, i.e., v D f .x�/�f .x/. Therefore, v < 0 for improving moves and v > 0

for nonimproving moves. In steepest descent, the procedure only makes improving
moves, and it stops when no improving move is available in the neighborhood of the
current solution. That is, the best neighbor of a solution becomes the new current
solution as long as the move reduces the objective function value. In contrast, the
best-improving strategy in TS chooses the best neighbor of x� of x even when
v > 0. In spite of its attractiveness, in certain settings the best-improving strategy is
sometimes impractical because it may be computationally too expensive, as when
N .x/ is large or each element is costly to retrieve or evaluate.

The relevance of choosing good solutions from current neighborhoods is magni-
fied when the guidance mechanisms of tabu search are introduced to go beyond the
locally optimal termination point of a descent method. Thus, an important first-level
consideration for tabu search is to determine an appropriate candidate list strategy
for narrowing the examination of elements of N .x/ in order to achieve an effective
trade-off between the quality of x� and the effort expended to find it. A popular
candidate list strategy is known as the first-improving strategy. This strategy is such
that neighbors are scanned in a predetermined order and the search moves to the
first x0 2 N .x/ for which f .x0/ < f .x/. If no such a move exists, then the search
moves to the best-nonimproving move in the neighborhood.

Short-term memory functions give the search the opportunity to continue beyond
local optima, by allowing the execution of nonimproving moves coupled with the
modification of the neighborhood structure of subsequent solutions. The modified
neighborhood, denoted by N � .x/, is the result of maintaining a selective history of
the states encountered during the search.

The tabu classification serves to identify elements of N .x/ that are excluded from
N � .x/. Characterized in this way, TS may be viewed as a dynamic neighborhood
method. This means that the neighborhood of x is not a static set, but rather a set
that can change according to the history of the search. A TS process based on short-
term strategies may allow a solution x to be visited more than once, but it is likely
that the corresponding reduced neighborhood N � .x/ will be different each time.
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From a practical standpoint, the method will characteristically identify an optimal
or near-optimal solution long before a substantial portion of X is examined.

The approach of storing complete solutions (explicit memory) generally con-
sumes a massive amount of space and time when applied to each solution generated.
Therefore, instead of recording full solutions, TS memory structures are based
on recording attributes (attributive memory). In addition, short-term memory is
based on the most recent history of the search trajectory (recency-based memory).
In recency-based attributive memory, selected attributes that occur in solutions
recently visited are labeled tabu-active and moves that contain tabu-active elements,
or particular combinations of these attributes, are those that are classified tabu. This
prevents certain solutions from the recent past from belonging to N � .x/ and hence
from being revisited. Other solutions that share such tabu-active attributes are also
similarly prevented from being visited.

The number of iterations (i.e., executed moves) that an attribute remains tabu-
active is known as the tabu tenure. Tabu tenure can be static, i.e., fixed throughout the
search, or dynamic, i.e., vary either systematically or probabilistically. Aspiration
criteria are introduced in tabu search to determine when tabu activation rules can
be overridden, thus removing a tabu classification otherwise applied to a move.
The most common aspiration criterion consists of removing a tabu classification
from a trial move when the move yields a solution better than the best obtained
so far.

Example 1

The short-term memory structure of tabu search will be illustrated with the following
instance of the classical 0-1 knapsack problem:

Maximize 67x1 C 500x2 C 98x3 C 200x4 C 120x5 C 312x6 C 100x7 C 200x8 C

180x9 C 100x10

Subject to 5x1 C 45x2 C 9x3 C 19x4 C 12x5 C 32x6 C 11x7 C 23x8 C 21x9 C

14x10 6 100

x 2 f0; 1g

The initial solution is found using a greedy heuristic that consists of selecting items
(i.e., setting variable values to 1), one by one, in decreasing order of their bang-for-
buck ratio. The process ends when adding one more item exceeds the capacity of
the knapsack. The bang for buck is the ratio of profit to weight, where profits are
the objective function coefficients and weights are the constraint coefficients. For
simplicity, the variables in the example are indexed by their bang-for-buck ratio.
That is, x1 is the variable with the highest ratio and x10 is the variable with the
lowest ratio. The construction of the initial solution is summarized in Table 1.

The move mechanism is defined as changing the value of a single variable from
either zero to one or one to zero; this is also known as a “flip” move. The best-
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Table 1 Construction of
initial solution for Example 1

Item Profit Weight Ratio Chosen? Profit Weight

1 67 5 13.40 1 67 5

2 500 45 11.11 1 500 45

3 98 9 10.89 1 98 9

4 200 19 10.53 1 200 19

5 120 12 10.00 1 120 12

6 312 32 9.75 0 0

7 100 11 9.09 0 0

8 200 23 8.70 0 0

9 180 21 8.57 0 0

10 100 14 7.14 0 0

Total 985 90

Table 2 Neighborhood of
the current solution in
Example 1

No. Move Neighbor Profit Weight

1 x1 D 0 (2, 3, 4, 5) 918 85

2 x2 D 0 (1, 3, 4, 5) 485 45

3 x3 D 0 (1, 2, 4, 5) 887 81

4 x4 D 0 (1, 2, 3, 5) 785 71

5 x5 D 0 (1, 2, 3, 4) 865 78

6 x6 D 1 (1, 2, 3, 4, 5, 6) 1297 122

7 x7 D 1 (1, 2, 3, 4, 5, 7) 1085 101

8 x8 D 1 (1, 2, 3, 4, 5, 8) 1185 113

9 x9 D 1 (1, 2, 3, 4, 5, 9) 1165 111

10 x10 D 1 (1, 2, 3, 4, 5, 10) 1085 104

improving strategy is used, meaning that all moves are considered and the one
that results in the neighbor with the best objective function value is chosen. The
neighborhood of the current solution is then given in Table 2.

Since in this example the search is not allowed to visit infeasible solutions,
there is no improving move in the neighborhood of the current solution. Under this
restriction, the best move is the first in the table and consists of changing the value
of x1 from one to zero. The Neighbor column shows the indexes of the variables
that are set to one as a result of the corresponding move. The short-term memory
structure may be designed as follows:

Attribute: Index of the variable that was chosen to change values
Tabu classification: A move that includes a tabu-active variable is classified tabu
Tabu tenure: Three iterations

Using this structure, attribute 1 is declared tabu-active and therefore a move that
attempts to change the current value of x1 is classified tabu for three iterations.
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Table 3 Ten iterations of the short-term memory procedure

Iteration Tabu-active Move Solution Profit Weight

0 (1, 2, 3, 4, 5) 985 90

1 1 (2, 3, 4, 5) 918 85

2 1 7 (2, 3, 4, 5, 7) 1018 96

3 7 1 3 (2, 4, 5, 7) 920 87

4 3 7 1 5 (2, 4, 7) 800 75

5 5 3 7 8 (2, 4, 7, 8) 1000 98

6 8 5 3 7 (2, 4, 8) 900 87

7 7 8 5 3 (2, 3, 4, 8) 998 96

8 3 7 8 4 (2, 3, 8) 798 77

9 4 3 7 9 (2, 3, 8, 9) 978 98

10 9 4 3 8 (2, 3, 9) 778 75

Table 3 shows ten iterations of the procedure using the short-term memory structure
defined above.

The tabu-active column shows the indexes of the variables that are tabu-active.
Each index appears for three iterations. It starts in the first position, and it moves
one position in each iteration until it is removed from the list. The Move column
indicates the variable that has been chosen to “flip” its value. The Solution column
shows the solution after the move has been executed with the resulting profit and
weight shown in the last two columns, respectively. The best solution is found in the
second iteration and has a profit of 1018.

This example is based on very simple “flip” moves. The neighborhood defined by
the move mechanism is a design choice of critical importance for the performance
of the method. Often, the neighborhood is defined by several move types that may
vary in complexity. The attributes to be used for the tabu classification of moves
depend on those choices, and they also influence the performance of the search. For
instance, in this example, a slightly more complex move would consist of flipping
the values of two variables. Instead of 10 neighbors, this move mechanism would
generate 45 neighbors, corresponding to all combinations of variables taken two at
a time. A potential short-term memory structure for this neighborhood is as follows:

Attributes: Indexes of the variables that were chosen to change values.
Tabu classification: A move that includes at least one tabu-active variable is

classified tabu.
Tabu tenure: Three iterations for a variable flipping from 1 to 0 and two iterations

for a variable flipping from 0 to 1.
The tabu tenure recognizes that in a typical knapsack problem there will be more

variables outside the knapsack (i.e., with their values set to zero) than those inside
the knapsack (i.e., with their values set to one). Therefore, if an item is taken from
the knapsack (i.e., its corresponding variable value is switched from one to zero), the
tabu tenure keeps this item outside longer than when an item enters the knapsack.
This illustrates that the flexibility of the TS methodology allows the analyst to be
creative and take full advantage of context information.
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Example 2

Given a matrix of weights, the linear ordering problem (LOP) consists of finding
a permutation p of the columns (and rows) in order to maximize the sum of the
weights in the upper triangle. Consider the LOP instance in Table 4.

The objective function value associated with the solution p D .1; 2; 3; 4; 5; 6; 7/

is f .p/ D 78, corresponding to the sum of the 21 values in the upper triangle.
The elements in the permutation correspond to columns (and rows) of the matrix.
Suppose that a tabu search explores the solution space by moving an element p.i/

from its current position i to a position j , between elements p.j � 1/ and p.j /. In
permutation problems, these are commonly referred to as insert moves. For instance,
inserting p.6/ D 6 in position 2 results in p0 D .1; 6; 2; 3; 4; 5; 7/ with f .p0/ D 86.

Since TS determines where to move via neighborhood search, it is important to
be able to calculate move values with the fewest possible number of operations.
One naïve way of calculating a move value consists of executing the proposed
move and calculating, from scratch, the objective function of the resulting neighbor
solution. Then, the value of the move is obtained as the difference between the
objective function value of the current solution and the objective function value
that results after executing the move. In many settings, this process is inefficient and
unnecessary. Clever move value calculations can significantly improve the efficiency
of the neighborhood exploration. In the case of the LOP, the move value involves
only a portion of the entries in the column (and corresponding row) associated with
the element that is changing positions. For instance, for the insertion of p.6/ D 6 in
position 2 to transforms p into p0, only the entries in the bold rectangles in Table 5
are needed to calculate the move value v.

Table 4 Instance of the
linear ordering problem

p 1 2 3 4 5 6 7

1 0 12 5 3 1 8 3

2 6 0 3 6 4 4 2

3 8 5 0 5 7 0 3

4 �2 7 2 0 �3 6 0

5 8 0 3 �1 0 4 1

6 9 1 6 2 13 0 4

7 2 9 4 �5 8 1 0

Table 5 Data for the move
value calculation
(bold-outlined rectangles)

p 1 2 3 4 5 6 7

1 0 12 5 3 1 8 3

2 6 0 3 6 4 4 2

3 8 5 0 5 7 0 3

4 2 7 2 0 3 6 0

5 8 0 3 1 0 4 1

6 9 1 6 2 13 0 4

7 2 9 4 5 8 1 0
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The move value in this case is v D 1 � 4 C 6 � 0 C 2 � 6 C 13 � 4 D 8. The
objective function value is f .p0/ D f .p/ C v D 78 C 8 D 86. A short-term
memory structure for this problem may be defined as follows:

Attribute: Index of the element that was inserted in a new position
Tabu classification: An insertion of a tabu-active element is classified tabu
Tabu tenure: Five iterations

Note that due to the nature of the moves and the tabu classification, elements dur-
ing their tabu-active period may change positions. To illustrate this point, consider
the insertion of p.6/ D 6 in position 2 that results in p0 D .1; 6; 2; 3; 4; 5; 7/.
Element 6 becomes tabu-active, and therefore it is not allowed to participate in
insertions for the next five iterations. However, other non-tabu-active elements may
be inserted in either position 2 or position 1, causing element 6 to shift to position 3.

Long-Term Memory

In many applications, the short-term TS memory components are sufficient to
produce very high-quality solutions. However, in general, TS becomes significantly
stronger by including longer-term memory and its associated strategies. Long-term
memory plays an important role in creating the right balance between intensification
and diversification of a tabu search. Intensification strategies are based on modifying
choice rules to encourage move combinations and solution features historically
found good. They may also initiate a return to attractive regions to search them
more thoroughly. Diversification on the other hand encourages the search process to
examine unvisited regions and to generate solutions that differ in various significant
ways from those seen before.

Long-term memory is often implemented using a frequency-based approach.
Frequency-based memory provides a type of information that complements the
information provided by recency-based memory, broadening the foundation for
selecting preferred moves. Like recency, frequency often is weighted or decomposed
into subclasses by considering solution quality.

Frequencies consist of ratios, whose numerators represent either transition
counts or residence counts. A transition count is the number of iterations where
an attribute changes (enters or leaves) the solutions visited. A residence count
is the number of iterations where an attribute belongs to solutions visited. The
denominators generally represent one of three types of quantities: (1) the total
number of occurrences of all events represented by the numerators (such as the
total number of iterations), (2) the sum (or average) of the numerators, and (3) the
maximum numerator value.

The use of longer-term memory does not require long solution runs before its
benefits become visible. Often its improvements begin to be manifest in a relatively
modest length of time and can allow solution efforts to be terminated somewhat
earlier than otherwise possible, due to finding very high-quality solutions within an
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economical time span. The chance of finding still better solutions as time grows –
in the case where an optimal solution has not already been found – is enhanced by
using longer-term TS memory in addition to short-term memory.

Residence frequencies and transition frequencies sometimes convey related
information but in general carry different implications. For example, residence
measures, by contrast to transition measures, are not concerned with whether an
attribute changes in moving from somewhat inferior solutions to better solutions.
A high residence frequency may indicate that an attribute is highly attractive if the
domain consists of high-quality solutions or may indicate the opposite, if the domain
consists of low-quality solutions.

Frequency-based memory is used to define penalty and incentive values to
modify the evaluation of moves and therefore determine which moves are selected.
In a minimization problem, the modified move value function has the following
mathematical form:

v0 D v � .1 C pq/

Here, v is the original move value, p is the penalty factor, q is the frequency ratio,
and v0 is the modified move value. When p D 0, the original move value is not
modified. A value of p > 0 penalizes the move and v0 makes it less attractive. A
value of p < 0 provides an incentive, and v0 makes the move more attractive.

Long-term memory is linked to the notion of strongly determined and consistent
variables. A strongly determined variable is one that cannot change its value in a
given high-quality solution without seriously degrading quality or feasibility, while
a consistent variable is one that frequently takes on a specific value (or a highly
restricted range of values) in good solutions. The development of useful measures
of “strength” and “consistency” is critical to exploiting these notions, particularly
by accounting for trade-offs determined by context. However, straightforward uses
of frequency-based memory for keeping track of consistency, sometimes weighted
by elements of quality and influence, have produced methods with very good
performance outcomes.

For instance, a penalty/incentive function based on frequency ratios may be used
in a restarting procedure to generate initial solutions based on penalty/incentive
functions. The function may be designed to asses a penalty on consistent variables
in order to induce diversification.

Example 3

Suppose that a residency memory is added to the short-term memory TS for the
knapsack problem described above. The memory accumulates the number of times
each item is included in the knapsack. That is, the memory is a count of the number
of times that a variable takes on the value of one. To create a frequency ratio, the
numerator is defined as the number of iterations. The search is going to be restarted
from a new initial solution. Restarting means that the short-term memory will be



750 M. Laguna

Table 6 Reordering of the
variables with the modified
bang-for-buck ratios

Variable q r r 0 Order by r 0

1 0:28 13:40 9:65 6

2 1:00 11:11 0:00 1

3 0:38 10:89 6:75 3

4 0:39 10:53 6:42 4

5 0:47 10:00 5:30 10

6 0:00 9:75 9:75 7

7 0:39 9:09 5:55 5

8 0:50 8:70 4:35 9

9 0:41 8:57 5:06 8

10 0:16 7:14 6:00 2

erased and the long-term memory will be used during the construction of the new
solution. The construction is guided by the following modified bang-for-buck ratio:

r 0 D r � .1 � q/

The original bang-for-buck ratio is r and q is the frequency ratio. In this penalty
function, the implicit value of p is �1. The function penalizes items with high-
frequency ratios (i.e., the consistent variables). In this example, long-term memory
is being used to induce diversification by attempting to construct a solution that has
not been visited so far. Table 6 shows the calculation of the modified bang-for-buck
ratios for a given set of q values.

The last column in the table above shows the order in which the items will be
considered to be included in the knapsack according to the modified ratio. This
results in a solution with variables 6, 1, 3, 4, 10, and 7 set to 1. The total profit is
877 and the weight is 90. This solution, which has not been visited so far, becomes
the restarting point for the search.

Strategic Oscillation

Strategic oscillation is closely linked to the origins of tabu search and provides a
means to achieve an effective interplay between intensification and diversification
over the intermediate to long term. Strategic oscillation operates by orienting moves
in relation to the feasibility boundary, which represents a point where a search would
normally stop. Instead of stopping when this boundary is reached, however, the rules
for selecting moves are modified, to permit the region defined by the feasibility
boundary to be crossed. The approach then proceeds for a specified depth beyond the
oscillation boundary and turns around. The oscillation boundary again is approached
and crossed, this time from the opposite direction, and the method proceeds to a new
turning point.
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The process of repeatedly approaching and crossing the feasibility boundary
from different directions creates an oscillatory behavior, which gives the method its
name. Control over this behavior is established by generating modified evaluations
and rules of movement, depending on the region navigated and the direction of
search.

The implementation of strategic oscillation entails the selection of a proximity
measure and the amplitude of the oscillation. The proximity measure assigns
a numerical value to moving toward or away from the feasibility boundary.
This measure serves as guidance to create the oscillation pattern. The amplitude
determines the point at which the search is directed to turn around once it has crossed
the feasibility boundary in either direction.

Proximity measures are defined in reference to the problem constraints. For
instance, for a combinatorial optimization problem consisting of selecting k out
of a given number elements, a proximity measure t may be the difference between
the number of elements that have been selected and k. Feasible solutions are those
for which t D 0. Solutions with t > 0 have too many elements and solutions with
t < 0 have too few. Moves can be designed to keep the search at t D 0 or to create
an oscillation pattern around t D 0.

The oscillation amplitude is controlled by a number of moves m. If a move is
made that causes the search to cross the feasibility boundary, then m � 1 is the
number of additional moves that the search is allowed to make in the same direction
(i.e., moving away from the feasibility boundary) before turning around.

In combinatorial optimization problems that require the selection of k elements,
the rule to delete elements from the solution will typically be different in character
from the one used for adding elements. In other words, one rule is not simply
the inverse of the other. Rule differences are features of strategic oscillation that
provide an enhanced heuristic vitality. The application of different rules may be
accompanied by crossing a boundary to different depths on different sides. An
option is to approach and retreat from the boundary while remaining on a single
side, without crossing (i.e., electing a crossing of “zero depth”).

In both one-sided and two-sided oscillation approaches, it is frequently important
to spend additional search time in regions close to the feasibility boundary and,
especially, to spend time at the boundary itself. In problems for which feasibility is
determined by a set of constraints, vector-valued functions can be used to control
the oscillation. In this case, controlling the search by bounding this function can be
viewed as manipulating a parameterization of the constraint set.

Example 4

The feasibility boundary in the knapsack example is defined by the capacity of
the knapsack, which in the example introduced above is a total weight of 100.
To create a simple oscillation around the feasible boundary, the search is allowed
to cross to the infeasible region and m is set to 1. The proximity measure t is
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Table 7 Iterations of TS with strategic oscillation

Iteration Tabu-active Move Solution Profit Weight

0 (1, 2, 3, 4, 5) 985 90

1 6 (1, 2, 3, 4, 5, 6) 1297 122

2 6 5 (1, 2, 3, 4, 6) 1177 110

3 5 6 4 (1, 2, 3, 6) 977 91

4 4 5 6 8 (1, 2, 3, 6, 8) 1177 114

5 8 4 5 6 (1, 2, 3, 8) 865 82

6 6 8 4 9 (1, 2, 3, 8, 9) 1045 103

7 9 6 8 3 (1, 2, 8, 9) 947 94

8 3 9 6 4 (1, 2, 4, 8, 9) 1147 113

9 4 3 9 8 (1, 2, 4, 9) 947 90

10 8 4 3 3 (1, 2, 3, 4, 9) 1045 99

defined as the difference between the total weight of the items in the knapsack
and the knapsack capacity. Therefore, t > 0 indicates an infeasible solution and
t 6 0 corresponds to feasible solutions. The procedure operates with the following
rules:

• When approaching the feasibility boundary from the feasible region, select the
best non-tabu feasible move. If no feasible move is available, then select the non-
tabu move that improves profit the most

• When approaching the feasibility boundary from the infeasible region, select the
non-tabu move that removes the variable with the smallest bang-for-buck ratio.

The short-term memory structure is the same as the one defined in the Short-Term
Memory section. Therefore, the move selections have to be done by considering the
tabu classifications. Table 7 shows ten iterations of TS with strategic oscillation. The
initial solution is given by the bang-for-buck heuristic.

The oscillation can be observed in the Weight column. Every time that the weight
exceeds 100, the search turns around and moves are made to decrease the weight.
The same occurs when the weight falls below 100. It is noteworthy to discuss
the move made in the last iteration. The move is selected even though the move
is classified tabu (note that 3 appears in the tabu-active list). At iteration 10, the
initial solution is the best feasible solution found so far, and it has an objective
function value of 985. Therefore, an aspiration criterion that overrides the tabu status
of a move can be invoked (as discussed in the Short-Term Memory section). The
criterion states that the tabu classification can be overridden if the move leads to a
solution that is better than the best solution found so far. Figure 1 shows a graphical
representation of the oscillation pattern.
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Fig. 1 Strategic oscillation around the knapsack capacity of 100

Example 5

The problem of maximizing diversity deals with selecting a subset of k elements
from a given set of n elements in such a way that the diversity among the
chosen elements is maximized. The best-known problem in this class deals with
maximizing the sum of the diversity of the chosen elements. That is, if dij is
the diversity measure between elements i and j , then the problem consists of
maximizing

P

i;j 2K

dij , where K is the subset of chosen elements. The proximity

measure t may be defined as the difference between the number of elements that
have been selected and k, for an amplitude of m; t ranges between �m and m, with
t D 0 representing a feasible solution.

A swap move is defined as the exchange of an element currently in K with an
element that is not currently in K. In this context, a swap neighborhood maintains
feasibility as long as the starting solution is feasible (i.e., the solution includes k

elements). In contrast, an add/delete neighborhood will not. A strategic oscillation
may be defined as follows.

1. Construct a feasible solution K

2. Add elements j … K that increases diversity the most. Elements are added one
at a time until m is reached.

3. Delete elements j 2 K that decrease the diversity the least. Elements are deleted
one at a time until m is reached.

4. Repeat 2 and 3 until a termination criterion is satisfied.
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Short-term memory tabu structures may be embedded in this simple design in order
to avoid cycling. For instance, elements that have been added may be declared tabu-
active and are not allowed to be deleted during the next deletion cycle, and vice
versa. Consider the diversity values in Table 8 for a problem with k D 5 and n D 10.

Let’s assume that the starting solution is given by (1, 2, 3, 4, 5) with an objective
function value of 45 and let m D 2. Table 9 shows 16 iterations of the strategic
oscillation process, where a solution is defined by a set of 10 binary variables xj :

The first column (Iter) shows the iteration number, where 0 is the initial solution.
The next 10 columns show the values of the binary variables, where a value of 1
indicates that the element has been chosen. The Move column indicates the index of
the element that enters (plus sign) or leaves (minus sign) the solution. The proximity

Table 8 Instance of the
maximum diversity problem

1 2 3 4 5 6 7 8 9 10

1 4 5 0 3 2 0 2 4 2

2 7 9 2 6 4 8 4 6

3 3 4 0 8 7 6 4

4 8 7 5 5 4 1

5 4 8 6 2 1

6 6 5 4 5

7 0 6 8

8 6 1

9 3

10

Table 9 Sixteen iterations of the strategic oscillation process

Iter x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 Move t MaxSum

0 1 1 1 1 1 0 0 0 0 0 C8 0 45

1 1 1 1 1 1 0 0 1 0 0 C9 1 73

2 1 1 1 1 1 0 0 1 1 0 �1 2 99

3 0 1 1 1 1 0 0 1 1 0 �5 1 81

4 0 1 1 1 0 0 0 1 1 0 �9 0 59

5 0 1 1 1 0 0 0 1 0 0 �3 �1 39

6 0 1 0 1 0 0 0 1 0 0 C6 �2 22

7 0 1 0 1 0 1 0 1 0 0 C5 �1 40

8 0 1 0 1 1 1 0 1 0 0 C7 0 60

9 0 1 0 1 1 1 1 1 0 0 C3 1 83

10 0 1 1 1 1 1 1 1 0 0 �6 2 112

11 0 1 1 1 1 0 1 1 0 0 �8 1 84

12 0 1 1 1 1 0 1 0 0 0 �2 0 58

13 0 0 1 1 1 0 1 0 0 0 �4 �1 36

14 0 0 1 0 1 0 1 0 0 0 C9 �2 20

15 0 0 1 0 1 0 1 0 1 0 C10 �1 34

16 0 0 1 0 1 0 1 0 1 1 0 50
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measure is given in the column labeled t . The objective function value is shown
in the last column. The solution at iteration 8 is the best feasible solution, with a
MaxSum value of 60 and t D 0. Note that an aspiration criterion is being used
to override the tabu status. In particular, the tabu status of a move is overridden
if it leads to a solution with an objective function value that is the best visited so
far for the corresponding t value. For instance, element 3 is added at iteration 9
even though this element is tabu (since it was deleted in the last deletion cycle).
However, the addition of 3 results in the solution at iteration 10 that has the best
objective function value of all those solutions with t D 2 that have been visited so
far. The same logic is applied to allow the deletion of element 6 at iteration 10.

Path Relinking

A useful integration of intensification and diversification strategies occurs in the
approach called path relinking. This approach generates new solutions by exploring
trajectories that connect reference solutions — by starting from one of these
solutions, called an initiating solution, and generating a path in the neighborhood
space that leads toward the other solutions, called guiding solutions. This is
accomplished by selecting moves that introduce attributes contained in the guiding
solutions.

Path relinking is a strategy that seeks to incorporate attributes of high-quality
solutions, by creating inducements to favor these attributes in the moves selected.
However, instead of using an inducement that merely encourages the inclusion of
such attributes, the path relinking approach subordinates all other considerations to
the goal of choosing moves that introduce the attributes of the guiding solution, in
order to create a “good attribute composition” in the current solution.

The procedure, at each step, chooses the best move, according to the change
in the objective function value, from the restricted set of moves that incorporate a
maximum number of the attributes of the guiding solutions. As in other applications
of TS, aspiration criteria can override this restriction to allow other moves of
particularly high quality to be considered.

Membership in the reference set is determined by setting a threshold which is
connected to the objective function value of the best solution found during the
search. For example, reference solutions might be those whose objective function
value is within 10% of the best objective function value known so far.

Path relinking can be used to generate intensification strategies by choosing
reference solutions that lie in a common region or that share common features.
Similarly, diversification strategies based on path relinking characteristically select
reference solutions that come from different regions or that exhibit contrasting
features. The initiating solution can be used to give a beginning partial construction,
by specifying particular attributes as a basis for remaining constructive steps. Con-
structive neighborhoods can be viewed as a feasibility-restoring mechanism since
a null or partially constructed solution does not satisfy all conditions to qualify as
feasible. Similarly, path relinking can make use of destructive neighborhoods, where
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an initial solution is “overloaded” with attributes donated by the guiding solutions,
and such attributes are progressively stripped away or modified until reaching a set
with an appropriate composition. Destructive neighborhoods represent an instance
of a feasibility-restoring function, as where an excess of elements may violate
explicit problem constraints.

Path relinking consists of the following steps:

(a) Identify the neighborhood structure and associated solution attributes for path
relinking (possibly different from those of other TS strategies applied to the
problem).

(b) Select a collection of two or more reference solutions, and identify which
members will serve as the initiating solution and the guiding solution(s).
(Reference solutions can be infeasible, such as “incomplete” or “overloaded”
solution components treated by constructive or destructive neighborhoods.)

(c) Move from the initiating solution toward the guiding solution(s), generating one
or more intermediate solutions.

Example 6

Consider the two reference solutions in Table 10.
These solutions were found with a TS that used simple moves consisting of flipping
one variable at a time. Both of these solutions are feasible. Suppose that solution 2
is chosen as the initiating solution and that solution 1 is the guiding solution. The
relinking process starts by identifying the values that are common to both solutions.
These correspond to variables 2, 3, and 5. Swap moves are used during the path
relinking process in order to keep the intermediate solutions close to the feasibility
boundary. A swap in this context corresponds to adding one item to the knapsack
while taking another item out of the knapsack. This means that a variable that is set
to 1 in the initiating solution and to 0 in the guiding solution must be paired with
a variable that is set to 0 in the initiating solution and to 1 in the guiding solution.
The pairs in our example are (1, 7), (1, 9), (4, 7), and (4, 9). Table 11 shows the
intermediate solutions that result from these swaps:

The best feasible swap is (1, 7), and the search moves to the intermediate solution
with profit of 1018 and weight of 96. After the move, there is only one swap left to
reach the guiding solution, namely, (4, 9). In this case, the process produced only
one intermediate solution; however, in general, path relinking visits more solutions
during the transformation of the initiating solution into the guiding solution.

Table 10 Two reference solutions

Solution x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 Profit Weight

1 0 1 1 0 1 0 1 0 1 0 998 98

2 1 1 1 1 1 0 0 0 0 0 985 90
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Table 11 Swaps in the path relinking process of Example 6

Swap x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 Profit Weight

(1, 7) 0 1 1 1 1 0 1 0 0 0 1018 96

(1, 9) 0 1 1 1 1 0 0 0 1 0 1098 106

(4, 7) 1 1 1 0 1 0 1 0 0 0 885 82

(4, 9) 1 1 1 0 1 0 0 0 1 0 965 92

Conclusions

This chapter presented the essential elements of tabu search, namely, short-term
memory, long-term memory, strategic oscillation, and path relinking. Attention was
given to these core components of the tabu search framework for the following
reasons:

• Such a focus may help to uncover a better form for the strategies associated with
these core components.

• Weaknesses and strengths of these core components, when studied in isolation
from other ideas, may stand out more clearly, thus yielding insights into the
features that a complete approach may require to produce better methods.

• For methods which are susceptible to highly modular implementations, as
typically occurs for tabu search, simpler designs can readily be made a part of
more complex designs.

While TS implementations using a combinations of these elements are likely
to produce decent outcomes, readers are encouraged to pursue more complete
approaches by examining strategies outlined in the publications referenced below,
in particular those in the Tabu Search book [4].

A great deal remains to be learned about tabu search. Evidently, very lit-
tle is known about how human beings use memory in problem-solving. It is
not inconceivable that discoveries about effective uses of memory within search
methods will provide clues about strategies that humans skillfully employ. The
potential links between the areas of heuristic search and psychology have barely
been examined. The numerous successes of tabu search implementations provide
encouragement that such relationships might be profitable to investigate more
fully.

Cross-References

�Adaptive and Multilevel Metaheuristics
� Scatter Search
�Theory of Local search
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Abstract

Variable neighborhood search (VNS) is a metaheuristic for solving combinatorial
and global optimization problems. Its basic idea is systematic change of neigh-
borhood both within a descent phase to find a local optimum and in a perturbation
phase to get out of the corresponding valley. In this chapter we present the basic
schemes of variable neighborhood search and some of its extensions. We next
present four families of applications of VNS in which it has proved to be very
successful: (i) finding feasible solutions to large mixed-integer linear programs,
by hybridization of VNS and local branching, (ii) finding good feasible solutions
to continuous nonlinear programs, (iii) finding programs in automatic fashion
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GERAD and Ecole des Hautes Etudes Commerciales, Montréal, QC, Canada

LAMIH, University of Valenciennes, Famars, France
e-mail: nenadmladenovic12@gmail.com

© Springer International Publishing AG, part of Springer Nature 2018
R. Martí et al. (eds.), Handbook of Heuristics,
https://doi.org/10.1007/978-3-319-07124-4_19

759

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-07124-4_19&domain=pdf
mailto:pierreh@crt.umontreal.ca
mailto:nenadmladenovic12@gmail.com
https://doi.org/10.1007/978-3-319-07124-4_19


760 P. Hansen and N. Mladenović

(artificial intelligence field) by building variable neighborhood programming
methodology, and (iv) exploring graph theory in order to find conjectures,
refutations, and proofs or ideas of proofs.

Keywords
Optimization � Metaheuristics � Artificial intelligence � Variable neighborhood
search

Introduction

Optimization tools have greatly improved during the last two decades. This is
due to several factors: (i) progress in mathematical programming theory and algo-
rithmic design, (ii) rapid improvement in computer performances, and (iii) better
communication of new ideas and integration of them in largely used complex
softwares. Consequently, many problems long viewed as out of reach are currently
solved, sometimes in very moderate computing times. This success, however,
has led to address much larger instances and more difficult classes of problems.
Many of these may again only be solved heuristically. Therefore thousands of
papers describing, evaluating, and comparing new heuristics appear each year.
Keeping abreast of such a large literature is a challenge. Metaheuristics or general
frameworks for building heuristics are therefore needed in order to organize the
study of heuristics. As evidenced by this handbook, there are many of them. Some
desirable properties of metaheuristics [24,27,29] are listed in the concluding section
of this chapter.

Variable neighborhood search (VNS) is a metaheuristic proposed by some of
the present authors a dozen years ago [40]. Earlier work that motivated this
approach is given in [8, 13, 18, 38]. It is based upon the idea of systematic
change of neighborhood both in a descent phase to find a local optimum and in
a perturbation phase to get out of the corresponding valley. Originally designed
for approximate solution of combinatorial optimization problems, it was extended
to address, nonlinear programs, and recently mixed-integer nonlinear programs. In
addition VNS has been used as a tool for automated or computer-assisted graph
theory. This led to the discovery of over 1500 conjectures in that field, the automated
proof of more than half of them as well as the unassisted proof of about 400 of
them by many mathematicians. Moreover, VNS methodology is recently applied in
artificial intelligence as automatic programming technique.

Applications are rapidly increasing in number and pertain to many fields: location
theory, cluster analysis, scheduling, vehicle routing, network design, lot sizing,
artificial intelligence, engineering, pooling problems, biology, phylogeny, reliability,
geometry, telecommunication design, etc. References are too numerous to be listed
here, but many of them can be found in [25, 28, 29] and in the following special
issues devoted to VNS: IMA Journal of Management Mathematics [37], European
Journal of Operational Research [29], Journal of heuristics [47], Computers and
Operations Research [45] and Journal of Global Optimization [11].
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This chapter is organized as follows. In the next section we present the basic
schemes of VNS, i.e., variable neighborhood descent (VND), reduced VNS
(RVNS), basic VNS (BVNS), and general VNS (GVNS). In addition, to the
list of basic schemes, we add skewed VNS (SVNS) and variable neighborhood
decomposition search (VNDS). Three important extensions are presented in
Section “Some Extensions”: primal-dual VNS (PD-VNS), formulation space search
(FSS), and recently developed variable formulation search (VFS). The remainder
of the paper describes applications of VNS to several classes of large-scale and
complex optimization problems for which it has proven to be particularly successful.
Finding feasible solutions to large mixed-integer linear programs with VNS is
discussed in Section “VNS for Mixed-Integer Linear Programming”. Section “VNS
for Continuous Global Optimization” addresses ways to apply VNS in continuous
global optimization. Recent application of VNS in automatic programming field
is discussed in section “Variable Neighborhood Programming”. Applying VNS
to graph theory per se (and not just to particular optimization problems defined
on graphs) is discussed in Section “Discovery Science”. Conclusions are drawn
in Section “Conclusions”. There the desirable properties of any metaheuristic are
listed as well.

Basic Schemes

A deterministic optimization problem may be formulated as

minff .x/jx 2 X; X � Sg; (1)

where S; X; x, and f , respectively, denote the solution space and feasible set, a
feasible solution, and a real-valued objective function. If S is a finite but large set, a
combinatorial optimization problem is defined. If S D R

n, we refer to continuous
optimization. A solution x� 2 X is optimal if

f .x�/ � f .x/; 8x 2 X:

An exact algorithm for problem (1), if one exists, finds an optimal solution x�,
together with the proof of its optimality, or shows that there is no feasible solution,
i.e., X D ;, or the solution is unbounded. Moreover, in practice, the time needed
to do so should be finite (and not too long). For continuous optimization, it is
reasonable to allow for some degree of tolerance, i.e., to stop when sufficient
convergence is detected.

Let us denote with Nk , (k D 1; : : : ; kmax), a finite set of preselected neighbor-
hood structures, and with Nk.x/ the set of solutions in the kth neighborhood of x.
Most local search heuristics use only one neighborhood structure, i.e., kmax D 1.
Neighborhoods Nk may be induced from one or more metric (or quasi-metric)
functions introduced into a solution space S . An optimal solution xopt (or global
minimum) is a feasible solution where a minimum is reached. We call x0 2 X a
local minimum of (1) with respect to Nk (w.r.t. Nk for short), if there is no solution
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x 2 Nk.x0/ � X such that f .x/ < f .x0/. Metaheuristics (based on local search
procedures) try to continue the search by other means after finding the first local
minimum. VNS is based on three simple facts:

Fact 1 A local minimum w.r.t. one neighborhood structure is not necessarily so for
another;

Fact 2 A global minimum is a local minimum w.r.t. all possible neighborhood
structures;

Fact 3 Local minima w.r.t. one or several Nk are relatively close to each other, for
many problems.

This last observation, which is empirical, implies that a local optimum often
provides some information about the global one. This may for instance be several
variables with the same value in both. However, it is usually not known which ones
are such. An organized study of the neighborhoods of this local optimum is therefore
in order, until a better solution is found.

In order to solve (1) by using several neighborhoods, facts 1–3 can be used in
three different ways: (i) deterministic, (ii) stochastic, and (iii) both deterministic
and stochastic. We first give in Algorithm 1 the steps of the neighborhood change
function that will be used later.

Algorithm 1: Neighborhood change

Function NeighborhoodChange (x; x0; k)
1 if f .x0/ < f .x/ then
2 x  x0; k  1 // Make a move

else
3 k  k C 1 // Next neighborhood

Function NeighborhoodChange() compares the new value f .x0/ with the
incumbent value f .x/ obtained from the kth neighborhood (line 1). If an improve-
ment is obtained, k is returned to its initial value and the new incumbent updated
(line 2). Otherwise, the next neighborhood is considered (line 3).

(i) The variable neighborhood descent (VND) method is obtained if a change of
neighborhoods is performed in a deterministic way. Its steps are presented in
Algorithm 2, where neighborhoods are denoted as N`; ` D 1; `max.

Most local search heuristics use in their descents a single or sometimes two
neighborhoods (`max � 2). Note that the final solution should be a local minimum
w.r.t. all `max neighborhoods, and thus chances to reach a global one are larger than
by using a single structure. Besides this sequential order of neighborhood structures
in VND above, one can develop a nested strategy. Assume, e.g., that `max D 3;
then a possible nested strategy is: perform VND from Algorithm 2 for the first two
neighborhoods from each point x0 that belongs to the third (x0 2 N3.x/). Such an
approach is successfully applied in [7, 25] and [5].
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Algorithm 2: Steps of the basic VND
Function VND (x; `max)
1 ` 1

2 repeat
3 x0  arg miny2N`.x/ f .x/ // Find the best neighbor in N`.x/

4 NeighborhoodChange (x; x0; `) // Change neighborhood
until ` D `max

(ii) The reduced VNS (RVNS) method is obtained if random points are selected
from Nk.x/ and no descent is made. Rather, the values of these new points
are compared with that of the incumbent, and updating takes place in case of
improvement. We assume that a stopping condition has been chosen, among
various possibilities, e.g., the maximum CPU time allowed tmax, or the maximum
number of iterations between two improvements. To simplify the description
of the algorithms, we always use tmax below. Therefore, RVNS uses two
parameters: tmax and kmax. Its steps are presented in Algorithm 3.

Algorithm 3: Steps of the reduced VNS
Function RVNS(x; kmax; tmax)

1 repeat
2 k  1

3 repeat
4 x0  Shake(x; k)
5 NeighborhoodChange (x; x0; k)

until k D kmax

6 t  CpuTime()
until t > tmax

With the function Shake represented in line 4, we generate a point x0 at random
from the kth neighborhood of x, i.e., x0 2 Nk.x/. Its steps are given in Algorithm 4,
where it is assumed that points from Nk.x/ are fx1; : : : ; xjNk.x/jg. RVNS is useful

Algorithm 4: Steps of the shaking function

Function Shake(x; x0; k)
1 w Œ1CRand.0; 1/ � jNk.x/j�

2 x0  xw

for very large instances for which local search is costly. It can be used as well
for finding initial solutions for large problems before decomposition. It has been
observed that the best value for the parameter kmax is often 2 or 3. In addition, a
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maximum number of iterations between two improvements is usually used as the
stopping condition. RVNS is akin to a Monte Carlo method, but is more systematic
(see, e.g., [42] where results obtained by RVNS were 30 % better than those of the
Monte Carlo method in solving a continuous min-max problem). When applied to
the p-median problem, RVNS gave equally good solutions as the fast interchange
heuristic of [56] while being 20–40 times faster [30].

(iii) The basic VNS (VNS) method [40] combines deterministic and stochastic
changes of neighborhood. The deterministic part is represented by a local
search heuristic. It consists in (a) choosing an initial solution x, (b) finding a
direction of descent from x (within a neighborhood N .x/), and (c) moving
to the minimum of f .x/ within N .x/ along that direction. If there is no
direction of descent, the heuristic stops, and otherwise it is iterated. Usually
the steepest descent direction, also referred to as best improvement, is used
(BestImprovement). This set of rules is summarized in Algorithm 5, where
we assume that an initial solution x is given. The output consists of a local
minimum, also denoted by x, and its value.

Algorithm 5: Best improvement (steepest descent) heuristic
Function BestImprovement(x)
1 repeat
2 x0  x

3 x  arg miny2N .x/ f .y/

until .f .x/ � f .x0//

As steepest descent heuristic may be time-consuming, an alternative is to use the
first descent heuristic. Vectors xi 2 N .x/ are then enumerated systematically and a
move is made as soon as a direction for the descent is found. This is summarized in
Algorithm 6.

Algorithm 6: First improvement (first descent) heuristic
Function FirstImprovement(x)
1 repeat
2 x0  x; i  0

3 repeat
4 i  i C 1

5 x  arg minff .x/; f .xi /g, xi 2 N .x/

until .f .x/ < f .xi / or i D jN .x/j/

until .f .x/ � f .x0//

The stochastic phase is represented by random selection of one point from the
k-th neighborhood. The steps of the BVNS are given on Algorithm 7.
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Algorithm 7: Steps of the basic VNS
Function BVNS(x; kmax; tmax)

1 t  0

2 while t < tmax do
3 k  1

4 repeat
5 x0  Shake(x; k) // Shaking
6 x00  BestImprovement(x0) // Local search
7 NeighborhoodChange(x; x00; k) //Change neighborhood

until k D kmax

8 t  CpuTime()

Global minimum

Local minimum
f(x)

f

x

x

N1(x)

N (x)
k

x’

Fig. 1 Basic VNS

Often successive neighborhoods Nk are nested. Note that point x0 is generated
at random in Step 4 in order to avoid cycling, which might occur if a deterministic
rule were applied. Basic VNS is also illustrated in Fig. 1.

Example. We illustrate the basic step on a minimum k-cardinality tree instance
taken from [34] (see Fig. 2). The minimum k-cardinality tree problem on graph G

(k-card for short) consists in finding a sub-tree of G with exactly k edges whose
sum of weights is minimum.

The steps of BVNS for solving the 4-card problem are illustrated in Fig. 3. In
Step 0 the objective function value, i.e., the sum of edge weights, is equal to 40;
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it is indicated in the right bottom corner of the figure. That first solution is a local
minimum with respect to the edge-exchange neighborhood structure (one edge in,
one out). After shaking, the objective function is 60, and after another local search,
we are back to the same solution. Then, in Step 3, we take out 2 edges and add
another 2 at random, and after a local search, an improved solution is obtained with
a value of 39. Continuing in that fashion, we obtain in Step 8 the optimal solution
with an objective function value equal to 36.
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(iv) General VNS. Note that the local search Step 5 may also be replaced by VND
(Algorithm 2). Using this general VNS (VNS/VND) approach led to some of
the most successful applications reported (see, e.g., [1, 7, 9, 10, 25, 31, 52, 53]).
The steps of general VNS (GVNS) are given in Algorithm 8 below.

Algorithm 8: Steps of the general VNS
Function GVNS (x; `max; kmax; tmax)
1 repeat
2 k  1

3 repeat
4 x0  Shake(x; k)
5 x00  VND(x0; `max)
6 NeighborhoodChange(x; x00; k)

until k D kmax

7 t  CpuTime()
until t > tmax

(v) The skewed VNS (SVNS) method [23] addresses the problem of exploring
valleys far from the incumbent solution. Indeed, once the best solution in a large
region has been found, it is necessary to go quite far to obtain an improved one.
Solutions drawn at random in faraway neighborhoods may differ substantially
from the incumbent, and VNS may then degenerate, to some extent, into the
multistart heuristic (in which descents are made iteratively from solutions
generated at random, and that is known not to be very efficient). So some
compensation for distance from the incumbent must be made, and a scheme
called skewed VNS is proposed for that purpose. Its steps are presented in
Algorithms 9, 10, and 11. The KeepBest(x; x0) function in Algorithm 10
simply keeps the better one of solutions x and x0.

Algorithm 9: Steps of neighborhood change for the skewed VNS

Function NeighborhoodChangeS(x; x00; k; ˛)
1 if f .x00/ � ˛�.x; x00/ < f .x/ then
2 x  x00; k  1

else
3 k  k C 1

SVNS makes use of a function �.x; x00/ to measure distance between the
incumbent solution x and the local optimum found x00. The distance function used
to define Nk , as in the above examples, could be used also for this purpose. The
parameter ˛ must be chosen in such a way to accept movement to valleys faraway
from x when f .x00/ is larger than f .x/ but not too much larger (otherwise one will
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Algorithm 10: Steps of the skewed VNS
Function SVNS (x; kmax; tmax; ˛)

1 repeat
2 k  1; xbest  x

3 repeat
4 x0  Shake(x; k)
5 x00  FirstImprovement(x0)
6 KeepBest (xbest; x)
7 NeighborhoodChangeS(x; x00; k; ˛)

until k D kmax

8 x  xbest

9 t  CpuTime()
until t > tmax

Algorithm 11: Keep the better solution

Function KeepBest(x; x0)
1 if f .x0/ < f .x/ then
2 x  x0

always leave x). A good value for ˛ is to be found experimentally in each case.
Moreover, in order to avoid frequent moves from x to a close solution, one may
take a smaller value for ˛ when �.x; x00/ is small. More sophisticated choices for a
function of ˛�.x; x00/ could be made through some learning process.

(vi) Variable neighborhood decomposition search (VNDS). The VNDS method
[30] extends the basic VNS into a two-level VNS scheme based upon de-
composition of the problem. Its steps are presented in Algorithm 12, where
td is an additional parameter and represents the running time given for solving
decomposed (smaller sized) problems by VNS.

For ease of presentation, but without loss of generality, we assume that the
solution x represents the set of some elements. In Step 4 we denote with y a set
of k solution attributes present in x0 but not in x (y D x0 n x). In Step 5 we find
the local optimum y0 in the space of y; then we denote with x00 the corresponding
solution in the whole space S (x00 D .x0 n y/[ y0). We notice that exploiting some
boundary effects in a new solution can significantly improve the solution quality.
That is why, in Step 6, we find the local optimum x000 in the whole space S using
x00 as an initial solution. If this is time-consuming, then at least a few local search
iterations should be performed.

VNDS can be viewed as embedding the classical successive approximation
scheme (which has been used in combinatorial optimization at least since the 1960s;
see, e.g., [21]) in the VNS framework.
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Algorithm 12: Steps of VNDS
Function VNDS (x; kmax; tmax; td )
1 repeat
2 k  1

3 repeat
4 x0  Shake (x; k); y  x0 n x

5 y0  VNS(y; k; td ); x00 D .x0 n y/ [ y0

6 x000  FirstImprovement(x00)
7 NeighborhoodChange(x; x000; k)

until k D kmax

until t > tmax

Some Extensions

(i) Primal-dual VNS. For most modern heuristics, the difference in value between
the optimal solution and the obtained one is completely unknown. Guaranteed
performance of the primal heuristic may be determined if a lower bound on
the objective function value is known. To that end, the standard approach is to
relax the integrality condition on the primal variables, based on a mathematical
programming formulation of the problem. However, when the dimension of the
problem is large, even the relaxed problem may be impossible to solve exactly
by standard commercial solvers. Therefore, it seems a good idea to solve dual
relaxed problems heuristically as well. In this way we get guaranteed bounds
on the primal heuristic’s performance. The next problem arises if we want to
get an exact solution within a branch-and-bound framework since having the
approximate value of the relaxed dual does not allow us to branch in an easy
way, e.g., exploiting complementary slackness conditions. Thus, the exact value
of the dual is necessary.

In primal-dual VNS (PD-VNS) [22] one possible general way to get both
the guaranteed bounds and the exact solution is proposed. Its steps are given
in Algorithm 13. In the first stage a heuristic procedure based on VNS is used to

Algorithm 13: Steps of the basic PD-VNS
Function PD-VNS (x; `max; kmax; tmax)

1 BVNS (x; `max; kmax; tmax) // Solve primal by VNS
2 DualFeasible(x; y) // Find (infeasible) dual such that fP D fD

3 DualVNS(y) // Use VNS do decrease infeasibility
4 DualExact(y) // Find exact (relaxed) dual
5 BandB(x; y) // Apply branch-and-bound method
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obtain a near-optimal solution. In [22] it is shown that VNS with decomposition is
a very powerful technique for large-scale simple plant location problems (SPLP)
with up to 15,000 facilities and 15,000 users. In the second phase the objective is
to find an exact solution of the relaxed dual problem. Solving the relaxed dual is
accomplished in three stages: (i) find an initial dual solution (generally infeasible)
using the primal heuristic solution and complementary slackness conditions, (ii) find
a feasible solution by applying VNS to the unconstrained nonlinear form of the
dual, and (iii) solve the dual exactly starting with initial feasible solution using
a customized “sliding simplex” algorithm that applies “windows” on the dual
variables substantially reducing the size of the problem. In all problems tested,
including instances much larger than previously reported in the literature, the
procedure was able to find the exact dual solution in reasonable computing time.
In the third and final phase armed with tight upper and lower bounds, obtained
respectively, from the heuristic primal solution in phase one and the exact dual
solution in phase two, we apply a standard branch-and-bound algorithm to find an
optimal solution of the original problem. The lower bounds are updated with the
dual sliding simplex method and the upper bounds whenever new integer solutions
are obtained at the nodes of the branching tree. In this way it was possible to solve
exactly problem instances of sizes up to 7000 � 7000 for uniform fixed costs and
15,000� 15,000 otherwise.

(ii) Variable neighborhood formulation space search. Traditional ways to tackle an
optimization problem consider a given formulation and search in some way
through its feasible set X . The fact that a same problem may often be formulated
in different ways allows to extend search paradigms to include jumps from one
formulation to another. Each formulation should lend itself to some traditional
search method, its “local search” that works totally within this formulation, and
yields a final solution when started from some initial solution. Any solution
found in one formulation should easily be translatable to its equivalent solution
in any other formulation. We may then move from one formulation to another
using the solution resulting from the former’s local search as initial solution for
the latter’s local search. Such a strategy will of course only be useful when local
searches in different formulations behave differently.

This idea was recently investigated in [43] using an approach that systematically
changes formulations for solving circle packing problems (CPP). It is shown there
that a stationary point of a nonlinear programming formulation of CPP in Cartesian
coordinates is not necessarily also a stationary point in a polar coordinate system.
A method called reformulation descent (RD) that alternates between these two
formulations until the final solution is stationary with respect to both is suggested.
Results obtained were comparable with the best known values, but they were
achieved some 150 times faster than by an alternative single formulation approach.
In the same paper the idea suggested above of formulation space search (FSS) is also
introduced, using more than two formulations. Some research in that direction has
been reported in [32, 43, 44, 50]. One methodology that uses variable neighborhood
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idea in searching through the formulation space is given in Algorithms 14 and 15.
Here � (�0) denotes a formulation from given space F , x (x0) denotes a solution
in the feasible set defined with that formulation, and ` � `max is the formulation
neighborhood index. Note that Algorithm 15 uses a reduced VNS strategy in F .

Algorithm 14: Formulation change function

Function FormulationChange(x; x0; �; �0; `)
1 if f .�0; x0/ < f .�; x/ then
2 �  �0; x  x0; ` `min

else
3 ` `C `step

Algorithm 15: Reduced variable neighborhood FSS
Function VNFSS(x; �; `max)

1 repeat
2 ` 1 // Initialize formulation in F
3 while ` � `max do
4 ShakeFormulation(x;x0;�;�0;`) // .�0;x0/2.N`.�/;N .x// at random
5 FormulationChange(x;x0;�;�0;`) // Change formulation

until some stopping condition is met

(iii) Variable formulation search. Many optimization problems in the literature, like
min-max type of problems, present a flat landscape. This means that, given
a formulation of the problem, there are many neighboring solutions with the
same value of the objective function. When this happens, it is difficult to
determine which neighborhood solution is more promising to continue the
search. To address this drawback, the use of alternative formulations of the
problem within VNS is proposed in [41, 46, 49]. In [49] it is named variable
formulation search (VFS). It combines the change of neighborhood within
the VNS framework, with the use of alternative formulations. In particular,
the alternative formulations will be used to compare different solutions with
the same value of the objective function, when considering the original
formulation.

Let us assume that, besides the original formulation and the correspond-
ing objective function f0.x/, there are p other formulations denoted as
f1.x/; : : : ; fp.x/; x 2 X . Note that two formulations are equivalent if the optimal
solution of one is the optimal solution of the other and vice versa. Without loss
of clarity, we will denote different formulations as different objectives fi .x/; i D

1; : : : ; p. The idea of VFS is to add the procedure Accept.x; x0; p/, given in
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Algorithm 16 in all three basic steps of BVNS: Shaking, LocalSearch, and
NeighbourhoodChange. Clearly, if a better solution is not obtained by any
formulation among the p preselected, the move is rejected. The next iteration in the
loop of Algorithm 16 will take place only if the objective function values according
to all previous formulations are equal.

Algorithm 16: Accept procedure with p secondary formulations

1: logical function Accept (x; x0; p)
2: for i D 0 to p do
3: condition1 = fi .x

0/ < fi .x/

4: condition2 = fi .x
0/ > fi .x/

5: if (condition1) then
6: Accept True; return
7: else if (condition2) then
8: Accept False return
9: end if

10: end for

If Accept (x; x0; p) is included into LocalSearch subroutine of BVNS, then
it will not stop the first time a non-improved solution is found. In order to stop
LocalSearch and thus claim that x0 is local minimum, x’ should not be improved
by any among the p different formulations. Thus, for any particular problem, one
needs to design different formulations of the problem considered and decide the
order they will be used in the Accept subroutine. Answers to those two questions
are problem specific and sometimes not easy. The Accept (x; x0; p) subroutine can
obviously be added to NeighbourhoodChange and Shaking steps of BVNS
from Algorithm 7 as well.

In [46], three evaluation functions, or acceptance criteria, within
Neighborhood Change step are used in solving bandwith minimization
problem. This min-max problem consists in finding permutations of rows and
columns of a given square matrix such that the maximal distance of nonzero element
from the main diagonal in the corresponding row is minimum. Solution x may be
presented as a labeling of a graph and the move from x to x0 as x  x0. Three
criteria used are (1) the simplest one is based on the objective function value f0.x/

(bandwidth lenth), (2) the total number of critical vertices f1.x/ (f1.x0/ < f1.x/j),
and (3) f3.x; x0/ D �.x; x0/ � ˛, if .f0.x0/ D f0.x/ and f1.x0/ D f1.x//, but x

and x0 are relatively far one from another �.x; x0/ > ˛, where ˛ is an additional
parameter. The idea for a move to even worse solution if it is very far is used
within skewed VNS. However, move to the solution with the same value only if its
Hamming distance from the incumbent is greater than ˛ that is performed in [46].

In [41] different mathematical programming formulation of the original problem
is used as a secondary objective within Neighborhood Change function of
VNS. There, two combinatorial optimization problems on the graph are considered:
metric dimension problem and minimal doubly resolving set problem.
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Fig. 4 Cutwidth minimization example as in [49]

Table 1 Impact of the use of
alternative formulations in the
search process, within 30 s

BVNS VFS1 VFS2 VFS3

Avg. 137.31 93.56 91.56 90.75

Dev. (%) 192.44 60.40 49.23 48.22

More general VFS approach is done in [49], where the cutwidth graph mini-
mization problem (CWP) is considered. CWP also belongs to min-max problem
family. For a given graph, one needs to make sequence of nodes such that the
maximum cutwidth is minimum. The definition of the cutwidth of the graph is clear
from Fig. 4, where at (a) graph G with six vertices and nine edges is given.

At Fig. 4b, ordering x of the vertices of the graph in (a) with the corresponding
cutwidth C W values of each vertex is presented. It is clear that the CW represents
the number of cut edges between two consecutive nodes in the solution x. The
cutwidth value f0.x/ D C W .x/ of the ordering x D .A; B; C; D; E; F / is equal
to f0.x/ D maxf4; 5; 6; 4; 2g D 6 (see Fig. 4). One needs to find order x that
minimizes the maximum cutwidth value of each vertex.

Two additional formulations are used in [49] and implemented within VND
local search. In Table 1 the results obtained with four different VFS variants, when
executing them for 30 s over each instance of the test data set, are presented. The
column BVNS represents a heuristic based on the BVNS which make use only of
the original formulation of the CMP. VFS1 denotes BVNS heuristic that uses only
one secondary criterion. VFS2 is equivalent to the previous one with the difference
that now only f2 is considered (instead of f1). Finally, the fourth column of the
table, denoted as VFS3, combines the original formulation of the CMP with the two
alternative ones, in the way presented in Algorithm 16. All the algorithms were
configured with kmax D 0:1n and they start from the same random solution. It
appears that the significant improvements in the solution quality are obtained when
at least one secondary formulation is used in case of ties (compare, e.g., 192.44 %
and 60.40 % deviations from the best known solutions reported by BVNS and VFS1,
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Table 2 Comparison with the state-of-the-art algorithms over the grid and HB data sets

81 ‘grid’ test instances 86 HB instances

GPR [2] SA [12] SS [48] VFS [49] GPR [2] SA [12] SS [48] VFS [49]

Avg. 38.44 16.14 13.00 12.23 364.83 346.21 315.22 314.39

Dev. (%) 201.81 25.42 7.76 3.25 95.13 53.30 3.40 1.77

#Opt. 2 37 44 59 2 8 47 61

CPU t (s) 235.16 216.14 210.07 90.34 557.49 435.40 430.57 128.12

respectively). Additional improvement is obtained if all three formulations are used
(in VFS3).

Comparison of VFS3 and state-of-the-art heuristics are given in Table 2. It
appears that the best quality results are obtained by VFS in less computing time.

VNS for Mixed-Integer Linear Programming

The mixed-integer linear programming (MILP) problem consists of maximizing
or minimizing a linear function, subject to equality or inequality constraints and
integrality restrictions on some of the variables. The mixed integer programming
problem .P / can be expressed as

.MILP /

2
666664

min
Pn

j D1 cj xj

s.t.
Pn

j D1 aij xj � bi 8i 2M D f1; 2; : : : ; mg

xj 2 f0; 1g 8j 2 B ¤ ;
xj � 0;integer 8j 2 G
xj � 0 8j 2 C

where the set of indices N D f1; 2; : : : ; ng is partitioned into three subsets
B;G, and C, corresponding to binary, general integer, and continuous variables,
respectively.

Numerous combinatorial optimization problems, including a wide range of
practical problems in business, engineering, and science, can be modeled as MILP
problems. Its several special cases, such as knapsack, set packing, cutting and
packing, network design, protein alignment, traveling salesman, and other routing
problems, are known to be NP-hard [19]. There are several commercial solvers such
as CPLEX [33] for solving MILPs. Methods included in such software packages are
usually of branch-and-bound (B&B) or of branch-and-cut (B&C) types. Basically,
those methods enumerate all possible integer values in some order and perform
some restrictions for the cases where such enumeration cannot improve the currently
best solution.

The connection between local search type of heuristics and exact solvers may be
established by introducing the so-called local branching constraint [17]. By adding
just one constraint into the (MILP), the kth neighborhood of MILP is defined.
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This allows the use of all local search-based Metaheuristics, such as tabu search,
simulating annealing, VNS, etc. More precisely, given two solutions x and y of the
problem (MILP), we define the distance between x and y as

ı.x; y/ D
X
j 2B
j xj � yj j:

Let X be the solution space of the problem (MILP) considered. The neighborhood
structures fNk j k D 1; : : : ; kmaxg can be defined, knowing the distance ı.x; y/

between any two solutions x; y 2 X . The set of all solutions in the kth
neighborhood of y 2 X is denoted as Nk.y/ where

Nk.y/ D fx 2 X j ı.x; y/ � kg:

For the pure 0-1 MILP given above, (G D ;, ı.:; :/ represents the Hamming
distance, and Nk.y/ may be expressed by the following so-called local branching
constraint:

ı.x; y/ D
X
j 2S

.1 � xj /C
X

j 2BnS

xj � k; (2)

where S D fj 2 B j yj D 1g.
In [31] a general VNS procedure for solving 0-1 MILPs is developed (see

Algorithm 17).
An exact MILP solver (CPLEX) is used as a black box for finding the best

solution in the neighborhood, based on the given formulation (MILP) plus the added
local branching constraints. Shaking is performed using the Hamming distance
defined above. The detailed explanation of VNB method given in Algorithm 17
below and the meaning of all variables (x_cur, x_opt, UB, first, f_opt, cont, rhs, etc.)
and constants (total_time_limit, node_time_limit, k_step) used
may be found in [31].

VNS for Continuous Global Optimization

The continuous constrained nonlinear global optimization problem (GOP) in gen-
eral form is given as follows:

.GOP/

2
664

min f .x/

s.t. gi .x/ � 0 8i 2 f1; 2; : : : ; mg

hi .x/ D 0 8i 2 f1; 2; : : : ; rg

aj � xj � bj 8j 2 f1; 2; : : : ; ng

where x 2 Rn, f W Rn ! R, gi W Rn ! R, i D 1; 2; : : : ; m, and hi W Rn ! R,
i D 1; 2; : : : ; r are possibly nonlinear continuous functions, and a; b 2 Rn are the
variable bounds.
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Algorithm 17: Steps of the VNS branching
Function VnsBra(total_time_limit, node_time_limit, k_step, x_opt)

1 TL := total_time_limit; UB := 1; first := true
2 stat := MIPSOLVE(TL, UB, first, x_opt, f _opt )
3 x_cur:=x_opt; f_cur:=f_opt
4 while (elapsedtime < total_time_limit) do
5 cont := true; rhs := 1; first := false
6 while (cont or elapsedtime < total_time_limit) do
7 TL = min(node_time_limit, total_time_limit-elapsedtime)
8 add local br. constr. ı.x; x_cur/ � rhs; UB := f_cur
9 stat := MIPSOLVE(TL, UB, first, x_next, f_next)

10 switch stat do
11 case “opt_sol_found”:
12 reverse last local br. const. into ı.x; x_cur/ � rhs C 1

13 x_cur := x_next; f_cur := f_next; rhs := 1;
14 case “feasible_sol_found”:
15 reverse last local br. constr. into ı.x; x_cur/ � 1

16 x_cur := x_next; f_cur := f_next; rhs := 1;
17 case “proven_infeasible”:
18 remove last local br. constr.; rhs := rhs+1;
19 case “no_feasible_sol_found”:
20 cont := false

21 if f _cur < f _opt then
22 x_opt := x_cur; f _opt := f_cur; k_cur := k_step;

else
23 k_cur := k_cur+k_step;

24 remove all added constraints; cont WD true
25 while cont and (elapsedtime < total_time_limit) do
26 add constraints k_cur � ı.x; x_opt/ < k_cur C k_step
27 TL := total_time_limit-elapsedtime; UB := 1; first := true
28 stat := MIPSOLVE(TL, UB, first, x_cur, f_cur)
29 remove last two added constraints; cont Dfalse
30 if stat D “proven_infeasible” or “no_feasible” then
31 cont WDtrue; k_cur WD k_curCk_step

GOP naturally arises in many applications, e.g., in advanced engineering design,
data analysis, financial planning, risk management, scientific modeling, etc. Most
cases of practical interest are characterized by multiple local optima, and, therefore,
in order to find the globally optimal solution, a global scope search effort is needed.

If the feasible set X is convex and objective function f is convex, then GOP is
relatively easy to solve, i.e., the Karush-Kuhn-Tucker conditions may be applied.
However, if X is not a convex set or f is not a convex function, we could have
many local minima, and thus, the problem may not be solved by using classical
techniques.

For solving GOP, VNS has been used in two different ways: (a) with neighbor-
hoods induced by using an `p norm and (b) without using an `p norm.
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(a) VNS with `p norm neighborhoods [3, 4, 15, 36, 39, 42]. A natural approach in
applying VNS for solving GOP is to induce neighborhood structures Nk.x/ from
the `p metric:

�.x; y/ D

 
nX

iD1

jxi � yi j
p

!1=p

(1 � p <1) (3)

or

�.x; y/ D max
1�i�n

jxi � yi j (p !1). (4)

The neighborhood Nk.x/ denotes the set of solutions in the k-th neighborhood of
x, and using the metric �, it is defined as

Nk.x/ D fy 2 X j �.x; y/ � �kg; (5)

or

Nk.x/ D fy 2 X j �k�1 � �.x; y/ � �kg; (6)

where �k , known as the radius of Nk.x/, is monotonically increasing with k.
For solving box constraint GOP, both [36] and [15] use neighborhoods as defined

in (6). The basic differences between the two are as follows: (1) in the procedure
suggested in [36] the `1 norm is used, while in [15] the choice of metric is either
left to the analyst or changed automatically according to some predefined order;
(2) as a local search procedure within VNS, the commercial solver SNOPT [20] is
used in [36], while in [15] the analyst may choose one out of six different convex
minimizers. A VNS-based heuristic for solving the generally constrained GOP is
suggested in [39]. There, the problem is first transformed into a sequence of box-
constrained problems within well-known exterior point method:

min
a�x�b

F�;q.x/ D f .x/C
1

�

mX
iD1

.maxf0; qi .x/g/q C

rX
iD1

jhi .x/jq; (7)

where � and q � 1 are a positive penalty parameter and penalty exponent, respec-
tively. Algorithm 18 outlines the steps for solving the box constraint subproblem as
proposed in [39]:

The Glob-VNS procedure from Algorithm 18 contains the following parameters
in addition to kmax and tmax:

1. Values of radii �k; k D 1; : : : ; kmax. Those values may be defined by the user or
calculated automatically in the minimizing process;
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Algorithm 18: Steps of continuous VNS using `p norm

Function Glob-VNS (x�; kmax; tmax)
1 Select the set of neighborhood structures Nk k D 1; : : : ; kmax

2 Select the array of random distributions types and an initial point x� 2 X

3 x  x�, f �  f .x/, t  0

4 while t < tmax do
5 k  1

6 repeat
7 for all distribution types do
8 y  Shake(x�; k) // Get y 2 Nk.x�/ at random
9 y0  BestImprovment(y) // Apply LS to obtain a local minimum y0

10 if f .y0/ < f � then
11 x�  y0, f �  f .y0/, go to line 5

12 k  k C 1

until k D kmax

13 t  CpuTime()

2. Geometry of neighborhood structures Nk , defined by the choice of metric. Usual
choices are the `1, `2, and `1 norms;

3. Distribution used for obtaining the random point y from Nk in the shaking step.
Uniform distribution in Nk is the obvious choice, but other distributions may
lead to much better performance on some problems.

Different choices of geometric neighborhood shapes and random point distributions
lead to different VNS-based heuristics.

(b) VNS without using `p norm. Two different neighborhoods, N1.x/ and N2.x/,
are used in VNS-based heuristic suggested in [55]. In N1.x/, r (a parameter)
random directions from the current point x are generated and one-dimensional
searches along each performed. The best point (out of r) is selected as a new
starting solution for the next iteration, if it is better than the current one. If not, as
in VND, the search is continued within the next neighborhood N2.x/. The new
point in N2.x/ is obtained as follows. The current solution is moved parallel to
each xj (j D 1; : : : ; n) by value �j , taken at random from interval (�˛; ˛), i.e.,

x
.new/
j D xj C �j or x

.new/
j D xj � �j . Points obtained by the plus or minus

sign for each variable define neighborhood N2.x/. If change of x
.new/
j by 1 % to

the right gives a better solution than in x.new/, the + sign is chosen; otherwise the
– sign is chosen.

Neighborhoods N1 and N2 are used for designing two algorithms. The first,
called VND, iterates these neighborhoods until there is no improvement in the
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solution value. In the second variant, a local search is performed in N2 and kmax

set to 2 for the shaking step. In other words, a point from neighborhood k D 2

is obtained by generating a random direction followed by line search along it (as
prescribed for N1) and then by changing each of the variables (as prescribed for N2).

Variable Neighborhood Programming

Building an intelligent machine is an old dream that, thanks to computers, began to
take shape. Automatic programming is an efficient technique that has contributed an
important development in the field of artificial intelligence. Genetic programming
(GP) [35], inspired by genetic algorithm (GA), is among the few evolutionary
algorithms used to evolve population of programs. The main difference between
GP and GA is the presentation of a solution. An individual in GA can be a string,
while GPs individuals are programs. The usual way to present program within GP
is by using a tree. For example, assume that the current solution of the problem is
the following function:

f .x1; : : : ; x5/ D
x1

x2 C x3

C x4 � x5:

Then the code (tree) that calculates it using GP may be presented as in Fig. 5a.
Souhir et al. [16] recently adapted VNS rules in solving automatic programming

problem. They first suggested an extended solution presentation by adding coef-
ficients to variables. Each terminal node was attached to its own parameter value.
These parameters gave a weight for each terminal node, with values from the interval
[0, 1]. This form of presentation allowed VNP to examine parameter values and the

a b

x1

x2 x3

x4 x5
x1

x2 x3

x4 x5

a1

a2 a3

a4 a5

Fig. 5 Current solution representation in automatic programming problem: x1

x2Cx3
C x4 � x5.

(a) GP solution representation. (b) VNP solution representation
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Fig. 7 Neighborhood structure N2: swap operator

remaining tree structures in the same iteration. Let G D f˛1; ˛2; : : : ; ˛ng denote a
parameter set. In Fig. 5b an example of VNP’s solution representation is illustrated.

Neighborhood structures. At such solution presentation as a tree T , nine
different neighborhood structures are proposed in [16]. To save the space, we will
just mention some of them:

• N1.T / – Changing a node value operator. This neighborhood structure
conserves the skeleton of the tree and changes only the values of a functional
or a terminal node. Each node can obtain many values from its corresponding
set. Let xi be the current solution; its neighbor xiC1 differs from xi by just a
single node. A move within this neighborhood structure is shown in Fig. 6.

• N2.T / – Swap operator. By this operator a first node from the current tree
is taken at random, and a new sub-tree is generated as presented in Fig. 7a, b.
Then the selected node is attached in the place of the sub-tree. In this move, the
constraint related to the maximum tree size should be respected. More details can
be seen in Fig. 7.
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Fig. 8 Neighborhood structure N3: change parameters

• N3.T / – Changing parameter values. In the previous neighborhood structures,
the tree form and its node values were considered. In N3.T / neighborhood,
attention is paid on parameters. So, the position and value of nodes are kept in
order to search the neighbors in the parametric space. Figure 8 illustrates details.
The change from one value to another is at random.

These neighborhood structures may be used in both local search step (N`; ` 2

Œ1; `max�) and in the shaking step (Nk; k 2 Œ1; kmax�) of the VNS.
VNP shaking. The shaking step allows the diversification in the search space. Our

proposed VNP algorithm does not use exactly the same neighborhood structures N`

as for the local search. That is the reason why neighborhoods used in shaking are
denoted differently: Nk.T /; k D 1; kmax. Nk.T / may be constructed by repeating
k times one or more moves from the set fN`.T /; j` D 1; : : : ; `maxg, explained
earlier. Nevertheless, in the shaking phase, we use a neighborhood structure that
mainly affects the skeleton of a presented solution with its different forms for the
perturbation. For more clear explanation, we take the swap operator N3.T / as an
example. Let m denote the maximum size of a solution. We can get a solution from
the kth neighborhood of T using the swap operator: k may represent the size of the
new generated sub-tree. If n denotes the size of the original tree after deleting the
old sub-tree, then n C kmax � m. The objective of this phase is to provide a good
starting point for the local search.

VNP objective function. The evaluation consists of defining a fitness or objective
function assessing the proposed problem. This function is defined according to the
problem considered. After running each solution (program) on training data set,
fitness may be measured by counting how many training cases the current solution
result is correct or near to the exact solution.

An example: time series forecasting (TSF) problem. Two widely used bench-
mark data sets of TSF problem are explored in [16] to examine VNP capabilities:
Mackey-Glass series and Box-Jenkins set. The parameters for the VNP
implementation are chosen after some preliminary testing are given in Table 3.
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Table 3 VNP parameters
adjustment for the forecasting
problem

Parameters Values

The functional set F D fC; �; ; powg;

The terminal sets f.xi ; c/; i 2 Œ1; : : : ; m�; m =
number of inputs, c 2 Rg;

Neighborhood structures fN1; N2; N3g;

Minimum tree length 20 nodes;

Maximum tree length 200 nodes;

Maximum number of iterations 50,000

Table 4 Comparison of
testing error on Box-Jenkins
dataset

Method Prediction error RMSE

ODE [54] 0.5132

HHMDDE [14] 0.3745

FBBFNT [6] 0.0047

VNP [16] 0.0038

The root-mean-square error (RMSE) is used as fitness function, as it is usual in
the literature:

f .T / D

vuut 1

n

nX
j D1

.y
j
t � y

j
out/

2

where n represents the total number of samples and y
j
out and y

j
t are outputs of the

sample number j obtained by the VNP model and the desired one, respectively.
Here we will just illustrate comparison on Box-Jenkins instance.

The gas furnace data of Box and Jenkins were collected from a combustion
process of a methane-air mixture [15]. This time series has found a widespread
application as a benchmark example in many practical sciences for testing prediction
algorithms. The data set contains 296 pairs of input-output values. The input u.t/

corresponds to the gas flow, and the output y.t/ presents the CO2 concentration in
outlet gas. The inputs are u.t � 4/ and y.t � 1/, and the output is y.t/. In this work,
200 samples are used in the training phase, and the remaining samples are used for
the testing phase. The performance of the evolved model is evaluated by comparing
it with the abovementioned approaches. The RMSE achieved by VNP output model
is 0.0038, which appeared to be better than the RMSE obtained by other approaches.
Table 4 shows that VNP approach proves effectiveness and generalization ability.

Discovery Science

In all the above applications, VNS is used as an optimization tool. It can also lead
to results in “discovery science,” i.e., help in the development of theories. This has
been done for graph theory in a long series of papers with the common title “Variable
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neighborhood search for extremal graphs” and reporting on the development and
applications of the system AutoGraphiX (AGX) [10]. This system addresses the
following problems:

• Find a graph satisfying given constraints;
• Find optimal or near optimal graphs for an invariant subject to constraints;
• Refute a conjecture;
• Suggest a conjecture (or repair or sharpen one);
• Provide a proof (in simple cases) or suggest an idea of proof.

Then a basic idea is to consider all of these problems as parametric combinatorial
optimization problems on the infinite set of all graphs (or in practice some smaller
subset) with a generic heuristic. This is done by applying VNS to find extremal
graphs, with a given number n of vertices (and possibly also a given number of
edges). Then a VND with many neighborhoods is used. Those neighborhoods are
defined by modifications of the graphs such as the removal or addition of an edge,
rotation of an edge, and so forth. Recently all moves involving four vertices or less
were considered jointly in learning optimization framework. Once a set of extremal
or near-extremal graphs, parameterized by their order, is found, their properties are
explored with various data mining techniques, leading to conjectures, refutations,
and simple proofs or ideas of proof.

All papers in this area are divided into the following groups in [28], where the
extensive list of references for each class of problems can be found:

(i) Principles of the approach and its implementation;
(ii) Applications to spectral graph theory, e.g., finding bounds on the index or

spectral radius of the adjacency matrix for various families of graphs and find-
ing graphs maximizing or minimizing the index subject to some conditions;

(iii) Studies of classical graph parameters, e.g., independence, chromatic number,
clique number, and average distance;

(iv) Studies of little known or new parameters of graphs, e.g., irregularity, prox-
imity, and remoteness;

(v) New families of graphs discovered by AGX, e.g., bags, which are obtained
from complete graphs by replacing an edge by a path, and bugs, which are
obtained by cutting the paths of a bag;

(vi) Applications to mathematical chemistry, e.g., study of chemical graph energy
and of the Randić index;

(vii) Results of a systematic study of pairwise comparison of 20 graph
invariants, involving the four usual operators: plus, minus, ratio, and product,
which led to almost 1500 new conjectures, more than half of which were
automatically proved by AGX and over 300 by various mathematicians;

(viii) Refutation or strengthening of conjectures from the literature;
(ix) Surveys and discussions about various discovery systems in graph theory,

assessment of the state-of-the-art and the forms of interesting conjectures
together with proposals for the design of more powerful systems.
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Conclusions

The general schemes of variable neighborhood search have been presented, dis-
cussed, and illustrated by examples. In order to evaluate the VNS research program,
one needs a list of the desirable properties of Metaheuristics. The following eight of
these are presented in Hansen and Mladenović [27]:

(i) Simplicity: the metaheuristic should be based on a simple and clear principle,
which should be widely applicable;

(ii) Precision: the steps of the metaheuristic should be formulated in precise
mathematical terms, independent of possible physical or biological analogies
which may have been the initial source of inspiration;

(iii) Coherence: all steps of the heuristics for particular problems should follow
naturally from the principle of the metaheuristic;

(iv) Efficiency: heuristics for particular problems should provide optimal or near-
optimal solutions for all or at least most realistic instances. Preferably, they
should find optimal solutions for most problems of benchmarks for which
such solutions are known, when available;

(v) Effectiveness: heuristics for particular problems should take a moderate
computing time to provide optimal or near-optimal solutions;

(vi) Robustness: the performance of heuristics should be consistent over a variety
of instances, i.e., not merely fine-tuned to some training set and less good
elsewhere;

(vii) User-friendliness: heuristics should be clearly expressed, easy to understand,
and, most important, easy to use. This implies they should have as few
parameters as possible, ideally none;

(viii) Innovation: preferably, the principle of the metaheuristic and/or the efficiency
and effectiveness of the heuristics derived from it should lead to new types of
application.

(ix) Generality: the metaheuristic should lead to good results for a wide variety of
problems;

(x) Interactivity: the metaheuristic should allow the user to incorporate his
knowledge to improve the resolution process;

(xi) Multiplicity: the metaheuristic should be able to present several near-optimal
solutions from which the user can choose one.

As shown above, VNS possesses, to a great extent, all of the above properties.
This has led to heuristics which are among the very best ones for many problems.
Interest in VNS is clearly growing at speed. This is evidenced by the increasing
number of papers published each year on this topic (15 years ago, only a few;
10 years ago, about a dozen; about 50 in 2007). According to Google Scholar, the
first two papers on VNS were cited almost 4,000 times!

Moreover, the 18th and 28th EURO Mini Conferences were entirely devoted to
VNS. It led to special issues of IMA Journal of Management Mathematics in 2007
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[37], European Journal of Operational Research [29], Journal of heuristics [47]
in 2008, Computers and Operations Research in 2014 [45], and Journal of Global
Optimization in 2016 [11]. The 3rd International VNS meeting took place in Tunisia,
and three new special issues entirely devoted to VNS are in preparation (Computers
and Operations Research, Optimization Letters, and Yugoslav Journal of Operations
Research). In retrospect, it appears that the good shape of the VNS research program
is due to the following decisions, strongly influenced by Karl Popper’s philosophy
of science [51]: (i) in devising heuristics favor insight over efficiency (which comes
later) and (ii) learn from the heuristics mistakes.
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23. Hansen P, Jaumard B, Mladenović N, Parreira A (2000) Variable neighborhood search
for weighted maximum satisfiability problem. Les Cahiers du GERAD G–2000–62, HEC
Montréal
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25. Hansen P, Mladenović N (2001) J-means: a new local search heuristic for minimum sum-of-
squares clustering. Pattern Recognit 34:405–413
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Abstract

This chapter describes the history of metaheuristics in five distinct periods,
starting long before the first use of the term and ending a long time in the
future.

The field of metaheuristics has undergone several paradigm shifts that have
changed the way researchers look upon the development of heuristic methods.
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Most notably, there has been a shift from the method-centric period, in which
metaheuristics were thought of as algorithms, to the framework-centric period,
in which researchers think of metaheuristics as more general high-level frame-
works, i.e., consistent collections of concepts and ideas that offer guidelines on
how to go about solving an optimization problem heuristically.

Tremendous progress has been made in the development of heuristics over the
years. Optimization problems that seemed intractable only a few decades ago can
now be efficiently solved. Nevertheless, there is still much room for evolution in
the research field, an evolution that will allow it to move into the scientific period.
In this period, we will see more structured knowledge generation that will benefit
both researchers and practitioners.

Unfortunately, a significant fraction of the research community has deluded
itself into thinking that scientific progress can be made by resorting to ever more
outlandish metaphors as the basis for so-called “novel” methods. Even though
considerable damage to the research field will have been inflicted by the time
these ideas have been stamped out, there is no doubt that science will ultimately
prevail.

Keywords
History

Introduction

Even though people have used heuristics throughout history, and the human
brain is equipped with a formidable heuristic engine to solve an enormous array
of challenging optimization problems, the scientific study of heuristics (and, by
extension, metaheuristics) is a relatively young endeavor. It is not an exaggeration
to claim that the field of (meta) heuristics, especially compared to other fields
of study like physics, chemistry, and mathematics, has yet to reach a mature
state. Nevertheless, enormous progress has been made since the first metaheuristics
concepts were established. In this chapter, we will attempt to describe the historical
developments this field of study has gone through since its earliest days.

No history is ever neutral, and a history of metaheuristics – or any other topic –
can be written in many different ways. A straightforward (one could say “easy”)
history of metaheuristics would consist of an annotated and chronological list of
metaheuristic methods. Useful as such a list may be, it suffers from a lack of insight
into the development of the field as a whole. To illustrate this viewpoint, consider
the list in Fig. 1 that appeared on Wikipedia until April 8, 2013, to illustrate the
“most important contributions” in the field of metaheuristics. It is our opinion that
such a list is not particularly enlightening (and neither was the article that contained
it) when it comes to explaining the evolution of the field of metaheuristics.

Taking a bird’s eye view of the field of metaheuristics, one has to conclude that
there has been a large amount of progressive insight over the years. Moreover,
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Fig. 1 “Most important
contributions” list as it
appeared on Wikipedia until
April 8, 2013

TLBO, Krill Herd Algorithm
GbSA, spiral optimization, TLBO;
Bat algorithm
Cuckoo search
Firefly algorithm, monkey search
Intelligent water drops algorithm
Honey-bee mating optimization
Glowworm swarm optimization, artificial bee colony
Bee colony optimization

Multi-objective NSGA-II
Harmony search
POPMUSIC

Cross entropy
Differential evolution
CMA-ES & Est. of distribution
No free lunch & PSO
Multi-objective NSGA
Multi-objective GA
Ant colony optimization

Genetic programming
Tabu search
Artificial immune systems

Simulated annealing

Tuning control parameters
Scatter Search

Genetic algorithms

Adaptive control parameters

Evolutionary programming
Simplex method
Evolution strategies
Random search

Pattern search

1950

1955

1960

1965

1970

1975

1980

1985

1990

1995

2000

2005

2010
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this progressive insight has not reached its end point: the way researchers and
practitioners look at metaheuristics is still continually shifting. Even the answer to
the question what a metaheuristic is has changed quite a lot since the word was first
coined in the second half of the 1980s. In our view, it is this shifting viewpoint that
deserves to be written down, as it allows us to truly understand the past and perhaps
learn a few lessons that could be useful for the future development of research in
metaheuristics. We did not limit our discussion in this chapter to metaheuristics
that have been formally written down and published. When studying the history of
metaheuristics with an open mind, one has to conclude that people have been using
heuristics and metaheuristics long before the term even existed.

We have therefore adopted a different approach to write “our” history of
metaheuristics. Our approach starts well before the term “metaheuristic” was coined
and is based on the premise that people have looked at metaheuristics through
different sets of glasses over the years. The way in which people – not only
researchers – have interpreted the different metaheuristic concepts has shaped the
way in which the field has been developing. To understand the design choices that
people have been making when developing metaheuristic optimization algorithms,
it is paramount that these choices are understood in relationship to the trends and
viewpoints of the time during which the development took place.

Our history divides time in five distinct periods. The crispness of the boundaries
between each pair of consecutive periods, however, is a gross simplification of
reality. The real (if one can use that word) time periods during which the paradigm
shifts took place are usually spaced out over several years, but it is difficult, if not
impossible, to trace the exact moments in time at which the paradigm shifts began
and ended. More importantly, not every researcher necessarily makes the transition
at the same time.

• The pre-theoretical period (until c. 1940), during which heuristics and even
metaheuristics are used but not formally studied.

• The early period (c. 1940–c. 1980), during which the first formal studies on
heuristics appear.

• The method-centric period (c. 1980–c. 2000), during which the field of meta-
heuristics truly takes off and many different methods are proposed.

• The framework-centric period (c. 2000–now), during which the insight grows
that metaheuristics are more usefully described as frameworks and not as
methods.

• The scientific period (the future), during which the design of metaheuristics
becomes a science instead of an art.

Until recently, a clear definition of the word metaheuristic has been lacking, and
it could be argued that it is still disputed. In this chapter, we adopt the definition of
Sörensen and Glover [39].

A metaheuristic is a high-level problem-independent algorithmic framework that provides a
set of guidelines or strategies to develop heuristic optimization algorithms. The term is also
used to refer to a problem-specific implementation of a heuristic optimization algorithm
according to the guidelines expressed in such a framework.
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The term “metaheuristic” has been used (and is used) for two entirely different
things. One is a high-level framework, a set of concepts and strategies that blend
together and offer a perspective on the development of optimization algorithms. In
this sense, variable neighborhood search [28] is nothing more (or less) than the idea
to use different local search operators to work on a single solution, together with a
perturbation operator once all neighborhoods have reached a local optimum. There
is a compelling motivation, as well a large amount of empirical evidence, as to why
multi-neighborhood search is indeed a very good idea. This motivation essentially
comes down to the fact that a local optimum for one local search operator (or one
neighborhood structure) is usually not a local optimum for another local search
operator. The idea to switch to a different local search operator once a local optimum
has been found is therefore both sensible and in practice extremely powerful.

The second meaning of the term “metaheuristic” denotes a specific implementa-
tion of an algorithm based on such a framework (or on a combination of concepts
from different frameworks) designed to find a solution to a specific optimization
problem. The variable neighborhood search (-based) algorithm for the location-
routing problem by Jarboui et al. [23] is an example of a metaheuristic in this sense.

In this chapter, we will use the term “metaheuristic framework” to refer to the
first sense and “metaheuristic algorithm” to refer to the second sense of the word
“metaheuristic.”

As mentioned, a history of any topic is not a neutral. We therefore do not attempt
to hide the fact that certain ways in which the field has been progressing seem
to us less useful and sometimes even harmful to the development of the field in
general. For example, many of the entries that appear on the list in Fig. 1 are, in our
view, not “important contributions” at all but rather marginal additions to a list of
generally useless “novel” metaphor-based methods that are best forgotten as quickly
as possible.

Period 0: The Pre-theoretical Period

Optimization problems are all around us. When we decide upon the road to take
to work, when we put the groceries in the fridge, and when we decide which
investments to make so as to maximize our expected profit, we are essentially
solving an optimization problem (a shortest path problem, a packing problem, and
a knapsack problem, respectively). For human beings (and many animal species),
solving an optimization problem does not require any formal training, something
which is immediately clear from the examples given here. The difference between
exact solutions and approximate solutions and the difference between easy and
hard optimization problems or between fast (polynomial) and slow (exponential)
algorithms are all moot to the average problem-solver.

Indeed, the human mind seems to be formidably equipped from early childhood
on to solve an incredible range of problems, many of which could be easily modeled
as optimization problems. Most likely, the ability to solve optimization problems
adequately and quickly is one of the most important determinants of the probability
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of survival in all sentient species and has therefore been favored by evolution
throughout time. Clearly, the human (and animal) mind solves optimization prob-
lems heuristically and not exactly, i.e., the solutions produced by the brain are by
no means guaranteed to be optimal. Given what we now know about exact solution
procedures, this makes perfect sense. When determining the trajectory of a spear
to hit a mammoth, it is much more important that this trajectory be calculated
quickly rather than optimally. Given our knowledge on exact solution methods, we
can now say that the calculation of the exact solution (let us say the solution that
has the highest probability to hit the mammoth exactly between the eyes given its
current trajectory, the terrain in front of it, its anticipated trajectory changes, the
current wind direction, etc.) would almost certainly be found only after our target
has disappeared on the horizon. Moreover, it would almost certainly require too
much computing power from the brain, quickly depleting the body’s scarce energy
resources.

Given the diversity of problems the human mind must solve, including problems
with which it has no prior experience, there is very little doubt that the human mind
has the capacity (whether evolved or learned) to use meta-heuristic strategies. Just
like the metaheuristics for optimization that form the subject of this book, such
strategies are not heuristics in themselves but are used to derive heuristics from.
For example, when confronted with a new problem to which a solution is not
immediately obvious (e.g., determining the trajectory of a spear to hit a mammoth),
the human mind will automatically attempt to find similar problems it has solved
in the past (e.g., determining the trajectory of a stone to hit a bear) and attempt
to derive the rules it has learned by solving this problem. This strategy is called
learning by analogy [3]. Another example is called means-end analysis [36] and
can be summarized as follows: given a current state and a goal state, choose an
action that will lead to a new state that is closer to the goal state than the current
state. This rule is iteratively applied until the goal state has been reached or no
other state can be found closer to the goal state than the current state. Obviously,
this strategy is a more general counterpart of all formal optimization heuristics
that can be categorized as local search, in which a solution is iteratively improved
using small, incremental operations we have come to call moves. The technique of
path relinking [15], in which an incumbent solution is transformed, one move at a
time, into a guiding solution, is another example of a formalized means-end analysis
strategy.

Whereas heuristics (and even metaheuristics) are completely natural to us
humans, exact methods seem to be a very recent invention, coinciding with the
introduction of the field of Operations Research around WWII. On the other hand,
even though heuristics have been applied since the first life on earth evolved, the
scientific study of heuristics also had to wait until the twentieth century. It could be
hypothesized that heuristics are so natural to us that we had to wait until a formal
theory of optimization, especially of linear programming, had to be developed
before anyone considered it a topic worthy of study.
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Period 1: The Early Period

In 1945, immediately after WWII, the Hungarian mathematician George Pólya, then
working at Stanford University, published a small volume called “How to Solve
It” [30]. In his book, he argued that problems can be solved by a limited set of
generally applicable strategies, most of which serve to make the problem simpler to
solve. The book’s focus was not on optimization problems but on the more general
class of “mathematical” problems, i.e., problems that can be modeled and solved by
mathematical techniques. Nevertheless, most of the solution strategies proposed in
his book are equally applicable to develop optimization algorithms.

The “analogy” principle, e.g., tells the problem-solver to look for another
problem that closely resembles the problem at hand and to which a solution method
is known. By studying the similarities and differences between both problems,
ideas can be garnered to solve the original problem. The principle of “induction”
consists in solving a problem by deriving a generalization from some examples. The
“auxiliary problem” idea asks whether a subproblem exists that can help to solve
the overall problem. Even though it is a bit of stretch to call these principles “meta-
heuristics,” it is clear that the start of the field of OR also marks the age during which
people start thinking about more general principles that are useful in the design of
heuristic algorithms (or solution methods for other types of problems). A case can
be made for the fact that many of Pólya’s principle are still heavily used today by
heuristic designers. Looking for similar problems in the literature or elsewhere, and
modifying the best-known methods for them to suit the problem at hand (analogy),
is an extremely common strategy to arrive at a good heuristic fast. Solving some
simple examples by hand, and using the lessons learned from your own (or someone
else’s) perceived strategy to derive an intelligent solution strategy from (induction),
is also a useful technique. Finally, decomposing a problem into smaller subproblems
and developing specialized techniques for each of them (auxiliary problem) has
proven to be a powerful heuristic design strategy on a large number of occasions.

What is important is that none of Pólya’s strategies actually solve any problem,
nor can they be called “algorithms” in themselves. Instead, they are high-level, meta-
strategies that are useful to influence the way a heuristic designer thinks about a
problem. In that sense at the very least, they are very like the more advanced and
specialized metaheuristic frameworks that we have today.

Several very high-level algorithmic ideas also came about around this period. The
fact that good solutions can be reached by a constructive procedure, for example, is
one of them. A constructive algorithm is one that starts from an empty solution and
iteratively adds one element at a time until a complete solution has been formed.
Simple rules for selecting this element from the set of all potential elements have
led to different types of algorithms. The greedy selection rule selects the best (value
for each) element at each iteration. Kruskal’s or Prim’s algorithm for the minimum
spanning tree problem, Dijkstra’s algorithm for the shortest path problem, etc., are
all examples of greedy heuristics [7]. Regret algorithms present a similar class of
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optimization procedures that select, at each iteration, the element for which not
selecting its best value results in the highest penalty cost. Vogel’s approximation
method [35] for the transportation problem is a well-known example. Again, calling
the greedy idea or the regret idea “metaheuristics” is a bit of a stretch, but they are
high-level strategies, and they are not algorithms themselves.

Also during this period, Simon and Newell [37] see heuristics specifically as fit to
solve what they call “ill-structured” problems. Contrary to well-structured problems,
such problems cannot be formulated explicitly or solved by known and feasible
computational techniques. Their predictions in 1958 have turned out to be slightly
optimistic, but it cannot be denied that heuristics have turned out to be more flexible
problem-solving strategies than exact methods.

Even though the heuristics developed in the early period were very simple, the
realization that high-level strategies existed that could be used as the basis for the
development of heuristics for any optimization problem led to insights that paved
the way for more complex meta-strategies. Together with the widespread availability
of computers, these developments took the field of heuristics into the next period in
this history, the method-centric period.

Period 2: The Method-Centric Period

Even though the frameworks and ideas developed during what we have called the
early period lacked the comprehensiveness of the later developed metaheuristic
frameworks like tabu search [14], it is not too far-fetched to call them early
metaheuristics. Like later metaheuristic frameworks, these methods offered – in the
form of some generally applicable strategies – inspiration for the development of
optimization algorithms. Of course, these principles still needed to be instantiated
for each different optimization problem, but at least the process of coming up with
an optimization strategy did not have to start from scratch.

Much of the work done in the early period can be characterized under the
umbrella term of artificial intelligence because it involves mimicking human
problem-solving behavior and learning lessons from this behavior on a more abstract
level. Starting in the 1960s, however, an entirely different line of research into
problem-solving methods came to life. These methods used an analogy with life’s
main problem-solving method: evolution.

Evolution by natural selection has been called “the best idea ever” [4]. No single
idea explains as much as Darwin’s realization that species evolve over time to
adapt to their environment. The way in which this happens, by natural selection
of inheritable characteristics, is both so clever and so simple it begs the question
why the world needed to wait until the second half of the nineteen century before
someone thought of it. Nevertheless, it took another century and the advent of the
computer before researchers would become interested in simulating the process of
natural evolution.

Although researchers in the late 1950s and early 1960s had developed what
we would now label as evolutionary algorithms, their main aim was not to solve
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optimization problems but to study the phenomenon of natural evolution. The
insight that the principles of natural evolution could be used to solve optimization
problems in general came in the early 1960s, when researchers like Box, Friedman,
and several others had independently developed algorithms inspired by evolution
for function optimization and machine learning. One of the first methods to receive
some share of recognition was the so-called evolution strategy (as later reported in
[31]). Evolution strategy was still quite far from what we would call an evolutionary
algorithm: it did not use a population or crossover. One solution (called the parent)
was mutated and the best of the two solutions became the parent for the next round
of mutation.

Evolutionary programming, introduced a few years later [11], represented so-
lutions as finite-state machines but also lacked the concepts of both a population
and crossover. The true start of the field of evolutionary algorithms came with the
seminal work of John Holland [20], who was the first to recognize the importance
of both concepts. With his schemata theory, which essentially states that high-
quality schemata (“parts”) of solutions will increase in frequency in successive
iterations of the algorithm, Holland was also among the pioneers of theory-building
in metaheuristics. The schemata theory was criticized later for its limited use and
lack of general applicability, but it demonstrated that the field of metaheuristics
needed not forever be devoid of theoretical underpinning.

It was perhaps the book by David Goldberg [18] (a student of John Holland) that
truly sparked the evolutionary revolution. Evolutionary methods became extremely
popular, journals and conferences specifically devoted to this topic sprouted, and
an exponentially increasing number of papers appeared in the literature. A large
number of variants were proposed, each with its own specific characteristics.
Extraordinary claims were made, not necessarily grounded in empirical evidence.
The quest for a generic heuristic optimization method that could solve any problem
efficiently, without requiring problem-specific information, seemed finally to be on
the right track.

In the 1980s, the first papers start to appear that introduced general problem-
solving frameworks not based on natural evolution. One of the first used another
metaphor: annealing, the controlled heating and cooling process used in metallurgy
and glass production to remove stresses from the material [24]. Simulated annealing
used random solution changes and “accepted” these if they improved the solution
or, if they did not, with a probability inversely proportional to the solution quality
decrease and proportional to an external parameter called the “temperature.”

For a while, it might have seemed that the development of metaheuristics was
all about finding a suitable process to imitate. The 1980s, however, also saw the
development of several methods that reached back to the early period and used
ideas derived from human problem-solving. One of the most powerful ideas was
that solutions could be gradually improved by iteratively making small changes,
called moves, to them. To this end, an algorithm would investigate all or some of
the solutions that could be reached from the current solution by executing a single
move. Together, these solutions form the neighborhood of the current solution.

Threshold accepting [9], a simple variant of simulated annealing demonstrated
that a metaphor was certainly not necessary to develop a powerful general-purpose
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optimization framework. The great deluge method and record-to-record travel [8]
differed from threshold accepting only by the way in which they accepted new
solutions. Still, each of these was seen as a different method.

Perhaps the most influential of the AI-based methods was tabu search [14]. The
basic premise of this framework is that a local search algorithm could be guided
toward a good solution by using some of the information gathered during the search
in the past. To this end, the tabu search framework defined a number of memory
structures that captured aspects of the search. The most emblematic is without a
doubt the tabu list, a list that records attributes of solutions and prohibits, for a
certain number of iterations, any solutions that exhibit an attribute on the tabu list.

The same paper that introduced tabu search also coined the word “meta-
heuristic” [14]. However, not everybody agreed with this term and a push was
made to use the (more modest) term “modern heuristics” instead. Clearly, not
everybody agreed that the limited set of metaheuristics proposed by the 1980s had a
higher-level aspect to them. Many still viewed them essentially as (admittedly, more
complicated than their simple counterparts) algorithms, i.e., unambiguous step-by-
step sets of operations to be performed. Indeed, it is very common in the late 1980s
for a “new metaheuristic” to be described based on a flowchart or another typical
algorithmic representation. The widespread realization that metaheuristics could
and should be viewed as general frameworks rather than as algorithms would come
during the next period, the framework-centric period.

Interestingly, neural networks [21] were among the limited list of metaheuristics
proposed by the late 1980s. These methods imitate the functioning of a brain
(including neurons and synapses) and were originally proposed in the context of
pattern recognition (for which they are still mostly used).

By 1995, research in metaheuristics had grown to a level that could sustain its
own conference series, and thus the MIC (Metaheuristics International Conference)
series was established. In the same year, the first issue of the Journal of Heuristics
(http://link.springer.com/journal/10732/1/1/page/1), the only journal dedicated to
publishing research in metaheuristics, was published.

Several other frameworks that had been proposed around the early 1990s also
gained increasing interest during the mid-1990s. The innovation proposed in the
GRASP (greedy randomized adaptive search procedure) framework was to modify
a greedy heuristic by selecting at each iteration not necessarily the best element
but one of the best elements randomly [10]. Similarly, ant colony optimization [5]
proposed not only to mix deterministic and stochastic information but also proposed
a way for solutions to exchange information.

Evolutionary algorithms invariably introduce a large amount of randomness in
the search process. Some authors argued that it might be beneficial to reduce the
reliance on randomness, but rather create algorithms that perform a more systematic
search of the solution space. Scatter search and path relinking, both introduced in
Glover [15], are the most notable examples in which the principles of evolutionary
algorithms were used with the randomness removed from them [17].

By the second half of the 1990s, however, it gradually became clear that
metaheuristics based on metaphors would not necessarily lead to good approaches.

http://springerlink.bibliotecabuap.elogim.com/journal/10732/1/1/page/1
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The promised black box optimizers that would always “just work” and that had
attracted so much attention seemed elusive. Even the theoretical studies lost some
of their shine. The convergence results obtained for simulated annealing [19],
because they only worked when an infinite running time was available, were not
as compelling for practical situations as initially thought. Similarly, the automatic
detection of good building blocks by genetic algorithms only really worked if such
building blocks actually existed and if they were not continually being destroyed
by the crossover and mutation operators operating on the solutions. Even though
the early metaheuristic frameworks offered some compelling ideas, they did not
remove the need for an experienced heuristic designer. The advent of metaheuristics
had not changed the simple fact that a metaheuristic that extensively exploited the
characteristics of the optimization problem at hand would almost always be superior
to one that took a black box approach, regardless of the metaheuristic framework
used.

In general, researchers during the method-centric period proposed algorithms,
i.e., formalized structures that were meant to be followed like a cookbook recipe.
More often than not, the “new metaheuristic” was given a name, even when the
difference between the new method and an existing method was small.

Period 3: The Framework-Centric Period

The insight that metaheuristics could be more usefully described as high-level algo-
rithmic frameworks, rather than as algorithms, was a natural thing to happen. The
main indicator that this mindset change was taking place – a change that has given
rise to a period that we have dubbed the framework-centric period – is the increasing
popularity of so-called “hybrid” metaheuristics during the early 2000s. Indeed, this
period could by rights have been called the “hybrid metaheuristic period.” Whereas
earlier researchers used to restrain themselves to a single metaheuristic framework,
more and more researchers around the turn of the century combined ideas from
different frameworks into a single heuristic algorithm. Some combinations became
more popular than others, like the use of a constructive heuristic to generate an initial
solution for a local search algorithm or the use of GRASP to generate solutions that
are then combined using path relinking.

One type of hybrid metaheuristic even received a distinct name: the use of local
search (or any “local learning” approach) to improve solutions that are obtained by
an evolutionary algorithm was called a memetic algorithm [29]. In 2004, the term
“hybrid metaheuristic” had become common, and a new conference series with the
same name was started.

The hybridization of metaheuristics, however, did not restrict itself to a com-
bination of a metaheuristic with another metaheuristic. Opening up the individual
algorithmic frameworks allowed researchers to combine a metaheuristic with
any auxiliary method available. Constraint programming, linear programming,
and mixed-integer programming were all used in combinations with ideas from
metaheuristics. The combination of metaheuristics and exact methods was coined
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“matheuristics” [27] (though these methods too had many antecedents in the
metaheuristics literature). In 2006, the first edition of the Matheuristics conference
took place.

Soon after its introduction, the term “hybrid” metaheuristic would become
obsolete, as researchers made a general transition from seeing metaheuristics as
algorithms of which some components could be borrowed by other metaheuristics
to general sets of concepts (“frameworks”). The “metaheuristic framework” concept
entailed that metaheuristics were nothing more (or less) than a more or less coherent
set of ideas, which could, of course, be freely combined with other ideas. Today,
many researchers develop metaheuristics using their experience and knowledge
about which methods will work well for certain problems and which most likely
will not.

Some general patterns started to appear in the literature on which methods work
well for which problems, and the community gravitated toward approaches that
always delivered. For almost any variant of the vehicle routing problem, e.g., a large
majority of approaches use some form of local search as their main engine, generally
in a multi-neighborhood framework like variable neighborhood search [28]. The use
of several different local search operators or the use of several different constructive
procedures in general is now a well-regarded strategy and often used as the first
choice by heuristic designers. Clearly, variable neighborhood search presented a
framework within which the use of multiple neighborhoods could be captured, but
many other ways of combining several local search operators in a single heuristic are
possible. The use of several constructive heuristics (usually combined with several
destructive operators) in a single heuristic became known under the name large
neighborhood search [1, 33, 43].

Crucial in this period, which is still ongoing, is that researchers do not have to
propose a “new algorithm” anymore to get their papers published. By combining
the most efficient operators of existing metaheuristic frameworks, and carefully
tuning the resulting heuristic, algorithms can be created that solve any real-life
optimization problem efficiently. Researchers can now focus on studying a single,
mundane aspect of a metaheuristic framework in detail like, e.g., its stopping rules
[32].

Recently, a focus can be observed on frameworks that present a much simpler
approach that – in many cases – is not much less effective. Iterated local search
[25], which proposes to use a single local search operator in alternation with a
single perturbation operator, has a long history and dates back to at least the early
1980s [2], yet is still as popular as ever. Its constructive counterpart, often called
iterated greedy [12, 34], has recently gained a large amount of traction, despite
the fact that it can be seen as a restricted form of strategic oscillation (SO), a
technique introduced in Glover [13] often employed in the context of tabu search.
SO offers a multitude of concepts and ideas to allow the search to move within
and between regions demarcated by various boundaries within the search space,
such as those defining feasibility or local optimality or thresholds for various
functions (such as objective functions or sums of variables). Reference to such
boundaries enriches the search process by introducing different types of moves and
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evaluations depending on which side of the boundary the search lies on and on
whether the search is moving toward or away from the boundary. Moves leading
toward or away from a boundary are joined by moves launched at the boundary
and at selected distances from the boundary which involve more complex searches
(e.g., by employing exchange moves in place of constructive or destructive moves).
Successful applications of strategic oscillation are reported in Glover and Laguna
[16], Hvattum et al. [22], Lozano et al. [26], and Corberán et al. [6]. An apparent
paradox is that the simplification of a metaheuristic to a few simple rules, which may
restrict both its scope and its power, seems to increase its popularity. A possible
explanation is that it renders the framework more accessible to non-expert users,
who – contrary to the scientific community – value robustness, ease of development,
and flexibility over performance.

Traditionally, the metaheuristic community has put a heavy focus on perfor-
mance. Research is only considered good if (and only if) it produces a heuristic
algorithm that “performs” well with respect to some benchmark, such as another
heuristic or a lower bound. This has been called the “up-the-wall game” (though
it might also be called the “one-upmanship game”). All other contributions (e.g.,
heuristics that are many times simpler than the best-performing heuristic in the
literature, studies on heuristics that should perform well but for some reason
do not, etc.) are much more difficult to publish. However, several researchers
have pointed out the adverse effects of this paradigm (which effectively reduces
science to a game), and some recent contributions that go beyond the up-the-wall
game demonstrate the framework-centric period is gradually transforming into the
scientific period. In this period the study of metaheuristics will shift its focus from
performance to understanding. Unfortunately, however, not all of the metaheuristic
community makes the transition to the framework-centric period, and we are forced
to report on a period which essentially runs in parallel with this period.

The Metaphor-Centric Period

Starting in the 1980s, a subfield has arisen of research (we hesitate to put quote
marks around the term for reasons that will be explained below) that focuses on the
development of new metaheuristic methods based on metaphors of natural or man-
made processes. In our history, this period has not been assigned a number because
it does not fit chronologically between the other periods, but rather is a side step that
happened (and is still happening) in parallel to the framework-centric period.

Although metaphors had been useful in the development of early metaheuristics
as a source of inspiration for the development of novel frameworks, it has always
been evident to many that a metaphor is only a metaphor and always breaks down at
a certain point. It is therefore useful for inspiration, but not necessarily everything
about it usefully translates to a metaheuristic framework. Importantly, a metaphor
is not enough to justify metaheuristic design choices or to create a foundation for
completely new metaheuristics.
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In recent years, however, a different attitude seems to have taken hold of
a subfield of the metaheuristic community. The aim of the “metaphor-based”
subfield seems to center entirely around the development of “novel” metaphors
that can be used to motivate new metaheuristics. The list of natural and man-
made processes that have inspired such metaheuristic frameworks is huge. Ants,
bees, termites, bacteria, invasive weed, bats, flies, fireflies, fireworks, mine blasts,
frogs, wolves, cats, cuckoos, consultants, fish, glowworms, krill, monkeys, anarchic
societies, imperialist societies, league championships, clouds, dolphins, Egyptian
vultures, green herons, flower pollination, roach infestations, water waves, optics,
black holes, the Lorentz transformation, lightning, electromagnetism, gravity, music
making, “intelligent” water drops, river formation, and many, many more, have been
used as the basis of a “novel” metaheuristic technique.

Moreover, there does not seem to be any restriction on the type of process
that can be translated into a metaheuristic framework. One would expect that, at
the very least, the process that is to become the basis for a metaheuristic should
optimize something (e.g., an annealing process minimizes the energy level, natural
evolution minimizes the discrepancy between the characteristics of a species and the
requirements of this species’ environment, ants minimize the distance between their
nest and their source of food). Nevertheless, many metaheuristic frameworks can
now be found based on processes that by no stretch of imagination can be said to
optimize anything, like fireworks, mine blasts, or cloud formation.

Both the causes and the consequences of this “metaphor fallacy” have been exten-
sively dealt with in a number of other publications [38,42] (short summary: it is not
science), and this is not the place to repeat all the arguments why metaphor-based
metaheuristics are a bad idea. Nevertheless, metaphor-based “novel” metaheuristics
take up a (dark) page in the history of metaheuristics, a page that should be turned
quickly.

Period 4: The Scientific Period?

For a long time, the field of metaheuristics has had difficulties to be taken seriously.
In 1977, one of the authors of this chapter wrote “[exact] algorithms are conceived
in analytic purity in the high citadels of academic research, heuristics are midwifed
by expediency in the dark corners of the practitioner’s lair [. . . ] and are accorded
lower status” [13]. Traditionally, the theoretical underpinning of heuristics and
metaheuristics has not been on par with that of other areas in OR, more specifically
exact methods. The development of heuristic optimization algorithms, whether
using a metaheuristic framework or not, is guided by experience, not theory. Early
attempts to firmly ground the development of metaheuristics in theory have not
delivered upon their promises. Understanding the behavior of metaheuristics on
a fundamental level has proven to be a difficult task, notwithstanding several
noteworthy efforts (e.g., [40, 41]).

Nevertheless, it is hard to argue with success. The obvious usefulness of
metaheuristics in practical optimization problems has drawn researchers to improve
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the frameworks and methods developed. To solve a large majority of real-life
optimization problems, heuristics are and will remain the only option, whether
developed using a metaheuristic framework or not. Nevertheless, there are many
things that can be improved about the way the metaheuristic community operates.
To list just a few:

• The establishing of adequate testing protocols, to ensure that algorithms perform
as well as they are claimed to do.

• The introduction of meta-analysis (i.e., a review of a clearly formulated question
that uses systematic methods to identify, select, and evaluate relevant research,
as well as to collect and analyze data from relevant studies) to the field of
metaheuristics (Hvattum, 2015, Personal communication).

• The requirement to disclose source code, so that researchers can check and build
on each other’s work without in a more efficient way, without reinventing the
wheel.

• The development of powerful general-purpose heuristic solvers to decrease
development time, like CPLEX or Gurobi, but then heuristically. LocalSolver
seems to be on the right track.

• Supporting these general-purpose solvers, the development of a powerful and
generally accepted modeling language, geared more toward the development of
heuristics and less toward the MIP paradigm.

• . . .

Most importantly, the change from a performance-driven community to a
community in which scientific understanding is more important will take place
during the scientific period. Without doubt, this will lead to the development of
even better heuristics, even more efficient, but it will also lead to heuristics that are
usable outside of the developer’s lab environment.

Conclusions

Describing the history of the field of metaheuristics in a few pages is not an easy
undertaking, and completeness is a goal that simply cannot be achieved. In this
chapter, we have attempted to clarify the evolution in this field by not focusing
exclusively on important events or publications but by attempting to identify the
important paradigm shifts that the field has dealt with. What is certain is that the use
of metaheuristics is older, much older, than the term itself. As mentioned, our brain
itself houses some powerful metaheuristics that have helped humans survive from
the dawn of mankind. The scientific study of metaheuristics, however, had to wait
until the second half of the previous century.

Scientific communities invariably develop a conceptual framework within which
a few axioms are held to be true. This can also be said of the metaheuristic
community. It is those shared truths that we have attempted to uncover in this
chapter. Even though the field of metaheuristics is still young, it has already
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undergone several paradigm shifts that have changed the way researchers look upon
the development of heuristic optimization methods.

The transition from the method-centric to the framework-centric period has been
beneficial for the entire community, and there is no doubt that the transition toward
the scientific period can take the field further into the right direction. Metaheuristics
are a fascinating area of study with highly significant practical ramifications, and
the field will certainly keep on evolving in the foreseeable future. There is no
doubt that a more scientific, less dogmatic, and broader point of view can help us
all in achieving our goals: the development of efficient methods to solve the most
challenging and important real-life optimization problems.
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Abstract

The chapter presents a general picture of parallel meta-heuristic search for
optimization. It recalls the main concepts and strategies in designing parallel
meta-heuristics, pointing to a number of contributions that instantiated them
for neighborhood- and population-based meta-heuristics, and identifies trends
and promising research directions. The focus is on cooperation-based strategies,
which display remarkable performances, in particular strategies based on asyn-
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chronous exchanges and the creation of new information out of exchanged data
to enhance the global guidance of the search.

Keywords
Parallel computation � Parallel meta-heuristics � Functional and data
decomposition � Independent multi-search � Synchronous and asynchronous
cooperative search � Integrative cooperative search

Introduction

Meta-heuristics often offer the only practical approach to addressing complex
problems of realistic dimensions and are thus widely acknowledged as essential
tools in numerous and diverse fields. Yet, even meta-heuristics may reach quite
rapidly the limits of what may be addressed in acceptable computing times for
many research and practice problem settings. Moreover, heuristics do not generally
guarantee optimality, performance often depending on the particular problem setting
and instance characteristics. Robustness is therefore a major objective in meta-
heuristic design, in the sense of offering a consistently high level of performance
over a wide variety of problem settings and instance characteristics.

Parallel meta-heuristics aim to address both issues. Their first goal is to solve
larger problem instances than what is achievable by sequential methods and to do it
in reasonable computing times. In appropriate settings, such as cooperative multi-
search strategies, parallel meta-heuristics also prove to be much more robust than
sequential versions in dealing with differences in problem types and characteristics.
They also require less extensive, and expensive, parameter-calibration efforts.

The objective of this chapter is to paint a general picture of the parallel optimiza-
tion meta-heuristic field. Following [40], it recalls the main concepts and strategies
in designing parallel meta-heuristics, pointing to a number of contributions that
instantiated them for neighborhood- and population-based meta-heuristics, and
identifies a number of trends and promising research directions. It focuses on
cooperation-based strategies, which display remarkable performances, reviewing in
somewhat more depth the recently introduced integrative cooperative search [96].
Notice that parallel meta-heuristic strategies are examined and discussed from the
conceptual, algorithmic design point of view, independent of implementation on
particular computer architectures.

The parallel meta-heuristic field is very broad, while the space available for this
chapter is limited. In addition to the references provided in the following sections,
the reader may consult a number of surveys, taxonomies, and syntheses of parallel
meta-heuristics, some addressing methods based on particular methodologies, while
others address the field in more comprehensive terms. Methodology-dedicated
syntheses may be found in [5, 84–86, 133] for parallel simulated annealing,
[20, 21, 107, 119, 147] for genetic-based evolutionary methods, [32, 43, 45, 82, 170]
for tabu search, [73] for scatter search, [18,62,92] for ant colony methods, and [116]
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for variable neighborhood search (VNS). Surveys and syntheses that address more
than one methodology may be found in [2, 4, 33, 36–38, 40, 50, 51, 90, 97, 125, 168].

The chapter is organized as follows. Section “Meta-heuristics and Parallelism”
is dedicated to a general discussion of the potential for parallel computing in
meta-heuristics, a brief description of performance indicators for parallel meta-
heuristics, and the taxonomy used to structure the presentation. Section “Low-Level
Parallelization Strategies” addresses strategies focusing on accelerating computing-
intensive tasks without modifying the basic algorithmic design. Methods based on
the decomposition of the search space are treated in section “Data Decomposition,”
while strategies based on the simultaneous exploration of the search space by several
independent meta-heuristics constitute the topic of section “Independent Multi-
-search.” Cooperation principles are discussed in section “Cooperative Search” and
are detailed in sections “Synchronous Cooperation,” “Asynchronous Cooperation,”
and “Advanced Cooperation Strategies: Creating New Knowledge.” We conclude in
section “Conclusions.”

Meta-heuristics and Parallelism

We start with a brief overview of the potential for parallel computing in meta-
heuristics and of performance indicators for parallel meta-heuristics, followed by
the criteria used to describe and characterize the parallelization strategies for meta-
heuristics described in the other sections of the chapter.

Sources of Parallelism

Addressing a given problem instance with a parallel solution method means that
several processes work simultaneously on several processors with the goal of
identifying the best solution for the instance. Parallelism thus follows from a
decomposition of the total work load and the distribution of the resulting tasks to
available processors. According to how “small” or “large” are the tasks in terms of
algorithm work or search space, the parallelization is denoted fine or coarse grained,
respectively.

The decomposition may concern the algorithm, the problem instance data, or
the problem structure. Functional parallelism identifies the first case, where some
computing-intensive components of the algorithm are separated into several tasks
(processes), possibly working on the “same” data, which are allocated to different
processors and run in parallel. The main source of functional parallelism for
meta-heuristics is the concurrent execution of their innermost loop iterations, e.g.,
evaluating neighbors, computing the fitness of individuals, or having ants forage
concurrently (section “Low-Level Parallelization Strategies”). This is often also
the only source of readily available parallelism in meta-heuristics, most other
steps being time dependent and requiring either the computation of the previous
steps to be completed or the synchronization of computations to enforce this
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time dependency. Consequently, functional parallelism is mainly interesting as a
low-level component of hierarchical parallelization strategies or when addressing
problem settings requiring a significant part of the computing effort to be spent in
the inner-loop algorithmic component.

Parallelism for meta-heuristics may further be found in the domain of the
problem addressed or the corresponding search space (for brevity reasons, the
term “search space” is used in the rest of the chapter). There are indeed no data
dependencies between the evaluation functions of different solutions, and, thus,
these may be computed in parallel. Moreover, theoretically, the parallelism in the
search space is as large as the space itself. Parallelism is then obtained by separating
the search space into components allocated to the available processors. In most
cases, these components are still too large for explicit enumeration, and an exact or
heuristic search method has to be associated to each to implicitly explore it. Space
separation is exploited in most of the strategies described in this chapter.

Space separation raises a number of issues with respect to defining an overall
meta-heuristic search strategy, in particular, (1) whether to define the separation
by partitioning the space, allowing components to partially overlap, or not, (2)
how to control an overall search conducted separately on several components of
the original space, (3) how to build a complete solution out of those obtained
while exploring the components, and (4) how to allocate computing resources for
an efficient exploration avoiding, for example, searching regions with poor-quality
solutions.

Two main approaches are used to perform the search-space separation: domain
decomposition (also called data parallelism) and multi-search (the name multiple
walks is also found in the literature). The former explicitly separates the search
space (section “Data Decomposition”) and then addresses the initial problem
instantiated on each of the resulting restricted regions, before combining the
corresponding partial solutions into complete ones.

Multi-search strategies implicitly divide the search space through concurrent
explorations by several methods, named solvers in the following. These meta-
heuristic or exact solvers may address either the complete problem at hand or
explore partial problems defined by decomposing the initial problem through
mathematical programming or attribute-based heuristic approaches. In the former
case, the decomposition method implicitly defines how a complete solution is built
out of partial ones. In the latter case, some processors work on the partial problems
corresponding to the particular sets of attributes defined in the decomposition,
while others combine the resulting partial solutions into complete solutions to the
original problem. Multi-search strategies, particularly those based on cooperation
principles, are at the core of most successful developments in parallel meta-
heuristics and the object of the largest number of recent publications in the field.
Sections “Independent Multi-search,” “Cooperative Search,” “Synchronous Co-
operation,” “Asynchronous Cooperation,” and “Advanced Cooperation Strategies:
Creating New Knowledge” describe multi-search meta-heuristics.

We complete this subsection with a few notes on the performance evaluation of
parallel meta-heuristic strategies and resulting algorithms.
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The traditional goal when designing parallel solution methods is to reduce the
time required to “solve,” exactly or heuristically, given problem instances or to
address larger instances without increasing the computational effort. For solution
methods that run until the provable optimal solution is obtained, this translates into
the well-known speedup performance measure, computed as the ratio between the
wall-clock time required to solve the problem instance in parallel with p processors
and the corresponding solution time of the best-known sequential algorithm. A
somewhat less restrictive measure replaces the latter with the time of the parallel
algorithm run on a single processor. See [9] for a detailed discussion of this issue,
including additional performance measures.

Speedup measures are more difficult to interpret when the optimal solution
is not guaranteed or the exact method is stopped before optimality is reached.
Moreover, most parallelization strategies design parallel meta-heuristics that yield
solutions that are different in value, composition, or both from those obtained by the
sequential counterpart. Thus, equally important performance measures for parallel
heuristics evaluate by how much they outperform their sequential counterparts
in (relative) terms of solution quality and, ideally, the computational efficiency.
Simply put, the parallel method should not require a higher overall computation
effort than the sequential method or should justify the extra effort by higher-quality
solutions.

Search robustness is another characteristic expected of parallel heuristics. Ro-
bustness with respect to a problem setting is meant here in the sense of providing
“equally” good solutions to a large and varied set of problem instances, without
excessive calibration, neither during the initial development nor when addressing
new problem instances.

Multi-search methods, particularly those based on cooperation, generally offer
enhanced performances compared to sequential methods and other parallelization
strategies. They display behaviors different from those of the sequential methods
involved and can be seen as proper meta-heuristics [2], usually finding better-quality
solutions and enhancing the robustness of the meta-heuristic search. See [37,38] for
a discussion of these issues.

Characterizing Parallel Meta-heuristic Strategies

Several strategies may be defined based on each one of the sources of parallelism
discussed above. The classification of Crainic and Hail [36], generalizing that of
Crainic, Toulouse, and Gendreau [43] ([168] and [51] present classifications that
proceed of the same spirit), is used in this chapter to characterize these strategies.

The three dimensions of the classification focus on the control of the global
problem-solving process, the information exchanged among processes, and the
diversity of the search, respectively. The first dimension, search control cardinality,
thus specifies whether the global search is controlled by a single process or by
several processes that may collaborate or not. The two alternatives are identified
as 1-control (1C) and p-control (pC), respectively.
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The second dimension addresses the issue of information exchanges and the
utilization of the exchanged information to control or guide the search, hence the
search control and communications name. Communications may proceed either
synchronously or asynchronously. In the former case, processes stop and engage
in some form of communication and information exchange at moments (number of
iterations, time intervals, specified algorithmic stages, etc.) exogenously planned,
either hard-coded or determined by a control (master) process. In the asynchronous
communication case, each process is in charge of its own search, as well as of
establishing communications with other processes, and the global search terminates
once all individual searches stop. Four classes are defined within this dimension to
reflect the quantity and quality of the information exchanged and shared, as well
as the additional knowledge derived from these exchanges (if any): rigid (RS) and
knowledge synchronization (KS) and, symmetrically, collegial (C) and knowledge
collegial (KC).

More than one solution method or variant (e.g., with different parameter settings)
may be involved in a parallel meta-heuristic. The third dimension thus indicates
the search differentiation or diversity: do solvers start from the same or different
solutions and do they make use of the same or different search strategies? The four
classes are same initial point/population, same search strategy (SPSS); same initial
point/population, different search strategies (SPDS); multiple initial points/pop-
ulations, same search strategies (MPSS); and multiple initial points/populations,
different search strategies (MPDS). Obviously, one uses “point” for neighborhood-
based methods, while “population” is used for genetic-based evolutionary methods,
scatter search, and swarm methods.

Low-Level Parallelization Strategies

Functional-parallelism-based strategies, exploiting the potential for task decom-
position within the inner-loop computations of meta-heuristics, are often labeled
“low level” because they modify neither the algorithmic logic nor the search space.
They aim solely to accelerate the search and generally do not modify the search
behavior of the sequential meta-heuristic. Typically, the exploration is initialized
from a single solution or population and proceeds according to the sequential meta-
heuristic logic, while a number of computing-intensive steps are decomposed and
simultaneously performed by several processors.

Most low-level parallel strategies belong to the 1C/RS/SPSS class and are usually
implemented according to the classical master-slave parallel programming model.
A “master” program executes the 1-control sequential meta-heuristic, separating

and dispatching computing-intensive tasks to be executed in parallel by “slave”
programs. Slaves perform evaluations and return the results to the master which,
once all the results are in, resumes the normal logic of the sequential meta-
heuristic. The complete control on the algorithm execution thus rests with the
master, which decides the work allocation for all other processors and initiates most
communications. No communications take place among slave programs.
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The neighborhood-evaluation procedure of the local search component
of neighborhood-based meta-heuristics (as well as of population-based ones
implementing advanced “schooling” for offspring) is generally targeted in
1C/RS/SPSS designs. The master groups the neighbors into tasks and sends them
to slaves. Each slave then executes the exploration/evaluation procedure on its
respective part of the neighborhood and sends back the best, or first improving,
neighbor found. The master waits for all slaves to terminate their computations,
selects the best move, and proceeds with the search. See, e.g., [70] and [129] for
applications of this strategy to tabu search meta-heuristics for the vehicle routing
problem with time window constraints (VRPTW) and the scheduling of dependent
tasks on heterogeneous processors, respectively.

The appropriate granularity of the decomposition, that is, the size of the tasks,
depends upon the particular problem and computer architecture but is generally
computationally sensitive to inter-processor communication times and workload
balancing. Thus, for example, [54] discusses several decomposition policies for the
permutation-based local search neighborhood applied to the scheduling of depen-
dent tasks on homogeneous processors and shows that the uniform partition usually
called upon in the literature is not appropriate in this context characterized by
neighborhoods of different sizes. The authors also show that a fixed coarse-grained
nonuniform decomposition, while offering superior results, requires calibration each
time the problem size or the number of processors varies.

The best performing strategy was called by the authors dynamic fine grained.
It defines each neighbor evaluation as a single task, the master dynamically
dispatching these on a first-available, first-served basis to slave processors as they
complete their tasks. The strategy partitions the neighborhood into a number of
components equal to the number of available processors but of unequal size with a
content dynamically determined at each iteration.

The dynamic fine-grained strategy provides maximum flexibility and good load
balancing, particularly when the evaluation of neighbors is of uneven length. The
uniform distribution appears more appropriate when the neighbor evaluations are
sensibly the same, or when the overhead cost of the dynamic strategy for creating
and exchanging tasks appears too high.

Similar observations may be made regarding population-based meta-heuristics.
In theory, all genetic-algorithm operators may be addressed through a 1C/RS/SPSS
design, and the degree of possible parallelism is equal to the population size.
In practice, the computations associated to most operators are not sufficiently
heavy to warrant parallelizing, while overhead costs may significantly reduce the
degree of parallelism and increase the granularity of the tasks. Consequently,
the fitness evaluation is often the only target of 1C/RS/SPSS parallelism for
genetic-evolutionary methods, the resulting parallel GA being implemented using
the master-slave model. Similarly to other 1-control low-level parallelizations,
a 1C/RS/SPSS genetic-evolutionary algorithm performs the same search as the
sequential program, only faster.

The 1C/RS/SPSS parallelism for ant colony and, more generally, swarm-based
methods lies at the level of the individual ants. Ants share information indirectly
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through the pheromone matrix, which is updated once all solutions have been con-
structed. There are no modifications of the pheromone matrix during a construction
cycle, and, thus, each individual ant performs its solution-construction procedure
without data dependencies on the progress of the other ants.

Most parallel ant colony methods implement some form of 1C/RS/SPSS strategy
according to the master-slave model, including [18, 59, 132, 134, 157]. The master
builds tasks consisting of one or several ants (each can be assimilated to a “small”
colony) and distributes them to the available processors. Slaves perform their
construction heuristic and return their solution(s) to the master, which updates
the pheromone matrix, returns it to the slaves, and so on. To further speed up
computation, the pheromone update can be partially computed at the level of each
slave, each slave computing the update associated to its solutions. The fine-grained
version with central matrix update has been the topic of most contributions so
far, and, in general, it outperformed the sequential version of the algorithm. It
is acknowledged, however, that it does not scale, and, similarly to other meta-
heuristics, this strategy is outperformed by more advanced multi-search methods.

Scatter search and path relinking implement different evolution strategies, where
a restricted number of elite solutions are combined, the result being enhanced
through a local search or a full-fledged meta-heuristic, usually neighborhood
based. Consequently, the 1C/RS/SPSS strategies discussed previously regarding the
parallelization of local search exploration apply straightforwardly to the present
context, as in [72–74] for the p-median and the feature selection problems.

A different 1C/RS/SPSS strategy for scatter search may be obtained by running
concurrently the combination and improvement operators on several subsets of the
reference set. Here, the master generates tasks by extracting a number of solution
subsets, which are sent to slaves. Each slave then combines and improves its
solutions, returning its results to the master for the global update of the reference
set. Each subset sent to a slave may contain exactly the number of solutions required
by the combination operator or a higher number. In the former case, the slave
performs an “iteration” of the scatter search algorithm [72–74]. In the latter, several
combination-improvement sequences could be executed, and solutions could be
returned to the master as they are found or all together at the end of all sequences.
This heavy load for slaves may conduct to very different computation times, and,
thus, load-balancing capabilities should be added to the master.

To conclude, low-level, 1-control parallel strategies are particularly attractive
when neighborhoods (populations) are large or neighbor (individual) evaluation
procedures are costly, and a significant gain in computing time may be obtained
(e.g., the parallel tabu searches of [23,25,150] for the quadratic assignment problem
(QAP), [24] for the traveling salesman problem (TSP), [128–130] and [54] for
the task-scheduling problem). More advanced multi-search strategies generally
outperform low-level strategies in most cases. Yet, when a sufficiently large number
of processors are available, it might prove worthy to combine a 1C/RS/SPSS
approach and more sophisticated strategies into hierarchical solution schemes (e.g.,
[136] were low-level parallelism accelerated the move evaluations of the individual
searches engaged into an independent multi-search procedure for the VRP).
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Data Decomposition

Domain or search-space decomposition constitutes an intuitively simple and ap-
pealing parallelization strategy, dividing the search space into smaller partial sets,
solving the resulting subproblems by applying the sequential meta-heuristic on each
set, collecting the respective partial solutions, and reconstructing an entire solution
out of the partial ones. This apparently simple idea may take several forms, however,
according to the type of division performed and the permitted links among the
resulting sets/subproblems.

The space may be partitioned, yielding disjoint partial sets, or a cover may
be defined allowing a certain amount of overlap among partial sets. Thus, for
example, the arc-design variables of a VRP may be partitioned into customer subsets
(including the depot in each subset), while a cover would allow “close by” customers
to belong to two subsets. The goal generally is to generate independent subproblems,
which allows to discard from each subproblem the variables and constraints not
directly involved in its definition. When this is not possible, e.g., the separated
activities share some resources, one may fix the variables not in the subproblem
definition (and thus project the corresponding constraints). One then still works on
a smaller subproblem, but considering the complete vector of decision variables.

The second element one must consider is the degree of exploration overlap
permitted among subproblems. One must thus decide whether the solution trans-
formations (e.g., neighborhood moves or individual crossovers) performed within
the partial set of a given subproblem are restricted to that partial set or may
involve variables in neighboring subspaces creating an indirect overlapping of
subsets. Strict partitioning strategies restrict the solvers to their subsets, resulting
in part of the search space being unreachable and the parallel meta-heuristic being
nonoptimal. Explicit or implicit overlapping partially addresses this issue. Only
partially because, to fully ensure that all potential solutions are reachable, one needs
to make overlapping cover the entire search space, which would negate the benefits
of decomposition.

Consequently, strict partitioning and very limited overlapping are the preferred
approaches found in the literature. A re-decomposition feature is generally included
to increase the thoroughness of the search and allow all potential solutions to be
examined. The decomposition is thus modified at regular intervals, and the search
is restarted using the new decomposition. This feature provides also the opportunity
to define a non-exhaustive decomposition, i.e., where the union of the subsets is
smaller than the complete search space. A complete solution reconstruction feature
is almost always part of the procedure.

This strategy is naturally implemented using master-slave 1C/RS schemes,
with MPSS or MPDS search differentiation. The master process determines the
decomposition and sends partial sets to slaves, synchronizes them and collects
their solutions, reconstructs solutions, modifies the decomposition, and determines
stopping conditions. Slaves concurrently and independently perform the search on
their assigned partial sets. Design issues one must address in this context are the
length of the exploration available to slaves and the reconstruction of global context
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information (e.g., global tabu list) out of the partial ones. The extreme case of
executing a full meta-heuristic on each partial set of the search space (this avoids
the context issue), periodically modifying the partition and restarting the search,
was actually generally used, particularly for problems for which a large number of
iterations can be performed in a relatively short time, and restarting the method with
a new decomposition does not require an unreasonable computational effort (e.g.,
[66] for the TSP, [95] for image filtering, and [80] for real-time ambulance fleet
management).

In a pC/KS strategy, with MPSS or MPDS search differentiation, the decomposi-
tion is collegially decided and modified through information exchange phases (e.g.,
round-robin or many-to-many exchanges) activated at given synchronization points.
Such an approach was proposed in [151] for the VRP, where the customer set was
partitioned, vehicles were allocated to the resulting regions, and each subproblem
was solved by an independent tabu search. All processors stopped after a number of
iterations that varied according to the total number of iterations already performed,
and the partition was modified by exchanging tours, undelivered cities, and empty
vehicles between adjacent processors (corresponding to neighboring regions). At
the time, this approach did allow to address successfully a number of problem
instances, but the synchronization inherent in the design of the strategy hindered
its performance. A parallel ant colony approach combining this decomposition idea
to a master-slave implementation was presented in [60] (parallelizing the algorithm
presented in [138]), where the master generates an initial solution, defines the
partition, and updates the global pheromone matrix, while slaves execute a savings-
based ant colony algorithm [137] for the resulting restricted VRP.

Data decomposition methods induce different search behavior and solution
quality compared to those of the sequential meta-heuristic. Such methods appear
increasingly needed as the dimensions of the contemplated problem instances
continue to grow. Given the increased complexity of the problem settings, work
is also required on how to best combine search-space decomposition and the
other parallelization strategies, cooperation in particular. The integrative cooperative
search of [96] is a step in this direction (see section “Advanced Cooperation
Strategies: Creating New Knowledge”).

Independent Multi-search

Independent multi-search was among the first parallelization strategies proposed in
the literature. It is also the most simple and straightforward p-control parallelization
strategy and generally offers very interesting performance.

Independent multi-search seeks to accelerate the exploration of the search space
toward a better solution (compared to sequential search) by initiating simultaneous
solvers from different initial points (with or without different search strategies). It
thus parallelizes the multi-start strategy by performing several searches simultane-
ously on the entire search space, starting from the same or from different initial
solutions, and selecting at the end the best among the best solutions obtained by all
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searches. Independent multi-search methods thus belong to the pC/RS class of the
taxonomy. No attempt is made to take advantage of the multiple solvers running
in parallel other than to identify the best overall solution at the synchronization
moment when all searches stop.

Independent multi-search turns out to be effective, simply because of the sheer
quantity of computing power it allows one to apply to a given problem. Formal
insights into the behavior of these strategies may be found in [11, 149, 152, 160].
Empirical efficiency was shown by many contributions that took advantage of
its simplicity of implementation and relatively good performance expectation.
pC/RS/MPSS parallelizations of neighborhood-based meta-heuristics were thus
proposed for, e.g., tabu search for the QAP [11], VRP [136,152,156] and production
planning [14]; GRASP for the QAP [105,124,126], the Steiner problem [110,111],
and the 2-path telecommunication network design [139–141]; simulated annealing
for graph partitioning [7, 8, 104] and the TSP [114]; and variable neighborhood
search for the p-median problem [71]. Independent multi-search pC/RS/MPSS
applications to nongenetic-evolutionary methods have been proposed for scatter
search [72,74], as well as for ant colony optimization for set covering [132], the TSP
[149], and the VRP [61]. Similar performance was observed for genetic methods
with full-sized populations [28, 29], which avoided the premature convergence
observed for pC/RS independent multi-search GA with small-sized populations
obtained by separating the initial population among the independent GA searches
(e.g., [88, 144]).

Independent multi-search offers an easy access to parallel meta-heuristic com-
putation, offering a tool when looking for a “good” solution without investment in
methodological development or actual coding. Independent multi-search methods
are generally outperformed by cooperative strategies, however, the latter integrating
mechanisms enabling the independent solvers to share, during the search, the
information their exploration generates. As explained in the following sections, this
sharing and the eventual creation of new information out of the shared one yield in
most cases a collective output of superior solutions compared to independent and
sequential search.

Cooperative Search

Cooperative multi-search has emerged as one of the most successful meta-heuristic
methodologies to address hard optimization problems (see, e.g., [2, 32, 33, 36,
39, 40, 155, 159]). Cooperative search is based on harnessing the capabilities of
several solution methods through cooperation mechanisms providing the means
to share information while addressing the same problem instance (and create new
information out of the exchanged data in advanced settings; see section “Advanced
Cooperation Strategies: Creating New Knowledge”).

Cooperative search strategies are thus defined by the solver components engaged
in cooperation, the nature of the information shared, and their interaction mech-
anism. The solvers define trajectories in the search space from possibly different
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initial points or populations, by using possibly different search strategies (including
the same method with different parameter settings or populations). The information-
sharing cooperation mechanism specifies how these independent solvers interact,
how the exchanged information is used globally (if at all), and how each process acts
on the received information, using it within its own search and, thus, transforming it
before passing it to other solvers. As further detailed in the following sections, var-
ious cooperation mechanisms have been proposed: diffusion among “neighboring”
solution methods arrayed in particular communication architectures, e.g., fine-
grained, cellular GA (e.g., [21,108]) and multilevel cooperative search [165]; direct
exchanges among processes as in coarse-grained, island GA [21, 108], A-teams
[158, 159], and collegial asynchronous strategies [42, 43]; and indirect exchanges
through a common data repository and management structure such as the adaptive
[6,12,142] and central memory [42,43,46,93,94,100] strategies. The global search
behavior of the cooperative parallel meta-heuristic then emerges from the local
interactions among the independent solvers, yielding a “new” meta-heuristic in its
own right [39]. The similarity between this behavior and that of systems where
decisions emerge from interactions among autonomous and equal “colleagues”
has inspired the name collegial associated to cooperative search strategies in the
taxonomy used in this chapter.

The exchanged information has to be meaningful and timely. The goals are
twofold. First is to enhance the performance of the receiving solvers. Second is
to create a global image of the status of the cooperative search as “complete”
as possible, which would provide the means to guide the global search toward
better performance in terms of computing time and solution quality than the
simple concatenation of the results of the individual solvers. Of course, one desires
to achieve these goals without excessive overhead. Toulouse, Crainic, and Gen-
dreau [162] proposed a list of fundamental issues to be addressed when designing
cooperative parallel strategies for meta-heuristics: What information is exchanged?
Between what processes is it exchanged? When is information exchanged? How
is it exchanged? How is the imported data used? Implicit in their taxonomy and
explicitly stated in later papers, the issue of whether the information is modified
during exchanges or whether new information is created completes this list.

“Good” solutions make up the most often exchanged type of information. This
usually takes the form of the local current best solution of a given solver or the
overall best. The question of when to send such solutions has to be carefully
addressed, however, particularly when the receiving process is supposed to act
momentarily on the incoming information. One should thus avoid sending all
local current best solutions, particularly when the solver is performing a series of
improving moves or generations, as successive solutions are generally “similar” and
the receiving solvers have no chance to actually act on the incoming information.
Sending the overall current best solution to all cooperating solvers should also be
avoided, as it rapidly decreases the diversity of the exploration and, thus, increases
the amount of worthless computational work (many solvers will search within the
same region) and brings an early “convergence” to a not-so-good solution. Sending
out local optima only, exchanging groups of solutions, implementing randomized
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selection procedures (generally biased toward good or good-and-diverse solutions)
of the solutions to share, and having the cooperating solvers treat differently the
received information are among the strategies aimed at addressing these issues.

Context information may also be profitably shared and integrated into the mecha-
nisms used to guide the overall search. Context information is routinely collected by
meta-heuristics during their search. It may consist in statistical information relative
to the presence of particular solution elements in improving solutions (e.g., the
medium- and long-term memories of tabu search), the impact of particular moves on
the search trajectory (e.g., the scores of the moves of large adaptive neighborhood
search), population diversity measures, individual resilience across generations, etc.
A limited number of studies indicate the interest of context information exchanges
(see section “Advanced Cooperation Strategies: Creating New Knowledge”), but
more research is needed on this topic.

Cooperating solvers may communicate and exchange information directly or
indirectly. Direct exchanges of information occur either when the concerned solvers
agree on a meeting point in time to share information or when a solver broadcasts
its information to one or several other solvers without prior mutual agreement. The
latter case is generally not performing well, except when solvers include costly
mechanisms to store such information without disturbing their own execution until
ready to consider it.

Indirect exchanges of information are performed through independent data
structures that become shared sources of information solvers may access according
to their own internal logic to post and retrieve information. Such data structures
are known under various names, e.g., blackboard in computer science and artificial
intelligence vocabulary and memory, pool, and data warehouse (the terms reference
and elite set are also sometimes used) in the parallel meta-heuristic literature. The
term memory is used in the following.

Centralized memory is the implementation of choice reported in the literature.
Distributed memory mechanisms may be contemplated, where a number of mem-
ories are interconnected, each servicing a number of solvers. Such hierarchical
structures, involving several layers of solvers and memories, appear interesting
when a large number of processors are to be involved, for integrative cooperation
strategies, or when computations are to take place on grids or loosely coupled
distributed systems. Issues related to data availability, redundancy, and integrity
must be then addressed, as well as questions relative to the balancing of workloads
and the volume of information exchanged. More research is needed on this topic.

The logical intercommunication network corresponding to the selected coop-
eration strategy takes the form of a communication graph. A node of the graph
represents a solver or a memory. Edges define the pairs of solvers or of a solver and
a memory that may communicate directly. The projection of the communication
graph on the physical interconnection topology of the parallel computer executing
the parallel program – complete graph, ring, grid, torus, and star are most often
encountered in the literature – is normally part of the implementation process.

When and how information is exchanged specifies how frequently coopera-
tion activities are initiated, by whom, and whether all concerned solvers must
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simultaneously engage in communications or not. Synchronous and asynchronous
communications are the two classes of communication exchanged and are discussed
in the following sections. The accumulated knowledge of the field indicates for both
classes that exchanges should not be too frequent to avoid excessive communication
overheads and premature “convergence” to local optima [42, 43, 162].

Three remarks complete this section. First, “simple” cooperation designs based,
for example, on synchronization or on exchanging current best solutions only
often appear biased toward intensifying the search in already-explored regions
where interesting solutions have been identified. Diversification capabilities, e.g.,
probabilistic or diversity-driven selection of exchanged solutions, are thus an
important component of cooperative p-control strategies.

One also observes that the main principles of cooperative parallel strategies
are the same for neighborhood- and population-based meta-heuristics, even though
denominations and implementation approaches may differ. The terms coarse- and
fine-grained island are thus used to identify the amplitude of the population (large or
small, down to single individual eventually, respectively) of participating solvers in
genetic-based cooperation. Similarly, multi-colony is the term generally used for
cooperation in the ant colony community. The next sections are thus structured
around classes of strategies rather than by meta-heuristic type.

Finally, one should notice that cooperation takes place at two different levels.
The first is the explicit information sharing specified by the design of cooperation
mechanism. Implicit cooperation makes up the second level, where information
spreads across the cooperating solvers through a diffusion process and correlated
interactions [163, 164, 166, 167]. Implicit cooperation is not specified explicitly in
the design of the algorithm. It is thus a bottom-up, global emergent phenomenon
produced by the correlated interactions among searches. Important research issues
and challenges are related to how to harness indirect cooperation to enhance the
optimization capabilities of cooperative search. For example, how should one select
solvers and direct cooperation mechanisms to yield a system-wide emergent behav-
ior providing an efficient exploration of the solution space from an optimization
point of view? Learning and dynamic self-adaptation, at the level of both individual
solvers and the cooperating meta-heuristic, appear to be part of the answer.
Several other areas of research study systems displaying emergent behaviors, e.g.,
decentralized autonomic computing, social robotics, swarm intelligence, clustering
logistics activities in supply chains, etc., and cross-fertilization appear promising.
Empirical and theoretical research in this area should yield design principles and
tools for more powerful (parallel) meta-heuristics.

Synchronous Cooperation

Synchronous cooperation follows a pC/KS scheme, with any of the SPDS, MPSS,
or MPDS search differentiation approaches, according to which the independent
cooperating meta-heuristics synchronize at particular moments to initiate an infor-
mation exchange phase. Synchronize here means that every solver but the last stops
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its activities and waits for all others to be ready. The synchronization moments may
be generated based on conditions external to all solvers (e.g., number of iterations
since the last synchronization) or detected by a specially designated solver. The
information exchange phase must be completed before any solver can restart its
exploration from the respective synchronization point.

Synchronization may use a complete communication graph or a more restricted,
less densely connected communication topology, e.g., a ring, torus, or grid graph.
Global exchanges of information among all solvers take place in the former case,
while information follows a diffusion process through direct local exchanges of
information among neighboring processes in the latter. In all cases, the objective is
to re-create a state of complete knowledge at particular moments in the global search
and, thus, to hopefully guide it toward a coordinated evolution to the desired solution
to the problem. This goal is rarely attained, however, and the price in computing-
time efficiency may be significant, as communications cannot be initiated before the
slowest solver is ready to proceed.

Global Information Exchanges
Many pC/KS cooperative search meta-heuristics in the literature implement the
strategy according to the master-slave model. The master process, which may
or may not include one of the participating solvers, initiates the other processes,
stops them at synchronization points, gathers the information to be shared, updates
the global data, decides on the termination of the search and, either effectively
terminates it or distributes the shared information (a good solution, generally, the
overall best solution in many cases) to the solvers for the continuation of the search.

The VNS pC/KS method for the p-median problem proposed in [71] followed
this idea, as well as the tabu search-based algorithms proposed for the TSP [109],
the VRP (using ejection chains) [135, 136], the QAP [55] and the task mapping
problem [56], the last two contributions attempting to overcome the limitations
of the master-slave implementation by allowing processes, on terminating their
local search phases, to synchronize and exchange best solutions with processes
running on neighboring processors (this idea represents a step toward a “true”
pC/KS design using a partial solution-diffusion process). This idea was also used
to implement coarse-grained island-based cooperating genetic methods [52, 148],
where the master stopped the cooperating meta-heuristics to initiate a migration
operator exchanging among the independent populations the best or a small subset
of the best individuals in each. Applied to ant colony systems [64], this strategy
divided the colony into several subcolonies, each assigned to a different processor.
Each independent ant colony meta-heuristic sent to the master its best solution once
its ants finished searching. The master updated the pheromone matrix and started a
new search phase. A more sophisticated pC/KS approach was proposed in [120]
for the 0–1 multidimensional knapsack problem, where the master dynamically
adjusted the parameters of the cooperating tabu searches according to the results
each had obtained so far. Computational results showed this dynamic adjustment to
be beneficial.
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Alternatively, pC/KS schemes can be implemented in “true” collegial fashion by
empowering each cooperating solver to initiate synchronization once it reaches a
predetermined status. It then broadcasts its data, followed by similar broadcasts
performed by the other solvers. Once all broadcasts are completed and information
is shared, each solver performs its own import procedures on the received data and
proceeds with its exploration of the search space until the next synchronization
event.

Such an approach, exchanging the current best solution or group of solutions,
was proposed for simulated annealing [58], where the solvers transmitted their
best solutions every n steps and restarted the search after updating their respective
best solutions (see also [101–104] for the graph partitioning problem). For tabu
search applied to location problems with balancing requirements [41, 42], solvers
synchronized after a number of iterations either predefined or dynamically deter-
mined. Most synchronous coarse-grained island genetic parallel methods applied
this strategy, migration operators being applied at regular intervals, e.g., [171] for
satisfiability problems (the best individual of each population migrated to replace
the worst of the receiving population), [67] for multi-objective telecommunication
network design with migration following each generation, and [27–29, 89, 107]
for graph partitioning, the latter implementing a hierarchical method, where the
fitness computation was performed at the second level (through a master-slave
implementation; the overhead due to the parallelization of the fitness became
significant for larger numbers of processors). A similar strategy was proposed for the
multi-ant colony algorithms [112, 113]. Each colony has its own pheromone matrix
and may (homogeneous) or may not (heterogeneous) use the same update rule.
Colonies synchronize after a fixed number of iterations to exchange elite solutions
that are used to update the pheromone matrix of the receiving colony.

Synchronization involved the exchange of not only good solutions but also
of important search parameters in the pC/RS/MPDS parallel iterated tabu search
proposed for the vehicle routing problem (VRP) [30]. The iterated tabu solvers
started from different initial solutions and used different search parameters. They
synchronized based on the number of consecutive iterations without improvement
used to determine the stopping moment of the individual improvement phases.
This provided the means to more equally distribute the work among cooperating
processes. The solvers exchanged their best solutions, each solver probabilistically
selecting the working solution for the next improvement phase among the received
ones and its own. This method proved to be both flexible and efficient for several
classes of routing problem settings with several depots, periodicity of demands, and
time windows.

Most studies cited above compared several parallel strategies for the meta-
heuristic and problem setting at hand [27–29,41,42,101–104,107]. They contributed
to show that synchronous pC/KS strategies with global information exchanges
outperform independent search approaches, as well as the respective sequential
version, particularly with respect to solution quality. These studies also pointed out,
however, the benefit of dynamically determined synchronization points, as well as
the superiority of asynchronous communications.
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Diffusion
The previous strategies are based on global exchanges of information, gathered at
synchronization points during the computation and distributed to all search threads.
The interest of global information-sharing strategies resides in the best information
available at the synchronization moment being available to all the solvers involved
in cooperation. The main drawback results from this same characteristic, however,
as solvers relying heavily on the same information (a set of best solutions in most
cases) tend to focus on the same regions of the search space. This generally results
in a search lacking in diversity that, more often than not, proves inefficient.

Synchronized cooperation strategies based on diffusion of information through
local exchanges among “neighboring” solvers have therefore been proposed. Such
approaches are defined on sparse communication graphs displaying particular
topologies, such as ring, torus, or grid graphs, where each node is directly linked
to only a few other nodes. A solver is then a neighbor of another solver if there is
a direct link between the two nodes on which they run, that is, if their nodes are
adjacent in the communication graph.

Synchronization still means that all solvers stop and exchange information, but
here they perform it with their neighbors exclusively. Consequently, the quantity of
information each solver processes and relies upon is significantly reduced, while
the exchanges between nonadjacent solvers are performed at the speed of diffusion
through possibly several chains of local exchanges and data modifications.

This idea has been much less explored compared to the global-exchange strat-
egy, even though synchronous cooperative mechanisms based on local exchanges
and diffusion have a less negative impact on the diversity of the search-space
exploration. A number of applications were proposed with good results for coarse-
grained [19,161] and fine-grained [3,63,68,69,117,118] genetic-based evolutionary
methods, as well as for ant colony optimization [113].

Cooperation based on asynchronous information sharing generally outperforms
synchronous methods, however, and is the topic of the next subsection.

Asynchronous Cooperation

Asynchronous strategies largely define the “state of the art” in parallel multi-search
meta-heuristics. Solvers initiate asynchronous cooperation activities according to
their own design logic and current internal state only, without coordination with
other solvers or memories. Information sharing then proceeds either by direct inter-
solver exchanges or through a data repository structure. These strategies belong
to either the pC/C, described in this section, or the pC/KC, described in the next
section, collegial classes of the taxonomy, the latter using the shared information to
generate new knowledge and global search guidance.

Two main benefits are obtained when relying on asynchronous communications.
First, this provides the means to build cooperation and information sharing among
solvers without incurring the overheads associated to synchronization. Second, it
increases the adaptability of cooperative meta-heuristics, as their capability to react
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and dynamically adapt to the exploration of the search space by the cooperating
solvers is significantly increased compared to the other parallelization strategies. Of
course, these benefits come with potential issues one must care for. For example, the
information gathered during the search will seldom, if ever, be completely available
when a process must decide. Also, too frequent data exchanges, combined to simple
acceptance rules for incoming information, may induce an erratic solver behavior,
the corresponding search trajectories becoming similar to random walks. Hence the
interest for applying information-sharing quality, meaningfulness, and parsimony
principles [42, 43, 162].

In the basic asynchronous strategies discussed in this section, the shared in-
formation generally corresponds to a locally improving solution or individual(s).
Most successful implementations have their cooperating solvers send out new local
optima only. This limits the quantity of information sent and received, as well as the
amount of work required to process it. Moreover, it avoids the case where a solver re-
orients its search based on one of a series of improving solutions and ends up devel-
oping a trajectory similar to the one followed by the solver that originated the data.

The abovementioned principles also explain the interest in diversifying the shared
information [42]. Thus, always selecting the best available solution out of an elite
set of good solutions, sent by potentially different solvers, proved less efficient in
terms of quality of the final solution than a strategy that randomly, biased by quality,
selected among the same elite set.

Finally, when to initiate cooperation activities and how to use incoming infor-
mation is particular to each type of meta-heuristic involved in the cooperation.
Yet, common to most strategies proposed in the literature is to perform jointly
the sending and requesting of information. There is no absolute need to do this,
however, even though it might decrease the amount of communication work.
It might thus be interesting for neighborhood-based methods to make available
right away their newly found local optima or improved overall solution and not
wait for the algorithmic step where examining external information is appropriate.
Similarly, population-based methods could migrate a number of individuals when a
significant improvement is observed in the quality and diversity of their elite group
of individuals.

With respect to when to request external information, the parsimony principle
implies selecting only moments when the status of the search changes significantly,
such as when the best solution or the elite subpopulation did not improve for a
number of iterations.

The solver then engages into a so-called search-diversification phase, e.g.,
diversification in tabu search, change of neighborhood in variable neighborhood
search, and complete or partial regeneration of population in population-based
meta-heuristics, involving the choice or modification of the solution to initiate the
new phase. Examining the contribution of external information is appropriate in
this context. Notice that it is always possible to use simply a prefixed number of
iterations to initiate communications, but this approach should be restricted to meta-
heuristics without search-diversification steps, e.g., tabu search based on continuous
diversification.
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Direct-exchange strategies are generally implemented over a complete commu-
nication graph, each solver sending out information to all other solvers or to a subset
of them; this subset may be predefined or selected dynamically during the search.
Particular communication graphs and information-diffusion processes could also
be used but, despite encouraging results, too few experiments have been reported
yet (e.g., [146] proposing VNS pC/C strategies over uni- and bidirectional ring
topologies). Each solver was executing the basic VNS steps and, on competing
them, was passing its solution to its next neighbor (uni) or its two neighbors (bi),
while receiving a solution from its predecessor neighbor (uni) or its two neighbors
(bi). The received solution was kept as initial solution of the next VNS run in the
unidirectional case, while the best of the two received ones and the local one was
kept in the bidirectional ring implementation. The latter strategy proved the most
successful.

Information exchanges within pC/C strategies based on indirect communications
are generally performed through a data repository structure, often called central
memory [32, 42, 43]. A solver involved in such a cooperation deposits (sends)
good solutions, local optima generally, into the central memory, from where, when
needed, it also retrieves information sent by the other cooperating solvers. The
central memory accepts incoming solutions for as long as it is not full, acceptance
becoming conditional to the relative interest of the incoming solution compared to
the “worst” solution in the memory, otherwise. Evaluation is performed using the
evaluation function for the global search space (or the objective function of the
original problem). Diversity criteria are increasingly considered is this evaluation, a
slightly worst solution being preferred if it increases the diversity of solutions in the
central memory. Population culling may also be performed (deleting, e.g., the worst
half the solutions in memory).

Both approaches may be applied to any meta-heuristic but, historically, most
pC/C genetic-based evolutionary asynchronous cooperative meta-heuristics im-
plemented a coarse-grained island model with direct inter-solver exchanges. An
early comparative study of coarse-grained parallel genetic methods for the graph
partitioning problem numerically showed the superiority of the pC/C strategy (with
migration toward a subset of populations) over synchronous approaches [107].

The indirect-exchange communication model is found at the core of most asyn-
chronous cooperative search strategies outside the genetic-evolutionary community,
including simulated annealing for graph partitioning [101–104] and the TSP [143]
and VNS applied to the VRPTW [127] and the p-median problem [44]. A master
process was associated to the central memory in the latter method, which kept,
updated, and communicated the current overall best solution (it also initiated and
terminated the algorithm). Individual solvers proceeded with the VNS exploration
for as long as the solution was improved. When this was no longer the case, the
current best was communicated to the master (if better than the one at the last
communication), and the overall best solution was requested from it. The best
solution between the local and imported ones was selected, and the search was then
continued in the current (local) neighborhood. Computational results on TSPLIB

problem instances with up to 11,849 customers showed that the cooperative strategy
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yielded significant gains in terms of computation time without losing on solution
quality.

Apparently, [42] proposed the first central memory asynchronous tabu search.
The tabu search solvers addressed a multicommodity location problem with bal-
ancing requirements. Each solver sent to the memory its local-best solution when
improved and imported a probabilistically selected (rank-biased) solution from the
memory before engaging in a diversification phase. This method outperformed in
terms of solution quality the sequential version, several synchronous variants, and a
broadcast-based asynchronous pC/C cooperative strategy. The same approach was
applied to the fixed cost, capacitated, multicommodity network design problem
with similar results [35]. Similar approaches were proposed for a broad range of
problem settings, including the partitioning of integrated circuits for logical testing
[1], two-dimensional cutting [13], the loading of containers [15], labor-constrained
scheduling [22], the VRPTW [99], and the capacitated VRP [93].

Solvers involved in pC/C strategies may not be restricted to a single meta-
heuristic. Thus, the solvers in the two-phase approach of [75–77,91] for the VRPTW
first applied an evolution strategy to reduce the number of vehicles, followed by a
tabu search to minimize the total distance traveled. A different version of the same
idea may be found in [10] for the Steiner problem, where each phase of the two
phase is designed as a pC/C asynchronous central memory strategy, only the change
from one phase to the next being synchronized. Solvers run reactive tabu search and
path relinking meta-heuristics in the first and second phases, respectively.

Multilevel cooperative search proposes a different pC/C asynchronous coopera-
tive strategy based on controlled diffusion of information [165]. Solvers are arrayed
in a linear, conceptually vertical, communication graph, and a local memory is
associated to each. Each solver works on the original problem but at a different
level of aggregation (the solver on the conceptually first level works on the complete
original problem) and communicates exclusively with the solvers directly above
and below, that is, at higher and lower aggregation levels, respectively. The local
memories are used to send information to the immediate neighbors and to access the
incoming data from the same, at moments dynamically determined according to the
internal logic of the respective solver. In the original implementation, solvers were
exchanging improved solutions, incoming solutions not being transmitted further
until modified locally for a number of iterations to enforce the controlled diffusion
of information. Excellent results have been obtained for various problem settings
including graph and hypergraph partitioning problems [122, 123], network design
[47], feature selection in biomedical data [121], and covering design [53]. It is
noteworthy that one can implement multilevel cooperative search using a central
memory by adequately defining the communication protocols. Although not yet
fully defined and tested, this idea is interesting as it opens the possibility of richer
exchange mechanisms combining controlled diffusion and general availability of
global information.

The central memory pC/C asynchronous cooperation strategy has proved worthy
by several criteria. It yields high-quality solutions and is computationally efficient
as no overhead is incurred for synchronization. It also helps to address the issue
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of “premature convergence” in cooperative search, by diversifying the information
received by the participating solvers through probabilistic selection from the
memory and by a somewhat large and diverse population of solutions in the central
memory (solvers may thus import different solutions even when their cooperation
activities are taking place within a short time span).

The performance of central memory cooperation and the availability of ex-
changed information (kept in the memory) have brought the question of whether
one could design more advanced cooperation mechanisms taking advantage of the
information exchanged among cooperating solvers. The pC/KC strategies described
in the next section are the result of this area of research.

Advanced Cooperation Strategies: Creating New Knowledge

Cooperation, in particular, memory-based asynchronous cooperation, offers a rich
framework to combine solvers of different meta-heuristic and exact types, together
with a population of elite solutions of continuously increased quality. But, is the
development effort worthwhile?

An interesting proof of concept is found in the study of Crainic and Gen-
dreau [34] combining a genetic-method solver and an asynchronous pC/C tabu
search for multicommodity location-allocation with balancing requirements [42].
The tabu search solvers were aggressively exploring the search space, building the
elite solution population in the central memory. The genetic method initialized its
population with the one in the central memory once it contained a certain number
of solutions. Its aim was to create new solutions to hopefully enrich the quality and
diversity of the solutions exchanged among the cooperating solvers. Asynchronous
migration transferred the best solution of the genetic population to the central mem-
ory, as well as solutions from the central memory toward the genetic population.
This strategy did perform well, especially on larger instances. Most importantly,
it showed that, while the overall best solution was never found by the genetic
solver, the GA-enhanced cooperation yielded higher-quality solutions compared to
the cooperation involving the tabu searches only. It appeared that the newly created
solutions offered a more diverse set of diversification opportunities to the tabu search
solvers, translating into a more diverse global search yielding better solutions.

The conclusion of that paper was not only that it is worthwhile to involve solvers
of different types in the cooperation but also that it is beneficial to create new
solutions out of the set of elite solutions in the central memory. The new solutions
are different from their parent solutions and are added to the central memory if they
improve compared to them. The process is thus doubly beneficial as better solutions
in the memory directly enhance the quality of the global search, while increasing the
diversity of solutions in memory provides the opportunity for cooperating solvers to
explore new regions of the search space.

A second idea on developing advanced cooperation mechanisms concerns the
information that may be extracted from the exchanged solutions, and the context
information, eventually. It has thus been observed that optimal or near-optimal
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solutions are often similar in the values taken by a large number of variables.
Moreover, it is well known in the meta-heuristic field that one can learn from the
characteristics of the solutions generated during the search, out of the best ones in
particular, and use this learning to guide the search (see, e.g., the studies on memory
and learning performed for tabu search [82]). Applied to cooperative search, it
appeared promising to apply these learning techniques to the elite solutions in the
population gradually built in the central memory and to use the resulting information
to guide the search performed by the cooperating solvers.

Asynchronous cooperative strategies that include mechanisms to create new
solutions and to extract information out of the exchanged solutions make up the
p-control knowledge collegial (pC/KC) class. In most developments in this field,
cooperating solvers work on the complete problem formulation and data. A recent
research trend addresses rich multi-attribute problem settings and proposes pC/KC
strategies where different solvers work on particular parts of the initial problem or on
integrating the resulting partial solutions into complete ones. The next subsections
describe these two cases.

pC/KC with Solvers Working on the Complete Problem

Two main classes of pC/KC cooperative mechanisms are found in the literature
differing in the information that is kept in memory. Adaptive memory methods
store partial elements of good solutions [142], while complete ones are kept in
central memory methods [32, 38, 42]. The latter method generalizes the former and
the vocabulary used in the various papers notwithstanding the two approaches is
becoming increasingly unified.

The adaptive memory terminology was coined by Rochat and Taillard [142] (see
also [81, 153, 154]). The method was targeting the VRP and the VRPTW, and it
marked a changing point in the state of the art at the time. The main idea was to keep
in the memory the individual components (vehicle routes in the initial application)
of the solutions produced by the cooperating solvers (tabu search methods in [142]).
Two types of information were recorded for each solution element kept in memory,
a frequency counter of its appearance in the best solutions encountered so far, and
its rank within the elite population in memory based on the characteristics (mainly
the objective function value) of the solution from which it was extracted. Solvers
constructed new complete solutions out of randomly (rank-biased) selected partial
elements, improved these new solutions, and returned the best ones to the memory.
The rank-biased random selection of elements assured that the new solution was
composed in most cases of routes from different elite solutions, thus inducing a
powerful diversification effect.

Several interesting developments were proposed, and conclusions were drawn
within the context of successful adaptive memory pC/KC algorithms. A set-covering
heuristic was thus proposed as selection mechanism for the elements (VRPTW
routes) used by solvers to generate new initial solutions [145]. This mechanism
proved very successful and has been used several times since (e.g., [87]). A
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two-level parallel scheme was proposed for the real-time vehicle routing and
dispatching [79]. A pC/KC/MPSS cooperating adaptive memory method made up
the first level, while the slave processors attached to each solver, a tabu search
method based on route decomposition [151], made up the second level. The
performance of this method is noteworthy also because, while many papers mention
the possibility of hierarchical parallel schemes, very few actual implementations
are found in the literature. Equally for the VRPTW, the adaptive memory approach
of [6] yielded a number of interesting findings relative to the implementation of
cooperative methods. Thus, when individual solvers are fast, as is generally the case
for routing problems, it is beneficial to run several solvers on the same processor
and group the exchanges with the central adaptive memory (avoiding or reducing
access bottlenecks to the latter). On the other hand, running the memory and solvers
on the same processor is to be avoided (the solver execution reduces the response
efficiency of the memory).

Solvers in central memory methods indirectly exchange complete elite solutions
and context information through the central memory data repository device. Solvers
may include constructive, improving, and post-optimization heuristics (e.g., [99,
100]), neighborhood (e.g., tabu search [57, 93, 94]) and population-based methods
(e.g., genetic algorithms [57, 99, 100], and path relinking [46]), as well as exact
solution methods, on restricted versions of the problem, eventually. The particular
solvers to include depend on the particular application. They should be efficient for
the problem at hand. They should also contribute to build and enhance solutions that
may contribute to improve both the quality and the diversity of the elite population
being built in the central memory.

The central memory keeps full solutions, solution attributes and context infor-
mation, both received from the solvers and newly created out of the exchanged
information. To more clearly distinguish between the data warehousing and the
information creating functions of central memory mechanisms, let the search
coordinator (SC) be the process in charge of the latter function. The simplest version
of the SC was used in the pC/C strategies of the previous section, where solutions
in memory were ordered (generally according to the value of the objective function)
and rank-biased randomly extracted to answer solver requests. The functions of
the SC in pC/KC methods include creating new solutions; extracting appropriate
solution elements; building statistics on the presence and performance of solutions,
solution elements, and solvers (these belong to the family of memories well known
in the meta-heuristic community); and creating the information to return when
answering solver requests (the latter are the so-called guidance mechanisms).

The cooperative meta-heuristic proposed by [99] for the VRPTW used a simple
pC/KC mechanism. Four solvers, two simple genetic algorithms with order and
edge recombination crossovers, respectively, and two tabu search methods that
perform well sequentially, the unified tabu [31] and TABUROUTE [78]. The solvers
sent their improved best solutions to the central memory and requested solutions
from the same when needed (the genetic algorithms for crossover operations, at
regular intervals for the unified tabu, and at diversification time for TABUROUTE).
Besides ordering and selecting the solutions to return, the SC was only performing
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post-optimization (2-opt, 3-opt, or-opt, and ejection-chain procedures to reduce
the number of vehicles and the total traveled distance) on the received solutions.
Without any calibration or tailoring, this algorithm proved to be competitive with
the best meta-heuristics of its day in linear speedups.

A more complete SC was proposed in [100] also for the VRPTW. The goal was
for a guidance mechanism that, first, extracted and returned to solvers meaningful
information in terms of individual guidance and global search performance and,
second, was independent of problem characteristics, routes in particular, and could
be broadly applied to network-based problem settings. To work toward the second
goal, the SC mechanism targeted an atomic element in network optimization, the
arc. The basic idea of the SC mechanism was that an arc that appears often in
good solutions and less frequently in bad solutions may be worthy of consideration
for inclusion in a tentative solution, and vice versa. To implement this idea, the
authors considered the evolution of the “appearance” of arcs in solutions of different
qualities. Appearance was measured by means of frequencies of inclusion of arcs in
the elite (e.g., the 10 % best), average (between the 10 % and 90 % best), and worst
(the last 10 %) groups of solutions in the central memory. Patterns of arcs were
then defined representing subsets of arcs (not necessarily adjacent) with similar
frequencies of inclusion in particular population groups. Guidance was obtained
by transmitting arc patterns to the individual solvers indicating whether the arcs
in the pattern should be “fixed” or “prohibited” to intensify or diversify the search,
respectively. The solvers accounted for the “fix” and “prohibit” instructions by using
the patterns to bias the selection of arcs for move or reproduction operations. A four-
phase fixed schedule (two phases of diversification at the beginning to broaden the
search, followed by two intensification phases to focus the search around promising
regions) was used (see [98] for a dynamic version of this mechanism). Excellent
performances in terms of solution quality and computing efficiency were observed
compared to the best performing methods of the day.

A different SC was proposed in [94] for the capacitated VRP with tabu search
solvers. Solvers periodically (after a number of iterations or when the solution has
not been improved for a number of iterations) sent best solutions to central memory,
and received a solution back from it, the search being resumed from the received
solution. The SC mechanism aimed to identify and extract information from the
solutions in memory to guide solvers toward intensification and diversification
phases. This was obtained by clustering solutions, dynamically when solutions
were received, according to the number of edges in common. Thus, solutions in
a given cluster have a certain number of edges in common, this cluster of edges
and solutions being assumed to represent a region of the search space. Search
history indicators were also associated to clusters giving the number of solutions
in the cluster and the quality of the solutions. This information was used to infer
how thoroughly the corresponding region had been explored and how promising it
appeared. Clusters were actually sorted according to the average solution value of
their feasible solutions. The cluster with the lowest average value, that is, with a
largest number of very good solutions, was selected for intensification, while the
solution with the lowest number of good solutions was selected for diversification.
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A solution was selected in the corresponding cluster, and it was sent to the
requesting solver. Excellent results were obtained in terms of solution quality and
computation effort (an almost linear speedup was observed up to 240 processors)
compared to the state-of-the-art methods of the day (including the parallel method
of [87]).

A pC/KC/MPDS method proposed in [87] for the VRP demonstrates how
specialized solvers may address different issues in a cooperative meta-heuristic,
including the generation of new knowledge. Two types of solvers were defined in
this scheme. The so-called heuristic solvers improved solutions received from the
SC associated to the central memory (called master in [87]), through a record-to-
record meta-heuristic [26, 83, 106]. On completing the task, solvers returned both
a number (50) of the best solutions found and the corresponding routes (a post-
optimization procedure was first run on each route). Simultaneously, set-covering
solvers aimed to identify new solutions by solving a series of set-covering problems
starting from a limited set of routes. Each time a set-covering problem was solved,
the solution was returned to the central memory and the set of the current ten best
solutions was retrieved for the next run. Set-covering solvers had also access to the
ordered list of best routes in memory, and they selected within to complete their
problems. The number of routes admitted to set up a set-covering problem was
dynamically modified during the search to control the corresponding computational
effort. The SC kept and ordered the received solutions and routes and selected the
solutions to make available to solvers (routes were always available; an efficient file
system was used to facilitate access to this data). The method performed very well,
both in terms of solution quality and computational effort (an almost linear speedup
was observed).

The contributions described in this section emphasize the interest of asyn-
chronous knowledge-generating cooperative meta-heuristics. The cooperation and
guidance mechanisms, as well as the role of learning and statistical performance
data, require additional and systematic studies, preferably on a broader range of
problem settings. The contributions aimed at addressing multi-attribute problem
settings are described in the next subsection.

pC/KC with Partial Solvers: The Integrative Cooperative Search

The versatility and flexibility of the central memory concept has raised the interest
in generalizing it to address so-called rich combinatorial optimization problems
displaying a large number of attributes characterizing their feasibility and optimality
structures. The general idea is to decompose the initial problem formulation along
sets of decision variables, called decision-set attribute decomposition in [96],
yielding simpler but meaningful problem settings, in the sense that efficient solvers,
can be “easily” obtained for these partial problems either by opportunistically using
existing high-performing methods or by developing new ones. The central memory
cooperative search framework then brings together these partial problems and their
associated solvers, together with integration mechanisms, reconstructing complete
solutions, and search-guidance mechanisms.



834 T. G. Crainic

The first effort in this direction is probably the work of [46] (see also [57]) for the
design of wireless networks, where seven attributes were considered simultaneously.
The proposed pC/KC/MPDS cooperative meta-heuristic had tabu search solvers
work on limited subsets of attributes only, while a genetic method amalgamated the
partial solutions sent by the tabu search solvers to the central memory, into complete
solutions to the initial problem.

The general method, called integrative cooperative search ICS) by its authors,
has been fully defined in [96] (see also [48,49]). The brief presentation that follows
describes ICS according to [96] through an application to the multi-depot periodic
vehicle routing problem (MDPVRP), which simultaneously decides on (1) selecting
a visit pattern for each customer, specifying the particular periods the customer is to
be visited over the multi-period planning horizon, and (2) assigning each customer
to a depot for each visit [115, 169].

The main components of ICS, which must be instantiated for each application,
are the (1) decomposition rule; (2) partial solver groups (PSGs) addressing the
partial problems resulting from the decomposition; (3) integrators, which select
partial solutions from PSGs, combine them to create complete ones, and send them
to the complete solver group (CSG); and (4) the CSG, which corresponds to the
central memory of ICS and has as prime function to manage the pool of complete
solutions and the context information received from the PSGs and integrators and
to extract out of these the information required to guide the partial and global
searches. Guidance is performed by the global search coordinator (GSC) associated
to the CSG. Notice that, in order to facilitate the cooperation, a unique solution
representation is used throughout ICS. This representation is obtained by fixing
rather than eliminating variables when defining partial problems.

The selection of the decision sets is specific to each application case, decision
variables being clustered to yield known or identifiable optimization problem
settings. An opportunistic selection decomposes the MDPVRP along the depot and
period decision sets to create two partial problems. Thus, fixing the customer-to-
depot assignments yields a periodic VRP (PVRP), while fixing the patterns for all
customers yields a multi-depot VRP (MDVRP). High-quality solvers exist in the
literature for both problems.

Two PSGs were defined for the partial problems, one for the PVRP and the other
for the MDVRP. Each PSG was organized according to the pC/KC paradigm and
was thus composed of a set of partial solvers, a central memory where elite solutions
were kept, and a local search coordinator (LSC) managing the central memory and
interfacing with the global search coordinator.

Two algorithms were used in the implementation described in [96] for both
complete and partial solvers, the HGSADC of [169] and GUTS, a generalized
version of the unified tabu search [31]. Briefly, HGSADC combines the exploration
capability of population-based evolutionary search, the aggressive-improvement
strength of neighborhood-based local search to enhance solutions newly created
by genetic operators, and a solution evaluation function driven by both solution
quality and contribution to the population diversity, which contributes to progress
toward diverse and good solutions. GUTS is a tabu search-based meta-heuristic
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implementing advanced insertion neighborhoods and allowing the exploration of
unfeasible solutions by dynamically adjusting penalties on violations of vehicle
capacity and route duration constraints. Both methods use relaxation of vehicle
capacity and route duration constraints combined to penalization of infeasibilities in
the evaluation function. They also use well-known VRP local neighborhoods based
on pattern change, depot change, and inter- and intra-route movements.

Integrators build complete solutions by mixing partial solutions with promis-
ing features obtained within the PSGs. Integrators aim for solution quality, the
transmission of critical features extracted from the partial solutions, and compu-
tational efficiency. Several Integrators can be involved in an ICS implementation,
contributing to these goals and increasing the diversity of the population of complete
solutions.

The simplest integrator consists in selecting high-quality partial solutions (with
respect to solution value or the inclusion of particular decision combinations) and
passing them directly to the complete solver group. Meta-heuristics, population-
based methods in particular, e.g., genetic algorithms [169] and path relinking [131],
may also be used, having proved their flexibility and stability in combining solution
characteristics to yield high-quality solutions. Finally, a new methodology was
proposed recently [65]. It proceeds through particular optimization models that
preserve desired critical variables, defined as the variables whose values in the
respective solution represent desired attributes, present in the partial solutions.

Four integrators were included in the MDPVRP application, the simple one
passing good solutions to the CSG, and three others starting from pairs of partial
solutions randomly selected among the best 25 % of the solutions in the central
memories of the two PSGs. The second integrator applied the crossover operator of
HGSADC and enhanced the new solution through the local search education opera-
tor of the same method. The third and fourth integrators applied the methodology of
[65], the former aiming to transmit the attributes for which there was “consensus” in
the input solutions, while the latter “promoted” them only through penalties added
to the objective function.

The complete solver group (CSG) included a central memory, which included the
complete solution set, as well as the context information and the guiding solutions
built by the global search coordinator (GSC). The CSG received complete solutions
from integrators and, when solvers were included (e.g., GUTS and HGSADC in
the present case), enhanced them thus creating new ones. It was the global search
coordinator which (1) built the search contextual information (e.g., the frequency
of appearance of each (customer, depot, pattern) triplet in the complete solution
set, together with the cost of the best solution containing it), (2) built new guiding
solutions to orient the search toward promising features, and (3) monitored the status
of the solver groups, sending guiding instructions (solutions) when necessary.

Monitoring is performed by following the evolution of the PSGs by, e.g., inter-
rogating the central memories of the PSGs for the number of improving solutions
generated during a certain time period. Monitoring provides the means to detect
undesired situations, e.g., loss of diversity in the partial or complete populations,
stagnation in improving the quality of the current best solution, awareness that some
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zones of the solution space – defined by particular values for particular decision sets
– have been scarcely explored, if at all, and that the search should be diversified in
that direction, and so on. Whenever one of these criteria is not fulfilled, the GSC
sends guidance “instructions” to the particular PSG. The particular type of guidance
is application specific, but one may modify the values of the fixed attributes for
the PSG to orient its search toward a different area or, more rarely, change the
attribute subset under investigation (i.e., change the decomposition of the decision-
set attributes) or modify/replace the solution method in a partial solver or integrator.

In the present case, the GSC guided the search trajectory of a particular PSG
by sending three solutions, which were either randomly selected (equiprobably)
from the complete solution set, or were three guiding solutions built by the GSC.
The receiving PSG added directly these solutions to its own central memory, after
resetting its population, all solutions being replaced by new randomly generated
ones. Guiding solutions were continuously generated, and stored in a particular pool,
to reflect the current status and the history of the search represented by the context
information. The process proceeded by selecting promising triplets with respect to
the search history, that is, triplets that appeared in at least one complete solution
with a cost close (less than 3 % distant) to the current best solution. The promising
triplets were used to create feasible pattern and depot customer assignments, routes
being then generated by the local search of HGSADC to complete the solutions.
These solutions were then individually enhanced by a short execution of GUTS or
HGSADC.

Extensive experimental analyses were conducted to (1) assess the performance
of ICS when compared to state-of-the-art sequential methods and (2) investigate
a number of implementation alternatives. The general conclusions were that ICS
performed extremely well. It obtained very good results even when compared to
the state-of-the-art HGSADC meta-heuristic, obtaining several new best-known
solutions in shorter computing times. The experiments also indicated that (1) one
should use solvers displaying similar time performances in order to have all solvers
contributing reasonably equally to the cooperation; (2) when using genetic solvers in
a PSG, it is preferable for long runs to define a local population for each such solver
and reserve the central memory of the PSG for communications and guidance only,
while using the central memory as population for all cooperating genetic solvers
is better for short runs; and (3) embedding good solvers (HGSADC in the present
case) in the CSG enhances slightly the already excellent performance of the ICS
parallel meta-heuristic.

Conclusions

This chapter presented an overview and state-of-the-art survey of the main parallel
meta-heuristic ideas, discussing general concepts and algorithm design principles
and strategies. The presentation was structured along the lines of a taxonomy
of parallel meta-heuristics, which provided a rich framework for analyzing these
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design principles and strategies, reviewing the literature, and identifying trends and
promising research directions.

Four main classes of parallel meta-heuristics strategies may be identified: low-
level decomposition of computing-intensive tasks with no modification to the
original algorithm, decomposition of the search space, independent multi-search,
and cooperative (multi) search, the later encompassing synchronous, asynchronous
collegial, and knowledge-creating asynchronous collegial. It is noteworthy that this
series also reflects the historical sequence of the development of parallel meta-
heuristics. One should also note that, while the initial developments targeted genetic
methods, simulated annealing, and tabu search, research is not addressing the full
range of meta-heuristics. Furthermore, parallel meta-heuristics, cooperative search
in particular, are now acknowledged as making up their own class of meta-heuristics.

Many important research questions and challenges exist for parallel meta-
heuristics, in terms of general design methodology, instantiation to particular
meta-heuristic frameworks and problem settings, and implementation on various
computing architectures.

It is indeed noteworthy that despite the many years of research on these issues,
there are still many gaps in knowledge, as well as in the studied meta-heuristic
frameworks and problem classes. One may single out the many variants of swarm-
based optimization and nongenetic population-based methods, scatter search and
path relinking in particular. But one should not overlook the more classic meta-
heuristic classes, as one still misses systematic and comprehensive/comparative
studies of these issues. A large part of the studies present in the literature targeted
combinatorial optimization problems with relatively few attributes and a single
level of decision variables, e.g., vehicle routing problems. This is to be understood,
these problems being important for science and practice and displaying large search
spaces. Significant less research has been dedicated to multi-attribute problem
settings, like the rich VRPs one increasingly has to tackle, and formulations with
several levels of decisions like the single- and multilevel network design.

The community misses not only studies targeting particular meta-heuristic frame-
works and problem classes but also transversal studies comparing the behavior and
performance of particular parallel meta-heuristic strategies over different problem
classes and of different parallel strategies and implementations for the same problem
class. One increasingly finds such studies for sequential solution methods; we need
them for parallel methods.

With respect to the four strategy classes, one should not forget that each fulfills
a particular type of task and all are needed at some time. Thus, the idea that
everything seems to be known regarding low-level parallelization strategies is not
true. First, most studies on accelerating computing-intensive tasks targeted the
evaluation of a population or neighborhood in classic meta-heuristic frameworks.
These techniques should prove very valuable for swarm-based optimization, and
more research is required in this field. Second, as shown in recent studies, the
best strategy to accelerate a local search procedure may prove less effective when
the local search is embedded into a full meta-heuristics or hierarchical solution
methods. Third, the evolution of computing infrastructure opens up interesting but
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challenging perspectives. Let’s emphasize the possibilities offered by the graphic
processing units, which increase continuously in power and are present everywhere,
as surveyed in [16, 17].

Search-space decomposition also seems to have been thoroughly studied and has
been overlooked in the last years, maybe due to the rapid and phenomenal increase
in the memory available and the speed of access. Let’s not forget, however, that
most optimization problems of interest are complex and that the dimensions of
the instances one faces in practice keep increasing. Research challenges exist in
dynamic search-space decomposition and the combination of cooperative search and
search-space decomposition. The integrative cooperative search is a first answer in
this direction, but more research is needed.

Asynchronous cooperation, particularly when relaying on memories as inter-
solver communication mechanisms, provides a powerful, flexible, and adaptable
framework for parallel meta-heuristics that consistently achieved good results in
terms of computing efficiency and solution quality for many meta-heuristic and
problem classes. Other than the general research issues discussed above that are
of particular interest in this context, a number of additional research issues and
challenges are worth investigating.

A first issue concerns the exchange and utilization of context data locally
generated by the cooperating solvers, to infer an image of the status of the global
search and generate appropriate guiding instructions. Thus, contrasting the various
local context data may be used to identify regions of the search space that were
neglected or over explored. The information could also be used to evaluate the
relative performance of the solvers conducting, eventually, to adjust the search
parameters of particular solvers or even change the search strategy. So-called
“strategic” decision variables or parameters could thus be more easily identified,
which could prove very profitable in terms of search guidance.

A related issue concerns the learning processes and the creation of new in-
formation out of the shared data. Important questions concern the identification
of information that may be derived from the exchanged solutions and context
information and which is meaningful for, on the one hand, evaluating the status
of the global search and, on the other hand, sending to solvers to guide their own
search as part of the global optimization effort. Research in this direction is still at
the very beginning but has already proved its worth, in particular in the context of
the integrative cooperative methods.

A third broad issue concerns the cooperation of different types of meta-heuristics
and of these exact solution methods. The so-called hybrid and matheuristic methods,
representing the former and latter types of method combination, respectively, are
trendy in the sequential optimization field. Very few studies explicitly target parallel
methods. How different methods behave when involved in cooperative search and
how the latter behaves given various combinations of methods is an important
issue that should yield valuable insights into the design of parallel meta-heuristic
algorithms, integrative cooperative search in particular. Actually, more research is
required into ICS, both regarding its structure and components, and its application
to various problem settings. A particularly challenging but fascinating direction for
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cooperative search and ICS is represented by the multi-scenario representation of
stochastic optimization formulations, for which almost nothing beyond low-level
scenario decomposition has been proposed.

Finally, the issue of understanding cooperation on some fundamental level,
giving the means to formally define and analyze it in order to design better, more
efficient algorithms. As mentioned earlier, this work parallels efforts in many other
scientific domains addressing issues related to emerging decision and behavior
out of the decisions and behaviors or several independent entities. Theoretical
and empirical work is needed in order to address this fascinating and difficult
question.
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Theoretical analyses of stochastic search algorithms, albeit few, have always
existed since these algorithms became popular. Starting in the 1990s, a systematic

P. K. Lehre (�)
School of Computer Science, University of Birmingham, Birmingham, UK
e-mail: p.k.lehre@cs.bham.ac.uk

P. S. Oliveto
Department of Computer Science, University of Sheffield, Sheffield, UK
e-mail: p.oliveto@sheffield.ac.uk

© Springer International Publishing AG, part of Springer Nature 2018
R. Martí et al. (eds.), Handbook of Heuristics,
https://doi.org/10.1007/978-3-319-07124-4_35

849

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-07124-4_35&domain=pdf
mailto:p.k.lehre@cs.bham.ac.uk
mailto:p.oliveto@sheffield.ac.uk
https://doi.org/10.1007/978-3-319-07124-4_35


850 P. K. Lehre and P. S. Oliveto

approach to analyze the performance of stochastic search heuristics has been put
in place. This quickly increasing basis of results allows, nowadays, the analysis
of sophisticated algorithms such as population-based evolutionary algorithms,
ant colony optimization, and artificial immune systems. Results are available
concerning problems from various domains including classical combinatorial
and continuous optimization, single and multi-objective optimization, and noisy
and dynamic optimization. This chapter introduces the mathematical techniques
that are most commonly used in the runtime analysis of stochastic search
heuristics in finite, discrete spaces. Careful attention is given to the very popular
artificial fitness levels and drift analyses techniques for which several variants
are presented. To aid the reader’s comprehension of the presented mathematical
methods, these are illustrated by analysis of simple evolutionary algorithms for
artificial example functions. The chapter is concluded by providing references
to more complex applications and further extensions of the techniques for the
obtainment of advanced results.

Keywords
Stochastic search algorithms � Computational complexity � Runtime analysis �
Evolutionary algorithms � (1+1) EA � Drift analysis � Artificial fitness levels �
Functions of unitation � Tail inequalities

Introduction

Stochastic search algorithms, also called randomized search heuristics, are general-
purpose optimization algorithms that are often used when it is not possible to
design a specific algorithm for the problem at hand. Common reasons are the
lack of available resources (e.g., enough money and/or time) or because of an
insufficient knowledge of the complex optimization problem which has not been
studied extensively before. Other times, the only way of acquiring knowledge about
the problem is by evaluating the quality of candidate solutions.

Well-known stochastic search algorithms are random local search (�Chap.
11, “Theory of Local Search”) and simulated annealing. Other more complicated
approaches are inspired by processes observed in nature. Popular examples are
evolutionary algorithms (EAs) (�Chap. 14, “Evolutionary Algorithms”) inspired by
the concept of natural evolution, ant colony optimization (ACO) (�Chap. 13, “Ant
Colony Optimization: A Component-Wise Overview”) inspired by ant foraging
behavior, and artificial immune systems (AIS) inspired by the immune system of
vertebrates.

The main advantage of stochastic search heuristics is that, being general-purpose
algorithms, they can be applied to a wide range of applications without requiring
hardly any knowledge of the problem at hand. Also, the simplicity for which
they can be applied implies that practitioners can use them to find high-quality
solutions to a wide variety of problems without needing skills and knowledge of
algorithm design. Indeed, numerous applications report high performance results
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which make them widely used in practice. However, through experimental work
and applications, it is difficult to understand the reasons for these successes. In
particular, given a stochastic search algorithm, it is unclear on which kind of
problems it will achieve good performance and on which it will perform poorly.
Even more crucial is the lack of understanding of how the parameter settings
influence the performance of the algorithms. The goal of a rigorous theoretical
foundation of stochastic search algorithms is to answer questions of this nature
by explaining the success or the failure of these methods in practical applications.
The benefits of a theoretical understanding are threefold: (a) guiding the choice of
the best algorithm for the problem at hand, (b) determining the optimal parameter
settings and (c) aiding the algorithm design, ultimately leading to the achievement
of better algorithms.

Theoretical studies of stochastic optimization methods have always existed,
albeit few, since these algorithms became popular. In particular, the increasing
popularity gained by evolutionary (�Chap. 14, “Evolutionary Algorithms”) and
genetic algorithms (�Chap. 15, “Genetic Algorithms”) in the 1970s led to var-
ious attempts at building a theory for these algorithms. However, such initial
studies attempted to provide insights on the behavior of evolutionary algorithms
rather than estimating their performance. The most popular of these theoretical
frameworks was probably the schema theory introduced by Holland [16] and
made popular by Goldberg [14]. In the early 1990s, a very different approach
appeared to the analysis of evolutionary algorithms and consequently randomized
search heuristics in general, driven by the insight that these heuristics are indeed
randomized algorithms, albeit general-purpose ones, and as such they should be
analyzed in a similar spirit to that of classical randomized algorithms [31]. For
the last 25 years, this field has kept growing considerably, and nowadays several
advanced and powerful tools have been devised that allow the analysis of the
performance of involved stochastic search algorithms for problems from various
domains. These include problems from classical combinatorial and continuous
optimization, dynamic optimization, and noisy optimization. The generality of
the developed techniques has allowed their application to the analyses of several
families of stochastic search algorithms including evolutionary algorithms, local
search, metropolis, simulated annealing, ant colony optimization, artificial immune
systems, particle swarm optimization, and estimation of distribution algorithms,
among others. For complementary theoretical approaches, see also �Chap. 11,
“Theory of Local Search”.

The aim of this chapter is to introduce the reader to the most common and
powerful tools used in the performance analysis of randomized search heuristics.
We will not consider deterministic search heuristics, or search heuristics operating
in continuous or infinite search spaces, because these require different methods.
Since the main focus is the understanding of the methods, these will be applied to the
analysis of very simple evolutionary algorithms for artificial example functions. The
hope is that the structure of the functions and the behavior of the algorithms are easy
to grasp so the attention of the reader may be mostly focused on the mathematical
techniques that will be presented. The techniques are highly general and can
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be applied to other randomized search heuristics, such as simulated annealing,
randomized local search, ant colony optimization, etc. At the end of the chapter,
references to complex applications of the techniques yielding advanced results will
be pointed out for further reading.

Computational Complexity of Stochastic Search Algorithms

From the perspective of computer science, stochastic search heuristics are ran-
domized algorithms although more general than problem-specific ones. Hence, it
is natural to analyze their performance in the classical way as done in computer
science. From this perspective an algorithm should be correct, i.e., for every instance
of the problem (the input), the algorithm halts with the correct solution (i.e., the
correct output), and it should be efficient in terms of its computational complexity,
i.e., the algorithm uses the computational resources wisely. The resources usually
considered are the number of basic computations to find the solution (i.e., time) and
the amount of memory required (i.e., space).

Differently from problem-specific algorithms, the goal behind general-purpose
algorithms such as stochastic search heuristics is to deliver good performance
independently of the problem at hand. In other words, a general-purpose algorithm
is “correct” if it visits the optimal solution of any problem in finite time with prob-
ability one regardless of the initialization. If the optimum is never lost afterward,
then a stochastic search algorithm is said to converge to the optimal solution. In a
formal sense, the latter condition for convergence is required because most search
heuristics are not capable of recognizing when an optimal solution has been found
(i.e., they do not halt). It has been known for almost two decades that a few relatively
simple conditions suffice to ensure convergence [40]. Furthermore, these conditions
hold for a large class of stochastic search heuristics. Hence, what is more relevant
and can make a huge difference on the usefulness of a stochastic search heuristic
for a given problem is its time complexity. In each iteration the evaluation of the
quality of a solution is generally far more expensive than its other algorithmic steps.
As a result, it is very common to measure time as the number of evaluations of
the fitness function (also called objective function) rather than counting the number
of basic computations. Since randomized algorithms make random choices during
their execution, the runtime of a stochastic search heuristic A to optimize a function
f is a random variable TA;f . The main measure of interest is:

1. The expected runtime E
�
TA;f

�
: the expected number of fitness function evalua-

tions until the optimum of f is found;
For skewed runtime distributions, the expected runtime may be a deceiving
measure of algorithm performance. The following measure therefore provides
additional information.

2. The success probability in t steps Pr
�
TA;f � t

�
: the probability that the optimum

is found within t steps.
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Fig. 1 An efficient search heuristic (blue) versus and inefficient search heuristic (red) for a given
instance

Just like in the classical theory of efficient algorithms, the time is analyzed in
relation to growing input length and usually described using asymptotic notation
[3]. A search heuristic A is said to be efficient for a function (class) f if the runtime
grows as polynomial function of the instance size. On the other hand, if the runtime
grows as an exponential function, then the heuristic is said to be inefficient. See
Fig. 1 for an illustrative distinction.

Evolutionary Algorithms

A general framework of an evolutionary algorithm is the (�+�) EA defined in
Algorithm 1. The algorithm evolves a population of � candidate solutions, generally
called the parent population. At each generation an offspring population of �

individuals is created by selecting individuals from the parent population uniformly
at random and by applying a mutation operator to them. The generation is concluded
by selecting the � fittest individuals out of the � C � parents and offspring.
Algorithm 1 presents a formal definition.

Algorithm 1: (�+�) EA
1: Initialisation:

Initialise P0 D fx
.1/; : : : ; x.�/g with � individuals chosen uniformly a random

from f0; 1gn;
t  0;

2: for i D 1; : : : ; � do
3: Selection for Reproduction: Choose x 2 Pt uniformly at random;
4: Variation: Create y.i/ by flipping each bit in x with probability pm;
5: end for
6: Selection for Replacement

Create the new population PtC1 by choosing the best � individuals out of
fx.1/; : : : ; x.�/; y.1/; : : : ; y.�/g;

7: t  t C 1; Continue at 2;
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In order to apply the algorithm for the optimization of a fitness function
f W f0; 1gn ! R, some parameters need to be set: the population size �, the
offspring population size �, and the mutation rate pm. Generally pm D 1=n is
considered a good setting for the mutation rate. Also, in practical applications a
stopping criterion has to be defined since the algorithm does not halt. A fixed number
of generations or a fixed number of fitness function evaluations are usually decided
in advance. Since the objective of the analysis is to calculate the time required to
reach the optimal (approximate) solution for the first time, no stopping condition is
required, and one can assume that the algorithms are allowed to run forever. The +
symbol in the algorithm’s name indicates that elitist truncation selection is applied.
This means that the whole population consisting of both parents and offspring are
sorted according to fitness, and the best � are retained for the next generation. Some
criterion needs to be decided in case the best � individuals are not uniquely defined.
Ties between solutions of equal fitness may be broken uniformly at random. Often
offspring are preferred over parents of equal fitness. In the latter case, if � D � D 1

are set, then the standard (1+1) EA is obtained, a very simple and well-studied
evolutionary algorithm. On the other hand, if some stochastic selection mechanism
was used instead of the elitist mechanism and a crossover operator was added as
variation mechanism, then Algorithm 1 would become a genetic algorithm (GA)
[14]. Given the importance of the (1+1) EA in this chapter, a formal definition is
given in Algorithm 2.

Algorithm 2: (1+1) EA
1: Initialisation:

Initialise x.0/ uniformly a random from f0; 1gn;
t  0;

2: Variation:
Create y by flipping each bit in x.t/ with probability pm D 1=n;

3: Selection for Replacement
4: if f .y/ � f .x.t// then
5: x.tC1/  y

6: end if
7: t  t C 1; Continue at 2;

The algorithm is initialized with a random bitstring. At each generation a new
candidate solution is obtained by flipping each bit with probability pm D 1=n. The
number of bits that flip can be represented by a binomial random variable X �

Bin.n; p/ where n is the number of bits (i.e., the number of trials) and p D 1=n

is the probability of a success (i.e., a bit actually flips), while 1 � p D 1 � 1=n is
the probability of a failure (i.e., the bit does not flip). Then, the expected number of
bits that flip in one generation is given by the expectation of the binomial random
variable, E ŒX� D n � p D n � 1=n D 1.
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The algorithm behaves in a very different way compared to the random local
search (RLS) algorithm that flips exactly one bit per iteration. Although the
(1+1) EA flips exactly one bit in expectation per iteration, many more bits may
flip or even none at all. In particular, the (1+1) EA is a global optimizer because
there is a positive probability that any point in the search space is reached in each
generation. As a consequence, the algorithm will find the global optimum in finite
time. On the other hand, RLS is a local optimizer since it gets stuck once it reaches
a local optimum because it only flips one bit per iteration.

The probability that a binomial random variable X � Bin.n; p/ takes value j

(i.e., j bits flip) is

Pr .X D j / D

 
n

j

!

pj .1 � p/n�j :

Hence, the probability that the (1+1) EA flips exactly one bit is

Pr .X D 1/ D

 
n

1

!

�

�
1

n

�
�

�
1 �

1

n

�n�1

D

�
1 �

1

n

�n�1

� 1=e � 0:37

So the outcome of one generation of the (1+1) EA is similar to that of RLS only
approximately 1/3 of the generations. The probability that two bits flip is exactly
half the probability that one flips:

Pr .X D 2/ D

 
n

2

!�
1

n

�2 �
1 �

1

n

�n�2

D
n.n � 1/

2

�
1

n

�2 �
1 �

1

n

�n�2

D
1

2

�
1 �

1

n

�n�1

� 1=.2e/

On the other hand, the probability no bits flip at all is

Pr .X D 0/ D

 
n

0

!

.1=n/0 � .1 � 1=n/n � 1=e

The latter result implies that in more than 1/3 of the iterations, no bits flip. This
should be taken into account when evaluating the fitness of the offspring, especially
for expensive fitness functions.
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In general, the probability that i bits flip decreases exponentially with i :

Pr .X D i/ D

 
n

i

!

�
1

ni
�

�
1 �

1

n

�n�i

D
1

iŠ
�

�
1 �

1

n

�n�i

�
1

iŠ � e

In the worst case, all the bits may need to flip to reach the optimum in one
step. This event has probability 1=nn. Since this is always a lower bound on the
probability of reaching the optimum in each generation, by a simple waiting time
argument, an upper bound of O.nn/ may be derived for the expected runtime of
the (1+1) EA on any pseudo-Boolean function f W f0; 1gn ! R. It is simple to
design an example trap function for which the algorithm actually requires �.nn/

expected steps to reach the optimum [13]. This simple result further motivates why it
is fundamental to gain a foundational understanding of how the runtime of stochastic
search heuristics depends on the parameters of the problem and on the parameters
of the algorithms.

Test Functions

Test functions are artificially designed to analyze the performance of stochastic
search algorithms when they face optimization problems with particular charac-
teristics. These functions are used to highlight characteristics of function classes
which may make the optimization process easy or hard for a given algorithm.
For this reason they are often referred to as toy problems. The analysis on test
functions of simple and well-understood structure has allowed the development of
several general techniques for the analysis. Afterward these techniques have allowed
to analyze the same algorithms for more complicated problems with practical
applications such as classical combinatorial optimization problems. Furthermore, in
recent years several standard techniques originally developed for simple algorithms
have been extended to allow the analyses of more realistic algorithms. In this section
the test functions that will be used as example functions throughout the chapter are
introduced.

The most popular test function is ONEMAX (x) :=
Pn

iD1 xi which simply counts
the number of one-bits in the bitstring. The global optimum is a bitstring of only
one-bits. ONEMAX is the easiest function with unique global optimum for the
(1+1) EA [7].

A particularly difficult test function for stochastic search algorithms is the needle-
in-a-haystack function. NEEDLE.x/ WD

Qn
iD1 xi consists of a huge plateau of fitness

value zero apart from only one optimal point of fitness value one represented by the
bitstring of only one-bits. This function is hard for search heuristics because all the
search points apart from the optimum have the same fitness. As a consequence, the
algorithms cannot gather any information about where the needle is by sampling
search points.
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Both ONEMAX and NEEDLE (as defined above) have the property that the
function values only depend on the number of ones in the bitstring. The class of
functions with this property is called functions of unitation

UNITATION.x/ WD f

 
nX

iD1

xi

!

Throughout this chapter, functions of unitation will be used as a general example
class to demonstrate the use of the techniques that will be introduced. For simplicity
of the analysis, the optimum is assumed to be the bitstring of only one-bits.

For the analysis the function of unitation will be divided into three different
kinds of subblocks: linear blocks, gap blocks, and plateau blocks. Each block will
be defined by its length parameter m (i.e., the number of bits in the block) and
by its position parameter k (i.e., each block starts at bitstrings with m C k zeroes
and ends at bitstrings with k zeroes). Given a unitation function, it is divided into
subblocks proceeding from left to right from the all-zeroes bitstring toward the all-
ones bitstring. If the fitness increases with the number of ones, then a linear block
is created. The linear block ends when the function value stops increasing with the
number of ones.

LINEAR.jxj/ D

�
ajxj C b if k < n � jxj � k Cm

0 otherwise.

See Fig. 2 for an illustration.
If the fitness function decreases with the number of ones, then a gap block is

created. The gap block ends when the fitness value reaches for the first time a higher
value than the value at the beginning of the block.

GAP.jxj/ D

�
a if n � jxj D k Cm

0 otherwise.

See Fig. 3 for an illustration.

Fig. 2 A linear unitation
block of length m starting at
position m C k and ending at
position k. A linear unitation
block of length n is the
ONEMAX function
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Fig. 3 A gap unitation block
of length m starting at
position m C k and ending at
position k. A gap unitation
block of length n � 1 is the
NEEDLE function

Fig. 4 A plateau unitation
block of length m starting at
position m C k and ending at
position k

If the fitness remains the same as the number of ones in the bitstrings increases,
then a plateau block is created. The block ends at the first point where the fitness
value changes.

PLATEAU.jxj/ D

�
a if k < n � jxj � k Cm

0 otherwise.

See Fig. 4 for an illustration.
By proceeding from left to right, the whole search space is subdivided into

blocks. See Fig. 5 for an illustration. Let the unitation function be subdivided into r

sub-functions f1; f2; : : : fr , and let Ti be the runtime for an elitist search heuristic
to optimize each sub-function fi . Then by linearity of expectation, an upper bound
on the expected runtime of an elitist stochastic search heuristic for the unitation
function is

E ŒT � � E

"
rX

iD1

Ti

#

D

rX

iD1

E ŒTi � :

Hence, an upper bound on the total runtime for the unitation function may be
achieved by calculating upper bounds on the runtime for each block separately.
Once these are obtained, summing all the bounds yields an upper bound on the total
runtime. Attention needs to be put when calculating upper bounds on the runtime
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Fig. 5 An illustration of how the search space of a unitation function may be subdivided into
blocks of the three kinds

to overcome a plateau block when this is followed by a gap block because points
straight after the end of the plateau will have lower fitness values and hence will not
be accepted. In these special cases, the upper bound for the PLATEAU block needs to
be multiplied by the upper bound for the GAP block to achieve a correct upper bound
on the runtime to overcome both blocks. In the remainder of the chapter, upper and
lower bounds for each type of block will be derived as example applications of the
presented runtime analysis techniques. The reader will then be able to calculate the
runtime of the (1+1) EA and other evolutionary algorithms for any such unitation
function.

By simply using waiting time arguments, it is possible to derive upper and lower
bounds on the runtime of the (1+1) EA for the GAP block. Assuming that the
algorithm is at the beginning of the gap block, then to reach the end, it is sufficient
to flip m zero-bits into one-bits and leave the other bits unchanged. On the other
hand, it is a necessary condition to flip at least m zero-bits because all search points
achieved by flipping less than m zero-bits have a fitness value of zero and would
not be accepted by selection. Given that there are m C k zero-bits available at the
beginning of the block, the following upper and lower bounds on the probability of
reaching the end of the block follow

�
mC k

nm

�m
1

e
�

 
mC k

m

!�
1

n

�m
1

e
� p �

 
mC k

m

!�
1

n

�m

�

�
.mC k/e

nm

�m

:
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Here the outer inequalities are achieved by using
�

n
k

�k
�
�

n
k

�
�
�

en
k

�k
for k � 1.

Then by simple waiting-time arguments, the expected time for the (1+1) EA to
optimize a GAP block of length m and position k is upper and lower bounded by

�
nm

.mC k/e

�m

�

 
mC k

m

!�1

nm � E ŒT � � enm

 
mC k

m

!�1

� e

�
nm

mC k

�m

:

Tail Inequalities

The runtime of a stochastic search algorithm A for a function (class) f is a random
variable TA;f , and the main goal of a runtime analysis is to calculate its expectation
E
�
TA;f

�
. Sometimes the expected runtime may be particularly large, but there may

also be a high probability that the actual optimization time is significantly lower. In
these cases a result about the success probability within t steps helps considerably in
understanding the algorithm’s performance. In other occasions it may be interesting
to simply gain knowledge about the probability that the actual optimization time
deviates from the expected runtime. In such circumstances tail inequalities turn
out to be very useful tools by allowing to obtain bounds on the runtime that hold
with high probability. An example of the expectation of a random variable and its
probability distribution are given in Fig. 6.

Given the expectation of a random variable, which often may be estimated easily,
tail inequalities give bounds on the probability that the actual random variable
deviates from its expectation [30, 31]. The most simple tail inequality is Markov’s
inequality. Many strong tail inequalities are derived from Markov’s inequality.

Theorem 1 (Markov’s Inequality). Let X be a random variable assuming only
nonnegative values. Then for all t 2 R

C,

Pr.X � t / �
E ŒX�

t
:

The power of the inequality is that no knowledge about the random variable is
required apart from it being nonnegative.

E [X ]

Fig. 6 The expectation of a random variable and its probability distribution. The tails are
highlighted in red



29 Theoretical Analysis of Stochastic Search Algorithms 861

Let X be a random variable indicating the number of bits flipped in one iteration
of the (1+1) EA. As seen in the previous section, one bit is flipped per iteration in
expectation, i.e., E ŒX� D 1. One may wonder what is the probability that more
than one bit is flipped in one time step. A straightforward application of Markov’s
inequality reveals that in at least half of the iterations, either one bit is flipped or
none:

Pr .X � 2/ �
E ŒX�

2
D

1

2

Similarly, one may want to gain some information on how many ones are contained
in the bitstring at initialization, given that in expectation there are E ŒX� D n=2 (here
X is a binomial random variable with parameters n and p D 1=2). An application
of Markov’s inequality yields that the probability of having more than .2=3/n ones
at initialization is bounded by

Pr .X � .2=3/n/ �
E ŒX�

.2=3/n
D

n=2

.2=3/n
D 3=4 (1)

Since X is binomially distributed, it is reasonable to expect that, for large enough
n, the actual number of obtained ones at initialization would be more concentrated
around the expected value. In particular, while the bound is obviously correct, the
probability that the initial bitstring has more than .2=3/n ones is much smaller than
3=4. However, to achieve such a result, more information about the random variable
should be required by the tail inequality (i.e., that it is binomially distributed). An
important class of tail inequalities used in the analysis of stochastic search heuristics
are Chernoff bounds.

Theorem 2 (Chernoff Bounds). Let X1; X2; : : : Xn be independent random vari-
ables taking values in f0; 1g. Define X D

Pn
iD1 Xi , which has expectation E.X/ DPn

iD1 Pr.Xi D 1/.

(a) Pr.X � .1 � ı/E ŒX�/ � e
�EŒX�ı2

2 for 0 � ı � 1.

(b) Pr.X > .1C ı/E ŒX�/ �
	

eı

.1Cı/1Cı


EŒX�

for ı > 0.

An application of Chernoff bounds reveals that the probability that the initial
bitstring has more than .2=3/n one-bits is exponentially small in the length of the
bitstring. Let X D

Pn
iD1 Xi be the random variable summing up the random values

Xi of each of the n bits. Since each bit is initialized with probability 1=2, it holds
that Pr.Xi D 1/ D 1=2 and E ŒX� D n=2. By fixing ı D 1=3, it follows that
.1C ı/E ŒX� D .2=3/n, and finally by applying inequality (b),

Pr.X > .2=3/n/ �

�
e1=3

.4=3/4=3

�n=2

<

�
29

30

�n=2



862 P. K. Lehre and P. S. Oliveto

In fact an exponentially small probability of deviating from n=2 by a constant factor
of the search space c=n for any constant c > 0 may easily be obtained by Chernoff
bounds.

Artificial Fitness Levels (AFL) and the Level-Based Method

The artificial fitness-level technique is a very simple method to achieve upper
bounds on the runtime of elitist stochastic optimization algorithms. Albeit its
simplicity, it often achieves very good bounds on the runtime.

The idea behind the method is to divide the search space of size 2n into m disjoint
fitness-based partitions A1; : : : Am of increasing fitness such that f .Ai / < f .Aj /

8i < j . The union of these partitions should cover the whole search space, and the
level of highest fitness Am should contain the global optimum (or all global optima
if there is more than one) (Fig. 7).

Definition 1. A tuple .A1; A2; : : : ; Am/ is an f -based partition of f W X ! R if

1. A1 [ A2 [ � � � [ Am D X
2. Ai \ Aj D ; for i ¤ j

3. f .A1/ < f .A2/ < � � � < f .Am/

4. f .Am/ D maxx f .x/

For functions of unitation, a natural way of defining a fitness-based partition
is to divide the search space into n C 1 levels, each defined by the number of
ones in the bitstring. For the ONEMAX function, where fitness increases with the
number of ones in the bitstring, the fitness levels would be naturally defined as
Ai WD fx 2 f0; 1gn j ONEMAX.x/ D ig.

Fig. 7 A partition of the
search space satisfying the
conditions of an f -based
partition

Fitness

A1

A2

A3

...

Am−1

Am
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AFL: Upper Bounds

Given a fitness-based partition of the search space, it is obvious that an elitist
algorithm using only one individual will only accept points of the search space
that belong to levels of higher or equal fitness to the current level. Once a new
fitness level has been reached, the algorithm will never return to previous levels.
This implies that each fitness level has to be left at most once by the algorithm.
Since in the worst case all fitness levels are visited, the sum of the expected times to
leave all levels is an upper bound on the expected time to reach the global optimum.
The artificial fitness-level method simplifies this idea by only requiring a lower-
bound si on the probability of leaving each level Ai rather than asking for the exact
probabilities to leave each level.

Theorem 3 (Artificial Fitness Levels). Let f W X ! R be a fitness function,
A1 : : : Am be a fitness-based partition of f , and s1 : : : sm�1 be lower bounds on
the corresponding probabilities of leaving the respective fitness levels for a level
of better fitness. Then the expected runtime of an elitist algorithm using a single
individual is E

�
TA;f

�
�
Pm�1

iD1 1=si .

The artificial fitness-level method will now be applied to derive an upper bound
on the expected runtime of (1+1) EA for the ONEMAX function. Afterward, the
bound will be generalized to general linear blocks of unitation.

Theorem 4. The expected runtime of the (1+1) EA on ONEMAX is O.n ln n/.

Proof. The artificial fitness-level method will be applied to the n C 1

partitions defined by the number of ones in the bitstring, i.e., Ai WD

fx 2 f0; 1gn j ONEMAX.x/ D ig. This means that all bitstrings with i ones and
n � i zeroes belong to fitness-level Ai . For each level Ai , the method requires a
lower bound on the probability of reaching any level Aj where j > i . To reach a
level of higher fitness, it is necessary to increase the number of ones in the bitstring.
However, it is sufficient to flip a zero into a one and leave the remaining bits
unchanged. Since the probability of flipping a bit is 1=n and there are n � i zeroes
that may be flipped, a lower bound on the probability to reach a level of higher
fitness from level Ai is

si � .n � i/ �
1

n
�

�
1 �

1

n

�n�1

�
n � i

en

where .1 � 1=n/n�1 is the probability of leaving n � 1 bits unchanged and the
inequality follows because .1 � 1=n/n�1 � 1=e for all n 2 N.

Then by the artificial fitness-level method (Theorem 3),



864 P. K. Lehre and P. S. Oliveto

E
�
T.1C1/ EA;ONEMAX

�
�

m�1X

iD0

1=si �

n�1X

iD0

en

n � i
D en

nX

iD1

1

i
D O.n ln n/:

ut

Theorem 5. The expected runtime of the (1+1)-EA for a linear block of length m

ending at position k is O.n ln..mC k/=k//.

Proof. Apply the artificial fitness-level method where each partition Ai consists of
the bitstrings in the block with i zeroes. Then the probability of leaving a fitness
level is bounded by si � i=n � .1 � 1=n/n�1 � i=en. Given that at most m fitness
levels need to be left and that the block starts at position mC k and ends at position
k, by Theorem 3 the expected runtime is

E ŒT � �

kCmX

iDkC1

en

i
� en

kCmX

iDkC1

1

i
� en

 
kCmX

iD1

1

i
�

kX

iD1

1

i

!

� en ln

�
mC k

k

�

ut

AFL: Lower Bounds

Recently Sudholt introduced an artificial fitness-level method to obtain lower
bounds on the runtime of stochastic search algorithms [42]. Since lower bounds
are aimed for, apart from the probabilities of leaving each fitness level, the method
needs to also take into account the probability that some levels may be skipped by
the algorithm.

Theorem 6. Consider a fitness function f W X ! R and A1 : : : Am a fitness-based
partition of f . Let ui be the probability of starting in level Ai , si be an upper bound
on the probability of leaving Ai , and pi;j be an upper bound on the probability of
jumping from level Ai to level Aj . If there exists some 0 < � � 1 such that for all
j > i

pi;j � � �

m�1X

kDj

pi;k;

then the expected runtime of an elitist algorithm using a single individual is

E
�
TA;f

�
� � �

m�1X

iD1

ui

m�1X

j Di

1

sj
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The method will first be illustrated for the (1+1) EA on the ONEMAX function.
Afterward, the result will be generalized to general linear blocks of unitation.

Theorem 7. The expected runtime of the (1+1) EA on ONEMAX is ˝.n ln n/.

Proof. Apply the artificial fitness-level method on the nC1 partitions defined by the
number of ones in the bitstring, i.e., Ai WD fx 2 f0; 1gn j ONEMAX.x/ D ig. This
means that all bitstrings with i ones and n � i zeroes belong to fitness level Ai . To
apply the artificial fitness-level method, bounds on si and � need to be derived. An
upper bound on the probability of leaving fitness-level Ai is simply si � .n � i/=n

because it is a necessary condition that at least one zero flips to reach a better fitness
level. The bound follows because each bit flips with probability 1=n and there are
n � i zeroes available to be flipped. In order to obtain an upper bound on �, the
method requires a lower bound on pi;j and an upper bound on

Pm�1
kDj pi;k . For the

lower bound on pi;j , notice that in order to reach level Aj , it is sufficient to flip
j � i zeroes out of the n� i zeroes available and leave all the other bits unchanged.
Hence the following bound is obtained:

pij �

 
n � i

j � i

!�
1

n

�j �i �
1 �

1

n

�n�.j �i/

For an upper bound on the sum, notice that to reach any level Ak k � j from level
Ai , it is necessary to flip at least j � i zeroes out of the n � i available zeroes. So,

n�1X

kDj

pi;k �

 
n � i

j � i

!�
1

n

�j �i

and for � WD 1=e the condition of Theorem 6 is satisfied as follows:

pi;j �

�
1 �

1

n

�n�.j �i/

�

n�1X

kDj

pi;k � � �

n�1X

kDj

pi;k

By Eq. (1), the probability that the initial search point has less than .2=3/n one-
bits is at least

.2=3/nX

iD1

ui � 1 �
3

4

The statement of Theorem 6 now yields
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e

�
�

n�1X

iD1

ui
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j Di

1

sj
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e
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.2=3/nX

iD1
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A
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e
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j D.2=3/n

n

n � j
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�

n=3X

j D1

1

j
:

It now follows that E
�
TA;f

�
D ˝.n log n/. ut

Similarly the following result may also be proved for linear blocks of unitation
functions by defining the fitness partitions as Ai WD fx W n � jxj D k Cm � ig for
0 � i � m.

Theorem 8. The expected runtime of the (1+1)-EA for a linear block of length m

ending at position k is ˝.n ln..mC k/=k//.

Level-Based Analysis of Non-elitist Populations

A weakness with the classical artificial fitness-level technique is that it is limited to
search heuristics that only keep one solution, such as the (1+1) EA, and it heavily
relies on the selection mechanism to use elitism. Corus et al. [6] recently introduced
the so-called level-based analysis, a generalization of fitness-level theorems for non-
elitist evolutionary algorithms which is also applicable to search heuristics with
populations, using higher arity operators such as crossover.

Their theorem applies to any algorithm that can be expressed in the form
of Algorithm 3, such as genetic algorithms [6] and estimation of distribution
algorithms UMDA [9]. The main component of the algorithm is a random operator
D which given the current population Pt 2 X � returns a probability distribution
D.Pt / over the search space X . The next population PtC1 is obtained by sampling
individuals independently from this distribution.

In contrast to classical fitness-level theorems, the level-based theorem (Theo-
rem 9) only assumes a partition .A1; : : : ; AmC1/ of the search space X and not
an f -based partition (see Definition 1). Hence, the level-based method is not an
artificial fitness-level method. Each of the sets Aj ; j 2 Œm C 1� is called a level,
and the symbol AC

j WD
SmC1

iDj C1 Ai denotes the set of search points above level Aj .

Given a constant �0 2 .0; 1/, a population P 2 X � is considered to be at level Aj
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Algorithm 3: Population-based algorithm with independent sampling
1: Initialisation:

t  0; Initialise Pt uniformly at random from X �.
2: Variation and Selection:
3: for i D 1 : : : � do

Sample PtC1.i/ � D.Pt /

4: end for
5: t  t C 1; Continue at 2

with respect to �0 if jP \ AC
j �1j � �0� and jP \ AC

j j < �0� meaning that at least
a �0 fraction of the population is in level Aj or higher.

Theorem 9 ([6]). Given any partition of a finite set X into m nonoverlapping
subsets .A1; : : : ; AmC1/, define T WD minft� j jPt \ AmC1j > 0g to be the first
point in time that elements of AmC1 appear in Pt of Algorithm 3. If there exist
parameters z1; : : : ; zm; z� 2 .0; 1�, ı > 0, and a constant �0 2 .0; 1/ such that for
all j 2 Œm�, P 2 X �, y � D.P /, and � 2 .0; �0�, it holds

(C1) Pr
	
y 2 AC

j j jP \ AC
j �1j � �0�



� zj � z�

(C2) Pr
	
y 2 AC

j j jP \ AC
j �1j � �0� and jP \ AC

j j � ��


� .1C ı/� , and

(C3) � �
2

a
ln

�
16m

ac"z�

�
with a D

ı2�0

2.1C ı/
, " D minfı=2; 1=2g and c D "4=24

then

E ŒT � �
2

c"

0

@m�.1C ln.1C c�//C

mX

j D1

1

zj

1

A :

The theorem provides an upper bound on the expected optimization time of
Algorithm 3 if it is possible to find a partition .A1; : : : ; AmC1/ of the search space X
and accompanying parameters �0; ı; z1; : : : ; zm; z� such that conditions (C1), (C2),
and (C3) are satisfied. Condition (C1) requires a nonzero probability zj of creating
an individual in level Aj C1 or higher if there are already at least �0� individuals
in level Aj or higher. In typical applications, this imposes some conditions on the
variation operator. The condition is analogous to the probability sj in the artificial
fitness-level technique. Condition (C2) requires that if in addition there are ��

individuals at level Aj C1 or better, then the probability of producing an individual
in level Aj C1 or better should be larger than � by a multiplicative factor 1 C ı. In
typical applications, this imposes some conditions on the strength of the selective
pressure in the algorithm. Finally, condition (C3) imposes minimal requirements on
the population size in terms of the parameters above.
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As an example application of the level-based theorem, the .�; �/ EA is analyzed,
which is the non-elitist variant of the .� C �/ EA shown in Algorithm 1. The two
algorithms differ in the selection step (line 6), where the new population PtC1 in
.�; �/ EA is chosen as the best � individuals out of fy1; : : : ; y�g and breaking ties
uniformly at random. While the .� C �/ EA always retains the best � individuals
in the population (hence the name elitist), the .�; �/ EA always discards the old
individuals x.1/; : : : ; x.�/.

At first sight, it may appear as if the .�; �/ EA cannot be expressed in the form of
Algorithm 3. The � individuals x.1/; : : : ; x.�/ that are kept in each generation are not
independent due to the inherent sorting of the offspring. However, taking a different
perspective, the population of the algorithm at time t could also be interpreted as
the � offspring y.1/; : : : ; y.�/. In this alternative interpretation, the new population
is now created by sampling uniformly at random among the � best individuals in
the population and applying the mutation operator. The operator D in Algorithm 3
can now be defined as in Algorithm 4.

Algorithm 4: Operator D corresponding to .�; �/ EA
1: Selection:

Sort the population Pt D .y.1/; : : : ; y.�// such that f .y.1// � f .y.2// � : : : �

f .y.�//.
Select x uniformly at random among fy.1/; : : : ; y.�/g.

2: Variation (mutation):
Create x0 by flipping each bit in x with probability �=n.

3: return x0.

The following lemma will be useful when estimating the probability that the
mutation operator does not flip any bit positions.

Lemma 1. For any ı 2 .0; 1/ and � > 0, if n � .�C ı/.�=ı/, then

	
1 �

�

n


n

� .1 � ı/e��:

Proof. Note first that ln.1 � ı/ < �ı; hence,

�
n

�
� 1

�
.� � ln.1 � ı// � nC

nı

�
� .�C ı/ � n:

By making use of the fact that .1 � 1=x/x�1 � 1=e and simplifying the exponent n

as above,

	
1 �

�

n


n

�

�	
1 �

�

n


.n=�/�1
���ln.1�ı/

� .1 � ı/e��:

ut
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The expected optimization time of the .�; �/ EA on ONEMAX can now be
expressed in terms of the mutation rate �=n and the problem size n assuming some
constraints on the population sizes � and �. The theorem is valid for a wide range
of mutation rates �=n. In the classical setting of � D 1, the expected optimization
time reduces to O.n� ln �/.

Theorem 10. The expected optimization time of the .�; �/ EA with bitwise muta-
tion rate �=n where � 2 .0; n=2/ and population sizes � and � satisfying for any
constant ı 2 .0; 1/

�

�
�

�
1C ı

1 � ı

�
e�; and � �

4

ı2e�
ln

�
24576n.nC 1/

ı7�

�

on ONEMAX is for any n � .�C ı/=.�=ı/ no more than

1536n

ı5

�
� ln.�/C

e� ln.nC 2/

�.1 � ı/

�
CO.n�/:

Proof. Apply the level-based theorem with the same m WD n C 1 partitions as in
the proof of Theorem 7. Since the parameter ı is assumed to be some constant
ı 2 .0; 1/, it also holds that the parameters a; "; and c are positive constants. The
parameters �0; z1; : : : ; zm; and z� will be chosen later.

To verify that conditions (C1) and (C2) hold for any j 2 Œm�, it is necessary
to estimate the probability that operator D produces a search point x0 with j C 1

one-bits when applied to a population P containing at least �0� individuals, each
having at least j one-bits (formally jP \ AC

j �1j � �0�). Such an event is called a
successful sample.

Condition (C1) asks for bounds zj for each j 2 Œm� on the probability that the
search point x0 returned by Algorithm 4 contains j C 1 one-bits. First chose the
parameter setting �0 WD �=�. This parameter setting is convenient, because the
selection step in Algorithm 4 always picks an individual x among the best � D

�0� individuals in the population. By the assumption that jP \ AC
j �1j � �0�, the

algorithm will always select an individual x containing at least j C i one-bits for
some nonnegative integer i � 0.

Assume without loss of generality that the first j bit positions in the selected
individual x are one-bits, and let k; j < k � n, be any of the other bit positions.
If there is a zero-bit in position k or if i � 2, then a successful sample occurs if
the mutation operator flips only bit position k. If there is a one-bit in position k,
and if i D 1, then the step is still successful if the mutation operator flips none of
the bit positions. Since the probability of not flipping a position is higher than the
probability of flipping a position, i.e., 1��=n � �=n, the probability of a successful
sample is therefore in both cases at least

.n � j /.�=n/.1 � �=n/n�1: (2)
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By Lemma 1, the probability above is at least zj WD .n � j /.�=n/e��.1 � ı/:

The parameter z� is chosen to be the minimal among these probabilities, i.e., z� WD

.�=n/e��.1 � ı/.
Condition (C2) assumes in addition that �� < � individuals have fitness j C 1

or higher. In this case, it suffices that the selection mechanism picks one of the best
�� individuals among the � individuals and that none of the bits are mutated in the
selected individual. The probability of this event is at least

��

�
.1 � �=n/n �

��

�
e��.1 � ı/

Hence, to satisfy condition (C2), it suffices to require that

��

�
exp.��/.1 � ı/ � �.1C ı/;

which is true whenever

�

�
�

�
1C ı

1 � ı

�
e�:

To check condition (C3), notice that " D ı=2, and c D ı4=384; hence,

a D
ı2.�=�/

2.1C ı/
�

ı2e�

2.1 � ı/
; and

ac"z� �
ı2�

2n
c" D

ı7�

1536n

Condition (C3) is now satisfied, because the population size � is required to fulfil

2

a
ln

�
16m

ac"z�

�
�

4.1 � ı/

ı2e�
ln

�
24576mn

ı7�

�
� �

All conditions are satisfied, and the theorem follows. ut

The artificial fitness-level method was first described by Wegener [44]. The
original method was designed for the achievement of upper bounds on the runtime
of stochastic search heuristics using only one individual such as the (1+1) EA. Since
then, several extensions of the method have been devised for the analysis of more
sophisticated algorithms. Sudholt introduced the method presented in section “AFL:
Lower Bounds” for the obtainment of lower bounds on the runtime [42]. In an
early study, Witt [45] used a potential function that generalizes the fitness level
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argument of [44] to analyze the (�+1) EA. His analysis achieved tight upper bounds
on the runtime of the (�+1) EA on LEADINGONES and ONEMAX by waiting for
a sufficient amount of individuals of the population to take over a given fitness-
level Ai before calculating the probability to reach a fitness level of higher fitness.
Chen et al. [2] extended the analysis to offspring populations by analyzing the
(N +N ) EA, also taking into account the take-over process. Recently, Corus and
Oliveto [4] proved that steady state (�+1) GAs using crossover optimise ONEMAX

faster than mutation-only EAs by coupling each fitness level with a Markov chain to
analyse the diversity of the population on each level. Lehre [23] introduced a general
fitness-level method for arbitrary population-based EAs with non-elitist selection
mechanisms and unary variation operators. This technique was later generalized
further into the level-based method presented in section “Level-Based Analysis
of Non-elitist Populations” [6]. The method allows the analysis of sophisticated
non-elitist heuristics such as genetic algorithms equipped with mutation, crossover,
and stochastic selection mechanisms, both for classical and noisy and uncertain
optimization [8].

Drift Analysis

Drift analysis is a very flexible and powerful tool that is widely used in the analysis
of stochastic search algorithms. The high-level idea is to predict the long-term
behavior of a stochastic process by measuring the expected progress toward a target
in a single step. Naturally, a measure of progress needs to be introduced, which is
generally called a distance function. Given a random variable Xk representing the
current state of the process at step k, over a finite set of states S , a distance function
d W S ! R

C
0 is defined such that d.Xk/ D 0 if and only if Xk is a target point (e.g.,

the global optimum). Drift analysis aims at deriving the expected time to reach the
target by analyzing the decrease in distance in each step, i.e., d.XkC1/ � d.Xk/.
The expected value of this decrease in distance, �k D E Œd .XkC1/ � d.Xk/ j Xk�,
is called the drift. See Fig. 8 for an illustration. If the initial distance from the target
is d.X0/ and a bound on the drift � (i.e., the expected improvement in each step) is
known, then bounds on the expected runtime to reach the target may be derived.

Fig. 8 An illustration of the
drift � at time step k of a
process represented by the
random variable X and a
distance function d
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Additive Drift Theorem

The additive drift theorem was introduced to the field of evolutionary computation
by He and Yao [15]. The theorem allows to derive both upper and lower bounds
on the runtime of stochastic search algorithms. Consider a distance function Yk D

d.Xk/ indicating the current distance, at time k, of the stochastic process from the
optimum. The theorem simply states that if at each time step k the drift is at least
some value �" (i.e., the process has moved closer to the target), then the expected
number of steps to reach the target is at most Y0=". Conversely if the drift in each
step is at most some value �", then the expected number of steps to reach the target
is at least Y0=" (Fig. 9).

Theorem 11 (Additive Drift Theorem). Given a stochastic process X1; X2; : : :

over an interval Œ0; b� � R and a distance function d W S ! R
C
0 such that

d.Xk/ D 0 if and only if X contains the target. Let Yk D d.Xk/ for all k, define
T WD minfk � 0 j Yk D 0g, and assume E ŒT � <1.
Verify the following conditions:

(C1+) 8k E ŒYkC1 � Yk j Yk > 0� � �"

(C1�) 8k E ŒYkC1 � Yk j Yk > 0� � �"

Then,

1. If (C1+) holds for an " > 0, then E ŒT j Y0� � b=".
2. If (C1�) holds for an " > 0, then E ŒT j Y0� � Y0=".

An example application of the additive drift theorem follows concerning the
(1+1) EA for plateau blocks of functions of unitation of length m positioned such
that k > n=2C "n.

Theorem 12. The expected runtime of the (1+1)-EA for a plateau block of length
m ending at position k > n=2C "n is �.m/.

b0 Yk = d(Xk)

ε

Fig. 9 An illustration of the condition of the additive drift theorem. If the expected distance to
the optimum decreases of at least " at each step (i.e., condition C1+), then an upper bound on the
runtime is achieved. If the distance decreases of at most " at each step (i.e., condition C1-), then a
lower bound on the runtime is obtained
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Proof. The additive drift theorem will be applied to derive both upper and lower
bounds on the expected runtime. The starting point is a bitstring X0 with m C k

zeroes, and the target point is a bitstring Xt with k zeroes. Choose to use the natural
distance function Yt D d.Xt / WD n � jXt j that counts the number of zeroes in the
bitstring. Subtract k from the distance such that target points with k zeroes have
distance 0 and the initial point has distance m. As long as points on the plateau are
generated, they will be accepted because all plateau points have equal fitness. Given
that each bit flips with probability 1=n, and at each step the current search point has
Yt zeroes and n � Yt ones, the drift is

�t WD E ŒYt � YtC1 j Yt > 0� D
Yt

n
�

n � Yt

n
D

2 � Yt

n
� 1

A lower bound on the drift is obtained by considering that as long as the end of
the plateau has not been reached, there are always at least k zeroes that may be
flipped (i.e., Yt � k). Accordingly for an upper bound, at most mC k zeroes may
be available to be flipped (i.e., Yt � mC k). Hence,

2k

n
� 1 � �t �

2.mC k/

n
� 1

Then by additive drift analysis (Theorem 11),

E ŒT j Y0� �
m

.2k/=n � 1
D

mn

2k � n
D O.m/

and

E ŒT j Y0� �
m

2.mC k/=n � 1
D

mn

2.mC k/ � n
D ˝.m/

where the last equalities hold as long as k > n=2C "n. ut

Note again that if the plateau block is followed by a gap block, then an upper bound
on the expected time to optimize both blocks is achieved by multiplying the upper
bounds obtained for each block. This is necessary because points in the gap will not
be accepted by the (1+1) EA.

Multiplicative Drift Theorem

In the additive drift theorem, the worst-case decrease in distance is considered. If the
expected decrease in distance changes considerably in different areas of the search
space, then the estimate on the drift may be too pessimistic for the obtainment of
tight bounds on the expected runtime.

Drift analysis of the (1+1) EA for the classical ONEMAX function will serve as
an example of this problem. Since the global optimum is the all-ones bitstring and
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the fitness increases with the number of ones, a natural distance function is Yt D

d.Xt / D n�ONEMAX.Xt / which simply counts the number of zeroes in the current
search point. Then the distance will be zero once the optimum is found. Points with
less one-bits than the current search point will not be accepted by the algorithm
because of their lower fitness. So the drift is always positive, i.e., �t � 0, and the
amount of progress is the expected number of ones gained in each step. In order
to find an upper bound on the runtime, a lower bound on the drift is needed (i.e.,
the worst case improvement). Such worst case occurs when the current search point
is optimal except for one zero-bit. In this case the maximum decrease in distance
that may be achieved in a step is Yt � YtC1 D 1, and to achieve such progress, it
is necessary that the algorithm flips the zero into a one and leaves the other bits
unchanged. Hence, the drift is

�t � 1 �
1

n

�
1 �

1

n

�n�1

�
1

en
WD "

Since the expected initial distance is E ŒY0� D n=2 due to random initialization, the
drift theorem yields

E ŒT j Y0� �
E ŒY0�

"
D

n=2

1=.en/
D e=2 � n2 D O.n2/

In section “Artificial Fitness Levels (AFL) and the Level-Based Method,” it was
proven that the runtime of the (1+1) EA for ONEMAX is �.n ln n/; hence, a bound of
O.n2/ is not tight. The reason is that on functions such as ONEMAX, the amount of
progress made by the algorithm depends crucially on the distance from the optimum.
For ONEMAX in particular, larger progress per step is achieved when the current
search point has many zeroes that may be flipped. As the algorithm approaches
the optimal solution, the amount of expected progress in each step becomes smaller
because search points have increasingly more one-bits than zero-bits in the bitstring.
In such cases a distance function that takes into account these properties of the
objective function needs to be used. For ONEMAX a correct bound is achieved by
using a distance function that is logarithmic in the number of zeroes i , i.e., Yt D

d.Xt / WD ln.i C 1/, where a 1 is added to i in the argument of the logarithm such
that the global optimum has distance zero (i.e., ln.1/ D 0). With such distance
measure, the decrease in distance when flipping a zero and leaving the rest of the
bitstring unchanged is

ln.i C 1/ � ln.i/ D ln

�
1C

1

i

�
�

1

2i

where the last inequality holds for all i � 1. Since it is sufficient to flip a zero and
leave everything else unchanged to obtain an improvement, the drift is
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�t �
i

en
�

1

2i
D

1

2en
WD "

Given that the maximum possible distance is Y0 � ln.nC 1/, the drift theorem
yields

E ŒT � �
Y0

1=.2en/
D 2en � ln.nC 1/ D O.n ln n/:

The multiplicative drift theorem was introduced as a handy tool to deal with
situations as the one described above where the amount of progress depends on the
distance from the target.

Theorem 13 (Multiplicative Drift Theorem [12]). Let fXtgt2N0 be random vari-
ables describing a Markov process over a finite state space S 	 R. Let T be the
random variable that denotes the earliest point in time t 2 N0 such that Xt D 0. If
there exist ı; cmin; cmax > 0 such that for all t < T ,

1. E ŒXt �XtC1 j Xt � � ıXt and
2. cmin � Xt � cmax,

then

E ŒT � �
2

ı
� ln

�
1C

cmax

cmin

�

The following derivation of an upper bound on the runtime of the (1+1) EA for
linear blocks illustrates the multiplicative drift theorem.

Theorem 14. The expected time for the (1+1)-EA to optimize a linear unitation
block of length m ending at position k is O.n ln..mC k/=k//

Proof. Let Xt be the number of zero-bits in the bitstring at time step t , representing
the distance from the end of the linear block. By remembering that increases in
distance are not accepted due to elitism, the expected decrease in distance at time
step can be bounded by

E ŒXtC1jXt � � Xt � 1 �
Xt

en
D Xt

�
1 �

1

en

�

simply by considering that if a zero-bit is flipped and nothing else, then the distance
decreases by 1. Then the drift is

E ŒXt �XtC1jXt � � Xt �Xt

�
1 �

1

en

�
D

1

en
Xt WD ıXt
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By fixing k D cmin � Xt � cmax D mC k, the multiplicative drift theorem yields

E ŒT � �
2

ı
� ln

�
1C

cmax

cmin

�
D 2en ln.1C .mC k/=k/ D O.n ln..mC k/=k//

ut

By fixing 1 D cmin � Xt � cmax D n, an O.n ln n/ bound on the expected runtime
of the (1+1) EA for ONEMAX is achieved.

Variable Drift Theorem

The multiplicative drift theorem is applicable when the drift of a stochastic process
is linear with respect to the current position. However, in some stochastic processes,
the drift is nonlinear in the current position, i.e.,

E ŒXt �XtC1 j Xt � xmin� � h.Xt / (3)

for some function h. The following variable drift theorem provides bounds on the
expectation and the tails of the hitting time distribution of such processes, given
some assumptions about the function h.

Theorem 15 (Corollary 1 in [25]). Let .Xt /t�0 be a stochastic process over some
state space S 	 f0g [ Œxmin; xmax�, where xmin � 0. Let hW Œxmin; xmax� ! R

C be a
differentiable function. Then the following statements hold for the first hitting time
T WD minft j Xt D 0g.

(i) If E ŒXt �XtC1 j Xt � xmin� � h.Xt / and h0.x/ � 0, then

E ŒT j X0� �
xmin

h.xmin/
C

Z X0

xmin

1

h.y/
dy:

(ii) If E ŒXt �XtC1 j Xt � xmin� � h.Xt / and h0.x/ � 0, then

E ŒT j X0� �
xmin

h.xmin/
C

Z X0

xmin

1

h.y/
dy:

(iii) If E ŒXt �XtC1 j Xt � xmin� � h.Xt / and h0.x/ � � for some � > 0, then

Pr .T � t j X0/ < exp

�
��

�
t �

xmin

h.xmin/
�

Z X0

xmin

1

h.y/
dy

��
:

(iv) If E ŒXt �XtC1 j Xt � xmin� � h.Xt / and h0.x/ � �� for some � > 0, then

Pr .T < t j X0 > 0/ <
e�t � e�

e� � 1
exp

�
�

�xmin

h.xmin/
�

Z X0

xmin

�

h.y/
dy

�
:
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To illustrate the variable drift theorem, an upper bound on the optimization time
of the (1+1) EA on the class of linear functions with bounded coefficients will be
derived. More formally, this class of functions contains any function of the form

f .x/ WD

nX

iD1

wi xi ;

with bounded, positive coefficients w1; : : : ; wn 2 .wmin; wmax/ where 0 < wmin

< wmax:

The drift function h in this example turns out to be linear; hence, the multiplica-
tive drift theorem could have been applied instead.

Theorem 16. The expected optimization time of the (1+1) EA on linear functions
is less than t .n/ WD en.ln.n/ C ln.wmax=wmin/ C 1/, and the probability that the
optimization time exceeds t .n/C ren for any r � 0 is no more than e�r .

Proof. Define the distance Xt at time k to be the function value that “remains” at
time k, i.e.,

Xt WD

 
nX

iD1

wi

!

�

 
nX

iD1

wi x
.t/
i

!

D

nX

iD1

wi

	
1 � x

.t/
i



;

where x
.t/
i is the i -th bit in the current search point at time t . For any i 2 Œn�, assume

that the mutation operator flipped only bit position i and no other bit positions, an
event denoted by the symbol Ei . If x

.t/
i D 0, then bit position i flipped from 0 to 1

and the distance reduced by wi . Otherwise, if x
.t/
i D 1, then bit position i flipped

from 1 to 0, the new search point was not accepted, and the distance reduced by 0.
Hence, the distance always reduces by wi .1�x

.t/
i / when event Ei occurs. Using the

law of total probability, and noting that the distance can never increase, one obtains

E ŒXt �XtC1 j Xt D r� �

nX

iD1

Pr .Ei j Xt D r/E ŒXt �XtC1 j Ei ^Xt D r�

�

�
1

n

��
1 �

1

n

�n�1 nX

iD1

wi

	
1 � x

.t/
i



�

r

en
:

Therefore E ŒXt �XtC1 j Xt � � h.Xt / for the function h.x/ D x=en which has
derivative h0.x/ D 1=en. By Theorem 15 part (i), it follows that

E ŒT j X0� �
xmin

h.xmin/
C

Z X0

xmin

1

h.y/
dy
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D
wmin

h.wmin/
C

Z nwmax

wmin

en

y
dy

D enC en.ln.nwmax/ � ln.wmin//

D en.ln.n/C ln.wmax=wmin/C 1/ DW t .n/:

Furthermore, Theorem 15 part (iii) with � WD 1=en gives for any r � 0

Pr .T � t .n/C enr/ � e�r :

ut

Negative-Drift Theorem

The drift theorems presented in previous subsections are designed to prove poly-
nomial bounds on the runtime of stochastic search algorithms. For this a positive
drift toward the optimum is required. On the other hand, a negative drift indicates
that the stochastic process moves away from the optimum in expectation at each
step. In such a case, it is unlikely that the algorithm is efficient for the function it
is attempting to optimize. Rather, an exponential lower bound on the runtime could
probably be proved. The negative-drift theorem is the standard technique used for
the purpose.

Apart from a negative drift, the theorem also requires a second condition showing
that large jumps are unlikely. The intuitive reason for this second condition is that
if large jumps were possible, then the algorithm could maybe be able to jump to the
optimum even if in expectation it is drifting away. For technical reasons also large
jumps heading away from the optimum need to be excluded (see [36]) (Fig. 10).

Theorem 17 (Negative-Drift Theorem). Let Xt , t � 0 be the random variables
describing a Markov process over the state space S , and denote the increase in
distance in one step Dt .i/ WD .XtC1 � Xt jXt D i/ for i 2 S and t � 0. Suppose
there exist an interval Œa; b� of the state space and three constants ı; "; r > 0 such
that for all t � 0, the following conditions hold:

1. �t .i/ D E ŒDt .i/� � " for a < i < b

2. Pr .jDt .i/j D j / � 1
.1Cı/j �r for i > a and j � 1

Then there exists a constant c� such that for T WD minft � 0 W Xt � ajX0 � bg it
holds P r.T � 2c�.b�a// D 2�˝.b�a/.

The following theorem is an example application showing exponential runtime
of the (1+1) EA for the NEEDLE function.
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target
a b

drift away from target

no large jumps
towards target

start

Fig. 10 An illustration of the two conditions of the negative-drift theorem

Theorem 18. Let 	 > 0 be constant. Then there is a constant c > 0 such that with
probability 1� 2�˝.n/, the (1+1) EA on NEEDLE creates only search points with at
most n=2C 	n ones in 2cn steps.

Proof. Apply the negative-drift theorem and set the interval Œa; b� as a WD n=2�2�n

zeroes and b WD n=2 � �n zeroes, with � a positive constant. By Chernoff bounds
the probability that the initial random search point has less than n=2 � �n zeroes is
e�˝.n/, implying that the algorithm starts outside the interval Œa; b� as desired. The
remainder of the proof shows that the two conditions of the drift theorem hold.

Since the interval is a plateau, all created points have the same fitness and are
accepted. Given that the current search point has i zeroes and that each bit is flipped
with probability 1=n, the drift is

�t .i/ D
n � i

n
�

i

n
D

n � 2i

n
� 2� WD "

where the last inequality is achieved because in the interval there are always at least
b zeroes, i.e., i � n=2 � �n. Concerning the second condition for standard bit
mutation, the probability of flipping j bits decreases exponentially with the number
of bits j

Pr .j�t .i/j � j / �

 
n

j

!�
1

n

�j

�

�
nj

j Š

��
1

n

�j

�
1

j Š
�

�
1

2

�j �1

and the condition holds for ı D r D 1. By the negative-drift theorem, the
optimum is found within 2c�.b�a/ D 2cn steps with probability at most 2�˝.b�a/

D 2�˝.n/. ut

The proof can be generalized to plateau blocks of functions of unitation
positioned such that k Cm < .1=2 � "/n.

Theorem 19. The time for the (1+1) EA to optimize a plateau block of length m at
position such that k C m < .1=2 � "/n is at least 2˝.m/ with probability at least
1 � 2�˝.m/.
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Proof. The proof follows the same arguments as the proof of Theorem 18 by setting
b WD mC k zeroes and a WD k zeroes. ut

Conclusions

Drift analysis dates back to 1892 when it was applied for the analysis of stability
equilibria in ordinary differential equations [28]. The first use of drift techniques
for the runtime analysis of stochastic search heuristics was performed by Sasaki
and Hajek to analyze simulated annealing on instances of the maximum matching
problem [41]. Drift analysis was applied in a considerable number of applications in
evolutionary computation after He and Yao introduced the additive drift technique
to the field [15]. Several extensions for the analysis of more sophisticated algorithms
and processes have been since devised. The multiplicative drift method introduced
in section “Multiplicative Drift Theorem” is due to Doerr et al. [12]. An improved
version introduced by Doerr and Goldberg allows to derive bounds also on the
probability to deviate from the expected runtime. Witt recently introduced a
multiplicative drift theorem to achieve lower bounds on the runtime [46]. While the
multiplicative drift theorem may only be used when the drift is linear, a variable drift
theorem was introduced to deal with cases where the expected progress is nonlinear
[21] with respect to the current position. A general variable drift theorem with tail
bounds was introduced in [25]. This theorem subsumes most existing drift theorems,
and a special case of this theorem was given in section “Variable Drift Theorem”
(see Theorem 15).

Oliveto and Witt proposed the negative-drift theorem presented in section “Neg-
ative-Drift Theorem” to derive exponential lower bounds on the runtime of random-
ized search heuristics [35]. This theorem was the main tool used in the first analysis
of the standard simple genetic algorithm (SGA) [37,38]. Finally, Lehre extended the
negative-drift theorem to allow a systematic analysis of population-based heuristics
using non-elitist selection mechanisms [22].

Final Overview

This chapter has presented the most commonly used techniques for the time
complexity analysis of stochastic search heuristics. Example applications have
been shown concerning simple evolutionary algorithms on classical test problems.
The same techniques have allowed the obtainment of time complexity results on
more sophisticated function classes, such as standard combinatorial optimization
problems. The reader is referred to [32] for an overview of such advanced results
concerning evolutionary algorithms and ant colony optimization. Several other
techniques have been used to analyze stochastic search heuristics, such as typical
runs, family trees, martingales, probability generating functions, and branching
processes. For an introduction to these tools for the analysis of evolutionary
algorithms, the reader is referred to a recent extensive monograph [17] which
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covers a more extensive set of techniques than is possible in this book chapter.
Apart from EAs and ACO for discrete single-objective optimization, several other
aspects of stochastic search optimization have been investigated theoretically, such
as simulated annealing, evolution strategies for continuous optimization, particle
swarm optimization (�Chap. 40, “Particle Swarm Optimization for the Vehicle
Routing Problem: A Survey and a Comparative Analysis”), memetic algorithms
(�Chap. 20, “Memetic Algorithms”), and multi-objective optimization techniques
(�Chap. 7, “Multi-objective Optimization”). These topics are overviewed in [1].
Significant results have been achieved recently that have not yet been covered in
monographs and edited book collections. Among these, certainly worth mentioning
are the recent considerable advances in black box optimization [11, 24], which may
be regarded as a complementary line of research to runtime analysis. Rather than
determining the time required by a given heuristic for a problem class, black box
optimization focuses on determining the best possible performance achievable by
any search heuristic for that class of problems. A recent interesting variation to
classical runtime analysis is to determine the expected solution quality achieved
by a stochastic search heuristic if it is only allowed a predefined budget [19].
Fixed budget computation analyses are driven by the consideration that in practical
applications only a predefined amount of resources are available and the hope is
to use such resources at best to achieve solutions of the highest quality. Recent
years have witnessed considerable advances in the theory of artificial immune
systems (AISs). Results concerning standard AISs, such as the B-cell algorithm,
for classical combinatorial optimization problems have appeared [18, 19] and
the Opt-IA [7] together with analyses of sophisticated AIS operators such as
stochastic aging mechanisms [34]. Complexity analyses of standard steady-state
GAs [4,10], parallel evolutionary algorithms [43], hyper-heuristics [27], and genetic
programming [26, 29, 33] have also recently appeared. Finally, systematic work has
been carried out in unifying theories of evolutionary algorithms and population
genetics [39].

Cross-References

�Ant Colony Optimization: A Component-Wise Overview
�Evolutionary Algorithms
�Genetic Algorithms
�Memetic Algorithms
�Multi-objective Optimization
� Particle Swarm Methods
�Theory of Local Search
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Abstract

This chapter provides an introductory overview of city logistics systems, high-
lighting the specific characteristics that make them different from general
logistics problems. It analyzes the types of decisions involved in managing city
logistics applications, from strategic, tactical, and operational, and identifies the
key models to address them. This analysis identifies types of problems, location,
location routing, and variants of routing problems with time windows, all those
with ad hoc formulations, derived from the constraints imposed by policy and
operational regulations, technological conditions, or other specificities of urban
scenarios, which result in variants of the classical models that, for its size
and complexity, become a fertile field for metaheuristic approaches to define
algorithms to solve the problems. Some of the more relevant cases are studied
in this chapter, and guidelines for further and deeper insights on other cases are
provided to the reader through a rich set of bibliographical references.

Keywords
City Logistics � Decision Support Systems � Location Models �

Metaheuristics � Vehicle Routing with Time Windows

Introductory Remarks on City Logistics: The Nature of the
Problem

City logistics systems exhibit intrinsic characteristics that differentiate them from
the general logistics systems, as part of the supply chain, in terms of the specificities
of the scenarios where they occur (urban and large metropolitan areas), as well as
for the economic relevance that they have as part of the freight distribution system.
This section is aimed at explaining and highlighting these two crucial aspects.

Logistics and City Logistics

Logistics, as defined by the Council of Logistics Management CLM [13], is “that
part of the supply chain process that plans, implements, and controls the efficient,
effective flow and storage of goods, services, and related information from the point
of origin to the point of consumption in order to meet customers’ requirements.”
However, when logistics activities take place in urban areas, they show unique
characteristics making them different from the general logistics activities. Thus, in
order to differentiate the two phenomena and to highlight the special characteristics,
the transport in urban areas, and specifically the freight flows associated with the
supply of city centers with goods, is usually referred to as “city logistics,” “urban
freight distribution,” or “last mile logistics.”

Taniguchi et al. [51] define city logistics as “the process of totally optimizing
the logistics and transport activities by private companies in urban areas while
considering the traffic environment, traffic congestion and energy consumption
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within the framework of a market economy.” This definition can be updated by
adding to the concept of the energy consumption the contemporary concerns on the
environmental impacts such as emissions, urban noise, vibration, etc., generated by
logistic vehicles in urban areas. These impacts affect not only the economy but also
the quality of life of the city residents.

An analysis of city logistics activities, and how they are performed, results with
an immediate identification of their specific intrinsic characteristics. It allows for
establishing substantial differences between logistics and city logistics justifying
the entity of city logistics as an individual field with proper identity. Some of the
main city logistics characteristics include:

• Spatial restrictions:
– Urban microstructure determined by the urban network (e.g., one-way streets,

dead-end streets, etc.) causes the paths between customers, or between the
depot and the customers, to differ depending on the order of the visits.

– Limited vehicle access. Most cities mandate limited access for some areas of
the city for specific types of vehicles during specific time windows.

– Small-quantity deliveries.
– High density of delivery points.

• Traffic infrastructure: traffic schemes banning specific turnings, traffic lights and
their associated traffic control plans, etc.

• Environmental concerns and sensitivities:
– Growing role of small specialized urban vehicles (i.e., environmentally

friendly vehicles commonly referred to as green vehicles) as a consequence
of sustainable urban policies implying energy savings, reduction of emissions,
noise, etc.

– Low automation and critical human role when manual deliveries are neces-
sary.

– High operational and environmental costs, as a consequence of the human
involvement among other reasons.

The Relevance of City Logistics

Urban logistics operations consist of the set of activities related with the distribution
of goods and provision of services within an urban area. There is a wide range of
examples of urban logistics that includes parcel delivery, material collection, goods
storage, waste collection, home delivery services, or electrical appliance reparation
services, among others. Current urban activities are far away from what they were a
couple of decades ago. New challenges have emerged, new technologies have been
developed, and urban population dynamics have changed.

The road system is the main transportation modality in most countries. In Europe,
68% of goods transportation is made by roads (BESTUFS report [6]). Countries
with less developed rail networks tend to have higher road utilization. Moreover, a
high proportion of all goods are delivered within the cities. Cities as London and
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Dublin estimate this proportion in slightly more than 40% (BESTUFS report [6]),
while almost 70% of the deliveries are concentrated in Tokyo (Taniguchi et al., [51]).
In summary, road transportation is the main freight transportation mode, and high
proportion of the total goods transportation happens in cities.

The significant impact of commercial vehicles in daily traffic is evident. Accord-
ing to the BESTUFS report [6], about a fifth of a city’s traffic flow is made up of
commercial trucks. In London, freight transport accounts for 20%–26% of the total
traffic, while in Italy this proportion is estimated to be 18%. In the same study, it
is reported that urban freight in French cities represents between 13% and 20% of
the total traffic. Overall, the BESTUFS [6] estimates that between 15% and 20% of
the average flow in cities during rush hours correspond to logistics fleets (i.e., light
goods vehicles, heavy goods vehicles, etc.). Consequently, logistics fleets are a net
contributor to traffic congestion in urban and metropolitan areas and have a relevant
impact on energy consumption and on the quality of life in cities.

Although urban freight distribution represents a small fraction of the total
transportation length, the Council of Supply Chain Management Professionals,
Goodman [29] estimates that the last mile cost accounts for about 28% of the total
transportation cost. In a study made by the European Logistics Association and AT
Kearney [21], it is shown that transportation activities account for approximately
43% of the total logistics costs. Assuming that the cost of delivering within urban
areas (i.e., the last mile cost) is 28%, we can then estimate that the cost of urban
freight activities represents about 12% of the total logistics costs.

A Systems Approach to City Logistics

The complexity of city logistics systems should be addresses from a systemic
perspective accounting for all of its components and, what is more important,
their interactions determining the dynamics of the system and the way it behaves.
Namely, it should be addressed in terms of the conditions, operational but also
technological, which are imposed by the relationships among stakeholders, which
are synthetically described in this section.

Any systemic approach to city logistics must look at the system as a whole,
identify its components, and account for their mutual interactions. For example,
consider the impacts that city logistics activities have on traffic congestion, and at
the same time, consider how in return the city logistics activities are impacted by
traffic congestion and operational constraints of the urban areas.

Thus, the city logistics models must account for the two-way interaction.
They should include the effects of the city logistics deliveries and commercial
activities on urban traffic congestion, and conversely they should include operational
constraints in routing and logistics optimization models considering time-varying
traffic congestion allowing defining how city logistics activities are impacted by
traffic congestion.

Notwithstanding, a systemic approach should neither forget that urban freight
distribution is mainly a private sector activity, designed to maximize the profits,
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which takes place in a public scenario under rules and constraints determined
by public authorities. In the words of Boudoin et al. [10], “today, the city as a
geographic and economical space is the centre of attention of decision makers of
the private and public sectors, considering that the performance of the logistics
system depends also greatly on the decisions taken by these two categories of
actors. The urban logistics spaces are in the core of the goods distribution device, as
they are interfaces between interurban and urban, private and public, producer and
consumer.” A systemic approach must also take into account that city logistics is a
scenario with various stakeholders with possibly different and conflicting interests.

Public stakeholders will usually be interested in achieving social, economic,
environmental, or energetic objectives, while private stakeholders, namely, private
shippers and freight carriers, aim to reduce their freight costs and to optimize their
traffic flows in accordance with their specific needs, which are not conforming to
the objectives of an overall optimization. Therefore, a systemic approach to city
logistics must:

1. Be supported by a holistic view in modeling approaches integrating urban and
logistic planning which will allow innovative approaches to urban logistics
solution.

2. Suitable to be applied in practice in terms of a framework enabling the under-
standing between stakeholders, fostering new ways of stakeholder collaboration,
and providing policy frameworks allowing sustainable business models.

3. Become operational in terms of decision support tools to efficiently implement
the desirable policies.

In other words, the conceptual approach to such systemic view must be able to
appropriately account for the roles of the main stakeholders and the relationships
between them as highlighted in the conceptual diagram in Fig. 1.

Freight operators supply their services under supply conditions and contracts
with customers imposing constraints on:

• Fleet routing and scheduling.
• Service times and delivery conditions that could be determined by the character-

istics of the delivery (i.e., loading and unloading) point.
• Service time windows imposed either by the customer requirements or by the

regulatory conditions determined by local authorities.

The supply regulations established by the local government strongly determine
the way in which logistics fleets operate. The restrictions to access inner city,
namely, in cities with historical centers, reinforced in most cases by access control
systems, usually impose time constraints that determine the routings and scheduling,
which can also be affected by the existence, or not, of loading/unloading points and
regulations on their use. Furthermore, the regulations on vehicle sizes authorized
to operate in urban areas, or green logistics policies imposing thresholds on the
acceptable levels of emissions, could determine the fleet compositions.
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Freight Operators
Fleets & Drivers

Local Government

Customers  &
Delivery Points

Supply Conditions & Contracts

• Fleet Routing & Scheduling
• Service times and conditions
• Service Time Windows

• Restrictions to access
to inner city

• Access control systems
• Loading / Unloading regulations
• Loading / Unloading points
• Regulation of vehicle sizes
• Green logistics policies

Fig. 1 Stakeholders’ interaction in city logistics operations

Organizational Aspects and Decision-Making in City Logistics

The proposed systemic view must be translated in terms of a model, suitably
representing the system, which, further than providing a deep understanding on how
the system works, should provide support to any type of operational decisions on the
system. Two key aspects in this process are, respectively, identify and understand
the main logistics operations and identify and distinguish the decision levels in the
management of the city logistics system. This view is neatly aligned with the key
approach of Operations Research: acquire enough knowledge about a system to
understand how the system works, and formulate the system’s knowledge in terms
of modeling hypothesis that can be subsequently translated in terms of a formal
model (usually a mathematical model) which can be used to make decisions about
the system. Therefore, understanding the nature of the decisions in city logistics,
which of them depend on the nature of the system, and which are conditioned by
the relationships among stakeholders is part of such knowledge acquisition to build
models of city logistics. Decision levels for fleet management applications (Goel
[28]) are primarily:

• Strategic:
– Decisions that usually concern a large part of the organization, have major

financial impact, and may have long-term effects: typically concern the design
of the transportation system.

– The size and mix of vehicle fleet and equipment.
– The type and mix of transportation services offered.
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– The territory coverage including terminal location.
– Strategic alliances and cooperation, including the integration of information

systems.
• Tactical:

– Concerns short- or medium-term activities: typically involve decisions about
how to effectively and efficiently use the existing infrastructure and how to
organize operations according to strategic objectives.

– Equipment acquisition and replacement.
– Capacity adjustments in response to demand forecasts.
– Static pricing and pricing policies for contract and spot pricing.
– Acquisition of regularly requested services, including pricing and provisional

routing.
– Long-term driver to vehicle assignments.
– Cost and performance analysis.

• Operational:
– Commercial vehicle operations underlay a variety of external influences which

cannot be foreseen: real-time management decisions have to be made to
appropriately react on discrepancies between planned and actual state of the
transportation system.

– Load acceptance.
– Real-time dispatching considering the actual state of transportation system.
– Instructing drivers about their tasks.
– Monitoring the transportation processes, including tracking and tracing and

arrival time estimations.
– Incident management.
– Observing the state of order processing.

• Real Time:
– Concerns all activities needed to monitor, control, and plan transportation

processes.
– The required information that dispatchers must collect to manage the fleet

include vehicle positions and traffic conditions.
– The decisions that dispatchers must make to manage the fleet include diversion

of vehicles from current route to new destinations and insertion of customers
into predefined routes.

– The most challenging task is the generation of dynamic schedules.
– Determination of plans indicating which vehicle should visit, pick up, deliver,

or service a customer and at what time.

As a consequence of the fact that the stakeholders can play different roles in
the city logistics scenarios, they can adopt various organizational forms. These
organizational forms can be individual with no self-coordination, individual but
with different degrees of coordination in which the private stakeholders are the main
actors, or super-coordinated where public organizations play the main role currently
referred to as goods distribution centers. Each scenario implies different levels of
decision from the long-term strategic decisions on the locations of warehouses or
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distribution centers to the operational decisions concerning fleets and routing and
scheduling of fleet vehicles. Moreover, the real-time decisions on rerouting and
rescheduling vehicles as far as traffic and operational conditions change become
each time more relevant due to technological evolution. Efficiency in these scenarios
may be achieved through better fleet management practices, rationalization of distri-
bution activities, traffic control, freight consolidation/coordination, and deployment
of intermediate facilities [36].

This last measure plays a fundamental role in most of the city logistics projects
based on distribution system, where transportation to and from an urban area is
performed through platforms. These platforms are called city distribution centers
(CDC), goods distribution centers, or city terminals (CT) [42]. They are located far
from city limits. Freights, directed to a city and arriving by different transportation
modes and vehicles, are consolidated at platforms on trucks in charge of final
distribution. According to Boccia et al. [8], “these platforms have had a great impact
on effectiveness of freight distribution in urban areas, but their use is showing
some deficiencies because of two main reasons: their position (often far from final
customers) and the constrained structure of urban areas.”

To overcome the limits of such single-echelon system, distribution systems have
been proposed, where another intermediate level of facilities is added between
platforms and final customers. These facilities, referred to as satellites or transit
points (Fig. 2), perform no storage activities and are devoted to transfer and
consolidate freights coming from platforms on trucks into smaller vehicles, more
suitable for distribution in city centers (Crainic et al. [16, 17]). This two-echelon
system could determine an increase of costs due to additional operations at satellites.
However, these costs should be compensated by freight consolidation, decrement of
empty trips, economy of scale, reduction of traffic congestion, and environmental
safety.

CITY

Customers

City Distribution
Centre (CDC) 1

Strategic Decision:
Where Locate the

CDC?

Operations:
Consolidation

Shared Vehicles

Location Models
Candidate Locations

Land Use,
Planning Decision

City Distribution
Centre (CDC) 2

City Freighter
Urban Vehicle
Empty Vehicle

Satellite

Fig. 2 Two-echelon freight distribution systems and implied decisions
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The model simultaneously determines how many depots (CT or CDC) should be
open, their locations at the first echelon, how many vehicles (urban vehicles) are
needed to supply the satellites, how many satellites should be open at the second
echelon, which vehicles (city freighters) should operate from which open satellites,
and which customers each vehicle should service.

Most of these decisions must be supported appropriately and that implies the
use of suitable models (Giani et al. [24]). Location models (Daskin and Owen [19])
become the key components of strategic decision-making concerning decisions on
warehouse or CT locations. Vehicle routing models are at the core of operational
and real-time fleet management decisions and processes. Therefore, they deserve a
special attention and become the main operational tools to achieve the objectives of
private stakeholders, shippers, and freight carriers. Routing problems in urban areas
have specific characteristics that differentiate them from generic routing problems.
Bodin et al. [9] have coined the term “street routing” to highlight these differences.

Fleet Management and ICT Applications

We have already highlighted the key role of decision-making in city logistics, and
the role of models to support strategic decisions has been highlighted in the previous
section. However, the tactical and operational decisions should not be forgotten, as
they usually determine the quality of the service, which is highly appreciated by
customers. Operational decisions in urban areas are changing very fast due to the
impacts of the new telecommunication technologies. Further than enabling faster
and more flexible operational modes, the new telecommunication technologies
induce deep sociological changes in customers’ uses, which in turn foster a quick
evolution of management policies. The implications of the latter will be discussed
in this section.

The growing importance of the real-time fleet management applications is mainly
due to the recent significant evolution of pervasive automatic vehicle location (AVL)
technologies (Goel [28]). Fleet management in urban areas has to explicitly account
for the dynamics of traffic conditions leading to congestions and variability in travel
times severely affecting the distribution of goods and the provision of services.
An efficient management should be based on decisions accounting for all factors
conditioning the problem: customers’ demands and service conditions (i.e., time
windows, service times, and others), fleet operational conditions (e.g., positions,
states and availabilities of vehicles, etc.), and traffic conditions.

Instead of making decisions based on trial and error and operator’s experience, a
sounder procedure would be to base the decisions on the information provided by a
decision support system (DSS). Regan et al. [47, 48] provide a conceptual frame-
work for the evaluation of real-time fleet management systems which considers
dynamic rerouting and scheduling decisions implied by operations with real-time
information as new orders or updated traffic conditions. The recent advances in
information and communications technologies (ICT) have prompted the research on
dynamic routing and scheduling problems. At present, easy and fast acquisition and
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processing of the real-time information is feasible and affordable. The information,
which becomes the input to dynamic models, captures the dynamic nature of
the addressed problems allowing for more efficient dynamic fleet management
decisions.

Barceló et al. [4, 5] propose and computationally explore a methodological
proposal for a decision support system to assist in the decision-making concerning
the real-time management of a city logistics fleet in dynamic environments when
real-time information is available. Figure 3 depicts the architecture of such a DSS
based on a dynamic router and scheduler. The feasibility of the proposed solutions
depends on:

• The availability of the real-time information, which we assume will be provided
by ICT applications, combined with the knowledge of the scheduled plan with
the current fleet and customer status.

• The quality of the vehicle routing models and algorithms to efficiently tackle the
available information to provided solutions.

Unlike the classic approach, where routes are planned with the known demand
and they are unlikely to be changed throughout the planning period, the real-
time fleet management approach assumes that real-time information is constantly
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Fig. 3 Logical architecture of a decision support system for real-time fleet management based on
a dynamic router and scheduler
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Fig. 4 Dynamic vehicle rerouting in a real-time fleet management system

revealed to the fleet manager who has to decide whether the current routing plan
should be modified or not. The process assumes partial knowledge of the demand.
At the beginning of the considered time period (i.e., one work day), an initial
schedule for the available fleet to serve the known demand is proposed. This initial
operational plan can be modified later on, when the operations are ongoing and new
real-time information is available. The new information can concern new demands,
unsatisfied demands, changes in the routes due to traffic conditions, changes in the
fleet availability (i.e., vehicle breakdowns), etc. It constitutes an input to a dynamic
router and scheduler (DRS) which provides a proposal of a new dynamic operational
plan prepared on the basis of real-time information.

Figure 4 depicts an example of how the conceptual process described in Fig. 3
can be handled by a dynamic routing and scheduling system. The routes, initially
assigned to a set of five vehicles, are identified with various colors. The arrows
indicate the order in which customers are to be served according to the initial
schedule. We assume that vehicles can be tracked in real time. At time t , after the
fleet has started to perform its initial operational plan, a new customer calls requiring
a service which has not been scheduled. If real-time information, such as positions
and states of the vehicles and current and forecasted traffic conditions, is available
to the fleet manager, he or she can use it to make a better decision on which vehicle
to assign to the new customer and whether the new assignment results in a direct
diversion from a route (vehicle 2) or a later scheduling (vehicle 1).
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Vehicle routing problem (VRP) techniques constitute a fundament for the
transportation, distribution, and city logistics systems modeling. The static version
of the VRP has been widely studied in the literature. Among others, an extensive
survey on VRP was provided by Fisher [22] and by Toth and Vigo [54]. The
static approaches reckon with all the required information to be known a priori
and constant throughout the time. However, in most of the real-life cases, a large
part of the data is revealed to the decision-maker when the operations are already
in progress. Thus, the dynamic VRP assumes partial knowledge of the demand
and that new real-time information is revealed to the fleet manager throughout the
operational period. A comprehensive review of the dynamic VRP can be found in
Ghiani et al. [24]. Psaraftis [45, 46] and Powell et al. [44] contrast the two variants
of the problem and clearly distinguish the dynamic VRP from its static version.

A wide variety of vehicle routing problems with time windows (VRPTW)
becomes the engine of real-time decision-making processes to address situations
where real-time information is revealed to the fleet manager, and he or she has
to make decisions in order to modify an initial routing plan with respect to the
new needs (Barceló and Orozco [1]). Real-time routing problems are mainly driven
by events which are the cause of such modifications. Events take place in time,
and their nature may differ according to the type of service provided by a motor
carrier. The most common type of event is the arrival of a new order. When a new
order is received from a customer, the fleet manager must decide which vehicle to
assign to the new customer and what is the new schedule that this vehicle must
follow.

A standard practice of introducing the dynamism into the definition of a routing
problem is to determine specific features as time-dependency. The VRP with time-
dependent travel times acknowledges the influence of traffic conditions on the
routing planning. An introduction to the problem and a made heuristic development
is provided in Malandraki and Daskin [37]. Further algorithm developments for
the static VRP with time-dependent travel times can be found in Ichoua et al.
[32], Fleishman et al. [23], and Tang [50]. The dynamic VRP with time-dependent
information has also been addressed by Chen et al. [12] and Potvin et al. [43].

Thomas and White [53] addressed the problem by assuming that stochastic
information was represented by the time of arrival of a new request. The objective
of their approach was to find the best policy for selecting the next node to visit
that minimizes the total travel time. They called this problem the anticipatory
routing problem as vehicles anticipate the arrival of a new customer by changing
their path if the request is received while they are in transit. The authors assumed
that a new service may be delivered only if the reward or benefit is sufficiently
high. The problem was modeled as a finite-horizon Markov decision process, and
the authors used standard stochastic dynamic programming methods to solve each
one of the proposed instances. Thomas [52] extended the results by incorporating
waiting strategies with the objective of maximizing the expected number of new
customers served. They also modeled the problem using a finite-horizon Markov
decision process. The authors proposed heuristic algorithms for real-time decision-
making.



30 City Logistics 899

In the approach proposed by Barcelo et al. [2, 3], time-dependent information is
generated by means of traffic simulation of a real-world urban network, in order to
emulate the role of a real-time traffic information system providing reliable real-
time information on traffic conditions and short-term forecasts.

In order to test the management strategies and algorithms assuming the availabil-
ity of the real-time information, the dynamic traffic simulation model emulates the
current travel times estimated as a function of the prevailing traffic conditions and
the short-term forecast of the expected evolution of travel times that an advanced
traffic information system would provide. This is a basis for making more realistic
decisions on the feasibility of providing the requested services within the specified
time windows. Furthermore, simulation can also emulate real-time vehicle tracking
giving access to positions and availabilities of the fleet vehicles, which is the
information required by a DRS.

This example was inspired by the modeling framework proposed by Taniguchi
et al. [51], including models needed by the authorities to support long-term planning
decisions accounting for the already mentioned interactions between city logistics
activities and urban congestion.

Strategic Decisions in City Logistics

The current evolution of city logistics systems has raised the interest in the variants
of location models to support the concerned strategic decisions. In many cases they
are induced by regulations imposing conditions on the location of the CTs or CDCs
and restrictions on the vehicle types allowed to operate in the inner city, leading
to organizational restructuring of the services from intermediate satellites. The
potential scenarios illustrated in Fig. 2 can be generically addressed by two types
of location models, described in this section, depending on whether the routings of
the service vehicles are explicitly included in the model or not.

Two-Echelon Single-Source Location Problems

The increasing importance of the e-commerce results with interesting organizational
decisions. For example, more and more people purchase products online, but are not
usually at home at daytime and cannot accept the deliveries, return the unaccepted
deliveries, or deliver the parcels to be sent to other customers. As a consequence,
there are required alternative solutions for home deliveries.

An example of such alternative solution was described in BESTUFS II [7]:
the Packstations used by Deutsche Post and DHL in Germany. Similar solutions
were also deployed in other countries. Usually, they are locker facilities installed in
specific locations, which provide automated booths, or locker boxes for self-service
collection and delivery of parcels.
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Fig. 5 Two-echelon
single-source location
problem

In this case, the logistics system can be considered as a particular case of a two-
echelon single-source location problem, in which special fleet of vehicles service
the satellite-automated booths (marked in green in Fig. 5); the special fleet can
consist of urban vehicles, such as vans or trucks, fulfilling specific urban regulations
regarding sizes and technologies, for example, special vehicles with less than 3.5
tonnes weight, with electrical engines, or propelled by biofuel or low emission
fuels. Customers (marked in blue in Fig. 5) travel to the automated locker boxes
for service.

In the pilots reported in BESTUFS II [7] the locker boxes have been installed
in public spaces (e.g., main station, market place, petrol stations, etc.), and also
at parking places of big companies. However, the search for systematic, general
solutions can be formulated in terms of two-echelon single-source models. This
is the problem arising in a two-stage distribution process, with deliveries being
made from first-echelon facilities (e.g., city terminals) to second-echelon facilities
(e.g., satellites) and from there to customers. The two-echelon, single-source, and
capacitated facility location problem can be considered as an extension of the
single-source capacitated facility location problem, dealing with the problem of
simultaneously locating facilities in the first and second echelons where:

• Each facility in the second echelon has limited capacity and can be supplied by
only one facility in the first echelon,

• Each customer is served by only one facility in the second echelon.

The model simultaneously determines how many depots (CTs or CDCs) should
be open, what are their locations at the first echelon, how many vehicles (urban
vehicles) are needed to supply the satellites, how many satellites should be open at
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the second echelon, which vehicles (city freighters) should operate from which open
satellites, and which customers each vehicle should service.

Notation:

I D f1; 2; : : : ; mg : Set of potential facilities (satellites)
J D f1; 2; : : : ; ng : Set of customers
K D f1; 2; : : : ; nng : Set of potential depots (CDCs)
aj : demand of customer j , 8j 2 J

bi : capacity of facility (satellite) i , 8i 2 I

fik : cost of assigning facility i to depot k, 8i 2 I , 8k 2 K

cijk : cost of facility i from depot k servicing customer j , 8i 2 I , 8j 2 J , 8k 2 K

gk : cost of setting a depot at location k, 8k 2 K

Decision variables:

Yik D

(
1 if facility i is open and served from depot k; 8i 2 I; 8k 2 K

0 otherwise

Xijk

D

(
1 if facility i served by depot k services customerj; 8i 2 I; 8j 2 J; 8k 2 K

0 otherwise

Zk D

(
1 if a depot is set a location k; 8k 2 K

0 otherwise

The model:

p W Min
X
i2I

X
k2K

X
j 2J

cijkxijk C
X
i2I

X
k2K

fik yik C
X
k2k

gkzk (1)

subject to

X
j 2J

aj xijk � bi 8i 2 I; 8k 2 K (2)

X
i2I

X
k2K

xijk D 1 8j 2 J (3)

X
k2k

yik � 1 8i 2 I (4)

xijk � yik 8i 2 I; 8j 2 J; k 2 K (5)

yik � Zk 8i 2 I; k 2 K (6)

xijk; yik; zk 2 f0; 1g 8i 2 I; 8j 2 J; k 2 K (7)
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The objective function (1) includes the total cost of assigning customers to facilities,
the cost of establishing facilities, and the cost of opening depots. The side constraint
(2) ensures that the customer demand serviced by a facility does not exceed its
capacity. The equation (3) ensures that each customer is assigned to exactly one
facility. Each facility can be serviced by only one depot, as defined by constraint
(4). The inequality (5) states that the assignments are made only to open facilities
(i.e., customers are allocated only to open facilities). Lastly, the formulation (6)
ensures that facilities are allocated only to open depots.

Tragantalerngsak et al. [55] propose a variety of Lagrangian heuristics for this
problem. Taking into account the computational results achieved, one of the most
performing Lagrangian decompositions analyzed is based on the possibility of
strengthening the resulting subproblems as a consequence of the observation that
at least one depot must be open. Therefore, without any loss of generality, there can
be used the constraint:

X
k2K

zk � 1 (8)

Also, there may be included a constraint which forces to open sufficient facilities to
supply all customer demands:

X
i2I

X
k2K

yikbi �
X
j 2J

aj (9)

This will improve the lower bound provided by the relaxation.
By relaxing the constraints (3) and (6), with Lagrangian multipliers � and

!, respectively, the problem can be separated into the two following Lagrangian
subproblems LRxy and LRz:

LRz W min
X
k2K

 
gk �

X
i2I

!ik

!
zk (10)

subject to

X
k2K

zk � 1 (11)

zk 2 f0; 1g 8k 2 K (12)

and

LRxy W min
X
i2I

X
k2K

X
j 2J

.cijk � �j /xijk C
X
i2I

X
k2K

.fik C !ik/ (13)
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subject to

X
j 2J

aj xijk � bi 8i 2 I; 8k 2 K (14)

X
k2K

yik � 18i 2 I (15)

X
i2I

X
k2K

bi yik �
X
j 2J

aj (16)

xijk � yik 8i 2 I; 8j 2 J; k 2 K (17)

xijk; yik 2 f0; 1g 8i 2 I; 8j 2 J; k 2 K (18)

Let g1k D gk �
P

i2I !ik ; then problem LRxy can be solved by inspection:

zk D

�
1 if g1k � 0

0 Otherwise
(19)

In the case where all g1k > 0, set zk0 D 1, where g1k0 D minkfg1kg and
zk D 0; k ¤ k0.

The problem can be reformulated as

min
X
i2I

X
k2K

vikyik (20)

subject to X
k2K

yik � 1 8i 2 I (21)

X
i2I

X
k2K

bi yik �
X
j 2J

aj (22)

yik 2 f0; 1g 8i 2 I; k 2 K (23)

where vi k is the optimal solution of

min
X
j 2J

.cijk � �j /xijk C .fik C !ik/ (24)

subject to X
j 2J

aj xijk � bi 8i 2 I; 8k 2 K (25)

xijk 2 f0; 1g 8i 2 I; 8j 2 J; k 2 K (26)
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The problem of finding vik is now a 0-1 knapsack problem involving all facilities,
but the fact that each facility can be served only from one depot enables to rewrite
the problem as follows:

Let vi D minkfvi kg (27)

Solve

min
X
i2I

vi ui (28)

subject to

X
i2I

bi ui �
X
j 2J

aj (29)

ui 2 f0; 1g 8i 2 I (30)

This is a 0-1 knapsack problem with n variables. The lower bound for problem P

is then given by LBD D v.LRxy/ C v.LRz/. The upper bound UBD can be found
from the solution of the problem LRz as follows:

Let z�
k be the solution to LRz and QK D fkjz�

k D 1g. Solve LRxy again
but over the depots in QK. The solution from this restricted set is then used
to find a feasible solution. Let u� be the solution to this problem, and denote
QI D fi ju�

i D 1g.
Then

y�
ik D

�
1 if i 2 QI and k 2 QK

0 otherwise
(31)

The corresponding solution x� is obtained as the solution giving the vik

coefficients if i 2 QI ; k 2 QK; y�
ik D 1. Otherwise, x�

ijk D 0.
Using these solutions no capacity constraints are violated, but there may be

some customers j that were assigned to multiple open facilities or not assigned
to any facilities. A generalized assignment problem is constructed from these
customers, open facilities, and the remaining capacity of open facilities. The
solution to these problems reassigns these customers and provides the expected
upper bound.

Once the lower bound LBD and upper bound UBD of the optimal objective
function have been calculated, the Lagrangian multipliers � and ! are updated until
a convergence criterion is met.
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Fig. 6 An example of two-echelon location routing accounting for special urban regulations

Two-Echelon Location Routing

There are more variants of the location problems arising from a combination of
organizational decisions and urban regulations on the characteristics and conditions
of the logistics fleets, as discussed in section “Organizational Aspects and Deci-
sion-Making in City Logistics” and illustrated in Fig. 2. A more appealing version
of the addressed location problem is the two-echelon location routing. In this case,
in the first echelon, city freighters service satellites from city distribution centers. In
the second echelon, special small urban vehicles serve customers from satellites in
downtown regulated zones.

A special case of the two-echelon location routing, also prompted by the growth
of e-commerce in urban areas, is the one depicted in Fig. 6. Here, the services to the
satellites from the CDCs are provided by special fleets during the night. During
the day, special city freighters (e.g., electrical vehicles, tricycles, etc.) serve the
customers from the satellites.

Nagy and Salgy [38] elaborated a rather complete state-of-the-art report on this
problem. They proposed a classification scheme and analyzed a number of variants
as well as the exact and heuristic algorithmic approaches. Drexl and Scheinder [20]
updated this state-of-the-art survey, providing an excellent panoramic overview of
the current approaches. Metaheuristics dominate the panorama since they look more
appropriate to deal with real instances of the problem. Perhaps one of the most
appealing is that of Nguyen et al. [39] based on a GRASP approach combined with
learning processes and path relinking. Another interesting heuristic, an approach to
a relevant variant of the problem based on a Tabu Search accounting for time depen-
dencies, can be found in Nguyen et al. [40]. The interested reader is directed to these
references given that space limitations do not allow including them in this chapter.

Operational Decisions: Routing Problems

According to Taniguchi et al. [51], vehicle routing and scheduling models provide
the core techniques for modeling city logistics operations. Once the facilities, or the
city logistics centers, have been located, the next step is to decide on the efficient
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use of the fleet of vehicles that must service the customers or make a number of
stops to pick up and/or deliver passengers or products. Vehicle routing problems
constitute a whole world given the many operational variants using them. The book
of Toth and Vigo [54] provides a comprehensive and exhaustive overview of routing
problems. To illustrate their role in city logistics, we have selected the relevant case
of pickup and delivery models with time dependencies, which play a key role in
courier services, e-commerce, and other related applications.

Pickup and Delivery Vehicle Routing Problem with Time Windows

Pickup and delivery vehicle routing problem with time windows (PDVRPTW) is
a suitable approach for modeling routes and service schedules for optimizing the
performance of freight companies in the city logistics context (e.g., the couriers).
It is also a good example to demonstrate the operational decisions in the routing
problems.

In this problem, each individual request includes pickup and a corresponding
delivery of specific demand. The relationships between customers are defined
by pairing (also known as coupling) and precedence constraints. The first con-
straint links two particular customers in a pickup-delivery pair, while the sec-
ond one specifies that each pickup must be performed before the corresponding
delivery.

Therefore, the main objective of the PDVRPTW is to determine, for the smallest
number of vehicles from a fleet, a set of routes with a corresponding schedule, to
serve a collection of customers with determined pickup and delivery requests, in
such a way that the total cost of all the trips is minimal and all side constraints
are satisfied. In other words, it consists of determining a set of vehicle routes with
assigned schedules such that:

• Each route starts and ends at a depot (a vehicle leaves and returns empty to the
depot),

• Each customer is visited exactly once by exactly one vehicle,
• The capacity of each vehicle is never exceeded,
• A pair of associated pickup-delivery customers is served by the same vehicle

(pairing constraint),
• Cargo sender (pickup) is always visited before its recipient (delivery) (prece-

dence constraint),
• Service takes place within customers’ time window intervals (time windows

constraint),
• The entire routing cost is minimized.

In order to describe mathematically the demonstrated PDVRPTW, we define for
each vehicle k a complete graph Gk � G, where Gk D .Nk; Ak/. The set Nk
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contains the nodes representing the depot and the customers, which will be visited
by the vehicle k. The set Ak D f.i; j / W i; j 2 Nk; i ¤ j g comprises all the feasible
arcs between them. Thus, the problem formulation takes the form

min
X
k2K

X
.i;j /2Ak

cijkxijk (32)

subject to

X
k2K

X
j 2Nk[fnC1g

xijk D 1 8i 2 N C; (33)

X
i2N

C

k

X
j 2Nk

xijk �
X

j 2Nk

X
i2N �

k

xj ik D 0 8k 2 K; (34)

X
i

X
j ¤i

xj ik � jS j � 1 8S � N W jS j � 2; 8k 2 K (35)

X
j 2N

C

k [fnC1g

x0jk D 1 8k 2 K; (36)

X
i2Nk[f0g

xijk �
X

i2Nk[fnC1g

xjik D 0 8k 2 K; j 2 Nk; (37)

X
i2N �

k [f0g

xi;nC1;k D 1 8k 2 K; (38)

xijk.zik C si C cijk � zjk/ � 0 8k 2 K; .i; j / 2 Ak; (39)

ei � zik � li 8k 2 K; i 2 Nk [ f0g; (40)

zi;k C ci;p.i/;k � zp.i/;k � 0 8k 2 K; i 2 N C
k (41)

xijk.qik C dj � qjk/ D 0 8k 2 K; .i; j / 2 Ak; (42)

di � qi;k � Q 8k 2 K; i 2 N C
k (43)

0 � qp.i/;k � Q � di 8k 2 K; i 2 N C
k (44)

q0k D 0 8k 2 K; (45)

xijk 2 f0; 1g 8k 2 K; .i; j / 2 Ak; (46)
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where

N : set of customers, where N D N C [ N �;
ˇ̌
N C

ˇ̌
D jN �j,

N C: set of all customers that notify pickup request,
N �: set of all customers that notify delivery request,
cijk : nonnegative cost of a direct travel between nodes i and j performed

by vehicle k, assuming that cijk D cj ik8i; j 2 V ,
i : customer, where i 2 N C

k ,
p.i/ : pair partner of customer i , where p.i/ 2 N �

k ,

di : customer’s demand that will be picked up/delivered at i /p.i/,
respectively, where di D dp.i/,

qik : vehicle’s k capacity occupancy after visiting customer i ,

ai : arrival time at customer i ,

wi : waiting time at the customer i , where wi D maxf0; ei � ai g,

zik : start of service at customer i by vehicle k, where zi D ai C wi .

The nonlinear formulation of the objective function (32) minimizes the total
travel cost of the solution that assures its feasibility with respect to the specified
constraints. Equation (33) assigns each customer to exactly one route, while
formulation (34) is a pairing constraint, which ensures that the visit of each pickup-
delivery pair of customers (iC, p.iC// is performed by the same vehicle k. The
inequality (35) eliminates the possibility of construction of potential sub-tours. The
three following constraints secure the commodity flow. Equality (36) defines the
depot as every route’s source and states that the first visited customer is the one
with a pickup request. Likewise, formulation (38) determines the depot as every
route’s sink, and the last visited customer is the one that demands a delivery service.
The degree constraint (37) specifies that the vehicle may visit each customer only
once. The schedule concordance is maintained by equations (39) and (40) according
to which, in case that a vehicle arrives to a customer early, it is permitted to
wait and start the service within the time window interval only. The precedence
constraint (41) assures that for each pair of customers the pickup i is always visited
before its delivery partner p.i/. The next three restrictions express the dependencies
between the customers’ demands and the vehicles’ restrained current and total
capacities. Equation (42) indicates that after visiting the customer j , the current
occupancy of the carriage loading space of the vehicle k is equal to the sum of
the load carried after visiting the preceding customer i and the demand collected
at customer j . According to inequality (43), the dimension of current occupancy
of the total capacity of the vehicle k after visiting a pickup customer i shall be
neither smaller than its demand di nor bigger than the entire vehicle’s capacity.
Similarly, following formulation (44), the current capacity of the vehicle k after
visiting a delivery customer p.i/ shall never be smaller than zero and bigger than
the difference between the total vehicle capacity and the size of its delivery request
dp.i/. The capacity constraint that considers the depot (45) states that the vehicle
does not provide it with any service. The last formulation (46) expresses the binary
and nonnegative nature of the problem-involved variable.
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The exact algorithms are able to solve to optimality only the VRP problems with
small number of customers (Cordeau et al. [15]). The heuristics do not guarantee
optimality, but since they are capable of providing, for large-sized problems, a
feasible solution in a relatively short amount of time, they strongly dominate among
all the methods. What is more, the heuristics are proven to be quite flexible in
adaptation to different VRP problem variations, which is of special importance when
considering the real-world applications.

Tabu Search (TS) has been applied by many researchers to solve VRP. It is known
to be a very effective method providing good, near-optimal solutions to the difficult
combinatorial problems. The TS term was firstly introduced by Glover [27], and the
concepts on which TS is based on had been previously analyzed by the same author
Glover [26]. The main intention for TS creation was the necessity to overcome the
barriers, stopping the local search heuristics from reaching better solutions than the
local optima and explore intelligently a wider space of the possible outcomes. In
this context, TS might be seen as extension of the local search methods or as a
combination of them and the specific memory structures. The adaptive memory is
the main component of this approach. It permits to flexibly and efficiently search
the neighborhood of the solution.

The input to TS constitutes an initial solution created beforehand by a differ-
ent algorithm (Fig. 7). An initial solution construction heuristic determines tours
according to certain, previously established rules, but does not have to improve
them. Its characteristic feature is that a route is built successively and the parts
already constructed remain unchanged throughout the process of the execution of
the algorithm.

Sweep algorithm is a good example of a VRP initial solution construction
heuristic. It was introduced by Gillett and Miller [25]. However, its beginnings
might be noticed in earlier published work of other authors, e.g., Wren [57] and
Wren and Holliday [58]. The name of the algorithm describes its basic idea very
well. A route is created in the process of gradually adding customers to a route. The
selection of customers to add resembles the process of sweeping by a virtual ray
that takes its beginning in the depot. When the route length, capacity, or the other
previously set constraints are met, the route is closed, and the construction of a new
route is started. The whole procedure repeats until all the customers are “swept” in
the routes. A graphic representation of the sweep algorithm is provided in Fig. 8.

The solution provided by the classic sweep algorithm for PDVRPTW most likely
will violate precedence and pairing constraints. The initial solution does not have
to be feasible since it will be improved later on by TS in the optimization step.
However, a feasible initial solution for PDVRPTW can be provided by a modified
sweep algorithm accounting for side constraints. As a result, when a customer is
met by the sweeping ray, it is added to the currently built route together with
its corresponding partner, respecting the precedence constraint. The details on
sweep algorithm adapted to provide initial solution for PDVRPTW are presented
in Algorithm 1.

Unified Tabu Search heuristic proposed by Cordeau et al. [14] can be used
to optimize the initial solution. Originally, it was designed to solve a VRPTW.
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Fig. 7 Composite approach
to solve a VRP Initial Solution Construction Algorithm

Based on for example:
· Sweep Algorithm,
· Definitions of Customer Aggregation Areas

(Grzybowska [30], Grzybowska and
Barceló, [31]) 

· Etc.

Optimisation Procedure (e.g., Tabu Search)

Employing Local Search algorithms as for
example:
· Shift Operator,
· Exchange Operator,
· Etc.

Post-Optimization Algorithm

Including algorithms as for example:
· Rearrange Operator,
· 2-opt procedure,
· Etc.
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However, it can be adjusted to solve PDVRPTW. The main change regards the
fact that each modification of a route concerns a pickup-delivery pair of customers
instead of an individual customer. This affects the architecture and functioning of
TS structures (e.g., adaptive memory). In addition, the local search algorithms used
in TS need to consider the constraints of pairing and precedence.

TS starts with establishing the initial solution as best (s� D sini/. In each iteration,
the employed local search algorithm defines a neighborhood N .s�) of the current
best solution s� by performing a collection of a priori designed moves modifying
the original solution. The new solution s that upgrades the original solution, and
characterizes with the best result of the objective function, is set as the best (s� D s/.
This repetitive routine (i.e., intensification phase) lasts until no further improvement
can be found, which is interpreted as reaching the optimum. It uses the information
stored in the short-term memory (i.e., “recency” memory) recording a number of
consecutive iterations in which certain components of the best solution have been
present. The short-time memory eliminates the possibility of cycling by prohibiting
the moves leading back to the already known results, during certain number of
iterations. The moves are labeled as tabu and placed at the last position in the tabu
list – a short-term memory structure of length defined by a parameter called tabu
tenure. The value of the tabu tenure might be fixed or regularly updated according
to the preestablished rules, e.g., recurrently reinitialized at random from the interval
limited by specific minimal and maximal value (Taillard [49]). The higher the value
of the tabu tenure, the larger the search space to explore is.

Algorithm 1: Sweep algorithm for PDVRPTW
1. Let L be the list of all the customers L D N nf0g

2. Sort all the customers by increasing angle †A0S , where S is the current
customer, 0 is the depot, and A according to the chosen variant is either randomly
chosen or fixed reference point.

3. Divide L into k sub-lists such that each sub-list l satisfies:

†A0S 2

�
2l � 2 � k

k
�;

2l � k

k
�

�
; 8l 2 K D f1; : : : ; kg

4. Sort all the customers in each sub-list l in decreasing order according to the travel
cost between the depot and the customer.

5. If the sub-list l is not empty, then select the first customer, search for its partner,
and insert both customers in a route in the least cost incrementing position.
Respect the precedence constraint.

6. Delete the inserted customers from the sub-lists and go to step 5.
7. Repeat steps 5 and 6 for all the sub-lists.
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The consequent choice of the next best solution is determined by the current
neighborhood and defines the general direction of the search. The lack of broader
perspective in most of the cases leads to finding a solution, which represents a local
optimum instead of a global. It is also due to the decision on when to finish the whole
procedure improvement (i.e., stopping criterion), which might be determined by a
designated time limit for the complete performance or by a previously established
number of repetitions, which do not bring any further improvement. In order to
overcome this handicap, TS stops the local search algorithm and redirects the
search in order to explore intelligently a wider space of the possible solutions
(i.e., diversification phase). This includes permitting operations, which result in
deterioration of the currently best solution. This phase requires access to the
information accumulated during the whole search process and stored in the long-
term memory structure (i.e., frequency memory). The success of the complete
method depends on the balance established between these two phases, which
complement each other instead of competing.

The functioning of the algorithm based on tabu bans is very efficient. However,
oftentimes it may result in losing improvement opportunities by not accepting highly
attractive moves, if they are prohibited. In such cases, the aspiration criteria should
be activated. It is an algorithmic mechanism, which consists in canceling the tabu
restrictions and permitting the move, if it results in construction of the new solution
with the best yet value of the objective function. The implementation of TS is
presented by Algorithm 2.

Algorithm 2: Tabu Search
1. Let � be the maximal number of permitted TS iterations.
2. Let ˛ and ˇ be the parameters of preestablished value equal to one.
3. Let � be the value of the objective function.
4. Let s be the initial solution.
5. Let s� be the best solution and s� D s

6. Let c.s�/ be the cost of the best solution.
7. If the solution s is feasible, then set c.s�/ D c.s/; else set c.s�/ D 1

8. Let B.s/ be adaptive memory structure, whose arguments are initially set equal
to zero.

9. For all the iterations � < �, execute local search operator and create
neighborhood N .s/

10. Select a solution from the neighborhood that minimizes the � function.
11. If solution s is feasible and c.s/ < c.s�/, then set s� D s and c.s�/ D c.s/

12. Update B.s/ according to the performed move.
13. Update ˛ and ˇ

To define the neighborhood of a current solution, TS uses a local search
algorithm. Local search algorithms are commonly used as intermediate routines
performed during the main search process of more complex heuristics. However,
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they constitute individual algorithms. Some of them are referred to as operators
with specified features (e.g., shift operator, exchange operator, rearrange operator,
etc.), while the others possess their own denomination (e.g., the local optimization
methods involving neighborhoods, which apply to the original solution a number of
modifications equal to k, are known as the k-opt heuristics).

Algorithm 3: Pickup-delivery customer pair shift operator
Let s be the current solution containing a set of routes R

Calculate c.s/, q.s/, and w.s/

Let s� D s be the best solution with cost c.s�/ D c.s/

Let f .s�/ D 1 be the value of the objective function of the best solution s�

Let �� D 1 be the best value of the objective function
Let B.s/ be the empty adaptive memory matrix
For each route r1 2 R and for each route r2 2 R, such that r1 ¤ r2

For each pickup-delivery customer pair m 2 r1

Remove pair m from route r1

Set bool TABU = FALSE
If the value of the tabu status in B.s/ for r2 and pair m is ¤ 0, then TABU = TRUE
Find the best insertion of pair m in r2 and obtain new solution s’
Calculate c.s’), q.s’), and w.s’)
Let f .s’) be the value of the objective function of the new solution s’
Let p.s’) be the value of the penalty function of the new solution s’
Let � D 0 be the value of the objective function
If f .s0/ < f .s�/, then � D f .s0/; else � D f .s0/ C p.s0/

Check the feasibility of solution s’
Set bool AspirationCriteria = FALSE
If c.s0/ < c.s�/ and solution s’ is feasible, then AspirationCriteria = TRUE
If � < �� and (Tabu = TRUE or AspirationCriteria = TRUE), then �� D � and

the best move was found

Shift operator is a good example of a local search algorithm in TS. Its objective
is to remove a customer from its original route and feasibly insert it in another route
of the current solution, in such a way that its total cost is minimized. When solving
PDVRPTW the shift move includes a pickup-delivery customer pair instead of an
individual customer. During the entire search process, all the pickup-delivery pairs
are successively moved, and all the possible reinsertion locations in the existing
routes are checked. Only the moves which are in accordance with all the side
constraints shall be accepted. Algorithm 3 presents the functioning of shift operator
in TS for solving PDVRPTW.

The algorithm uses the values of violations of the constraints for the calculation
of the objective function, as well as for determining the rate of the penalties, which
need to be imposed for not complying with initial restrictions. These values are
calculated according to the following formulas:
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� D f .s/ C p.s/ (47)

f .s/ D c.s/ C ˛ � q.s/ C ˇ � w.s/ (48)

p.s/ D � � c.s/ �
p

n � k � '.s/ (49)

'.s/ D
X

.m;r/2B.s/

�m;r (50)

where

�: objective function,
f .s/ : cost evaluating function for the solution s;

p.s/ : penalties evaluating function for the solution s;

c.s/ : cost of solution s,
q.s/ : vehicle capacity constraint violation function for solution s,
w(s) : time windows constraint violation function for solution s,
˛: parameter related to the violation of the vehicle capacity constraint,
ˇ: parameter related to the violation of the time windows constraint,
�: scaling factor,
n: total number of customers,
k: total number of vehicles
'(s): parameter controlling the addition frequency,
B.s/ : adaptive memory matrix,
�m;r : number of times the pickup-delivery customer pair m has been introduced into

route r .

It is a usual practice to complement the TS heuristic with a post-optimization
step. Its objective is to further improve the solution provided by TS. It is important
to note that the final result has to be obligatorily feasible. Local search heuristics are
often used for post-optimization purposes and 2-opt heuristic is a good example. The
2-opt procedure is the most common representative of the family of k-opt heuristics.
It has been introduced by Croes [18] for solving a Travelling Salesman Problem. The
main idea of the 2-opt method is valid for the other k-opt heuristics. In the main,
it consists of removing two nonconsecutive arcs connecting the route in a whole
and substituting them by another two arcs reconnecting the circuit in such a way
that a new solution which fulfills the predefined objectives is obtained. This move is
commonly called a swap since it consists of swapping two customers in the original
sequence. The swap can be performed in accordance with one of the following
strategies: (i) search until the first possible improvement is found, and perform the
swap, and (ii) search through the entire tour and all possible improvements, and
perform only the swap resulting in the best improvement. A graphic representation
of 2-opt procedure is provided in Fig. 9.
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Fig. 9 2-opt algorithm

As in the case of the previously presented algorithms, the classic formulation
of the 2-opt algorithm needs to be adapted to solve the PDVRPTW. The final
solution needs to be strictly feasible; thus all the side constraints, including pairing
and precedence, need to be respected. The PDVRPTW adapted 2-opt algorithm is
presented by Algorithm 4.

Algorithm 4: 2-opt algorithm adapted to PDVRPTW
1. Let R be the set of routes defining the current solution s

2. For each route r 2 R

3. Let r* be the best route and r� D r

4. Calculate c.s�/, q.s�/, and w.s�/

5. While best move is not found
6. Let pos(i/ be the position of customer i in the sequence of customers of route r

7. Let pos(j/ be the position of customer j in the sequence of customers of route r

8. For each customer i and j in route r such that pos.j / D pos.i/ C 2

9. Create new empty route r’
10. For each customer h in route r

11. If pos .h/ � pos(i) or if pos.h/ � pos.j C 1/, then append customer h to r’;
else append customer h at position pos.i/ C pos.i/ � pos.h/ C 1 to r’

12. Calculate c.s’), q.s’), and w.s’) and check the feasibility of route r’
13. If c.r’) < c.r*) and route r’ is feasible, then c.s�/ D c.s’) and the best move

was found

Real-Time Management

Under this category we cluster what are considered the most relevant city logistics
services made available by the pervasive penetration of the ICT technologies.
These technologies made it possible for the demand to occur anywhere and
at any time. This entails a request for the system to provide the capability of
suitably responding to the demand in real time, and in a way that at the time
satisfies the quality requirements of the customers, and also provides the most
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suitable benefit to the company. This section describes the main characteristics
highlighting the dynamic aspects of the problem, which must be addressed by
efficient computational time-dependent versions of the ad hoc algorithms. This
is an area of applications characterized by the synergies between technologies,
decision-making, and sophisticated routing algorithms. The domain of application,
however, has recently been expanded to account also for emerging versions of public
transport services, special cases of demand-responsive transport services, which
can be formally formulated in similar terms (just replacing freight or parcels by
persons). This application will be considered in section “Extensions”.

Let us suppose that an initial operational plan has been defined with k routes and
that there is an advanced traffic information system providing real-time information
that allows us to calculate current travel times for every pair of clients. Since most
of real-world fleets are usually equipped with automatic vehicle location (AVL)
technologies, it also assumed that the fleet manager is capable of knowing the exact
location of the vehicles at every time and has a two-way communication with the
fleet.

In our proposed rerouting algorithm (RRA), we compute the feasibility of the
remaining services while we keep track of the current state and location of the
vehicles. In order to simplify the tracking process, we consider two approaches:
either to compute feasibility once a vehicle finishes a service and informs about its
current situation to the fleet manager or in a periodical manner after updating the
fleet’s situation. In the first approach, the trigger for the computations is only the
departure of the vehicle, but there might be risks when vehicles take longer times
to complete the service. The second approach is computationally more intensive,
but it may prevent future failures in the service when unexpected service times are
present.

In the case of the vehicle routing with time windows, there are two critical
factors that define the feasibility of a route: capacity and time windows. Assuming
that no variations in demand are expected (e.g., more units to pick up), capacity
can be neglected as the corresponding route (static or dynamic) is built taking into
account this constraint. In such case, time windows constraints become more critical
as there are many uncontrollable parameters (e.g., unexpected traffic conditions,
delayed service, etc.) that may affect the feasibility of a service and, therefore, the
performance of the route.

Figure 10 describes the full dynamic monitoring process. On one hand, we have
the advanced traffic information system which provides current and forecasted travel
times of the road network to the fleet manager. On the other hand, we have the fleet
management center that is able to communicate with the vehicles and receive their
position along with other data such as current available capacity and status.

These two sources are inputs to a dynamic tracking system which through a
desired strategy (periodic, after service or both) computes the current feasibility
of the routing plan. If an unfeasible service is detected, the RRA is triggered to find
a feasible current plan. If a customer cannot be allocated to a vehicle that is on the
road, the RRA tries to assign an idle vehicle housed at the depot. If no vehicles are
available, a penalty is applied.
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Fig. 10 Rerouting algorithm through dynamic tracking of the fleet

Computation of Feasibility

Computing the current feasibility of a route depends on the state of the vehicle
at the time of evaluation. If a vehicle is traveling to the next scheduled customer
or departing from a customer’s location after service, the feasibility of the route is
obtained by computing the expected arrival times to the next customers on the route.
If at the time of evaluation, a vehicle has already started a service or waiting to start
it, we must first estimate the departure time from the current location and then the
arrival times in the rest of the route.

Under our approach, we assume that drivers send messages to the fleet manage-
ment center when they arrive to and start or end a service with a customer. Therefore,
at the time of evaluation, if a vehicle providing service has not finished under the
estimated time lapse, the algorithm assumes that the remaining service time is the
expected time used in the computation of the route. That is, if a service is assumed to
take 10 min and, at the time of evaluation, the vehicle has 14 min without sending the
end-of-service signal, the algorithm assumes, in a preventive way, that the vehicle
needs another 10 min to complete the service.

Formally, the feasibility conditions can be computed as follows. Let Oai be the
estimated arrival time of a vehicle at customer i , Ei the lower bound of the time
window of customer i , ei the estimated service start time at customer i , Si the
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estimated service time at customer i , and Tij .t/ the travel time between customer
i and j when vehicle departs at time t . Let Vk be a dummy node in the network
representing vehicle k which route is given by f1; 2; : : : ; i; i C 1; : : : ; n � 1; ng.

If at time te , the vehicle has just finished a service at customer i or it is traveling
to customer i C 1, the estimated arrival and service start times at the next scheduled
customers can be computed as follows:

Oai D

�
te C TVk;h.te/ if h D i C 1

eh�1 C Sh�1 C Th�1;h.eh�1 C Sh�1/ if h D i C 2; i C 3; : : : ; n
(51)

eh D max fEh; Oahg ; for h D i C 1; i C 2; : : : ; n (52)

On the other hand, if at time te , the vehicle is waiting to start service or providing
service to customer i , we first compute di , the expected departure time from
customer i . Let ai be the real arrival time of a vehicle at customer i ’s location.
Therefore, di is computed as follows:

di D

�
te C Si if max fEi; ai g C Si < te
max fEi ; ai g C Si otherwise

(53)

In this case, the expected arrival times in subsequent customers h D i C 1,
i C 2; : : : ; n are given by:

Oah D

�
di C Ti;iC1.di / if h D i C 1

eh�1 C Sh�1 C Th�1;h.eh�1 C Sh�1/ if h D i C 2; i C 3; : : : ; n
(54)

where eh is computed as in (2). The service at customer h becomes then unfeasible
if Oah > Lh, where Lh is the upper bound of the required time window in customer
h. Figure 11 depicts a situation when one of the services becomes unfeasible.

The proposed RRA consists of computing feasibility conditions every time a
vehicle has finished a service and is ready to depart from its current location. If one
or more customers are detected to be in an unfeasible sequence, they are withdrawn
and reinserted in the route using a greedy dynamic insertion heuristic (DINS). A
re-optimization procedure is then applied using a Tabu Search-based metaheuristic
(DTS). The greedy insertion heuristic is described in the following subsection.

If DINS algorithm does not find a feasible assignment to the vehicles on route,
it allocates the withdrawn order to an idle vehicle in the depot. If no vehicles are
available, the algorithm rejects the customer. The pseudo-code of the RRA is the
following:
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Fig. 11 Example of service failure due to delays [41]

Algorithm 5: Rerouting algorithm
After a vehicle k finishes a service:

1. Compute feasibility conditions for all unvisited customers in the route of
vehicle k

2. Let Uk be the set of unvisited customers which are now unfeasible in current
scheduling

3. If Uk D ¿, then STOP; else continue to step 4
4. For each customer u 2 Uk , withdraw u from route applying operator

DELETE(u/

5. For each customer u 2 Uk , reinsert u in current routes applying DINS algorithm
6. If reinsertion is not possible for a customer, then create new route with available

vehicle (if any)
7. Apply DTS algorithm to re-optimize routes.

The RRA assumes that all customers that are found to be unfeasible have the
same importance, ranking, or priority. Therefore, if there is more than one unfeasible
customer, step 5 selects randomly, with equal probability, the next customer to be
inserted in the routes.

Heuristic Approach

The RRA is a two-phase methodology that first identifies customers that are likely
to be not serviced on time and then reassigns them in order to optimize the service



920 J. Barceló et al.

level of the fleet. After the identification of customers, the algorithm withdraws
those customers from the routes and uses them to build a set of customers Uk to
be reassigned. The reassignment algorithm works by first inserting customers in Uk

with a greedy insertion heuristic, and then, routes are re-optimized using a Tabu
Search metaheuristic.

Dynamic Insertion Heuristic (DINS)
The heuristic used in the DRS is derived from the basic insertion heuristic proposed
in Campbell and Savelsbergh [11], where every unrouted customer is evaluated at
every insertion point. The evaluation of this movement consists in checking the
feasibility and profitability of every insertion, which is the negative of the amount
of additional travel time added to the route. The customer with a feasible insertion
having the maximum profitability is then selected and inserted in the route. We have
adapted this heuristic by introducing some new elements to reflect the dynamics of
the operations of a fleet in an urban environment.

The objective of DINS heuristic is to insert a new client into the current routing
plan once the vehicles have started the services. The general idea of the algorithm
is simple. When a new client arrives to the system, the algorithm checks the current
state of the vehicles. Then, routes with insufficient time to visit the new client
within their schedule are rejected. Finally, the algorithm searches for the least
cost feasible insertion in the candidate routes. If no feasible insertion is possible
and there are idle vehicles at the depot, a new route is created including the new
customer.

We assume that there are n routed customers in R different routes at the
beginning of the time planning horizon. We also suppose that there is a single depot
with a homogeneous fleet of vehicles with capacity Q. We define the following
notation:

Ti;j .t/ : travel time between customers i and j when vehicle departs at time t ,
Vr : vehicle assigned to route r , r D 1; 2; ::; R,
qr : total demand assigned to route r ,
di : demand of customer i ,
Ei : time window lower bound of customer i ,
Li : time window upper bound of customer i ,
ei : earliest service start time at customer i ,
li : latest service start time at customer i ,
Si : service time at customer i .

The time window of a customer i is denoted by (Ei , Li /. The values ei and li
refer to the earliest and latest time a service can take place at customer i , and they
must satisfy the following condition: Ei � ei � li � Li . If we wish to insert
customer w at time instant t > 0, the vehicles of the fleet may have one of the
following three states:
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1. The vehicle is in service at some customer i (SER).
2. The vehicle is moving to the next planned customer on the route or waiting at the

customer location to start service within the time window (MOV).
3. The vehicle is idle at the depot, without a previously assigned route (IDL).

The state of a vehicle will let us know when a vehicle should be diverted from
its current route, be assigned to a new one if it is idle, or keep the planned trip.
Whenever a new customer arrives, the status of each vehicle must be known to
compute travel times from their current positions to the new customer.

The first iteration of the algorithm consists of rejecting those routes that are
definitely infeasible. To do this, it is necessary to compute the total available time
of the routes, i.e., the sum of the available time (if any) of a vehicle on the assigned
route. We define the available time of a vehicle as those periods of time where (i) a
vehicle is waiting to provide service to a customer or (ii) a vehicle has finished the
scheduled route and is returning to the depot. This is, in fact, the maximum slack
time a vehicle has available to travel and service customer w.

The calculation of the available route time can be done by estimating the arrival
times at each of the scheduled customer locations that has not been served at the time
of insertion of the customer w. The arrival time ai at customer i is computed from
the current position of the vehicle, and we assume that the vehicle will start service
as soon as it arrives, if the customer’s time window is already open; otherwise, the
vehicle waits. The calculation of arrival times can be made as follows.

If, at instant t , the vehicle is moving toward the next customer i , then the
estimated arrival time is given by ai D t C TV r;i .t/. The arrival times at subsequent
customers on the route are computed as follows:

ai D maxfEi�1; ai�1g C Si�1 C Ti�1;i .maxfEi�1; ai�1g C Si�1/ (55)

Hence, the available time of a vehicle in route r at some node i (including the
depot) is the difference between the associated lower limit of the time window and
the arrival time of the vehicle to that location. That is, W r

i D maxfEi � ai ; 0g.
Therefore, the total available time of a route r is given by ATvr D

P
i W r

i .
From each route, we choose the unvisited node that is the closest to the new

client. If the travel time from that node to the new customer is greater than the
total available time ATV r , then we reject the route. If every route is rejected, a
new route must be created for this new customer. The routes obtained, as a result
of this previous iteration, are possibly feasible in the sense that vehicles serving
those routes have enough time to travel to the new customer. This is a necessary
condition, but not sufficient, because we have to check for time windows feasibility.
The second major iteration of the algorithm consists, therefore, in checking the
feasibility and profitability of an insertion in every arc of the possible feasible
routes. The feasible insertion with the highest profitability is then selected, and the
corresponding route must be updated.
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Feasibility. In order to evaluate the feasibility of the insertion of customer w
between nodes i and i C 1, we must compute ew and lw, the expected earliest and
latest service start times, respectively. The earliest service start time at the inserted
customer w is given by:

ew D

�
max fEw; t C TVr ;w.t/g if Vr D i

max fEw; ei C Si C Ti;w.ei C Si /g otherwise
(56)

The latest service start time is calculated through a backward procedure starting
with the depot (the last node to be visited by the vehicle) as follows:

lw D min
˚
Lw; Qtw � Sw

�
(57)

where Qti D arg max
t

ft C Ti;iC1.t/ � liC1g ; 8t � liC1 � Ti;iC1.t/ is the latest

possible departure time that allows the vehicle to arrive to the next scheduled
customer i C 1 at time liC1. If ew � lw and Dw < Q � qr , the insertion is
feasible.

Profitability. The profit of an insertion is defined as the negative of the
additional travel time incurred from inserting a customer in a route. If customer
w is to be inserted between nodes i and i C 1, the profitability of this insertion is
given by:

Profit D � bTi;w .max fEi ; ai g C Si / C Tw;iC1 .max fEw; awg C Sw/

� Ti;iC1 .max fEi ; ai g C Si /c (58)

If no insertion is possible and there are available vehicles at the depot, then a new
route that includes customer w is created. If the whole fleet of vehicles is already
occupied, then the call is rejected, and a penalty may be applied. Given a customer w
to be inserted at time t into a set R of routes, the pseudo-code of the DINS heuristic
is as follows:

The solution obtained by DINS heuristic can be further optimized by applying
DTS.

Dynamic Tabu Search (DTS)
DTS constitutes an adaption of the Unified Tabu Search (UTS) heuristic proposed
by Cordeau et al. [14]. The modifications of the original method were made in
order to include the dynamic aspects of the addressed problem. One of the most
important modifications regards the engagement of the operators, which perform
the local search only on the unvisited customers of the scheduled routes.

Similarly as UTS, DTS is an iterative process searching for the best solution
s*. In each iteration, the algorithm searches for the best non-tabu solution s0 in the
neighborhood space N .s/ of current solution s, which minimizes the value of the
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Algorithm 6: DINS heuristic
1. For each route r in R do:
Compute available time ATV r

Find travel time from w to closest neighbor
If available time is not enough, then reject route r

Else, add route r to R0, the set of possible feasible routes
2. For each route r in R0 do:
Check the status of the vehicle and set its position as the starting node of the route.
For each arc (i , i C 1/ of the remaining route sequence do:
If insertion of w is feasible and profit is improved then:
Store current profit and insertion places
3. If insertion is possible then:
Insert w in least cost arc and update selected route.
4. Else, create a new route with an available idle vehicle (if any).

cost function fD.s/ or satisfies the aspiration criteria. The solutions found in the
search process are evaluated by the cost function:

fD.s/ D cD.s/ C ˛q.s/ C ˇdD.s/ C �wD.s/ (59)

where

cD.s/: estimated total travel time of the routes for the pending scheduled customers,
q.s/: total violation of the vehicles’ capacity,
dD.s/: total violation of the routes duration,
wD(s): total violation of the time windows constraint of the customers to be visited.

The adaptive memory matrix B.s/ denotes the attribute set of a solution s and is
defined as follows: B.s/ D f.i; k/, where customer i (or a pair of customers in the
case of PDVRPTW) is visited by vehicle kg.

The penalty function p.s/ was added to the objective function in order to
diversify the search of the solutions toward new or not thoroughly explored areas.
For each solution s0 such that fD.s0) � fD.s/, the penalty is calculated as follows:

p.s0/ D �cD.s0/
p

num
X

.i;k/2B.s0/

� (60)

where

nu: number of customers that have not been visited (or pairs of customers in the case
of PDVRPTW),

m: current number of routes,
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� W positive value parameter to control the intensity of diversification,
�ik : addition frequency parameter equal to the number of times the attribute (i; k/

has been added to a solution.

The value of the addition frequency parameter, which controls the intensity of
diversification, is updated regularly and at the end of each iteration of DTS.

The aspiration criteria defined for the DTS accepts a solution if its cost improves
the best solution found so far. Also, in order to achieve quick online solutions, we
added a stopping criterion which takes into account the rate of improvement in the
search process. When the � number of iterations has been reached without observing
an improvement larger than ", then the search process is stopped.

Similarly as in UTS (Cordeau et al. [14]), in DTS we employ a relaxation
mechanism facilitating the exploration of the solution space. The mechanism is
particularly useful in the cases when tight constraints are defined (e.g., hard
time windows, pairing, and precedence constraints). The relaxation is achieved by
dynamically adjusting the values of the parameters: ˛, ˇ, and � . When the solution
s0 is feasible, the value of the best feasible solution is updated, and the current values
of the three parameters are reduced by dividing them by the factor (1 C ı). In the
contrary case, the current values of the parameters are increased by multiplying
them by the same factor. ı is a parameter of fixed value.

DTS was designed in a way, so that it becomes a flexible framework in which
various local search operators can be embedded. As a result, depending on the
addressed problem, a different operator can be enabled. Algorithm 7 provides a
general description of the DTS. The reader interested in details is directed to Barceló
et al. [4, 5].

Algorithm 7: Dynamic Tabu Search
1. If solution s is feasible then:
2. Set s� D s, ˛ D 1, ˇ D 1, � D 1

3. Set c.s�/ D c.s/ else set c.s�/ D 1

4. For i D 1; : : :; � do:
5. Select solution s0 2 N .s/ that minimizes the objective function � D f .s0/ C

p.s0/ such that s’ is not tabu or satisfies aspiration criteria
6. If s’ is feasible and c.s0/ < c.s�/, then set s� D s’ and c.s�/ D c.s’)
7. If q.s0/ D 0, then ˛ D ˛=.1 C ı/, else ˛ D ˛.1 C ı/

8. If d.s0/ D 0, then ˇ D ˇ=.1 C ı/, else ˇ D ˇ.1 C ı/

9. If w.s0/ D 0, then � D �=.1 C ı/, else � D �.1 C ı/

10. Set s D s’
11. Update ˛, ˇ and �

12. If number of iterations without improvement D �, and last improvement < ",
then STOP
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Extensions

The variants of pickup and delivery problems with time windows and time-
dependent link travel times discussed in section “Operational Decisions: Routing
Problems”, as core components of the real-time fleet management applications
analyzed in section “Real-Time Management” (as we have already mentioned),
provide another area of application in urban scenarios which can be considered
advanced implementations of demand-responsive transport systems. Examples of
such could be the special shared taxi services provided by Uber [56] or Kutsuplus,
uber-like minibus demand-responsive transit system experimented in Helsinki
KUTSUPLUS [33].

A summary description of the Real-Time Multiple Passenger Ridesharing system
and how it works could be the following. A customer asks for a service at a
given time; the service could consist of either picking up a passenger (or various
passengers) or a parcel, at a given location pickup location, at a given time (or
within a time window) and delivering the passenger(s) or the parcel, at a delivery
location at a given time (or within a time window). The service vehicles already in
operation follow routes individually calculated depending on the customers’ initial
and final positions, the current traffic conditions, and the defined passengers’ time
windows.

Figure 12 illustrates conceptually how the demand-responsive mobility services
work. Let’s assume a fleet consisting of two vehicles V1 and V2, both with initially
assigned plans which have been previously optimized. At a given time a customer
C1 calls the system for a service, the customer’s location is automatically recorded
by the system. The customer tells the system which is his/her time expectancy of
pickup, in other words the time window (e1, l1/ of his/her waiting time expectancy
(e.g., e1 could be the time at which the call is made, and l1 the latest time
he/she expects to be picked up). The customer also informs the system of his/her
destination that is delivery point, D1, and likely the time at which he/she would
approximately like to arrive at the destination, let’s say (a1 ˙ "1/, where "1

represents an acceptable slack time.
The system, which is aware of locations and status of each vehicle in the fleet

(e.g., fleet vehicles are GPS tracked, and the ICT functions inform the system on
the current level of occupancy of the vehicle, i.e., the number of passengers, their
destinations, and time constraints), as well as the current network conditions (e.g.,
a real-time traffic information system keeps the decision support system updated
about travel times, congestions, incidents, and so on), determines which of the
vehicles is the most appropriate to provide the service to customer C1 both in
terms of quality of the service and profitability. Let’s assume that on the basis of
the available information, the dispatching system assigns the service to vehicle V1
and the route R1 to pick up the customer and take him or her to his/her destination.

In a similar way, let’s assume that customer C2, who is located at C2, has to be
picked up within the time window (e2, l2/ and wants to travel to destination D2. He
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Fig. 12 Example of demand-responsive mobility services

or she expects to arrive around (a2 ˙ "2/ and is assigned to vehicle V2 that will
follow route R2 to pick him/her up and travel to the destination D2.

The critical situation showing how the performance of the entire system depends
on the quality of the decision support system that manages the fleet, and dispatches
the services, arises when some time later, let’s say at time t , a new customer C3, at
location C3, asks for a pickup service within the time window (e3, l3/ to travel to
destination D3 where he/she expects to arrive around (a3 ˙ "3/.

In order to provide the new customer the requested service, the system faces
many alternatives. First, it can open a new route assigning one of the empty vehicles
of the fleet to the new client, but this action may imply a high cost. A better
alternative would be to assign one of the en route vehicles that are closer to the
client, if the time constraints of the customers that are already being served allow
this. In this example, both proposed solutions accept a diversion policy, so, either of
the vehicles could divert from their original routes to serve the new client and return
to their originally assigned schedules.
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One of the alternatives is to assign the new customer service to the vehicle V1,
which exchanges its route R1 for the new route R1.1 (described in the figure with
red arrows). This vehicle picks up customer C3 within the accepted time window,
and then it drives to the D3 destination to deliver the customer. After this, vehicle
V1 follows its new route and delivers customer C1 at the corresponding destination
D1 taking into account the time constraints of all the served customers. The second
possibility is that the new service of customer C3 is assigned to vehicle V2, which
diverts its route to pick up the customer by following route R2.2 (described in
the figure with green arrows). In this case, the vehicle delivers customer C2 at its
destination D2 first, and then, it goes to the destination D3 of customer C3. Also
in this case, we need to take into account the time constraints with respect to all
involved customers. The decision will be made accounting for criteria that, while
ensuring the quality of the service provided to the customers, achieve the maximum
system profitability.

The management of the system is based on a decision support system similar to
the one described in section “Real-Time Management”. It allows making decisions
on which vehicle to assign to each new coming customer. The dynamic rerouting
is a particular case of the pickup and delivery problem with time windows, with
time-dependent travel times, similar to the one described in section “Operational
Decisions: Routing Problems”.

Linares et al. [34, 35] provide details on a simulation study on the performance
of these types of systems as a function of the expected demand for service relative
to the total demand of conventional car trips in the selected urban scenario, the size
of fleet providing the service (i.e., 500, 750, 1000. . . vehicles), and the capacity of
the fleet vehicles, six or eight passengers.

Concluding Remarks

The main objective of this chapter is to introduce the main characteristics of
city logistics problems that make them a special category – clearly differentiated
from the general logistics problems. The analysis of these characteristics and their
peculiarities regarding the type of decisions to make (i.e., strategic, tactic, and
operational) allows to identify various classes of problems (i.e., location, location
routing, routing with time windows, etc.) each one becoming a fertile domain for
heuristics, given the complexity and size of the problem to solve in real life. A
selected set of examples of such heuristics has been described in this chapter, with
special attention paid to those particularly relevant to urban scenarios due to the
imposed constraints such as the regulatory policies imposed by the authorities, time
constraints imposed by the conditions of servicing customer in these scenarios,
and the time dependencies implied by the variability of travel times in urban
congestion. For the interested reader the chapter is complemented with a wide set of
references.
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assigned to large objects with specific shapes so as to optimize some objective
function. Besides some characteristics common to combinatorial optimization
problems, the distinctive feature of this field is the existence of a geometric
subproblem, to ensure that the items do not overlap and are completely contained
in the large objects. The geometric tools required to deal with this subproblem
depend on the shapes (rectangles, circles, irregular) and on the specific conditions
of the problem being solved. In this chapter, after an introduction that describes
and classifies Cutting and Packing problems, we review the basic strategies
that have appeared in the literature for designing constructive algorithms, local
search procedures, and metaheuristics for problems with regular and irregular
shapes.

Keywords
Cutting stock � Bin packing � Strip packing � Container loading � Nesting

Introduction

Cutting and Packing (C&P) problems are hard combinatorial optimization prob-
lems (almost all are NP-hard) that arise in the context of several real-world
applications, both in industry and in services, whenever one or more large object
or container space has to be divided into smaller items, so that the waste is
minimized. These problems include cutting paper rolls into narrower rolls in the
paper industry, cutting large boards of wood into smaller rectangular panels in
the furniture industry, or cutting the irregularly shaped components of garment
from fabric rolls, but they include also packing boxes into containers or loading
items on pallets, in logistics applications. All the problems have in common the
existence of a geometric subproblem, originated by the natural item nonoverlapping
constraints.

In the literature, these problems have received an increasing amount of attention.
In the 1960s, the seminal papers were published and the number of publications
has grown exponentially since then. As combinatorial optimization problems, C&P
problems may be solved using all the optimization approaches and techniques
available nowadays: linear programming techniques, branch and bound search
algorithms, constraint logic programming, dedicated heuristics, metaheuristics,
matheuristics, etc. Unfortunately, due to their combinatorial nature, exact techniques
are not capable to efficiently tackle these problems for large instances; therefore,
heuristic approaches must be used.

The remaining of this chapter is organized as follows. In the next section, C&P
problems will be formally defined and categorized, according to their objective
and to their quantitative and geometric parameters. Then, in the following two
sections, heuristic approaches for rectangular problems and irregular problems,
both two- and three-dimensional, are presented, ranging from simple constructive
heuristics to mathematical programming model-based heuristics and including
metaheuristics.
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Table 1 Example of a
two-dimensional rectangular
cutting problem

Item Length Width

type Quantity (meters) (meters)

1 2 2.00 0.50

2 2 1.80 1.00

3 3 1.90 0.65

4 2 2.10 0.55

5 6 0.65 0.23

Cutting and Packing Problems

A carpenter wants to build a wardrobe for which he/she needs to cut a set of
rectangular items in the quantities and with the dimensions presented in Table 1.
To cut these items, the carpenter has at his/hers workshop two large wood panels
of 3 by 2 m and three other large wood panels of 2.5 by 2.5 m. How should the
carpenter cut the small items from the available large panels so that the waste (the
trim of the cutting process) is minimized?

This toy example allows us to introduce the main concepts of Cutting and
Packing problems. In general, in Cutting and Packing problems, “small” items have
to be assigned to “large” objects under both geometric constraints (assuring that
the items do not overlap and are contained inside the objects) and quantitative
constraints (e.g., at least a given quantity of each item type has to be cut). The
objective of the problem may be either related to the minimization of the value of
the large objects that are used or to the maximization of the value of the small items
that are cut. The solution of the problem is one or more cutting patterns, describing
the geometric disposition of the small items in/on the large objects (Fig. 1). It should
be emphasized that, in general, to describe the solution of a Cutting and Packing
problem is not enough to say which small items are cut from which large objects
(the assignment part of the problem). Part of the solution is describing how the small
items are arranged on the large objects (the geometric problem).

These problems can be categorized according to a typology proposed by Wäscher
et al. [82]. This typology takes into account the problem objective, the number of
objects and items, and the geometry of the items. The different types of Cutting and
Packing problems will be described by closely following Wäscher et al. typology.

Dimensionality

Cutting and Packing problems are usually classified according to their dimension-
ality as one-, two-, and three-dimensional problems. This classification is directly
related to the number of physical dimensions relevant for the problem. If it is true
that our world and all the objects in it are three-dimensional, when planning how
to cut narrower paper rolls from a wider roll, only one dimension is relevant as the
other two are kept equal in small items and large objects, i.e., the problem is one-
dimensional (1D). Applying the same reasoning to the initial carpenter problem,
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Fig. 1 A two-dimensional cutting pattern example

Fig. 2 Examples of one-, two-, and three-dimensional Cutting and Packing problems

it is the length and the width of the large objects that must be cut in order to
match the length and the width of the small items, not changing the thickness of
the wood boards; this is therefore a two-dimensional problem (2D). When packing
parallelepiped boxes inside a truck or a container, the three dimensions are relevant
for the problem, and it is therefore a three-dimensional problem (3D). Although
four- and even higher-dimensional problems are theoretically possible, no relevant
practical applications have been described until now, and therefore they will be
disregarded in this text. In Fig. 2, examples of 1D, 2D and 3D problems arising
in the paper, garment, furniture, and logistics industries are shown.
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Geometry

The second most distinctive characteristic of the Cutting and Packing problems is
the geometry associated with the dimensions that are relevant for the problem. In
1D problems, the geometric problem is trivial as, once the assignment problem
is solved and it is known which small items are cut from each large object,
the cutting order is not relevant as any sequence is feasible. Two- and three-
dimensional problems are classified as rectangular, circular, or irregular problems.
This division is related with the type of geometric tools needed to handle the
geometric constraints of the problem. Geometric feasibility is guaranteed if the
small items do not overlap each other and are completely contained inside the
large object. For the sake of simplicity, in the following, only two dimensions
will be considered, but the same reasoning and concepts hold for three-dimensional
problems.

When dealing with rectangular shapes, analyzing if they do not overlap each
other is just a question of coordinate comparison. Let rectangle i , with dimensions
.li ; wi /, have its left lower corner placed on coordinates .xi ; yi / of the Cartesian
plane, and let rectangle j , with dimensions .lj ; wj /, have its left lower corner
placed on coordinates .xj ; yj / of the Cartesian plane. Rectangle j does not overlap
rectangle i if it is either above, below, or to the left or right of rectangle j ,
i.e.:

xj C lj � xi _ xj � xi C li _ yj � yi C wi _ yj C wj � yi

The containment conditions of rectangle i inside the larger rectangle .L; W /

(assuming that its left lower corner is placed on coordinates .0; 0/) are:

xi � 0 ^ xi C li � L ^ yi � 0 ^ yi C wi � W

In circular Cutting and Packing problems, small items have circular shapes and
the large object can be either another (larger) circle or a rectangle. The condition for
the items not to overlap is now based on the computation of the distance between
the centers of the circles. Let circle i , with radius ri , have its center placed on
coordinates .xi ; yi / of the Cartesian plane, and let circle j , with radius rj , have
its center placed on coordinates .xj ; yj / of the Cartesian plane. Circle j does not
overlap circle i if the distance between the two centers is greater than or equal to
the sum of their radii, i.e.:

q
.xi � xj /2 C .yi � yj /2 � ri C rj

It should be noticed that it is not necessary to compute the computationally
expensive square root, and this condition can be replaced by the equivalent one
having both sides squared.

The containment condition of circle i , with its center placed on coordinates
.xi ; yi /, inside the larger circle of radius R and center on coordinates .0; 0/ is:
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q
x2

i C y2
i � R � ri

If the container is a rectangle .L; W /, with its bottom-left corner on coordinates
.0; 0/, the containment conditions are:

xi � ri � 0 ^ xi C ri � L ^ yi � ri � 0 ^ yi C ri � W

All shapes other than rectangles and circles are considered irregular and require
more complex geometric algorithms to check and enforce geometric feasibility. A
complete and thorough tutorial on the geometry of irregular Cutting and Packing
problems (aka as nesting problems) can be found in Bennell and Oliveira [17]. As
the no-fit polygon is the most widely used geometric tool to analyze if two irregular
shapes overlap, it will be described for the simpler case of convex polygons.

Let Pi be a polygon with ni vertices with coordinates .ak
i ; bk

i /; k D 1; : : : ; ni

relative to an arbitrary reference point. Let Pj be another polygon with nj vertices
with coordinates .am

j ; bm
j /; m D 1; : : : ; nj also relative to an arbitrary reference

point. Consider that the reference point of polygon Pi is placed on coordinates
.xi ; yi / and that the reference point of polygon Pj is placed on coordinates .xj ; yj /.
The direct comparison of the relative positions of two polygons is a complex and
computationally heavy task, mainly in the general case when the polygons are non-
convex. An alternative is to resort to the concept of no-fit polygon, a new polygon
that captures the geometric information of both polygons. In fact the edges of the
no-fit polygon are the edges of the two polygons taken in a special order. With the
no-fit polygon, checking the relative position of two polygons is reduced to checking
the relative position of one point against the no-fit polygon.

To build the no-fit polygon, consider polygon Pi fixed and polygon Pj sliding
around Pi , always in contact but never intersecting Pi . The trace of the reference
point of Pj during this movement is the no-fit polygon of Pj in relation to Pi :
NFPPi Pj (Fig. 3). The reference point of NFPPi Pj is the same as the reference point
of Pi . In order to guarantee that all the small items do not overlap, it is necessary
to build the no-fit polygons for all pairs of items. They can however be built in
a preprocessing phase, as they do not depend on the absolute coordinates of the
reference point of Pi .

Let NFPPi Pj be the no-fit polygon of polygon Pj in relation to polygon Pi ,
with Nij vertices with coordinates .ak

ij ; bk
ij /; k D 1; : : : ; Nij and with its reference

point placed on coordinates .xi ; yi /. Polygon Pj will not intersect polygon Pi if its
reference point is on coordinates .xj ; yj / such that:

9k 2 f1; : : : ; Nij � 1g W yj �
bkC1

ij � bk
ij

akC1
ij � ak

ij

.xj � ak
ij / C bk

ij

i.e., the comparison of the coordinates of one point against one polygon.
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Fig. 3 The no-fit polygon of
polygon Pj in relation to
polygon Pi

NFPPiPj

Pi

Pj

reference
point

Note that the direction of the inequality in the above expressions (“�” or “�”)
depends on the orientation chosen for the polygons, i.e., if vertex k C 1 is on the
left-hand side or on the right-hand side of the line defined by the vertices k�1 and k.

Problem Types

From the nongeometric point of view, Cutting and Packing problems can be
formally defined as follows:

A set of small items of m distinct types, with distinct geometries and values vi , i D
1; : : : ; m, have to be assigned in a minimum amount of d L

i and a maximum amount of
d U

i units, to a set of n distinct types of large objects, with distinct geometries and values
Vj , j D 1; : : : ; n available in a limited amount of Dj units.

The objective of the problem may be either output maximization or input
minimization. If there are more small items to cut/pack (In what follows, we will
use the term pack to refer indistinctly to Cutting and Packing processes.) than
space available in the large objects, the goal is to select the subset of small items
to pack so that the value extracted from the large objects (the value of the small
items effectively packed) is maximized. Therefore, these problems are of output
maximization, where the output, the value vi of the small items, may be proportional
or not to their area/volume. In this situation, as there are more small items to pack
than large objects available, the value Vj of the large objects is irrelevant as all the
large objects will be used.

If there are more large objects available than the ones needed to pack all the
small items, the goal is to select the subset of large objects to use so that the
value of the used large objects is minimized. Therefore, these problems are of input
minimization, where the input, the value Vj of the large objects, may be proportional
or not to their area/volume. In this situation, as there are more large objects available
than the ones needed to pack all the small items, the value vi of the small items is
irrelevant as all small items will be packed.
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Depending on the values of m, d L
i , d U

i , n, and Dj and on the objective of the
problem, we will get the six main Cutting and Packing problem types, according to
Wäscher et al.’s typology:

• Identical Item Packing Problem (IIPP)
• Placement Problem (PP)
• Knapsack Problem (KP)
• Cutting Stock Problem (CSP)
• Bin Packing Problem (BPP)
• Open Dimension Problem (ODP)

The first three are output maximization problems and the last three are input
minimization problems.

In the IIPP, the small items are of only one type (m D 1), i.e., all the items are
geometrically equal, but there is not a maximum demand for the item (d U

i D 1),
i.e., that item should be packed as many times as possible. In the PP, m types of
items have to be packed, but there is an upper limit on the number of items of each
type to be packed (d U

i ). In the KP, all the small items are geometrically different,
and therefore the number of items is equal to the number of types of items (m), and
the upper limit on the number of items to pack of each type is one (d U

i D 1).
In what concerns the input minimization problems, while in the CSP there are

few types of items (m), with a demand d L
i greater than or equal to one, in the

BPP, all the small items are different and have a demand of one (d L
i D 1). In

both cases, the large objects may be all different, i.e., there is only one unit of
each large object (Dj D 1), the large objects may be of several types n with
an availability Dj for each type, or they may be of just one type (n D 1) with
an infinite availability (Dj D 1). In the ODP, there is an “infinite” availability
of the large object due to the open (not limited) dimension of the large object.
An example is the rectangular strip packing problem, in which small rectangles
have to be packed on a rectangle of “infinite” length, so that the length used is
minimized. This happens in the textile industry where items are cut from fabric
rolls. In practical applications of ODP, the m types of small items have a demand
di . The characterization of the six types of problems, based on the values of their
parameters, is resumed in Table 2. The symbol “—” stands for “not relevant for the
problem type characterization”.

In output maximization problems, in which there is an upper bound on the
number of small items of each type to pack (d U

i ), there may also exist a lower
bound d L

i , meaning that it is mandatory to pack at least d L
i small items of type i .

The six types of problems are represented in Figs. 4 and 5 for the two-
dimensional rectangular Cutting and Packing problem. The small items and large
objects effectively cut/used in a hypothetical solution are represented in dark
gray to highlight the difference between output maximization problems where all
large objects are used and input minimization problems where all small items are
packed.
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Table 2 Characterization of the six types of problems based on the values of their parameters

Problem Objective m dL
i dU

i n Dj

IIPP Output maximization 1 — 1 — —

PP Output maximization �1 — �1 — —

KP Output maximization �1 — 1 — —

CSP Input minimization �1 �1 —
1 1

�1 1

BPP Input minimization �1 1 —
1 1

�1 1

ODP Input minimization �1 �1 — 1 1

Additional Characteristics and Constraints

Many additional constraints to the cutting/packing patterns arise from the practical
applications of these problems. These additional constraints are specific for each di-
mensionality or kind of geometry; however, two characteristics emerge as common
to almost all two- and three-dimensional Cutting and Packing problems: small item
orientation and guillotine patterns.

Given the physical characteristics of the raw materials from which the large
objects are made, sometimes it is not possible to rotate small items, i.e., they
have to be packed with the dimensions and orientation given: length strictly along
the length and width strictly along the width. It is the case of wood boards or
fabric rolls, for instance. In other cases, there is no problem in rotating the small
items when placing them on the large objects, as it happens in the steel industry.
Even when small item rotations are allowed, it is usual to differentiate the cases
where only 90ı and 180ı rotations are allowed, which lead to orthogonal patterns,
from other situations when other rotation angles are also admissible, in what is
usually designated as free rotation. In three-dimensional packing problems, as
container loading problems, there may be “this-side-up” constraints that restrict
the number of feasible orientations in which a box may be loaded in the truck or
container.

When dealing with rectangles, guillotine constraints may be imposed to the
cutting patterns. A cutting pattern is said to be guillotinable if all the small items
can be extracted with top-down (right-left) cuts made on the large object. Each cut
produces two rectangles that may be the demanded small items or may be bigger
rectangles to cut according to the same rule. Guillotine cutting patterns can be
classified according to the number of times that the cutting tool has to be turned 90ı.
If a sequence of horizontal (vertical) cuts, generating strips, followed by a sequence
of vertical (horizontal) cuts on each strip completely executes the cutting pattern,
then this pattern is called a two-stage pattern. If an additional horizontal (vertical)
cut is needed to cut the small items, then the pattern is classified as a three-stage
pattern. The pattern is said to be n-stage if the cutting tool must be turned n times
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Fig. 4 Illustration of the
three types of output
maximization Cutting and
Packing problems for the
two-dimensional rectangular
form of the problem

Identical Item Packing Problem (IIPP)
l1

w1
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dU1 =∞

L1

W1
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m= 1 n= 1

Placement Problem (PP)
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L1

W1

D1 = 1

m= 5

n= 1

Knapsack Problem (PP)
l1

w1

dL1 = 0
dU1 = 1

L1

W1

D1 = 1

m= 12

n= 1

to complete the pattern. Figure 6 presents two- three-, and n-stage guillotine cutting
patterns and a non-guillotine cutting pattern. These concepts can be extended to
three dimensions, when dealing with the cut of parallelepipeds.
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Fig. 5 Illustration of the
three types of input
minimization Cutting and
Packing problems for the
two-dimensional rectangular
form of the problem
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Fig. 6 Two-, three-, and n-stage guillotine cutting patterns and a non-guillotine cutting pattern

Rectangular Problems (2D and 3D)

This section describes the most widely used techniques for developing heuristic
algorithms for Cutting and Packing problems involving rectangular items in two
and three dimensions. First, constructive procedures will be described, then local
search methods, and finally metaheuristic algorithms successfully used for the basic
versions of the problems. The section will conclude with some references to model-
based heuristics.

Constructive Algorithms

Most of the heuristic algorithms include some constructive procedure in which a
feasible solution is iteratively built by adding at each iteration a subset of items to the
existing partial solution. All of these procedures involve two basic steps: selection of
the items to be packed and selection of the space in which to pack them. Depending
on the order in which these two steps are called, two types of algorithms can be
distinguished:

1. Item-driven algorithms
In this type of algorithms, the item to be packed is chosen first, and then the

best location for packing it is selected. The best-known example of this type is the
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(a) Jakob’s implementation.

(b) Liu and Teng’s implementation.

Fig. 7 Bottom-left algorithm. (a) Jakob’s implementation. (b) Liu and Teng’s implementation

bottom-left (BL) algorithm, proposed by Baker et al. [14] and then used by many
other authors. In the BL algorithm, an ordered list of items is given, and at each
step, the first item in the list is taken and placed to the lowest and leftmost position
in the empty space. In Jakobs’s implementation [50], the position is obtained by
putting the item at the upper-right corner of the space and then shifting it alter-
nately as far as possible to the bottom and then as far as possible to the left, as in
Fig. 7a. Liu and Teng [58] developed an improved implementation giving priority
to the downward movement, so the item is only shifted to the left when it cannot
be shifted downward, as in Fig. 7b. They showed that, unlike Jakobs’s method,
there is always an ordering of the items that can produce the optimal solution.

A refinement of the BL algorithm is the bottom-left-fill (BLF) algorithm pro-
posed by Chazelle [25], in which the empty spaces between items already packed
are also considered to accommodate the new item. The algorithm has to maintain
a list of points in a bottom-left order to indicate where the new item can be placed.
These points are checked in order until a feasible position is found. Figure 8
compares BLF with BL on an example. A new item has to be added to the partial
solution and is initially placed at the upper-right corner (Fig. 8a). In Fig. 8b, the
BLF algorithm is used. The figure shows the candidate points and the position
selected for the new item. Using the BL algorithm, the solution in Fig. 8c is ob-
tained. Hopper and Turton [47] showed that the BLF heuristic outperforms the BL
routine by up to 25% with the performance gain being higher for larger problems.
However, its complexity is O.n3/, while the complexity of BL is just O.n2/.

2. Space-driven algorithms
In this type of algorithms, a space is selected first from the list of available

spaces, and then the item or the subset of items which fits best into the space is
chosen to be packed.
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(a) Placing a new item (b) Placed with BLF (c) Placed with BL

Fig. 8 Comparing bottom-left-fill and bottom-left algorithms. (a) Placing a new item. (b) Placed
with BLF. (c) Placed with BL

f itness = 4 f itness = 3 f itness = 2 f itness = 1 f itness = 0

Fig. 9 Scoring rule of Leung et al. [53]

An example of this type of procedure is the best-fill (BF) algorithm proposed
by Burke et al. [21] for the strip packing problem in which, at each step, the
lowest space is chosen and then the item which fits best is chosen to occupy it.

A further refinement of the BF algorithm is the scoring rule by Leung et al.
[55], in which the quality of the fitting is evaluated using a fitness measure that
takes into account other factors besides the way in which the base of the item fills
the base of the space. Figure 9 shows the empty space selected and the fitness
values corresponding to candidate items.

Apart from these simple cases, the algorithms in which the space is chosen
first are usually more complex, because they have to decide how to manage the
empty spaces and because they usually choose subsets of items to fill the spaces
instead of just one item.

Concerning the management of the spaces, there are basically two
alternatives: partition the empty space into smaller disjoint spaces or consider
non-disjoint maximal spaces [51].

Partitions are very useful when guillotine cuts are considered or in three-
dimensional problems when the items have to be fully supported from below
by other items or the base of the large object. They are also easier to manage,
because every time an item is placed in a space, it produces some new spaces to
substitute the previous one, without modifying any other spaces in the list.

Conversely, maximal spaces are more flexible and can produce solutions
that partitions are not able to attain, but they are more difficult to manage. As
maximal spaces are not disjoint, putting an item into one space may modify other
spaces, and the whole list of spaces has to be checked. An example of maximal
spaces appears in Fig. 10. Initially the parallelepiped is empty, and when an item
is packed at its bottom-left corner, three maximal spaces are generated. Figure 11
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(a) (b) (c)

Fig. 10 Space management in 3D: maximal spaces

(a) (b) (c)

(d) (e) (f)

Fig. 11 Space management in 3D: partitions

Fig. 12 (a) Homogeneous
and (b) heterogeneous blocks

(a) Homogenous block (b) Heterogenous block

shows an example of partition. In this case, when putting the item at the bottom-
left corner of the parallelepiped, a decision has to be taken about the new spaces
generated. Six possibilities appear, depending on the horizontal or vertical cuts.

The other aspect that the algorithms have to decide is if, at each step, just
one item is selected to be packed or if a subset of items with a certain structure
is selected. In this second case, the items come in blocks, that is, arranged in
a structure of rows and columns. Blocks have been used by many authors and
can be considered the standard way of packing items once the space has been
chosen. In most cases, the blocks are homogeneous, that is, composed of just
one type of item, as in Fig. 12a, but sometimes, in more recent studies (Fanslau
and Bortfeldt [36], Zhu et al. [86], Wei and Lim [83]), they are heterogeneous,
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including items of different types as long as their dimensions do not differ more
than a given threshold, as in Fig. 12b.

Finally, there are algorithms that select simultaneously both elements, the
item or block to be packed and the space in which to pack it. An example is the
procedure proposed by Wu et al. [85] for packing rectangles into a rectangle, in
which, following the principle that “Golden are the corners; silvery are the sides;
and strawy are the voids,” all the unpacked items are evaluated to be placed
at each corner of the remaining empty space. More recently, the placement
algorithm proposed by Wei et al. [84] considers all pairs .p; r/ (position-
rectangle), selects one of them according to some fitness criteria, and places
the rectangle in this position.

Local Search Procedures

There are several ways to define and explore the neighborhood of a solution. Two
main groups of local search procedures can be distinguished: those in which the
solution is given by an ordered list of items, which will be decoded into a physical
solution by means of an algorithm such as BL or BLF , and those in which the
layout of the solution is used to define the neighborhood.

1. Procedures based on ordered lists of items
In Hopper and Turton [47], the problem is represented by a permutation

of items, giving the order in which the items are packed. They define two
manipulation operations. The first one swaps two randomly selected items in the
permutation. The second operator flips the orientation of one randomly selected
item. In the translation to the next solution, only one of the operators is applied
with a 50% chance. The initial solution is randomly generated.

Leung et al. [56] apply the scoring algorithm [55] to an ordered list of items. If
two items have the same score, the first item on the list is packed first. Therefore,
different item sequences can generate different solutions. They exhaustively
study the sequences produced by exchanging the positions of every pair of items
and keep the best solution found.

Ceschia and Schaerf [24] deal with a multi-container problem and work with
a set of sequences, one for each container. Each element of a sequence is a
homogeneous block. A move consists of moving some items of a block to another
position of the same or another sequence, keeping or changing their orientation.
An example appears in Fig. 13 [24], involving two containers. Part of the block
in position 4 in the first sequence is moved to position 4 in the second sequence.

2. Procedures based on the layout of the solutions
The movements determining the neighborhood of a solution can be defined

directly on the layout of the solution, taking into account the position of the items
on the large objects. Some examples of these moves can be seen in the following
figures. Figure 14 [8] shows a simple move in which an item is selected to change
its position on the strip. Once it is selected, it is removed and packed again on an
empty space in which the item can fit or not. If it does not fit, as in the example
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Container 2

Container 1

2 items

(a) Initial solution

Container 2

Container 1

(b) New solution

Fig. 13 Ceschia and Schaerf’s movement. (a) Initial solution. (b) New solution

Selectinganitem Removingit Placingit intoanemptyspace Completingthesolution

Fig. 14 Changing the position of an item

Initial solution Inserting the block Removing overlapping items Filling the empty space

Fig. 15 Inserting a block

of the figure, the overlapping items are removed and packed again by using a
constructive procedure.

In Fig. 15 [68], a block of items which were left initially unpacked are inserted
into a bin. The overlapping items are removed and the new empty spaces are filled
again.
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Fig. 16 Removing and filling in a two-dimensional problem

Selecting empty spaces Merging them Removing items Filling the empty space

Fig. 17 Merging empty spaces in two- and three-dimensional problems

A frequently used type of movement consists of removing part of the solution
and rebuilding the partial solution in a way that produces a different solution.
A two-dimensional example appears in Fig. 16 [8], in which the last part of the
solution of a strip packing problem is removed and the strip filled again, using
a different procedure. Finally, Fig. 17 [68] shows a more complex move, which
can be applied to two- and three-dimensional problems. Two empty spaces are
selected, and then the smallest rectangle (or parallelepiped in 3D) containing
them is determined, and the items contained totally or partially in it are removed.
The resulting space is filled again, producing a new solution.

Metaheuristic Algorithms

Iterative Algorithms
Lesh et al. [53] develop the bottom-left-descending (BLD) algorithm, in which the
known BL algorithm is used four times, ordering the items by decreasing the height,
width, area, and perimeter. In order to improve BLD, they develop a stochastic
variation, algorithm BLD�. BLD� starts with a fixed order (say decreasing height)
and generates random permutations from this order. Items are selected in order,
one at a time. For each selection, BLD� goes down the list of remaining items,
accepting each item with probability p, until an item is accepted. If the last item
is reached and not selected, it restarts at the beginning of the list. After an item is
accepted, the process starts again from the beginning of the list. The probability
of obtaining some ordering y, starting from some fixed ordering x, is proportional
to .1 � p/Ken.x;y/, where Ken.x; y/ is the Kendall tau distance between the two
permutations.
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Belov et al. [15] propose two iterative heuristics for the strip packing problem.
The first one uses a special single-pass heuristic SubKP in each iteration. SubKP fills
the selected empty space by solving a 1D knapsack problem, considering only item
widths. At each iteration, the profits of the items change according to a sequential
value correction method [65]. The second iterative heuristic, BS(BLR), uses at each
iteration a single-pass heuristic bottom-left-right (BLR), a modification of BL, in
which the item can be assigned to the left or to the right in the most bottom-left free
space large enough for that item. To construct item orderings for BLR, a simplified
BubblePermute [52] procedure is used.

Araujo and Armentano [11] also propose a multi-start random constructive
algorithm. At each step of each constructive process, a list of homogeneous blocks
are evaluated and ranked. A biased random selection determines the block to pack,
but, before packing it, another biased random procedure reduces the rows and/or
columns of the block. These two randomizing strategies guarantee the diversity of
the solutions obtained.

Genetic Algorithms
Most of the genetic algorithms proposed for solving Cutting and Packing problems
use a representation in which each solution is given by an ordered list of items and
a decoding algorithm translates this list into a physical solution.

Jakobs [50] already used this representation in his genetic algorithm, with a
specific crossover operator and a mutation operator that exchanges the position
of some elements of the permutation. The solutions are decoded by using the BL
algorithm.

Hopper and Turton [47] use this representation, with partially matched crossover
(PMX) and order-based mutation. They also consider elitism and seed the initial
population with a solution obtained by a heuristic placement procedure. As decoding
algorithm, they use BL and BLF.

Leung et al. [54] also use as chromosomes ordered list of items, a mutation
operator consisting in swapping the positions of two items randomly chosen, and
two-point and cycle crossover operators. They also include a simulated annealing
operator to induce competition between parents and children. If the children are
better, they are accepted, but if the children are not as good as their parents, they can
still be accepted with some probability. This helps to prevent the population from
becoming homogeneous too early. The solutions are decoded using a procedure
similar to the BLF.

Iori et al. [49] also use the ordered list representation. The main difference
with respect to standard procedures is that they distinguish between improving and
non-improving phases, depending on the number of individuals generated without
improving the best solution obtained. The phase influences the fitness evaluation,
the elitism strategy, and the use of mutation. Another special feature is the use of
local search to improve the individual with the largest fitness.

A different approach to genetic algorithms based on a list of items is the random-
key genetic algorithm proposed by Gonçalves and Resende [44] for the bin packing
problem. If the instance being solved has n items, the chromosome has 2n genes, the



950 R. Alvarez-Valdes et al.

Item Packing Sequence

Sorted genes

Unsorted genes

Unordered items

Item Packing Sequence

5 3 1 4 2 6

0.05 0.12 0.41 0.49 0.62 0.81

0.41 0.62 0.12 0.49 0.05 0.81

1 2 3 4 5 6

Fig. 18 Decoding of the item sequence in the algorithm of Gonçalves and Resende

Fig. 19 Layer structure of
the Bortfeldt and Gehring’s
solutions

layer 1 layer 2 layer 3

Item de f ining
the layer depth

first n for the sequence of items and the last n for their orientations. Each individual
of the population is a vector of 2n random keys. Initially, the values are generated
at random in the real interval Œ0; 1�. At each iteration, some mutants are added,
generated in the same way that the elements of the initial population are generated.
Also, a small group of elite individuals are taken from the previous generation. The
remaining members are obtained by parameterized uniform crossover, combining
elite and non-elite individuals. For each component of the vector, the elite individual
component is taken with a given probability. Once the individuals are formed,
they are decoded, first ordering the items according to the values of their random
keys, to produce an item sequence, and then placing the items into the bins using
some placement algorithms derived from BLF. Figure 18 shows how the part of the
chromosome corresponding to the items is sorted to produce an item sequence.

A completely different structure for a genetic algorithm is proposed by Bortfeldt
and Gehring [20] for the container loading problem. Unlike all previous algorithms,
they use the layer structure of the solution. Each feasible solution is composed of a
set of layers, whose height and width are the same as the container and whose depth
is defined by one of their items (see Fig. 19). The constructive algorithm builds a
solution with this layer structure, and the genetic operators build new solutions by
combining layers of previous solutions and including new layers for completing
solutions when necessary.
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Simulated Annealing Algorithms
Hopper and Turton [47] propose a simulated annealing algorithm in which the
neighborhood is defined by the set of solution that can be reached applying two
manipulation operations. The first one swaps two randomly selected items in the
permutation. The second operator flips the orientation of one randomly selected
item.

In Lai and Chan [51], the neighborhood is obtained by swaps of randomly
selected pairs of items and the solutions are decoded using an algorithm similar to
BLF. In Leung et al. [55,56], simulated annealing is used jointly with a constructive
and a local search algorithm to escape from local minima. Neighbors are produced
again by swapping pairs of items and the constructive algorithms work as decoders.
Ceschia and Schaerf [24] also enhance their local search procedure by adding a
simulated annealing phase to escape from local optima.

Burke et al. [22] propose a hybrid procedure in which a solution is generated by
a two-step process that, first of all, applies the best-fill heuristic to place an initial
number of items onto the large object. Then, the remaining unassigned items are
placed using the bottom-left-fill heuristic with different input orderings as guided by
the simulated annealing search procedure. The locations of the items assigned in the
initial best-fit stage of the process remain fixed throughout, whereas the items placed
during the second stage will move locations according to the orderings produced by
simulated annealing.

Tabu Search Algorithms
The basic elements of a tabu search algorithm, apart from a feasible starting
solution, are a move defining the neighborhood of the current solution, an evaluation
of neighbors, a tabu list, an aspiration criterion, and some intensification and
diversification strategies. A good example is TSpack, developed by Lodi et al. [60]
for bin packing problems. Starting from a solution in which each item is packed
into a different bin, a move consists in selecting a target bin to be emptied, selecting
an item in it, j , and solving the packing problem composed of a subset of k bins
plus item j . Improving moves that reduce the number of bins are accepted, as
well as moves maintaining the number of bins but packing j out of the target bin.
The number k of bins packed again is a parameter that controls the size of the
neighborhood and the search effort. Small values of k correspond to intensification,
while large values of k correspond to diversification. Nevertheless, when the search
stalls without finding an acceptable move and k reaches its maximum value, other
more aggressive diversification strategies are used to change the way in which the
target bin is selected and to destroy part of the solution and build it again in a way
in which the new solution is substantially different. Algorithm TSpack has been
adapted by Bennell et al. [19] for solving a bin packing problem with due dates.

Alvarez-Valdes et al. [4] developed a tabu search algorithm for a two-dimensional
cutting problem with guillotine cuts. The initial solution is built by a greedy
constructive algorithm, and the neighbors of a solution are defined taking at random
one rectangle, considering its adjacent rectangles, one at a time, and emptying the
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minimum region containing both and respecting the guillotine cut structure. The
region is filled again several times by using a GRASP algorithm, producing a set of
neighboring solutions. The best non-tabu solution among them is selected. The tabu
list keeps the rectangle being emptied, and its size varies dynamically after a given
number of non-improving moves. Intensification and diversification strategies are
defined by modifying the value of the items for the greedy constructive procedure.
If items appearing more often in the good solutions are given larger values, the
search intensifies around best solutions. If these items receive lower values, they are
less attractive to be in the solutions and the search diversifies.

Tabu search algorithms for Identical item packing problems and cutting stock
problems are also based on the use of blocks [5, 6, 70]. The moves are defined
as block insertion, block reduction, or block expansion. IIPP is an example of
flat landscape, with many solutions having the same number of items. In order
to distinguish among them and lead the search toward promising regions of the
solution space, the original objective function is modified by adding other elements,
favoring solutions with good characteristics, such as having the empty spaces as
near as possible. Long-term memory is used for intensification and diversification
purposes, favoring or penalizing blocks that have appeared often throughout the
search.

Tabu search algorithms can also be developed using ordered lists of items, as
in Wei et al. [84]. The move is defined as the swap of two items, although only a
subset of non-tabu moves are explored at each iteration, because they are evaluated,
building the corresponding solutions (or decoding them in the terminology of
genetic algorithms).

GRASP Algorithms
GRASP algorithms for Cutting and Packing are based on the constructive proce-
dures and the local search moves described above [2,4,8,29]. If at the improvement
phase several moves are defined, the GRASP algorithm can be hybridized with a
variable neighborhood descent (VND) procedure that controls the moves at each
GRASP iteration. An example can be found in the algorithm by Parreño et al. [68]
for the bin packing problem, in which several moves based on removing the last
part of the solution are combined with a more aggressive move that empties pairs
of bins, as it appears in Fig. 20. Once a solution of N bins has been obtained, the
target is set to obtain a solution with N � 1 bins. When the constructive procedure
fills N � 1 bins, it stops, leaving some items unpacked. Then, the improving moves
try to pack all these items into the N � 1 bins. Many of the proposed GRASP
algorithms use the reactive GRASP strategy, in which the value for the parameter
controlling the randomization procedure adjusts itself using the information of the
search.

Alvarez-Valdes et al. [7] solve a two-stage cutting stock problem combining
two GRASP algorithms, one based on items and the other based on strips. The
solutions obtained by the two GRASP algorithms have different structures, and their
combination by means of a path relinking procedure leads to very efficient solutions.
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a

b

c

Fig. 20 Improvement move for a bin packing problem. (a) Current solution. (b) Emptying two
bins. (c) Pack first the unpacked item and then the removed item

Path Relinking Algorithms
Path relinking algorithms have been applied to Cutting and Packing problems in
connection with tabu search algorithms, as they were initially designed [4], but also
connected to GRASP algorithms, in which a set of elite solutions is kept throughout
the search. The work by Alvarez-Valdes et al. [9] on the multiple-bin-size bin
packing problem combines several variants of path relinking. Figure 21, taken from
it, shows the process in which some part of the layout of a guiding solution B is
imposed on the initial solution A, producing a new solution that can be considered
to lie in the path between them.

Tree Search Algorithms
In tree search algorithms, the solution space is searched using a tree in which
each node represents a partial solution, starting from the empty solution at the root
node. From each node, branching creates a new level with as many new nodes as
possible ways of adding a new element, item, or block, to the partial solution. As
this tree would grow exponentially, there are several ways of controlling its growth,
limiting the successors of each node to only those most promising, according to
a certain criterion, usually the value of the solution obtained by completing the
partial solution with a greedy heuristic. When solving a container loading problem,
Eley [34] uses a parameter breadth to control the number of successors and in his
computational study fixes this breadth to 7. Ren et al. [71] follow the same strategy,
but, at each level, only blocks getting the maximum value in at least one of the five
proposed criteria are used to create a new branch. The scheme of Christensen and
Rousoe [28] is also similar to Eley’s, but they use a dynamic breadth which adjusts
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Fig. 21 Path relinking for a multiple-bin-size bin packing problem. (a) Initial solution A. (b)
Guiding solution B. (c) Impose on A the first fin of B and remove bins with repeated items. (d)
New complete solution

itself dynamically to exhaust the available time while guaranteeing the completion
of the tree search.

Pisinger [69] also proposes a tree search for the container loading problem in
which the container is first decomposed into a set of layers, whose height and width
are the same as the container, and then each layer is decomposed into a set of strips.
A partial solution at a node is composed of a set of layers, partially filling the depth
of the container. At each branching node, a limited set of layers are considered to
be added to the partial solution, according to a ranking rule, and the solution is
increased by filling the selected layer with strips. Again, a limited set of strips is
considered, and the strips are filled by solving 1D knapsack problems.

More recently, Fanslau and Bortfeldt [36] have developed a more complex tree
search method. Again, a node of the tree is a partial solution, in this case composed
of a set of heterogeneous blocks. A basic search phase transforms a partial solution
with i blocks into another with i C d blocks, where d is the depth of the search.
The value of an augmented solution is obtained by completing it using a heuristic
procedure. Basic searches can be linked to compose more complex search patterns,
as shown in Fig. 22, in which, starting from a partial solution with i blocks, a search
with depth d D 3 is divided into one or two basic searches. The basic search
of depth 3 on the left-hand side produces eight augmented incomplete solutions
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Fig. 22 Tree search structure of Fanslau and Bortfeldt

(white circles) that are completed to be evaluated (dark circles). The right-hand side
shows two linked basic searches. The first one, of depth 2, produces four solutions
which are completed. The best complete solution (double dark circle) indicates the
incomplete solution from which to start the second basic search of depth 1. The best
solution found indicates which block i C 1 is added to the partial solution.

The OR/AND graph approach developed by Arenales and Morabito [12] for the
two-dimensional cutting problem can be also considered as a tree search procedure.
At each node of the tree, there is a rectangle obtained by repeatedly cutting the
original stock sheet and the cuts that can be applied to this rectangle define the
successors of the node.

Other Metaheuristic Schemes
Burke et al. [23] propose a squeaky wheel optimization algorithm for the strip
packing problem in which at each iteration the ordered list of items is decoded
into a feasible solution by means of the Best-Fit algorithm. The items protruding
a given height are considered badly placed and their value increases. Therefore,
they get better positions in the ordered list and are placed earlier in the next
iteration.

Guided local search has been used by Faroe et al. [37] for the 3D bin packing
problem and by Hifi et al. [46] for the multidimensional knapsack problem.
The guided local search moves out of a local maximum/minimum by penalizing
particular solution features that it considers should not occur in a near-optimal
solution. It defines a modified objective function, augmented with a set of penalty
parameters on these features. The usual local search method is then used to improve
the augmented objective function. The cycle of local search and penalty parameter
update can be repeated as often as required.

Liu et al. [59] use the particle swarm optimization framework to develop an
algorithm for the multiobjective bin packing problems. Each particle encodes a
packing solution which includes the number of bins used and the order in which
the items are packed into the bin by the BLF heuristic. Chen et al. [26] also use
particle swarm optimization for solving a two-dimensional cutting problem, using
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as a decoder a heuristic algorithm, based on the BL procedure but adapted to the
specific problem being solved.

Model-Based Algorithms

For one- and multidimensional cutting stock problems, Gilmore and Gomory [39–
41] proposed in 1961–1965 to solve the following integer program:

Min
X
q2Q

cqxq

s.t.
X
q2Q

aiqxq � di ; i D 1; ::; m (1)

xq � 0 and integer; 8 q 2 Q (2)

where Q is the set of all feasible cutting patterns for all stock sheets Sp , xq the
number of times pattern q is used in the solution, aiq the number of times item i

appears in pattern q, di the demand of item i , and cq the cost of pattern q.
As the set of patterns Q cannot be completely described except for very small

problems, they developed a column generation scheme that can be summarized as
follows:

1. Generate an initial set eQ of m cutting patterns, where each pattern contains one
type of item.

2. Solve the linear relaxation of the above formulated problem considering only the
variables corresponding to patterns in eQ.

3. For each type of sheet Sp , solve the subproblem:

zp D Max
X

i

�i ai

s.t. fa1; : : : ; amg is a feasible cutting pattern for Sp

where � is the vector of dual prices of the LP solution. If, for some p, zp >

cp , then the column corresponding to that solution is added to eQ and step 2 is
returned to in order to solve the enlarged LP problem. Otherwise, the current
solution is rounded to get an integer solution and the process ends.

The question now is how to solve efficiently the subproblem of Step 3. Note that,
even if the subproblem is solved by exact methods, the whole procedure is heuristic,
due to the rounding step. The quality of the integer solution will depend not only on
the algorithm used to solve the subproblem but also on the rounding procedure and
on the structure of the demands.
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Since the seminal work of Gilmore and Gomory, many authors have used this
framework to solve Cutting and Packing problems or at least to have a reference
or a starting point for new developments to overcome its limitations and adjust
it to other problems. Examples go from Dyckhoff [32], Stadtler [76], and Valerio
de Carvalho [81] for 1D problems, to Riehme et al. [72] for 2D cutting problems
with extremely varying demands, or to Alvarez-Valdes et al. [3], who develop and
compare several procedures to solve the subproblems as well as several rounding
procedures.

Irregular Problems

Irregular packing problems are Cutting and Packing problems with convex and non-
convex shapes (aka nesting problems). Although different shapes can be considered,
from now onward, it will be assumed that the small items are described by polygons.
In fact, the majority of the heuristics for these problems assume a polygonal
shape for the small items. Moreover, although any type of Cutting and Packing
problems, according to Wäscher et al. typology, can deal with irregular shapes,
in practice one can almost only find placement problems and open-dimension
problems. In the former, a large board and a set of irregular items with a maximum
demand are given, and the goal is to lay out a subset of items on the board so
that the waste is minimized, while in the latter, the large object has fixed width
and variable length, big enough to accommodate all the items (in some papers,
it is described as having infinite length), and the goal is to lay out all the small
items, so that the length of the board that is effectively used to pack the items is
minimized. This is the variant of the problem that is usually called irregular strip
packing problem. Quite recent papers approach the irregular bin packing problem
[62] and the irregular cutting stock problem [75], but hereafter the focus will
be on the irregular packing problem with a single rectangular board, either with
fixed or variable length, as this corresponds to the majority of the literature in
the field.

Constructive Heuristics

Constructive heuristics build a solution for the problem by placing the pieces one
by one. Two design decisions have to be made in a constructive heuristic: (1) given
a set of pieces to place, in which sequence should the pieces be placed, and (2)
given a set of pieces already placed on the board, where to place the next piece. The
constructive heuristics vary on the strategies used for these two phases.

The bottom-left placement rule is the basis for the majority of the constructive
heuristics available in the literature. The basic idea of the bottom-left rule is that
each piece, in turn, is placed as low in the layout as possible and, for equal height,
as much to the left as possible. The name of the rule, and the description just made,
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Fig. 23 Bottom-left
placement rule

x

y

supposes a vertical strip (width in the horizontal and length in the vertical). However,
in irregular packing problems, the board/strip is most commonly represented with
the width along the vertical direction and the length (which is aimed to be minimized
in irregular strip packing) along the horizontal. Therefore, although the authors
in the literature still refer to bottom-left rules, the pieces are actually placed as
much to the left as possible (the minimum possible x-coordinate value), and for
the same x-position, the lowest y-coordinate value is selected (Fig. 23). The basic
implementation of the bottom-left placement rule places the piece on a feasible
position of the layout (usually the upper-right corner of the board) and starts moving
the piece to the left, considering a discrete set of points where pieces can be placed
(a grid is defined over the board), and as soon as an overlap with an already placed
piece is detected (resorting to one of the geometric representation and manipulation
strategies presented in section “Geometry”), the movement is backtracked and a
vertical move is tried. If successful, the horizontal movement is resumed. This
process stops when a piece cannot move, either horizontally or vertically, without
overlapping other pieces or crossing the borders of the board (Algorithm 1). It
should be pointed out that in this bottom-left implementation, unused spaces may
become holes in the layout, as pieces may block the access to those regions to the
following pieces.

The first heuristic based on a bottom-left rule was proposed by Art [13]. On top
of the bottom-left rule used to place each piece on the board, a compound rule for
sequencing the pieces (selecting the next piece to place) was considered:

• consider the set of pieces that have not yet been placed;
• among these, select the set of pieces that can be placed on an x-coordinate that

is within a given tolerance of the minimum x-coordinate where a piece can be
placed;

• among these, select the set of pieces with an area within a given tolerance of the
maximum area;
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Algorithm 1: Bottom-left basic implementation
Place the piece on an up-right feasible placement position
while Piece does not overlap other pieces and is completely inside the board do

Move piece one grid unit left
if Piece overlaps another piece or is not completely inside the board then

Move piece one grid unit right
Move piece one grid unit down

end if
end while
Move piece one grid unit up
Bottom-left position found

• among these, select the set of pieces with a minimum probable waste;
• among these, select the piece that can be placed in the lowest y-coordinate.

This compound rule is rather interesting as it highlights some of the main
drawbacks of constructive heuristics.

To avoid the greedy effect of constructive heuristics, the authors try not to have
a too rigid and fixed rule to select the next piece to place. Whatever the rule we
choose, independently of how clever and fit to the problem it is, a greedy choice at
the beginning originates leaving to the end the worst pieces to place, “destroying”
solutions that looked promising at the beginning. Art tries to overcome this effect
by balancing “doing well now” with “not doing bad in the end.” Therefore, he does
not commit to the piece that originates the most bottom-left placement, but instead
considers a set of pieces that are near (doing well now) and then, among these,
selects the biggest ones, which are harder to place in the end (not doing badly in the
end).

Another drawback of constructive heuristics is, by definition, that they do not
backtrack on the decisions made, i.e., once a piece is placed, it is not removed
to try another piece. In each step, more than one piece may be tried, and the one
considered best is chosen, but in later phases, this step cannot be revisited and a
different decision made. Backtracking is a characteristic of search heuristics, which
will be discussed in section “Local Search Heuristics”. Art tries to overcome this
drawback by attempting to anticipate the final effect of placing a piece through the
concept of probable waste, i.e., the space that will become unusable after placing this
piece. Figure 24 illustrates the concept. Similar implementations of this bottom-left
placement rule were later on used by Oliveira and Ferreira [66] and Jakobs [50] as
a block of more complex and sophisticated heuristics.

Art [13] introduced interesting concepts, but the computational resources avail-
able at that time prevented a proper exploration of these ideas (the geometric
representation of the pieces had to be very rough), and the bottom-left placement
rule was only recovered in the middle of the 1980s. Another bottom-left placement
rule is proposed by Segenreich and Braga [74]. A grid is also defined over the board
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Fig. 24 Probable waste
introduced by a piece (dark
region on the left), according
to Art [13]

Fig. 25 Bottom-left
placement rule, with the piece
starting from unfeasible
placement positions
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and the pieces start from the origin of the coordinates. If the position is unfeasible,
the piece is moved one grid unit along the y-axis and feasibility is rechecked.
Once the width of the board is reached, the piece is moved one grid unit along
the x-axis, the y-coordinate is reset, and the process is repeated until a feasible
placement position is found. Given the way the piece moves in this search for a
feasible position, this is the most bottom-left placement for the piece. To improve
the heuristic performance, the initial position for a piece is not always the origin of
the coordinates but the position where the last piece of that type was placed, as for
sure there is not a most bottom-left position prior to that one (Fig. 25). The most
important characteristic of this implementation of the bottom-left placement rule is
its hole-filling capacity, i.e., spaces left empty in the middle of the layout can be
used to place smaller pieces that are next in the sequence. Dowsland et al. [30] and
Takahara et al. [78] used also this bottom-left implementation.

These bottom-left implementations suppose discrete movements of the pieces
within the grid. Resorting to the concept of no-fit polygon, Gomes and Oliveira [42]
and Dowsland et al. [31] proposed implementations of the bottom-left placement
rules with continuous (real-domain) placement positions. When placing a piece j

on the board, Gomes and Oliveira describe the possible placement points by:

• the vertices of the no-fit polygons NFPij of piece j in relation to pieces i 2 I ,
where I is the set of pieces that have been already placed;
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j

Fig. 26 Bottom-left placement rule, implemented over vertices of the NFP

• the vertices of the rectangle Rj that represents the extreme points where piece j

can be placed without crossing the board border;
• the intersections of the edges of all NFPij , where i 2 I ;
• the intersections of the Rj edges with the edges of all NFPij , where i 2 I .

Among these, the feasible placement points are on the boundary or outside all
the NFPij and on the boundary or inside Rj , i.e., points, leading to a placement
of piece j that does not overlap other already placed pieces and is inside the board
(Fig. 26).

A completely different constructive heuristic was proposed in Oliveira et al. [67]
and later on improved by Bennell and Song [18] – TOPOS.

In TOPOS, as in any other constructive algorithm, pieces are placed one by one
on the board, building partial solutions. For each piece, the no-fit polygon of that
piece in relation to the external contour of the set of pieces already placed (a partial
solution), which form a kind of super-piece, is used to determine feasible placement
points on the board. Once the placement point of a piece is determined, the piece
is “merged” with the previous partial solution and the external contour is updated.
In the original implementation of Oliveira et al., new pieces could only be placed
on the exterior of the partial solution, while in Bennell and Song, pieces may be
placed inside the partial solution, i.e., it allows hole-filling. The most distinctive
characteristic of TOPOS is that the partial solutions do not have a fixed position
on the board. Their placement on the board may change according to the need of
having more space below, above, on the left, or on the right of the partial solution to
better accommodate new pieces. TOPOS proposed two strategies to answer the two
design decisions of a constructive heuristic: where to place a given piece and which
should be the next piece to place.
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To decide where to place a given piece, three different placement rules are used:

1. minimum area rectangular enclosure – the piece is placed on the point where the
area of the rectangle that encloses the piece and the partial solution is minimum;

2. minimum length rectangular enclosure – the piece is placed on the point where
the length of the rectangle that encloses the piece and the partial solution is
minimum;

3. maximum overlap between the two rectangular enclosures – the piece is placed
on the point where the area of the overlap between the piece rectangular
enclosure and the partial solution rectangular enclosure is minimum.

The candidates to placement points (the points where the three criteria are
evaluated) are the vertices of the no-fit polygon and special points on the edges
of the no-fit polygon. On these special points, the criterion that is being used to
select the placement point is optimized, when the constraint of belonging to that
edge is considered. For example, in Fig. 27, point X corresponds to the point of
the edge AB where the area of the rectangular enclosure of the two polygons is
minimum [67].

Once selected where each potential next piece to place should be effectively
placed, the several alternatives are compared using three different criteria, illustrated
in Fig. 28:

Fig. 27 X is a special point
of edge AB where the area of
the rectangle enclosure of the
two polygons is minimum

A

B

X

Pj

Pi

Fig. 28 TOPOS next-piece-to-place selection criteria
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Waste – The piece adding less waste to the partial solution is chosen.
Overlap – The piece whose rectangular enclosure overlaps more with the
rectangular enclosures of the pieces belonging to the current partial solution is
chosen.
Distance – The piece that is placed nearest to the geometric center of the partial
solution is chosen.

These criteria may be combined or used independently. Waste and distance can
be used either in absolute value or in relative value, divided, respectively, by the
area of the piece or by the half-perimeter of the rectangular enclosure of the piece.
Bennell and Song [18] proposed two additional ways of using these criteria, besides
the original aggregation by sum: vector, where the number of criteria in which a
piece is better than the others is used to decide which is the best piece to place, and
priority, where the criteria are used in a hierarchical way, with the lower levels being
used to solve ties in the upper levels. Finally, in both implementations of TOPOS,
all allowed orientations for each piece are tested.

Jostle [30], by Dowsland et al., is also a constructive heuristic where the way the
next piece to place is selected is particularly interesting. Starting from a random or
any priority-based sequence of the pieces, pieces are placed on the board following
a leftmost strategy. The pieces are then sequenced by decreasing order of the x-
coordinates of their rightmost vertices and placed again on the board but now
according to a rightmost strategy. Pieces are reordered by increasing order of the
x-coordinates of their leftmost vertices, and the process is repeated for a predefined
number of iterations or until the solution does not change. This heuristic mimics the
process of shaking objects on a tray so that they fit better together.

Local Search Heuristics

Local search heuristics may be divided into two groups: (1) heuristics that search
over the actual problem solution space, i.e., complete layouts where all the pieces are
laid down on the board; (2) heuristics that search over a solution representation or
codification, which, in irregular packing problems, are usually the piece sequences.
The second group requires an additional constructive placement heuristic, or
decoder, to transform the sequence into an actual layout (Fig. 29). Neighborhood
structures based on swaps (dotted line), inserts (dashed line), or rotations (solid
line) are defined over the sequences.

Heuristics based on searching over sequences vary on how a sequence is changed
into another one (the neighborhood structure) and on how the search process
is controlled. Gomes and Oliveira [42] proposed a probabilistic two-exchange
heuristic in which neighbor solutions are generated by swapping a pair of pieces
in the sequence. Given all pairs of pieces that can be exchanged, three different
criteria were explored to decide which should be the next sequence/center of
neighborhood:
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Placement
heuristic

Piece sequence Layout

Fig. 29 Search over sequences, with swap (dotted line), insert (dashed line), and rotation (solid
line) moves

• first-better – accepts the first swap that leads to a sequence which, decoded into
a layout, is better than the current solution;

• best-better – accepts the best swap, i.e., the swap which, decoded into a layout,
leads to the best solution among all the swaps;

• random-better – accepts a swap chosen randomly among all the swaps which,
decoded into a layout, lead to solutions that are better than the current
solution.

The search stops when no better solution can be generated from the current
sequence.

More sophisticated search control strategies can be developed building on this
“search over sequence” paradigm, as will be seen in section “Metaheuristics.”

An alternative search procedure building on piece sequences is based on tree
search methods. Albano and Sapuppo [1] proposed the very first tree search
algorithm for irregular packing problems. At each level of the tree, a new piece
was placed on the board. The root of the tree represented the empty board and the
leaves a full layout. The authors applied strategies to improve the search efficiency
by reducing the number of nodes explored. Some examples of these strategies are
limiting the number of child nodes generated from a node and limiting the number
of nodes kept in the list of nodes waiting to be explored. The decision to keep a node
is based on indicators such as the waste of the partial solution or the waste added
by placing a piece. These ideas became later rather popular under the name of beam
search (see section “Metaheuristics”).

The other group of local search heuristics operates over the actual layouts,
directly moving around pieces by using the usual neighbor generation operators:
swapping two pieces, moving a piece to another place, and rotating a piece (Fig. 30).
In this type of heuristics, feasibility is usually not enforced, i.e., solutions where
pieces overlap are allowed during the search, as only accepting moves to placements
with no overlap would restrict the search space and eventually lead to premature stop
in poor local optima.

This means that the overlap has to be penalized in the objective function. Once
overlap between two pieces is detected, different measures of the overlap can be
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Fig. 30 Search over layouts: illustration of a search move where a piece is selected and moved to
a different position

Pj

Pi

Pj

Pi

Pj

Pi

Pj

Pi

Fig. 31 Different measures of overlap can be used in the objective function: area (up-left),
enclosing rectangle intersection area (up-right), penetration depth (down-left), and orthogonal
penetration depth (down-right)

used in the objective function, being the most common the area, the enclosing
rectangle intersection area, the penetration depth, and the orthogonal penetration
depth (Fig. 31).

The use of the overlap measure in the objective function will depend on the type
of problem tackled:
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• For problems where the width and the length of the board are fixed, the set of
pieces to be placed is given, and the objective is to find a placement such that
the overlap is minimized. If a solution with no overlap is found, the heuristic is
run with an additional piece, so that the number of pieces placed on the board is
maximum.

• For problems where the board has a fixed width and a variable length, all pieces
have to be placed. The objective is then to find a placement with no overlap such
that the used board’s length is minimized. To achieve that goal, the objective
function has two components: the length of the layout and the amount of overlap.
The weight of the overlap component determines the behavior of the search
algorithm: a high weight leads to a fast convergence to a layout with no overlap
but potentially with a big length; a low weight may lead to a solution with a small
length but with some overlap, an infeasible solution for the irregular packing
problem.

Because of their intrinsic difficulty in eliminating overlap, these heuristics
have been mainly used embedded in more sophisticated solution approaches,
either hybridized with mathematical programming models (section “Mathematical
Programming-Based Heuristics”) or in metaheuristic frameworks (section “Meta-
heuristics”).

Mathematical Programming-Based Heuristics

Most of the mathematical programming models for the irregular packing problem
rely on the concept of no-fit polygon to write the no-overlap constraints. Consider
the polygons Pi and Pj and their NFPPi Pj , represented in Fig. 32. Guaranteeing
that Pj does not overlap Pi is just a question of imposing conditions to the variables
representing the coordinates of the placement point of Pj , i.e., xj and yj . These
conditions must lead to the consequence that .xj ; yj / is on the exterior or on
the boundary of NFPPi Pj . The mathematical programming models that use the
placement points of the pieces as decision variables (e.g., Gomes and Oliveira [43],
Fischetti and Luzzi [38] and Alvarez-Valdes et al. [10]) describe the exterior of
the no-fit polygon in different ways. The most common approach uses a covering
model, i.e., decomposes the exterior into a set of regions that may overlap but cover
completely the exterior of the no-fit-polygon. In the example depicted in Fig. 32,
the equations of the supporting lines of the edges of the no-fit polygon, denoted by
eijk.xi ; yi ; xj ; yj /, k D 1; : : : ; 12, would provide the following systems of linear
inequalities (in this case, each system has either one or three linear constraints):
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Fig. 32 Geometric information provided by the no-fit polygon to write the no-overlap constraints
in a mathematical programming model
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eij 1.xi ; yi ; xj ; yj / � 0

eij 2.xi ; yi ; xj ; yj / � 0

eij 3.xi ; yi ; xj ; yj / � 0

eij 4.xi ; yi ; xj ; yj / � 0

eij 5.xi ; yi ; xj ; yj / � 0

eij 6.xi ; yi ; xj ; yj / � 0

eij 7.xi ; yi ; xj ; yj / � 0

eij 8.xi ; yi ; xj ; yj / � 0

eij 9.xi ; yi ; xj ; yj / � 0 ^ eij 10.xi ; yi ; xj ; yj / � 0 ^ eij 11.xi ; yi ; xj ; yj / � 0

eij 12.xi ; yi ; xj ; yj / � 0

As only one of the systems has to hold, this leads to the use of auxiliary binary
variables to model the disjunction of constraints. Notice that this set of systems
of linear inequalities has to be defined for each pair of polygons, and at least one
inequality or system of inequalities by pair of polygons has to hold. An alternative
to this covering model is the partitioning model (e.g., [10]) where the systems of
inequalities are defined so that their geometric representations on the plan do not
overlap. In this case, exactly one inequality or system of inequalities has to hold
by pair of polygons. However, in any case, a feasible placement for all pieces (a
layout) corresponds to fixing specific binary variables. The inequality or system of
inequalities that hold for each pair of polygons on this layout will be henceforth
designated as the active constraints of the layout and altogether build a linear
programming model, as the non-fixed variables (the placement coordinates of all
pieces) are real-domain variables.
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Fig. 33 Applying the compaction (on the left) and separation (on the right) models, with the
solid gray pieces representing the initial solution and the dashed outlines representing the optimal
solution

The linear programming model describing a feasible layout does not fix the
absolute positions of the pieces but just their relative positions. Therefore, depend-
ing on the objective function, different layouts may be obtained. If the objective
function is the minimization of layout’s length (i.e., the rightmost vertex of all
pieces’ vertices), then the compaction problem is defined. In this problem, pieces
are coordinately and continuously moved so that their relative positions are kept,
but the length of the layout is minimized, as represented in Fig. 33 [16, 43, 63, 77].
It is also possible to use a similar model to eliminate overlap in an unfeasible layout
(Fig. 33). For that, an active constraint has to be chosen for each pair of pieces,
and for those pairs that overlap, an artificial variable is added so that the constraint
holds with a nonzero value of the artificial variable and the objective function will
be the minimization of the sum of the artificial variables. If the optimal solution of
the linear programming has all artificial variables equal to zero, then the layout is
feasible (without overlap).

Based on these compaction and separation models, hybrid solution methods can
be developed [16, 43]. The basis of these methods is local search heuristics that
search over the layouts and generate new solutions by swapping two pieces or
moving a single piece to a different position on the layout (insertion move). By
doing this, most probably the layout will have overlaps. A separation problem will
be solved to try to eliminate the overlap, and if it obtains a feasible solution, the
solution will be improved through a compaction problem. The way the search over
the solution space is controlled varies a lot, but metaheuristic approaches have been
used most of the times (see section “Metaheuristics”).

A different idea was explored by Martinez-Sykora [61] which is to design
a constructive heuristic based on the mixed-integer mathematical programming
model, i.e., with both the continuous and binary variables. In this approach,
a piece is inserted in the layout by adding to the model its placement vari-
ables, the constraints concerning all the no-fit polygons of this piece in relation
to all pieces already placed in the layout, and the binary variables related to
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Fig. 34 Relax-and-fix iteration applied to the dotted-board model

the edges of these no-fit polygons. All binary variables concerning the pieces
already placed are kept fixed in their previous values (i.e., the relative posi-
tions of the pieces already placed cannot change), but their continuous place-
ment variables are set free, to enable adjustments to make room for the new
piece.

Another approach was proposed by Cherri et al. [27]. This heuristic is based on
a different model, the dotted-board model [79], a discrete model, where the pieces
are constrained to be placed on a discrete set of points of the layout (a grid). The
decision variables are the points on the grid and state if a piece of a given type is
placed on that point or not. To impose the no-overlap constraints, no-fit polygons
are used to exclude points that would lead to overlap situations from being used
as placement points. Although this models solves larger instances than previous
models, the dotted-board model is not yet viable for large instances, and a relax-
and-fix heuristic with local branching constraints is proposed in [27]. Following the
relax-and-fix paradigm, in each iteration of the method, there are a set of variables
that are already fixed, another one that is free to be set by the model, and a third set
of variables that are relaxed. In the following iteration, the variables of the second
set become the first set variables, a group of variables of the third set is promoted
to the second set, and new variables are added to the third set. The method stops
when the third set is empty. To solve the irregular packing problem, the board is
divided into vertical slices, and the decision variables belonging to each slice will
progressively be relaxed, free, and fixed (Fig. 34). In order to add some flexibility
in the previously placed pieces, a few pieces in the fixed set are also set free (local
branching constraints).
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Metaheuristics

The majority of the most recent approaches to the irregular problem solution
are metaheuristics. However, the building blocks of these, sometimes rather so-
phisticated, search methods are the constructive, local search, and mathematical
model-based heuristics presented in the previous sections. After all, metaheuristics
are “just” a more sophisticated way of conducing the search over the solution space,
so that it does not stop at local minima.

Two of the very first metaheuristic approaches for the irregular packing problem
were already referred in the previous section [16, 43]. In both cases, pieces are
moved around the layout by swap and insert moves; overlap is eliminated by a
separation algorithm and compacted again by a compaction algorithm. In Bennell
and Dowsland [16], the search is guided by a tabu search procedure, while in Gomes
and Oliveira [43], simulated annealing is used.

Egeblad et al. [33] propose a local search scheme in which the neighborhood is
any horizontal or vertical translation of a given polygon from its current position.
The goal is to minimize overlap for a fixed layout length, where the minimization of
the layout length is achieved by iteratively reducing the layout length. To escape
local minima, the metaheuristic-guided local search is applied as described in
Algorithm 2.

A three-level algorithm is proposed by Imamichi et al. [48] for the irregular strip
packing problem. As the length of the board is variable, the upper level controls
it by increasing the length when it is not possible to place all the pieces without
overlap and decreases it when the layout is feasible. The algorithm stops when,
after having a feasible solution (without overlap), decreasing the length originates
again a layout with overlap. The second level is responsible for minimizing the
overlap, given a board with fixed length. An iterated local search metaheuristic is
used in which the perturbation phase consists in swapping two randomly chosen
polygons and the local search phase is a separation algorithm that aims to eliminate
existing overlap. The separation algorithm (third level of the approach) is based on
the resolution of a mathematical programming model with a nonlinear objective
function. The nonlinearity of the objective function is derived from the use of the
penetration depth as the overlap measure.

Umetani et al. [80] propose an approach that is a mix of the two previous ones.
For the overlap minimization problem, the orthogonal penetration depth is used,
while guided local search is used to generate new solutions during the search for
the best layout given a fixed length for the board. The latter starts with a value large
enough to admit a feasible solution, and then it is iteratively decreased until the best
solution found with the guided local search method has overlap. The algorithm stops
and returns the solution obtained with the previous board’s length.

The same three-level structure can be found in Leung et al. [57]. The overall
approach (Algorithm 3) is rather complex and is based on two neighborhood
structures, one based on swapping two polygons and the other based on moving
a polygon to a different position in the layout. A nonlinear programming model
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Algorithm 2: Guided local search for irregular packing
Given a set of polygons P .
Generate an initial layout p.
for each pair of polygons si ; sj 2 P do

Set penalty counter ˚ij D 0.
end for
while g.p/ > 0 (p contains overlap) do

Local search:
while p is not a local minimum do

Select polygon si .
Create p0 from p by sliding si horizontally and vertically
to the position in which h.p0/ is minimized, with
h.p/ D g.p/ C �

P
i

P
j ˚ij Iij .p/, in which Iij .p/ D 0 if overlapij .p/ D

0, 1 otherwise.
Set p D p0.

end while
penalize:
for each pair of polygons si ; sj 2 P do

Compute the utility function �ij .p/ D Iij .p/
overlapij .p/

1C˚ij
.

end for
for each pair of polygons si ; sj 2 P such that �ij is maximal do

Set ˚ij D ˚ij C 1.
end for

end while
Return p

is used to minimize the overlap during the search process (separation algorithm),
and the overall search has two phases: local search and tabu search. In the end, a
heuristic is run to improve the final solution. The parameters rdec and rinc control
how aggressively the length of the board is decreased and increased during the
search procedure.

The same structure is used in Elkeran [35]. The initial solution is generated by
the constructive algorithm by Gomes and Oliveira [42]. To improve the efficiency of
the algorithm, a pairwise clustering of the most non-convex pieces is done, although
these clusters do not show up in the final solutions. The board’s length is also
alternately decreased and increased. The most innovative part of the algorithm is
the use of the populational metaheuristic cuckoo search for the overlap minimization
level. The cuckoo search algorithm uses a balanced combination of a local random
walk and a global explorative random walk, controlled by a switching parameter,
to evolve from one population to another. Cuckoo search is responsible for moving
a polygon on the board to a less overlapping position, while guided local search is
used to escape local minima.



972 R. Alvarez-Valdes et al.

Algorithm 3: Extended local search for irregular packing
Best length: Lbest .
Current length: Lcurr .
Generate an initial solution �! Lcurr

Lbest D Lcurr .
while in a time limit do

Decrease the length of the board: Lcurr D .1 � rdec/Lbest .
Run local search algorithm based on swapping two pieces and minimizing
the consequent overlap by a nonlinear separation algorithm ! Lcurr .
if local optimum is feasible (has no overlap) then

Lbest D Lcurr

else
Lcurr D .1 C rinc/Lbest .
Run tabu search algorithm based on moving a piece to a different position
on the layout ! Lcurr .

end if
end while
Run heuristic procedure over the best solution found:
small movements of the pieces + overlap minimization + separation algorithm
Return best solution found

All the previously presented metaheuristics search over the layouts. Other
metaheuristic approaches are based on searching over sequences. It is the case of
Bennell and Song [18] that propose the use of the beam search metaheuristic, which
is a tree search procedure that tries to avoid the drawbacks of fixed tree search
strategies (e.g., depth-first, breadth-first) without the computational burden of an
exhaustive search. In this approach, solutions are represented by a sequence of
pieces to be packed. To decode these sequences, the modified version of TOPOS (see
section “Constructive Heuristics”) is used. The tree represents the construction of a
partial solution where each node adds a new element to the sequence. At each level, a
local evaluation function (in this case TOPOS evaluation criteria) evaluates all child
nodes. Child nodes will only compete with other children branching from the same
parent node. This evaluation provides a crude approximation of the solution quality
by measuring the incremental cost of adding an element to the partial solution. A
subset of size ˛ of the best nodes, using this evaluation, is selected (˛ is the filter
width). The selected filtered nodes are then subject to global evaluation, and the best
ˇ nodes are retained for branching (ˇ is the beam width).

Another metaheuristic based on searching over sequences can be found in Sato
et al. [73]. It is a bi-level approach with the top level controlling the board’s length
(increasing and decreasing it) and the bottom level finding a layout without overlap.
The overlap minimization algorithm is simulated annealing. The initial solution is
random, and the neighborhood is based on modifications of the placement sequence
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(two items are swapped), piece orientation (several rotations are allowed), and piece
position (for non-simple NFPs, in which contour or degenerated vertex or edge the
placement occurs). The decoding heuristic is the bottom-left NFP vertex-oriented
heuristic of Gomes and Oliveira [42].

Conclusion

Due to the combinatorial nature of Cutting and Packing problems, exact techniques
are not capable of efficiently tackling large instances, and therefore heuristic
approaches must be used. In this chapter, the most important heuristic techniques
that have been applied to Cutting and Packing problems have been presented,
going from simple constructive heuristics to rather complex hybrid metaheuristic
approaches and including local search heuristics and mathematical model-based
approaches. To frame these methods, a comprehensive section on Cutting and
Packing problems was written, including the discussion of these problems under
the typology of Wäscher et al. and the rather important geometric representation
layer that these problems require.

Given the broad range of Cutting and Packing problems, we chose to focus
on two- (both rectangular and irregular) and three-dimensional (just rectangular)
problems, as these better illustrate the full use of heuristic methods when ap-
proaching this class of problems. One-dimensional problems have no geometric
considerations, on one hand, and on the other hand are better solved by exact
methods than the other problems. Among the two-dimensional problems, and due
to space constraints, circle packing was not referred to in this chapter. However,
not only the main approaches closely follow what has been done for the other two-
dimensional problems, but also the interested reader can easily refer to the review
by Hifi and M’Hallah [45] and the following work. Integrating Cutting and Packing
problems with other optimization problems that in real life have a direct relation
to them, in the sense that the solutions of one problem impact the resolution of the
other, is a recent trend in the field. Once more, given the difficulty and complexity of
the problems, heuristic techniques have to be used to tackle the integrated problems,
such as vehicle routing and container loading [64].
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Abstract

The challenge of maximizing the diversity of a collection of points arises in a
variety of settings, and the growing interest of dealing with diversity resulted
in an effort to study the management of equity. While the terms diversity and
dispersion can be found in many optimization problems indistinguishable, we
undertake to explore the different models behind them.

In particular, this chapter describes the mathematical models for two diversity
and three equity models. Additionally, we also review two related models that
have recently received special attention. This chapter also reviews heuristics and
metaheuristics for finding near-optimal solutions for these problems, where con-
structive and local search-based methods, such as greedy randomized adaptive
search procedure (GRASP) and tabu search, play an important role.

Keywords
Diversity � Dispersion � Equity

Introduction

The problem of maximizing diversity deals with selecting a subset of elements from
a given set in such a way that the diversity among the elements is maximized [24].
Several models have been proposed to deal with this combinatorial optimization
problem. All of them require a diversity measure, typically a distance function
in the space where the objects belong. The definition of this distance between
elements is customized to specific applications. As described in [25], models have
applications in plant breeding, social problems, ecological preservation, pollution
control, product design, capital investment, workforce management, curriculum
design, and genetic engineering. As Scott Page states in his book [39]: Diverse
perspectives and tools enable collections of people to find more and better solutions
and contribute to overall productivity. As a result, the problem of identifying
diverse groups of people becomes a key point in large firms and institutions, as
described in [9].

The most studied model related to diversity is probably the Maximum Diversity
Problem (MDP) also known as the Max-Sum Diversity Model [20], in which the
sum of the distances between the selected elements is maximized. The Max-Min
Diversity Problem (MMDP), in which the minimum distance between the selected
elements is maximized, has been also well documented in recent studies [46].
Although the MDP and the MMDP are related, we should not expect a method
developed for the MDP to perform well on the MMDP or vice versa. We illustrate
it with an example in section “Correlation Between Models”.
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There are some models closely related to diversity called equity models,
which incorporate the concept of fairness among candidates. These models, how-
ever, have been mostly ignored, and only very recently, specific solving methods
have been proposed to them. Special attention deserves the work in [43] in
which four different equity models are proposed. These models appear in the
context of urban public facility location, diverse/similar group selection, and
subgraph identification, in which one may address fair diversification or assimilation
among members of a network. In this chapter we target both diversity and equity
models.

When formulating a model, the definition of distance between elements is
customized to the specific application. Generally speaking, it is assumed that each
element in the application can be represented by a set of attributes. Let sik be the
state or value of the k-th attribute of element i , where k D 1; � � � ; K. Then the
distance between elements i and j may be defined as

dij D

v
u
u
t

K
X

kD1

�

sik � sjk

�2
(1)

In this case, dij is simply the Euclidean distance between i and j , but other
distance or affinity functions can be considered as well. A common affinity measure
in the context of the equity is the cosine distance, computed as

dij D

PK
kD1 siksjk

q
PK

kD1 s2
ik

q
PK

kD1 s2
jk

(2)

The cosine similarity between two elements can be viewed as the angle between
their attribute vectors, where a small angle between elements indicates a large
degree of similarity. It takes values in Œ�1; 1� reflecting the affinity between the
individuals.

This chapter is organized as follows: In section “Mathematical Models and
Formulation” we define the different diversity models and the correlation between
their solutions. In section “Diversity, Dispersion, and Equity Examples” we review
the different diversity measures, and their mathematical expression, and graphically
explore their meaning. Finally, in section “Metaheuristics” we describe the most
recent papers about heuristic and metaheuristic algorithms to solve the models
previously introduced.

Mathematical Models and Formulation

Given a graph G D .V; E/, where V is the set of n nodes and E is the set of edges,
let dij be the inter-element distance between any two elements i and j , let M � V

be the set of m selected elements, and define U D V n M as the set of unselected
elements.
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Diversity Models

The Max-Min Diversity Problem (MMDP) can be formulated as follows:

(MMDP) Maximize zMM .x/ D mini<j di j xi xj

st
nP

iD1

xi D m

xi 2 f0; 1g i D 1; : : : ; n:

(3)

The Maximum Diversity Problem, MDP, also called Max-Sum can be formulated
in a similar way by simply replacing the objective function, zMM .x/, in the
formulation above with the expression zMS .x/ as

zMS .x/ D
X

i<j

dij xi xj (4)

The Max-Sum and Max-Min literature includes extensive surveys [1, 15, 31],
exact methods [1, 20, 41], and heuristics [4, 12, 13, 20, 28, 30, 44, 46].

Equity Models

In [43], the authors summarize some of the different dispersion models defining
them as follows. The Max-Mean Dispersion Problem (Max-Mean) can be formu-
lated as the following 0–1 quadratic integer programming problem:

Maximize

n�1P

iD1

nP

j DiC1

di j xi xj

nP

iD1

xi

st
nP

iD1

xi � 2

xi 2 f0; 1g i D 1; : : : ; n:

(5)

In (5) the cardinality restriction is not imposed. This problem is a version of the
Max-Sum problem where the number of elements to be selected is unknown. The
generalized version of this problem is called Generalized Max-Mean Dispersion
Problem and is formulated as follows:

Maximize

n�1P

iD1

nP

j DiC1

di j xi xj

nP

iD1

wi xi

st
nP

iD1

xi � 2

xi 2 f0; 1g i D 1; : : : ; n:

(6)

where wi is the weight assigned to element i 2 V .
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Then, the Maximum MinSum Dispersion Problem (Max-MinSum DP) consists
in selecting a set M � V in m elements such that the smallest total dispersion
associated with each selected element i is maximized. The problem is formulated in
[43] as follows:

Maximize

8

<

:
min

i Wxi D1

X

j Wj ¤i

di j xj

9

=

;

st
nP

iD1

xi D m

xi 2 f0; 1g i D 1; : : : ; n:

(7)

Finally, the Minimum Differential Dispersion Problem (Min-Diff DP) consists
in finding the best subset M � V with respect to the measure “Diff” defined in
Table 4. This problem is a 0–1 integer programming problem and can be described
as

Minimize

8

<

:
max

i Wxi D1

X

j Wj ¤i

di j xj � min
i Wxi D1

X

j Wj ¤i

di j xj

9

=

;

st
nP

iD1

xi D m

xi 2 f0; 1g i D 1; : : : ; n:

(8)

Related Models

Given a graph G D .V; E/ where V is a set of n nodes and E is a set of edges, let
wi � 0 be the weight of node i 2 V and let cij be the benefit of edge .i; j / 2 E. The
Capacitated Clustering Problem (CCP) consists in partitioning V into p clusters in
such a way that the sum of the weights of the elements in each cluster is within
some integer capacity limits, L and U , and the sum of the benefits between the
pairs of elements in the same cluster is maximized. The CCP can be formulated
as a quadratic integer program with binary variables xik that take the value of 1 if
element i is in cluster k and 0 otherwise:

Maximize
pP

kD1

n�1P

iD1

nP

j >i

ci j xi kxj k

st
pP

kD1

xi k D 1 i D 1; : : : ; n

L �
nP

iD1

wi xi k � U k D 1; : : : ; p

xi k 2 f0; 1g i D 1; : : : ; nI k D 1; : : : ; p

(9)

The objective function adds the total benefit of all pairs of elements that belong
to the same cluster. The first set of constraints forces the assignment of each element
to a cluster. The second set of constraints forces the sum of the weights of the pairs
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of elements in the same cluster to be between L and U . The Maximally Diverse
Grouping Problem (MDGP) consists in grouping a set of elements into p mutually
disjoint groups in such a way that the diversity among the elements in each group
is maximized, as described in [19]. The diversity among the elements in a group
is calculated as the sum of the individual distance between each pair of elements.
The objective of the problem is to maximize the overall diversity, i.e., the sum of
the diversity of all groups, when the size of each group is within a specified range.
Clearly, the MDGP is a special case of the CCP for which wi D 1 for all node i , and
the distance between each pair of nodes .i; j / is the benefit cij . Therefore, from the
CCP formulation above, the MDGP can be formulated as

Maximize
pP

kD1

iDn�1P

iD1

nP

j >i

ci j xi kxj k

st
pP

kD1

xi k D 1 i D 1; : : : ; n

L �
nP

iD1

xi k � U k D 1; : : : ; p

xi k 2 f0; 1g i D 1; : : : ; nI k D 1; : : : ; p

(10)

The MDGP is called the k-partition problem in [16] and the equitable partition
problem in [38].

Correlation Between Models

In [46], the authors illustrated by the example on Table 1 that the correlation between
the values of the solutions in Max-Sum and Max-Min problems can be relatively
low.

Let us consider that we have seven elements of which we need to select five.
Furthermore, the distances between each pair of elements are given by the matrix
of Table 1. For such a small example, we can enumerate all the possible solutions
(selections of elements) and compute for each one the value of the Max-Sum DP
and the value of the Max-Min DP. The correlation between both objective functions

Table 1 Distance matrix of
an instance with seven
elements

1 2 3 4 5 6 7

1 – 4:6 6:2 2:1 3:5 3:6 4:4

2 4:6 – 6:6 7:1 8:2 2:4 5:3

3 6:2 6:6 – 2:1 3:5 3:6 4:4

4 2:1 7:1 2:1 – 5:5 1:1 2:3

5 3:5 8:2 3:5 5:5 – 6:4 3:4

6 3:6 2:4 3:6 1:1 6:4 – 5:4

7 4:4 5:3 4:4 2:3 3:4 5:4 –
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Table 2 Correlation coefficients among the mean results in the 30 instances, with dij 2 U Œ0; 20�,
n D 20; m D 5

Mean value

Max-Sum Max-Min Max-MinSum Min-Diff

Max-Sum 1 0.60� 0.96� �0.17

Max-Min 0.60� 1 0.73� �0.63�

Max-MinSum 0.96� 0.73 1 �0.44

Min-Diff �0.17 �0.63� �0.44 1
�Correlation is significant at the 0.01 level

Table 3 Correlation coefficients among the best results in the 30 instances, with dij 2 U Œ0; 20�,
n D 20; m D 5

Best value

Max-Sum Max-Min Max-MinSum Min-Diff

Max-Sum 1 0.78� 0.90� 0.07

Max-Min 0.78� 1 0.77� 0.03

Max-MinSum 0.90� 0.77� 1 �0.07

Min-Diff 0.07 0.03 �0.07 1
�Correlation is significant at the 0.01 level

is 0.61, which can be considered relatively low. Therefore, we should not expect a
method for one of these problems to obtain good solutions for the other one.

We extend now that analysis by including the Max-MinSum, Min-Diff, Max-
Sum, and Max-Min models. We do not include the Max-Mean models because
they do not set the number of elements to select as the others. We generate
30 instances with 20 elements from which 5 have to be selected. Distances are
randomly generated according to a uniform distribution in the range Œ0; 20�. For
each instance we enumerate all its solutions (selections of f ive elements) and
compute the four objective values (Max-Sum, Max-Min, Max-MinSum, and Min-
Diff). Then, we compute two values per instance and objective, the mean and best
values across all the solutions. Tables 2 and 3 show the correlations obtained from
these two values, respectively.

There is no significant relation between the Min-Diff model solutions and the
rest of models. Despite obtaining a correlation coefficient of �0:63 in the mean
values between Min-Diff and Max-Min, this correlation is very low in the best case.
So, this problem can be considered different enough to the rest of models. The
largest correlation coefficient is obtained between Max-Sum and Max-MinSum.
The correlation coefficient of 0:78 between Max-Sum and Max-Min best value
solutions is also remarkable. Although these correlation values seem large enough,
we have empirically found that a method developed for one model problem does not
necessarily perform well on another or vice versa.
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Diversity, Dispersion, and Equity Examples

The terms diversity, dispersion, and equity can be found in many optimization
problems in the context of selection. While the first two are indistinguishable, the
term equity seems to have a subtle difference with them. On the other hand, in most
of the papers, these tree terms are used with certain ambiguity.

The problem is that the term diversity itself is not properly defined, and therefore
it results in different interpretations. In any case, we can say that it is associated with
a global characteristic of the selected subset and should be evaluated according to
the distances dij considered.

The growing interest of leading with diversity resulted in the last years in an effort
to study the management of equity, i.e., organizations are becoming increasingly
interested in ensuring an equitable treatment of individuals or institutions. Generally
speaking, equity is synonymous with fairness, objectivity, or impartiality. Many
authors, such as French in [18], argue that equity is relative to justice, such as the
distribution of resources or public service infrastructure.

In graphical terms, when we select a diverse subset from a given set, we expect
them to be scattered. In other words, we don’t expect them to be concentrated
in a small region. In this section, we graphically show the solutions obtained
when solving different models (Max-Sum, Max-Min, Max-MinSum, and Min-Diff),
in an attempt to disclose their characteristics. Given a set V D f1; 2; � � � ; ng,
an inter-element relationship dij defined between each pair of elements, and a
subset M � V , we denote the diversity of M as div.M/. In the example
shown in Fig. 1, inter-element distances are calculated using the Euclidean metric;
the results were obtained with mathematical programming models formulated in
section “Mathematical Models and Formulation” and obtaining the exact solution
with CPLEX 2.

If we are looking for solutions scattered in the set of elements, we might say that
objects selected in Fig. 1b, obtained with the Max-Min model, are better distributed
than those selected in the other models in Fig. 1 (see section “Mathematical Models
and Formulation” for more details in these models). In this figure the elements with
red square icons are the diverse set selected; the other ones are the unselected
elements. In the Max-Sum and Max-MinSum models (Fig. 1a, c, respectively),
the selected elements are located in the outer part of the graphic, which seems to
indicate those that are disperse.

Notice that in this example, we are using the Euclidean metric, and therefore our
interpretation is biased by our geometric conception. Particularly, this interpretation
is no longer valid for a general measure as defined in Eq. (2). Then, a more
general interpretation of diversity implies to abandon this intuitive and geometric
conception, and establish diversity from another point of view, forgetting the
Euclidean approach. Thus, the problem of measuring diversity in a given set is
not unique and gives rise to different problems depending on the metric used.
We have identified five different measures to compute the diversity, equity, or
dispersion in M . Table 4 summarizes them.
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Fig. 1 Comparison of different models of a set of 30 elements with 10 selected elements

Consider two examples in the rectangle Œ0; 10�� Œ0; 10� to illustrate the difference
among the different dispersion measures based on the Euclidean distance. The
position of the elements is obtained at random in both examples. In the first
example, Example 1, we consider n D 12 elements, whose position is represented in
Fig. 2.

The aim of this example is to observe the value of the different dispersion
measures. Consider two different subsets of selected elements. Solution A con-
tains the elements f2; 3; 7; 9g and solution B contains the elements f1; 3; 8; 10g.
In Fig. 3, we show in big squares in red the selected elements of these two
solutions.

The numerical value of the different diversity measures is shown in Table 5.
We can realize that the Max-Min, Max-MinSum, and Min-Diff models give better
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Table 4 Description of the different diversity measures

Measure Mathematical function Description

Sum
X

i<j;i;j 2M

dij This measure may address diversi-
fication among selected elements to
distance

Min min
i<j;i;j 2M

dij Focus on the minimum distance
among the selected elements

Mean

P

i<j;i;j 2M dij

jM j
Related to the sum measure is an
average equity measure

MinSum min
i2M

X

j 2M;j ¤i

dij This measure considers the mini-
mum aggregate dispersion among
elements

Diff max
i2M

X

j 2M;j ¤i

dij � min
i2M

X

j 2M;j ¤i

dij This measure can be understood as
the difference between the largest
and smallest values of the disper-
sion sum

Fig. 2 Position of the
elements in Example 1
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results in solution A than in B . However, solution B is better than A in the other
models. According to this, one could think that the five models considered can be
grouped into two categories. However, the next example illustrates that it is not
always in this way.

Consider now a second example, Example 2, with 500 elements, where we have
to select 80 elements. As above, we consider two solutions with different subset
of elements (see Fig. 4), and we show the numerical measures of each model in
Table 6.
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Fig. 3 The two subsets of selected elements in Example 1

Table 5 Diversity measures for the two subsets of selected elements in Example 1

Model Max-Sum Max-Min Max-Mean Max-MinSum Min-Diff

Solution A 30.26 3.09 7.56 12.87 4.99

Solution B 32.10 1.70 8.10 12.30 15.30
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Fig. 4 The two subsets of selected elements in Example 2

In this example, A exhibits better diversity measures than B in all cases except in
the Max-Min model. These results seem to confirm that the diversity depends on the
model we are applying. Therefore, as it is customary when solving an optimization
problem, we first have to model it, which in our case means to select the diversity
model that better reflects our goal.
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Table 6 Diversity measures for the two subsets of selected elements in Example 2

Model Max-Sum Max-Min Max-Mean Max-MinSum Min-Diff

Solution A 17021.0 0.123 212.76 315.73 264.43

Solution B 15995.9 0.169 199.95 293.51 287.97

Finally, it is easy to compute that the complexity of evaluation of the diversity
is O.m2/, where m is the number of selected elements, in the case of Max-Sum,
Max-Min, and Max-Mean; however, in Max-MinSum and Min-Diff models, the
complexity is O.m3/.

Metaheuristics

We can find a large number of heuristic and metaheuristic algorithms to solve all
kinds of diversity problems in the literature. However, the research has been quite
dispersed, and there are very few review articles, probably due to the different names
used for these problems. So, we can only find incomplete comparisons among
the methods proposed to solve these models. The absence of a precise definition
of what diversity means entails the absence of a framework that integrates all
these models, and each one has arisen independently. In this section, we review
the main heuristic and metaheuristic proposed for the Max-Sum, Max-Min, Max-
Mean, Max-MinSum, and Min-Diff models. In [2], the authors present an extensive
computational experiments to compare 10 heuristics and 20 metaheuristics for the
Max-Sum model.

The Max-Min Model

Two construction methods based on greedy randomized adaptive search procedure
(GRASP) and different approaches to hybridize them with path relinking methodol-
ogy are proposed in [46]. The first GRASP construction consists of evaluating each
candidate element with a greedy function in order to identify the best elements and
add them to the so-called restricted candidate list (RCL). Then, the next element to
be included in the partial solution is randomly chosen from RCL. On the other
hand, the other GRASP construction method is based on an alternative scheme
introduced in [45], in which the RCL is constructed totally at random from elements
in the candidate list (CL). Therefore, RCL can be thought in this latter case of as a
random sample of CL of a preestablished size. Then, the greedy function is applied
to evaluate all the elements in RCL in order to choose the best. In this alternative
design, the sequence of applying randomness followed by greediness is inverted.
The local search mechanism implements the mildest ascent technique and the path
relinking methodology. The second strategy is more efficient than the classic one in
this model. The same behavior of GRASP scheme is observed in other models of
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maximum diversity as in [33]. In [42], the authors proposed a simple and effective
tabu search algorithm based on drop and add moves. The local search consists of
switch (or swap) a selected element with an unselected element, if it is better than
the current solution. The stopping criterion is met when there is no improvement
in a number of iterations. A short-term tabu search memory is added to this local
search by declaring tabu the most recent moves.

Della Groce et al. proposed in [10] an Iterated Local Search heuristic algorithm
based on reformulating the Max-Min Dispersion Problem as a dichotomic search,
where at each iteration of the search a clique decision problem has to be solved.

The Max-Sum Model

The algorithm described in [29] is based on the memetic approach, which starts
generating the initial population using a greedy randomized procedure. To ensure
the diversity of this initial set of solutions, according to the classical binary pattern,
each solution of size n contains m bits equals to 1. Two parents are randomly
chosen with the restriction that none of them are used more than once in each
generation. In the next iteration, the new parents are performed by selecting the best
previous parents and the best generated children, without repetition. After that, p=2

children are obtained by using a crossover and mutation procedure, where p denotes
the number of parents. Uniform crossover generates only one child, in which the
chromosomes are selected from one parent with probability lower or equal than
0:5 and the second parent with a probability higher than 0:5. Mutation changes the
offspring by flipping bits from 1 to 0 or from 0 to 1. Mutation can occur at each bit
position in the string with some probability. After each crossover and mutation, a
repair process is applied in order to ensure feasibility, i.e., the chromosome contains
m bits which equals to 1.

A local search process based on k � f lip (k � opt ) movements is applied to
the feasible solutions in the memetic algorithm. These movements consists of two
loops. The inner one generates solutions by flipping the elements of a solution x,
as long as it does not find the best solution or it performs t repetitions. In an outer
loop, the best solution found is evaluated. An overview of the algorithm allows to
say that it works well, although execution times are higher than other algorithms.

In [17], the authors propose a memetic self-adaptive evolution strategy. Evolution
strategies are a class of evolutionary algorithms primarily dependent on mutation.
The authors compare their algorithm with the algorithms of the state of the art: a
variable neighborhood search (VNS) [5] method, a learnable tabu search (LTS) [47],
and an iterated tabu search (ITS) [40]. The evolution strategy provides satisfactory
results when the goal is not to achieve the optimal results; in other cases, simple
heuristics may be preferred.

Some metaheuristics for this problem are compared in [2] to identify addi-
tional features that provide the best improvement. All of them are based on a
common tabu search module [12, 23]: an exploring tabu search [9], a variable
neighborhood search [26], a scatter search [32], and a random restart algorithm.
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All these algorithms are competitive with the state of art. The best performing
algorithms are the ones based on random restart or a nearly random restart in
which the elements of the current best-known solution are forbidden. The authors
suggest that, given the simple structure of the MDP, simple algorithms might work
better. The authors consider the best algorithm available in literature is the one
proposed in [5]. In that paper, the authors describe a study to solve the problem
“heaviest k-subgraph” (HSP); the Max-Sum problem is a special case of HSP. The
computational experiments are performed by using the instances of the Max-Sum
problem; the aim is to test the efficiency of the proposed algorithms. The authors
propose construction methods based on GRASP, greedy, scatter search, tabu search,
and a multi-boot method. The variable neighborhood search method used in the
article is equivalent to that proposed in [27]. This method is more efficient for
the mechanism of variable neighborhoods adopted, compared with state-of-the-
art heuristics that use specialized hybrid versions of GRASP and tabu search. The
conclusion-based method VNS can be seen as advantageous for both the problem
HSP and Max-Sum problem, providing better quality results but more expensive
computationally.

A generalization of Max-Sum problem is the Capacitated Clustering Problem
(CCP), which consists of forming a specified number of clusters or groups from a
set of elements in such a way that the sum of the weights of the elements in each
cluster is within some capacity limits, and the sum of the benefits between the pairs
of elements in the same cluster is maximized. The Maximally Diverse Grouping
Problem (MDGP) is a special case of the CCP in which all the elements have a
weight of one unit. The MDGP is also known as the k-partition problem in [16]
or the equitable partition problem in [38]. In [19], the authors propose a heuristic
procedure for the MDGP based on the tabu search with strategic oscillation (TS-
SO). The methodology starts by using a greedy construction method for the initial
solution; then the search neighborhood in TS-SO consists of all node insertions
and swaps. Finally, the third phase of TS-SO, the strategic oscillation (SO) phase,
explores solutions for which the group cardinality restrictions may be violated.
In particular, the method applies the neighborhood search, but the number of the
elements in a group is allowed to be outside the specified limits by a certain amount
so. To create the oscillation pattern, the value of so is reset to one after every
successful application of the improvement method. Recently, in [35], the authors
propose a tabu search and several GRASP variants to find high-quality solutions to
this NP-hard problem. These variants are based on several neighborhoods, including
a new one, in which they implement a one-for-two swapping strategy. In this paper,
the authors also hybridize both methodologies to achieve improved outcomes. The
algorithms are compared with the state of the art:

• In [11], the authors proposed a greedy randomized adaptive search procedure
(GRASP) with variable neighborhood search (VNS) that, according to their
computational study, outperforms previous approaches. An interesting applica-
tion arises in the context of facility planners at mail processing and distribution
centers within the US Postal Service.
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• In [37], the authors proposed a GRASP with path relinking for the handover
minimization in the context of mobility networks. As a mobile transceiver moves
between areas, it may need to connect over time to several base stations. The
transfer of connection from one base station to another is called a handover. Each
base is connected to one radio network controller (RNC), which controls many
of its operations, including its traffic and handover. Handovers between base
stations connected to different RNCs tend to fail. The handover minimization
problem is to assign base stations to RNCs such that RNC capacity is not
violated, and the number of handovers between base stations connected to
different RNCs is minimized. The set of base stations assigned to a RNC can
be viewed as a cluster, and the minimization of handovers between different
clusters is equivalent to the maximization of handovers within the same cluster.
Therefore, this problem is equivalent to the CCP, and in [35], they also compare
their new method with the previous heuristic proposed by [37].

The Max-Mean Model

Two recent papers proposed heuristic methodologies to solve the Max-Mean model.
The first one is [33], where the authors test a GRASP constructive algorithm
based on a nonstandard combination of greediness and randomization. The greedy
function considers the mathematical properties of this problem, based on the quasi-
concave shape of the partial solutions. Then it is applied as a local search strategy
based on the variable neighborhood descent methodology, which includes three
different neighborhoods, and a path relinking post-processing. This latter method
is based on a measure to control the diversity in the search process. The authors
compare their algorithm with the best algorithms for the Max-Sum problem adapted
to this particular problem. On the other hand, in [7] the authors propose a method
to solve the Max-Mean problem based on a greedy construction phase and a tabu
search (TS) method. First of all, an initial solution is constructed by two greedy
algorithms for generating good initial solutions to the tabu search procedure. After
that, a two-phase tabu search method is applied. The first stage (called short-
term TS) is devoted to the intensification of the search. The second stage (called
long-term TS) is focused on a diversification strategy to explore new regions of
the solution space. Additionally, both begin from the current solution, and after
termination, they return the overall best solution and their current solution. Note
that the current and the best overall are not usually the same solution since these
phases usually deteriorate the current solution in order to escape from its basin of
attraction. The search terminates after a maximum number of iterations have elapsed
without improving the overall best solution.

The Max-MinSum Model

The Max-MinSum DP is a difficult combinatorial optimization problem and a per-
fect platform to study the effectiveness of search mechanisms. The computational
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experiments presented in [43] include results of applying a GRASP methodology to
the Max-MinSum dispersion problem. In their GRASP implementation, the authors
define Mk as a partial solution with k selected elements (1 � k < m). Each
construction phase of GRASP starts by randomly selecting an element in order
to initialize M1. Then, in each iteration, the method builds a candidate list (CL)
that consists of all the unassigned elements. For each element i in CL, the method
computes a marginal contribution of the element toward the objective function
associated with MkC1:

4f k.i/ D min

�

min
j 2Mk

˚

sk.j / C dij ; sk.i/
�
�

� f .Mk/ (11)

where f .Mk/ is the value of the objective function corresponding to the partial
solution Mk and

sk.i/ D
X

j 2Mk

dij (12)

Elements in CL are ordered according to the marginal contributions, that is,
from largest to smallest 4f k values. Then, a restricted candidate list (RCL) is
constructed with the top ˛ elements in CL. The value of ˛ is selected at random,
in each construction step, from a uniform distribution with parameters 1 and jCLj.
The element to be included in the partial solution MkC1 is randomly chosen from
RCL. An improvement phase is executed after a solution M has been constructed.
The improvement phase consists of an exchange mechanism in which a selected
element i is replaced with an unselected element j . The method randomly selects
both elements and exchanges them if and only if the objective function value of the
resulting solution improves; otherwise, the .i; j / pair is discarded. The improvement
phase finishes after 100 iterations without any improvement.

Finally, in [34] the authors test six different GRASP variants in which they
considered different ways to generate and improve a solution. For the improvement
phase, the authors consider two different designs. Both designs are pure local
searches in the sense that they terminate when the exploration of the entire
neighborhood of the current solution does not yield a move that improves the
objective function value. Given a solution M , the first approach, IM1, consists
of the exhaustive exploration of the neighborhood defined by all .i; j / exchanges.
An exchange results in a neighbor solution M 0. Let M � be the neighbor solution
M 0 with the best objective function value. Then if f .M �/ > f .M/, then the
search moves to M � and the neighborhood is explored. Otherwise, the improvement
method ends. The second design, IM2, instead of exploring all possible exchanges,
considers the contribution of the selected elements as well as the potential contribu-
tion of the unselected elements to create a priority list. In the best construction phase
proposed in [34], called CM3, instead of constructing solutions by adding elements
to a partial solution with too few elements, a feasible solution can be found by
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deleting elements from an unfeasible solution with too many elements. The authors
added a new ingredient in the construction phase, the notion introduced by Glover
in [21] called strategic oscillation (SO). The authors focus on the construction phase
of GRASP and oscillate around the feasibility boundary defined by the constraint

n
X

iD1

xi D m:

The constraint indicates that a feasible solution must have m elements. Therefore,
the boundary around which the authors define their SO separates unfeasible Mk

solutions into those with k < m and those with k > m. The single-sided oscillation
patterns may be seen as intensification mechanisms, while the two-sided oscilla-
tion pattern favors search diversification. Finally, the authors performed several
experiments with instances previously used in the literature. The experiments show
that the double-sided strategic oscillation with the CM3 constructive method and
the IM2 improvement method provides the best outcomes overall. Moreover,
the results indicate that the proposed hybrid heuristic compares favorably to an
existing specialized procedure and a general-purpose optimizer (LocalSolver, which
is available at http://www.localsolver.com).

The Min-Diff Model

The most recent papers on the Min-Diff model are [3, 13, 36]. In [3], the authors
proposed a two-phase heuristic algorithm for this problem. The constructive phase
exploits the relation between this problem and the Maximum Clique Problem
(MCP); however, the improvement phase is a tabu search procedure. The two phases
are repeated iteratively adding a simple diversification mechanism in the construc-
tive phase. This work also shows a way to reduce the computational complexity at
each iteration, from a quadratic evaluation to a linear update mechanism.

In [13], the authors proposed several new hybrid heuristics. The best one consists
of a GRASP with sampled greedy construction with variable neighborhood search
for local improvement. The authors considered eight constructive procedures; four
local search procedures, including one based on VNS; and four path relinking
strategies. In [22], Glover introduced the concept of exterior path relinking, or path
separation. The authors in [13] used this variant of the more common interior path
relinking for the first time. Extensive computational experiments on 190 instances
from the literature demonstrated the competitiveness of the algorithm. Not only was
it able to outperform the GRASP heuristic of [43] and find optimal solutions to
all but one of the instances that CPLEX is able to solve, but it also improved the
CPLEX upper bound on all but one of the instances that CPLEX failed to solve.

Finally, in [36], the authors propose a basic variable neighborhood search (VNS)
heuristic, limited to interchange neighborhood structures both in intensification and

http://www.localsolver.com
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diversification phases. The authors show that VNS is faster than an efficient and
effective method that combines GRASP, variable neighborhood search, and exterior
path relinking metaheuristics. As a conclusion, the authors state that their results
will be a reminder of what the original goal of heuristics is: to create an efficient
and effective algorithm so to be as simple as possible or, in short, less is more.

Conclusions

In this chapter we reviewed two diversity and three equity models, and we have also
considered two related models. We identified previous mathematical models and
heuristic methods for these seven variants. Most of them are based on constructive
and local search-based methods. This is the case of the GRASP and tabu search
methodologies, which have been customized for some of this models with excellent
results. Surprisingly, evolutionary methods, such as the popular genetic algorithms,
have been considered in just a few cases. We noted that although the problems
considered here are related, all previous efforts are devoted to tackle very specific
models, and no generic solver has been proposed to deal with the entire family.
Additionally, we have studied the solution structure obtained with the different
models, and we have identified some differences and similarities between them.

We can conclude that the current state-of-the-art models and solution algorithms
for the diversity and equity models seem not really satisfactory. Whereas very good
feasible solutions can be found for large problems using the comprehensive toolbox
of heuristics, fairly small problems can still be difficult for exact algorithms and
cannot be solved to optimality in reasonable time. Additionally, the development
of generic solvers that deal with several models would be of interest. So there is
definite need for further research on algorithms, mainly for exact algorithms but
also for heuristics.
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Abstract

Protein structure prediction is an essential step in understanding the molecular
mechanisms of living cells with widespread application in biotechnology and
health. The inverse folding problem (IFP) of finding sequences that fold into
a defined structure is in itself an important research problem at the heart of
rational protein design. In this chapter, a multi-objective genetic algorithm
(MOGA) using the diversity-as-objective (DAO) variant of multi-objectivization
is presented, which optimizes the secondary structure similarity and the sequence
diversity at the same time and hence searches deeper in the sequence solution
space. To validate the final optimization results, a subset of the best sequences
was selected for tertiary structure prediction. Comparing secondary structure
annotation and tertiary structure of the predicted model to the original protein
structure demonstrates that relying on fast approximation during the optimization
process permits to obtain meaningful sequences.

Keywords
Genetic algorithm � Diversity preservation � Inverse folding problem

Introduction

The relation between the amino acid sequence of a protein and its three-dimensional
structure is a principal research effort of structural biology. Obtaining the folded
structure of a protein allows functional studies in silico and has given rise to the
field of protein engineering.

Proteins are responsible for the majority of molecular functions in a cell. A
simplified illustration of a real protein is provided in Fig. 1. Understanding protein
folding has immense implications from health to biotechnology applications. Pro-
tein engineering in general aims at designing molecules with desired properties, and
a method that allows to successfully design such molecules would find applications
in a number of areas. For example, it could allow to design improved enzymes for
biotechnology applications such as wastewater treatment or biomass production [7]
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Fig. 1 Protein example
1OH0 with its surface shown
semitransparent. Helix and
sheet secondary structure
segments are shown in dark
red and light blue,
respectively. Selected atoms
are displayed for further
clarification

or new antibodies specific toward already known targets, e.g., a given pathogen like
HIV, by binding to its envelope spikes to neutralize the virus [19]. Since the advent
of genome sequencing, all protein-coding genes of an organism can be obtained
with ease, but structure prediction capabilities were only slightly improved over the
last two decades and remain poor. If no homologous structure to a given sequence
exists (the ab initio problem), finding the correct structure remains an essentially
intractable, which hampers even the comparably easy task of classifying protein
sequences into families.

Amino Acids and Protein Structure

A protein sequence is the code that describes the linear combination of any of the
20 common amino acids, also referred to as residues. The amino acid residues
are basic organic building blocks consisting mainly of carbon (C), hydrogen (H),
oxygen (O), and nitrogen (N) atoms. Common for all amino acids are their amine
and carboxylic acid functional groups which bind through peptide bonds to form
the protein backbone of N � C˛ � C atoms as shown in Fig. 2. When ordered
from left to right, as in the figure, the amine group, here represented by its nitrogen
(N) atom for simplicity, is situated to the left of the amino acid, respectively,
at the beginning of the chain. The side chains, noted as Ri , vary with each of
the possible amino acids and can vary both in size and other properties, such as
charge, acidity, and hydropathy. A typical protein sequence is 50–300 residues
long. Due to the rotational freedom of the atom bonds and the molecular forces
acting between the residues, it folds into one canonical three-dimensional structure.
These intermolecular forces are the sum of a number of complex interaction forces
largely depending on the mentioned properties of the residues, but also on the
distance and orientation of interacting atoms and structures. In general the protein
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Fig. 2 Three levels of protein structure

structure will try to adapt a lower-energy configuration like a bolder that will roll
down a mountain into the valley due to the gravitational force. In the case of
proteins, such a more relaxed state corresponds to parts of the protein being either
stacked or curled together referred to as sheets or helices as seen in Fig. 1. The
remaining unstructured segments are commonly referred to as loops and serve as
flexible connections between the other segments. The structure of a protein can
be defined in different levels (see Fig. 2). The primary structure is the protein
sequence of N amino acids faai g where 1 � i � N is the residue position.
The secondary structure defines the organization of helices, sheets, and loops of the
tertiary structure and can be expressed by a type fTi g 2 fH; E; Lg for each position
i in the protein. If, for example, a protein consists of a helix and two sheets, its
secondary structure would look like this: fL; L; H; H; H; H; L; E; E; L; E; E; Lg.
The tertiary structure completely describes the arrangement of all atoms of a
protein in the three-dimensional space. The ensemble of three-dimensional posi-
tions of C˛ atoms is commonly referred to as the alpha-trace which provides a
rough residue type- and rotation-independent view of the protein configuration.
Similar protein sequences generally obtain the same configuration or fold, but
sequences not recognizable by similarity can nevertheless fold into 3D structures
that are easily brought into congruence. Recommended reading for more in-
depth information about proteins and their function in cells is the book by
Alberts et al. [2].
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Inverted Protein Folding

Conventional protein folding prediction research is concerned with finding or
predicting the folded structure of a given amino acid sequence. As the problem
is not solved, even to the present day, scientists have early on sought to simplify
the task by solving the inverse problem. With the hierarchical definition of Fig. 2 in
mind, the inverse folding problem (IFP) can be defined as follows: given a primary
structure (protein sequences) and its corresponding tertiary structure, find alternative
sequences that will result in the same tertiary structure. The inverted problem
is thought of as a simplification because the structure is given, and sequence to
structure compatibility becomes the main difficulty. When the structure is unknown
(the ab initio case), the number of possible configuration solutions is enormous.
A central part of any protein design process is to obtain, or come close to, a
target tertiary structure with a certain degree of freedom in the choice of protein
sequence. Hence solving the IFP would be a key to successfully engineer proteins.
Furthermore, the IFP is of general scientific interest to study the size, shape, and
characteristics of the sequence space that matches a given target structure.

Diversity Preservation as a Tool

In this chapter, the fact that matching secondary structures is a necessary, but not a
sufficient condition for proteins to have the same tertiary structures, is exploited to
reduce the IFP to its simplest formulation: given a protein’s secondary structure
and its corresponding protein sequence as input, find a set of highly dissimilar
protein sequences that could result in the most similar secondary structure. The
multi-objective genetic algorithm (MOGA) variant presented here is hence designed
for maintaining high diversity, which in turn allows it to explore the decision
space of sequences more efficiently and find better solutions than a conventional
algorithm. This essentially makes the diversity preservation characteristic central
in two aspects: (1) it increases the algorithm’s performance in that it continuously
pushes the exploration to new areas of the search space while (2) addressing the
part of the problem statement of finding a set of protein sequences (i.e., problem
solutions) that show large diversity among each other. The latter aspect is thoroughly
covered in �Chap. 32, “Diversity and Equity Models”, though it should be noted
that the representation of solutions and distance among them is different from this
work.

An extended validation test is run predicting the final folded structure of as
many as 300 generated sequences which are then analyzed in terms of secondary
and tertiary structure. This test aims at answering the question of how well the
target tertiary structure can be matched solely by taking the secondary structure
into account.

The remainder of this chapter is organized as follows: in section “Related
Work” the current work is situated in related literature; then a detailed description
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of the problem and the biological background is introduced in section “Problem
Description” and modeling thereof described in section “Problem Model”. In sec-
tion “Algorithm Design” the methodology achieving adjustable level of diversity in
the genetic algorithm is presented. Section “Algorithm Experiments” describes the
experiments conducted and the results obtained in terms of algorithm performance,
with a validation study of secondary and tertiary structure in sections “Primary
and Secondary Structure Validation Results” and “Tertiary Structure Validation Re-
sults”. Finally the results and perspectives are summarized in section “Conclusion”.

Related Work

This section reviews some of the most relevant works related to the two main areas
covered in this chapter: protein design and diversity preservation in metaheuristics.

Protein Design

Most applied work of the IFP is concerned with protein design. Since the first design
of a peptide by Gutte et al. [14] using secondary structure rules, numerous works
have described different approaches to the IFP problem. The earliest reference to the
inverted approach is found in an article by Pabo [24] referring to Drexler [11] stating
that protein design engineers could in theory choose from a vast subset of possible
sequences containing strategically placed groups that would have a predictable fold.
Another early attempt at tackling the IFP is done by Ponder and Richards [25] who
used a systematic exhaustive approach of enumerating a selected subset of residue
positions. Central to the approach is the focus on packing criteria of core residues,
taking a latest available side-chain rotamer library into account. Core residues are
internal or buried residues not in contact with solvent. They contribute to the general
structure of the protein and rather seldom to its primary function. A rotamer library
is a library of known side-chain arrangements in 3D for each residue which is
important to consider when evaluating the space filling of the core structure.

A few years later, Bowie et al. [5] introduced a 3D to 1D score for each
secondary structure type and six environmental classes determined by (1) area
buried in the protein structure and (2) fraction of polar side-chain area. By analyzing
16 known structures, the overall relative probability of observing a residue in a
defined environment class is computed. From this and the target tertiary structure,
a 3D profile can be generated taking the environment at each residue position into
account. The 3D to 1D score is calculated by matching a sequence to the 3D profile
of a structure. The result is expressed relatively using the Z-score, indicating the
number of standard deviations above the mean of other sequences of same length.
Using this method they were able to clearly separate homologs (evolutionary-related
proteins) in terms of Z-score from a large set of sequences. Kuhlman and Baker [21]
used a Monte Carlo approach of residue and rotamer substitution at 11 nonadjacent
core positions, evaluating a free energy function. The lowest energy sequence of five
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algorithm runs was chosen, and as a final result half of the generated residues were
identical to the reference protein, referred to as “wild type.”

The first to use a genetic algorithm (GA) was Jones in [17]. To assess 3D-1D
compatibility and define an objective function, a set of statistically determined
potentials known from fold recognition are used: pairwise potential and solvation
potential. To prevent the generation of unlikely sequences, a residue composition
term with an arbitrary weight is added corresponding to the target folding class (˛˛,
˛ˇ, ˇˇ). Jones concluded that there is no way to be sure the resulting sequences
have not been overdesigned as the optimal sequence scores significantly better than
the reference. He speculates that the energy optimal shape might be very steep and
too hard for the real-world protein to fold into. Therefore, the algorithm should
possibly be stopped earlier.

Mayo et al. [29] successfully used backbone flexibility in the design process by
generating a set of perturbed backbones and applying enumeration of ten varying
residue positions applying dead-end elimination to cut the search space. Similarly,
Harbury et al. [15] incorporated such backbone freedom in their design approach.
Both latter approaches were evaluated by synthesizing the proteins in the lab. Isogai
et al. [16] used a recursive approach searching the 3D profile of the target structure
keeping two residues fixed and applying a penalty to residues that protrude into
the space with a repulsive function. Collisions among side chains were removed
manually by replacing residues with smaller ones. The design was successfully
synthesized, but the binding site did not stably bind oxygen.

Wernisch et al. [33] sought to combine the latest approaches into an automatic
software solution named DESIGNER. The CHARMM package [6] is used for
force-field calculation among side chains and backbone taking all hydrogen atoms
bonded and nonbonded into account as well as adding van der Waals forces and
electrostatic interaction. Both an exact enumeration approach (branch and bound)
and a simple heuristic selecting the optimal rotamer for one random position at the
time until a local optimum has been reached were tested. Different experiments
aimed at analyzing different setting effects on the results were conducted. One
test compares the effect of neglecting the reference energy and solvation energy
terms, respectively, when redesigning 11 buried positions in the core. The choice
of energy terms largely impacts the amount of polar amino acids, and neglecting
the solvation term produced better packing with less cavities. Another test aimed at
optimizing the protein surface with its larger proportion of polar amino acids. Again
11 positions are variable and varying settings are tested. First backbone and rotamers
are kept fixed, and then alternative rotamers were allowed. Wernisch et al. consider
that the energy calculations are approximations. Therefore, the software allows for
outputting multiple solutions within a user-defined energy window. When packing
constraints apply, DESIGNER generated sequences close to the reference.

Voigt et al. [32] combined the field of directed evolution with that of com-
putational design and seek to benefit from both. Directed evolution is concerned
with improving specific protein properties or functions mainly by applying a
series of mutations to the target as mutagenesis in nature. In their computational
method, energy was used to predict structural stability, and residues with low
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entropy are detected as more tolerant to mutations. They also argued that coupled
residues should be substituted together as several replacements need to take place to
demonstrate improvement. High variability was observed on the exposed residues,
and in general the variability should guide mutagenesis to allow the generation of a
family of divergent sequences with structural integrity intact.

Klepeis et al. [20] presented a two-stage approach where an integer program is
first used to generate a list of low-energy sequences which are then evaluated in
terms of their fold. Using a force field based on pairwise C˛ , distance-dependent
interaction potential gives a more relaxed backbone flexibility constraint with
less empirically tuned parameters. Validation was done by improving the activity
of Compstatin, a 13-residue-long peptide fundamental in inhibiting complement
activation. Certain residue positions and types were restricted based on knowledge
about the functional nature and with the goal of increasing activity. Experimental
results on 14 designed sequences showed significant activity improvements in most
cases, one analogue was six to seven times more active than the wild-type underlin-
ing. This two-stage approach with small variations is used to design a template for
human ˇ-defensiv-2 in [12] and with more advanced second stage in [3, 4].

Smadbeck et al. [28] have recently streamlined the two-stage process and
present a server implementation with a usage example. The web interface allows
for specifying all inputs: template (rigid/flexible), energy function (C˛ , centroid,
or any), and biological constraints (on charge and content). Stage two workflow
consists of two independent fold specificity and approximate binding affinity
modules. These include programs such as CYANA, TINKER, and AMBER for the,
first, Rosetta (ab initio, dock, and design ) and OREO for the latter.

Finally, Mitra et. al [23] used templates of structure families in combination with
a force field to guide the search rather than physics-only-based force fields. Due to
shortcomings of the latter, evolutionary-based designs have been demonstrated to be
more stable. Experiments were conducted with one of the leading protein structure
prediction frameworks, I-TASSER[37]. Previous works have shown that I-TASSER
is able to distinguish successful designs from unsuccessful ones and is therefore
used as validation of the results also in this work.

The research of the last three decades on the IFP problem has produced many
methods, but their complexity and exhaustive nature effectively limits the size of the
sequence or decision space that can be sampled. In addition, the final output of these
methods consists of a single or few sequences close to the input sequence, where a
larger and more diverse set of sequences would be desirable for practitioners.

Multimodal Optimization and Niching

In metaheuristics the subject of exploration vs. exploitation characteristics has
been thoroughly studied. For population-based optimization algorithms, it is well
known that a higher level of population diversity results in more exploration at
the expense of exploitation. An elevated population diversity is especially desirable
for multimodal, deceptive, and/or dynamic problems. In general, if diversity tends
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toward zero, it indicates that the algorithm has converged toward a single solution,
which might be an undesired behavior if it occurs too early. A number of works
have focused on maintaining and controlling diversity, such as crowding methods
by DeJong [8], fitness sharing by Goldberg and Richardson [13], cellular algorithms
by Alba and Dorronsoro [1], and diversity-preserving selection strategies based on
hamming distance by Shimodaira [27] and on altruism by Laredo et al. [22]. Another
approach consists in designing new objectives through multi-objectivization, with
which the problem is transformed into a bi- or multi-objective one. Extending
problems with an objective designed specifically for diversity preservation has been
proposed by Toffolo and Benini [30], by Deb and Saha [9], and most recently by
Wessing et al. [34]. In these works, objectives have been designed based on the
hamming distance to the closest neighbor, the distance to the nearest better, and
number of individuals in the neighborhood.

In this chapter, the diversity-preserving objective is based on the average distance
of each individual to all others which directly targets the global diversity measure
stated by the problem, contrary to the pairwise local view of existing works. Given
the discrete nature, complexity, and multimodality of the problem, an effective
diversity limiting mechanism is required. The proposed approach achieves this with
the added value of making the population diversity highly variable depending on a
single algorithm setting.

Problem Description

The focus in this work is on finding multiple and diversified solutions to the inverse
folding problem (IFP).

A simplified model is developed to match solely the reference secondary
structure – a requirement for the tertiary structure; see Fig. 3 for a schematic
representation. This is motivated by the fact that computing the tertiary structure
of a given input sequence is computationally very expensive which would prevent
the usage of a metaheuristic on the entire sequence. The found solutions should be
a collection of very dissimilar sequences, as well as dissimilar to the input sequence
or its homologs, the naturally occurring, evolutionary-related sequences of the input
sequence.

A single solution is represented as a sequence A D faai g composed of N

residue positions, where 1 � i � N and aai 2 f1; 2; : : : 20g correspond to the
set of 20 possible amino acids. As the solution space consists of a total of 20N

different combinations, considering that N is around 50–200 for typical design
targets, alternatives to exhaustive exploration are mandatory.

Sequence Identity

Sequence identity is a common measure designed to assess the similarity of proteins
occurring in nature in terms of their primary structure only. When computing
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sequence identity, gaps are taken into account during the alignment of the sequences
to be able to detect evolutionary relations among the compared proteins even if
their sequences are of different lengths. In this work, all sequences being compared
have the length of the target sequence and are generated by a random process. The
chances of the same subsequence to occur in two different sequences with an offset
diminish quickly as the subsequence length increases, which justifies ignoring gaps
in the model. For the comparison of final results, the generally accepted approach
with taking gaps into account is used.

Problem Model

This section presents the corresponding optimization problem. Two objective func-
tions are first defined for integer encoded solutions A D faai g. The first function
estimates the similarity of secondary structure, in which definition and estimation
are provided in sections “Secondary Structure Definition” and “Secondary Structure
Estimation,” respectively. The second function presented in section “Diversity
Measure” is designed to address the diversity requirements of the problem and of
the algorithm.

Secondary Structure Definition

Secondary structure refers to the annotation of structure segmentation as seen in
Figs. 2 and 3. These segments are the result of the protein naturally folding so
that different parts of its 3D structure connect through bonds between amino acids
on separated residue positions in the sequence. Tertiary structure annotations are

 

 

 

F

F

F

Fig. 3 Primary and secondary structure in the inverted folding problem
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done using the “Define Secondary Structure of Proteins” (DSSP) tool [18]. As only
the three structure types, helices (H), sheets (E), and loops (L), are considered
throughout this work, some simplification is required. In the documentation of
DSSP, the following possible annotation types are found:

– G = 3-turn helix (310 helix). Min length three residues.
– H = 4-turn helix (˛ helix). Min length four residues.
– I = 5-turn helix (� helix). Min length five residues.
– T = hydrogen-bonded turn (three, four, or five turn)
– E = extended strand in parallel and/or antiparallel ˇ-sheet conformation. Min

length two residues.
– B = residue in isolated Îš-bridge (single pair ˇ-sheet hydrogen bond formation)
– S = bend (the only non-hydrogen bond-based assignment).
– C = coil (residues which are not in any of the above conformations).

With helices characterized by a corkscrew shape, sheets as parallel-connected
segments, and loops as everything else, the above structure types are simplified
as follows:

G; H; I ) H I E; B ) EI T; C; S ) L

Secondary Structure Estimation

The goal of this objective is to distinguish sequences by assigning better score to
sequences that may match the reference secondary structure better. Using the tool
PROFphd, updated to ReProf [26], the likely secondary structure type Tpred.i/ can
be predicted per amino acid aai in A with a reliability Rpred.i/ 2 f0 : : : 9g by means
of posterior neural network training. With Tref.i/ the actual type found at position
i of the reference secondary structure, the estimated similarity score Fsec.A/ is
calculated as a sum of reliability weighted (mis)matches:

Fsec.A/ D
˙max �

PN
iD1 si � .C R

pred C Rpred.i//

˙max
; Fsec.A/ 2 f0 : : : 2g : (1)

where

si D

�
1 if Tpred.i/ D Tref .i/

�1 if Tpred.i/ ¤ Tref .i/

and

˙max D .C R
pred C max Rpred/ � N

Equation 1 is normalized by the maximum possible sum, ˙max, which may
occur if all positions are perfectly matched with the highest possible probability.
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In this case the score becomes 0 and it can never become negative. C R
pred is a

constant which purpose is to increase the contribution to the score of a matching
type prediction that has a low reliability Rpred. In the current work, it was chosen
such that C R

pred C max Rpred D 20. The reference types Tref.i/ are extracted from
the reference structure Sref per residue position i as described in section “Secondary
Structure Definition”.

Diversity Measure

As a requirement stated in the problem description, the algorithm should not
only find a single very good solution, but rather a number of good solutions as
different as possible from each other and from the reference sequence. This diversity
requirement is closely related to the models described in the �Chap. 32, “Diversity
and Equity Models”. However, as the problem solutions in this work represent
protein sequences, not binary selection of elements, a slightly different approach to
the distance measure is taken. An effective and simple measure of distance between
two sequences is the Hamming distance, defined as the number of single-point
permutations necessary to convert one into the other. Not taking gaps or varying
sequence lengths into account, for two sequences A D faai g and A0 D faa0i g where
1 � i � N , the Hamming distance between them is defined as:

dHamm.A; A0/ D

NX

iD1

di ; di D

�
0 if aai D aa0i
1 otherwise

: (2)

To obtain a nonnegative objective value for minimization, the average Hamming
distance to all other M �1 individuals in the current population minus the sequence
length N is computed:

Fdiv.A/ D N �
1

M � 1

M�1X

iD1

dHamm.A; Ai /; Fdiv.A/ 2 f0 : : : N g : (3)

This function favors individuals farthest away from the rest of the population.
In addition, if a sequence similar to the input sequence exists in the population,
the function will have a mutually repulsive effect and penalize it. In summary
the function addresses two problem requirements: (1) promoting diversity and (2)
promoting sequences which are not equal to the reference sequence.

Algorithm Design

In this chapter the DAO-QC NSGA-II algorithm proposed to tackle the IFP is
presented. The modification of the NSGA-II [10], a well-known multi-objective
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genetic algorithm, includes the diversity objective (DAO) Fdiv.A/ that enhances the
explorative characteristic of the algorithm.

This favorable feature for solving multimodal problems is complemented by
two modifications of the original algorithm highlighted in Algorithm 1: removal
of doubles described in section “Removal of Doubles” and quantile constraint to
promote good individuals in section “Quantile Constraint”.

Removal of Doubles

In the context of diversity preservation, having two or more identical individuals
in the population is undesired. Especially as in [30] when diversity for a sequence
A is defined as the minimal distance to any other sequence A0, a sequence A D

A0 must be avoided. With the diversity calculation proposed in section “Diversity
Measure”, this issue has less impact, but nevertheless doubles are removed in this
work. The procedure is executed in line 6 of Algorithm 1 after the application of
genetic operations and before non-dominated sorting and crowding-based truncation
of the unified population Rt takes place in NSGA-II.

When two identical sequences are detected, one of them is mutated with a
probability of 5

N
to distance the individual with a Hamming distance of 5 on average.

Quantile Constraint

A consequence of the nature of the objectives Fsec.A/ and Fdiv.A/ is that the
latter is much easier to optimize; hence, the population quickly consists of very
diversified individuals with poor fitness according to Fsec.A/. To counter this
effect, the quantile constraint (QC) is introduced at the end of every generation,
in line 9 of Algorithm 1. Given a quantile size Cq , the population Pt at time t is
divided according to Fsec.A/ into a Cq%-sized partition and a 100 � Cq%-sized
partition. All individuals in the former, less fit, partition are assigned a constraint
penalty that prevents the constrained individuals from mating and surviving the
next generations. Hence, the population is cleaned from individuals far spread in

Algorithm 1: DAO-QC NSGA-II
1: Init ialize.P0/ {randomly generated individuals}
2: t  0
3: while t < tmax do
4: Qt  makeNewPop.Pt / {selection, mutation, recombination}
5: Rt  Pt [Qt

6: mutateDoubles.Rt / {eliminate doubles by mutation}

7: F  fastNonDominatedSort.Rt /
8: Pt  t runcate.F / {based on domination and crowding}

9: setQuantileConst raint.Pt / {to penalize worst quantile}

10: end while
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the solution space, but with poor Fsec.A/ score. The selection pressure can then be
selectively adjusted by changing the size of the quantile Cq , which has been tested
using Cq 2 f0%; 5%; 10%; 25%g.

Algorithm Experiments

This section presents and compares the experimental results obtained with the
proposed DAO-QC MOGA to a standard generational GA on two protein samples.
The experimental setup is first introduced, starting with the two protein samples
used and followed by the algorithms’ parameters. These initial experiments focus
on analyzing the effect of different quantile constraint settings on the proposed
algorithms’ performance. To this end, the diversity, convergence, and final fitness
are compared to a standard generational GA for both of the test samples.

Protein Samples

The two chosen protein samples, namely, 1OAI and 1URR, are illustrated in
Fig. 4a, b, respectively. 1OAI is characterized by a length of 59 residues and a
secondary structure that consists of 4 helices. 1URR is 97 residues long, and its
secondary structure is composed of 2 helices and 6 beta-sheets.

Experimental Setup

Table 1 summarizes the settings of both the standard generational GA and the
proposed DAO-QC MOGA, i.e., the GA extended by multi-objectivization with
diversity as objective (DAO) and quantile constraint (QC). Both algorithms use
a population of 100 individuals, a binary tournament selection, 1-point crossover

Fig. 4 Three-dimensional structure of the samples. (a) 1OAI. (b) 1URR
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Table 1 Algorithm settings Setting Value

Population size 100

Algorithm NSGA-II and std GA

Termination condition 30,000 function evaluations

Selection Binary tournament (BT)

Crossover operator 1-point, pc D 1:0

Mutation operator Uniform, pm D
1
N

Quantile constraint Cq 2 f0%; 5%; 10%; 25%g

Table 2 1OAI average fitness cross-comparison

GA DAO-QC0 DAO-QC5 DAO-QC10 DAO-QC25

GA � �0:101O �0:0272O 0.000138 - 0:00896N
DAO-QC0 � 0:0743N 0:102N 0:110N
DAO-QC5 � 0:0273N 0:0361N
DAO-QC10 � 0:00882N
DAO-QC25 �

Table 3 1OAI average diversity cross-comparison

GA DAO-QC0 DAO-QC5 DAO-QC10 DAO-QC25

GA � �46:996O �45:068O �36:946O �14:065O
DAO-QC0 � 1:928N 10:050N 32:931N
DAO-QC5 � 8:122N 31:003N
DAO-QC10 � 22:880N
DAO-QC25 �

with probability pc=1.0, and uniform mutation with probability pm D 1
N

. The
termination condition was set to 30,000 fitness function evaluations, and each
experiment was repeated 30 times. Four different values of quantile constraint
Cq are considered for DAO-QC NSGA-II: 0%, 5%, 10%, and 25% of the
population.

Algorithm Results

In the following the results of the standard GA and the DAO-QC NSGA-II with four
different Cq settings are presented and compared in terms of average population
fitness, population diversity, and convergence of these indicators based on 30

individual runs.
Tables 2, 3, 4, and 5 show all pairwise comparisons of the algorithm mean

value difference. The Wilcoxon test indicator [35] with a 5% significance level
provides statistical confidence in comparing the sets with symbols “N,” “O,” and
“-” indicating superior, inferior, and no difference. In terms of fitness, the algorithms
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Table 4 1URR average fitness cross-comparison

GA DAO-QC0 DAO-QC5 DAO-QC10 DAO-QC25

GA � �0:117O �0:026O 0:0229N 0:0321N
DAO-QC0 � 0:0909N 0:140N 0:149N
DAO-QC5 � 0:0489N 0:058N
DAO-QC10 � 0:00911N
DAO-QC25 �

Table 5 1URR average diversity cross-comparison

GA DAO-QC0 DAO-QC5 DAO-QC10 DAO-QC25

GA � �46:611O �42:754O �25:651O �1.389 -

DAO-QC0 � 3:857N 20:959N 45:221N
DAO-QC5 � 17:102N 41:365N
DAO-QC10 � 24:262N
DAO-QC25 �

are ordered in the following way: DAO-QC25 > DAO-QC10 � GA > DAO-QC5
> DAO-QC0 for sample 1OAI and DAO-QC25 > DAO-QC10 > GA > DAO-QC5
> DAO-QC0 for sample 1URR with statistical confidence. In terms of diversity, the
order becomes DAO-QC0 > DAO-QC5 > DAO-QC10 > DAO-QC25 > GA and
DAO-QC0 > DAO-QC5 > DAO-QC10 > DAO-QC25 � GA for samples 1OAI and
1URR, respectively. As expected, the higher diversity of the DAO-QC0 approach
comes at the expense of a lower average fitness due to the exploration/exploitation
trade-off. However, an increase of Cq to 10% or 25% leads to increased exploitation,
allowing the DAO-QC NSGA-II algorithm to be constantly ahead of the GA in terms
of average fitness until depletion of the evaluation budget as seen in Figs. 5 and 6.
Further, the appropriate setting (Cq D 25% for 1OAI, Cq D 10% for 1URR) allows
the DAO-QC NSGA-II to outperform the GA in terms of fitness and diversity at the
same time. Remaining observations to mention are steeper final fitness slopes for the
sample 1URR with settings Cq 2 f10%; 25%g, than the standard GA and specifically
for the sample 1OAI; the diversity is observed to clearly start increasing once the
fitness has converged. The steeper final slopes and the increased performance in
fitness can be partially explained by the constantly high, and at times increasing,
diversity combined with the highly multimodal nature of the problem. An elevated
diversity clearly increases the chances of the algorithm discovering good new
solutions in the rugged fitness landscape of this type of problem.

Table 6 shows the final average fitness and diversity values of all algorithms on
both samples with their respective standard deviation. In each column the darker
background emphasizes the best result, while the lighter background emphasizes the
worst result. With Cq D 25% the proposed algorithm clearly outperforms the GA
with statistical confidence for both samples with average values 0:105 vs. 0:136 and
0:193 vs. 0:242, respectively. From the figure and the table, it is also evident that the
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Fig. 5 Convergence of 1OAI. (a) Average fitness convergence. (b) Average diversity convergence
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Fig. 6 Convergence of 1URR. (a) Average fitness convergence. (b) Average diversity convergence

Table 6 Summary of final values

1OAI 1URR

Average fitness Average diversity Average fitness Average diversity

GA 0:136˙1:52e�01 43:578˙1:32eC01 0:242˙1:77e�01 35:565˙1:42eC01

DAO-QC0 0:235˙1:41e�01 80:992˙3:23eC00 0:363˙1:62e�01 77:163˙4:29eC00

DAO-QC5 0:156˙1:45e�01 78:598˙3:69eC00 0:271˙1:80e�01 72:763˙5:74eC00

DAO-QC10 0:124˙1:45e�01 70:564˙6:56eC00 0:218˙1:75e�01 59:400˙1:00eC01

DAO-QC25 0:105˙1:37e�01 47:484˙1:11eC01 0:193˙1:65e�01 34:182˙1:39eC01
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value of the quantile or QC setting has a direct impact on the population diversity,
providing an effective tool for achieving the level of exploitation vs. exploration
preferred.

Structure Validation

In this second experimental step, the protein sequences generated by the best
performing algorithm are validated. To this end the I-TASSER [37] prediction tool is
used to generate their secondary and tertiary structures that will be compared to the
structure of the targeted protein. For each sample, the 5 best generated sequences of
the final population in each of the 30 individual runs are selected. This means a total
of 300 I-TASSER runs for the 2 protein samples, each run taking around 2 days,
which amounts to almost 2 years of CPU time. It is to be noted that the I-TASSER
prediction itself is subject to erroneous results; hence, a 100% certainty can never
be achieved unless the proteins are synthesized in a wet lab. In the following, the
sequences and their I-TASSER predictions are analyzed in terms of primary and sec-
ondary structure in section “Primary and Secondary Structure Validation Results”
and then tertiary structure in section “Tertiary Structure Validation Results”.

Primary and Secondary Structure Validation Results

The goal in this section is to analyze how well the secondary structure of the
reference protein is reproduced in the predicted model.

Table 7 shows a summary of the two proteins tested. Clearly, the generated
sequences share very little resemblance with the original input sequence seen from
a sequence identity of about 20% and 15%, respectively, with a very low deviation.
Achieving low sequence identity by itself is not a challenging task unless a good
structure match is obtained at the same time. The table shows this as the average
percentage, �, of positions in the secondary annotation of the I-TASSER predicted
model that correctly matches those of the input annotation. Average percentage �

and standard deviation of the average percentage � are given for each of the three
structure types H, E, and L. As it can be seen, the helices are correctly predicted
on more than 90% of the positions in both proteins. For the slightly bigger 1URR
sample which contrary to 1OAI contains many extended sheets, the sheet match
percentage is lower – slightly below 50%.

Table 7 Summary of secondary structure prediction match

Protein �Identity �Identity �Helix �Helix �Sheet �Sheet �Loop �Loop

1OAI 20.67 4.100 93.348 6.343 0 0 82:814 7:368

1URR 15.23 3.225 93.787 6.563 42:108 8:898 85:523 8:239
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Fig. 7 Match histograms of 1OAI. (a) Helix match histogram. (b) Loop match histogram.
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Fig. 8 Match histograms of 1URR. (a) Helix match histogram. (b) Sheet match histogram.
(c) Loop match histogram

Figures 7 and 8 illustrate the same data as histograms. Figures 7a and 8a
clearly demonstrate that helix structures are very well matched in all 300 structure
predictions. Almost all of the tested generated individuals have a match percentage
of over 80%, and the majority is above 90% for both samples.

For loop segments presented in Figs. 7b and 8c, the majority is still above 80%
but with a high spread. The statistics for sheet segments show that there is a limit to
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a b

Fig. 9 Secondary structure of reference (on top) compared to three selected generated models.
Darker sections are helices, lighter are sheets, and the rest represents loop structure. (a) 1OAI. (b)
1URR

the performance of an approach optimizing only an approximate secondary structure
prediction. Considering that the 1URR sample consists of six sheet segments across
the whole of its length, then 42% can be considered as a rather good result. The
lower success rate of predicting sheets is due to the fact that a sheet can only be
observed in the secondary structure if the I-TASSER predicted structure actually
did fold close enough to the reference tertiary structure, to allow the extended sheet
to form. A helix is a much more local structure mostly independent of the global
fold, hence easier to achieve in this analysis.

Figure 9 and Table 9 show the alignment of three of the best aligned individually
generated sequences. This is to show specific examples of the results which have
been averaged in Table 7, and the tendency remains the same: helices are very
well defined with above 95% positions matched, loops slightly less with ˙90%,
and ˙80% for samples 1OAI and 1URR, respectively. The 1OAI sample is clearly
an easier target due to its helix-only structure compared to the majority of sheet
structures in the 1URR sample. The other columns of the table will be discussed in
the next section.

Tertiary Structure Validation Results

In the following the tertiary structure of the predicted proteins is validated by three-
dimensional comparison.

The TM-Score detailed in [39] is a measure that is used to assess the similarity
between two structures, with larger values indicating greater resemblance and
1:0 a maximum value for identical structures. According to Xu and Zhang [36],
two proteins can be considered to be in the same fold if comparing them gives
a TM-Score above 0:5. Though the average TM-Score is above 0:4 and close
to 0:5 for the first sample, this is actually the case for 1�in�5 for 1OAI and
1�in�15 for 1URR as seen in Table 8. The table further shows the number N

of predictions that had a TM-Score above 0:2, 0:4, 0:6, 0:7, and 0:8. The general
results presented in section “Primary and Secondary Structure Validation Results”
are confirmed here, and it is clear that the sheet structures of 1URR are hard to
match and that the approach is much more successful in predicting helix structures
(see Table 9).
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Table 8 Summary of tertiary structure prediction match

Protein �TM -Score �TM -Score NTM>0:2 NTM>0:4 NTM >0:5 NTM>0:6 NTM >0:7 NTM>0:8

1OAI 0.493 0.135 150 102 51 32 18 4

1URR 0.416 0.061 150 91 10 0 0 0

Table 9 Three selected generated models and their alignment scores with 1OAI and 1URR
as reference

Nr. Identity N< 5A RMSDN <5A RMSD GDTTS TM-Score Helix Sheet Loop

1 13.6 58 1.21 1.760 92.797 0.8667 95.12 0 94.44

2 25.4 58 1.35 1.838 88.983 0.8350 95.12 0 88.89

3 18.6 56 1.84 2.722 88.136 0.8015 97.56 0 94.44

Nr. Identity N< 5A RMSDN <5A RMSD GDTTS TM-Score Helix Sheet Loop

1 19.6 73 2.85 7.484 50.258 0.5374 96 75.68 71.43

2 20.6 67 3.20 4.933 50.773 0.5027 100 81.08 80

3 17.5 74 2.94 9.059 48.711 0.5138 100 72.97 80

The last step in the tertiary validation consists in superposing the fully I-TASSER
predicted tertiary structure model of one generated sequence with the target refer-
ence. This is illustrated in Figs. 10 and 11 where the first of the three individually
generated sequences in Table 9 and Fig. 9 is used.

The models for 1OAI are all very close to the reference seen from the high helix
and loop match percentage, and in addition the first model for 1OAI has a very low
sequence identity and at the same time very high TM and GDT scores (see Table 9).
The first model for 1URR also has very high helix match percentage and good loop
and sheet percentages. However, the TM and GDT scores are less satisfactory. This
result is visible in Fig. 11 where the helices and sheets cannot be fully aligned with
the reference and the fact that one sheet has been bound to the structure in the wrong
location (at the top of the figure rather than at the bottom).

In Table 9 the second column shows sequence identity with gaps, the third shows
the length of the longest continuous segment N < 5A that can be fitted below a 5A

threshold after super-positioning the two structures. The root-mean-square deviation
(RMSD) measure is based on the pairwise distance between every residue position
in the two tertiary structures, and the fourth column regards only those positions
counted in column three, the fifth column regards the total of position. The global
distance test (GDT) total score (TS) is a measure indicating the total average of
the average percentage of residue positions that can be fitted below each of the
thresholds f0:5A; 1:0A; 1:5A; : : : 10:0Ag. The final four columns are TM-Score and
the percentage match of helix, sheet, and loop positions already discussed. Columns
three to six were computed with the tertiary structure alignment tool LGA detailed in
[38] with default global distance test (GDT) and longest continuous segment (LCS)
analysis settings.
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Fig. 10 Super-positioning of
a predicted model (dark) with
1OAI reference (light)

Fig. 11 Super-positioning of
a predicted model (dark) with
1URR reference (light)

Conclusion

In this chapter an evolutionary-based approach to find a large amount of protein
sequences that may result in a given reference secondary and tertiary structure
was presented. This problem, referred to as the inverse folding problem (IFP), has
received a lot of attention in theoretical chemistry and biophysics over the last
30 years, mostly for its potential application in protein design. It is also of interest to
study the extent of the sequence space that may produce similar tertiary structures
and how far from the original reference sequence such solutions can be found.

By defining the task as finding highly diverse sequences with most similar
secondary structures, an optimization problem was modeled to find many well-
scoring sequences in a few hours, which is fast compared to state-of-the-art
methods. To achieve high diversity, the requirement has been adapted as an
additional objective and extending the problem through multi-objectivization to
become multi-objective with diversity as objective (DAO). Combining the quantile
constraint (QC) with the DAO approach allows to shift focus arbitrarily between
diversity and fitness, and final results found significantly better than the standard
GA with statistical significance. At the same time, the final diversity remains
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significantly higher for all QC-settings except the DAO-QC25 which produces
diversity comparable to the standard GA for the 1URR sample. For the 1OAI sample
with increased QC setting, a clear increase in diversity is observed toward the
end of the run, once very good fitness values have been found. In addition to the
higher performance on diversity, the algorithm fitness convergence was observed
as being generally faster and partially steeper toward the end of runs, than for the
standard GA.

For further validation, the five best generated sequences of each independent run
of the DAO�QC 25 algorithm variant were selected systematically and their folded
structure predicted by I-TASSER, an established structure prediction software. The
300 predicted tertiary structures were annotated by DSSP for secondary structure
analysis of helix, sheet, and loop formations. As could be expected, the method
works better for the sample with more defined helical secondary structure, and
less well in sheet and loop regions, especially as the latter region is not expressed
by the objective function. Indeed sheet formations require the tertiary structure
to fold properly to be captured in secondary structure. Nevertheless the 1URR
sample sheet match percentage is slightly below 50% averaged over all generated
predictions. In addition the majority of match percentages are above 80% for
loops and above 90% for helices in both samples. Tertiary structure validation was
done by comparing the predicted structures to their respective reference by tertiary
structure super-position. For both samples meaningful predictions were generated
with a TM�Score above 0:5 observed 1�in�5 for 1OAI and 1�in�15 for 1URR.
These results indicate that this approach is able to generate a massive amount of
sequences, with a reasonable amount being likely to actually fold as expected.
At the same time, the limits in terms of achieving larger formations of sheets are
demonstrated.

Future and ongoing works will address the identification of those sequences that
actually fold into the reference structure by designing new objectives and constraints
and also addressing loop and beta-sheet regions. Independent of this, sequences
found could already be used as starting points for other exact protein design
methods and possibly generate successful designs with a very low sequence identity
compared to the reference. Additional possible applications could be generating
meaningful decoy sets for other studies or finding bridges in sequence space
between known proteins of the same structural classes.
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�Diversity and Equity Models
�Evolutionary Algorithms
�Genetic Algorithms
�Multi-objective Optimization
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Abstract

The term layout problem comes from the context of Very Large-Scale Integration
(VLSI) circuit design. Graph layouts are optimization problems where the main
objective is to project an original graph into a predefined host graph, usually a
horizontal line. In this paper, some of the most relevant linear layout problems are
reviewed, where the purpose is to minimize the objective function: the Cutwidth,
the Minimum Linear Arrangement, the Vertex Separation, the SumCut, and
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the Bandwidth. Each problem is presented with its formal definition and it is
illustrated with a detailed example. Additionally, the most relevant heuristic
methods in the associated literature are reviewed together with the instances used
in their evaluation. Since linear layouts represent a challenge for optimization
methods in general and, for heuristics in particular, this review pays special at-
tention to the strategies and methodologies which provide high-quality solutions.

Keywords
Embedding � Graph layout � Heuristics � Linear arrangement � Linear layout �

Optimization

Introduction

In recent years there has been a growing interest in studying graph layout problems.
From a historical perspective, the terms layout and layout problem come from their
early application to the optimal layout of circuits in the context of Very Large-
Scale Integration (VLSI) design. A VLSI circuit can be modeled by means of a
graph, where the edges represent the wires and the vertices represent the modules.
Specifically, given a set of modules, they look for placing these modules on a
board in both a non-overlapping manner and wiring together the terminals on the
different modules. In general, there are two stages: placement and routing. The
former consists in placing the modules on a board while, the latter consists in wiring
together the terminals on different modules that should be connected. In Fig. 1 an
example of a circuit design with six modules (identified with a different letter, A–F)
and their corresponding connections through different tracks are presented. This
circuit can be modeled as a graph, as it will be seen below. Notice that the order of
the modules can determine, among others, the number of tracks needed to wire the
circuit and, therefore, the space needed to build it.

From a theoretical point of view, the main objective of graph layout problems
is to project an original graph G D .VG; EG/ into a predefined host graph H D

.VH ; EH /. This projection, generally known as embedding, consists in defining

A B C D E F

Fig. 1 Circuit design with six modules and its corresponding connections
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Fig. 2 The graph G with six vertices and nine edges represents the circuit in Fig. 1

a function, mapping the vertices of G into the vertices of H , and associating
a path in H for each edge of G. This function assesses that VG � VH and
EG � EH . According to [26] the quality of an embedding depends on the dilation,
the congestion, and the load. The dilation of an embedding is the length of the
largest associated path in H . The congestion is the largest number of paths that
share an edge of H . Finally, its load is the maximum number of vertices of G that
are mapped to a vertex of H .

Let G be a graph (finite, undirected, and without loops), where its vertex set
is denoted by V (with jV j D n) and its edge set by E (with jEj D m).
The notation .u; v/ stands for an undirected edge between vertices u and v. In
Fig. 2 it is shown an example of a general graph G obtained as the result of
modeling the circuit in Fig. 1 as a graph. The graph is formed by six vertices
corresponding to each of the modules in the circuit (say the vertex set V D

fA;B;C;D;E;Fg) and nine edges corresponding to the circuit connections (say the
edge set E D f.A;B/; .A;D/; .A;E/; .A;F/; .B;C/; .B;D/; .C;D/; .C;F/; .D;E/g).
Notice that vertex A in Fig. 2 corresponds with module A in Fig. 1, vertex B in Fig. 2
corresponds with module B in Fig. 1, and so on.

The case in which a graph with n vertices is projected over a path graph with load
equal to 1 is perhaps the simplest non-trivial embedding problem. In particular, it
consists in defining a bijective function, �, where each vertex and edge of G has
a unique correspondence in H . The function � W V ! f1; : : : ; ng assigns distinct
integer numbers (from 1 to n) to each of the n vertices of G. Then, the resulting
graph H is usually represented by aligning its vertices on a horizontal line, where
each vertex u is located in position �.u/. This graphical representation is usually
known as linear layout, although it has received other names in the literature, for
instance, linear ordering [2], linear arrangement [115], numbering [16], embedding
in the line [96], or labeling [56]. In Fig. 3 an example of linear layout is shown
where vertex A occupies the first position on the line, vertex B the second one, and
so on. The horizontal dotted line represents the host graph structure. For the sake of
simplicity, the linear layout is usually represented as an array � D fA;B;C;D;E;Fg,
where the position of each vertex u 2 V in this array corresponds to �.u/.

Linear layout is, probably, the most studied family of problems in the context
of graph layout problems, as shown below. However, there exist other interesting
embeddings on more general host graphs than a path, for instance, in closed paths,
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A B C D E F

Fig. 3 A possible linear layout of graph G

Fig. 4 A possible circular
layout of graph G
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usually known as cycles [77, 102, 117]. A circular layout is a function � W V !

f1; : : : ; ng that also assigns distinct integer numbers (from 1 to n) to each of the n

vertices of the graph, but arranging the vertices of the graph in a cycle where the
last vertex (the one with label n) is next to the first vertex (the one with label 1).
This embedding has also a load equal to 1. In Fig. 4 a possible circular layout of
the vertices of the graph in Fig. 2 is shown, where the dotted circle represents the
corresponding circular host graph structure.

The embedding of graphs in grids has been studied in [6, 73, 85]. When dealing
with grids, it is convenient to label each vertex with a pair of coordinates. A grid
layout is a function ı W V ! f1; : : : ; n1g � f1; : : : ; n2g where n1 denotes the
maximum horizontal number, while n2 indicates the maximum vertical number.
Notice that in optimization problems where the load is equal to 1, it means that
n D n1 � n2. In Fig. 5 an example of embedding the graph depicted in Fig. 2 on a
3 � 2 grid is shown. Again, the dotted lines represent the corresponding host graph
structure.

There are also other embeddings of practical importance, where the host graph
is neither a line nor a cycle nor a grid. Only to mention a few, in [3, 28, 53, 54] the
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Fig. 5 A possible grid layout
of graph G

C

D FE

A B

embedding of graphs on trees is studied, in [55, 121] the embedding of graphs on
torus, and in [65, 75] the embedding of graphs in hypercubes.

In this paper, the attention is focused on minimization linear layout problems,
by reviewing some of the most relevant optimization problems that falls into this
category. In particular, this revision is focused on the problems that have been
intensively studied by the heuristic community. See the following sections for each
problem: “The Cutwidth Minimization Problem,” “The Minimum Linear Arrange-
ment Problem,” “The Vertex Separation Problem,” “The SumCut/Profile Problem,”
and “The Bandwidth Minimization Problem,” Finally, in section “Conclusion” the
conclusions of the study are presented.

The Cutwidth Minimization Problem

The Cutwidth Minimization Problem (CMP) is an NP-hard min-max linear layout
problem [43]. It consists in finding an ordering of the vertices of a graph on a line,
in such a way that the maximum number of edges between each pair of consecutive
vertices is minimized. In terms of graph embedding theory, this problem consists in
finding the linear layout (load equals to 1) that minimizes the congestion.

The classical combinatorial formulation can be described as follows. Given a
graph G D .V; E/ with jV j D n, a linear layout � W V ! f1; 2; : : : ; ng of
G assigns the integers f1; 2; : : : ; ng to the vertices in V , in such a way that each
vertex receives a different label. Therefore, the host graph H is a path with the same
number of vertices and edges. The cutwidth of a vertex v with respect to �, denoted
as Cut.v; �; G/, is the number of edges .u; w/ 2 E satisfying �.u/ � �.v/ < �.w/.
Therefore,

Cut.v; �; G/ D jf.u; w/ 2 E W �.u/ � �.v/ < �.w/gj

The cutwidth of G with respect to � is defined as the maximum value of all
C ut .v; �; G/ for v 2 V . More formally:

Cut.�; G/ D max
v2V

Cut.v; �; G/
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Fig. 6 (a) Example of linear layout �. (b) Computation of Cut-values associated to �. (c) Example
of linear layout �0. (d) Computation of Cut-values associated to �0

The optimum cutwidth of G is then defined as the minimum Cut.�; G/ over all
possible layouts ˚ of G.

In Fig. 6a, it is shown a possible linear layout � of the graph G depicted in Fig. 2.
This layout sets the vertices in a line, as it is commonly represented in the CMP
context. Specifically, since �.A/ D 1, vertex A comes first, followed by vertex B
(�.B/ D 2), and so on. In Fig. 6b it is depicted the computation of the Cut-value for
each vertex. For example, the Cut-value of vertex A is Cut.A; �; G/ D 4, because
the edges .A;B/; .A;D/; .A;E/, and .A;F/ have an endpoint in A, labeled with 1,
and the other endpoint is a vertex labeled with a value larger than 1. Similarly, the
Cut-value of vertex C is Cut.C; �; G/ D 6, computed by counting the appropriate
number of edges (i.e., .A;D/; .A;E/; .A;F/; .B;D/; .C;D/, and .C;F/). Then, since
the cutwidth of G, Cut.�; G/, is the maximum of the Cut.v; �; G/ for all vertices
v 2 V , in this example it is obtained that Cut.�; G/ D Cut.C; �; G/ D 6.

In Fig. 6c, a different linear layout �0 of the graph G is shown. The associated
Cut-values are depicted on Fig. 6d. Considering that the CMP is a minimiza-
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tion problem, this second linear layout �0 is better than � since Cut.�0; G/ D

Cut.D; �0; G/ D 5 which is smaller than Cut.�; G/ D Cut.C; �; G/ D 6.
The CMP has been referred to in the literature with different names, such as

Minimum Cut Linear Arrangement [23, 118] or Network Migration Scheduling
[4,5]. There can also be found a generalization of the CMP for hyper-graphs named
Board Permutation Problem [18, 19]. Several practical applications of this problem
have been reported in different areas of engineering and computer science, such
as circuit design [2, 19, 79], network reliability [57], information retrieval [14],
automatic graph drawing [90, 114], protein engineering [7], or network migration
[104]. This last application is, as far as the authors know, the newest one. It refers to
the problem where internodal traffic from an obsolete telecommunication network
needs to be migrated to a new network. This problem appears nowadays in phone
traffic, where it is performed a migration between 4ESS switch-based networks
to IP router-based networks [104]. Nodes are migrated, one at each time period,
from the old to the new network. All traffic originating or terminating at a given
node in the old network is moved to a specific node in the new network, with the
objective of minimizing the connections, at the same time, between the old and the
new networks.

In the scientific literature, the CMP has been addressed from both, exact
and heuristic approaches. Most of the exact approaches present polynomial-time
algorithms for particular graphs, such as hypercubes [51], trees [17, 120, 122], or
grids [107]. There are also several exact methods for general graphs: integer linear
programming formulations [76, 78] and Branch and Bound algorithms [83, 91].
These approaches can only solve relatively small instances. Therefore, different
heuristic procedures have been proposed to address it. The work by Cohoon and
Sahni [19] was the first approach proposing heuristic algorithms for the generalized
version of the problem. These authors proposed several constructive methods and
local search procedures, embedded into a Simulated Annealing metaheuristic [62].
Twenty years later, Andrade and Resende [4, 5] proposed a Greedy Randomized
Adaptive Search Procedure (GRASP) [40, 41] hybridized with a Path Relinking
method [46]. Later, Pantrigo et al. in [92] introduced a Scatter Search algorithm
[45, 66], which outperformed previous methods. More recently, Pardo et al. first
in [94] and later in [95] proposed several heuristics based on the Variable Neigh-
borhood Search (VNS) methodology [87]. In particular, in [94] the authors applied
several reduced VNS and basic VNS schemas to tackle the problem. Later, in [95]
they applied a new variant of VNS, called Variable Formulation Search (VFS), to
the CMP. This new algorithm is specially useful to deal with min-max (or max-min)
optimization problems, where it is usual that many solutions have the same value of
the objective function, which makes them especially hard for a heuristic search. VFS
makes use of alternative formulations of the problem to determine which solution
is more promising when they have the same value of the objective function in the
original formulation. The latest proposal was performed by Duarte et al. in [32]
by introducing different parallel designs of VNS to solve the CMP, which differs
in the VNS stages to be parallelized as well as in the communication mechanisms
among the processes. Experimental results show that the parallel implementation
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outperforms previous methods in the state of the art for the CMP. This fact is also
confirmed by non-parametric statistical tests. A recent approach to the problem [31]
has also considered the CMP as a part of a multi-objective optimization problem.

As far as the set of instances used to evaluate this problem are concerned, most
of the aforementioned authors have used the instances reported in [92]. In particular,
authors proposed the use of three sets of instances: small, grid, and Harwell-Boeing.
The small data set consists of 84 graphs introduced in the context of the Bandwidth
Reduction Problem [80]. The number of vertices of the graphs in this set ranges
from 16 to 24. The exact value of the CMP for the instances in this set is known,
as they were solved to optimality in [83]. The grid data set consists of 81 matrices
constructed as the Cartesian product of two paths [102], and they were originally
introduced in the context of CMP by [107]. The size of the considered instances
ranges from 9 vertices to 729. In this case, the optimal value is also known by
construction [102]. Finally, the Harwell-Boeing data set is a subset of 87 instances
extracted from the Harwell-Boeing sparse matrix collection which is accessible
at the public domain matrix market library [20]. This collection was originally
developed by Iain Duff, Roger Grimes, and John Lewis [34], and it consists of a set
of standard test matrices arising from problems in linear systems, least squares, and
eigenvalue calculations from a wide variety of scientific and engineering disciplines
[35]. In the context of CMP, the instances selected have a number of vertices that
ranges from 30 to 700. This data set is, in fact, the hardest among the previously
defined for the algorithms in the state of the art.

The Minimum Linear Arrangement Problem

The Minimum Linear Arrangement Problem, usually known as MinLA, is also
based on the Cut-value defined in section “The Cutwidth Minimization Problem.”
In this case, a linear layout with load equal to 1 is sought that minimizes the sum
of the congestion on each position of the layout. It is equivalent to the minimization
of the sum of Cut-values. More formally, given graph G and a linear layout �, the
linear arrangement value LA.�; G/ is defined as follows:

LA.�; G/ D
X

v2V

cut .v; �; G/

The optimum MinLA of G is then defined as the minimum LA.�; G/ over all
possible layouts ˚ of G.

Considering the linear layouts depicted in Fig. 6a, c it is shown in Fig. 7a, b
the computation of the LA-values, respectively. In particular, the objective function
value associated with the first layout � is LA.�; G/ D 4 C 5 C 6 C 4 C 2 D 21.
Similarly, the objective function value associated with �0 is LA.�0; G/ D 3 C 5 C

5 C 4 C 2 D 19, Therefore, �0 is a better solution than � since the MinLA is a
minimization problem.
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Fig. 7 (a) Computation of
the objective function of the
MinLA for the linear layout �

shown in Fig. 6a
(b) Computation of the
objective function of the
MinLA for the linear layout
�0 shown in Fig. 6c
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The Minimum Linear Arrangement Problem is an NP-hard problem [42] and
it is related to two other well-known layout problems: the Bandwidth and Profile
minimization problems. However, as pointed out in [84], an optimal solution for
one of these problems is not necessarily optimal for the other related problems.
The Minimum Linear Arrangement Problem is also known as the Optimal Linear
Ordering, Edge Sum, Minimum-1-Sum, Bandwidth Sum, or Wire-Length problem.
It was originally introduced in [50], with the goal of designing error-correcting
codes with minimal average absolute errors on certain classes of graphs. Twenty
years later, this problem was considered in [86] as an oversimplified model of some
nervous activity in the cortex. The MinLA also has applications in single machine
job scheduling [1, 103] and in graph drawing [114].

Many different algorithms have been proposed for solving the MinLA problem.
Juvan and Mohar, in [56], introduced the Spectral Sequencing method (SSQ). This
method computes the eigenvectors of the Laplacian matrix of G. It then orders
the vertices according to the second smallest eigenvector. As stated by Petit in
[99], the rationale behind the SSQ heuristic is that vertices connected with an
edge will tend to be assigned numbers that are close to each other, thus providing
a good solution to the MinLA problem. McAllister proposed in [84] a heuristic
method for the MinLA, which basically consists of a constructive procedure that
labels vertices in a sequential order. Vertices are selected according to their degree
with respect to previously labeled ones. This method compares favorably with
previous methods for this and related problems. Later, Petit in [99] reviewed the
existing lower bounds and heuristic methods, proposed new ones, and introduced
a set of instances that were considered as the standard for this problem in the
future, as it will be described ahead. Among the methods reviewed in [99], it is
possible to find the Juvan-Mohar method [56], the Gomory-Hu tree method [2],
and the edge method, which the author improved by adding a degree method. Petit
concluded that the Juvan-Mohar method and the degree method provide the best
lower bounds; however, their values are far from those of the best known solutions,
and therefore they are of very limited interest from a practical point of view. In
[99], Petit additionally introduced both a constructive and a local search procedure.
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The Successive Augmentation (SAG) is a greedy heuristic that constructs a step-by-
step solution, by extending a partial layout until all vertices have been enumerated.
At each step, the best free label is assigned to the current vertex. Vertices are
examined in the order given by a breadth-first search. Once a solution has been
constructed, three different heuristics, based on local search, are considered: hill
climbing, full search, and Simulated Annealing (SA). In the hill-climbing method,
moves are selected at random; in the full search, the entire neighborhood of a
solution is examined, at each iteration, in search of the best available move. Finally,
the SA algorithm implements the temperature parameter as described in [62] for
move selection. Petit, in [99], considered two neighborhoods, called flip2 and flip3.
The former exchanges the label of two vertices, while the latter “rotates” the label
of three vertices. The experimentation in [99] shows that the neighborhood based
on the exchange of two labels (flip2) produces better results than the rotation
(flip3). Overall, the experimentation concludes that the SA method outperforms
the others, although it employs much longer running times (not reported in the
paper). Therefore, the author recommends employing the hill-climbing as well as
the Spectral Sequencing methods. In [98], a more elaborate Simulated Annealing
algorithm is proposed. The author introduces a new neighborhood, flipN, based
on the normal distribution of the distances between the labels of vertices. The
Simulated Annealing algorithm based on the flipN neighborhood (SAN) improves
upon the previous SA method. Moreover, to speed up the method, the initial solution
is obtained with the SSQ algorithm. The combined method, SSQ + SAN, is able to
outperform previous methods.

In [105], the authors proposed a new algorithm based on the Simulated Annealing
methodology. The Two-Stage Simulated Annealing (TSSA) performs two steps.
In the first one, a solution is constructed with the procedure described in [84];
then, in the second step, it performs a Simulated Annealing procedure based on
exchanges of labels. This method introduces two new elements to solve the MinLA:
a combined neighborhood and a new evaluation function. Given a vertex v, the first
neighborhood, selected with a probability of 0.9, examines the vertices u such that
their label �.u/ is close to the median of the labels of the vertices adjacent to v (at
a maximum distance of 2). The second neighborhood, selected with a probability
0.1, exchanges the labels of two vertices selected at random with diversification
(exploration) purposes. The method evaluates the solutions with a function that
is more discriminating than the original one. The authors compared their TSSA
method with the best known algorithms, and they concluded that their method
outperforms the previous algorithms. This method has been the reference of the
state of the art for many years. More recent approaches include the one by Martí et
al. [82] with an algorithm based on a Scatter Search with Path Relinking and the one
proposed by Mladenovic et al. [88], with a Skewed General Variable Neighborhood
Search (SGVNS), which is, as far as the authors know, the latest proposal for the
problem. The method presented in [88] starts from a greedy-constructed solution
as an initial point. The authors propose the use of a local search, based on a
four different neighborhood structures. These neighborhoods are explored with a
Variable Neighborhood Descent (VND) procedure. Then, the VND, together with
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a shake procedure, based on random moves within the four neighborhoods defined,
conform a General VNS (GVNS) method. This method is finally extended by the
use of several ideas from Skewed VNS where the sharp move acceptance criterion
is relaxed. However, the procedures proposed in [82] and [88] were not able to
outperform the results by the TSSA presented in [105].

As aforementioned, there is a set of instances considered as standard as the
comparison framework in the literature for the MinLA. In particular, this set was
introduced by Petit et al. [99] and it consists of 21 graphs (62 � n � 10240) being
n the number of vertices of the graph. As the authors indicate in [99], choosing a
particular class of graphs to serve as benchmark for the MinLA problem is difficult,
because no real large instances for this problem exist. The aim of the authors,
when they formed the data set, was to measure the heuristics in sparse graphs,
so, therefore, they selected different kinds of graphs belonging to the following
families: general random graphs, geometric random graphs, graphs with known
optima (trees, hypercubes, meshes), graphs from finite element discretizations,
graphs from VLSI design, and graphs from graph drawing competitions.

The Vertex Separation Problem

The Vertex Separation Problem (VSP) was originally motivated by the idea of
finding good separators for graphs [74]. In particular, the VSP consists in finding
a linear layout (load equals to 1) where the separator is minimized. In mathematical
terms, being p a position in the layout, the set L.p; �; G/ D fu 2 V W �.u/ � pg is
defined, which represents the set of vertices in the linear layout placed in a position
lower than or equal to p. Symmetrically, the set R.p; �; G/ D fu 2 V W �.u/ > pg

contains those vertices placed in a position larger than p. In general, L.p; �; G/

can be simply referred to as the set of left vertices with respect to position p in �,
and R.p; �; G/ is the set of the right vertices with respect to p in �. The separation
value at position p of layout �, Sep.p; �; G/, is defined as the number of vertices in
L.p; �; G/ with one or more adjacent vertices in R.p; �; G/. More formally:

Sep.p; �; G/ D jfu 2 L.p; �; G/ W 9 v 2 R.p; �; G/ ^ .u; v/ 2 Egj:

The vertex separation (VS) value of a layout � is the maximum of the Sep-values
among all positions in �:

VS.�; G/ D max
1�p<n

Sep.p; �; G/

The Vertex Separation Problem (VSP) then consists in finding a layout, �?, that
minimizes the VS-value of the graph G. In mathematical terms:

�? D arg min
�2˚

VS.�; G/
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Fig. 8 (a)–(e) Computation of Sep.p; �0; G/, with p D f1; : : : ; 5g, for the layout �0 D
fB;C;D;A;E;Fg introduced in Fig. 6c. (f) Computation of VS.�0; G/

where ˚ represents the set of all possible linear layouts of G.
Considering the graph example introduced in Fig. 2 and the layout �0 shown

in Fig. 6c, in Fig. 8a–e, the Sep-value of each position p in layout �0 is depicted,
denoted as Sep.p; �0; G/. For instance, Sep.1; �0; G/ D 1 (see Fig. 8a) because
L.1; �0; G/ D fBg and R.1; �0; G/ D fC;D;A;E;Fg, and there is only one vertex
in L having an adjacent vertex in R. Similarly, Sep.4; �0; G/ D 3 (see Fig. 8d)
because L.4; �0; G/ D fB;C;D;Ag and R.4; �0; G/ D fE;Fg, and the vertices C;D,
and A in L have an adjacent vertex in R. Notice that vertex B does not affect the
Sep-value, since it does not have adjacent vertices in R. The objective function
is then computed as the maximum of these Sep-values. In particular, this value is
VS.G; �0/ D 3, associated with positions 3 and 4. For the sake of completeness, all
the Sep-values as well as the objective function value are shown in Fig. 8f.
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Fig. 9 (a) Computation of Sep.p; �00; G/ with p D f1; : : : ; 5g, for the layout �00 D
fC;B;F;E;D;Ag. (b) Computation of VS.�00; G/

As in the previous optimization problems defined above, a second example of
layout �00 (see Fig. 9a, b) is included. The objective function value of this solution
is 4.

The VSP is strongly related to other well-known graph problems, such as the
Path Width [61], the Node Search Number [64], or the Interval Thickness [63],
among others. The description of the equivalences among these problems can be
found in [39,61,64]. All these optimization problems are NP-hard and have practical
applications in VLSI design [67], computer language compiler design [9], or graph
drawing [36].

It is possible to find efficient exact approaches to solve the VSP on special
classes of graphs. A linear algorithm to compute the optimal vertex separation
of a tree is proposed in [37] as well as an O.n log n/ algorithm for finding the
corresponding optimal layout. The algorithm was improved in [116] with a linear
time procedure to find the optimal layout. In [97], an alternative method to compute
the vertex separation of trees was also proposed, and in [38] an O.n log n/ algorithm
computes the vertex separation of unicyclic graphs (i.e., trees with an extra edge). A
polynomial-time algorithm to compute the Path Width (which is identical to VSP)
is proposed in [11]. However, the algorithm cannot be considered from a practical
point of view, since the bound on its time complexity is ˝.n/; see [38]. In [13] a
polynomial-time algorithm for optimally solving the VSP for n-dimensional grids
is proposed. Co-graphs and permutational graphs can also be optimally solved as it
was stated in [10–12]. Approximation algorithms have been also proposed for the
VSP. Specifically, [8] proposes an O.log2 n/-approximation algorithm for general
graphs and a O.log n/-approximation algorithm for planar graphs. Similar results
for binomial random graphs are presented in [26]. The first heuristic was proposed
by Duarte et al. in [30] where the authors proposed a Basic VNS for the VSP. In
particular, the authors presented two constructive procedures and one local search
based on interchange moves. As far as the authors know, this algorithm obtains the
best results in this problem. More recently, Sánchez-Oro et al. [113] proposed three



1038 E. G. Pardo et al.

VNS algorithms: Reduced VNS (RVNS), VND, and General VNS (GVNS). RVNS
mainly focuses on the diversification, VND mainly focuses on the intensification,
and GVNS balances intensification and diversification. Computational experiments
reveal that the best procedure (GVNS) improves the state of the art in both quality
and computing time. This fact is confirmed with non-parametric statistical tests.

As far as the set of instances used to evaluate the heuristic algorithms are
concerned, the first set of instances for the problem was defined in [30]. In this case,
the authors selected 173 instances divided in three different subsets as a test bed.
In particular, two of the subsets were formed by instances with a defined structure
(trees and grids). For those instances, the optimum value is known by definition for
the VSP. Additionally, they also selected an additional subset of random graphs,
whose instances have previously been used in the literature to evaluate other linear
layout optimization problems. The grid subset consists of 50 matrices constructed
as the Cartesian product of two paths. The number of vertices of this subset ranges
from 25 to 2916. The tree subset is formed by 50 instances where the number of
vertices ranges from 22 to 202. Finally, the random graph subset was formed by
73 instances derived from the Harwell-Boeing sparse matrix collection [20, 34, 35]
introduced at the end of section “The Cutwidth Minimization Problem.” In this case,
the size of the instances, in terms of the number of vertices, ranges from 24 to 960.
The aforementioned set of instances has been used later in [109] and [113].

The SumCut/Profile Problem

Considering the separation value defined in the previous section, the SumCut of a
graph G with respect to the linear layout �, denoted as SC .�; G/, is calculated as
the sum of Sep-values of each position. In mathematical terms:

SC .�; G/ D

nX

iD1

Sep.i; �; G/

The SumCut Minimization Problem then consists in minimizing the value of
SC .�; G/ over all possible linear layouts ˚ of G:

SC .G/ D min
�2˚

SC .�; G/

Considering the linear layouts �0 and �00 depicted in Fig. 8a and 9a, respectively,
in Fig. 10a, b the computation of the SC -values associated to each layout is shown.
In particular, the objective function value associated with the first layout �0 is
SC .�0; G/ D 1 C 2 C 3 C 3 C 2 D 11. Similarly, the objective function value
associated with �00 is SC .�00; G/ D 1 C 2 C 3 C 4 C 5 D 14. Therefore, �0 is a
better solution than �00 since the SumCut is a minimization problem.

The SumCut was proved to be NP-complete for co-bipartite graphs in [123] and
for general graphs in [24,49]. This optimization problem is equivalent to the Profile
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Fig. 10 (a) Computation of the objective function of SC for the linear layout shown in Fig. 8a. (b)
Computation of the objective function of SC for the linear layout shown in Fig. 9a

Minimization Problem, as it was stated in [103]. Specifically, the reverse solution of
the SumCut corresponds to a solution of the Profile. Both optimization problems
have been extensively studied. See, for instance, [25–27]. Practical applications
of these problems appear in genetics. The goal of the Human Genome Project
consist in sequencing the DNA of humans, as well as other species, with the target
of elucidating the genetic information contained therein. In order to construct a
physical map of a large DNA molecule, it is necessary to extract clones from it.
Then, a fingerprint of each clone is obtained. Finally, DNA molecule is reassembled
determining how the clones overlap among them. Each clone is a sequence of
nucleotides drawn from the set {adenine, cytosine, guanine, thymine}, so the
reassembly process consists in permuting a linear layout of a graph. In [59] the
author described an application in archeology, where it is necessary to serialize
different artifacts (fossil, hardware, jewels, etc.). The serialization is known in
archeology as “seriation” and consists in placing in chronological order different
artifacts in the same culture using a relative dating method. Specifically, the practical
application is based on the rearrangement of a matrix, which can be translated on
the reordering of a linear layout of a graph.

Reducing the profile of a matrix is a relevant problem in mathematics since it
leads to a reduction of the amount of space needed for some storage scheme. On the
whole, it achieves an improvement of the performance of several operations such
as Choleski factorization of non-singular systems of equations [108]. Recently the
profile reduction has been used in new areas like information retrieval to browse
hypertext [14]. The Profile Minimization Problem was originally proposed as a way
to reduce the storage space needed to save a sparse matrix [119], but it was proved
that it is equivalent to the SumCut Minimization Problem [103]. An important
application of the Profile Minimization Problem arises in clone fingerprinting [58].

As far as the heuristics are concerned, Cuthill and McKee proposed in [21] the
reverse Cuthill-McKee (RCM) algorithm, in order to get the minimum profile of a
graph. In order to obtain a solution for the SumCut Minimization Problem, it is only
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needed to reverse the solution generated. Gibbs et al. in [44] solved the SumCut
using a new algorithm based on the RCM. The paper describes three problems of
the RCM and presents a new algorithm that solves the described problems. Lewis
described a method to reorder sparse matrices in order to reduce their profile [68],
using the Gibbs-King algorithm to improve the results from the RCM algorithm.
The previous algorithms were used not only in Profile and SumCut problems
but also in the Bandwidth Minimization Problem, making a small adjustment in
the last step: the numbering of the nodes. Lewis, in [69] presented a Simulated
Annealing to reduce the profile of a matrix. The algorithm starts with a previously
calculated solution and it improves the solution by using the Simulated Annealing
technique. The original solution is calculated using either the RCM algorithm or the
Gibbs-King algorithm, and the instances used are a subset of the Harwell-Boeing
sparse matrix collection [20, 34, 35]. In [111] a new heuristic method based on the
GRASP methodology is introduced. As it is shown in the computational experience,
the proposed method is competitive with respect to previous approaches. This
algorithm is further improved in [110] by coupling it with a Path Relinking post-
optimization stage. The best heuristic procedure identified in the state of the art is
presented by Sánchez-Oro et al. in [112]. This method is based on the Scatter Search
methodology. Among several mechanisms, this procedure includes Path Relinking
as the basis for combining solutions to generate new ones. Extensive computational
experiments show that this method clearly outperforms previous approaches in
terms of both solution quality and computing time.

The current reference instances to evaluate the performance of the heuristic
algorithms for this problem were proposed in [112] which is, as far as we know, the
most complete data set of instances for the problem. In particular they propose the
use of the three different subsets of instances: Harwell-Boeing, bipartite, and tree.
The Harwell-Boeing subset was formed by 73 sparse matrices whose number of
vertices ranges from 24 to 960, extracted from the well-known collection Harwell-
Boeing sparse matrix collection [20, 34, 35]. Notice that instances belonging to this
family had been used before in [21] as a test bed for the problem. The bipartite
subset is formed by 98 bipartite graphs with a number of vertices ranging from 4
to 142. A complete bipartite graph is such that the set of vertices V can be divided
into two subsets V1 and V2 in such a way that there exists an edge between every
pair of vertices belonging to different subsets. Finally, the tree subset consists of 91
instances based on trees with diameter 4 and a number of vertices ranging from 10 to
100. Optimal objective function values are known by construction for the instances
in bipartite and tree subsets.

The Bandwidth Minimization Problem

The Bandwidth Minimization Problem (BMP), also known as Bandwidth Reduction
Problem or Matrix Bandwidth Minimization, is an NP-hard min-max linear layout
problem [93]. It consists in finding an ordering of the vertices of a graph on a
line, in such a way that the largest distance between two adjacent vertices in the
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corresponding line is minimized. In terms of graph embedding theory, this problem
consists in finding the linear layout (load equals to 1) that minimizes the dilation. In
the terms of circuit design, the BMP asks for a layout that minimizes the maximum
edge length between each pair of connected modules.

Given a graph G and a linear layout �, the bandwidth of a vertex v, B.v; �; G/, is
the maximum of the differences between �.v/ and the labels of its adjacent vertices.
That is:

B.v; �; G/ D max
.u;v/2E

fj�.v/ � �.u/jg

The bandwidth of a graph G with respect to a layout � is then

B.�; G/ D max
v2V

B.v; �; G/

The optimal bandwidth of graph G is thus the minimum B.�; G/ value over all
possible layouts ˚ of G.

Considering the linear layouts � and �0 depicted in Fig. 6a, c respectively,
in Fig. 11a, b the computation of their bandwidth value is shown. In particular,
the objective function value associated with the first layout � is B.�; G/ D

maxf5; 2; 3; 3; 4; 5g D 5. Similarly, the objective function value associated with
�0 is B.�0; G/ D maxf3; 3; 4; 2; 2; 4g D 4. Therefore, �0 is a better solution than �

since the BMP is a minimization problem.
This problem has been also defined in terms of matrices. In particular, given the

incidence matrix of graph G, the problem consists in finding a permutation of the
rows and the columns of this matrix that keeps all the non-zero elements in a band
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Fig. 11 (a) Computation of the BMP objective function for the linear layout � shown in Fig. 6a.
(b) Computation of the BMP objective function for the linear layout �0 shown in Fig. 6c
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that is as close as possible to the main diagonal. For that reason it is possible to find
references to this problem as the Matrix Bandwidth Minimization problem.

The main application of the BMP is to solve non-singular systems of linear
algebraic equations. The preprocessing of the coefficient matrix to reduce its
bandwidth results in substantial savings in the computational effort associated with
solving the system of equations. The context of these applications includes aircraft
structures, liquid nitrogen gas tanks, propel blades, and submarines. In order to
tackle the problem, Del Corso and Manzini in [22] proposed two exact algorithms to
solve randomly generated graphs up to 100 nodes. Similarly, Martí et al. proposed
an exact method in [80] based on a branch and bound algorithm, together with
several lower bounds, to compute the optimal solution for small and medium-
sized instances. However, the complexity of the problem makes that most of the
efforts performed by researchers have been heuristic approaches. In this sense,
for many years, researchers were only interested in designing relatively simple
heuristic procedures and sacrificed solution quality for speed. This is the case of
the reverse method by Cuthill and McKee [21] and the GPS procedure by Gibbs
et al. [44]. These two methods yield similar results in terms of solution quality;
however, GPS is considerably faster, with an average speed that is about eight times
faster than the reverse Cuthill-McKee procedure. Recently, metaheuristics have
been adapted to this problem. A Simulated Annealing procedure was introduced
by Dueck and Jeffs in [33], which is based on an insertion mechanism and does not
take advantage of the graph structure as the GPS method does. Martí et al. in [81]
propose a Tabu Search method [47] for this problem, which is likewise based on
swap moves that exchange the labels of a pair of vertices; however, it incorporates
memory structures that prove to be remarkably effective. Later, Piñana et al. in
[100] proposed an algorithm based on GRASP for the problem. In this proposal, the
constructive step is based on GPS and the local search is based on exchanges. The
GRASP method is coupled with a Path Relinking phase for improved outcomes.
This algorithm clearly outperforms all the previous heuristic approaches. More
recently, Lim proposed several algorithms for the problem. In [70] they proposed
an Ant Colony Optimization (ACO) [29] method with hill climbing. The same year,
in [72] they introduced the node-shift heuristic which computes the desired label
of each vertex according to the label of its adjacent vertices and then orders all
the vertices in the graph with respect to these desired labels; finally all the vertices
are relabeled following this ordering. This innovative method is repeated until no
vertex changes its label and it is coupled with a local search hill climbing. These
authors also proposed a Genetic Algorithm [48, 52] that generates the solutions
in the initial population with a level structure procedure (as the GPS does) and
implements a classic midpoint crossover as a combination operator. Finally, among
their proposals, in [71], Lim et al. proposed a Particle Swarm Optimization (PSO)
[60] and hill climbing method. Later, Rodríguez-Tello et al. in [106] presented
a Simulated Annealing method based on a new neighborhood definition. Instead
of swapping the labels of two vertices, they introduce a more elaborated move
definition that leads to an efficient search as shown in their computational results.
Recent approaches to the problem include several strategies based on Variable
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Neighborhood Search proposed by Mladenovic et al. in [89]; an adaptation of Tabu
Search and Scatter Search performed by Campos et al. in [15], where the authors
studied the influence of adaptive memory; and the Genetic Algorithm proposed by
Pop and Matei in [101].

The test data set of instances used as a reference for the problem is again derived
from the Harwell-Boeing sparse matrix collection [20, 34, 35]. The use of instances
derived from this family can be traced back to the first papers in the literature with
heuristic approaches. In particular, the current data set is composed of 113 instances
and it is divided into two subsets. The first subset consists of 33 instances with
a number of vertices ranging from 30 to 199, and the second subset includes 80
instances with a number of vertices ranging from 200 to 1000. This data set was
first introduced in [81], where the authors selected 126 instances and then it was
reduced to its current state in [100] by considering just 113 instances. The data set
has been used in almost all the papers in the latter literature of the BMP.

Conclusion

In this chapter a family of graph layout problems is reviewed. Graph layout
problems are optimization problems where the main objective is to project an
original graph into a predefined host graph. The term layout problem comes
from its application to VLSI design. In particular, five linear layout problems are
reviewed, where the host graph is a horizontal line and the aim is to minimize an
objective function. This family is probably the most studied family of problems by
the heuristic literature within the context of graph layout problems. Specifically,
in this chapter the following are reviewed: the Cutwidth Minimization Problem,
the Minimum Linear Arrangement Problem, the Vertex Separation Problem, the
SumCut Problem, and the Bandwidth Minimization Problem. Each problem is
illustrated with its formal definition and with a detailed example. Additionally,
the most relevant heuristic methods in the literature and the sets of instances
used to evaluate them are also reviewed. It is worth mentioning that, among
other data sets, including those with graphs where the optimum value is known
for each problem, all the studied problems have been tested over instances from
the Harwell-Boeing sparse matrix collection. This collection of graphs can be
considered as a reference test bed for linear layout problems, since the hardness
of the instances has made them suitable to find differences among the algo-
rithms.

The wide variety of heuristic algorithms presented in the literature for the
reviewed problems set a deep understanding of strategies to reach high-quality
solutions to minimization linear layout problems. This knowledge can be then
applied to other linear layout problems. Despite of the fact that there are many
algorithms able to find remarkable upper bounds for the studied problems, the gap
between the lower and the upper bounds for general graphs is still large. Most of
the exact approaches are not able to handle graphs larger than 100 vertices, while
current heuristics are successfully handling graphs up to 1000 vertices. Therefore,
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among the open questions, the development of efficient algorithms to get better
lower bounds would be interesting, as well as testing the current heuristics on
larger graphs. Finally, the attention in the future should be also derived to extend
the current knowledge on the embedding of graphs into a linear structure, to other
structures such as grids, trees, or cycles.
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87. Mladenović N, Hansen P (1997) Variable neighborhood search. Comput Oper Res
24(11):1097–1100
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Abstract

Maritime container terminals are essential infrastructures in global supply chains.
Their high management complexity and heterogeneous processes make them an
interesting field to apply heuristics. A brief overview of the main optimization
problems found at maritime container terminals and a review of the way they
are related to each other are firstly introduced. In order to solve these problems,
several heuristics are presented and analyzed. The computational results reveal
that they are suitable to be applied in practical scenarios due to the fact that they
provide high-quality solutions in short computational times.
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Introduction

Containerization is, without doubts, the engine of economic globalization, which
enables to move goods around the world within global intermodal supply chains by
means of standardized containers. The containers are usually built of weathering
steel and have locking systems and well-known international dimensions. The
capacity unit of measure in transport is the twenty-foot equivalent unit, which refers
to a container with a length of 20 feet. Due to their physical structure, containers
can be stacked one on top of another, which allows to reduce the surface dedicated
to their storage and be easily transported by a multitude of transport means.

The United Nations Conference on Trade And Development (UNCTAD) exam-
ines trends in seaborne trade and analyzes the comparative performance of different
geographic regions and countries around the world. In this regard, the Review of
Maritime Transport is an annual publication edited by the UNCTAD secretariat
since 1968 with the goal of presenting a global maritime market analysis. One of
the main assertions included in the last edition of the review in 2014 [25] remarks
that the merchandise trade and seaborne shipments have been increased in tandem
over the last years. Particularly, the world merchandise trade has grown about twice
as fast as the world gross domestic product. Simultaneously, the seaborne trade
has increased 4.3% in 2012, allowing to move about 9.2 billion tons of goods
in ports worldwide. However, containerized trade is the fastest-growing market
segment, giving rise to that 1.6 billion tons which are being nowadays transported
by containers around the world.

In order to cope with the huge aforementioned seaborne trade, over the last
decades, public institutions and freight shipping companies have funded the building
of maritime container terminals in strategic regions as engines of economic
development and investment elements. A maritime container terminal is a large
infrastructure located in a seaport and aimed at joining together maritime and land
transport means. The main transport means that can be usually found at a maritime
container terminal are vessels, trucks, inland waterway systems, and trains. The
main goal of a maritime container terminal is, hence, to perform the transshipment
of freights between different means of transport efficiently. With this goal in mind, a
maritime container terminal is responsible for unloading and loading the incoming
vessels. The freights are temporarily stored by the terminal until their final means
of transport pick them up and retrieve them from the terminal.

As depicted from left to right in Fig. 1, a maritime container terminal is typically
split into the following main areas:

• Seaside. It is the part of the maritime container terminal aimed at serving the
incoming vessels. It contains the most expensive machinery found at the maritime
container terminal, the quay cranes, which perform the transshipment operations
of containers between the terminal and the vessels. Roughly speaking, a quay
crane grabs the containers from the vessels when they are berthed through its
spreader during unloading operations. Then, the containers are lifted and moved
ashore. Finally, the containers are placed on trucks in order to be moved toward
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Seaside Yard Landside

Fig. 1 Overview of a maritime container terminal

the yard or outside the terminal directly. This sequence of movements is reversed
during loading operations.

• Yard. It is a temporal storage that usually takes up more than 50% of the terminal
surface and in which those containers arrived to the terminal are stacked until
their subsequent retrieval. The yard is split into several blocks, that is, sets of
container bays arranged in parallel. A bay is a delimited two-dimensional stock
disposed in the vertical direction, where containers can be placed one on top of
another. The blocks are served by specialized machinery, such as, reach stackers,
rubber-tyred gantry cranes, or rail-mounted gantry cranes.

• Landside. It is an interface to communicate the maritime container terminal with
external trucks and trains. Several gates are available in order to supervise the
movement of containers.

Some particular facilities that can be found in maritime container terminals are
the following: container freight station, interchange area, and railhead. These are,
respectively, dedicated to manage the consignments, allow road vehicles to deliver
and retrieve cargoes from the terminal, and carry out inspection of the containers
arriving or leaving by train.

Nowadays, the large volume of freights and the unceasing competition among
maritime container terminals give rise to increasingly vessel operator’s demand
for reliable services. A suitable performance of a maritime container terminal is
obtained by harmonizing the technical equipment and staff. However, maritime
container terminals are complex to manage due to their large number of hetero-
geneous processes that take place in them. In this environment, heuristics stand
as promising optimization techniques to be taken into consideration. The reason is
found in that, as discussed along this chapter, most of the optimization problems
that are addressed in a maritime container terminal belong to the NP-hard class of
problems. In this regard, even in small-size scenarios of some of these optimization
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problems, efficient exact approaches do not exist. Nevertheless, heuristics report
high-quality solutions through affordable computational times.

The remainder of this chapter introduces the main optimization problems found
at a maritime container terminal, the way they are interconnected, and analyzes
heuristics aimed at addressing them. Some conclusions and further lines of study
are presented at the end of the chapter.

Optimization Problems

As mentioned before, maritime container terminals are huge infrastructures aimed at
managing increasing transshipment flows of containers within transport multimodal
networks. The large number of logistical problems taking place in them and their
interrelations constitute a challenge for practitioners and researches. Henesey et al.
[16] divide the problems taking place at container terminals in four large sub-
systems or categories, namely, ship to shore, transfer, storage, and delivery. In this
regard, due to the similarity of the operations between transfer and delivery, they are
here considered as a single category. Moreover, in the following, some of the most
highlighted problems within these categories are briefly described:

• Ship to shore. Movements of loaded/unloaded containers from/to the sea to the
container terminal:
– Ship routing (Korsvik and Fagerholt [19]). These are a particular kind of

routing problems where the vessels have to be routed along a set of ports
in such a way that their cargoes are picked up and delivered from/to them.

– Stowage planning (Monaco et al. [22]). In these problems, the goal is to
determine the positions to be occupied by each container within a container
vessel along its shipping route.

– Berth allocation (Bierwirth and Meisel [3]). The problems under this category
seek to determine the berthing position and berthing time of those container
vessels arriving to the terminal.

– Quay crane assignment (Meisel and Bierwirth [21]). Once a vessel is berthed,
these problems seek to determine the fixed number of quay cranes to be
assigned to the vessel according to its workload.

– Quay crane scheduling (Meisel and Bierwirth [2]). Given a vessel and a subset
of the available quay cranes, the aim of these problems is to determine the
quay crane schedules for performing the vessel loading/unloading tasks.

• Transfer and delivery. Bidirectional movement of containers from the quay to
storage area, from the storage area to the hinterland, or vice versa:
– Vehicle dispatching (Angeloudis et al. [1]). Containers within transshipment

flows are usually moved from the quay to the yard and vice versa by internal
vehicles. In these problems, the management of those vehicles is addressed.

– Gate operations planning (Chen et al. [8]). The management of vehicles with
containers from the yard to the gate and vice versa is dealt by these problems.
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• Storage. Movement and warehousing of containers until their retrieval for
continuing their routes by vessels, trucks, or trains:
– Yard crane scheduling (Gharehgozli et al. [15]). These problems are related

to the schedule of the cranes within the yard at a container terminal in such a
way that the loading, relocation, and unloading operations are performed.

– Container storage (Caserta et al. [6]). These problems are aimed at determin-
ing the movements to be performed by the yard cranes in order to store/retrieve
the containers on/from the yard.

In the remainder of this chapter, the focus is put on four particular optimization
problems, namely, berth allocation problem, quay crane scheduling problem, vehi-
cle dispatching, and container storage.

Berth Allocation

The berth allocation problem (BAP) is an NP-hard optimization problem that seeks
to determine the berthing position and berthing time of each incoming vessel that
arrives to the port within a given planning horizon. The main constraint involved
in the BAP concerns that the berthing positions of the incoming vessels cannot be
overlapped in the same time step.

According to the arrival of the incoming vessels, two variants of the BAP can be
identified: static BAP and dynamic BAP. Firstly, in the static BAP all the incoming
vessels are already waiting for being berthed before the planning horizon starts.
Secondly, the dynamic BAP considers that the vessels arrive to the port at any
moment during the planning horizon. In both cases, each vessel could have a certain
time window in which the vessel must be served by the maritime container terminal.

Moreover, the berth layout of the maritime container terminal gives rise to the
following variants of the BAP:

• Continuous BAP. In this layout, the quay is not divided, thus the vessels can berth
at any position along it.

• Discrete BAP. The quay is physically divided into segments called berths in such
a way that each berth can serve a certain number of vessels at each time step.

• Hybrid BAP. There are also options to discretize the continuous quay to have
intermediate options from classical berths up to almost continuous ones. This is
known as hybrid layout. The continuous quay is divided into a set of berths, and
a vessel can occupy more than one berth at a time or share its assigned berth with
other container vessels.

In addition, according to the planning level to consider, the BAP can be classified
as follows:

• Operational. It covers decisions ranging from one up to several days. Thus, the
BAP within this level is aimed at optimizing the delays and waiting times of
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container vessels. This variant of BAP has received larger attention than the other
ones.

• Tactical. At this level, the decisions cover operations ranging from one week up
to several months. Some of the objectives here are to optimize the transshipment
flows among vessels, cycling visiting of the vessels, fulfilment of contracts
among shipping companies and terminal managers, route design, etc.

• Strategic. The decisions covered at this level range from one up to some
years. They seek to establish specific and dedicated berths, strategic cooperation
agreements between terminal and shipping companies, etc.

In the related literature, the majority of works address the BAP at operational
level. To a lesser extent, some works consider the tactical level and a few of them
the strategic one. Due to this, in the following, how heuristics can be used to tackle
the BAP at operational level is analyzed. In this regard, one of the most used variants
of BAP is the dynamic BAP (DBAP) proposed by Imai et al. [17], who address the
problem over a discrete layout. Then, Cordeau et al. [9] formulate it as multi-depot
vehicle routing problem (MD-VRP). Additionally, they also include berth and vessel
time windows. The authors propose a benchmark suite based on real data from the
container terminal of Gioia Tauro (Italy).

The input data for the DBAP consists of a set of n incoming vessels to serve,
denoted as V , a set of m berths, denoted as B , and a planning horizon, H . Each
container vessel v 2 V has a certain time window, Œav; dv�, which must be served
by the maritime container terminal, whereas its service priority is pv . The handling
time of vessel v 2 V in berth b 2 B is denoted as svb . This way, the turnaround
time of vessel is the sum of its waiting time to be berthed and its handling time.
Furthermore, each berth b 2 B has a known time window in which vessels can
be served, Œsb; eb�. The goal of this problem is to minimize the sum of (weighted)
turnaround times of the vessels.

Figure 2 shows a solution example of the DBAP. In this figure, a schedule and
an assignment plan are shown for n D 6 vessels in m D 3 berths. The rectangles
represent the vessels, and inside each vessel its service priority is provided. The time
windows of the vessels are represented by the lines at the bottom of the figure. In
this case, for example, vessel 1 arrives at time step 4, and it should be served before
time step 14. Moreover, the time window of each berth is limited by the non-hatched
areas. Table 1 reports the different handling times of each vessel depending on the
assigned berth. For example, the handling time of vessel 1 at berth 1 would be 7,
whereas its handling time would be 8 at berth 2.

As can be seen in the previous example, vessels 5 and 6 would have to wait
for berthing in their respective assigned berths. In this regard, since their service
priorities are p5 D 2 and p6 D 1, their waiting times will have less impact on the
objective function value than delaying other vessels, for example, vessels 3 and 4,
for which their service priorities are p3 D 6 and p4 D 4, respectively. That is, if their
berthing time is delayed, the waiting time of each vessel is multiplied by 6 and 4,
respectively. In this example, the weighted turnaround time of the six vessels is
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Fig. 2 Solution example of the Dynamic Berth Allocation Problem composed of 6 vessels and 3
berths

Table 1 Vessel handling
times depending on the berth

Vessel Berth 1 Berth 2 Berth 3

1 7 8 5

2 2 3 4

3 5 5 4

4 4 6 5

5 5 8 5

6 4 2 3

calculated as follows. Starting from vessel 1 and increasing a unit until vessel 6, the
objective function value is 1 � 7C 3 � 3C 6 � 4C 6 � 4C 5 � 2C 2 � 1 D 76.

At container terminals, there are some queue rules used when scheduling
incoming vessels to berthing positions. The vessels are sorted according to a specific
rule. Some examples are described in the following:

• Random (R). The incoming container vessels are randomly selected to be served
by the terminal.

• First come, first served (FCFS). This rule is based on serving vessels according
to their arrival times. That is, the earliest vessel is the first to be served.

• Shortest processing time (SPT). The vessels are sorted according to their required
handling times. In this case, that vessel requiring the shortest handling time berths
first.



1058 C. Expósito-Izquierdo et al.

• Earliest due date (EDD). It serves the vessels on the basis of the end of their time
windows. This way, that vessel whose time window ends earliest is served firstly.

The previous rules allow to obtain a permutation of the incoming container
vessels to serve. There are four heuristics that can be obtained by using these rules
in such a way that the vessels are iteratively assigned to the best possible berth.
This berth is selected by minimizing the impact on the objective function value. The
names of the heuristics are derived from the names of the rules. That is, random
greedy method (R-G, Cordeau et al. [9]), first come, first served greedy (FCFS-G,
Cordeau et al. [9]), shortest processing time greedy (SPT-G), and earliest due date
greedy (EDD-G).

Algorithm 1 presents the general framework of the heuristics proposed in the
literature (FCFS-G and R-G). It should be noted that the heuristics proposed in this
chapter, namely, EDD-G and SPT-G, are also included within this general heuristic
framework.

As indicated in Algorithm 1, the initial solution, S , is empty (line 1). Its associ-
ated objective function value, fobj .S/, is set to 0 (line 2). Once this initialization is
done, depending on the given rule, a permutation of vessels R is obtained (line 3).
So, for example, in FCFS-G, the first element of the permutation, R.1/, is the first
vessel that arrives at port. With the permutation already defined, the vessels are
assigned one at a time (line 5) to the best possible berth following the order given
by the sorted list (lines 4–8). The best possible berth is determined according to the
impact on the objective function value of the solution (line 6). That is, each vessel is
assigned to the berth that least increases the objective function value of the solution
built until the moment.

Furthermore, a tabu search (see the �Chap. 25, “Tabu Search”) for solving this
problem is proposed by Cordeau et al. [9]. Their proposed approach, T2S, [9]
uses R-G and FCFS-G for restarting the search. In this regard, for improving the
performance of their solution approach, Lalla-Ruiz et al. propose [20], on the one
hand, the use of one additional neighborhood structure T2S� and, on the other hand,
the use of a path-relinking procedure (see the �Chap. 16, “GRASP”), T2S� C PR,
for restating the search. In the path-reliking procedure, in order to create new starting

Algorithm 1: General heuristic framework for the Berth Allocation Problem
1: S  ;

2: fobj .S/ D 0

3: R Create list of vessels according to selected rule
4: for i  1 to n do
5: v  Select vessel R.i/

6: b  Select berth that allows the minimum impact on fobj .S/

7: Assign v to b in S

8: end for
9: Return S
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Algorithm 2: Tabu search with path relinking for the dynamic berth allocation
problem

1: sR�G = R-G()
2: sF CFS�G = FCFS-G()
3: ES = T2S�

min.sR�G/

4: ES D ES[ T2S�
min.sF CFS�G/

5: while !stopping condition do
6: sinit ial = R-G()
7: seli te D Select.ES/

8: s = PR.sinit ial ; seli te/

9: ES D ES[ T2S�
min.s/

10: end while

points for the tabu search, an elite set of solutions, ES , consisting of a subset of the
local optima encountered during the process, is used. Then, a path-relinking from
one solution randomly picked from ES and one generated by R-G is performed.

Algorithm 2 shows the pseudo-code of T2S� C PR. First of all, the elite
set, ES , is initialized with the sets of local optima T2S�

min.sR�G/ (line 3) and
T2S�

min.sF CFS�G/ (line 4). Then, a random solution, sinit ial , is generated by running
R-G (line 6) and a solution seli te 2 ES is randomly selected (line 7). Once that,
a path relinking connecting sinit ial with seli te is performed (line 8). Finally, the
midpoint solution of this path, s, is selected as starting point to run the tabu search
T2S� (line 9). The local optima reached along this search are also used to update the
elite set of solutions (line 9). These steps (lines 5–9) are repeated until a stopping
condition is met.

Comparative Analysis
This subsection is devoted to compare the heuristics to solve the DBAP. The problem
instances used to evaluate the proposed heuristics are a representative set of the
problem instances proposed by Cordeau et al. [9]. These instances were generated
by taking into account a statistical analysis of the traffic and berth allocation
data at the maritime container terminal of Gioia Tauro (Italy) [10]. Moreover, a
representative set of instances from those proposed by Lalla-Ruiz et al. [20] are
used. All the heuristics have been implemented in ANSI C and executed on a
computer equipped with an Intel 3.16 GHz and 4 GB of RAM.

Table 2 illustrates the results obtained for a representative set of instances
mentioned above. The first three columns correspond to the problem instance
description, namely, the number of vessels, n, and, number of berths, m, and the
instance identifier, Id. In columns R-G, FCFS-G, SPT-G, and EDD-G, the objective
function values provided by the different heuristics for the DBAP are reported.
That is, the objective function value, Obj:, and the computational time measured
in seconds, t(s.). In the last row, the average values are provided.
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Table 2 Comparison of the heuristics for the Discrete Berth Allocation Problem. Best values in
bold

Instance R-G FCFS-G SPT-G EDD-G

n m Id Obj. t (s.) Obj. t (s.) Obj. t (s.) Obj. t (s.)

30 3 1 3237 <0.001 2039 <0.001 2667 <0.001 4702 <0.001

2 3523 <0.001 2829 <0.001 4246 <0.001 3903 <0.001

40 7 1 2397 <0.001 1612 <0.001 3102 <0.001 4185 <0.001

2 2987 <0.001 1633 <0.001 2755 <0.001 3961 <0.001

55 7 1 5874 <0.001 3591 <0.001 5695 <0.001 7576 <0.001

2 5761 <0.001 3565 <0.001 5084 <0.001 7246 <0.001

60 13 1 2802 <0.001 1437 <0.001 2776 <0.001 2987 <0.001

2 2861 <0.001 1278 <0.001 2761 <0.001 3361 <0.001

Average: 3680.25 <0.001 2248 <0.001 3635.75 <0.001 4740.13 <0.001

Furthermore, as indicated by Lalla-Ruiz et al. [20], the GSPP model implemented
in CPLEX runs out of memory for some problem instance sets where other
characteristics are taken into account. Therefore, in Table 3, the results provided by
T2S, T2S�, and T2S� C PR are reported for a set of instances where CPLEX is not
able to provide a feasible solution for any instance within it. The table is divided,
in column Instance, containing the number of vessels, n, number of berths, m,
and the instance identifier, Id. In columns T2S, T2S�, and T2S� C PR the objective
function value, Obj:, and the computational time measured in seconds, t(s.), are
reported. Moreover, the relative error, Gap1.%/, with respect to T2S is also reported.
In the case of T2S�CPR, the relative error, Gap2.%/, with respect to T2S� is shown.

As can be seen in Table 2, the best heuristic for the DBAP irrespective of the
size of the instance is the FCFS-G. On the other hand, R-G and SPT-G exhibit,
on average, a similar performance in terms of objective function value, while the
policy of serving the vessels according to the due date reports the worst values
for these instances. It should be noted that the computational time required is less
than 0.001 s, as expected for these heuristics. This advises their use as initialization
methods. In this regard, FCFS-G and R-G are the heuristics most used in the
related literature, which at the light of the results, are the best options in terms of
quality of the solutions. It is important to highlight that R-G is not a deterministic
heuristic, therefore, it provides different solutions that may be beneficial in multi-
start methods.

The results shown in Table 3 indicate that among the three algorithms, the use of
a restarting strategy based on path-relinking between a solution from an elite set and
one generated by the R-G heuristic improves the quality of the solutions in terms of
objective function value. In this regard, T2S�, and T2S� + PR are able to provide a
feasible solution in less than 2 s.

The results shown in this subsection highlight that the use of heuristics either
alone or within metaheuristics for solving this problem is suitable and desirable.
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Table 3 Comparison among T2S, T2S�, and T2S� CPR for the instances proposed by Lalla-Ruiz
et al. [20]. Best values in bold

Instance T2S T2S� T2S� C PR

n m Id Obj. t (s.) Obj. Gap1(%) t (s.) Obj. Gap1(%) Gap2(%) t (s.)

40 7 1 1489 8:16 1467 �1:48 1:20 1460 �1:95 �0:48 1:11

2 1423 8:26 1381 �2:95 1:01 1375 �3:37 �0:43 1:32

3 2149 8:13 2119 �1:40 0:84 2119 �1:40 0:00 1:17

4 1618 7:99 1600 �1:11 1:18 1597 �1:30 �0:19 1:78

5 1885 8:37 1849 �1:91 1:11 1847 �2:02 �0:11 1:45

6 2104 8:11 2080 �1:14 0:86 2080 �1:14 0:00 1:37

7 1863 7:91 1845 �0:97 1:25 1841 �1:18 �0:22 1:56

8 2040 8:16 2026 �0:69 1:18 2026 �0:69 0:00 1:70

9 1901 8:01 1888 �0:68 1:06 1880 �1:10 �0:42 1:48

10 1922 7:89 1905 �0:88 0:71 1892 �1:56 �0:68 1:59

This is of particular significance when, as shown before, the exact approaches are
not able to provide a feasible solution due to lack of memory or require high amounts
of computational time.

Quay Crane Scheduling Problem

The quay crane scheduling problem (QCSP) can be defined as the problem of
determining the finishing times of the tasks performed by each quay crane allocated
to a container vessel in order to minimize its turnaround time (Meisel and Bierwirth
[2]). Input data for the QCSP consist of a set of n tasks, denoted as ˝, and a set
of m quay cranes, denoted as Q. Each t 2 ˝ is composed of a set of containers
with similar characteristics (e.g., weight, destination port, dimensions, etc.) that
are placed together in the same cross section, lt , into the container vessel. The
processing time of t is the time required by a quay crane to load or unload its
containers and is denoted as pt . Furthermore, each q 2 Q is available after its
earliest ready time, rq ; is initially located on a cross section, l

q
0 ; and can travel

between two adjacent positions with a travel time, Ot .
The QCSP has a set of particular constraints. In first place, within each cross

section of the container vessel, tasks are sorted according to known precedence
relationships. Thus, tasks have to be performed orderly: unloading operations before
loading operations, loading operations into a hold before loading operations on the
deck, and so forth. Moreover, the quay cranes are rail mounted and, then, they cannot
cross each other. Additionally, they have to keep a safety distance, ı, between them
in order to prevent possible collisions (Kim and Park [18]).

Figure 3 illustrates an example of the QCSP and a feasible schedule for
it where quay cranes are available from the starting of the service time (e.g.,



1062 C. Expósito-Izquierdo et al.

0 1 2 3 4 5 6 7 8 9

1

2

3 4 5

6

7

8

QC1 QC2

Task, t
Position, lt
Processing Time, pt

1 2 3 4 5 6 7 8
1 1 3 4 6 6 6 8

10 8 10 15 7 6 5 10

0

1

2

3

4

5

6

7

8

9

0 10 20 30 40 50

Time

Bays

1 (10) 2 (8)

3 (10)

4 (15)

5 (7) 6 (6) 7 (5)

8 (10)

Fig. 3 Example of Quay Crane Scheduling Problem composed of n D 8 tasks and m D 2 quay
cranes

rq D 0;8q 2 Q), ı D 1, and Ot D 1. Within each cross section of the vessel, tasks
are sorted. For instance, task 5 has to be performed before task 6 and task 6 before
task 7. Additionally, in this example, tasks 1, 2, 3, 5, 6, and 7 are performed by quay
crane 1 and tasks 4 and 8 by quay crane 2. The turnaround time of this container
vessel is 52 time units.

An interesting heuristic approach to solve the QCSP is to explore the search
space of unidirectional schedules (Meisel and Bierwirth [2]). A schedule is referred
to as unidirectional if all quay cranes move with similar sense of movement along
their service times. In the following, a hybrid estimation of distribution algorithm
with local search (EDA/LS, Expósito-Izquierdo et al. [12]) is described to solve the
QCSP from a unidirectional point of view. This approach uses a priori knowledge



35 Maritime Container Terminal Problems 1063

Algorithm 3: Hybrid estimation of distribution algorithm with local search for the
quay crane scheduling problem

1: g D 0

2: Initialize the probabilistic learning model, P.g/

3: S.g/ Generate the initial population from P.g/

4: repeat
5: Se.g/ Select the subset of elite solutions from S.g/

6: S.gC1/ Create population composed of solutions in Se.g/ and solutions
from P.g/

7: if � generations without improvement then
8: Apply Local Search to best solutions from S.g/

9: end if
10: P.g C 1/ Create next probabilistic learning model
11: g D g C 1

12: until Stopping criterion is met

about the problem with the goal of achieving high-quality solutions. Additionally,
a novel restart strategy (see the �Chap. 8, “Restart Strategies”) is introduced to
prevent the premature convergence of the search and guide it to insufficiently
explored regions. Finally, a proper finishing time of the search is determined by
means of an adaptive stopping criterion.

Algorithm 3 depicts the pseudocode of the EDA/LS. The proposed scheme keeps,
at each generation g, a population S.g/ with N solutions (line 3). Additionally,
a probabilistic learning model P.g/ based on a probability matrix with m rows
and n columns is considered (line 2). Each value pqt .g/ defines the probability of
assigning task t 2 ˝ to quay crane q 2 Q in the model sampling step, as follows:

P.g/ D

0
BBB@

p11.g/ p12.g/ � � � p1n.g/

p21.g/ p22.g/ � � � p2n.g/
:::

:::
: : :

:::

pm1.g/ pm2.g/ � � � pmn.g/

1
CCCA

In most EDAs, the initial population is randomly created according to the uniform
distribution over all feasible solutions. The QCSP structure allows to include a priori
knowledge in the scheme of EDA/LS in a straightforward manner. Intuitively, the
probability that a certain task is performed by a quay crane in a promising solution is
highly influenced by the distance between them. The initialization step here is based
on a Gaussian function in a discrete way to compute initial assignment probabilities.
Its use is based on the fact that it lets to assign a higher weight to those quay
cranes initially located close to the corresponding task, and it is decremented as
the distance between them increases. At each new generation, a new population is
obtained. The new population is composed of the subset of solutions with the lowest
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objective function value, Se.g/, (defined by a percentage ˛, whose value is set by the
user) from the previous population (elitism criterion) and new unidirectional ones
sampled from the probabilistic learning model (line 6). In the sampling step, the
tasks are assigned to a specific quay crane considering the cross sections in which
they are located (from the leftmost up to the rightmost) and following the precedence
relationships. At each step, one of the available quay cranes is selected according
to the roulette wheel selection based on a pseudo-random generator. The subset of
elite solutions is also used to update the probabilistic learning model in such a way
that the probability of a task can be assigned to a quay crane and is defined by the
number of times that assignment has been previously performed. This is formally
expressed as follows:

pqt .g/ D
cqt .g/P

k2Q ckt .g/
;8q 2 Q; t 2 ˝; (1)

where c.g/ is a matrix composed of m rows and n columns such that cqt .g/ is
the number of times task t 2 ˝ has been performed by quay crane q 2 Q in a
high-quality solution found during the search.

In order to overcome the lack of intensification of EDAs, this scheme incor-
porates a local search. This local search is based on a neighborhood structure
composed by movements of reassignment and interchange of tasks between quay
cranes. The next current schedule in the local search is selected according to the
first improvement strategy. Additionally, the local search is applied to a subset of
solutions with the lowest objective function value (line 8) defined by the percentage
ˇ (whose value is set by the user) after � > 0 generations without improvement
(lines 7–9). After the application of the local search, a subset of problem variables,
V , is selected. V is defined by the set of tasks performed by different quay cranes
in the improved solutions. The effectiveness of the proposed local search is used as
an indicator of the search process convergence, so that the algorithm execution is
stopped when it is not possible to improve any solution from the selected subset of
solutions from the population.

Computational Analysis
This section presents a comparison between the EDA/LS described above and the
most competitive algorithm from the related literature: unidirectional scheduling,
UDS (Bierwirth and Meisel [2]). This comparison is carried out on a benchmark
suite proposed by Kim and Park [18] and subsequently extended by Bierwirth
and Meisel [2] (90 instances). For each instance, the EDA/LS has been executed
on a computer equipped with an Intel 3.16 GHz and 4 GB of RAM, whereas the
computational results presented for UDS are those reported in the corresponding
original paper. Computational times for those instances that cannot be solved within
the maximum computational time of 1 h by the UDS are not reported.

Table 4 shows an extract of the computational results in the largest instances
(k83–k102). The objective function values (fUDS and fEDA) and computational
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Table 4 Comparison between EDA/LS and UDS. Largest instances

UDS EDA/LS

Instance fUDS tUDS .m:/ fEDA tEDA.m:/ Gap (%)

k83 948 6,37 948 0,63 0,00

k84 897 3,29 897 0,68 0,00

k85 972 5,82 972 0,68 0,00

k86 816 – 819 0,63 0,37

k87 867 – 867 0,80 0,00

k88 768 43,73 768 0,81 0,00

k89 843 10,96 843 0,66 0,00

k90 1053 24,95 1056 0.69 0,29

k91 837 10,74 840 0,70 0,36

k92 897 34,61 903 0,62 0,67

Avg.: 889,80 >60,00 891,30 0,69 0,17

k93 816 – 822 0,86 0,74

k94 786 – 795 0,92 1,15

k95 834 – 834 0,99 0,00

k96 819 – 804 0,89 �1,83

k97 720 – 717 0,93 �0,42

k98 735 23,97 741 0,89 0,82

k99 852 – 855 1,03 0,35

k100 900 – 891 1,07 �1,00

k101 813 – 816 0,87 0,37

k102 903 – 900 0,86 �0,33

Avg.: 817,80 >60,00 817,50 0,93 �0,04

times (tUDS .m:/ and tEDA.m:/) are shown for each approach. The results demon-
strate the suitability of the EDA/LS when solving the QCSP. It has a great
effectiveness and efficiency when solving the largest problem instances, since
it presents short gaps and best solutions for four problem instances have been
improved. In addition, the computational times are lesser than 1 min in all cases.

Internal Vehicle Scheduling

The internal vehicle scheduling problem (IVSP) is an NP-hard optimization
problem that consists of assigning jobs to the internal vehicles of the container
terminal, in such a way that the time the incoming vessels spend at the port (i.e.,
their turnaround times) is minimized. In the related literature, this problem has been
treated either as vehicle routing problem (VRP) or a scheduling problem (the reader
is referred to �Chap. 40, “Particle Swarm Optimization for the Vehicle Routing
Problem: A Survey and a Comparative Analysis” for VRP and �Chap. 43, “Supply
Chain Management” for further details). In the IVSP, a set of n vehicles, denoted as
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V , and a set of m jobs, denoted as W D fW1; W2; : : : ; Wmg, are known. In addition,
a set of locations, denoted as L, in which the jobs can start and end is given. A job
j 2 W corresponds to the transportation of a container from a pick-up location to
a delivery location that must be performed from a certain time, tj . There are two
types of jobs:

• Loading job. It is the transportation of a container from the yard toward that
vessel in which it is going to be loaded into. Thus, the pick-up location is a stack
on the yard and the delivery location is at the corresponding quay crane.

• Discharging job. It is the transportation of a certain container from its source
vessel toward the yard. Therefore, the pick-up location is at the corresponding
quay crane and the delivery location is a known stack on the yard.

Thereby, each job has to be assigned to one of the vehicles. This way, each vehicle
can perform a sequence of jobs, so that after completing a job, a vehicle can start
another one. It should be noted that each job consists of (i) an empty drive of
the corresponding vehicle from its last location i 2 L to the pick-up location,
k 2 L, whose time is tik , (ii) a hand-over time at the pick-up location, hp ,
(iii) a drive to the delivery location, l 2 L, and (iv) a hand-over time at the
delivery location, hd . Figure 4 illustrates these times involved in a job, where
departure corresponds to location i , Source quay crane=stack corresponds to
location k of the quay crane or a stack depending on the type of job, and finally,
destination quay crane=stack corresponds to location l of the quay crane or
stack depending on the kind of job.

Once a vessel arrives at the terminal, its containers are first discharged from the
vessel onto the internal vehicles by the available quay cranes. Next, the internal
vehicles transport the containers to their pre-specified stacks on the yard. When a
vehicle arrives to its destination, a container is unloaded from it by a yard crane.
Typically, after most, or all, containers have been discharged from the vessel; the
outgoing containers from the yard are transported to the quay by those internal
vehicles and are loaded into the vessel by the quay cranes.

A fast transshipment of containers associated with the vessels is important to
both the shipping companies, since they can reduce their operational costs, and the
terminal, which can serve a large number of vessels per day. However, in order to
achieve this reduction of the turnaround time, different objective functions can be

tik hp tkl hd

Job

Departure Source
quay crane/

stack

Destination
quay crane/

stack

Fig. 4 Breakdown of the times involved in a job
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defined such as minimizing the quay crane waiting times for vehicles, minimizing
of the vehicles waiting times at quay cranes, minimizing of the empty travel times,
and minimizing of the cost associated with the jobs.

There are different dispatching approaches to establish the relationship between
vehicles and quay cranes. Traditionally, in the static dispatching approach, one
vehicle serves only one quay crane. When it finishes an unloading job in the
corresponding block on the yard, it must travel back to the bounding quay crane
for another unloading job. An empty travel always happens in this dispatching
approach. Furthermore, a dynamic dispatching approach means the vehicles can
serve any quay crane. When a vehicle finished its unloading job in the blocks, it can
choose either a loading job near it or an unloading job at the quay side. A dynamic
dispatching model will help to reduce the empty travels.

Moreover, there is a variety of transporters used in container terminals, such
as yard trucks (YTs), multi-trailers, straddle carriers, automated guided vehicles
(AGVs), and automated lift vehicles (ALVs). Their heterogeneous technical charac-
teristics allow to cover a wide range of practical scenarios. In this regard, selecting
and dispatching technical machinery around a given maritime container terminal
is a strategic decision to take into consideration according to the features of the
environment, the volume of cargoes, etc.

Therefore, when addressing the IVSP, the terminal decision-maker must consider
the following: firstly, how many and what type of vehicles are deployed at the
terminal; secondly, what kind of relationship is established between vehicles and
quay cranes; and finally, what will be the objective to achieve.

Due to the fact that IVSP is an operational problem (i.e., it has to be solved
daily) and is usually integrated with other closely related problems in container
terminals (e.g., quay crane scheduling, container storage, etc.), it is important to
solve it quickly and provide results of the highest possible quality. For this reason,
heuristics are appropriate methods to tackle this problem. However, most of the
heuristics proposed in the literature are based on particular formulations of the
problem with different objective function which hinders the comparison among
them (e.g. Angeloudis and Bel [1] maximize benefits; Bish et al. [4] minimize travel
distances and the transportation time; Briskorn, et al. [5] minimizes the weighted
sum of earliness, tardiness and empty travel time; Shang [24] minimize a weighted
sum of cost; etc.). In the following, we describe some basic heuristic strategies to
solve the problem:

• First come, first served (FCFS). Each idle vehicle selects the job with the
earliest emergence time. In this case, the assignment concept is reversed. This
is the conventional scheduling rule followed in container terminals to dispatch
vehicles, and its results are taken as reference when a new method is proposed
(Shang [24]):

• First. A due job will be assigned to the first available vehicle (Angeloudis and
Bell [1]).

• Fastest. A due job will be assigned to the vehicle that needs less time to complete
the job when it finishes its previous one.
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• Earliest. A due job will be assigned to that vehicle that spends less time in be
available and complete the job.

• Closest. A newly idle vehicle will be assigned to the job with the shortest setup
operation. In this case, the assignment concept is reversed (Angeloudis and Bell
[1]).

• Greedy. A vehicle will be assigned to the least costly job. The cost of performing
job j 2 W once the job i 2 W has been already performed is denoted as Cij

and formally expressed as follows (Angeloudis and Bell [1]):

Cij D ˛Lij C ˇTij C �Uij C ıDi (2)

where ˛, ˇ, � , and ı are weights, Lij is the distance between the location of the
vehicle when finishing job i and the location of the vehicle when starting job j ,
Tij is the travel time (expected) from the location of the vehicle when finishing of
job i to the location of the vehicle when starting of job j , Uij is the uncertainty
index associated with transition from job i to job j , and, finally, Di is equal to
0 if i is not a current vehicle task (assigned job, maintenance, or idle state) or
equal to the expected remaining time until the completion of job i , otherwise.

Figure 5 illustrates an example of solution, for instance, with four vehicles and
ten jobs using F irst heuristic. The times from which the jobs can be performed
(i.e., tj , where j 2 W ) are marked by dashed line. Firstly, four jobs appear at time
zero, and they are assigned to the available vehicles. Then, a new job W5 arises at
time instant five, and it is assigned to Vehicle 4, which is the first available vehicle.
Next job W6 appears at time instant eight, and it is assigned to Vehicle 3, which is
available just at this time. The process continues following this strategy, so that it
ends at time 29. Whenever a job is not assigned to a vehicle, this vehicle remains
idle.

W2 W7

W8W3

W1 W6 W10

W4 W5 W9

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 Time

Vehicle 1

Vehicle 2

Vehicle 3

Vehicle 4

Idle time

Fig. 5 Example of Vehicle Scheduling Problem using F irst heuristic
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Algorithm 4: General heuristic framework for the Vehicle Scheduling Problem
1: S  ;

2: fobj .S/ D 0

3: ˝  List of jobs ordered by appearing time
4: V  Set of vehicles
5: for i D 1! m do
6: v  Select vehicle from V servicing ˝.i/ with the minimum impact on

fobj .S/

7: Assign v to ˝.i/ in S

8: end for
9: Return S

Finally, Algorithm 4 shows a heuristic framework for this problem. A minimiza-
tion function is supposed to be used. Firstly, an empty solution is established and the
objective function is set to zero (lines 1–2). Then, for each job that appears during
the planning horizon, a vehicle v 2 V is chosen to make it, trying to minimize the
impact on the objective function value (line 6). These partial solutions are included
in the final one (line 7). Finally, when all the jobs included into ˝ have been already
assigned to one of the vehicles, the process finishes and the solution is returned
(line 9).

Computational Analysis
This subsection is devoted to compare some heuristics for the VSP. As mentioned
before, the objective function of this problem may vary from one work to another,
due to the different ways of reducing the turnaround. For this reason, some
performance indicators have been here used to compare three of the heuristics
explained above: f irst , closest , and greedy. In the following, several indicators
are presented to evaluate the performance of the heuristics by means of simulation
(Angeloudis and Bell [1]). That is:

1. Vehicle productivity (moves/h): It examines the amount of container moves that
can be accomplished within an hour by a single vehicle in the fleet, so that, unlike
the remaining indicators, the higher, the better.

2. Average job delay (s.): It measures the average period between the emergence of
a new job and its time of execution.

3. Fleet utilization (%): It reflects the percentage of the fleet that is likely to be
involved in a handling operation.

4. Average distance not in-service (m./job): It measures the average travelled
distance between the location of the vehicle when finishing a job and the location
of the vehicle when starting another.

5. CPU time per instance (ms.): It is the CPU time for solving an instance.
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Table 5 Comparison of the heuristics for the Vehicle Scheduling (Angeloudis and Bell [1]). Best
heuristic values in bold

BKS First Closest Greedy

Value Value Gap(%) Value Gap(%) Value Gap(%)

1 8.87 5.43 38.78 5.66 36.19 5.58 37.09

2 304.00 329.00 8.22 329.00 8.22 325.00 6.91

3 93.00 99.00 6.45 99.00 6.45 99.00 6.45

4 355.92 743.11 108.79 713.71 100.53 744.78 109.25

5 669.00 0.00 �100.00 1.00 �99.85 2.00 �99.70

Table 5 summarizes the computational results for f irst , closest , and greedy

heuristics. The first column shows the number associated with each performance
indicator. The second column shows the best-known solutions (BKS ). The remain-
ing columns show the results obtained by each heuristic and the gap regarding BKS

values. As can be seen, the heuristic that provides the best results for more indicators
is closest , which presents the lowest gap for indicators 1, 3, and 4, as well as a very
short CPU time. This highlights that serving a job according to the closeness in
terms of setup operations benefits, on the overall, the quality of the solution in the
majority of the indicators.

Container Storage

Container storage is a three-level (strategic, tactical, and operational) problem that
arises at maritime container terminals. Defining the yard layout as well as selecting
handling machinery to use (e.g., rubber-tyred gantry cranes, rail-mounted gantry
cranes, and overhead bridge cranes) are decisions to take at strategic level. At a
tactical level, decisions concerning the storage capacity of the yard and the handling
machinery deployment are involved. Lastly, operational decisions are those related
to the movement of containers on the yard in a short-term (i.e., from some hours to
a few days).

Figure 6 illustrates a traditional layout of yard in a maritime container terminal
in which the top and horizontal views are shown. It is composed of a set of similar
three-dimensional storage areas, termed yard blocks. In this case, five yard blocks
are depicted. The yard blocks can be placed in perpendicular (as Fig. 6) or parallel
direction to the quay. Each yard block is composed of a set of bays (e.g., ten bays
in Fig. 6). A bay is a two-dimensional storage composed of S homogeneous stacks
made up of T tiers each one (e.g., bays in Fig. 6 are composed of S D 8 stacks and
T D 5 tiers). The storage capacity of a terminal is expressed in terms of number
of containers that can be stored on it and derived from the dimensions of its yard
blocks. In this regard, the capacity of a given bay depends upon its stacks and tiers,
whereas the capacity of a yard block is the sum of capacities of its individual bays.
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Fig. 6 Layout of a yard in a maritime container terminal

The yard blocks in a maritime container terminal are managed by yard cranes.
Traditionally, one crane is deployed in each yard block. These handling machineries
move along the yard blocks through a pair of rail tracks placed on both sides. In
order to access a certain container, the handling machinery is positioned over the
relevant bay in which the interested container is found. The trolley is moved toward
its stack and the spreader is lowered to achieve the container. Finally, the container
is hooked up and picked up to be removed from its current location.

During a certain planning horizon, H , containers arrive (incoming containers)
and leave the yard (outgoing containers). The set of containers is denoted as C . In
this regard, each container c 2 C has a known arrival time, denoted as a.c/, and
a retrieval time, denoted as r.c/, where r.c/ > a.c/. The objective of the yard
cranes is to store and retrieve the containers according to their arrival and retrieval
times. With this goal in mind, the feasible movements to be performed by a crane
are defined on the basis of the intrinsic Last In First Out (LIFO) structure of the
stacks. That is:

• Storage movement. The next incoming container is placed at the top of a stack
with at least one empty slot.

• Retrieval movement. The next container to retrieve is taken out of its bay
whenever it is currently placed at the top of a stack.

• Relocation movement. A container is moved from the top of a stack to the top of
another one with at least one empty slot.
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The incoming and outgoing containers in a bay give rise to the definition of the
following closely related NP-hard optimization problems:

• Stacking Problem. It is aimed at determining the shortest sequence of movements
to be performed by the crane in order to store and retrieve the containers in/from
the bay [13].

• Container Relocation Problem. It seeks to determine the shortest sequence of
relocation movements to retrieve a subset of containers. It is assumed that all
the containers are already stored in the bay, and no new incoming containers
arrive [14].

• Pre-Marshalling Problem. Its objective is to find the shortest sequence of
movements to arrange the containers within a given bay, such that any container
is placed above other container with earlier retrieval time in the same stack. In this
case, neither incoming containers nor outgoing containers are considered [11].

The main operational decision derived from the definitions of the previous
optimization problems is how to evaluate the attractiveness of a certain stack when
storing or relocating a container within the bay. Consider the example depicted in
Fig. 6. The next incoming container arrives at time period 17 and must be retrieved
from the bay at time period 98. However, its target stack must be selected adequately
with the aim of minimizing the number of future relocation movements. Similarly,
target stacks for those containers currently placed above the next to retrieve must be
selected. For instance, see container with retrieval time 96 placed on top of container
with retrieval time 22 in Fig. 6.

Algorithm 5 depicts a general heuristic framework to perform the storage and
retrieval of containers. It is composed of two main steps: retrieving and storing
containers. With this goal in mind, at each time period, t 2 Œ1; 2; : : : ; H �, the sets
of containers to retrieve and store from/in the bay are identified. On the one hand,
each container cout to retrieve at time period t is checked (lines 4–8). This way,
the set of containers currently placed above it, denoted as O.cout / (line 5), must be
relocated in alternative stacks due to the fact that they are avoiding the retrieval of
cout (line 6). How the target positions of these containers are determined constitutes
the major difference among the proposals developed by different authors so far.
Some examples are described in section “Container Target Positions”. Lastly, cout

can be directly retrieved from the bay because it would be placed at the top in its
stack (line 7). On the other hand, once all the containers to retrieve from the bay
at time t have been already retrieved, the storage of incoming containers is carried
out. In this regard, suitable target stack and tier are firstly determined (lines 10–
11) for each container to store and, then, moved to them (line 12). It should be
noted that in Algorithm 5, retrieval operations (lines 4–8) are performed before
storage operations (lines 9–13) in the same time period; however, according to the
preferences of the decision-maker, the priority of storage and retrieval operations
can be easily exchanged.
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Algorithm 5: General heuristic framework to store and retrieve containers
1: for t D 1! H do
2: RC .t/ Set of containers to retrieve at time t

3: SC .t/ Set of containers to store at time t

4: for cout 2 RC .t/ do
5: O.cout / Set of containers currently placed above cout

6: Relocate containers from O.cout / in other stacks
7: Retrieve cout from the top of its stack
8: end for
9: for cin 2 SC .t/ do

10: s  Select target stack for cin

11: t  Select target tier for cin

12: Relocate cin in slot .s; t/

13: end for
14: end for

Container Target Positions
The main decision to take in the previous heuristic framework is where the
containers must be stored or relocated in. This is the case of the incoming containers
and those currently placed above the next to retrieve from the bay. In all cases, the
problem is, given a certain container, to determine its most suitable target slot (i.e.,
stack and tier).

Determining the target slot of a container can be split into two parts: identifying
the target stack and establishing a tier in it. In order to select a target stack, most
of the authors have proposed attractiveness measures, which indicate the suitability
of placing a given container in a stack. This way, the attractiveness of stack s to
place container c is given by a scoring function with the shape, f .c; s/. In all cases,
we define the set of feasible stacks of c, denoted as S.c/. It is composed of those
stacks in which c is not currently placed and with, at least, one empty slot. Thus,
it is assumed that s 2 S.c/. Some examples of scoring functions are shown in the
following:

1. Random. The target stack is selected at random among those feasible stacks for
c. That is:

f .c; s/ D
1

jS.c/j
(3)

2. Conflict Minimization (Rei and Pedroso [23]). It seeks to place c in a stack in
which it is not going to require future relocations. The set of stacks that allows
this fact is denoted as S.c/0 and, therefore, the scoring function is defined as
follows:
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f .c; s/ D

(
1

jS.c/0j
ifS.c/0 ¤ ;

1
jS.c/j

otherwise
(4)

3. Flexibility Optimization (Rei and Pedroso [23]). It aims to place containers
with close retrieval times together, whereas in those scenarios in which future
relocation movements are unavoidable, these are delayed as much as possible.
This is expressed as follows:

f .c; s/ D

8<
:

K if s is empty
Ms if Ms � r.c/

2 �K �Ms if Ms < r.c/

; (5)

where K is a constant representing a value larger than the latest retrieval time of a
container in the bay, and Ms represents the earliest retrieval time of a container in
the stack s. These are formally defined as follows: K D 1Cmaxfr.c0/jc0 2 C g

and Ms D minfr.c0/jc0 2 C ^ c0 in sg.
4. Parameterized Flexibility Optimization (Rei and Pedroso [23]). It is an extension

of the FO in which the best stack is selected with probability 1 � � (where � is
a parameter whose value is set by the user), whereas one of the remaining stacks
is selected with probability �.

In the previous functions, the best stack is selected to be target of c. Moreover, other
authors have proposed explicit expressions to select the target stack of container c,
denoted as s�. This is the case, for instance, of Caserta et al. [7], who propose to
select the target stack, as follows:

s� D

�
arg mins2S.c/fmin.s/jmin.s/ > r.c/g if 9s W min.s/ > r.c/

arg maxs2S.c/fmin.s/g otherwise
; (6)

where

min.s/ D

�
1Cmaxfr.c0/jc0 2 C g if s is empty
minfr.c0/jc0 2 C ^ c0 in sg otherwise

:

In this case, Eq. (6) seeks to firstly place container c in one of the stacks in which it is
not going to require additional relocations. Particularly, that stack storing a container
with the earliest retrieval time is chosen. However, when this is not possible, c is
placed in that stack in which the next retrieval movement must be performed as
later as possible.

Computational Analysis
In the following, the performances of the previous heuristics are assessed. With this
goal in mind, a benchmark suite has been considered. It is composed of a wide range
of problem instances with a number of containers ranging from 50 up to 300. In each
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Table 6 Performance of the heuristics on a wide range of practical-size scenarios

Instance Random CM FO PFO (� D 0:1) CSV

50 73.6 32.9 3.3 5.3 3.5

100 308.4 263.3 29.4 40.5 31.1

150 714.3 680.9 114.0 134.6 114.2

200 1270.2 1329.3 246.3 289.9 247.0

250 1949.4 2222.3 438.6 496.3 443.5

300 2879.4 3501.8 624.1 720.3 635.1

case, the containers must be stored in and retrieved from a bay composed of S D 10

stacks and without maximum stacking limit.
Table 6 reports the computational results obtained by the heuristics under

analysis over the problem instances from the aforementioned benchmark suite. In
this regard, all the heuristics have been implemented in Java and executed on a
computer equipped with an Intel 3.16 GHz and 4 GB of RAM. In each case, ten
problem instances with a certain number of containers have been used. The columns
Containers shows the number of containers. Furthermore, columns Random, CM,
FO, PFO (� D 0:001), and CSV present the average number of relocation
movements of the solutions reported by the heuristics. The computational times
required by the heuristics are not included into the comparison due to the fact that
all of them are, even in large-scale scenarios, too negligible to draw any relevant
conclusions.

As can be checked in the computational results, FO reports solutions with the
lowest number of relocation movements of those heuristics in the comparison. The
reason is found in that this heuristic allows to minimize the differences of retrieval
times of consecutive containers in the same stack of the bay. It should be noted that
placing a container at the top of a stack by minimizing the differences of retrieval
times reduces the probability of requiring additional relocation movements in the
future. Analogously, CSV exploits this idea and, consequently, it also reports high-
quality solutions.

Conclusion

Maritime container terminals are large infrastructures in which heterogeneous
logistic processes are brought together. This fact, together with the increasing
volume of containers moved around the world, gives rise to their management and
is extremely complex.

Up to now, exact approaches have not demonstrated to be efficient due to the
NP-hard nature of most of the optimization problems found at maritime container
terminals. In this regard, heuristics have stood as the most competitive alternatives
because they report (near) optimal solutions within short computational times.
Along this chapter, several heuristics aimed at solving several relevant optimization
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problems are presented and discussed. The analysis of the performance of the
heuristics here assessed indicates that some of them are appropriate when addressing
realistic size scenarios.
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Abstract

In the last few decades, image registration (IR) has been a very active research
area in computer vision. Applications of IR cover a broad range of real-world
problems, including remote sensing, medical imaging, artificial vision, and
computer-aided design. In particular, medical IR is a mature research field
with theoretical support and two decades of practical experience. Formulated
as either a continuous or combinatorial optimization problem, medical IR has
been traditionally tackled by iterative numerical optimization methods, which
are likely to get stuck in local optima and deliver suboptimal solutions. Recently,
a large number of medical IR methods based on different metaheuristics, mostly
belonging to evolutionary computation, have been proposed. In this chapter, we
review the most recognized of these algorithms and develop an experimental
comparison over real-world IR scenarios.

Keywords
Medical imaging � Image registration � Image segmentation

Introduction

In its most general formulation, image registration [60] is the task of aligning two or
more images in order to establish a spatial correspondence of their common content.
These images usually have the same or a similar subject but have been acquired
under different conditions, such as time and viewpoint, or by multiple sensors.
In medical image analysis, IR is a key technology that allows to “fuse” visual
information from different sources [56]. Applications include combining images of
the same subject from different modalities, detecting changes before/after treatment,
aligning temporal sequences of images to compensate for motion between scans,
image guidance during interventions, and aligning images from multiple subjects in
cohort studies. The remarkable developments in medical imaging technology over
the last few decades determine a constant demand for better image processing and
analysis techniques. Dealing with novel, more diverse, and increasingly accurate
sources of imaging data is the main challenge in IR, and it explains why it is still a
very active research field.

The alignment between two images is specified as a spatial transformation,
mapping the content of one image to the corresponding area of the other through a
composition of translation, rotation, shear, and other kind of operations. A popular
strategy among IR methods is to perform the alignment based on only salient and
distinctive parts of the image, such as lines, corners, and contours, called features,
ignoring the rest of the image content. This approach, called feature based [56],
has the advantage of greatly reducing the complexity of the problem but relies
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on the ability to precisely detect the features, either manually or automatically.
Any error during the feature extraction stage will propagate into the registration
and can hardly be recovered at a later stage. Moreover, this approach is limited to
the cases in which features provide enough information to characterize the image
content. To avoid these drawbacks, it is possible to use the image intensities directly
without any feature extraction, an approach called intensity based (or voxel-based)
[60]. Though more expensive in computational terms, intensity-based methods can
achieve a superior level of accuracy and robustness.

Regardless of the division, the core of every IR technique is an optimization
process that explores the space of geometrical transformations. Two strategies are
available. In parameters-based approaches, the search is directly performed in the
space of the registration transformation parameters, turning the registration into a
continuous optimization problem. In matching-based approaches, instead, features
or regions of the image are matched through a search in the space of possible
correspondences. In this case, IR is formulated as a combinatorial optimization
problem. Once a suitable matching has been found, the transformation parameters
are derived accordingly through numerical methods. In both cases the search is
guided by a similarity metric, a function that measures the degree of resemblance
between the input images after the alignment. This can be done either by comparing
the whole images or just their corresponding features. Traditional parameters-based
methods use classic numerical optimization algorithms [32], while matching-based
methods use matching algorithms like iterative closest point (ICP) [5].

Many characteristics of the IR problem, such as noise, discretization, and large
differences in the order of magnitude of the transformation parameters, still pose a
challenge to traditional optimization methods. A number of alternative approaches
based on metaheuristics (MHs) [19] are often used to deal with complex real-world
problems in computer vision and image processing. In the literature, despite their
common structure, feature- and intensity-based methods are usually regarded as
different categories of algorithms, therefore most publications deal with either one
group or the other. Besides, feature-based approaches based on MHs are much more
common than intensity-based ones, as the larger computational cost makes them less
suitable for MHs. Nevertheless, both groups have been recently reviewed [13, 52],
although separately.

This chapter is structured as follows. Section “Image Registration” provides
a general introduction to medical IR and the traditional optimization algorithms
used to solve it. Section “Metaheuristics-Based Image Registration” deals with the
application of MHs to IR, while section “Outstanding IR Methods Based on MHs”
reviews the most important medical IR methods of this kind. Section “Experimental
Study” develops two experimental studies, comparing traditional and MH-based
methods of the two different families, feature- and intensity-based, over real-world
medical applications. Finally, conclusions are provided in section “Conclusion”.
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Fig. 1 An example of image registration. A MRI brain scan (left image) is aligned to the pose of
the CT scan (middle image), resulting in the right image

Image Registration

Problem Statement

A typical IR problem involves two images, conventionally called model (IM ) and
scene (IS ), with different roles in the registration process. The model is the reference
(or target) image, while the scene is the image that is transformed to reach the
geometry of the other. Figure 1 illustrates such a process. The registration aims
to find a geometric transformation T that aligns the scene to the model. In other
words, T is the transformation that makes the model IM and the transformed scene
T .IS / as similar as possible according to the similarity metric of choice. In other
terms, IR is a maximization problem over transformations, formally stated as

arg max
T 2 Transformations

Similarity .IM; T .IS //

A number of components characterize an IR method, but the main ones are just
three: the kind of transformation used to relate the images, the similarity metric
that measures the quality of the alignment, and the optimization procedure that
performs the search for a suitable transformation. The optimization is usually an
iterative process. The optimizer computes a candidate transformation, which is then
applied to the scene image. Next, the similarity metric compares the model with
the transformed scene image and returns a quality value that is sent back to the
optimizer. Figure 2 shows a flow chart of the process. The loop ends when a suitable
transformation has been found or the algorithm has performed a certain number of
iterations.

Transformation Model
The transformation model determines which kind of geometrical transformation can
be applied to the scene image to reach the model. This also controls which geomet-
rical properties (e.g., size, shape, position, orientation, etc.) are preserved through
the process. Figure 3 shows the effect of three common transformation models.
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Fig. 2 The interactions among the components of a registration technique

A rigid transformation involves arbitrary translation and rotation operations, thus
it has six degrees of freedom for 3D images. A similarity transform also admits a
scaling operation, specified by a seventh parameter. In more complex scenarios, it
may also be necessary to correct for shears, for example, those caused by the gantry
tilt of CT scanners, or for scaling on a per axis basis. Thus, an affine transformation
(nine parameters) is required.

Rigid, similarity, and affine transformations are frequently used for the registra-
tion of anatomical structures like the brain or bones; they are not applicable in the
case where a significant local deformation is expected, e.g., in soft tissues like the
breast. In these cases, deformable or non rigid transforms are required. In a typical
approach, an object is deformed by manipulating an underlying mesh of control
points. The resulting deformation controls the shape of the 3D object and produces
a smooth and continuous transformation between control points.

The choice of the transformation model depends entirely on the needs of the
application at hand. A too flexible transformation model is not just more complex
and computationally expensive to apply but can also lead to results that are undesired
or implausible with respect to the phenomenon under study. Bones being bent and
tissues growing at an unrealistic rate are examples of such unacceptable outcomes
in the medical context.

Similarity Metric
The performance of any IR method depends on an accurate estimation of the degree
of alignment between the images, therefore the similarity metric is considered a
crucial component [48]. Technically, a similarity metric is a real-valued function
F .IA; IB/ that measures the resemblance of two images IA; Ib . The quality of a
transformation T is assessed by computing the similarity metric over the model
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Fig. 3 Images obtained from the same scene (top left) by applying different transformations:
similarity (top right), affine (bottom left) and B-spline (bottom right)

IM and the transformed scene T .IS /, i.e. F .IM ; T .IS //. The actual evaluation
mechanism depends on the nature of the registration approach. In feature-based
methods, the similarity metric usually measures the distance between corresponding
features [1]. For instance, if the features are points, the alignment can be evaluated
using the mean square error (MSE) between the position of a point in the model and
that of the corresponding (or closest) point in the transformed scene, i.e.,

MSE D
1

r

rX

iD1

kxi � c.T .xi //k
2

where r is the number of points and c is the correspondence criterion.
In intensity-based approaches, similarity metrics are usually based on the resem-

blance of the intensity values in the two images. The subject of the images along
with their modality determine what kind of relationship is established between their
intensity distributions. For instance, if one assumes this relationship to be linear, the
similarity between the images can be assessed by computing the linear correlation
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coefficient. When two images have been acquired using different sensors, a scenario
called multi modal registration, the relationship between their intensity values can be
strongly nonlinear. Metrics based on information theory, such as mutual information
(MI) [39], are better suited for this scenario. MI is defined as

MI.IA; IB/ D
X

a2IA

X

b2IB

pAB.a; b/ log
pAB.a; b/

pA.a/ pB.b/

where pAB and pA; pB are, respectively, the joint and marginal probability distribu-
tions of the intensity values of the images.

Optimization Procedure
The third main component of an IR method is the optimizer. It is responsible for
finding the best transformation, in terms of similarity metric, among the candidate
transformations in the transformation model. Each optimizer has a different search
strategy, which also depends on the nature of the algorithm. One approach is to
perform the search directly in the space of the transformation parameters. This turns
the registration into a continuous optimization problem; therefore classic numerical
optimization algorithms can be used. Gradient descent, conjugated gradient descent,
Newton’s and quasi-Newton methods, Powell’s method, and discrete optimiza-
tion [25, 32] are among the most common choices along with approaches based
on evolutionary computation and other metaheuristics [8, 43, 57]. IR algorithms
that follow this approach are called parameters based. An alternative approach
consists in searching for a matching between features, in feature-based methods,
and areas of the image, in intensity-based ones. From the match, one can derive
the parameters of the corresponding transformation using least-squares estimation
or other more robust model fitting techniques [58]. This class of algorithms is
called matching based. The ICP algorithm is the most representative example of
this second approach [29, 44, 59].

Classic IR Algorithms

Iterative Closest Point
ICP [5] is a well-known feature-based algorithm in computer-aided design, orig-
inally proposed to recover the 3D transformation of pairs of range images. We
are given a point set P of Np points pi from the data shape (the scene) and
the model image X of Nx . In the original contribution, the approach dealt with
3D rigid transformations stored in a solution vector q D Œq1; q2; q3; q4; t1; t2; t3�.
The first four parameters correspond to a quaternion, determining the 3D rotation
component, while the remaining three parameters store the translation vector. The
procedure is initialized by setting P0 D P , the initial registration transformation to
q0 D Œ1; 0; 0; 0; 0; 0; 0� and the iteration counter k to zero. The next four steps are
applied until reaching convergence within a tolerance threshold � > 0:
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1. Compute the matching between the scene and the model points using the closest
assignment rule. Yk D C .Pk; X/

2. Estimate the registration by least squares. fk D �.Po; Yk/

3. Apply the registration transformation to the scene image: PkC1 D fk.P0/

4. Terminate the procedure if the change in MSE falls below � . Otherwise increase
k and go to step 1.

Note that ICP is not directly guided by a similarity metric but rather by the computed
matching, as other matching-based IR methods. In this strategy, the function MSE
only plays the role of the stopping criterion. Moreover, the transformation estimator
is a numerical method that depends on the good outcomes of the matching step.
Thus, the better the choice of the correspondences that is performed, the more
precise the estimation of the transformation f. Consequently, the value of the
similarity metric will be more accurate, leading to a proper convergence.

Gradient Descent
In intensity-based IR, gradient-based continuous optimization algorithms are the
reference methods [25]. These algorithms consist of an iterative optimization
process �kC1 D �k C akdk where dk is the search direction at iteration k, and
ak is a gain factor that controls the step size along the search direction. The search
directions and the gain factors are chosen such that the sequence �k converges to a
local minimum of the similarity metric.

The difference between gradient-based optimizers lies in the way the search
direction and the gain factor are computed. The gradient descent method (GD)
takes steps in the direction of the negative gradient of the cost function, i.e.,
�kC1 D �k � akg.�k/ where g is the derivative of the cost function, and the
gain factor is the decaying function ak D a=.k C A/˛ with a > 0, A � 1

and 0 � ˛ � 1. The quasi-Newton method (QN) also moves along the negative
gradient direction. The gain factor is an approximation of the inverse Hessian matrix
ŒH.�k/��1, computed using the Broyden–Fletcher–Goldfarb–Shanno method. The
adaptive stochastic gradient descent (ASGD) [26] is based on the Robbinsâ “Monro
stochastic optimization procedure, which is designed to deal with noisy observation
of the objective function. ASGD considers the solutions �kC1 D �k � �k.tk/gk

where tkC1 D max.0; tk C sigm.�gk � gk�1// and �k D a
tkCA

. The “time” tk
is adapted depending on the inner product between the current and the previous
gradients. If the gradients have the same direction, the time is reduced, leading to a
larger step size.

Metaheuristics-Based Image Registration

Suitability of MHs in Image Registration

There are different strengths and limitations that have been stated either to justify or
to avoid the use of these methods when tackling IR. Some of the advantages are:
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• MHs do not depend on the starting solution, thus being more robust approaches,
and provide specific strategies to escape from local optima

• MHs have been used in a wide variety of optimization tasks within IR including
numerical optimization and combinatorial optimization problems, i.e., facing
both the transformation parameters and the matching-based IR approaches

• MHs can easily handle arbitrary kinds of constraints and objective functions
• MHs offer a framework in which including prior knowledge about the prob-

lem is easy. Thus, the search process is more appropriate, yielding a more
efficient exploration of the search space. For instance, some feature-based IR
approaches [7, 9, 12] improved the design of the objective function to exploit
information related to the geometry of the images.

• MHs can also be easily combined with more traditional optimization techniques
such as gradient-based methods [23, 45]. An outstanding approach to exploit
the benefits of both strategies is their hybridization in the memetic computation
paradigm [36, 37].

The most important shortcomings related to the use of MHs are:

• They require a tuning of the control parameters, which is often a manual, error-
prone, expert-based procedure. This issue has been addressed using approaches
based on automatic parameter tuning [51] or MHs with an adaptive behavior [36]

• Most MHs are time consuming; therefore they are usually avoided in real-
time applications. Parallel and GPU implementations are increasingly more
common [18, 42]

• Some MHs lack a formal proof of convergence to the global optimum, and there
is hardly any theoretical result on the performance of MH. However, there is a
very large amount of empirical results to support their effectiveness

Early Evolutionary Image Registration Methods

The application of MHs to medical IR enjoyed a growing interest in the scientific
community over the last 15 years, as shown in Fig. 4. The first attempts at IR can be
found in the early eighties. The size of data as well as the number of parameters that
are looked for prevent from an exhaustive search of the solutions. An approach based
on a genetic algorithm (GA) [21] was proposed in 1984 for the 2D case and applied
to angiographic images [17]. Later, in 1989, Mandava et al. [33] used a 64-bit
structure to represent a possible solution when trying to find the eight parameters
of a bilinear transformation through a binary GA. Brunnström and Stoddart [7]
proposed a new method based on the manual prealignment of range images followed
by an automatic IR process using a novel GA that searches for solutions following
the matching-based approach. Tsang [49] used 48-bit chromosomes to encode three
test points as a base for the estimation of the 2D affine registration function by
means of a binary-coded GA. In the case of Yamany et al. [57] and Chalermwat
et al. [8] proposals, the same binary coding is found when dealing with 3D and
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Fig. 4 The number of publications (left) and the number of citations (right) of literature
contributions proposing MHs to solve medical image registration (The data shown in the graph was
obtained from Thomson Reuter’s Web of Science on November 29, 2016, using the query (Title
OR Abstract OR Keywords) = (“image registration” OR “image alignment” OR “image matching”)
AND (“evolutionary algorithm” OR “evolutionary computation” OR “genetic programming” OR
“genetic algorithm” OR “evolutionary programming” OR “evolution strategy” OR “differential
evolution” OR “swarm intelligence” OR “bacterial foraging”))

2D rigid transformations, respectively. Yamany et al. enforced a range of ˙31ı

over the angles of rotation and ˙127 units in displacement by defining a 42-
bit chromosome with eight bits for each translation parameter and six bits for
each rotation angle. Meanwhile, Chalermwat et al. used 12 bits for the coding of
the 2D rotation parameter to get a search scope of ˙20:48ı, therefore allowing
the use of a precision factor for the discretization of the continuous rotation
angle interval. Other ten bits stored each of the two translation parameters (˙512

pixels).
All the latter approaches showed several pitfalls from an evolutionary compu-

tation perspective. On the one hand, they make use of the basic binary coding to
solve inherently real-coded problems, when it is well known that binary coding
suffers from discretization flaws (as problem solutions of search space never visited)
and requires transformations to real values for each solution evaluation. Moreover,
the kind of GA considered is usually based on the old-fashioned original proposal
by Holland [22]. In this way, a selection strategy based on fitness-proportionate
selection probability assignment and the stochastic sampling with replacement,
as well as the classical one-point crossover and simple bit flipping mutation, are
used. On the one hand, it is well known that such selection strategy causes a
strong selective pressure, thus having a high risk of premature convergence of the
algorithm. On the other hand, it has also been demonstrated that it is difficult for
the single-point crossover to create useful descendants as it is excessively disruptive
with respect to the building blocks.
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Outstanding IR Methods Based on MHs

This section reviews the state of the art in MH-based proposals for medical IR,
grouping the algorithms according to their nature.

Feature-Based Techniques

De Falco et al.’s Differential Evolution
In [14], the authors proposed an IR method based on the differential evolu-
tion (DE) [47]. DE is a parallel direct search method that has proved to be a
promising candidate to solve real-valued optimization problems. DE combines
simple arithmetic operators with the classical crossover, mutation, and selection
genetic operators within an easy to implement scheme. It shows the advantage of
considering few control parameters, namely, mutation factor and recombination
rate. The fundamental idea of DE is a new scheme for generating trial solutions
by adding the weighted differenced vector between two population members to a
third one. The proposed method is applied to two 2D IR problems: mosaicking
and changes in time of satellite images. Registration is carried out from the
transformation parameters-based approach searching for the most suitable affine
transformation (given by 11 real-coded parameters) in terms of maximization of
the MI similarity metric.

Lomonosov et al.’s Genetic Algorithm
In [30], the authors tackle pairwise IR of range images, facing three real-world noisy
measured datasets provided by their REPLICA laser range scanner and other two
from the SAMPL database. They considered the transformation parameters-based
approach using rigid transformations. The main novelties of this contribution are
the inclusion of a degree of overlapping parameter in the solution vector and the
utilization of the trimmed squares metric as objective function to be minimized.
They constitute a different schematic approach for the IR problem that offers
correct coarse IR results at overlaps under 50%. A random sampling procedure
is performed in order to speed up the performance of the method. According to
the evolutionary design of their method, a generational GA performing search in
the seven-dimensional space formed by three translation parameters, three rotation
parameters, and the newly added degree of overlapping parameter is considered.
They used an integer coding representation of solutions which should be properly
normalized onto the corresponding real-value range. Simple one-point crossover
was employed, and two mutation operators were introduced. Shift mutation alters
one parameter randomly by a value not exceeding 10% of the parameter range.
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Meanwhile, replacement mutation substitutes a parameter with a random value.
Tournament and elitism were also employed.

Wachowiak et al.’s Particle Swarm Optimization
The authors contributed with a broad study of the performance of particle swarm
optimization (PSO) algorithms [24] for solving the IR problem in biomedical
applications [55]. In particular, they consider registering single slices (2D images)
of 3D volumes to whole 3D volumes of medical images. In contrast to usual EAs
which exploit the competitive characteristics of biological evolution (e.g., survival
of the fittest), PSO exploits cooperative and social aspects, such as fish schooling,
birds flocking, and insects swarming. However, both EAs and PSO approaches
are considered population-based schemes. In particular, PSO algorithms start with
a random population (swarm) of individuals (particles) which iteratively change
their search space location by performing movements based on a velocity vector.
The authors addressed the IR problem from the transformation parameters-based
approach, considering a rigid transformation and the MI similarity metric as the
objective function to be maximized. The variant called PSO7 is the one achieving
the best performance. It refers to a basic PSO with the following formulation for the
velocity vector update �i .t/ D �Œ�i .t � 1/ C '1�1.pi � xi .t � 1// C '2�2.g �

xi .t � 1//� with '1 D 2:1, '2 D 1:3, and the constriction coefficient � D 0:7298.
However, the performance of the method is dependent on the initial orientation of
the images to be registered that should be provided by the user.

Cordón et al.’s Scatter Search
The main idea behind scatter search (SS) [28] is a systematic combination between
solutions (as opposed to a randomized one, usually employed in GAs) taken from
a considerably reduced pool of solutions, named reference set. The fact that the
mechanisms within SS are not restricted to a single uniform design allowed the
authors to explore and design different strategies that demonstrated to be effective
tackling point matching IR problems [12]. Furthermore, new designs for three of
the five SS components – the generator of diverse solutions, the improvement,
and the combination methods – were proposed to develop a method outperforming
the state-of-the-art point matching approaches. In particular, the authors adopted
the same feature-based approach and the same representation of solutions based
on permutations previously proposed in [9]. Similarity transformations present in
3D MRIs of human brains and 3D CTs of human wrists were also considered in
this work. In particular, they succeeded at dealing with significant transformations
between the two registered images, one of the ICP’s pitfalls.

Santamaría et al.’s Scatter Search
In [45], the authors specifically performed a broad study about the performance
capabilities of different memetic IR algorithms. The authors combined three existing
MH-based methods [10,11,14] with several local search algorithms: XLS [6], Solis
and Wets [46], and Powell [41]. Two different criteria (deterministic and probabilis-
tic) were taken for the application of the local search, and different search intensity
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levels were tested. Thus, 57 different memetic IR methods were designed overall.
The obtained experimental results in the 3D reconstruction of different human skull
models, supported by a complementary nonparametric statistical test, revealed that
the SS variant that made use of the deterministic local search application criterion
and the XLS local search algorithm offered the best performance among all the
developed memetic-based IR methods.

Intensity-Based Techniques

Valsecchi et al.’s Genetic Algorithm
r-GAC is an evolutionary IR method for medical imaging [50]. The optimization
component of r-GAC is based on a GA with a real-coded design. A solution is
encoded as a real vector, storing the transformation parameters, and the variation
operators are common choices for real-coded genetic algorithms: blend crossover
(BLX-˛) [16] and random mutation [2]. The fitness value of a solution t is simply
the similarity metric between the two images when aligned according to t . No
changes are required to handle different transformation models or similarity metrics.
A distinctive feature of r-GAC is the use of multiple resolutions combined with a
restart and a search space adaptation mechanism. The key idea is that if a low-
quality solution is carried over to the second resolution, the process is unlikely to
recover and produce a good final solution. Therefore, restart is used at the end of
the first resolution until a suitable solution if found. This process is computationally
cheap, because in the first resolution the algorithm is using a small version of the
imaging data, and most of the total effort is spent on the further resolutions. In
addition, as the second resolution is meant to be a refinement phase, the search
is focused around the best solution by restricting the range of the transformation
parameters.

Valsecchi et al.’s Scatter Search
The SSC algorithm [53] is based on a two-tier SS design, meaning there are
two reference sets containing, respectively, the most high-quality and diverse
solutions. The methods of the SS template have been specifically chosen for IR.
The diversification generation method is based on frequency memory [20] to ensure
the search space is explored in a uniform manner. The solution combination method
is the BLX-˛ crossover, while the improvement method is a local search based on
a the “parent-centric” version of BLX-˛ called PMX-˛ [31]. Last, the reference set
update method maintain the highest-quality solutions in the quality reference set
and the most diverse solutions in the diversity one, where the diversity value of a
solution x measures the distance between the solution and the quality reference set
S . SSC also includes a duplication control method, in order to prevent the reference
set to contain only almost identical copies of the same solution. Moreover, SSC

implements the same multi-resolution strategy as r-GAC, including the restart and
the dynamic boundary mechanism.
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Bermejo et al.’s Bacterial Foraging Optimization Algorithm
r-BFOA is an evolutionary IR method for complex 3D scenarios [3]. The global
optimization process of the original BFOA proposal [38] has been adapted to the IR
problem, using a hybrid approach. Likewise r-GAC, a solution is encoded as a real
vector, which allows the use of a recombination mechanism between two solutions
by means of the crossover operator BLX-˛ after each chemotactic step. In addition,
after each reproduction step, XLS is applied to the best bacterium in the population.
A comparative study of some design variants modifying the original BFOA scheme
when applied to the IR problem is presented in [4]. Even though the BFOA algo-
rithm provides an elimination-dispersal step which reintroduces random bacteria in
the population, a restart mechanism has been applied to prevent the stagnation of the
bacteria. This mechanism simulates the death of all the population, reintroducing
new bacteria with the aim of providing a good solution to the second resolution.

Experimental Study

The aim of the experimentation is to carry out an objective, quantitative comparison
of the methods described in section “Outstanding IR Methods Based on MHs”.
Two separated experiments have been developed considering, respectively, feature-
and intensity-based methods. We also included the traditional optimization algo-
rithms presented in section “Metaheuristics-Based Image Registration” as baseline.
See [13, 53] for a more detailed description of these comparisons.

Each experiment uses a different dataset, from which we have created a
number of registration scenarios. As most of the algorithms involved are of non-
deterministic nature, we carried out a number of independent runs on each scenario.
The analysis measures the performance of the algorithms on each scenario by
computing their mean and standard deviation values and ranking the algorithms
accordingly.

Feature-Based Comparison: Registration of Brain Magnetic
Resonance Images

We use a dataset from the BrainWeb public repository of the McConnell Brain Imag-
ing Centre [27]. The BrainWeb repository is a Simulated Brain Database (SBD)
providing synthetic MRI data computationally generated. Full 3D data volumes
have been simulated for both models using three sequences (T1-, T2-, or proton
density- (PD) weighted) and a variety of slice thickness, noise levels, and levels of
intensity nonuniformity (RF). Table 1 describes the particular settings considered to
generate every BrainWeb image of our study (named BW1, BW2, and BW3).

To obtain a suitable set of features, we extracted the isosurface and selected the
crest-line points with relevant curvature information from the original images, using
a 3D crest-line edge detector [35] (Fig. 5). The resulting datasets have between 300
and 600 points per image (see Table 1).
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Table 1 Detailed description of the BrainWeb image dataset generated by the on-line SBD system

Image Model Modality Noise Protocol RF (%) Crest-line points

BW1 Normal T1 0 ICBM 20 583

BW2 Mild MS T1 1 AI 20 348

BW3 Mild MS T1 5 AI 20 284

Fig. 5 From left to right: the original medical image, the corresponding extracted isosurface, and
the crest line extracted from the isosurface

We considered the parameter values originally proposed by the authors in every
contribution. Nevertheless, we have adapted the majority of the methods by using
the same objective function in order to carry out a fair comparison. We designed
several IR problem instances, taking into account similarity transformations (rota-
tion, translation, and uniform scaling) for medical applications, thus coping with
the specific characteristics of this application domain. For each problem instance
tackled by the IR methods, 30 different runs are performed. Each run considers a
different similarity transformation. In order to perform a fair comparison among the
methods included in this study, we considered CPU time as the stop criterion. After
a preliminary study, we found that 20 s was a suitable stop criterion to allow all the
algorithms to converge properly.

The way a particular run is performed is as follows: a random (similarity) trans-
formation is applied to the ground-truth image and then the IR method estimates
the unknown inverse transformation. In particular, similarity transformations are
randomly generated following a uniform probability distribution as follows: each
of the three rotation axis parameters will be in the range Œ�1; 1�; the rotation angle
will range in Œ0ı; 360ı�; the three translation parameters in [�40 mm, 40 mm]; the
uniform scaling ranges in Œ0:5; 2:0�.

Results
The results of the first experiment are reported in Table 2. We computed the mean
and standard deviation of the MSE and ranked the algorithm accordingly for each
scenario. Table 3 shows the average rankings.
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Table 2 Detailed results of
the first experiment. For each
scenario, the table reports the
average MSE, standard
deviation and ranking of the
algorithms in the comparison

Algorithm

MSE

RankMean Sd

BW1-2

Liu-ICP 2788 2364 6

Lomonosov-GA 838 2422 5

DeFalco-DE 132 708 2

Wachowiak-PSO 681 1817 4

Cordón-SS 577 1715 3

Santamaría-SS 0.003 0.001 1

BW1-3

Liu-ICP 3009 2279 6

Lomonosov-GA 830 2426 4

DeFalco-DE 0.013 0.002 2

Wachowiak-PSO 1060 2496 5

Cordón-SS 743 1596 3

Santamaría-SS 0.011 0.003 1

BW2-3

Liu-ICP 2929 2094 6

Lomonosov-GA 179 857 3

DeFalco-DE 0.026 0.001 1

Wachowiak-PSO 645 1908 4

Cordón-SS 1133 1785 5

Santamaría-SS 0.028 0.004 2

Table 3 First experiment:
average rankings of the
algorithms

Algorithm Mean rank

Santamaría-SS 1.33

DeFalco-DE 1.67

Cordón-SS 3.67

Lomonosov-GA 4

Wachowiak-PSO 4.33

Liu-ICP 6

The average MSE values are considerably different in one algorithm to another
even when the same scenario is considered. This, together with the generally high
standard deviation values, points to the fact that the algorithms can occasionally per-
form poorly. Nevertheless, considering the results of Liu-ICP [29] as a baseline, all
algorithms performed better than the baseline on average. Indeed, Liu-ICP delivered
a consistent but poor performance, ranking last on all scenarios, with MSE values
just below 3000. Cordón-SS, Lomonosov-GA, and Wachowiak-PSO have slightly
similar results, with MSE values in mostly the range 500–1000 and similar rankings
(3.67, 4 and 4.33, respectively). Santamaría-SS and DeFalco-DE delivered much
better results compared to the rest of the algorithms. Impressively, Santamaría-SS
always returned MSE values below 0.01. The same applies to DeFalco-DE in BW1-
3 and BW2-3, but the algorithm scored 132 on BW1-2, a much higher value but still
enough to rank second on that scenario. Therefore, while the two algorithms have
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quite similar rankings (1.33 and 1.67), in addition to ranking first overall, there is a
clear advantage for Santamaría-SS in terms of consistency of its performance.

Second Experiment: Atlas-Based Segmentation of Brain Deep Nuclei

In the second experiment, we compare intensity-based algorithms over the registra-
tion of real brain MRI images without applying any transformation. The registration
is used to perform atlas-based segmentation of deep brain structures [54]. The
quality of the segmentation obtained in this phase is used to assess the effectiveness
of the registration methods.

Atlas-based segmentation is a procedure that aims to automatically delineate a
region of an image using an atlas (or an “average” image) of a similar subject in
which the desired region has been already segmented. The first step is to register
the atlas (the scene) to the input image (the model). The transformation resulting
from this phase is then used to overlap the segmented region of the atlas to the
scene. The region of the scene that overlaps the segmented region of the atlas is
the result of the segmentation process. Figure 6 illustrates the process. Often, atlas-
based segmentation is used as preliminary step in a more complex segmentation
approach [34].

Thirteen T1-weighted brain MRI were retrieved from the NMR database [40].
The deep nuclei structures in each image have been manually delineated by an
expert in order to create the ground-truth data used to evaluate the registration.
Figure 6 shows one of the images along with the corresponding deep nuclei.
Eighteen registration scenarios were created by selecting pairs of different images
at random.

The algorithms under comparison are SSC, r-GAC, r-BFOA, QN, and ASGD.
The transformation model is affine transform, which involves rotation, translation,
scaling, and shearing, and it can be represented using 12 real parameters. The
stopping criterion is a time limit of 10 min. Note that no synthetic transformation
is applied on the images; the registration aims to compensate for the variability in
the pose of the patient during the acquisition of the images.

Fig. 6 The atlas-based segmentation of deep brain structures in brain MRI. First, the atlas is
registered to the input image and the resulting transformation is applied to the labeled region of the
atlas (in blue). The resulting region is overlapped on the input image (in yellow) to determine the
output of the process
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Results
The quality of atlas-based segmentation depends closely on the accuracy of the
registration step, although the anatomical variability of the target region can limit
its effectiveness. For each scenario we performed 32 independent runs of each
algorithm. The segmented region obtained from the registration VR is then compared
with the ground-truth VGT. The overlapping of the two regions is commonly
measured using the Dice’s coefficient [15], given by Dice.VR; VGT/ D 2jVR\VGTj

jVRjCjVGTj

where j � j is the number of voxels. A value of 1 means perfect overlapping, while 0
means the two regions do not overlap at all.

The results of the second experiment are reported in Table 4. We computed the
mean and standard deviation of the overlap and ranked the algorithm accordingly
for each scenario. Table 5 show the mean rankings for the algorithms in the
comparison.

The overlap values can differ considerably across the scenarios, reflecting the
fact that the effectiveness of this kind of segmentation can vary depending on the
concrete anatomy of the patients. On average, r-BFOA scored the worst results in
the comparison, ranking last in 10 out of 18 scenarios, with a mean rank of 4.5. High
standard deviation values point to a quite uneven performance across different runs.
QN ranked fourth on average, but overall the results are very inconsistent, with QN
scoring in the top three in 7 out of 18 scenarios, but delivered much worse results in
the remaining ones.

In general, r-GAC and ASGD have similar results, whereas SSC ranked con-
stantly better than the others. ASGD delivered an acceptable performance, due to
the low “magnitude” of the transformations involved, which is quite suitable for a
local search method. However, note that the low variability of its overlap values
means almost all solutions have a lower quality than the average solution found by
the other two algorithms. r-GAC had a similar performance, while that of SSC is
the best one of the comparison, with a mean rank of 1.61 against 2.22 and 2.94.

Conclusion

The adoption of MHs in order to solve optimization problems in the area of
computer vision is steadily increasing. Medical IR is an excellent example of
this trend, with feature-based being the most prevaling and mature approach.
This chapter introduced the IR problem in depth and reviewed the design of
some outstanding methods in the field, showing how IR have been successfully
tackled using a wide spectrum of MH techniques. Despite the large interest in
the community toward improving the traditional, well-known optimization methods
for IR such as ICP, the experimentation in this chapter shows how algorithms
based on MHs can provide superior results in terms of accuracy and robustness
on challenging, real-world medical IR scenarios.
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Table 4 Detailed results of the second experiment. For each scenario, the table reports the average
overlap, standard deviation and ranking of the algorithms in the comparison

Algorithm

MSE

RankMean Sd

1

ASGD 0.742 0.001 4

r-BFOA 0.714 0.035 5

r-GAC 0.755 0.012 1

QN 0.746 3

SSC 0.751 0.008 2

2

ASGD 0.679 0.003 1

r-BFOA 0.661 0.038 5

r-GAC 0.670 0.012 4

QN 0.677 2

SSC 0.673 0.026 3

3

ASGD 0.616 0.005 2

r-BFOA 0.591 0.047 4

r-GAC 0.618 0.007 1

QN 0.581 5

SSC 0.596 0.026 3

4

ASGD 0.677 0.003 3

r-BFOA 0.622 0.064 5

r-GAC 0.679 0.008 2

QN 0.687 1

SSC 0.677 0.008 4

5

ASGD 0.682 0.000 1

r-BFOA 0.664 0.033 5

r-GAC 0.669 0.005 4

QN 0.678 2

SSC 0.670 0.005 3

6

ASGD 0.691 0.001 3

r-BFOA 0.660 0.063 5

r-GAC 0.706 0.016 2

QN 0.685 4

SSC 0.722 0.018 1

7

ASGD 0.621 0.007 3

r-BFOA 0.604 0.082 4

r-GAC 0.622 0.025 2

QN 0.508 5

SSC 0.652 0.027 1

Algorithm

MSE

RankMean Sd

8

ASGD 0.756 0.010 3

r-BFOA 0.715 0.048 4

r-GAC 0.760 0.009 2

QN 0.636 5

SSC 0.773 0.012 1

9

ASGD 0.634 0.006 4

r-BFOA 0.648 0.032 3

r-GAC 0.650 0.013 2

QN 0.632 5

SSC 0.670 0.022 1

10

ASGD 0.738 0.003 3

r-BFOA 0.689 0.041 5

r-GAC 0.739 0.005 2

QN 0.717 4

SSC 0.740 0.011 1

11

ASGD 0.717 0.011 3

r-BFOA 0.709 0.025 4

r-GAC 0.728 0.010 2

QN 0.544 5

SSC 0.750 0.013 1

12

ASGD 0.684 0.005 4

r-BFOA 0.683 0.066 5

r-GAC 0.688 0.008 3

QN 0.702 2

SSC 0.716 0.022 1

13

ASGD 0.686 0.009 4

r-BFOA 0.673 0.033 5

r-GAC 0.729 0.004 1

QN 0.696 3

SSC 0.718 0.014 2

14

ASGD 0.680 0.005 3

r-BFOA 0.665 0.031 4

r-GAC 0.680 0.011 2

QN 0.629 5

SSC 0.693 0.019 1

(continued)
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Table 4 continued

15

ASGD 0.741 0.001 4

r-BFOA 0.690 0.041 5

r-GAC 0.750 0.007 3

QN 0.764 2

SSC 0.769 0.023 1

16

ASGD 0.751 0.012 3

r-BFOA 0.743 0.061 4

r-GAC 0.755 0.029 2

QN 0.668 5

SSC 0.779 0.011 1

17

ASGD 0.754 0.004 2

r-BFOA 0.705 0.034 5

r-GAC 0.749 0.014 3

QN 0.736 4

SSC 0.756 0.020 1

18

ASGD 0.624 0.004 3

r-BFOA 0.624 0.082 4

r-GAC 0.633 0.041 2

QN 0.613 5

SSC 0.689 0.030 1

Table 5 Second experiment:
the average rankings of the
algorithms

Algorithm Mean rank

SSC 1.61

r-GAC 2.22

ASGD 2.94

QN 3.72

r-BFOA 4.50

Cross-References

�Evolutionary Algorithms
�Genetic Algorithms
� Particle Swarm Methods
� Scatter Search
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Abstract

In this chapter an overview of metaheuristic algorithms that have been very suc-
cessful in tackling a particular class of natural gas pipeline network optimization
problems is presented. In particular, the problem of minimizing fuel consumption
incurred by the compressor stations driving natural gas in pipeline networks is
addressed. This problem has been studied from different angles over the past few
years by virtue of its tremendous economical impact. First, a general mathemati-
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cal framework for this class of problems is presented. After establishing the most
relevant model properties and fundamental network topologies, which are key
factors for choosing an appropriate solution technique, current state-of-the-art
metaheuristics are presented for handling different versions of this problem. This
work concludes by highlighting the most relevant and important challenges of
this very exciting area of research in natural gas transportation networks.

Keywords
Natural gas transmission systems � Pipeline optimization � Nonlinear
programming � Mixed-integer nonlinear programming � Tabu search � Ant
colony optimization � Simulated annealing � Particle swarm optimization

Introduction

There are many interesting decision-making problems in the natural gas industry
that have been studied over the years. These include fields such as pipeline
design, gas storage, gathering, transportation, and marketing, to name a few. An
important class of these problems, referred to as the minimum fuel consumption
problem (MFCP), deals with how to operate a natural gas transportation network
for delivering the gas from storage facilities to local distribution companies so as
to minimize the fuel consumption employed by the compressor stations moving the
gas along the network. Efficient design and operation of these complex networks
can substantially reduce airborne emissions, increase safety, and decrease the very
high daily operating costs due to the large amounts of fuel per day needed to operate
the compressor stations driving the gas.

These types of networks are very complex and highly nonlinear since the
relationship between the flow variables in every arc and the pressure values at the
interconnection points is represented by nonlinear equations and, in some cases,
by partial differential equations. Thus, in general the class of MFCPs is very
challenging due to the presence of nonlinearities and nonconvexities in the models
representing such problems. These problems have been studied since the late 1960s
from many different angles, most of them based on classical hierarchical control
and mathematical programming approaches.

It was until very recently that metaheuristics techniques were introduced for
addressing some of these problems. One of the great advantages of metaheuristic
algorithms over existing approaches is that the former do not depend on gradient-
based information so they can handle the nonlinear and nonconvex nature of the
problems with relative ease. Furthermore, they can be combined with existing math-
ematical programming approaches in intelligent ways to derive hybrid metaheuristic
methods.

The purpose of this chapter is to introduce the reader with an important class
of challenging optimization problems in natural gas transportation networks and to
give a detailed discussion on how metaheuristics have been successfully applied on
addressing these problems. There are of course other important decision-making
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problems in the natural gas industry for which optimization techniques have made
important contributions. A recent paper by Zheng et al. [40] surveys optimization
models in the natural gas industry, focusing on natural gas production, transporta-
tion, and marketing. Ríos-Mercado and Borraz-Sánchez [29] present an extensive
review of classical techniques for fuel consumption minimization in transmission
systems, including gathering, transmission, and local distribution. Schmidt et al.
[32] present stationary nonlinear programming models of gas networks that are
primarily designed to include detailed nonlinear physics in the final optimization
steps for midterm planning problems.

This chapter is organized as follows. The basic mathematical framework for
the steady-state case, including important model properties, is presented in the
first section. Then, in the following section, the existing classical approaches for
handling different versions of this problem including steady-state and transient
models are briefly highlighted. This is followed by two sections where both a
Tabu Search algorithm for handling a nonlinear programming and an Ant Colony
Optimization algorithm for handling a mixed-integer nonlinear programming model
are described. Other metaheuristic approaches for related problems in the natural
gas industry are reviewed next. Final remarks and discussion of future research
trends about metaheuristic techniques in natural gas optimization problems are
given in the last section.

Problem Description and Modeling Framework

Background

The main purpose of a natural gas transmission network is to transport gas from
storage facilities to local distribution companies. The gas is moved by pressure, and
pressure is lost due to the friction of the gas flow with the inner wall of the pipelines.
Thus, to keep the gas moving, compressor stations, whose primary role is to increase
gas pressure, are needed. In turn, every compressor station is composed of several
compressor units. These units may be identical or not and hooked up in different
ways. The most typical configuration, which is assumed throughout this chapter, is
that of identical compressor units hooked-up in parallel. It is well known that most
of the operating costs in a pipeline network are due to the amount of fuel consumed
at the compressor stations.

When operating a natural gas transmission system aiming at minimizing fuel con-
sumption, there are two main groups of decision variables that must be considered:
(i) the mass flow rate through every pipe and compressor station and (ii) gas pressure
values in each interconnection point. Additionally, decisions such as how many
individual compressor units to operate within stations may be taken. Hence, the
objective for a transmission network is to minimize the total fuel consumption of
the compressor stations while satisfying specified delivery flow rates and minimum
pressure requirements at the delivery terminals. The MFCP is typically modeled as a
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nonlinear or mixed-integer nonlinear network optimization problem. It is of course
assumed that the network is given, that is, this is not a design problem.

Depending on how the gas flow changes with respect to time, we distinguish
between systems in steady state and transient state. A system is said to be in steady
state when the values characterizing the flow of gas in the system are independent
of time. In this case, the system constraints, particularly the ones describing the gas
flow through the pipes, can be described using algebraic nonlinear equations. In
contrast, transient analysis requires the use of partial differential equations (PDEs)
to describe such relationships. This makes the problem considerably harder to
solve from the optimization perspective. In fact, optimization of transient models
is one of the most challenging ongoing research areas. In the case of transient
optimization, variables of the system, such as pressures and flows, are functions
of time.

Gas transmission network problems differ from traditional network flow prob-
lems in some fundamental aspects. First, in addition to the flow variables for each
arc, which in this case represent mass flow rates, a pressure variable is defined at
every node. Second, besides the mass balance constraints, there exist two other types
of constraints: (i) a nonlinear equality constraint on each pipe, which represents the
relationship between the pressure drop and the flow, and (ii) a nonlinear nonconvex
set which represents the feasible operating limits for pressure and flow within each
compressor station. The objective function is given by a nonlinear function of flow
rates and pressures. The problem is very difficult due to the presence of a nonconvex
objective function and a nonconvex feasible region.

Description of Basic Model

Let G D .V; A/ be a directed graph representing a natural gas transmission network,
where V is the set of nodes representing interconnection points, and A is the set of
arcs representing either pipelines or compressor stations. Let Vs and Vd be the set
of supply and demand nodes, respectively. Let A D Ap [ Ac be partitioned into a
set of pipeline arcs Ap and a set of compressor station arcs Ac . That is, .u; v/ 2 Ac

if and only if u and v are the input and output nodes of compressor station .u; v/,
respectively.

Two types of decision variables are defined: let xuv denote the mass flow rate at
arc .u; v/ 2 A, and let pu denote the gas pressure at node u 2 V . The following
parameters are assumed known: Bu is the net mass flow rate in node u, and P L

u and
P U

u are the pressure limits (lower and upper) at node u. By convention, Bu > 0

(Bu < 0) if u 2 Vs (u 2 Vd ), and Bu D 0 otherwise.
The basic mathematical model of the minimum fuel cost problem (MFCP) is

given by:

Minimize g.x; p/ D
X

.u;v/2Ac

guv.xuv; pu; pv/ (1)



37 Metaheuristics for Natural Gas Pipeline Networks 1107

subject to
X

vW.u;v/2A

xuv �
X

vW.v;u/2A

xvu D Bu u 2 V (2)

.xuv; pu; pv/ 2 Duv .u; v/ 2 Ac

(3)

x2
uv D Ruv.p2

u � p2
v/ .u; v/ 2 Ap

(4)

pu 2 ŒP L
u ; P U

u � u 2 V (5)

xuv � 0 .u; v/ 2 A

(6)

The objective function (1) measures the total amount of fuel consumed in the
system, where guv.xuv; pu; pv/ denotes the fuel consumption cost at compressor
station .u; v/ 2 Ac . For a single compressor unit, the following function is typically
used:

g.1/.xuv; pu; pv/ D
˛xuv

�

��
pv

pu

�m

� 1

�
;

where ˛ and m are assumed constant and known parameters that depend on the
gas physical properties, and � is the adiabatic efficiency coefficient. This adiabatic
coefficient is a function of .xuv; pu; pv/, that is, in general, a complex expression
implicitly defined. A function evaluation of � requires solving a linear system of
algebraic equations. In practice, though, polynomial approximation functions that
fit the function relatively well and are simpler to evaluate are employed. In other
cases, when the fluctuations of � are small enough, � can be assumed to be a
constant.

For a compressor station .u; v/ with nuv identical compressor units hooked-up
in parallel which is very commonly found in industry, the fuel consumption is
given by:

guv.xuv; pu; pv/ D nuvg.1/.xuv=nuv; pu; pv/: (7)

When all nuv units are fixed and operating, we have a nonlinear programming
(NLP) model. Treating nuv , as decision variables, leads to mixed-integer nonlinear
programming (MINLP) models.

Constraints (2) establish the mass balance at each node. Constraints (3) denote
the compressor operating limits, where Duv denote the feasible operating domain
for compressor .u; v/ 2 Ac . Equations (4) express the relationship between the mass
flow rate through a pipe and its pressure values at the end points under isothermal
and steady-state assumptions, where Ruv (also known as the pipeline resistance
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parameter) is a parameter that depends on both the physical characteristics of the
pipeline and gas physical properties. When the steady-state assumption does not
hold, this relationship is a time-dependent partial differential equation which leads
to transient models. Constraints (5) set the lower and upper limits of the pressure
value at every node, and (6) set the non-negativity condition of the mass flow rate
variables. Further details of this model can be found in Wu et al. [38] and Ríos-
Mercado [28].

Network Topology

There are three different kinds of network topologies: (a) linear or gun barrel,
(b) tree or branched, and (c) cyclic. Technically, the procedure for making this
classification is as follows. In a given network, the compressor arcs are temporarily
removed. Then each of the remaining connected components is merged into a big
supernode. Finally, the compressor arcs are put back into their place. This new
network is called the associated reduced network. Figure 1 illustrates the associated
reduced network for a 12-node, 11-arc example. As can be seen, the reduced
network has four supernodes (labeled S1, S2, S3, S4) and three arcs (the compressor
station arcs from the original network).

Types of network topologies:

Linear topology: reduced network is a single path.
Tree topology: reduced network is a tree.
Cyclic topology: reduced network has cycles (either directed or undirected).

These different types of network topologies are shown in Fig. 2, where the
original network is represented by solid line nodes and arcs and the reduced network
by dotted super nodes. Note that even though networks in Fig. 2a, b are not acyclic
from a strict network definition, they are considered as noncyclic pipeline network
structures.

Solution Techniques: Classical Approaches

There is certainly a number of different optimization techniques that have been
tried in the past to address problems in fuel cost minimization of natural gas
transportation networks.

Steady-state NLP models: most of the work for nonconvex NLP models has been
based on steady-state models. One can find work on dynamic programming-
based techniques [3, 6, 13, 15, 17, 31, 36, 37], methods based on gradient search
[12, 26], global optimization methods [13], linearization techniques [9], and
model properties and lower bounding schemes [5, 30, 38].

Steady-state MINLP models: there has also been studies on developing optimiza-
tion methods for addressing MINLP models. In most of these models, integer
variables for deciding which individual compressor units must be operating
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Fig. 1 Illustration of a reduced network. (a) Original network. (b) Associated reduced network

within a compressor station are introduced. Solution methodologies include
mainly successive branch and bound [27, 34], outer approximation with aug-
mented penalty [8], and linearization techniques [20].

Transient models: Transient models are more challenging as the governing PDEs
associated with the dynamics of the gas system must be taken into consideration.
Efforts on addressing this class of very difficult problems include hierarchical
control techniques [2, 16, 21–23, 25] in the early years and mathematical pro-
gramming approaches [1, 10, 11, 14, 19, 24, 35], more recently.
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Fig. 2 Different kinds of pipeline network topologies. (a) Linear topology. (b) Tree topology.
(c) Cyclic topology

For a complete literature review and detailed discussion of some of these
techniques, the reader is referred to the recent surveys of Zheng et al. [40] and Ríos-
Mercado and Borraz-Sánchez [29]. In the following sections, we review the most
successful metaheuristic techniques applied to variations of the MFCP.
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Tabu Search: An Approach for NLP Models

For the past few years, tabu search (see �Chap. 25, “Tabu Search”) has established
its position as an effective metaheuristic guiding the design and implementation
of algorithms for the solution of hard combinatorial optimization problems in a
number of different areas. A key reason for this success is the fact that the algorithm
is sufficiently flexible to allow designers to exploit prior domain knowledge in
the selection of parameters and subalgorithms. Another important feature is the
integration of memory-based components.

When addressing the MFCP, even though we are dealing with a continuous
optimization problem, tabu search (TS), with an appropriate discrete solution space,
is a very attractive choice due to the the nonconvexity of the objective function and
the versatility of TS to overcome local optimality.

We now describe the TS-based approach of Borraz-Sánchez and Ríos-Mercado
[4, 5], which is regarded as the most successful implementation of a metaheuristic
for the MFCP. This TS takes advantage of the particular problem structure and
properties and in fact can be regarded as a hybrid metaheuristic or matheuristic
(see �Chap. 5, “Matheuristics”).

Let us consider the MFCP model given by (1), (2), (3), (4), (5) and (6), that
is, the number of compressor units operating in each compressor station is known
and fixed in advance. As established earlier, this is a nonconvex NLP. Current
state of the art on solution techniques for this MFCP reveals these important
facts:

• There are theoretical results indicating that in noncyclic systems, the values of the
flow variables can be uniquely determined and fixed beforehand [30]. Therefore,
the problem reduces to finding out the optimal set of pressure variables at each
node in the network. Of course, the problem is still hard to solve, but it reduces
its dimension in terms of the decision variables.

• As a direct consequence of this, there exists successful implementations
mostly based on dynamic programming (DP) that efficiently solve the
problem in noncyclic instances by appropriately discretizing the pressure
variables.

• When in a cyclic system, we impose the limitation of fixing the flow variables in
each arc, a nonsequential dynamic programming (NDP), developed by Carter [6],
can been successfully applied for finding the optimal set of pressure variables.
Although this algorithm has the limitation of narrowing the set of solutions to
those subject to a fixed set of flows, it can be used within other flow-modification-
based approaches.

It is clear that the TS approach is aiming at finding high-quality solutions for
cyclic systems. It exploits the fact that for a given set of flows, an optimal set of
pressure values can be efficiently found by NDP.
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Nonsequential Dynamic Programming

We include in this section a brief description of the essence of the NDP algorithm.
Further details can be found in [4]. Starting with a feasible set of flow variables,
the NDP algorithm searches for the optimal set of node pressure values associated
with that pre-specified flow. Rather than attempting to formulate DP as a recursive
algorithm, at a given iteration, the NDP procedure grabs two connected compressors
and replace them by a “virtual” composite element that represents the optimal
operation of both compressors. These two elements can be chosen from anywhere
in the system, so the idea of “sequential recursion” in classical DP does not quite
apply here. After performing this step at a stage t , the system with t compressor
stations has been replaced by an equivalent system with t�1 stations. The procedure
continues until only one virtual element, which fully characterizes the optimal
behavior of the entire pipeline system, is left. Afterwards, the optimal set of
pressure variables can be obtained by a straightforward backtracking process. The
computational complexity of this NDP technique is O.jAcjN

2
p/, where Np is the

maximum number of elements in a pressure range discretization.

The Tabu Search Approach

Algorithm 1: Pseudocode of Procedure TS
Require: An instance of the MFCP.
Ensure: A feasible solution .X; P /.

1: .X; P /best  ;

2: TabuList ;
3: NX  FindInitialFlow( )
4: while ( stopping criteria not met ) do
5: Generate neighborhood V . NX/

6: for ( X 2 V . NX/ such that X 62 TabuList ) do
7: P  NDP(X4 )
8: end for
9: Choose best (non-tabu) solution .X; P /

10: if (jTabuListj == TabuTenure) then
11: Remove oldest element from TabuList
12: end if
13: TabuList TabuList [X

14: .X; P /best  Best( .X; P /, .X; P /best )
15: end while
16: Return .X; P /best

The main steps of the algorithm are shown in Procedure 1. Here, a solution Y D

.X; P / is partitioned into its set of flow variables X and set of pressure variables
P . First note that the search space employed by TS is defined by the flow variables
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Flow vector   X = { (5,6), (10, 11) }
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Fig. 3 Flow components of a feasible solution on a cyclic topology

X only because once the flow rates are fixed, the corresponding pressure variables
are optimally found by NDP. Furthermore, we do not need to handle the entire set
of flow variables, but only one per cycle. This is so because once you fix a flow rate
in a cycle, the rest of the flows can be uniquely determined. Thus, a given state is
represented by a vector OX D .X˛1 ; : : : ; X˛m/, where ˛w is an arc that belongs to a
selected cycle w. Note that this set of arcs is arbitrarily chosen and that converting
a flow from X to and from OX is straightforward, so in the description X and OX are
used interchangeably. This situation is illustrated in Fig. 3. The network represents
the associated reduced network. It is clear that given a specified amount of net flow
entering at node 1, only one arc in each cycle is needed to uniquely determine the
flows in each arc of the network. In this case, the bold arcs (5,6) and (10,11), one
per cycle, suffice.

We now describe each component.

• Initial set of flows: first, in Step 3, in initial set of feasible flows is found. Here,
different methods such as classical assignment techniques can be applied in a
straightforward manner.

• Neighborhood definition: In Step 5, a neighborhood V . NX/ of a given solution
NX D f Nx1; Nx2; : : : ; Nxmg is defined as the set of solutions reachable from NX via a

modification of the current flow in each arc by �x units in each of its components.
This is given by

V . Nx/ D fX 0 2 Rm j x0
w D Nxw ˙ k�x; k D 1; 2; : : : ; N =2; w D 1; : : : ; mg

where N is the predefined neighborhood size, �x accounts for the mesh size, and
the index w refers to the w-th cyclic component. Note that, for a given solution,
the entire solution does not need to be stored but only the flow in the selected arc
component to be modified. Note also that once this value is set, the rest of the
flow variables in the cycle are easily determined, so in this sense, it is precisely
this mass flow rate which becomes the attribute of the solution.
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• Optimal pressure values: in Steps 6–8, the corresponding set of pressure values
for the given flow is found by invoking the NDP algorithm only for those flow
values that are non-tabu.

• Tabu list: then in Step 9, the best X 0 2 V . NX/ which is non-tabu is chosen, and
the corresponding subsets are updated accordingly. A tabu list (TabuList) stores
recently used attributes, in our case, values of the X variables. The size of the
TabuList (TabuTenure) controls the number of iterations; a particular attribute is
kept in the list.

• Stopping criterion: the search usually terminates after a given number of
iterations , or when no significant change has been found in certain number of
iterations.

As we know from theoretical properties of pipeline networks [30], the flow
modification step is unnecessary for noncyclic topologies because there exists
a unique set of optimal flow values which can be determined in advance at
preprocessing.

The algorithm was tested on several cyclic real-world size instances of up to
19 supernodes and seven compressor stations with excellent results. The method
significantly outperformed the best earlier approaches finding solutions of very good
quality relatively quickly.

Ant Colony Optimization: An Approach for MINLP Models

Let us consider now the problem where, in addition to the flow variables in each arc
and the pressure variables in each node, the decision process involves determining
the number of operating units in each compressor as well. This leads to an MINLP
model. In this section, the ant colony optimization (ACO) algorithm by Chebouba
et al. [7] for this version of the MFCP is described.

Ant Colony Optimization (see �Chap. 13, “Ant Colony Optimization: A Com-
ponent-Wise Overview”) is a relatively new evolutionary optimization method
that has been successfully applied to a number of combinatorial optimization
problems. ACO is based on the communication of a colony of simple agents (called
ants), mediated by (artificial) pheromone trails. The main source of ACO is a
pheromone trail laying and following behavior of real ants which use pheromones
as a communication medium. The pheromone trails in ACO serve as distributed,
numerical information which the ants use to probabilistically construct solutions to
the problem being solved and which the ants adapt during the algorithm’s execution
to reflect its search experience.

Regarding natural gas pipeline network optimization, Chebouba et al. [7] present
an ACO metaheuristic for the MFCP with a variable number of compressor units
within a compressor station. They focus on the linear topology case. As it was
mentioned earlier, solving the MFCP on linear topologies has been successfully
addressed by dynamic programming approaches when the number of compreessor
units is fixed and known; however, when the number of individual compressor units
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Fig. 4 Modeling compressor unit choices as a multigraph

is variable and part of the decision process, it leads to an MINLP that has a higher
degree of difficulty.

Consider the MINLP given by objective function (7) subject to constraints (2),
(3), (4), (5) and (6). When the number of individual compressor units within a
compressor station are identical and hooked-up in parallel, the linear system, as
depicted in Fig. 2a, can be represented by a multigraph with the compressor stations
aligned sequentially where the i -th compressor station (compressor arc .i; i C 1/

in the figure) is modeled by a set of ni arcs between suction node i and discharge
pressure i C 1 (see Fig. 4). Here, ni is the number of individual compressor units,
and each of the multi arcs .i; iC1/ represents a decision on how many units are used
in that particular station. Each multi-arc in the i -th station is denoted by .i; i C 1; r/

(or simply .i; r/), where r identifies the number of individual compressor stations
to be used in a particular solution. Let L be the set of edges in this multigraph given
by L D f.i; r/ W i 2 f1; : : : ; ng; r 2 f1; : : : ; nigg. In this case, the cost of arc .i; r/

given by cir depends on the values of the pressure variables pi and piC1. This will
be determined during the construction of the solution. Following equation (7), the
cost is then given by

cir D rg.1/.xi;iC1=r; pi ; piC1/:

where it can be seen in a straightforward manner that, in the case of linear
systems with known supply/demand values, the flow variables xi;iC1 through the
entire network can be determined and fixed beforehand. Furthermore, this cost is
heuristically estimated once at the start of the procedure.

At the start of the algorithm, m ants are placed at the starting node. Ants build
a solution while moving from node to an adjacent node by choosing one of the
multi-arcs and by randomly generating values of the pressure variables for correct
computation of the arc cost. During iteration t , each ant k carries out a partial path
T k.t/, and in this step, the choice of arc .i; r/ depends on both the cost cir and the
concentration of pheromone �ir .t/ on arc .i; r/ at iteration t . The pheromone trail
takes into account the ant’s current history performance. This pheromone amount is
intended to represent the learned desirability of choosing the r-th edge at node i .
The pheromone trail information is changed during problem solution to reflect the
experience acquired by ants during problem-solving.
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First, the algorithm introduces a transition rule depending on parameter q0 2

Œ0; 1�, which determines the relative importance of intensification/diversification
trade-off: evert time an ant at node i chooses arc .i; r/ according to the following
transition rule:

r D

(
arg maxu.�iu.t//˛=.ciu/ˇ if q � q0;

s otherwise:

where q is random variable uniformly distributed in Œ0; 1�, and s is a random variable
chosen according to the following probability function:

pk
is.t/ D

.�is.t//
˛=.cis/

ˇ

P
u.�iu.t//˛=.ciu/ˇ

As can be seen, low values of q0 lead to diversification and high values of q0

stimulates intensification. Parameters ˛ and ˇ control the relative importance of
the pheromone trail and greedy construction value. The main steps of the algorithm
are shown in Procedure 2.

Algorithm 2: Pseudocode of Procedure ACO
1: t  0

2: while (stopping criteria not met) do
3: t  t C 1

4: Xbest  ;

5: for (k D 1; : : : ; m) do
6: Build solution X

7: Apply local updating rule along path of X

8: Xbest  Best(X , Xbest)
9: end for

10: Apply global updating rule along path of Xbest

11: end while
12: Return Xbest

The pheromone trail is changed both locally (Step 7) and globally (Step 10) as
follows.

• Local updating: every time arc .i; r/ is chosen by an ant, the amount of
pheromone changes by applying this local trail update:

�ir .t/ .1 � �/�ir .t/C ��0

where �0 is the initial pheromone value and � the evaporation rate.
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• Global updating: upon the completion of a solution by every ant in the colony, the
global trail updating is done as follows. The best ant (solution) from this finished
iteration is chosen according to the best objective function value g�. Then, in
each arc .i; i C 1; r/ used by this best ant, the trail is updated as:

�ir .t C 1/ .1 � �/�ir .t/C
�

g�

This algorithm was tested on the Hassi R’mell-Arzew real-world pipeline
network in Argelia consisting of five pipes, six nodes, five compressor stations, and
three units in each compressor. They also built three additional cases with up to
23 compressor stations, and 12 compressor units in each compressor. This method
performs reasonably well on these type of networks according to the authors’
empirical work. A great advantage is its relatively ease of implementation.

The issue on how this algorithm can be modified so as to handle noncyclic
systems remains an interesting topic for further investigation along this area.

Metaheuristic Approaches to Related Problems

In this section, we review some other related optimization problems in natural gas
pipeline networks that have been addressed by metaheuristic methods.

Particle Swarm Optimization for Non-isothermal Systems

Wu et al. [39] address a variation of the problem where, rather than minimizing
fuel consumption, the focus is on maximizing a weighted combination of the
maximum operation benefit and the maximum transmission amount. The operation
benefit is defined as the sales income minus the costs. These costs include gas
purchasing cost, pipeline’s operation cost, management cost, and compressor’s
running cost. The transmission amount is defined as the total gas volume that
flows into the pipeline. In addition, a non-isothermal model is considered; that is,
the authors consider the dynamics of the pipes being a function of temperature.
Most of the literature focus on the isothermal case. They develop a particle swarm
optimization (PSO) metaheuristic enhanced by an adaptive inertia weight strategy
to adjust the weight value dynamically. In a PSO implementation (see �Chap.
21, “Particle Swarm Methods”), the inertia weight parameter is used to balance
the global and local search ability. If the weight has a large value, the particle
will search in a broader solution space. If the weight has a small value, the
evolution process will focus on the space near to the local best particle. Thus,
the global and local optimization performances of the algorithm can be controlled
by dynamically adjusting the inertia weight value. This method adjusts the inertia
weight adaptively based on the distance from the particles to the global best
particle [33].
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They tested their metaheuristic (named IAPSO) in the Sebeie-Ningxiae-Lanzhou
gas transmission pipeline in China. Nine stations along the pipeline distribute gases
to 16 consumers. There are four compressor stations with eight compressors to boost
the gas pressure. The results show that IAPSO has fast convergence, obtaining
reasonably good balances between the gas pipeline’s operations benefit and its
transportation amount.

Simulated Annealing for Time-Dependent Systems

As mentioned earlier, the previous two chapters addressed steady-state systems.
However, when the steady-state assumption does not hold, the constraints that
describe the physical behavior through a pipeline cannot be represented in the
simplifying form as in (4). On the contrary, this behavior is governed by partial
differential equations with respect to both flow and time. Therefore, to handle this
situation, a discretization over the time variable must be done resulting in a highly
complex optimization problem.

The resulting model is a mixed-integer nonlinear problem where now both flow
variables and pressure variables are also a function of time; that is, we now have xt

ij

and pt
i variables for every arc .i; j / 2 A and time step t 2 T , where T is the set of

time steps.
Although some efforts have been made to address transient systems, one

of the most successful techniques for handling this problem is the simulated
annealing (SA) algorithm of Mahlke et al. [18]. In that work, the authors use the
following main ideas. First, they relax the equations describing the gas dynamic
in pipes by adding these constraints combined with appropriate penalty factors
to the objective function. The penalty factor is dynamically updated resembling
a strategic oscillation strategy. This gives the search plenty of flexibility. Then,
they develop a suitable neighborhood structure for the relaxed problem where time
steps as well as pressure and flow of the gas are decoupled. Their key idea of
the neighborhood generation is a small perturbation of flow and pressure variables
in the segments and nodes, respectively. An appropriate cooling schedule, an
important feature of each SA implementation, is developed. They tested their meta-
heuristic on data instances provided by the German gas company E.ON Ruhrgas
AG. The proposed SA algorithm yields feasible solutions in very fast running
times.

Conclusion

In this chapter we described successful metaheuristic implementations for handling
difficult optimization problems in fuel cost minimization of natural gas transporta-
tion networks. Compared to existing approaches, metaheuristics have the great
advantage of not depending on gradient-based information such that they can handle
nonlinearities and nonconvexities with relative ease.
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Nonetheless, metaheuristics have been widely applied mostly to discrete linear
optimization problems and not to fully extent to handle the nasty problems within
the natural gas industry. Therefore, there is a tremendous area of opportunity from
the metaheuristic perspective in this very important field. One must keep in mind
that these are real-world problems where even a marginal improvement in the
objective function value represents a significant amount of savings given the total
flow operation of these networks throughout the year. Therefore, further research in
this area is justified and needed from the practical and scientific perspective.

Important research issues such as how to derive new metaheuristics or how
the developed metaheuristics can be applied, extended, modified, so as to handle
MFCPs under different assumptions (e.g., non-isothermal models, nonidentical
compressor units, non-transient models, uncertainty) remain to be investigated. In
these lines we have seen some preliminary efforts citing, for instance, the work
of Mahlke et al. [18] who present a simulated annealing algorithm for addressing
a MFCP under transient conditions. However, further work is needed. We know
that advanced concepts in metaheuristic optimization research, such as reactivity,
adaptive memory, intensification/diversification strategies, or strategic oscillation,
are worthwhile investigating. Furthermore, as we have seen in this chapter, these
models have a rich mathematical structure that allow for hybridization where part of
the problem can be solved with mathematical programming techniques while being
guided within a metaheuristic framework.

We hope we can stimulate the interest of the scientific community, particularly
from metaheuristic optimization field, to contribute to advance the state of the art in
this very challenging research area.

Cross-References

�Ant Colony Optimization: A Component-Wise Overview
�Matheuristics
� Particle Swarm Methods
�Tabu Search
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Abstract

Several real-world problems can be modeled as graph problems. Graph al-
gorithms and theories that have evolved for decades can be applied to solve
the problem on hand. Interestingly, many of these graph problems can be
solved polynomially, while small changes in a problem definition turn the
problem difficult. In this chapter, we explore this path from polynomial net-
work problems to NP-hard ones. Along the chapter, we visit several prob-
lems, dedicating more extended discussions to two real-world problems: the
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weight setting problem, originated from telecommunication networks, and the
virtual network embedded problem, a recent stated optimization problem from
the computer network area. For these two problems, we discuss their heuristic
solution, since only small instances can be solved exactly within a reasonable
amount of time.

Keywords
Network optimization � Traffic engineering � Network virtualization

Introduction

Many problems can be modeled as graphs. Once a problem can be modeled as
a graph, all graph algorithms and theories that have evolved for decades can be
applied to analyze and solve the problem at hand. It is the case, for example,
of social networks or webgraphs. In webgraphs, nodes represent webpages and
edges are hyperlinks, while in social networks nodes usually represent people, and
arcs represent interaction among them. In these two types of networks basically,
the graph topology is analyzed, which usually configures complex and massive
networks. Google and Facebook base some of their algorithms on these graphs.
On the other hand, in biological networks, nodes can be represented by genes, and
the correlation between each pair of nodes is represented through edge weights in
a complete graph. By analyzing these graphs, scientists discover genes related to
diseases and can then propose new drugs and observe how they affect the edge
weights of the graph. Health schools and computer science groups have made
several joint efforts in this direction.

Another class consists of graphs originating from services, such as telecommuni-
cation and road networks. These service graphs naturally are represented as a set of
elements that includes a topology, but also additional information about nodes and
arcs such as capacity, distance, demand, and delay are considered in computations
over the network. In this chapter, we focus on problems over service networks. We
will also discuss strategies applied to network optimization problems. Initially, we
introduce related polynomial problems, and then we discuss constraints that turn
the problems difficult to solve. Among the hard problems, we put some emphasis
on two NP-hard problems: the weight setting problem (WSP) and virtual network
embedded problem (VNEP). WSP has its main applications in traffic engineering
problems from transit and telecommunications, while VNEP is a computer network
problem.

We present most of the problems by their definition and also by their mathemati-
cal formulation. We aim to make the reader familiar with the mathematical problem
modeling since optimization can often exploit this feature when solving a problem.
Moreover, by analyzing their mathematical formulations, we can also highlight how
characteristics of the problem change its modeling and affect its algorithms and
solution space.
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Preliminaries

Graphs naturally model network problems. Let G D .V; A/ denote a directed graph
(DAG), where V is the set of nodes and A is the set of arcs. In a directed graph, the
set of outgoing arcs from u is represented by N C.u/, and similarly N �.u/ represents
the set of incoming arcs to node u. We denote the size of these sets by jV j D n and
jAj D m. An arc .u; v/ has u as the tail node and v as the head node. Throughout
this chapter we consider problems in simple graphs, that is, graphs without self-
loops or parallel edges. However, directed graphs can admit symmetric arcs .u; v/

and .v; u/. A path in a graph is a sequence of arcs that connect pairs of neighbor
nodes. The path is simple if there are no loops. Along the text, link and arc are used
as synonymous.

Basic Network Problems

Initially, we introduce three representative polynomial time network problems that
are found independently or as part of the core of more complex optimization
problems. From several problem candidates, the point-to-point shortest path prob-
lem, maximum flow problem, and minimum cost flow problem were chosen to be
discussed. These are fundamental network problems that have several variants that
embrace a large number of practical applications.

Point-to-Point Shortest Path Problem (PPSPP)

Given a directed graph G D .V; A/ with weights w associated to arcs w W A ! RC,
and source s and target t nodes, the PPSP problem consists in finding the path of
minimum cost between nodes s and t . If a variable xa 2 f0; 1g is associated to each
a 2 A, representing whether arc a is part of the solution, the point-to-point shortest
path problem can be mathematically formulated as:

min
X

a2A

waxa (1)

s:a
X

a2N C.v/

xa �
X

a2N �.v/

xa D

8
ˆ̂<

ˆ̂:

1, for v D s;

0, for v 2 V n fs; tg;

�1, for v D t:

(2)

xa 2 f0; 1g for a 2 A:

The objective is to minimize the cost path (Eq. 1). The path constraints (2)
guarantee to find a valid path between nodes s and t . If w W A ! RC�, i.e., w
has only positive values, the path found is always simple, otherwise, the shortest
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path can have cycles of zero cost. The weight function w associated to arcs can
represent time, cost, distance, or other measures, depending on the application. A
typical application of this problem is to find a route in a road network of a navigation
system, as a GPS, where w represents distance or time or the result of a cost function
involving these two measures.

This problem can be solved exactly in time O.m log n/ using binary heaps by the
Dijkstra’s algorithm. If additional information is available (or possible to compute),
such as estimated distances (it cannot be an overestimation) between each pair
of nodes, an admissible heuristic function can be used as part of the evaluation
function of the A� algorithm, and its time performance can be sped up. Also, in
some situations, heuristics can be used such that a sub-optimal solution is returned.
It is the case of anytime algorithms [31], which a feasible solution is requested in
a short time, and as more time is available, the solution can be improved to a given
� distance error or up to optimality. Another case where the algorithm performance
can be sped up is when a large number of queries of a path between a pair of nodes
are requested, considering a static input [23, 29, 30]. In this case, information can
be pre-computed and stored to be used in multiple queries. Finally, if one or more
arc weight values of the input graph change, a previously calculated shortest path
can be updated, instead of recomputed [36] from scratch. This approach is efficient
when the application requires successive changes and updates of the graph.

Next, we discuss two flow problems. We focus on the integer version of
the problems, i.e., the flow traversing each arc is always an integer value. For
an extensive study in network flow problems, we refer to [1] which addresses
theoretical and practical aspects of several problems.

Maximum Flow Problem (MFP)

The maximum flow problem (MFP) is a fundamental problem in network optimiza-
tion. Given a directed graph G D .V; A/ with arc capacities l W A ! R associated
with arcs, and source s and target t nodes, the problem consists in sending the
maximum amount of flow between s and t without surpassing the arc capacities.
If variables xa 2 N represent the amount of load on each a 2 A, where ds D F ,
dt D �F, and du D 0 for u 2 V n fs; tg, and F stands for the maximal amount of
flow traversing the network, this problem can be mathematically formulated as:

max F D
X

a2N C.s/

xa (3)

s:a
X

a2N C.v/

xa �
X

a2N �.v/

xa D dv; for v 2 V; (4)

xa � la; for a 2 A; (5)
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xa 2 N ; for a 2 A: (6)

The objective function (3) maximizes the flow outgoing node s and traversing
the network directed to node t , while constraints (5) assure capacities are not
surpassed. Constraints (4) guarantee flow conservation: the difference between
the total flow emanating from v and entering node v is equal to its supply/de-
mand.

The MFP problem can be solved polynomially. In 1956 the pseudo-polynomial
algorithm of Ford-Fulkerson was proposed. It has a time complexity of
O.m2 log F /, where F is the maximum flow traversing the network. In 1972 a
specialization of the previous algorithm was proposed which led to the Edmonds-
Karp algorithm, whose time complexity is O(nm2), the first polynomial algorithm
for solving the problem. A few other polynomial algorithms were proposed over the
years, with a remark to the O.n3/ algorithm of Goldberg and Tarjan [22] (fastest in
practice) and the recently proposed O.mn/ algorithm of Orlin [34].

Minimum Cost Flow Problem (MCFP)

If besides capacities we have also costs w W A ! R associated with arcs, each
node u can supply or demand a flow du 2 N , we can then define the minimum cost
flow problem. The problem consists in transporting the flow through the network,
respecting capacity constraints, and minimizing the cost function. With xa 2 N
being the flow amount on arc a, the objective function of the problem is

min
X

a2A

waxa

while the constrains are the same (4), (5), and (6) from the MFP, with du positive
for supply nodes and set to negative for demand nodes. Moreover, the sum of all
supplies should be equal to the sum of all demands, otherwise, the problem has no
solution. This problem and several variants can be solved by the algorithms for the
MFC, with a simple modification of the input graph [28, Section 7.7].

The arc capacities naturally define upper bounds on the flow on arcs. A common
variant of flow problems is to consider also a lower bound on arc capacities, forcing
that a given minimum amount of flow circulates on certain arcs. If lower bounds are
considered on the flow problems above, then the problem is still polynomial [28,
Section 7.7].

Consider the set S of source nodes and a set T of target nodes. In case S\T D ;,
both MFP and MCFP remain polynomial due to the Hoffman-Kruskal theorem on
totally unimodular matrices [25]. However, if S \ T ¤ ;, these problems are not
polynomial anymore, and we discuss some variants in the next subsection.
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Multicommodity Flow Problems

The MCFP and MFP route a commodity per time. In multicommodity flow
problems, not one, but several commodities are routed simultaneously on the
network.

Let K D f.o.1/; d.1//; .o.2/; d.2//; : : : ; .o.jKj/; t.jKj/g � V � V denote
the set of commodities or origin-destination (OD) pairs, where o.k/ and t .k/

represent, respectively, the origination and destination nodes for k D 1; : : : ; jKj.
Each commodity k has an associated demand of traffic flow dk D do.k/;t.k/, i.e., for
each OD pair .o.k/; t.k//, there is an associated flow dk that emanates from node
o.k/ and terminates in node t .k/. The total set of commodities defines a demand
matrix whose each entry [o.k/][t .k/] specifies the demand dk D do.k/;t.k/.

The MFP and MCFP problems can be easily extended to a multicommodity
flow version. Given an arbitrary OD matrix, the multicommodity MCFP can be
formulated as:

min
X

a2A

wa

X

k2K

xk
a (7)

s:a
X

k2K

X

a2N C.v/

xk
a �

X

k2K

X

a2N �.v/

xk
a D d k

v ; for v 2 V (8)

X

k2K

xk
a � la; for a 2 A; (9)

xa 2 N ; for a 2 A:

The time complexity of different variants of the problem is classified as poly-
nomial or not, depending on the problem definition. For both, direct and undirect
graphs, the decision version of the multicommodity integer flow problem is NP-
complete even if the number of commodities is two [17].

Heuristics are largely applied as the solution approach for NP-hard multicom-
modity network optimization problems. The reasons are diverse. There are cases
solved by mathematical programming approaches when the instances are small.
However, for most cases, an exact approach does not solve medium instances of
the problem even if a long time is available for processing. It is common to happen
that the model cannot even be uploaded by the solver due to its size. There are
also situations in which the problem cannot be mathematically modeled by linear or
nonlinear constraints, as, for example, some electrical network characteristics such
as electrical impedance. More often the problem can be modeled, but it results in a
nontrivial nonlinear problem model that cannot be efficiently solved in a reasonable
amount of time. Finally, some problems take as input data sets composed of multiple
data that are in many cases estimates or average values. An exact solution, in this
case, many times does not represent the best solution for the problem. For all these
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applications, heuristics are largely applied, and in most cases, they are the only
possible practical resolution approach for the problem.

Even when a problem is solved heuristically, modeling the problem and solving
it exactly is always important to find out which size an exact approach can be used
in practice and if there are subsets of instances that are easier to solve exactly.

The next two subsections detail two NP-hard problems that are found in service
networks and which are solved through metaheuristics. Their solution approaches
are also presented and discussed.

Weight Setting Problem (WSP)

The weight setting problem (WSP) is defined in a directed weighted capacitated
network G = (V,A), with w W A ! N and l W A ! RC. The problem consists
in attributing a weight on each arc of the network such that when each flow from a
demand matrix is sent along the shortest paths, a cost function �.la/, which depends
on the arc flow la, is minimized. Usually, � is a congestion cost function, and it can
be defined in different ways according to specific goals.

The WSP has its primary application in telecommunication networks. The
Internet is divided into autonomous systems (AS). Each AS controls its interior
routing by an interior gateway protocol. Common interior gateway protocols, for
instance, open shortest path first (OSPF), allow the operator to define the routes by
setting integer weights on the network links. For example, in the main application
described in this chapter, weights are set in the range [1 W 20], and � minimizes the
network congestion.

Another application of the WSP is in road networks. A road network can be
represented as a directed graph G D .V; A/ where V represents the set of nodes
(street or road intersections or points of interest) and A the set of arcs (street or road
segments). Each arc a 2 A has an associated capacity ca, and a time ta, called the
free flow time, that represents the time spent when traversing the unloaded arc a.
To calculate the congestion on each link, a potential function ˚a is computed as a
function of the load or flow `a on arc a, along with other arc-tuning parameters.
The flow in an arc is computed taking into account that a driver takes the shortest
path. The cost of a path is calculated as the sum of tolls allocated in the path or as
a function of the time and tolls. The tollbooth problem [38] consists in attributing
toll values on r arcs of a road network, such that when demand is sent along the
shortest path between origin and destination, the network congestion is minimized.
The weight wa that the WSP problem defines on an arc a represents in the tollbooth
problem the toll charged for each unit of flow traversing arc a. Note that in this case,
at most r weights are allocated.

We detail in the rest of this section the WSP applied to telecommunication
networks, revising the current approaches being used to solve the problem. We
initiate this discussion describing the problem formally.
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The WSP Applied to Telecommunication Networks

WSP receives as input a capacitated directed graph G D .V; A/ with a capacity of
la 2 RC for each arc a 2 A. Besides that, an OD demand matrix, with dk 2 R 8k 2

K, where K is the set of commodities or OD pairs, is also given as input. The OSPF
weight setting problem consists in determining weights to be assigned to the links
so as to optimize a cost function, typically associated with a network congestion
measure. Thus, the problem defines an integer weight wa 2 Œ1 W 216� (most of the
studies in the literature use wa 2 Œ1 W 20�) 8a 2 A. The flow is routed along
the shortest paths between o.k/ and t .k/ for each OD pair. The shortest paths are
calculated according to the link weights wa defined by the problem. If there is more
than one shortest path to an OD pair, the flow is evenly split at each node among
all outgoing arcs that belongs to the shortest path graph to the flow destination. The
cost function takes into account the amount of load on each arc of the network.
In [20] a piece-wise linear function ˚ D

P
a2A �la is used to calculate the cost

function ˚ . However, depending on the application, one can consider simpler cost
functions such as the ratio between the load and the capacity on the arc la

ca
. A ratio

on an arc larger than one means the arc is overloaded.
A mathematical model for the weight setting problem is given in equations (10)–

(20). The decision variables for this model determine the weight value of an arc a.
Denote by wa 2 fWmin; Wmin C 1; : : : ; Wmaxg as the weight value attributed to arc
a 2 A, where Wmin 2 N and Wmax 2 N are the minimum and maximum values of
weights, respectively. For convenience we specify Wmin D 1. Let Q be the set of all
nodes that are a destination of at least one OD pair. The auxiliary binary variable
y

q
a is set to one (yq

a D 1) if arc a 2 A is part of a shortest path to destination node
q 2 Q. Finally, auxiliary variable ı

q
v is the shortest path distance from node v 2 V

to destination node q 2 Q, and the constants M1, M2 and M3 are sufficiently larger
numbers. Below the problem tackled in [8] is formulated inspired in constraints
presented in [7].

min ˚ D
X

a2A

�.la/ (10)

Subject to:

`a D
X

q2Q
xq

a ; 8a 2 A; (11)

X

a2N
C
v

xq
a �

X

a2N �
v

xq
a D dv;q; 8v 2 V nfqg; 8q 2 Q; (12)

wa C ıq
ah

� ıq
at

� 0; 8a 2 A; 8q 2 Q ; (13)

ıq
q D 0; 8q 2 Q; (14)

wa C ıq
ah

� ıq
at

� .1 � yq
a /=M1; 8a 2 A; 8q 2 Q; (15)

wa C ıq
ah

� ıq
at

� .1 � yq
a /M2; 8a 2 A; 8q 2 Q; (16)
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yq
a � xq

a ; 8a 2 A; 8q 2 Q; (17)

M3yq
a C M3y

q

b � 2M3 � xq
a C x

q

b ; 8a; b 2 A2

N
C
v

; 8v 2 V; 8q 2 Q;

(18)

Wmin � wa � Wmax; 8a 2 A; (19)

xq
a 2 N ; yq

a 2 f0; 1g; wa � 0; ıq
v � 0 I 8a 2 A; 8v 2 V; 8q 2 Q;

(20)

Objective function (10) minimizes average user travel time. Constraints (11)
define the total flow on each arc a 2 A, while constraints (12) impose flow
conservation. The input data duv is the flow originated in u with destination in v.
The following constraints impose the flow of each commodity to follow the shortest
path between the corresponding OD pair. An arc a belongs to the shortest path to
destination q if the distance ı

q
ah

� ı
q
at is equal to the arc cost, which in this case is

wa. Thus, the constraints (13) define the shortest path distance for each node v 2 V

and each destination q 2 Q. For consistency, constraints (14) require, for all q 2 Q,
that the shortest distance from q to itself be zero. Constraints (15) and (16) together
with (13) and (14) determine whether arc a 2 A belongs to the shortest path and thus
determine the values of y

q
a , for q 2 Q. Constraints (15) require that an arc that does

not belong to the shortest path has reduced cost wa C ı
q
ah

� ı
q
at > 0. It also prevents

flow from traversing zero-cost cycles. Constraints (16) assure that if the reduced
cost of arc a 2 A and destination q 2 Q is equal to zero, then arc a belongs to the
shortest path to destination q, i.e., y

q
a D 1. Constraints (17) assure that flow is sent

only on arcs belonging to a shortest path. Constraints (18) guarantee that flow is split
evenly among all shortest paths (even-split constraints). In these constraints, A2

N
C
v

is

the set of all ordered groups of two distinct elements of N C
v . In [38] this constraint

is also used and presented in detail. Constraints (19) limit the minimum and the
maximum weight value. The last constraints define the domains of the variables.

Heuristic Approaches for the WSP

Fortz and Thorup showed that the weight setting problem for OSPF is NP-hard [20].
Several authors have proposed further heuristic solutions for solving variants of
the problem applied in different contexts. Table 1 summarizes a literature review
on solution approaches for solving the WSP. The first column of the table refers
to the problem application. The problem is found in telecommunication and road
networks. We mean by network operation the optimization on the use of available
resources, while network design is related to the allocation of resources to attend
minimal conditions for the network operation. Column jV j=jAj=jODj presents the
measures (number of nodes, arcs, and OD pairs) of the largest network considered
in the computational results for each reference indicated in the third column of
the table. Finally, the last column presents the solution approach of each work
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Table 1 Solution approaches for solving the WSP applied in different contexts

Application jV j / jAj / jODj Reference Solution approach

Telecommunications operation 100/403 /– [20, 21] TS

Telecommunications operation 100/503/9,900 [16] GA

Telecommunications operation 56/224/3,080 [35] SA

Telecommunications operation 100/503/9,900 [9] MA

Telecommunications design 30/148/– [7] MultiObj

Telecommunications design 71/350/4,960 [10] MA

Telecommunication operation 50/88/662 [5] MIP

Road network operation 974/2,153/9,505 [38] BRKGA

indicated in the previous column. The methods used are tabu search (TS), genetic
algorithms (GAs), simulated annealing (SA), memetic algorithm (MA), multi-
objective optimization (MultiObj), heuristic based on mathematical programming
(MIP), and biased random-key genetic algorithms (BRKGAs).

In some of the works indicated in the third column of the table, the authors also
presented results from optimal approaches, for comparison purposes. For example,
in [38], which applies WSP to road networks, the largest network that CPLEX was
able to solve optimally in less than 30 minutes has dimensions 9=26=68. If the
instance sizes double, in about 50% of the runs, no feasible solution is found in
30 minutes. However, the BRKGA proposed in the paper presents results for real-
world instances two orders of magnitude larger, within the same 30 minutes.

Construction Heuristics for the WSP
For all telecommunication operation problems from Table 1, a solution can be
simply represented as a vector w of m weights, one for each arc. Once the weight
vector is generated, the solution cost can be calculated according to Fig. 1.

In order to update the new arc loads, the shortest paths are computed to all
destination nodes t 2 T and arrive at a graph gt D .V; At /; 8 t 2 T (Line 2).
This is achieved using Dijkstra’s well-known shortest path algorithm. Since shortest
paths are computed to all destination nodes, the directions of all arcs are reversed
in G, and the distances �t

u; 8 u 2 V to a destination in T are computed. Given
the shortest paths to each destination, auxiliar vectors gt (Line 3) and ıt (Line 4)
are computed considering each destination t . Each position gt

a 2 f0; 1g indicates if
arc a belongs to at least one shortest path with destination in t . On the nodes side,
each position ıt

v stores the number of outgoing arcs of node v that belongs to at least
one shortest path with destination in t . The flows Lt (Line 5) from all OD demand
pairs with destination t are then routed. Finally, the total flows la 8a 2 A (Line 7).
The cost of a solution is computed according to an evaluation function.

Any solution composed of integer weights generated within the range [1:216]
is a feasible solution in all telecommunication operation studies from Table 1. In
fact, the interval [1:20] is adopted by most of the methods, since values are still
within the range accepted by OSPF protocol and it was observed that with a larger
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procedure EvaluateSolution(w)

1 forall t ∈ T do

2 πt ← ReverseDijkstra(w);

3 gt ← ComputeSPG(w, πt);

4 δt ← ComputeDelta(gt);

5 Lt ← ComputePartialLoads(μ, δ, π, gt);

6 end forall

7 l ← ComputeTotalLoads(L);

8 Φ ← ∑
a∈A φa;

9 return(Φ);

end procedure

Fig. 1 Pseudo-code for a WSP solution evaluation procedure

range the results do not improve [16, 20]. If one or more arcs have their capacities
surpassed, the solution evaluation will reflect this in a high objective function cost.
In practice, in telecommunication networks a link overload means retransmission.
In road networks, a link overload means high traffic. Thus, the problem allows the
overload imposing a high cost in the objective function.

Even if any random solution is a feasible solution, it is hard to design a
high-quality initial solution for this problem. Thus, most of the approaches use
initial random solutions. However, two solution approaches were adopted in [10]
that usually provides good initial solutions. One defines weights for each arc a

proportional to the inverse of the arc capacity 1=ca. A second approach solves a
relaxation of the problem considering the model with constraints (13), (14), (15),
(16), (17), and (18), i.e., constraints that force the flow to take the shortest paths are
not considered. The relaxation returns a set of fractional weights, which are rounded
to the closest integer.

Local Search Heuristics for the WSP
The neighborhood used by most of the methods changes the weight of a single arc
per time. In [20] an arc is chosen at random, and its weight is changed by a value se-
lected at random in the interval [1:20]. Every time a weight value of an arc changes,
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the solution is reevaluated. To avoid recomputing solutions that were already evalu-
ated, a hash function is used to detect when a solution was previously evaluated.

In [9] the local search also changes one arc weight per time but in a different
fashion. Only the arcs with higher traffic have their weight changed. The initial
step of the local search is to evaluate the current solution, given its weight vector.
Then, the arcs with the higher traffic calculated according to �a have their weights
changed, one arc at a time. However, the weight can only increase, one unit per time,
while the solution is improving, or up to a specific weight defined by the algorithm.
Instead of recomputing the whole shortest path graph from scratch, the graph and
flow are only updated, to reflect the change. Moreover, unit changes are faster to
compute than random changes [11]. Updating the graph is about 15 times faster
than recomputing from scratch, as reported by the authors.

Virtual Network Embedded Problem (VNEP)

In the last few years, the amount of data routed through telecommunication networks
has increased considerably. To attend the increasing demand, while maintaining a
high quality of service for low prices, new enabling technologies are being deployed.
One of them employs virtualizing environments which allow for multiple networks
to simultaneously and transparently share the same physical structure. Likewise,
service providers can offer customized services or co-location for expanded network
presence [19]. Virtualization is a growing trend in the implementation of cloud
computing architectures.

The virtual network embedding problem (VNEP) is central to achieve network
virtualization. It consists of mapping virtual networks with heterogeneous architec-
tures on physical infrastructures. Virtual nodes are mapped into physical substrate
nodes, and virtual links are mapped into paths in the physical substrate network.
Additionally, physical resources are finite and must be used judiciously: nodes have
a processing capacity, and links have a bandwidth limit. The main objective of
the VNEP is to minimize the use of the underlying resources such as bandwidth
while respecting the mapping constraints. VNEP is a multicommodity flow problem
since each virtual link corresponds to an OD pair since it consumes capacity of the
substrate networks.

Several variants of VNEP have been proposed in the literature. For example,
one virtual network can be mapped at a time [13], or several virtual networks are
mapped simultaneously [24, 26]. Physical nodes and links can be restricted to host
a limited number of virtual nodes and links, or specific virtual links can have a
location restriction. Some applications have security restrictions which limit the
subset of physical nodes and links that can be used for mapping [3]. Additional
constraints can also be present such as delay [27], efficient use of energy [6], and
redundancy [37]. Some of the VNEP variants allow path splitting. Others do not.
When path splitting is enabled, virtual links are mapped to multiple paths in the
substrate network.
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The VNEP was shown to be NP-hard by a reduction from the bin packing
problem [33]. Due to the difficulty of solving the VNEP, few exact algorithms have
been proposed in the literature. For most practical purposes, heuristic algorithms
can provide good sub-optimal solutions for the problem.

Single VNEP Variant

This section describes the VNEP variant that maps a single virtual network into the
substrate. Thus, a VNEP instance has as input a virtual network and a physical
substrate network. The physical substrate is represented by an undirected graph
GS D .V S; AS / with a CPU capacity of Cs for each physical node s 2 V S and
a bandwidth capacity Ba for each arc a 2 AS . The virtual network is represented by
an undirected graph GV D .V V; AV / along with a demand Cv for each virtual node
v 2 V V and a bandwidth demand of Bk for each virtual link k 2 AV.

The objective of the proposed problem is to find a feasible mapping of the virtual
nodes and links onto the physical network with minimal cost. A feasible mapping
is a pair of functions .fv; fe/: a mapping of nodes fv W V V ! V S and a mapping
of links feD.w;u/ W AV ! P , where P is the set of paths in the substrate graph
with endpoints fv.w/ and fv.u/. Each virtual node has to be mapped into a single
substrate node with enough CPU capacity to host it. A substrate node can host at
most one virtual node. Each virtual link .w; u/ 2 AV has to be mapped to a path
in the physical graph between the nodes fv.w/ and fv.u/. An arc can host several
virtual links, but the sum of their demands should not surpass the capacity of the
arc. The cost of a mapping is the amount of bandwidth used in the physical network
by the mapping.

Figure 2 presents an instance of the problem composed of a physical network
with four nodes (left) and a virtual network with three nodes (center). Edges and
nodes are labeled with their capacities or demands. The optimal mapping is shown
on the right side of the figure. The optimal solution is to map node a to C , b to A,
and c to B; the virtual link .a; b/ is mapped to C �B �A, and the virtual link .b; c/

is mapped to A � B . The cost of this solution is 50.
An ILP model for VNEP with path splitting was presented in [14], while [2]

considers a single path variant of the problem. Based on these models, [33]
presented the ILP model below. Let the decision variables xvs D 1 iff the substrate
node s hosts the virtual node v. And let yvwst D 1 iff the physical link .s; t/ hosts
the virtual link .v; w/.

min
X

.s;t/2AS

X

.v;w/2AV

Bvw yvwst

s:t:
X

v2V V

Cvxvs � Cs 8s 2 V S (21)
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A (11)
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C (11)
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a (10)
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b(10)

A (11)

B (16) D (7)

C (11)

a(10)

c(15)

Virtual Network

Fig. 2 An input instance for the VNEP (left and center) and the corresponding optimal solution
(right)

X

s2V S

xvs D 1 8v 2 V V (22)

X

v2V V

xvs � 1 8s 2 V S (23)

X

t2V S

.yvwst � yvwts/ D xvs � xws 8.v; w/ 2 AV ; s 2 V S (24)

X

.v;w/2AV

Bvwyvwst � Bst 8.s; t/ 2 AS (25)

xvs 2 f0; 1g 8v 2 V V ; s 2 V S (26)

yklmn 2 f0; 1g 8.k; l/ 2 AV ; .m; n/ 2 AS (27)

The objective function minimizes the amount of bandwidth used. Con-
straints (21) ensure that the substrate capacities are not surpassed. Constraints (22)
enforce that every virtual node is mapped to a substrate node, while (23) enforce
that every substrate node hosts at most one virtual node. Constraints (24) ensure
that every virtual link is mapped to a path into the substrate graph. Finally,
constraints (25) ensure that the bandwidth capacities of physical edges are not
surpassed.

Heuristic Approaches for the VNEP

Since the problem is NP-hard, and only small instances can be solved optimally [33],
heuristics are a natural choice as solution approach to tackling this problem. In
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this section, we discuss the main heuristic solution approaches adopted by different
studies applied to variants of the problem.

Some authors use rounding schemes in an attempt to provide a solution for
the problem. In [15] and [2] the authors present ILP models for different variants
of VNEP, which they deemed impractical to solve optimally on large instances.
To scale the instance sizes, they present rounding schemes applied to the relaxed
solutions in order to obtain integer solutions. In both cases, a feasible solution is not
guaranteed, but in practice the rounded solution is usually feasible.

In [15] a relaxation of the problem is solved by a solver, and a rounding algorithm
is then applied to define to which substrate node each virtual node is mapped. Once
nodes are mapped, a multicommodity flow algorithm is applied to determine the
substrate path taken for each virtual link. The node mapping works as follows. One
virtual node is mapped at a time. For each virtual node, a cluster comprised by a set
of substrate nodes is defined according to a distance given as input. Among these
nodes, one is selected for hosting the virtual node. The node is chosen according to
the mapping variable and other input values.

In [2] the rounding scheme is different. Among the node mapping variables, the
highest real value is rounded to 1, defining a mapping to a virtual node. Thus,
this variable is fixed, and the relaxed problem is solved again. This procedure
is repeated until all virtual nodes are mapped. In fact, four variations of this
procedure were proposed in the paper. A similar procedure is applied to link
mapping variables.

Considering metaheuristics, ant colony optimization is among the most used.
Table 2 presents a summary of results found in the literature. The first column
indicates whether the problem is the one defined in the previous section (basic)
or if it has additional constraints. In this case, the type of additional constraints
that impacts the solution of the problem the most is indicated. Column jV V j=jV S j

presents the number of virtual (jV V j) and substrate nodes (jV S j) of the largest
network considered in the computational results for each reference indicated in the
third column of the table. Finally, the last column presents the solution approach of
each work indicated in the previous column. The solution approaches are simulated
annealing (SA), rounding on the relaxed problem (LP-R), ant colony optimization
(ACO), and branch and price (B and P).

Table 2 Solution approaches for solving the VNEP applied in different contexts

Additional constraints jV V j / jV S j Reference Solution approach

Node mapping 10/50 [14] LP-R

QoS requirements 10/100 [18] ACO

Repository of images 10/50 [2] LP-R

Multiple mappings �/35 [12] ACO

Security 10/500 [4] SA

Basic 8/80 [33] B&P
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Construction Heuristics for the VNEP
In [32, 33] the authors show that providing in polynomial time a solution that is
guaranteed to be feasible is possible only if P D NP . Rounding schemes can also
be used as construction heuristics. Thus, any proposed method generates solutions
not guaranteed to be feasible. In [33] a construction heuristic was used at each node
of the branch, bound tree aiming at improving the lower bound for that branch of the
tree and then bounding branches earlier. The proposed heuristic works as follows.
Each virtual node v is mapped to the free physical node s for which the value of xv;s

is the largest. After all nodes are mapped, a breadth-first search is used to map virtual
links to paths in the physical substrate graph. The mapping of edges can fail if no
path with sufficient bandwidth is found.

In [4] a constructive heuristic is proposed and used by a simulated annealing
metaheuristic algorithm. Virtual nodes are placed semi-randomly on substrate
nodes, and then physical paths are allocated between these routers for each virtual
link. The paths are calculated through Dijkstra’s algorithm. The algorithm considers
the weight of each physical link (i,j) to be the number of virtual links previously
mapped to it and added by one. This weight calculation aims at favoring the
selection of physical paths with higher amounts of free resources.

Local Search Heuristics for the VNEP
The most common neighborhoods used in this problem are the swap and change.
In the swap, two virtual nodes swap the substrate nodes that host them. In the
change neighborhood, a virtual node is moved to a substrate node which was not
hosting any virtual node [4].

Conclusions

In this chapter, we discussed several network problems. A few computationally easy
problems are presented since often they are the core of more complex problems.
Moreover, often a small modification of a computationally easy problem can
lead to an NP-hard problem. A fundamental multicommodity NP-hard problem
was presented, and then two other real-world and more complex problems were
discussed in detail: the weight setting problem (WSP) and the virtual network
embedded problem (VNEP).

The WSP is used mainly for determining OSPF routing in telecommunication
networks. However, it also finds applications in road networks, as the tollbooth
problem described in this chapter. Some components of the main algorithms applied
to solve the WSP in telecommunication networks were presented, and the problem
was discussed. A similar approach was taken with regard to the VNEP. The problem
was presented, motivated by components of proposed algorithms. Both are NP-hard
network problems whose main solution methods rely on heuristics.

With the increase of the input data of almost all problems, the use of heuristics
as a solution approach tends to increase. When designing a heuristic algorithm,
it is essential to justify the decisions taken by the algorithms proposed and the
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parameters used, and besides reporting the results, statistical analysis is always
important to clarify the efficiency of the methods.

Cross-References

�Biased Random-Key Genetic Progamming
�Evolutionary Algorithms
�Random-Key Genetic Algorithms
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Abstract

This chapter provides an overview and a comprehensive discussion of problems,
models, algorithms, and applications in a vast and growing literature of wireless
sensor networks. Being a particular kind of ad hoc network, many power man-
agement and communication protocols may be designed specifically for those
networks. The critical issues considered in these protocols are the objectives, the

V. Morais (�) � G. R. Mateus
Departamento de Ciência da Computação, Universidade Federal de Minas Gerais, Belo
Horizonte, Brazil
e-mail: vwcmorais@dcc.ufmg.br; mateus@dcc.ufmg.br

F. S. H. Souza
Departamento de Ciência da Computação, Universidade Federal de São João del-Rei, São João
del-Reil, Brazil
e-mail: fsumika@ufsj.edu.br

© Springer International Publishing AG, part of Springer Nature 2018
R. Martí et al. (eds.), Handbook of Heuristics,
https://doi.org/10.1007/978-3-319-07124-4_53

1141

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-07124-4_53&domain=pdf
mailto:fsumika@ufsj.edu.br
https://doi.org/10.1007/978-3-319-07124-4_53


1142 V. Morais et al.

quality of communication, the energy consumption, and the network lifetime.
Moreover, due to the large-scale aspect inherent in some applications, traditional
exact solution approaches are not practical, so heuristics may be adopted instead.
The chapter starts by introducing the main concepts in the design of WSN and a
wide range of problems and applications. Basic formulations and algorithms are
also discussed, together with their benefits and drawbacks.

Keywords
Optimization problems � Heuristics wireless sensor networks

Introduction

Wireless sensor networks (WSN) are a special kind of ad-hoc networks used to
monitor events and phenomena in a given place [1, 2]. They have become popular
due to their wide applicability in many different areas such as environmental
(wildlife and environment), industrial (mines, production, manufacture), and health,
in order to monitor temperature, humidity, pressure, and movement [3–5]. The study
of such networks has been a fruitful area of research over the years and continues to
enable the permanent evolution of technologies.

WSN consist of autonomous, small, and compact devices capable of performing
activities such as sensing, processing, and communication. These devices are
sensor nodes, and among them, may have one or more special nodes called sink,
which is responsible for collecting the sensed data and managing the network.
The sensors are made up of sensing boards, processor, communication radio, and
battery. Because of their purposes, size, and low cost, they have serious restrictions
of energy, low performance, and small radius of communication. For networks
installed in areas with difficult access, it becomes unviable exchange or recharge
the battery of a sensor. These characteristics imply a limited lifetime of the sensors
and of the network itself.

The sensors are used to monitor a working area within a certain radius of
coverage, besides being able to exchange information with other sensors and sinks.
Two major communication patterns are often adopted: data collection and data
dissemination. Data collection consists of sensors sending the collected data to a
sink, while data dissemination concerns information from a sink being sent to the
sensors. Those communication processes can be performed through one (single) or
more (multi) hops or links. In this chapter whenever referring to the transmission of
information, both senses are being considered. A sink aggregates the information
received from sensors and usually has unlimited or renewable energy. It can be
static or mobile, visiting the monitored region and collecting information from the
sensors.

The sensor nodes are generally static but may also have mobility [6–8]. Mobile
WSN consist of a number of sensors that can move on their own and interact with
the physical environment. A sensor in a mobile network can also sense, process
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information, and communicate like a static node. Mobility may be applied to the
whole network or only to a subset of sensors. The degree of mobility can vary,
including constant movement of the sensors or alternating periods of mobility/im-
mobility. Those factors impact directly the network dynamics. Alongside with
mobile networks, there are four more types of networks, which are distinguished
mainly with respect to the place where the sensors are deployed. The sensors can
be deployed on land, underground, and underwater [2]. A terrestrial network, for
instance, consists of several sensors deployed on land, either in an ad-hoc or in a
preplanned manner. In an underground network, the sensors are placed in caves,
mines, or underground, while on an underwater network, the devices are deployed
into rivers or oceans. Among these networks one can define a multimedia network,
where the sensors are used to handle multimedia data. While a dense deployment
of sensors is often employed in a terrestrial WSN, in an underwater WSN, a sparse
deployment is used. The maintenance cost and difficulty of implementation of each
network are directly dependent on the application constraints.

The classification of WSN depends primarily on their application. They are
commonly classified into monitoring and tracking categories. Monitoring appli-
cations include patient monitoring in medical centers, security detection, habitat
monitoring, power, inventory location, factory and automation processes, seismic
and structural monitoring in the industrial or public context, and home-office
environmental monitoring to provide basic services to smart environments, among
others. Tracking applications include military missions, wildlife tracking, and traffic
control. Consequently, the technologies used for each WSN are directly dependent
on the network type. Refer to Yick et al. [2] for a survey of sensor technologies in
practical situations.

WSN can also be classified into homogeneous or heterogeneous. WSN are said
to be homogeneous, when composed by devices with the same hardware capabilities
(processor, memory, battery, and communication device features). Conversely, WSN
are heterogeneous when composed by devices with different capabilities. Another
possibility to classify WSN is based on their organization. The networks can be
hierarchical or flat. A sensor network is hierarchical when nodes are grouped for the
purpose of communication, otherwise it is flat.

The lifetime of a WSN can be defined as the network operation time until the
first sensor fails due to lack of energy. This chapter does not treat cases of failure
for other reasons, such as mechanical failure or if a sensor is destroyed. Another
definition of lifetime is given by the monitoring time until the coverage of the entire
working area and network connectivity are not guaranteed.

Many factors influence the design of WSN. Fault tolerance, scalability, en-
ergy consumption, production cost, environment, network topology, hardware
constraints, and transmission rate are some points to be considered. Due to the
low battery capacity of the sensors, the energy consumption is one of the most
important constraints on WSN [9]. In this context several problems are addressed
to ensure coverage, monitoring, and connectivity, aiming to maximize the network
lifetime within a minimum quality standard or quality of service (QoS) (QoS usually
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refers to quality as perceived by the user and/or application). In spite of energy
consumption being the most critical factor in WSN design, other parameters such
as number of sensors, coverage, and network connectivity must also be considered.

The problems that appear in the context of WSN are studied independently or in
an integrated manner. In general, to define them it is supposed that the working area
to be covered is divided into small squares which represent points or demand nodes
that require coverage by at least one sensor. This is a well-known approach applied
in wireless network design. Each point concentrates the demand of its square. A
point is considered covered by a sensor when the referred sensor is able to monitor
it and if the point is within the radius of coverage of that sensor. The smaller are
the square dimensions, the closer they are to describing continuous area. In the
literature there are several works that do not make use of this discretization process,
opting to explore the continuous space. Another assumption usually found in the
literature is the use of unit disk graph to model the communication among sensors.
A homogeneous transmission range for the sensors is considered and taken as the
disk radius. Many works employ this model, although transmission ranges can be
heterogeneous and also not defined as perfect disks. However, due to its theoretical
simplicity, it is commonly applied. An evolution of this model, named quasi unit
disk graph is proposed in [10].

Many algorithms can be devised to deal with WSN problems. Regarding
optimality guarantees, they can be divided into exact approaches and heuristics.
The former comprise algorithms developed to solve mathematical models based on
integer linear programming (ILP), while the latter include proposals which relieve
optimality conditions in order to provide scalability. Also, algorithms can perform
in a centralized or distributed fashion. Centralized algorithms concern decision-
making is done by a single entity in the network owning global information of the
entire network. This entity is usually a sink node which is able to disseminate the
solution for all sensors in the network. On the other hand, distributed algorithms
indicate that many entities in the network take a joint decision based only on local
information. Global information can improve the optimization process but is not
always available and may not be applied in practice due to the overhead not allowed
in real-time applications. Local information seems more reasonable in practice, but
suffers from lower-quality solutions compared to the ones with global information.
An alternative to take advantage of both methods is to use clustering, which can
optimize locally inside each cluster. Thus, both exact methods and heuristics can be
accomplished in such hybrid solutions. Distributed algorithms concern a wide topic
of research [11–14] and are out of scope of this chapter.

The remainder of the chapter is organized as the following. A brief definition of
classical problems appearing in WSN is presented in section “Problem Definition”.
Mixed integer linear programming formulations for these problems are outlined in
section “Optimization Models”. The aim is to formally describe some problems
and give some intuition about exact solution approaches. Heuristic methods applied
on the design of WSN are addressed in section “Heuristic Methods”. Finally, the
chapter is closed in section “Conclusion”.
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Problem Definition

To monitor inhospitable and inaccessible environments, sensors are deployed in an
ad-hoc manner, launched from an aircraft or an unmanned vehicle. Thus, it is not
possible to know beforehand their exact locations. However, knowing the location
of these sensors is generally important to route data and to ensure connectivity.
The problem of defining the positions of the sensors is known as localization
problem. Some localization methods include Global Positioning System (GPS),
beacon (anchor) nodes, and proximity-based localization that make use of the
coordinates of neighbor nodes to determine their own localization. A review of
location problems in WSN is given in [15].

It is straightforward to note that a fundamental requirement in the design of WSN
is to ensure coverage of the working area. This problem is named as the coverage
problem. The coverage level can be total or partial. In general, full coverage is often
preferred. Therefore, the coverage problem chooses a set of active sensors such that
each point is within a range of at least one sensor. The loss of coverage in at least
one point can be characterized as end of the network lifetime.

To monitor accessible environments, the sensors may be optimally deployed in
a preplanned manner. The placement (deployment) problem seeks to minimize the
number of sensors deployed in order to guarantee connectivity and coverage of the
entire monitoring area. The placement problem is a variant of the well-known art
gallery problem [16], the problem of placing the fewest number of guards in a given
area such that the surveillance is guaranteed. For the following problems, a usual
assumption is to consider that the location of the sensors is known.

Another fundamental requirement in the design of WSN is the connectivity. The
data collected by the sensors must be delivered to the sinks. Thus, routes must be
established connecting each active sensor to a sink. A feasible route consists of
links between pairs of sensors/sinks that respect the communication radius of each
node. The fewer is the number of links, the smaller is the energy consumption.
The routing problem aims to find feasible routes from each active sensor to the
sinks, or vice versa, while optimizing a given resource. A solution for the routing
problem consists of rooted trees, centered at the sinks, spanning a subset of active
sensors. Automatically, the sensors nearest to the sinks may spend too much energy
given the number of routes traversing those nodes. Such a drawback is known
as the sink neighborhood problem [17]. There are two kinds of routing methods:
reactive routing methods and proactive routing methods. In reactive methods the
routes are calculated just in time. In proactive methods the routing tables are created
and stored regardless of the moment the routes are used. However, in networks
with large number of sensors, storing the routing tables can lead to excessive
usage of memory. To overcome this problem, the sensors can be clustered and
communication hierarchies be defined.

The sensors consume energy to perform communication, process, and aggregate
data, besides maintenance, activation, or deactivation processes. There are several
ways of dealing with the energy consumption. One possibility to extend the network
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lifetime is to use a large number of sensors to ensure the desired coverage. However,
to avoid using too much energy at a redundant coverage, the sensors do not perform
at the same time. In this case, each sensor can be active, working on the network, or
stay on standby, sleep mode, since energy consumption is extremely low in this
mode. When active sensors fail due to depletion of their batteries, new sensors
must be activated. The optimization problem arising in this context is the density
control problem (DCP). The purpose of DCP is to schedule a sequence of activation
and deactivation of sensor nodes in order to minimize the energy consumption and
maximize the network lifetime. The network lifetime comes to an end when the
network requirements are no longer ensured.

All the problems above have been considered for flat WSN. Whereas the
communication among sensors and sinks is one of the most expensive operations
in terms of energy consumption, an alternative to flat networks is to set hierarchies.
In hierarchical networks, the sensors are clustered, and a single sensor is elected
as the cluster-head in each cluster. It is up to the cluster-head aggregating and
transmitting the information directly to a sink or through other cluster-heads. In
such a clustering problem, from time to time, the cluster-head role can be swapped
among the sensors within the same cluster to avoid premature failure due to lack of
energy. Some classical combinatorial optimization problems such as p-median and
p-center may apply in a clusterization scheme.

In the routing problem for hierarchical WSN, two kinds of routes are considered:
intra-cluster route and intercluster route. In intra-cluster routes the communication
occurs among sensors and cluster-head within the same cluster through single or
multi-hop strategies. In intercluster routes the connections are among cluster-heads
and sinks. In both levels a tree topology must be defined to transmit the information
from the sensors to their cluster-heads and from the cluster-heads to the sinks.

In some applications the mobility of the sinks is explored to gather sensed
information through the network. This approach prevents the sensors to spend their
limited energy in relaying of messages through a long path until the sinks. However,
the message delivery latency can increase significantly, thanks to the long route
traversed by a sink to visit the whole working area. In order to go around of such
problem, clustering schemes must be used so that each sink only visits a reduced
set of sensors (for instance, the cluster-heads). In this context, the communication
between sensors and sink is only possible through a cluster-head using multi-hop
or single-hop approaches to define the intra-cluster routes. Classical optimization
problems such as shortest path and traveling salesman problem (TSP) are used to
model the trails traversed by the mobile sinks.

Figure 1 illustrates optimization problems in WSN. Different tasks and objectives
may be desired requiring specific approaches to deal with the problems described. In
Fig. 2, for instance, two different approaches are presented exploring the mobility
of the sink. In the first approach, a mobile sink visits each sensor in the working
area to collect sensed data. This problem can be modeled with the TSP. Another
alternative is to define a reduced TSP route, defining a subset of sensors to be visited
by the mobile sink such that all the other sensors are close enough to establish the
communication. This approach can be seen as a TSP by neighborhood.
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Fig. 1 Illustration of classical optimization problems in WSN
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reduced TSP (neighborhood)
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Fig. 2 Illustration of mobile sink approaches modeled with the TSP

Optimization Models

As presented earlier, many optimization problems arise in the design of WSN. Many
of these problems are variants of classical combinatorial optimization problems that
can be formulated as linear mixed-integer programming (MIP) models [18]. In the
following, mathematical models for some of these problems are presented.

Coverage and Density Control

Mathematical formulations for coverage and density control problems can be found
in [19–21]. The models consider the following notation: S D f1; : : : ; ng is the set
of sensors; P D f1; : : : ; pg is the set of demand points to be covered by the sensors;
matrix A.n � p/ indicates whether a sensor i 2 S is able to cover (aij D 1) or not
(aij D 0) the point j 2 P regarding the sensing range Ri

s . To each sensor i 2 S , an
activation energy Ei

a is also assigned.
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A formulation to the coverage and density control problems uses binary variables
fxi 2 B W i 2 Sg and fyij 2 B W i 2 S; j 2 P g to define a subset of sensors selected
to be active and the coverage relationship between S and P . If xi D 1 holds, sensor
i 2 S is active. If yi;j D 1, demand point j 2 P is covered by sensor i 2 S . Then,
the coverage and density control formulation is given by:

min

( X
i2S

Ei
axi W .x; y/ 2 (2) � (5)

)
(1)

X
i2S

aij yij � 1 8j 2 P I (2)

aij yij � xi 8i 2 S; 8j 2 P I (3)

yij 2 f0; 1g 8i 2 S; 8j 2 P I (4)

xi 2 f0; 1g 8i 2 S: (5)

Constraints (2), (3), (4), and (5) assure that active sensors cover the set of demand
points. Constraints (2) guarantee that every demand point j 2 P is covered by at
least one sensor i 2 S . Constraints (3) ensure that only active sensors can provide
the coverage of demand points. Constraints (4)–(5) impose variables to be binary.
Finally, objective function (1) minimizes the energy consumed by the activation of
sensor nodes.

Routing or Connectivity

Mathematical models exploring connectivity in the context of WSN are described
in [19, 21, 22]. The models consider a set of static sinks M D f1; : : : ; mg and a
communication range (Ri

c) associated with each sensor i 2 S . The matrix B.n �

.n C m// indicates whether a sensor or sink i 2 S and j 2 S [ M relies (bij D 1)
or not (bij D 0) within the communication range Ri

c of each other. To each sensor
i 2 S is also assigned the routing energy (Ei

r ) required to communicate with other
sensors or sinks.

Let fzi
jk 2 B W i 2 S; j 2 S; k 2 S [ M g denote decision variables used

to indicate whether the sensors j 2 S and k 2 S [ M belong (zi
jk = 1) or not

(zi
jk = 0) to the communication path from sensor i 2 S to a sink node k. Alongside

with the decision variables xi defined in the first model, the routing problem,
modeled as routing trees, can be formulated as:

min

8<
:

X
i2S

Ei
a xi C

X
i2S

X
j 2S

X
k2S[M

Ei
r zi

jk W .x; z/ 2 (7) � (12)

9=
; (6)
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X
k2S[M

bjk zi
jk � xj 8i 2 Snfkg; 8j 2 SnfkgI (7)

X
j 2S

bjk zi
jk � xk 8i 2 Snfkg; 8k 2 Snfj g [ M I (8)

X
j 2S

bjk zi
jk �

X
l2S[M

bkl zi
kl D 0 8i 2 S; 8k 2 SnfigI (9)

�
X

l2S[M

bkl zi
kl D �xi 8i 2 S; i D kI (10)

zi
jk 2 f0; 1g 8i 2 S; j 2 S; k 2 S [ M (11)

xi 2 f0; 1g 8i 2 S: (12)

Here, constraints (7), (8), (9), (10), (11), and (12) ensure connectivity
among sensors and sinks. Constraints (7)–(8) assure that communication is
only allowed among active sensors. Constraints (9) guarantee the flow balance
for transshipment nodes. Constraints (10) indicate that the flow originates
at active sensors. Constraints (11)–(12) impose the domain of the variables.
Finally, the objective function (1) minimizes the routing and activation energies
consumed.

Clustering and Mobile Sink

Valle et al. [23] proposed an integrated model for clustering and routing problems.
The model considers a set of mobile sinks M D f1; : : : ; mg and a set of arcs A D

f.i; j /; .j; i/ W 8i; j 2 S; i ¤ j g. Each arc .i; j / 2 A denotes a possible point-
to-point movement for a sink. Additionally, dij is the Euclidean distance between i

and j 2 S . It is assumed that all sinks start from an initial sensor i D 1 and return
to an artificial node 0, such that NA D A [ f.i; 0/ W 8i 2 Snf1gg and f.i; 0/ W di0 D

d1i ; 8i 2 Snf1gg. It is important to point out that each cluster-head is visited only
once and by exactly one sink; a sensor i 2 S must be a cluster-head or be covered
by a cluster-head; at least one cluster-head should belong to the set of neighbors of
sensor i : N .i/ D fj 2 S W dij � Ri

cg.
In order to model the integrated clustering and routing problem, assume the

following decision variables: frm
i 2 B W m 2 M; i 2 Sg, taking value rm

i = 1 if
sensor i 2 S is a cluster-head in the route of the sink m 2 M , otherwise rm

i = 0;
fwm

ij 2 B W m 2 M; .i; j / 2 NAg that takes value wm
ij = 1 if arc .i; j / 2 NA belongs

to route of the sink m 2 M , otherwise wm
ij = 0; fvm

ij 2 RC W m 2 M; .i; j / 2 NAg,

indicating the flow, originated at m, traversing arc .i; j / 2 NA; and, finally, fh 2 RCg

that denotes the longest length among all routes. The integrated clustering and
routing problems can be formulated by the following MIP model:
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min fh W .r; w; v; h/ 2 (14) � (27)g (13)

X
i2Snf1g

vm
1;i D

X
i2f0g[Snf1g

rm
i 8m 2 M I (14)

X
j 2f0g[Snf1g

vm
ij �

X
j 2S

vm
ji D �rm

i 8i 2 Snf1g; 8m 2 M I (15)

X
i2S

vm
i;0 D 1 8m 2 M I (16)

vm
ij � nwm

ij 8.i; j / 2 NA; 8m 2 M I (17)

wm
ij � rm

i 8.i; j / 2 NA; 8m 2 M I (18)

wm
ij � rm

j 8.i; j / 2 NA; 8m 2 M I (19)X
m2M

rm
i � 1 8i 2 Snf1gI (20)

X
m2M

X
j 2N .i/

rm
j C

X
m2M

rm
i � 1 8i 2 Snf1gI (21)

X
j 2S[f0g

wm
ij � 1 8i 2 S; 8m 2 M I (22)

h �
X

.i;j /2 NA

dij wm
ij 8m 2 M I (23)

rm
1 D rm

0 D 1 8m 2 M I (24)

rm
i 2 f0; 1g 8i 2 S [ f0g; 8m 2 M I (25)

vm
ij � 0 8.i; j / 2 NA; 8m 2 M I (26)

wm
ij 2 f0; 1g 8.i; j / 2 NA; 8m 2 M: (27)

Constraints (14), (15), (16), (17), (18), (19), (20), (21), (22), (23), (24), (25), (26),
and (27) ensure the integration of clustering and routing problems using mobile
sinks. Constraints (14), (15), and (16) guarantee the flow conservation for nodes
f1g; Snf1g and f0g, respectively. Note that constraints (14) assure that the flow of
commodity m starting at node 1 is equal to the number of cluster-heads to be visited
in the route plus the artificial node f0g. On the other hand, constraints (15) impose
that each node i visited by m 2 M must consume a unit of flow. Inequalities (17),
(18), and (19) are coupling constraints, ensuring that commodities only traverse
arcs selected for the route and arcs of the route have endpoints consuming a unit
of flow. Constraints (20) guarantee that a cluster-head is visited once by a single
route. Constraints (21) assure that each sensor is a cluster-head or has a cluster-
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head as neighbor. Taken together, constraints (14), (15), (16) and (22) guarantee the
topology of selected arcs induce M elementary routes connecting vertices 1 and 0.
Constraints (23) define the longest length among all routes to be minimized by the
objective function (13). Constraints (24) impose that the starting node 1 and the final
artificial node 0 are part of all routes. Finally, constraints (25), (26), and (27) define
the domain of variables.

Models (1), (6), and (13) can be implemented in optimization packages and
solved with a branch-and-bound (BB) algorithm. However, the main drawback
of this approach is that only instances of limited size are solvable in feasible
computational time. Since WSN are designed as large-scale networks, it is not
expected that a traditional BB is able to solve the problem to optimality. Therefore,
one must resort to heuristic-based methods to tackle the problems.

Heuristic Methods

This section draws attention to heuristic-based methods used in the design of WSN.
In general, heuristics are designed to face challenging and complex optimization
problems in which exact optimization methods fail, especially when dealing with
time-constrained online applications that are combinatorial in nature. Due to the
practical and technological relevance of WSN, heuristics are preferentially the
methods to be used. However, each heuristic is designed to tackle a specific
problem. So, a given approach may not be generalized to solve different problems.
Motivated by the need of general solution strategies, optimization researches have
been focusing on the study of metaheuristics. A metaheuristic combines intensi-
fication and diversification procedures to perform guided searches through one or
more neighborhood structures. Some metaheuristics used in the design of WSN
are greedy randomized adaptive search procedure (GRASP) [24], path relinking
(PR) [25], simulated annealing (SA) [26], iterated local search (ILS) [27], tabu
search (TS) [28], variable neighborhood search (VNS) [29, 30], genetic algorithms
(GA) [31], memetic algorithms (MA) [32], ant colony optimization (ACO) [33],
and particle swarm optimization (PSO) [34]. For supplementary reading, Glover
and Kochenberger [35] are referred to provide a good overview of the most popular
metaheuristics. In addition to [36–40], here, the reader can find some hints of
how to use heuristics to solve practical WSN optimization problems when studied
independently or in an integrated manner.

Sensor Location, Placement, and Coverage

As indicated above, the design of WSN has to concern with several classical prob-
lems. These include localization, placement, coverage, density control, clustering,
routing, and sink mobility. In general, the purpose of solving these problems is
to maximize the network lifetime, keeping connectivity, ensuring coverage, and
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reducing cost. Many existing applications require information about the geographic
position of each node in the network. So, the localization problem must be
solved first. The heuristics proposed in the literature for localization are generally
based on GPS system, beacon (anchor) nodes, and proximity-based localization.
These methods make use of the position of neighbor sensors, obtained during
the installation of the network, to determine the position of a sensor. Molina and
Alba [41], for instance, proposed heuristics based on SA, GA, and PSO to solve the
localization problem. Their heuristics determine the sensor nodes locations using
the trilateration technique. The global objective of their heuristic is to minimize the
measured distance error comparing the node-to-node distances with the distance
measured when using GPS. Shahrokhzadeh et al. [42] proposed a centralized
(solved by a sink) SA-based heuristic for solving sensor nodes localization problem.
Their heuristic is based on Euclidean distance and mathematical techniques, such as
trilateration and triangulation.

The placement of the sensors is a key factor in the design of WSN. The
deployment may be an activity performed during the installation of a network
or may also be a continuous process to replace failed sensors or to improve the
coverage over a certain area. As stated above, the placement problem seeks to
minimize the number of sensors deployed in order to guarantee connectivity and
coverage of the entire monitoring area. A number of deterministic greedy heuristics
can be described to determine the minimum number of sensor needed. In general,
those methods try to anticipate the sensor deployment in all candidates’ points and
keep the best position selected. Brazil et al. [43] modeled the placement problem
as a version of the Steiner problem and solved it by means of a greedy-based
heuristic. Sasikumar et al. [44] proposed two-phase heuristics for placing sensors in
a heterogeneous network, called nearest to base station and max residual capacity.
In this work, they separate the nodes on: sensors, relay nodes (RN), and base
station (sink node). The RN node performs functions equivalent to a cluster-head,
but may have unlimited energy. In the first phase, their heuristics place the RN
nodes, wherein the placement problem is modeled as the minimum set covering
problem. Then the sensors are placed on the second phase with a greedy criterion
based either on the distance to the RN nodes or on residual energy remaining on
the node. To solve the sink placement problem, Laszka et al. [45] provided a GA-
based heuristic. SA-based heuristics for placement and coverage problems were also
developed in [46].

Deschinkel [47] concentrates on a centralized scheme to solve the coverage
problem, where a large number of sensors are randomly deployed in the monitoring
area. The problem was modeled as the non-disjoint cover sets problem and solved
by means of a column generation (CG) heuristic. In this procedure the subproblem
is solved with a heuristic for the classical set covering problem that uses the dual
multipliers from the master problem. They compare the results obtained by the
heuristic with that provided by a MIP solver. Cardei et al. [48] also deal with
coverage problem. The interesting aspect of their work is given when the authors
consider the property that each sensor has adjustable sensing ranges. To solve the
problem, a greedy-based heuristic was used.
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Density Control, Clustering, Routing, and Sink Mobility

The solution algorithms for the placement problem may define a dense network.
This characteristic increases the robustness against failures, however, leads to a
large redundancy that can result in congestion and waste of energy. To overcome
this problem, the density control problem is used to select a subset of sensors to be
active while keeping the others inactive (sleep mode), which allows the reduction of
the initial topology. Delicato et al. [49] formulated the DCP problem as a knapsack
problem. In this approach, the expected time horizon is divided in small time
periods. For each period, a subset of sensors must be activated. By formulating
the DCP as a knapsack problem, each period is equivalent to a knapsack, so the
problem is to find a set of nodes (items) to keep active (to be inserted in a knapsack)
per period. In their model, coverage and connectivity are also considered. To solve
the problem, a greedy-based heuristic was proposed. In this heuristic the sensors are
sorted by their residual energy and then, following the given preference, the sensors
are set to be active (inserted in a knapsack).

An interesting and effective multi-start (MS)-based heuristic to solve the density
control problem is given by Karasabun et al. [50]. Their heuristic is composed by
two phases, a constructive routine to define a set of initial active sensors and an
iterative improving local search procedure. To ensure the network connectivity, the
Steiner problem is solved over the active sensor nodes.

Clustering is another optimization problem considered when defining the net-
work topology. The clustering problem directly contributes for the scalability of
networks. Many existing protocols for defining clusters and selecting cluster-heads
associated with them are based on random algorithms or heuristics to classical
combinatorial optimization problems, such as p-median, dominating set, and set
covering problems. In such approaches, every sensor node is either in a set of
cluster-heads or is assigned to a cluster-head. In general, among the cluster-heads,
a multi-hop communication scheme is used, while inside a cluster multi- and/or
single-hop communication could be used. Santos et al. [51] modeled the clustering
problem as the independent dominating set problem. Two greedy heuristics are
described in that reference.

Matos et al. [52] call attention to the importance of rotating the sensor that acts
as cluster-head within a single cluster. Cluster-heads consume much more energy
than a sensor that does not perform this feature, since they need to aggregate, send,
and receive sensing data. Thus, cluster-head rotation helps to avoid a premature
death of a sensor, disconnecting the network. The rotation can be done from time
to time or after some amount of data has been transferred by the network. In
addition, Matos et al. [52] also proposed a centralized GRASP-based heuristic
with path relinking as an intensification phase to solve the clustering problem. The
problem was modeled as the p-median problem, where the cluster-heads are chosen
among the alive sensors. The intra-clusters communication follows the single-hop
strategy. Their heuristic is composed of three phases. In the constructive phase, a
feasible solution is generated by the randomized greedy algorithm described in [53].
Then, a swap local search is applied. Finally, a path relinking routine is applied as
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intensification phase. To attest the effectiveness of their approach, they compared
their heuristic with methods described in [54, 55]. Albath et al. [56] consider that
a sensor to be selected as cluster-head must have enough residual energy. In their
work, the problem of properly choosing cluster-heads was modeled as the minimum
dominating set problem.

Looking for metaheuristics methods, Ferentinos and Tsiligiridis [57] described a
GA-based heuristic used in an agriculture application. Their algorithm is designed
to solve clustering and density control problem while respecting connectivity
constraints. Another GA-based heuristic for clustering problem is addressed by
Kuila et al. [58]. Ting and Liao [59] described the clustering problem as the k-cover
problem and solved it with a MA-based heuristic.

The transmission of sensing data and the dissemination of information in WSN
are referred as the routing problem. This problem is defined mainly when the nodes
position and the cluster-heads selected are already known. The main objective when
solving the routing problem is to guarantee the network connectivity. Routing in
WSN design is tackled by many authors [19,21,22,60] through a multi-hop strategy
and fixed sink nodes as well as through mobile sinks [23, 61, 62].

Minimum spanning tree, shortest path, and TSP are preferentially used to model
the routing problem in WSN design. In general the edge weight (length or cost)
represents the energy needed to transmit data. Thus, routing algorithm based on
Kruskal, Prim, Dijkstra, Bellman-Ford, or TSP methods can be applied. As stated
in section“Problem Definition”, the sink neighborhood problem [17] arises when
dealing with fixed sink nodes. To overcome that problem, some alternatives take
place. Some works consider multiple sinks or, in some contexts, explore the network
by mobile sinks. More sinks result in shorter routes from sensors to their closest
sink, while mobility may lead to an efficient scheme for the energy control.

Centralized and distributed heuristics to control and coordinate the current
movement of multiple sinks seeking for the lifetime maximization in WSN are
described by Basagni et al. [63]. In this reference, a sink is considered active when
it is stopped, waiting for the sensor data, and inactive when it is moving through the
network. In their approach at least one sink must move at a time, so it is necessary
to define a schedule for the movements of sinks. The routing scheme was modeled
with TSP problem and solved by a Christofides’ heuristic [64].

To control the sink movements, Basagni et al. [17] introduced a distributed
heuristic, named greedy maximum residual energy. In their heuristic, a sink defines
its own route by moving from its current location to a new position by giving prefer-
ence to areas with the highest residual energy. More precisely, the greedy criterion
of the proposed heuristic is the amount of energy left in the sensors around a mobile
sink that moves in direction of the sensors with higher energy to collect their data.

Integrated Problems

Most the works found in the WSN literature describe hierarchical approaches to the
design of networks. Those works are drawn for solving WSN problems in multiple
steps. Although less, there are works in the literature that address a number of
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classical WSN problems in an integrated manner [21, 65–72]. A natural clustering
and routing problem is the minimum connected dominating set problem [73–75],
the problem of finding a connected dominating set of cluster-heads with smallest
cardinality. Aioffi et al. [66], for instance, have provided a constructive heuristic to
an integrated problem, named integrated clustering and routing problem (ICRP).
Their proposed heuristic is based on the cheapest insertion algorithm for the
Euclidean TSP. In such method, a set of routes is iteratively defined, one for each
mobile sink, at the same time as the sensors are grouped into clusters. Each sink
node visits some cluster-heads, in such a way that every sensor node in the network
is either a cluster-head visited by a route or lies within a cluster associated with
a cluster-head in one of the possible routes. The greedy criterion of the proposed
heuristic is based on the distance among the last cluster-head assigned to a route and
the other cluster-heads not routed yet. Hybrid heuristics based on GRASP and ILS

Table 1 Description of the cited references on heuristic-based methods for WSN problems.
Consider the following acronyms list: coverage problem (CP), density control (DCP), localization
problem (LP), routing problem (RP), clustering problem (CL), and placement problem (PP). Multi-
hop communication (MhC), fixed sink (FS), mobile sink (MoS), and multiple sink (MuS)

Reference Problems Methods

Aioffi et al. [82] CP DCP RP CL – – MhC – MoS – Greedy

Aioffi et al. [66] – – RP CL – – – – MoS MuS GRASP, ILS

Alba and Molina [46] CP – – – PP – – – – SA

Albath et al. [56] – – – CL – – – FS – – Greedy

Basagni et al. [17] – – – – – – – – MoS – Greedy

Basagni et al. [63] – – RP – PP – – FS MoS MuS Greedy

Brazil et al. [43] – – – – PP – – – – – Greedy

Cardei et al. [48] CP DCP – – – – – – – – Greedy

Delicato et al. [49] – DCP – – – – – – – – Greedy

Deschinkel [47] CP – – – – – – – – – CG heuristic

Ferentinos and Tsiligiridis [57] – DCP RP CL – – – FS – – GA

Guney et al. [68] CP – RP – – LP – – – – TS

Karasabun et al. [50] – DCP – – – – – – – – MS

Kuila et al. [58] – – – CL – – – FS – – GA

Laszka et al. [45] – – – – PP LP – – – – GA

Lin and Uster [83] – – – – PP – – – – – MS

Matos et al. [52] CP – RP – – – MhC – – – GRASP, PR

Molina and Alba [41] – – – – – LP – – – – SA, GA, PSO

Santos et al. [51] – – – CL – – – FS – – Greedy

Sasikumar et al. [44] – – – – PP – – – – – Greedy

Shahrokhzadeh et al. [42] – – RP – PP – – – – – SA

Ting and Liao [59] – – – CL – – – – – – MA

Turkogullari et al. [76] – – RP – PP – – – – – MIP-heu.

Uster and Lin [67] – DCP – CL – – – – – MuS Constructive
heu.

Xing et al. [65] – – RP CL – – – – – – Greedy
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metaheuristics were also applied to solve the problem. Another integrated approach
is due to Xing et al. [65] that also studied clustering and routing problems. To
solve the problem, a heuristic was used in the following schemes. First, it solves
the Steiner problem to select the cluster-heads and then uses a TSP local search
heuristic to find a route for each mobile sink.

A TS-based heuristic for an integrated coverage, sink location, and routing
problems can be found in Guney et al. [68]. The heuristic starts by finding near-
optimal sensor locations satisfying the coverage requirements, and then it solves
the sink location and the data routing problem modeled as the p-median problem.
Türkogullari et al. [76] proposed a hybrid heuristic to solve large instance of
an integrated problem involving sensor placement, density control, sink location,
and routing problem with low conservation, energy consumption, and budget
constraints. In such algorithm, the optimal sensor-to-sink routes are solved as a
linear program (LP), while the sink location problem is modeled as a set covering
problem and solved by a disjoint sets heuristic. Another heuristic based on exact
approach, used to solve large and real-life sink location and routing problems, could
be found in [77].

Table 1 summarizes the previous cited works, highlighting the problems solved
and the heuristic methods used. For an overview of the mathematical aspects of
network optimization problems, we also refer to [78–81].

Conclusion

In this chapter, an overview of classical optimization problems and solution methods
in the design of wireless sensor networks are presented. WSN have been widely
studied due to their importance in many practical applications. Unlike a general
network, WSN are designed for specific applications and take into account the
application goals, the associated costs, the hardware capabilities, and other system
constraints. Therefore, optimization techniques are shown to be an essential part
in the design of new protocols. The integration of two or more problems, such
as coverage, routing, density control, clustering, and so on, requires even more
sophisticated approaches to achieve high-quality solutions. It is straightforward
to conclude that optimization tools play a key role in the design of WSN. The
referred methods in this chapter have the capacity to significantly improve metrics
such as network lifetime, coverage rate, and communication delay. Looking to the
future, WSN represent an attractive research area with several new possibilities
where the major challenge is to approximate the theoretical tools for practical
applications.

Cross-References

�Genetic Algorithms
�GRASP
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� Iterated Local Search
�Memetic Algorithms
�Network Optimization
� Particle Swarm Methods
�Tabu Search
�Variable Neighborhood Search
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Abstract

In the last few years, a number of books and survey papers devoted to the vehicle
routing problem (VRP) or to its variants or to the methods used for the solution
of one or more variants of the VRP have been published. Also, in these years, the
field of swarm intelligence algorithms has had a significant growth. One of the
most important swarm intelligence algorithms is the particle swarm optimization
(PSO). Although the particle swarm optimization was first published in 1995,
it took around 10 years in order researchers to publish papers using a PSO
algorithm for the solution of variants of the VRP. However, in the last 10 years,
many journal papers, conference papers, and book chapters have been published
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where a variant of VRP is solved using a PSO algorithm. Thus, it is significant to
present a survey paper where a review and brief analysis of the most important
of these papers will be given. This is the main focus of this chapter.

Keywords
Vehicle routing problem � Particle swarm optimization

Introduction

The vehicle routing problem is one of the most important problems in the field
of supply chain management, of logistics, of combinatorial optimization, of trans-
portation, and, in general, of operational research. The interest in this problem
has been recently increased both from theoretical and practical aspect. There are
a number of reasons for this growth. From the practical point of view, the problem
is one of the most important problems in the supply chain management, and, thus,
the finding of the optimal set of routes will help the decision makers to reduce
the cost of the supply chain and to increase the profit. Also, in the formulation
of the problem, the managers could simulate the complete network and add any
of the constraints concerning the customers, the vehicles, the routes, and, also,
the traffic conditions of the network and the energy consumption of the vehicles.
Thus, someone could solve a realistic problem and find a near optimal set of
solutions.

The reason that usually a near optimal set of solutions is found is that the problem
from its origin (it was first introduced by Dantzig and Ramser in 1959 [46]) was
proved to be NP-hard problem even in its simpler version, the capacitated vehicle
routing problem, where the only constraint that was taken into account was the
capacity of the vehicles (and later the maximum tour length constraint was added).
Thus, it is impossible in real-life applications to find an optimal solution. For this
reason, a number of heuristic, metaheuristic (mainly), evolutionary, and nature-
inspired approaches have been proposed for the solution of the VRP and its variants.
Also, exact algorithms have been proposed in order to solve the problem. They are,
mainly, used for the solution of the simplest vehicle routing problems (the problems
with as few as possible constraints) and for a small number of nodes.

From the theoretical point of view, there are a huge number of researchers that
deal with the solution of a variant (or more variants) of the problem. These variants
of the problem focus on a specific constraint, and the researchers are trying to find
an algorithm that gives new best solutions in a specific set of benchmark instances
in short computational time with as less as possible parameters in order to give a
more general algorithm. Thus, a new researcher that he/she would like to focus to
a specific variant of a vehicle routing problem, he/she could find a large number
of very good papers focusing to VRP or to its variants and papers focusing to the
methods that he/she would like to implement for the solution of the problem. The
most important and well-studied variants of the vehicle routing problem are the
capacitated vehicle routing problem [39,40,55,98,100], the vehicle routing problem
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with time windows [43, 49, 50, 159, 160], the open vehicle routing problem [152],
the vehicle routing problem with simultaneous pickup and deliveries [123,170], the
vehicle routing problem with backhauls [29,30,171], the multidepot vehicle routing
problem [32, 99, 122], the stochastic vehicle routing problem [62, 77, 142, 162], the
dynamic vehicle routing problem [61, 142, 145, 146], the periodic vehicle routing
problem [5], the split delivery vehicle routing problem [6], the heterogeneous
fleet vehicle routing problem [64], the asymmetric vehicle routing problem [178],
the vehicle routing problem with two- or three-dimensional loading constraints
[21, 66], etc. Nowadays, more complicated problems have been published where
more than one from the previously mentioned problems are combined in order to
create a new more challenging problem. These problems are denoted from some
researchers as rich vehicle routing problems [96]. However, a number of other
problems have been introduced in the last years in order to cope with new needs
that arise from new realistic situations of the life, like the cumulative capacitated
vehicle routing problem [127], the evacuation vehicle routing problem [189], the
green vehicle routing problem [103], the pollution routing problem [15], etc. Finally,
there are a number of combined problems that need a solution of a vehicle routing
problem, like the location routing problem [97, 126, 144], the inventory routing
problem [26, 27, 54], the location inventory routing problem [78], the production
routing problem [1], the production inventory distribution problem [13], and the
ship routing problem [37, 38, 150, 151]. Also, a number of publications with a real
case application have been realized where the authors simulate the realistic scenario,
formulate the problem (or use an existing formulation) using a combination of the
existing variants or introducing a new one if it is possible, and use an existing
algorithm (or propose a new one or a suitable modified variant of an existing one)
to solve it.

Thus, in the last years, the EURO Working Group on Vehicle Routing and Logis-
tics Optimization, the VeRoLog, was created (www.verolog.eu); two different series
of conferences devoted to the vehicle routing problem variants and applications
have been introduced, the one is an annual conference which is organized from
the VeRoLog working group since 2012 and the second is a triennial workshop
on freight transportation and logistics denoted as Odysseus started in Crete 2000.
A number of books devoted to the vehicle routing problem have been published.
The first one was published in 1988, and it was a very inspiring book for any
new researcher that would like to study the vehicle routing problem or just to
know about the vehicle routing problem [70]. Twenty years later, one of the two
authors (Bruce Golden) of the first published book [70] published a new book
[72] that summarizes the work performed in these 20 years and gives some new
directions for future research. Before the publication of this book, another very
successful and inspiring book was published by Paolo Toth and Daniele Vigo [170]
which is the most widely read and most cited book in the field. The success of
this book led the same team of authors to publish in the end of 2014 the second
edition of the book [172] which covers all the field of the vehicle routing problem
with a more complete rewriting of some of the chapters of the previous edition
of the book and with the new directions that have been created based on the new

www.verolog.eu


1166 Y. Marinakis et al.

challenges in the field. A volume of the Handbooks in Operations Research and
Management Science was devoted to vehicle routing problems and to more general
applications, like the arc routing problem [9], and it was published in [10]. Finally,
two other books devoted to the vehicle routing problem have been published in
[138, 192]. Also, a large number of surveys have been published, initially, devoted
to general vehicle routing problems and, nowadays, to variants of the vehicle
routing problem or to methods that are applied for the solution of the vehicle
routing problem or of its variants. Some of these survey papers can be found in
[7, 8, 17, 19, 20, 23, 24, 28, 52, 55, 60, 63, 65, 71, 81, 96, 98, 100, 103, 113, 140, 165,
177].

Thus, in this chapter, as a general review for the vehicle routing problem cannot
be restricted in one chapter, we decided to focus in a specific algorithm, the particle
swarm optimization (PSO) algorithm, and in the application of this algorithm for the
solution of the vehicle routing problem and its main variants. This is the first survey
chapter, at least to our knowledge, that is devoted to this method for the VRP. In the
following sections, initially, a brief presentation of the particle swarm optimization
algorithm will be given, and, then, we will present the variants of the vehicle routing
problem in which a particle swarm optimization algorithm has been applied for their
solution.

Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a very popular global optimization
method that was originally proposed by Kennedy and Eberhart as a simulation of
the social behavior of social organisms such as bird flocking and fish schooling
[86]. PSO uses the physical movements of the individuals in the swarm. Complete
surveys, in the time that they are published, for the particle swarm optimization
can be found in [11, 12, 41, 141]. Nowadays, a complete review for the particle
swarm optimization is very difficult to be performed as the range of variants and of
applications of PSO covers the whole field of optimization, and, thus, only surveys
in a specific subject like the one presented in this chapter (application of PSO
algorithm in vehicle routing problems) can be presented without the length of the
paper to increase dramatically.

In general, in a PSO algorithm, a set of solutions are used where each solution is
denoted as a particle. These solutions create the swarm. In many algorithms, more
than one swarms exist. Initially, the solutions are randomly initialized in the solution
space. Two are the main vectors that describe a particle, the position vector (xij ,
where i denotes the particle (i D 1; � � � ; N , N is the swarm size) and j denotes
the corresponding dimension of the particle (j D 1; � � � ; d , d is the dimension of
the problem)) and the velocities vector (vij ). The performance of each particle is
evaluated on the predefined fitness function (f .x/).

Thus, each particle is randomly placed in the d -dimensional space as a candidate
solution. One very simple and effective way to initialize the particles was given in
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[53] where the minimum value of the solution space is denoted as xmin;j and the
maximum value is denoted as xmax;j . Then, the values of the solution vector for
each particle are calculated from the following equation:

xij .0/ D xmin;j C rj .xmax;j � xmin;j / (1)

where rj is a random number between .0; 1/.
The velocity of the i -th particle vij is defined as the change of its position. The

algorithm completes the optimization through following the personal best solution
of each particle and the global best value of the whole swarm. Thus, in each iteration,
except of the current position, another vector is used which is the personal best
position of each particle through the iterations. The best member of the personal best
position vector is the global best position of the whole swarm. Each particle adjusts
its trajectory toward its own previous best position and the global best position,
namely, pbestij and gbestj , respectively. The velocities and positions of particles
are updated using the following equations [86]:

vij .t C 1/ D vij .t/ C c1rand1.pbestij � xij .t// C c2rand2.gbestj � xij .t//

(2)

xij .t C 1/ D xij .t/ C vij .t C 1/ (3)

where t is the iteration counter, c1 and c2 are the acceleration coefficients, and rand1

and rand2 are two random variables in the interval (0, 1). The values of c1 and c2

could be constant, or they could be adapted during the iterations. Usually in the
most published papers concerning an application of PSO in a continuous or discrete
problem, these values were set equal to 2. However, there is a possibility to take
different values or to adjust their values during the iterations, for example, using the
following equations [53]:

c1 D c1;min C
c1;max � c1;min

i termax
� t (4)

c2 D c2;min C
c2;max � c2;min

i termax
� t (5)

where itermax is the maximum number of iterations and c1;min, c1;max, c2;min, and
c2;max are the minimum and maximum values that c1 and c2 can take, respectively.
In the beginning of the procedure, the values of c1 and c2 are small and, then,
are increasing until they reach their maximum values. By doing this, on the first
iterations, there is a great freedom of movement in the particle solution space in
order to find the optimum quickly.

A number of different velocity equations have been proposed during the last
years. Nowadays, other researchers use one of the velocity equations proposed in
the past that have been proved to perform well (mainly, the inertia equation or the
constriction equation), or, less frequently, they propose a new one which either is a
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variant of a previously published equation or simulates something from the nature
in which the specific researcher focuses in his/her study. The most important and
known velocities equations are the following:

• Inertia particle swarm optimization (IPSO) [157]:

vij .t C 1/ D wvij .t/ C c1 rand1.pbestij � xij .t//

Cc2rand2.gbestj � xij .t// (6)

The difference between this variant and the one presented on Eq. (2) is the use
of the inertia weight w. The inertia weight w is adapted during the iterations and
is given by the following equation:

w D wmax �
wmax � wmin

itermax
� t (7)

where wmax and wmin are the maximum and minimum values of the inertia weight.
• Constriction particle swarm optimization [42]:

vij .t C 1/ D �.vij .t/ C c1rand1.pbestij � xij .t//

C c2rand2.gbestj � xij .t/// (8)

where the constriction factor, �, is used:

� D
2

j2 � c �
p

c2 � 4cj
and c D c1 C c2; c > 4 (9)

• Another version of the constriction particle swarm optimization [53]:

vij .t C 1/ D �.vij .t/ C c1rand1.pbestij � xij .t//

C c2rand2.gbestj � xij .t/// (10)

The only difference from the previous version is the use of the parameter k in
the constriction factor [53]:

� D
2k

j2 � c �
p

c2 � 4cj
and c D c1 C c2; c > 4 (11)

• Clerc and Kennedy [42] proposed a simpler form of the constriction factor, the
condensed form, for the calculation of the velocities of the particles:

vij .t C 1/ D �.vij .t/ C c.pmj � xij .t/// (12)
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where

� D
2

j2 � c �
p

c2 � 4cj
and c D c1 C c2; c > 4 (13)

and

pmj D
c1pbestij C c2gbestj

c
: (14)

• Cognition-only particle swarm optimization [85]
In this variant, the velocity equation is given by:

vij .t C 1/ D vij .t/ C c1rand1.pbestij � xij .t// (15)

The social factor of velocities equation is not used.
• Social-only particle swarm optimization [85].

In this variant, the velocity equation is given by:

vij .t C 1/ D vij .t/ C c2rand2.gbestj � xij .t// (16)

The cognition factor of velocities equation is not used.
• Local neighborhood topology particle swarm optimization [53]:

vij .t C 1/ D vij .t/ C c1rand1.pbestij � xij .t//

C c2rand2.lbestij � xij .t// (17)

where the term of gbest in the previous algorithms has been replaced with the
term lbest , which means that instead of a global best population, a local best
population is used.

lbestij 2 Ni jf .lbestij / D minf .xij /; 8x 2 Ni (18)

The neighbor Ni is defined by [53]:

Ni D pbesti�nNi
.t/; : : : ; pbesti�1.t/; pbesti .t/;

pbestiC1.t/; : : : ; pbestiCnNi
.t/ (19)

A particle’s best position (pbestij ) in a swarm is calculated from the equation:

pbestij D

�
xij .t C 1/; if f .xij .t C 1// < f .xij .t//

pbestij ; otherwise
(20)
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The optimal position of the whole swarm is calculated by the equation:

gbestj 2 fpbest1j ; pbest2j ; � � � ; pbestNj gjf .gbestj / D

minff .pbest1j /; f .pbest2j /; � � � ; f .pbestNj /g (21)

Most applications of PSO have concentrated on the optimization in continuous
space, while a lot of work has been done to the discrete optimization problems
beginning from the next two papers [87,157]. In the following, a pseudocode of the
particle swarm optimization algorithm is presented.

algorithm Particle Swarm Optimization
Initialization
Select the number of swarms
Select the number of particles for each swarm
Initialization of the position and velocity of each particle
Calculation of the initial cost function (fitness function) value of each particle
Keep global best particle (solution) of the whole swarm
Keep personal best of each particle
Main Phase
Do until the maximum number of iterations has not been reached:

Calculate the velocity of each particle
Calculate the new position of each particle
Evaluate the new fitness function of each particle
Update the best solution of each particle
Update the best particle of the whole swarm

Enddo
Return the best particle (the global best solution)

Application of Particle Swarm Optimization Algorithm in Vehicle
Routing Problems

In this chapter, the papers in which a variant of the particle swarm optimization
algorithm is applied for the solution of a variant of the vehicle routing problem
are presented. In this section, an analysis is given on how these papers have been
selected. As there are a large number of papers in the literature, we will in the most
important of them. A very difficult task is to define which of the papers are the “most
important” ones. We use a number of criteria to show the impact of each paper
in the research community. The first criterion is the impact factor of the journal
or the importance of the conference in which the paper has been published. The
second criterion is the number of citations (based on Google Scholar) that each
paper has received through the years. Papers that have been published in the current
year are not expected to have a large number of citations. However, some of them
based on their computational results are included in the analysis. Finally, the third
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criterion is the computational results given in each paper. There are a number of
papers that have demonstrated their PSO variant giving results in one or in a small
set of instances. These papers are not analyzed as the effectiveness of their variant is
not sufficiently proved. Also, there are a number of papers that, although they have
been published in very good journals, they present a PSO variant for the solution
of a real-life application and they do not give a comparative analysis with other
algorithms from the literature in benchmark instances; thus, it is very difficult to
show the effectiveness of the PSO variant. These kinds of papers are not included
in the analysis. Finally, there are a number of papers that they present a novel
PSO procedure, they apply the method in classic sets of benchmark instances, and
their computational results are competitive with the results of the most effective
algorithms from the literature. This last category of papers is those that are analyzed
in this chapter.

Main Variants of VRP Solved by PSO

The main variants of the vehicle routing problem that a particle swarm optimization
algorithm has been applied are the following.

Capacitated Vehicle Routing Problem
Abbreviation: CVRP Definition: Each vehicle must start and finish its tour at
the depot. Capacity constraints of the vehicles. Maximum tour duration of each
route. Not split deliveries allowed. Customers have only demands and service
time [19, 20, 72, 170].

Open Vehicle Routing Problem
Abbreviation: OVRP Definition: Same constraints as in the CVRP except that the
vehicles do not return in the depot after the service of the customers [152].

Vehicle Routing Problem with Time Windows
Abbreviation: VRPTW Definition: Same constraints as in the CVRP and in
addition each customer must be serviced within a specific time window. Vehicles
and depots may, also, have a time window. Minimization, initially, of the number
of routes and, then, minimization of the total traveled distance [70, 72, 138, 158,
159, 170].

Vehicle Routing Problem with Simultaneously Pickup and Delivery
Abbreviation: VRPSPD Definition: Same constraints as in the CVRP. The
customers require not only delivery of products but, also, a simultaneous pick
up of products from them. It is assumed that the delivery is performed before
the pickup and that the vehicle load should never be negative or larger than the
vehicle capacity [70, 72, 138, 170].

Vehicle Routing Problem with Stochastic Demands
Abbreviation: VRPSD Definition: A vehicle with finite capacity leaves from the
depot with full load and has to serve a set of customers whose demands are known
only when the vehicle arrives to them. A route begins from the depot and visits
each customer exactly once and returns to the depot. This is called an a priori
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tour, and it can be seen as a template for the visiting sequence of all customers
[18, 62, 162].

Dynamic Vehicle Routing Problem
Abbreviation: DVRP Definition: In dynamic problems, part or all of the input
is unknown and is revealed dynamically during the design or execution of the
routes [140].

Multidepot Vehicle Routing Problem
Abbreviation: MDVRP Definition: More than one depots are used for the
customers’ service. There is a possibility for each customer to be clustered and
served from only one depot, or the customers may be served from any of the
depots using the available fleet of vehicles [122, 149].

Vehicle Routing Problem with Stochastic Travel Times
Abbreviation: VRPSTT Definition: In this variant, the travel time between every
pair of nodes is a random variable related to traffic jam, road maintenance, or
weather conditions. The stochasticity appears in the arcs (road) of the network
due to unexpected conditions [196].

Vehicle Routing Problem with Fuzzy Demands
Abbreviation: VRPFD Definition: In this variant, the demands could be
represented as fuzzy variables.

Periodic Vehicle Routing Problem
Abbreviation: PVRP Definition: In this problem, vehicle routes must be con-
structed over multiple days where during each day within the planning period,
a fleet of capacitated vehicles travels along routes that begin and end at a
single depot [56]. The objective of the PVRP is to find a set of tours for each
vehicle that minimizes total travel cost while satisfying the constraints of the
problem [56].

Location Routing Problem
Abbreviation: LRP Definition: In this variant, the optimal location to be used for
the storage facilities have to be decided. From these locations, the vehicles will
begin their routes, in a way that the total cost of the routing (distance, fuel, time,
etc.) and facility location (running costs, rent or property cost, etc.) will be the
minimum. At the same time, the optimal routes for the vehicles have to be found
in order to satisfy the demand of the customers [47, 119, 126, 144].

Location Routing Problem with Stochastic Demands
Abbreviation: LRPSD Definition: In this variant, the same constraints as in
the case of the location routing problem hold except that the demands of the
customers have stochastic and not deterministic values.

Team Orienteering Problem
Abbreviation: TOP Definition: This is a variant of the vehicle routing problem
with profits or pricing. In this problem, a set of locations is given, each one with
a score. The goal is to determine a fixed number of routes, limited in length,
that visit some locations and maximize the sum of the collected scores [174].
The objective of the TOP is to construct a certain number of paths starting at an
origin and ending at a destination that maximize the total profit without violating
predefined limits [154].



40 Particle Swarm Optimization for the Vehicle Routing Problem: A Survey. . . 1173

Production Routing Problem
Abbreviation: PRP Definition: This variant is a hybridization of VRP with
production problems. These problems are very complicated problems as they
include, among others, decisions concerning the number of workers to be hired,
the quantities of products to be produced using various strategies, the amount
of inventories to be maintained, the assignment of the customers in different
manufacturing plans or depots, and, finally, the design of the routes in order to
satisfy the customers’ demands.

Ship Routing Problem
Abbreviation: SRP Definition: In this variant, the optimum routing and schedul-
ing of different types of ships are calculated [37, 38, 48, 150, 151].

Vehicle Routing Problem with heterogeneous fleet
Abbreviation: HVRP Definition: In this variant, instead of an homogeneous fleet
of vehicles, the company uses a set of vehicles with different capacities, and,
thus, the fleet of vehicles is heterogeneous.

Inventory Routing Problem
Abbreviation: IRP Definition: In this variant of the vehicle routing problem,
a simultaneous allocation of inventories and decision of routing schedules is
realized. The objective of the IRP is to minimize the total cost (the distribution
and inventory costs of retailers) [26, 27].

Vehicle Routing Problem with Uncertain Demands
Abbreviation: VRPUD Definition: In this variant, the demand is uncertain with
unknown distribution.

Vehicle Routing and Scheduling Problem
Abbreviation: VRSP Definition: In general, the goal of VRSP is to determine
the set of trips that a vehicle will make during the day in order to reduce the
transportation costs.

Other variants of VRP, combinations of VRP with other problems, or real-
life applications of VRP that have been solved using a variant of a particle
swarm optimization algorithm are the distance constraint vehicle routing problem
[169], the multiple destination routing problem (MVRP) [193], the multivehicle
assignment problem (MVAP) [51], the production routing problem [1], the berth
allocation problem [168], the disaster relief logistics [22], the garbage collection
system [95], the integrated production and distribution [175], the urban transit
routing problem [84], the production and pollution routing problem [94], the
reducing vehicle emissions and fuel consumption [133], the pedestrian-vehicle
mixed evacuation (P-VMEP) [201], the time-dependent vehicle routing problem
(TDVRP) [130], the emergency vehicle scheduling problem [57], the emergency
logistics (EL) [189, 197], the evacuation vehicle routing problem (EvVRP) [191],
the environmental vehicle routing problem (EnVRP) [59], the integrated production
scheduling and vehicle routing [35], and the reverse logistics (RL) [134].

Table 1 presents the number of papers (journal papers, international conference
papers, and book chapters, denoted as Journal, Conf, and BC in the table, respec-
tively) in which a variant of the particle swarm optimization algorithm has been used
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Table 1 Number of papers using particle swarm optimization in each variant of the vehicle
routing problem

Variant Journal Paper Conf Paper

and BC

CVRP 8 [4, 33, 92, 109, 116, 147, 167, 176] 7 [79, 93, 101, 111, 156, 163, 183]

VRPSPD 3 [3, 36, 69] 4 [68, 164, 184, 195]

LRP 2 [104, 108] 2 [14, 135]

HVRP 2 [16, 188]

VRPTW 2 [2, 73] 9 [25, 31, 58, 80, 105, 118, 124, 182, 200]

VRPUD 2 [34, 186]

TOP 2 [125, 154] 3 [44, 45, 153]

MVAP 1 [51]

DVRP 2 [91, 132] 3 [89, 90, 131]

OVRP 2 [120, 128] 4 [110, 139, 180, 199]

VRPSD 1 [117] 3 [112, 137, 198]

PVRP 3 [129, 148, 166]

RL 1 [134]

VRPFD 1 [185] 1 [136]

VRPSTT 1 [155]

MDVRP 1 [82] 4 [161, 179, 181, 194]

DCVRP 1 [169]

VRSP 1 [173]

EvVRP 1 [191] 2 [189, 190]

MVRP 1 [193]

EL 1 [197]

LRPSD 1 [107]

EnVRP 1 [59]

IRP 1 [106]

TDVRP 1 [130]

PRP 1 [1]

SRP 1 [48]

for the solution of a variant of the vehicle routing problem. As it was expected, most
of the papers concern an application of a PSO variant to the capacitated vehicle
routing problem with eight journal papers published. There is no other variant of
VRP with more than three journal papers. However, in the vehicle routing problem
with time windows, there are a large number of conference papers and book chapters
(nine in total). As we can see, a variant of PSO algorithm has been applied in 27
different variants of vehicle routing problem. In total, there are 37 journal papers
and 52 international conference papers and book chapters with a PSO variant in a
vehicle routing problem.

Although when the particle swarm optimization algorithm was initially proposed,
there were no any applications of the algorithm for the solution of the vehicle routing
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Table 2 Journals that have published at least one PSO algorithm for the solution of a vehicle
routing problem variant

Journal Abbreviation I.F. Nr TNrCit

Transportation Science TS 3:295 1 60

Networks and Spatial Economics NETS 3:250 1 23

Expert Systems with Application ESWA 2:981 3 295

Applied Soft Computing ASOC 2:857 6 201

Neurocomputing NC 2:392 1 2

Engineering Applications of Artificial Intelligence EAAI 2:368 1 130

Transportation Research Part E TRE 2:279 2 57

IEEE Transactions on Systems, Man, and
Cybernetics-Part C

IEEE SMC 2:171 1 74

Computers and Industrial Engineering CIE 2:086 6 363

Journal of Intelligent Manufacturing JIM 1:995 3 94

Computers and Operations Research COR 1:988 2 297

Entropy Entropy 1:743 1 20

Measurement Measurement 1:742 1 12

International Journal of Advanced Manufacturing
Technology

IJAMT 1:568 2 57

Annals of Operations Research ANOR 1:406 1 33

Applied Mathematics and Computation AMC 1:345 1 38

Applied Intelligence APIN 1:215 1 8

Optimization Letters OptL 1:019 1 5

Journal of Zhejiang University SCIENCE A SCIENCE A 0:941 1 198

Memetic Computing MEME 0:900 1 13

International Journal of Operational Research IJOR � 1 49

Procedia Engineering PrE � 1 8

Journal of Mathematical Modelling and Algorithms JMMA � 1 67

American Journal of Applied Sciences AJAS � 1 13

Transportation Research Journal TRJ � 1 4

problem; in the last years, a number of researchers have solved a variant of VRP
using a PSO algorithm. In Table 2 journals that have published at least one paper
with this topic are presented. Journals are sorted based on their impact factor for
2015 (denoted as I.F. in the table) that it is presented in column three. Finally, in
columns 4 and 5, the number of papers (denoted as Nr in the table) that has been
published in each journal and the total number of citations of all papers based on
Google Scholar on 30 May 2017 (denoted as TNrCit in the table) are presented.

Different PSO Variants

As it is mentioned earlier, the main problem of the application of a PSO algorithm
for the solution of a VRP was that the PSO algorithm is suitable for continuous



1176 Y. Marinakis et al.

optimization problems and the VRP is a combinatorial optimization problem with
a specific structure in the solution which needs in most cases a path representation
in order to have an effective algorithm. Thus, there are a number of algorithms that
use a 0/1 representation of the solution. However, these algorithms are not the most
effective algorithms for the solution of this kind of problems. We mentioned that
from the first years that PSO was proposed, there were implementations of PSO
[157] suitable for discrete optimization problems but not for routing type problems.
Thus, the first effective application of a PSO algorithm in VRP was in 2006 [33].
Since then a number of different algorithms have been proposed that are suitable
for the solution of a VRP variant. Most of them are hybridized with a local search
algorithm, as almost every evolutionary algorithm if it is applied for the solution of a
VRP problem. In the following, we present and analyze the most important variants
of PSO that have been applied for the solution of a VRP variant. The choice was
performed using the same criteria that were mentioned earlier, especially the one
concerning the effectiveness of the algorithms.

SR-PSO. One of the most used representations of PSO for the solution of a VRP
variant denoted as SR-PSO (SR-1 PSO or SR-2 PSO) was proposed in [4] where
two representations of the particles were used for the solution of the CVRP. In
the first one, the particle consists of n C 2m dimensions. The first n dimensions
are related to customers (each customer is represented by one dimension). The
last 2m dimensions are related to vehicles (each vehicle is represented by two
dimensions as the reference point in the Cartesian map). The priority matrix of
vehicles is constructed based on the relative distance between these points and
customers’ location [4]. A customer is prioritized to be served by the vehicle which
has the closer distance. In the second representation, the particle consists of a 3m-
dimensional particle where it is decoded as a real number. All dimensions are related
to vehicles; each vehicle is represented by three dimensions: two dimensions for
the reference point and one dimension for the vehicle coverage radius [4]. The
algorithms use a number of local search algorithms. A number of papers either from
the same authors or from other research groups have used the same representations
for solving a VRP variant.

The research group that proposed this representations have applied them for
the solution of the vehicle routing problem with time windows [2], of the vehicle
routing problem with simultaneously pickups and deliveries [3] (the most important
publication of an application of PSO-based algorithm for solving a VRP based on
the number of citations), of the multidepot VRP with pickup and deliveries [161]
and [82], and of the location routing problem [104].

Other researchers that used the same encoding and decoding scheme for solving
a VRP variant are the one from Hu et al. [76] that proposed a hybrid chaos-
particle swarm optimization algorithm (HPSO) for solving VRPTW. In [121], a
variant of the algorithm was proposed for the solution of a vehicle routing problem
with uncertain demands. In [16], a variant of the algorithm was presented for a
rich vehicle routing problem, the vehicle routing problem with heterogeneous fleet,
mixed backhauls, and time windows (VRPHFMBTW).
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Quantum PSO – QPSO. One of the first PSO implementations for the solution of
the CVRP was the one published in [33]. In this PSO implementation, a quantum
discrete PSO algorithm is used [187]. The algorithm is hybridized with a simulated
annealing algorithm [88] for the improvement of the particles. They use a zero
one encoding scheme where value equal to one means that the vehicle serves
the customer and value equal to zero means that another vehicle will serve the
customers. The dimension of the vector is equal to N � K where N is the number
of nodes and K is the number of vehicles.

HybGenPSO. In [109], a hybridization of a genetic algorithm with a particle
swarm optimization, algorithm for the solution of the CVRP was presented. In this
memetic algorithm, the role of the genetic algorithm was to create the new gener-
ations, and the role of the PSO algorithm was to improve the population between
two different generations. Thus, it was a memetic algorithm with the difference that
usually in a memetic algorithm, each member of the population is evolved between
two generations using a local search algorithm, while in this memetic algorithm,
the population was evolved using a global search algorithm. This idea was inspired
by the fact that in real life, each member of a population is evolved by reacting
with other members of the population and not by itself. The algorithm uses the
inertia equation for the velocities (Eq. 6) and was tested in the two classic sets of
benchmark instances, and a number of best-known solutions were found.

HybPSO. In [116], a hybrid particle swarm optimization algorithm was used
for the solution of the capacitated vehicle routing problem. The algorithm is an
improved version of the algorithm used in [108] for the solution of the location
routing problem, and it uses the same three algorithms in the hybridization phase,
the multiple phase neighborhood search – greedy randomized adaptive search
procedure (MPNS-GRASP), the expanding neighborhood search (ENS) [114], and
the path relinking (PR) [67]. The first method is used for the creation of the initial
solutions, the second one is used as a local search phase, and the third one is used
for the movement of the particles. The difference of the algorithm proposed in
[116] from the algorithm denoted as combinatorial neighborhood topology PSO
(proposed in [111]) is that the first one uses a transformation between continuous
and discrete values and vice versa based on the relative position indexing [102]
and it, also, uses a procedure that does not affect the solution of each particle. In
the combinatorial neighborhood topology PSO, no transformation is needed at all.
The algorithm proposed in [116] uses the inertia equation for the velocities (Eq. 6).
The algorithm was tested in a classic set of benchmark instances, and a number of
best-known solutions were found.

In [110], a new version of the hybrid particle swarm optimization algorithm
that was presented in [116] for the solution of the CVRP was presented where
instead of using the expanding neighborhood search algorithm for the improvement
of each particle separately, the variable neighborhood search algorithm was used
[74]. Another difference is that the inertia velocities equation has been replaced by
the constriction velocities equation (Eq. 8).
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In [117], an improved version of the hybrid particle swarm optimization algo-
rithm that was presented in [110] for the solution of the OVRP was presented where
instead of using the variable neighborhood search algorithm for the improvement of
each particle separately, a simpler local search algorithm based on 2-opt and 3-opt
algorithms was used. Also, in the initialization phase of the algorithm, the particles
start from random values, thus avoiding the use of a more sophisticated procedure.
The reason that this simpler local search algorithm and the random initial values
were used was that the calculation of the objective function of the VRPSDs is much
more difficult and time-consuming than the calculation of the objective function
of a simpler variant of VRP and, thus, the use of a simpler local search algorithm
avoids the increase of the computational time of the whole procedure. Eight different
versions of velocities equation were used in order to test which one of them is the
most appropriate for the selected problem.

CNTPSO. In [108], a hybrid particle swarm optimization algorithm was used for
the solution of the location routing problem. The PSO algorithm was hybridized
with three other effective algorithms, the multiple phase neighborhood search –
greedy randomized adaptive search procedure (MPNS-GRASP) [115], the expand-
ing neighborhood search (ENS) [114], and the path relinking [67].

The novelty of the paper was that a procedure was used where there is no
transformation from continuous to discrete values and the movement of the particles
was performed using a path relinking procedure [67], where the current solution of
the particle was used as starting solution and the target solution was either the local
best particle or the global best particle. This was the first step of the very successful
and effective topology that was denoted as combinatorial neighborhood topology
and was used for the solution of the capacitated vehicle routing problem [111].
The velocities equation used was the inertia one (Eq. 6). In [111], one of the most
successful versions of the PSO for the CVRP was published, denoted as combina-
torial neighborhood topology PSO. This algorithm does not need a transformation
from continuous to discrete values, and, thus, there is no loss of any information of
good solutions that have been created in an iteration. In this algorithm, the position
equation (Eq. 3) of the particles has been replaced by a path relinking strategy. The
role of the velocities equation is limited to show which particle (or combination of
particles) will be followed by the selected particle based on some conditions. This
version of PSO is a very efficient version as it was proved by its application in the
classic set of benchmark instances where better solutions were found compared to
the ones found by other versions of PSO in less computational time.

In [112], an improvement of the CNTPSO was presented where a combination
of this topology with an expanding neighborhood topology (ENT) is used. In this
topology, there are not a standard number of local neighbors, but the number of local
neighbors begins from a small number and increases using some conditions. When
the number of neighbors becomes equal with the number of particles, then a global
best PSO algorithm is used. The algorithm uses the same local search algorithm and
the same initialization procedure as the algorithm presented in [117].
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An improved version of CNTPSO with expanding neighborhood topology
was presented in [107] for the solution of the location routing problem and of
the location routing problem with stochastic demands. The difference of this
algorithm from the initial CNTPSO is that it uses simultaneously a global neigh-
borhood topology and the expanding neighborhood topology as it was described
previously.

An adaptive version of CNTPSO is presented in [118] for the solution of
the vehicle routing problem with time windows. In this version, all parameters
(acceleration coefficients, iterations, local search iterations, upper and lower bounds
of the velocities and of the positions, and number of particles in each swarm) are
adapted during the procedure, and, thus, the algorithm works independently and
without any interference from the user.

h_PSO. In [68, 69], two different algorithms for the solution of VRPSPD problem
using a PSO algorithm were presented. Initially, it was presented as a conference
paper [68], and its improved version was published as a journal paper in [69]. The
authors presented a hybridization of PSO algorithm with a variable neighborhood
search algorithm and used an annealing-based mechanism in order to maintain the
diversity of particles. The inertia velocities equation was used (Eq. 6). They used a
representation that began with a giant tour without taking into account the route
restrictions, and, then, they used a decoding scheme to partition the giant tour
into feasible routes. The procedure that they used is denoted as split procedure,
and it was first presented by Prins in the frame of an evolutionary algorithm for
the solution of the CVRP [143]. The algorithms were tested in the usually used
benchmark set of instances for the problem, and a number of new best solutions were
found.

DAPSO. The most important application of a particle swarm optimization algo-
rithm for the solution of a dynamic vehicle routing problem was presented in
[91]. In this paper, the authors solved the DVRP with dynamic requests, and a
procedure was used where a partial static VRP was solved each time a new request
was received. The authors hybridized the particle swarm optimization algorithm
with a variable neighborhood search algorithm for the solution of the problem
(DAPSO). The representation used in this work is a simple discrete representation
which expresses the route of m vehicles over the n customers to serve. The
representation allows the insertion of dynamic customers in the already planned
route, and it is a permutation of the customers where as a DVRP is solved, the
authors keep the coordinates of the customers, the time in which each customer
is served, and if a customer has been served or not. Another very interesting
application of PSO algorithm in this problem was presented in [89] where a
multiswarm PSO algorithm was applied, a number of benchmark instances were
solved, and comparisons with algorithms from the literature were given. Finally, a
third publication of the same group of authors using a PSO algorithm was presented
in [90].
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SPSO. One of the most important applications of a PSO algorithm in the solution
of the vehicle routing problem with time windows is the one presented in [73]. In
this paper, the proposed SPSO-VRPTW treated the discrete search space as an arc
set of the complete graph that was defined by the nodes in the VRPTW and regarded
the candidate solution as a subset of arcs. A set-based representation method was
proposed to characterize the discrete search space. The search space is represented
by a universal set S. The elements in S can be divided into D dimensions.

2MPSO. A two-phase particle swarm optimization algorithm for the solution of the
DVRP was presented in [131], and later it was improved in [132]. They presented an
algorithm where a new equation of velocities for the particles was presented where
local and global search topologies were combined.

PVPSO. In [120], a PSO algorithm for the OVRP is presented. The authors used a
standard PSO for the encoding and the decoding procedure where all the elements
of the positions vector are sorting in descending order and, then, the first is added
in the first route, the second in the route with the least residual capacity, and so
on until all elements are inserted in a route. The routes, then, were improved using
one-move local search. They used the inertia equation of velocities (Eq. 6), and they
tested their algorithm in a small set of instances and found very good solutions.

GLNPSO. A very interesting application of a PSO in the VRPFDs was the one
presented in [185]. In this problem, the variant of VRP used included, also, soft
time windows constraints, and the authors considered two objective functions, the
minimization of the total travel cost and the maximization of the average satisfaction
level of all customers in a fuzzy environment. The authors used a global-local-
neighbor particle swarm optimization with exchangeable particles. An illustrative
example that explains how the PSO algorithm had been applied in this problem was
presented and analyzed in details.

PMPSO. In [92], the authors presented an approach that uses a probability matrix
as the main device for particle encoding and decoding. In the decoding phase, not
only the assignment of the customers in vehicles was realized, but, also, the routing
of the customers was calculated. They used a number of local search algorithms (1-1
exchange, 2-opt, Or-opt) in order to improve the solution of the particles.

MOPSO. A very interesting formulation of a multiobjective competitive open
vehicle routing problem with time windows was presented in [128]. In this problem,
the reaching time to customers affects the sales amount. Therefore, distributors
intend to service customers earlier than rivals to obtain the maximum sales.
Moreover, a part of a driver’s benefit is related to the amount of sales. Thus,
the balance of goods carried in each vehicle is important in view of the limited
vehicle capacities. They gave a complete analysis of the new problem and of the
formulation, and they used a multiobjective PSO algorithm for the solution of the
problem. In this multiobjective algorithm, the nondominated solutions are stored in
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a repository, and, then, if a new solution dominates a solution from the repository or
a personal best solution of a particle, then the new solution replaces the dominated
solution.

StPSO. A very interesting paper was published in [173]. In this paper, the authors
solved a very complicated vehicle routing and scheduling problem with cross-
docking. They use an encoding scheme to represent the scheduling in a string. Thus,
all are encoded as genes in a 1-by-n string where the length is equal to the number
of vehicles. Thus, the digit in the ith chromosome indicates the route number to
which the ith vehicle is assigned [173]. A similar variant of the algorithm has been
proposed in [166] for the solution of the periodic vehicle routing problem.

NPSO. In [83], a nested PSO was given for the solution of the CVRP. Initially,
feasible solutions are created in clusters using sweep algorithm, and, then, a route
optimization was performed inside the clusters. The PSO was used in both phases,
in the first phase for reorganizing the routes and in the second phase for leading to
the optimization of the routes.

DPSO. A discrete PSO algorithm is presented in [125] for the solution of the
team orienteering problem. The authors hybridized their algorithm with a variable
neighborhood search algorithm. Another application of DPSO for the solution of
the CVRP was proposed in [147]. The authors hybridized their algorithm with an
iterated local search algorithm.

DHPD. In [75], a hybridization of a PSO algorithm with a differential evolution
algorithm was presented. In the paper, an indirect representation was proposed.
For N customers, each individual was encoded as a real number vector with N
dimensions. The integer part of each dimension or element in the vector represents
the vehicle. Thus, the same integer part represents the customer in the same
vehicle. The fractional part represents the sequence of the customer in the vehicle
[75]. Another similar formulation of the algorithm was proposed in [180] for the
solution of the OVRP. The authors presented a very interesting representation of
the particles’ solution where in the encoding procedure, the customers took real
values and in the decoding procedure, the customers with the same integer part are
assigned in the same team (vehicle or group of vehicles if the capacity of the vehicle
was violated). The authors tested their algorithm using the classic set of benchmark
instances, and they obtained very good results.

MODPSO. In [195], a PSO algorithm was used for the solution of the VRPSPD.
The very interesting part of the algorithm was the solution representation where
the m customers were divided in m C 1-dimensional particles. In the decoding
process of the algorithm, the particles were transformed to vehicle allocation s with
the sweep algorithm, and, then, the priority matrices of customers served by the
same vehicle were evaluated. Based on the two matrices, the vehicle routes were
constructed.
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Analysis of the Algorithms

In Table 3, the most important papers that use a variant of PSO for a solution of a
variant of VRP are presented. The selection of the papers has been performed based
on the criteria mentioned previously. The ranking in Table 3 is based on the number
of citations that each of these papers has on 30 May 2017 on Google Scholar.
Also, in Table 3, papers with a small number of citations are presented, but these
papers either present very effective algorithms based on their computational results
or have great potential for fast increase on the number of citations due to the year of
publication. In Table 3, in addition to the number of citations, it is presented which
variant of the VRP is solved (column 2), with which variant of PSO (column 3),
in which journal, book, and conference it is published (column 4), and the year
published (column 5). The number of citations is given in the last column.

As we can see, there is only one paper with more than 200 citations [3] with
289 citations and one that it is near to 200 (paper [33] with 198 citations). Two
other papers have more than 150 citations (paper [109] with 167 and paper [4] with
162 citations). Finally, there are two papers with more than 100 citations, paper
[116] with 130 citations, and paper [73] with 117 citations. In total, there are six
papers with more than 100 citations. Four of them present algorithms for solving
the capacitated vehicle routing problem, and the other two present algorithms for
solving the vehicle routing problem with simultaneous pickup and delivery. Also,
two of them ([3] and [4]) are works from a specific research group that have made
a significant contribution in the field. In Table 3, there are, also, other four papers
from the same research group (paper [2] for the solution of the VRPTW with 49
citations, paper [161] for the solution of MDVRP with 23 citations, paper [82]
for the solution of MDVRP with 8 citations, and paper [104] for the solution of
LRP with 3 citations). The other research group with significant contribution in the
field studied in this chapter is the one that has two publications in the six more
significant publications in the field ([116] and [109]) and other six publications
that are presented in Table 3 (paper [117] for the solution of the VRPSD with 76
citations, paper [108] for the solution of LRP with 67 citations, paper [111] for
the solution of CVRP with 9 citations, paper [110] for the solution of OVRP with
8 citations, paper [112] for the solution of VRPSD with 7 citations, paper [107]
for the solution of LRP and LRPSD with 5 citations). Of course, there are papers
with significant impact that are presented in this table as papers with 78 citations
[91], papers with 74 citations [73], or papers with 70 citations [120] which have
influenced a large number of researchers.

One of the most important tables in this survey is the last one (Table 4). In this
table, the computational results of the most important papers are summarized and
presented analytically. In this table, they are not presented papers that the proposed
algorithm was tested in one or in a small set of instances, especially when these
instances are not available in the Internet. Also, they are not presented papers that
the proposed PSO algorithm solves a real-life problem as we cannot compare the
results and we cannot see their effectiveness. The only papers that are presented
are the ones that the proposed algorithm was tested in one or more well-known
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Table 3 Total number of citations in the most important papers that use a PSO variant for solving
a VRP variant

Paper VRP variant PSO variant Published in Year Citations

Ai and Kachitvichyanukul [3] VRPSPD SR-PSO COR 2009 289

Chen et al. [33] CVRP QPSO SCIENCE A 2006 198

Marinakis and Marinaki [109] CVRP HybGenPSO ESWA 2010 167

Ai and Kachitvichyanukul [4] CVRP SR-PSO CIE 2009 162

Marinakis et al. [116] CVRP HybPSO EAAI 2010 130

Goksal et al. [69] VRPSPD h_PSO CIE 2013 117

Khouadjia et al. [91] DVRP DAPSO ASOC 2012 78

Marinakis et al. [117] VRPSD HybPSO ASOC 2013 76

Gong et al. [73] VRPTW SPSO IEEE SMC 2012 74

MirHassani and Abolghasemi [120] OVRP PVPSO ESWA 2011 70

Marinakis and Marinaki [108] LRP CNTPSO JMMA 2008 67

Moghaddam et al. [121] VRPUD SR-PSO CIE 2012 57

Xu et al. [185] VRPTW GLNPSO TRE 2011 55

Ai and Kachitvichyanukul [2] VRPTW SR-PSO IJOR 2009 49

Belmecheri et al. [16] HVRP SR-PSO JIM 2013 42

Yao et al. [188] HVRP IPSO ANOR 2016 33

Kim and Son [92] CVRP PMPSO JIM 2012 31

Norouzi et al. [128] OVRP MOPSO NETS 2012 23

Sombuntham and
Kachitvichayanukul [161]

MDVRP SR-PSO IMECS 2010 2010 23

Vahdani et al. [173] VRSP StPSO JIM 2012 21

Hu et al. [76] VRPTW SR-PSO Entropy 2013 20

Okulewicz and Ma Kndziuk [131] DVRP 2MPSO ICAISC 2013 2013 16

Kanthavel and Prasad [83] CVRP NPSO AJAS 2011 13

Muthuswamy and Lam [125] TOP DPSO MEME 2011 13

Norouzi et al. [129] PVRP IPSO Measurement 2015 12

Marinakis and Marinaki [111] CVRP CNTPSO EvoCOP 2013 9

Qi [147] CVRP DPSO PrE 2011 8

Marinakis and Marinaki [110] OVRP HybPSO ANTS 2012 8

Kachitvichyanukul et al. [82] MDVRP SR-PSO CIE 2015 8

Hu and Wu [75] OVRP DHPD WCICA 2010 7

Marinakis and Marinaki [112] VRPSD CNTPSO GECCO 2013 7

Marinakis [107] LRPSD CNTPSO ASOC 2015 5

Tavakkoli Moghaddam et al. [166] PVRP StPSO TRJ 2012 4

Liu and Kachitvichyanukul [104] LRP SR-PSO IEAS 2013 3

Okulewicz and Ma Kndziuk [132] DVRP 2MPSO ASOC 2017 0

set(s) of benchmark instances, and the authors presented their results in such a way
that the results are comparable with the computational results of other algorithms
from the literature. In Table 4 in the first column, a reference of the paper is given,
in the second column the problem(s) that is (are) solved is mentioned, and in the
third, fourth, and fifth columns, the number of sets of benchmark instances, the
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Table 4 Computational results of papers that used a variant of a PSO algorithm for the solution
of a vehicle routing problem variant

Paper VRP Sets NBI Nodes NBS EBS Quality Quality range

Ai and VRPSPD 3 84 20–40 Average results are given

Kachitvichyanukul [3] 40 50 Average results are given

14 50–199 Average results are given

Chen et al. [33] CVRP 1 16 29–134 0 7 0:969 0.00–4.56

Marinakis and CVRP 2 14 51–200 0 10 0:046 0.00–0.23

Marinaki [109] 20 200–483 0 1 0:60 0.00–0.91

Ai and [4] CVRP 2 16 29–134 0 10 0:065 0.00–0.29

Kachitvichyanukul 14 51–200 0 4 0:874 0.00–2.51

Marinakis et al. [116] CVRP 1 14 51–200 0 7 0:084 0.00–0.29

Goksal et al. [69] VRPSPD 2 40 50 0 40 0:00 0.00

14 50–199 0 6 0:00 0.00–3.16

Khouadjia et al. [91] DVRP 1 21 50–199 5 0 NM| NM

Marinakis et al. [117] VRPSD 2 21 51–200 21 0 �1:105 �3.13 to �0.001

40 16–60 New set of benchmark instances

Gong et al. [73] VRPTW 3 56 25 0 0 8:72 0.18–60.56

29 best solutions based on number of vehicles

56 50 0 0 6:99 0.00–41.33

32 best solutions based on number of vehicles

56 100 6 9 2:96 �12.69 to 15.70

MirHassani and
Abolghasemi [120]

OVRP 1 15 32–50 0 12 0:196 0.00–2.605

Marinakis and Marinaki
[108]

LRP 1 19 12–318 6 13 �0:08 �0.68 to 0.00

Moghaddam et al. [121] VRPUD 1 (CVRP) 60 32–101 0 53 0:04 0.00–1.027

Ai and [2] VRPTW 2 56 25 0 0 0:323 0.2–1.2

Kachitvichyanukul 56 50 0 0 1:148 0.2–7.2

Kim and Son [92] CVRP 2 16 29–134 0 10 0:142 0.00–0.733

14 51–200 0 6 0:712 0.00–2.95

Sombuntham and
Kachitvichayanukul
[161]

MDVRP 1 29 100 0 15 0:96 0–13.94

Kanthavel and Prasad
[83]

CVRP 1 16 29–134 0 16 0:00 0.00–0.00

Qi [147] CVRP 1 12 32–80 0 4 0:577 0.00–2.40

Marinakis and OVRP 3 14 51–200 0 7 0:11 0.00–0.32

Marinaki [110] 8 51–200 0 4 0:13 0.00–0.38

8 200–480 0 0 0:07 0.01–0.21

Marinakis and CVRP 2 14 51–200 0 11 0:019 0.00–0.14

Marinaki [111] 20 200–483 0 1 0:37 0.00–0.81

(continued)
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Table 4 continued

Paper VRP Sets NBI Nodes NBS EBS Quality Quality range

Marinakis and Marinaki
[112]

VRPSD 1 40 16–60 27 13 �0:64 �3.18 to 0.00

Liu and
Kachitvichyanukul [104]

LRP 1 30 50–200 1 0 3:29 �0.02 to 16.12

Marinakis [107] LRP 6 16 12–150 0 8 0:24 0.00–2.12

30 20–200 0 13 0:42 0.00–2.54

36 100–200 0 6 0:86 0.00–3.10

LRPSD 16 12–150 15 1 �0:11 0.00–0.41

30 20–200 10 20 0:00 �0.02 to 0.00

36 100–200 32 4 �0:04 �0.08 to 0.00

number of instances in each set (NBI), and the range in which the number of nodes
of each set fluctuates are given for each paper, respectively. Finally, in the last four
columns, the number of new best solutions found in the paper in the year of its
publication (NBS), the number of instances in which the proposed algorithm found
a solution equal to the best-known published solution (EBS), the average quality of
the solutions, and the range of the qualities of the solutions are given, respectively.
The quality of a solution is calculated using the following equation Quality D
.cPSO�cBKS/

cBKS
%, where cPSO denotes the cost of the solution found by the mentioned

PSO algorithm in the corresponding paper and cBKS is the cost of the best-known
solution.

It was a difficult task to summarize all the results and to create this table as
every researcher presents the produced results in a different way. For example, in
the most important and cited paper [3], the authors present the average results in
the well-known benchmark instances, and, then, they give an extensive analysis in
variants of the studied problem, and it was difficult to present analytically the results
of the paper. In other papers, a new set of benchmark instances is created [117],
and, thus, it was difficult to give comparisons for this set of instances. However, in
most of the papers that are presented in this table, we could extract the information
that we would like to have in order to see the effectiveness of each one of the
algorithms. In most of the algorithms presented in the table, at least a number of
EBS were found, and in few of them, new best solutions were given. It is very
difficult to analyze each paper separately due to space limitation, and this analysis
can be found easily in each one of the papers. However, we could say that the
application of PSO in VRP variants gives very interesting computational results.
In most cases, the computational results are competitive with the results of the
most effective algorithms from the literature. Thus, alternative propositions exist for
someone that he/she would like to apply a PSO algorithm for the solution of a VRP
variant.
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Conclusions

In this chapter, an analytical review of the papers proposing and applying a PSO
algorithm for the solution of VRP variants was presented. In total, around 100 papers
were found. In some of them, new best solutions in VRP variants were presented,
in other papers the authors presented the solutions that have been found that are
very good and competitive solutions and in some instances equal to the best-known
solutions but not new best solutions in the VRP variant solved, in other papers the
authors presented and solved a new variant of the VRP with a PSO algorithm, and,
finally, there are some papers that gave only illustrative examples of how the authors
worked in specific instances of a VRP variant. In general, this chapter gives to the
research community a basis that someone could use if he/she would like to apply a
PSO algorithm for solving a specific variant of the VRP as he/she could find what
has already been published and with what results and he/she could see how the
researchers cope with the problems that may arise from the application of a PSO
algorithm to the VRP or to its variants.
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Abstract

The scheduling of operations over resources is a relevant theoretical and practical
problem with applications in many fields and disciplines, including the manu-
facturing industry. Scheduling problems are as varied as the reality they model.
Additionally, some scheduling settings are among the hardest combinatorial
problems there are. This is a perfect scenario for heuristic methods where high-
quality robust solutions can be obtained in a short amount of time. This chapter
concentrates on heuristics for production scheduling problems and summarizes
the main results that range from simple rules to advanced metaheuristics. The
importance of proper scheduling in practice is first highlighted, along with its dif-
ficulty and relevance. A summary of the scheduling notation is also given. Basic
scheduling techniques, dispatching rules, combined rules, advanced heuristics,
and an introduction to metaheuristics are also summarized in the chapter. While
necessarily brief and incomplete, this chapter serves as an introductory point to
those interested readers seeking to delve in the vast and rich world of scheduling
heuristics. Some pointers to fruitful future research avenues are also provided.
A large list of journal articles and monographs are provided as a reference for
additional details and study.
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Introduction

In a wide sense, the term scheduling deals with the allocation of tasks to resources
over a finite time horizon. These resources are usually limited and therefore, tasks
have to share or, more precisely, compete for them. Depending on the type of
scheduling problem, there might be interrelated decisions of allocation of tasks to
resources, sequencing of the tasks assigned to each resource, assignment of start and
finish times to each task, and so on. The objective is to find a schedule that optimizes
a given criterion or criteria. As can easily be seen, this is a very broad definition.
As detailed in [57, chap. 1] and in [56, chap. 1], scheduling is a decision-making
process that is applied to a very wide range of situations in theory and in practice. As
a result, resources can encompass from machines in a factory to tools or personnel
in a plant or project. Resources might also model operation rooms in a hospital
or cores in a computing cluster, etc. Similarly, tasks range from manufacturing
operations to be performed in a factory to surgical interventions in an operation
room. The applications are virtually limitless. During this chapter the focus is
on one of the most studied applications of scheduling, which is manufacturing
scheduling [24]. In manufacturing or shop scheduling, tasks commonly model
client’s orders or jobs, and resources are the machines or production lines needed
to manufacture the products. While this field inside scheduling is arguably the
most studied, other monographs deal with other areas of scheduling in detail. Such
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is the case of Pinedo [56] for scheduling in services, Błażewicz et al. [2] for
computer scheduling, Grosche [27] for scheduling problems in the airline industry,
Randolph [59] for health-care scheduling, or Briskorn [5] for scheduling in sports.
This short list is just an extract of the rich and varied literature on scheduling
problems.

A salient characteristic of the manufacturing scheduling scheduling field is
the sheer variety of real settings found in practice. It is easy to imagine that
the scheduling problem found in a factory that produces cars is quite different
from a factory that manufactures light bulbs to name just two random examples.
Furthermore, the underlying scheduling problems are extraordinarily difficult from
a mathematical perspective as most problems are of a combinatorial nature. This
variety and the difficulty of the scheduling settings have resulted in a research field
that is fragmented and overly specialized. More often than not, exact mathematical
procedures are devised for specific scheduling settings where rigor and mathemati-
cal elegance are set as a goal in itself, possibly neglecting the general application or
practical relevance of the proposed procedures. This has resulted in the well-known
“research gap” between scheduling theory and practice, as recognized initially by
Graves [26], Ledbetter and Cox [37], and Ford et al. [19]. All these studies pointed
out the scant application of scheduling theory into practice. McKay et al. [45] and
Olhager and Rapp [50] reached the same conclusions. Dudek et al. [14], MacCarthy
and Liu [41], McKay and Wiers [42], McKay et al. [46], or McKay and Wiers
[44] directly addressed, at different levels, this research gap. Different state-of-
the-art reviews and studies about scheduling research like those of Reisman et al.
[60], Ribas et al. [61], and Ruiz and Vázquez-Rodríguez [67] concluded that real
scheduling problems are seldom studied. A more complete overview of these issues
is detailed in Chap. 15 of [24].

The Importance of Scheduling

Without doubt, the aforementioned research gap is not to be attributed to a lack
of interest in scheduling problems from industry. Good scheduling practice is of
paramount importance in the manufacturing industry. Good schedules increase
machine utilization, decrease manufacturing costs, and improve the fulfillment of
delivery dates to customers ([30, 43, 57], among many others). Modern industries
face a number of challenges that make scheduling as important as ever, to name
just a few: (1) increasing product variety and/or configurations to reach a wider
market, (2) reducing time to market, (3) shortening delivery dates to costumers,
(4) high pressure in costs from emerging markets, (5) reducing production lot
sizes, and (6) increasing frequency of orders from clients but of smaller size. All
of the above are indicative of a transition from a mass manufacturing setting to a
mass customization situation in a globalized economy. The optimized scheduling of
hundreds, if not thousands, of production orders on a busy production shop floor is
a must in order to meet these challenges.
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Furthermore, good schedules help to identify production bottlenecks, streamline
and stabilize production, minimize raw material shortages, and allow dealing with
priorities in production orders. The conclusion is clear: nowadays factories must
employ advanced scheduling tools in order to stay competitive amidst today’s
terribly competitive market.

Scheduling Is Hard

Sadly, scheduling models are remarkably hard to solve. In fact, most scheduling
problems belong to the NP-Hard class of computational problems [6]. This is
also true for most combinatorial optimization problems in many other fields inside
operations research like location, routing, planning, etc. However, it can be argued
that most real scheduling problems are particularly hard and in practice they seem
to be more difficult to solve than problems in other areas. Take for example the well-
known capacitated vehicle routing problem (CVRP) for which extensive literature
exists. According to Laporte [36] and to the most powerful exact methods recently
proposed for the problem [3], instances of up to 135 clients and 7 vehicles can
be solved to optimality. In comparison, for the job shop scheduling problem (to be
defined later), a wait of more than 20 years was needed to have small instances of 10
jobs and 10 machines solved to optimality by Brucker et al. [7], and no significant
advances have been made for the optimal solution of instances with just 20 jobs. By
all accounts, 20 jobs are way below the normal number of jobs being processed at
any time in a real industry where hundreds of tasks are being processed on a daily
basis.

Furthermore, real problems are much more complex than regular job shops and
have many side constraints and generalizations. There is little hope of solving real
problems to optimality. At this moment it is important to raise the question of
whether optimal solutions are required in practice or not. Scheduling models are
just that models of real problems that are, in the best case, good approximations of
the modeled reality. Real data is often put into estimates that are fed to the models.
In these circumstances it makes little sense to solve an approximated model with
estimated data to optimality. While it is important to study theoretical problems and
constructs and to propose exact approaches for such settings (as the insight gained
from those studies is invaluable), real problems often require a different approach.
This approach comes in the form of heuristics. Scheduling heuristics provide quick
and fast approximated solutions to even the most intricate scheduling models.
Moreover, and as it will be shown, such solutions are very close to optimality, at
least in the cases where the optimality gap can be calculated or estimated.

The Relevance of Heuristic Scheduling

So far it has been stated that scheduling problems are as varied as the manufacturing
reality they model and among the hardest combinatorial problems there are. This
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has resulted in a research gap between the theory and practice of scheduling.
Furthermore, there are many practical issues that arise when deploying scheduling
systems in manufacturing firms. The study of such scheduling systems is not as
rich as the theoretical works. Some references are Framinan and Ruiz, Framinan
and Ruiz [21, 22], and Framinan et al. [24, Chapters 13 and 14 and references
therein]. To cope with the variety of real settings, general and robust heuristics are
preferable to ad hoc exact approaches that are often tailored to specific problems
and objectives. In particular, metaheuristics are powerful heuristic templates that,
with little instantiation, are capable of solving a wide array of differing problems to
almost optimality in reduced CPU times. Still, the development of such methods
for practical applications is challenging and requires finesse as well as a deep
knowledge of the main constructs and results. Such is the focus of this chapter.
Examples from the most noteworthy basic heuristic procedures to the most advanced
metaheuristics will be highlighted. Our natural inclination is toward general simple
methods that include little to no problem-specific knowledge at all as they are the
most suited to practical applications. More general approaches to heuristic and
metaheuristic algorithms for scheduling problems are given by Morton and Pentico
[48], Hoos and Stützle [29, chap. 9], and Framinan et al. [24].

The rest of this chapter is organized as follows: section “Notation and Classi-
fication of Scheduling Problems” formalizes scheduling problems and provides a
succinct explanation of the common notation used in the literature. Section “Basic
Scheduling Heuristics” presents dispatching rules and simple heuristics for some
classical and basic scheduling problems. Two advanced scheduling heuristics
are presented in section “Advanced Heuristic Methods.” A brief introduction to
metaheuristics is provided in section “Metaheuristics,” along with the description
of a successful and simple methodology. Finally, section “Conclusions” concludes
this chapter and some pointers for future research are given.

Notation and Classification of Scheduling Problems

Most production scheduling models define a set N of n jobs with consecutive
indexes, i.e., N D f1; 2; : : : ; ng. The resources are modeled in the form of a set
M of m machines indexed as M D f1; 2; : : : ; mg. All sets are assumed to be
independent from each other. Subindexes j and k are used to refer to jobs and i

and l to machines. Some basic information associated with jobs and machines is as
follows:

• A processing route. For a given job j , the route is an ordered list of machines that
have to be visited in order for the job to be completed at the factory. If a job has
to visit three machines (e.g., 2, 1, and 6), it is said that it has three tasks. Usually,
and following this small example, the task in machine 1 cannot start until the
previous task of the same job in machine 2 has finished.

• Processing times. These are commonly denoted as pj or pij . This is the amount
of time that a given job j needs at machine i . This time is fixed and usually it



1202 R. Ruiz

cannot be interrupted. Machine i is busy while processing job j and cannot be
occupied during this time by any other job.

• Due dates and weights. These are denoted by dj and wj , respectively. The due
date models the time at which job j must be completed in the factory to be
delivered to the customer. The weight captures the relative importance of the job.
This data will be used later for the objectives to optimize.

Of course, a wealth of additional data might be needed for the jobs and machines,
depending on the real problem to solve. However, and for the sake of brevity, the
previous data suffices as a bare minimum. Furthermore, in the course of this chapter,
it is assumed that all data is known and deterministic. Most figures are usually
represented by nonnegative integers for simplicity. The literature on stochastic
scheduling is vast. The interested reader is referred to two recent monographs and
the references therein for more details [8, 69]. Additionally, the part on stochastic
models in Pinedo [57] is an excellent starting point.

Types of Scheduling Problems and Notation

The literature on production scheduling is mostly partitioned according to how the
machines are laid out on the production floor and also on the characteristics of the
processing routes of jobs. With this in mind, the main scheduling problems relate to
the following scenarios:

• Single machine problems. This is the simplest setting. There is a known number
n of jobs, and each one has to be processed on a single machine, following a
sequence. Most of the time only a vector pj with the processing times of the jobs
on this single machine is needed.

• Parallel machine problems. Picture the previous case but with m machines
disposed in parallel. Jobs still have to be processed by one single machine, but
in this case it has to be one out of the m available. Therefore, an assignment
problem precedes that of the sequencing problem among all jobs assigned to
each machine. The m parallel machines might be identical, uniform, or unrelated.
In the case of identical parallel machines, the processing times for the jobs are
independent of the machines. In the unrelated case, the processing time of a
job j might change depending on which machine it is assigned to. Therefore,
a processing time matrix pij is needed. The uniform parallel machine case is an
intermediate situation where machines are faster or slower for all jobs by a factor.

• Flow shops. Here the m machines are disposed in series and all jobs must visit
all machines in the same order. This means that the processing route is identical
for all jobs and is usually assumed to be 1 : : : ; m. Jobs are broken down into m

tasks with known processing times pij . As stated before, any task for a given job
is unable to start before the preceding task at the previous machine has finished.
A flow shop is a very common production machine on production or assembly
lines.
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• Job shops. Here the main difference from flow shops is that each job has
a potentially different processing route. Therefore not all jobs must visit all
machines and nor do they necessarily have to be in the same order.

• Open shops. This is a much less common setting in which each job has to visit a
given number of the m machines, but the route is open for the scheduling method
to determine.

• Hybrid shop environments. Most real problems are actually a combination of
the previous shop settings and parallel machines. Instead of having m machines
disposed in series, there are m stages where at each stage i , there might be a
single machine or mi parallel machines, be these identical, uniform, or unrelated.
This is, by far, the most complex and, at the same time, most general production
setting.

Note that the previous short list is a massive simplification. Other production
settings include assembly shops, manufacturing cells, flexible manufacturing sys-
tems (FMS), batch machines, and so on. In any case, the previous classification is
the most employed one. Following this classification, the most common notation
was proposed by Rinnooy Kan [63] and is a triplet ˛=ˇ=� . The first field ˛ covers
the previous scheduling types with the values 1, P, Q, R, F, J, and O for single
machine, identical parallel machines, uniform parallel machines, unrelated parallel
machines, flow shop, job shop, and open shop problems, respectively. For more
advanced layouts, like hybrid shops, there are extensions of this notation, like the
one provided by Vignier et al. [80] and reviewed in Ruiz and Vázquez-Rodríguez
[67]. The second field ˇ is concerned with the constraints present in the problem,
and the last field � captures the objective function to optimize. These two last fields
are succinctly summarized in the following sections.

Scheduling Constraints

As mentioned, there are as many scheduling constraints as product varieties
and types of factories. Following Framinan et al. [24], the different scheduling
constraints can be classified if they affect the processing of the jobs, operations,
transportation, storage, or others:

• Process constraints. In this broad category, it might be mentioned all situations
that affect the flow of the operations in the factory. Here one can find job/task
precedence constraints (ˇ D fchains; int ree; out t ree; t reeg depending on
whether the precedence constraints form chains, convergent trees, divergent trees,
or general trees, respectively). Here job/tasks might be subject to precedences,
i.e., some jobs might not start before others have finished. Another frequent
processing constraint is the setup times. Setup times model all nonproductive
operations that have to be performed at machines after finishing jobs and before
starting new ones. Cleaning, fixing, and reconfiguration are common setup
operations. Setup times might be anticipatory/non-anticipatory and/or sequence
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independent/dependent. As such, Sijk models the amount of time that it is needed
to setup machine i after processing job j and before processing job k. The
literature on scheduling with all sorts and types of setup times is incredibly large.
In parallel and hybrid layouts, jobs might have machine eligibility constraints,
indicating that not all available machines can process certain jobs. Machines
might also be subject to unavailability periods and/or breakdowns. Jobs might
also have more general processing routes requiring stage/machine skipping or
recirculation (revisiting one or more stages/machines more than once). This
last circumstance is indicated as ˇ D recrc. There are many more process
constraints than the ones mentioned here. Consult Pinedo [57] or Framinan et al.
[24, chap. 4] for a more detailed account.

• Operations constraints. On many occasions the operation or task of a job on a
given machine is more complicated. For example, tasks might be interrupted
arbitrarily to be repeated or resumed later, possibly after having processed a
task from a different job in between. Tasks from the same job might also be
split to be processed by different parallel machines. Tasks/jobs might be subject
to release dates, i.e., ˇ D rj indicates that job j might not start processing
at its first machine before time rj due to, for example, unavailability of raw
materials. Apart from release dates, there might be due dates, deadlines and
due windows, etc. Another frequent characteristic is that jobs might not be
allowed to wait in between machines (ˇ D nwt ). This is common in the
processing of prepared foods in order to avoid breaking the cold chain. At the
same time, there might be forced minimum waits for a job in between stages
(cooling down, drying off), maximum waiting times, waiting windows, or even
overlaps between consecutive tasks of a job. Similarly, processing times might be
subject to all types of additional situations, like learning, deterioration or position
dependency, etc.

• Transportation constraints. It is very common in real industries to have means
of transporting unfinished jobs between machines. The list here is endless as
one might have from simple manually operated pallet jacks for moving products
from machine to machine to forklift trucks or even complex automated guided
autonomous vehicles. Conveyor belts, handling robots, and other equipment are
very common too. Depending on the scenario, transportation might be modeled
as a simple fixed transportation time in between machines to very complex
scheduling-routing problems when the transportation is an essential part of the
process and transportation equipment is limited and expensive.

• Storage constraints. Similar to transportation constraints, production in course
has to be stored somewhere. Again, and depending on the real situation, storage
might be of no concern as space might be ample and/or the type of product being
produced small and easy to store. However, in other situations the handling of
unfinished products might be so challenging as to be a central constraint in the
factory. Imagine, for example, the production of commercial airplanes where
moving an airplane frame from one processing station to another is far from a
trivial matter.
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• Other constraints. Apart from machines one might have additional resources, like
special tools, fixtures, or even the personnel operating machines. This personnel
might have different degrees of skill. In some factories, machines might be
able to perform more than one operation in parallel. Manufacturing firms might
have more than one production center. Processing and/or setup times might be
controllable depending on the resources (i.e., personnel) dedicated to them. There
might be timing/shift constraints, safety concerns, etc. As indicated, the list of
potential situations in practice is very long.

Scheduling Objectives

Finally, field � is concerned with the scheduling objectives to optimize. In order to
understand these, there is a need for some additional notation:

• Cj is the completion time of job j in the shop. It models the time at which the
last task is completed at the last machine.

• Lj is a measure of the lateness of job j with respect to its due date dj . Lj D

Cj � dj.
• Tj is a measure of the tardiness of job j where Tj D maxfLj ; 0g.

This is just a small extract of the many possibilities. Similarly, earliness can be
defined when jobs finish before their due dates. From these definitions the two main
groups of objective functions are those related with completion times and those with
due dates:

• Completion time based. The most common one is the minimization of the
maximum completion time among the jobs, usually referred to as makespan
or Cmax D maxfC1; C2; : : : ; Cng. Makespan is mainly related to maximizing
machine utilization. The second most studied objective is the minimization of
the total flow time, defined as

P
C D

Pn
j D1 Cj.

• Due date based. The most common is the minimization of the total tardiness
of the jobs

P
T D

Pn
j D1 Tj. However, the weighted version or

P
wT D

Pn
j D1 wj Tj is more realistic as being tardy for some important jobs should be

considered over being tardy for irrelevant orders.

There are tens, if not hundreds, of potential objectives. A much more detailed
list is given in Chapter 5 of Framinan et al. [24]. Furthermore, the reality is often
multiobjective. The extension of the � notation for multiple objectives in scheduling
is detailed in T’Kindt and Billaut [73].

Let us now give a simple example of the F =prmu=Cmax problem or the
permutation flow shop problem with makespan criterion. The example with the
total flow time objective or F =prmu=

P
C will be used. There are five jobs and

four machines. The processing times are shown in Table 1.
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Table 1 Processing times
(pij ) of a flow shop problem
with five jobs and four
machines

Job (j )

Machine (i ) 1 2 3 4 5

1 29 37 95 85 65

2 30 62 59 11 55

3 27 21 70 62 67

4 2 6 82 80 57

Best Makespan : 451. Worst Flowtime: 2035
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C3=306 C4=386

C5=443
C2=449

C1=451
=Cmax

Fig. 1 Gantt chart for the permutation flow shop example with the best Cmax which corresponds
also with the worst possible

P
C value

The permutation flow shop is a problem of determining a sequence for the jobs so
there are 5Š D 120 possible schedules in this small example. If one calculates all of
them, the best makespan value we obtain is C �

max D 451 with the permutation or job
sequence ��

max D f3; 4; 5; 2; 1g. The worst makespan value is C w
max D 522 (15.74%

worse) resulting from the permutation �w
max D f1; 2; 4; 5; 3g. What is interesting

about this example is that the best flow time value is
P

C � D 1;464, resulting from
the permutation ��P

C
D f1; 2; 4; 5; 3g. As one can see, �w

max D ��P
C

, i.e., the worst
makespan solution is equal to the best flow time solution. Furthermore, the contrary
is also true. For this example, the worst flow time value is

P
C w D 2; 035 (38.93 %

worse than the best), resulting from the permutation �wP
C

D f3; 4; 5; 2; 1g. As one
can see, ��

max D �wP
C

. The conclusion is that the best possible makespan value
can result in the worst possible flow time and vice versa. The two permutations in
this example are depicted in Figs. 1 and 2, respectively. The completion times of
all jobs in the last machine have been indicated for further examination. While this
is a cherry-picked example, it is easy to find examples such as this for almost any
number of jobs and machines.
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Worst Makespan: 522. Best Flowtime: 1464
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C1=88 C4=304 C5=395C2=155 C3=522=Cmax

Fig. 2 Gantt chart for the permutation flow shop example with the best
P

C which corresponds
also with the worst possible Cmax value

Basic Scheduling Heuristics

In the early twentieth century, modern production plants started using scheduling
techniques to increase productivity. Human schedulers planned production manually
without any aid other than pen and paper. The situation today has not changed much
for most industries where basically spreadsheets are used to program production,
but simple rules are used to obtain effective schedules. These simple rules are often
referred to as list scheduling rules, dispatching rules, or priority rules. Some of
them will be briefly explained. More advanced dispatching rules will be explained
later.

Some Simple Dispatching Rules

Dispatching rules are usually forward heuristics where new tasks or jobs are
sequenced as they arrive or as their processing becomes feasible (i.e., all preceding
tasks have been already scheduled). A decision is made over a set of eligible tasks,
referred to as }. Some simple dispatching rules are the following:

• First Come First Served (FCFS): Here the job or task that entered the list of
eligible tasks first is scheduled, i.e., the eligible tasks are sequenced in a first in
first out (FIFO) order.

• Shortest Processing Time (SPT) First: The pending eligible with the shortest
processing time goes first, i.e., given m machines, the task k that satisfies the
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following expression is chosen: pik D minj}j
j D1

˚
pij

�
. While simplistic, SPT

results in the optimal solution for the single machine total flow time problem
(1jj

P
C ). The contrary rule to SPT is the longest processing time (LPT) first

rule.
• Earliest Due Date (EDD) First: This is a dispatching rule that considers due dates.

Basically the pending task with the earliest due date is scheduled first. EDD is
optimal for the problems 1jjTmax and 1jjLmax.

Note that these dispatching rules are extremely fast; all of them have a computa-
tional complexity of O.n log n/, n being the number of jobs or tasks to be scheduled.
They have many other advantages like their simplicity and ease of application.
Furthermore, they are easy to understand which is something valued by human
schedulers. There are literally hundreds of dispatching rules and they have been
comprehensively studied. It is suffice to cite just some of the exiting reviews in
Panwalkar and Iskander, Blackstone et al., Haupt, and Jayamohan and Rajendran
[4, 28, 31, 55].

An Application to the Parallel Machine Problem

In general, dispatching rules, albeit general, fast, and simple, are overly myopic and
produce subpar results, especially when compared to more elaborated constructs.
However, in some cases they provide strong solutions. The following example
applies to the identical parallel machine problem with makespan criterion or
P ==Cmax. In this problem only the assignment of jobs to machines is relevant, as
the sequence at each machine has no effect on the maximum completion time. There
are n jobs to be scheduled in m identical parallel machines with the only input data
being a vector with the processing times pj. The P ==Cmax is NP-Hard even for
two machines [39].

Real results from an exam scheduling problem of a big company in the USA
(Pearson VUE) are presented. This company has 5000 test centers in 175 countries
in which all types of certifications, admissions, and exams are taken. The problem
solved is the scheduling of different exams every week of a given year at each
center in the USA so as to minimize the number of hours that each center is open
to the public. Each center has a number of seats in which exams can be taken.
Therefore, each center is modelized as an identical parallel machine problem in
which the number of seats is the number of machines. The objective is to minimize
the makespan as this translates directly into a minimization of the opening hours.
The different exams are job types, and registrations for a given exam by users at a
given week are the jobs to be scheduled at the given center in that week. All 219
centers in the USA for the 52 weeks of 2012 were solved. This resulted in a total
of 11261 different identical parallel machine problems with 1,244,063 jobs in total.
The largest center had 308 machines (seats) available, and the biggest number of
jobs to solve in a given week and center was 638.
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The algorithm of choice is the aforementioned LPT, which for the parallel
machine case is simple. Jobs are ordered from longest to shortest processing times,
and the first m are assigned to the m parallel machines. Then, each job in the
ordered list is assigned to the first freed machine. This LPT is known to have a
worst-case performance guarantee of 4

3
� 1

3m
[25]. This means that for large m

values, the solution given by LPT should be at most around 33 % worse than the
optimal makespan. Now the results of the LPT with the solutions obtained by a
state-of-the-art solver (CPLEX 12.5) are compared. The experiments were run on
a computing cluster with 240 cores in total (XEON E5420 processors running at
2.5 GHz.) and 480 GBytes of RAM memory. Around 93 % of problems could be
solved to optimality and the average gap obtained was 0.57 %. However, more than
80 h of CPU time were needed in the cluster (time limit for each problem solved
was set to 300 s, which was reached in 851 cases). Comparatively speaking, the
LPT resulted in a gap in respect to the MIP optimal solution or lower bound of just
0.91 %. The total CPU time of the application of the LPT for all 11261 problems
was just 17.16 s on a single computer and most of this time was the processing of
the input data and generation of the solution files.

The conclusion is clear. For some problems, including real ones, the application
of simple dispatching rules can result in extraordinary performance in negligible
CPU times.

Elaborated Dispatching Rules

Many authors have explored more intricate procedures. A clear example is the
apparent tardiness cost (ATC) composite dispatching rule proposed by Vepsalainen
and Morton [79]. This rule is excellently explained in Pinedo [57]. The ATC
rule was presented for job shop problems with total weighted tardiness criterion
but has been successfully applied to different problems as well. The rule is
applied to all jobs and an index is calculated. The job with the highest index
is scheduled and then the rule is calculated again for the remaining n � 1 jobs.
In total ATC is computed n � .n C 1/=2 � 1 times resulting in a computational
complexity of O.n2/. The index is calculated for each job j, and each time

a machine is free as Ij .t/ D
wj

pj
� e

0

@
maxfdj � pj � t; 0g

Kp

1

A

where p is the
average of the processing times and K is a parameter that needs to be fixed. ATC
was expanded for the consideration of setup times by Lee et al. [38] resulting
in the apparent tardiness cost with setups or ATCS. Here the index is further

complicated: Ik.t; j / D wk

pk
� e

0

@
maxfdk � pk � t; 0g

K1p

1

A

� e

 

�
sjk

K2s

!

. As one can
easily see, the calculations quickly become cumbersome; the rule is also harder
to understand and to apply which basically defeats many of the advantages of
dispatching rules. The benefits are better performance and objective function
values.
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Advanced Heuristic Methods

Advanced heuristics usually include problem-specific knowledge exploiting theoret-
ical properties of scheduling problems. Alternatively, some methods aim at deriving
better schedules starting from previous schedules. These latter approaches have been
known as improvement heuristics. The distinction between basic or constructive
heuristics and improvement heuristics is not so clear on many occasions. In any case,
most of the time constructive heuristics have a natural stopping criterion, i.e., the
method stops when a complete schedule or sequence has been built. Improvement
heuristics don’t have such a direct stopping criteria.

Most improvement heuristics and metaheuristics (to be succinctly reviewed in the
next section) are strongly based on local search techniques. Local search is a heuris-
tic exploration technique with a strong methodological background ([29], among
many others). Local search requires at least the following ingredients: (1) A def-
inition of what is a neighboring solution of a sequence; (2) a way to explore the
neighbors of a solution; (3) an acceptance criterion, i.e., when a neighboring solution
must replace the current one; and (4) when and how to stop the local search. Usually
the main and most important issue is how to represent a solution and how to define a
neighborhood from that representation. In most scheduling problems, solutions are
indirectly represented as permutations of integers. The most employed neighbor-
hoods are swap and insert where two jobs exchange their positions in the sequence
in the case of swap and a job is extracted from its position and inserted into another
position in the case of insert. In the following section, a very successful heuristic
for the flow shop problem is detailed. It is based on the exploration of the insertion
neighborhood in a constructive phase. Later another effective heuristic is briefly de-
scribed but this time for the job shop problem and based on a different methodology
the decomposition of the scheduling problem into smaller subproblems.

The NEH Heuristic for the Permutation Flow Shop and Makespan
Criterion

The NEH heuristic of Nawaz et al. [49] is one of the most successful advanced
heuristics. It was originally proposed for the permutation flow shop with makespan
criterion (F =prmu=Cmax). It is powerful and capable, with hundreds of applications
and references to many scheduling problems. Reviews like those of Turner and
Booth [74], Taillard [71] or Ruiz and Maroto [64] recognize its capacity. The NEH
exploits the fact that jobs with large total processing times must be sequenced as
early as possible. The NEH consists of three steps:

1. The total processing times of the jobs in all machines are calculated: Pj DPm
iD1 pij ; j D .1; : : : ; n/.

2. Jobs are sorted in descending order of Pj , so that the first job is the one that has
the highest time requirements. These sorted jobs are stored in a list `.
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3. The first two jobs of the list `, referred to as `.1/ and `.2/, are extracted. The two
possible partial sequences made up from these two jobs are constructed and their
respective makespan values calculated. In other words, the two following partial
sequences are tested:

˚
`.1/; `.2/

�
and

˚
`.2/; `.1/

�
. From the two sequences, the one

with the minimum partial Cmax value is retained for the next iterations.
4. The main loop of the NEH starts here. At each iteration, the job at position k of

the list `, i.e., `.k/, k D .3; : : : ; n/ is extracted. This job `.k/ is inserted into all
possible solutions of the partial incumbent sequence, and the sequence resulting
in the lowest partial Cmax value is retained for the next iteration. For example,
let us suppose that the best partial sequence obtained up to a given point is
�p D

˚
`.1/; `.3/; `.2/

�
and that k D 4; therefore, job `.4/ has to be inserted in the

four possible positions of the partial sequence: �1
pC`.4/

D
˚
`.4/; `.1/; `.3/; `.2/

�
,

�2
pC`.4/

D
˚
`.1/; `.4/; `.3/; `.2/

�
, �3

pC`.4/
D
˚
`.1/; `.3/; `.4/; `.2/

�
, and �4

pC`.4/
D

˚
`.1/; `.3/; `.2/; `.4/

�
. For the next step (k D 5), the sequence with the lowest

partial Cmax value from the four previous possible sequences is retained.

As one can see, NEH is basically based upon insertions of jobs into a partial
sequence that is constructed step after step. Step 1 has a complexity of O.nm/. The
second step is just an ordering and takes O.n log n/. The third step requires just
two calculations of two small sequences and can be disregarded. Most CPU time is
needed by step 4. In step 4 there is a loop of n � 2 iterations where at each step k, k

insertions of job `.k/ are carried out into a partial sequence that contains k � 1 jobs,
and for each insertion one needs to calculate the Cmax value of k jobs (including
the inserted one). In total, n.nC1/

2
� 3 insertions are carried out, being n of these

complete sequences at the last iteration. Therefore, the computational complexity
of the NEH is O.n3m/. A closer look shows that when inserting the k-th job in
position, let us say, j , all Ci;h, h D fj � 1; j � 2; : : : ; 1g were already calculated in
the previous insertion and there is no need to recalculate. Taillard [71] exploited this
idea by which all insertions in a given step can be calculated in O.nm/ effectively
reducing the complexity of the NEH to O.n2m/. This faster variant is referred to as
NEHT or NEH with Taillard’s accelerations.

The NEH was computationally tested against 25 other heuristics, including other
more recent and complex heuristics in Ruiz and Maroto [64]. The experiments
demonstrated that the NEH is superior to all other tested methods and at the same
time much faster. This was supported by statistical analyses. In the results, NEH
showed an average percentage deviation from the best solutions known in the 120
instances of Taillard [72] of just 3.33 %. Although this is an average result, NEH
rarely goes beyond 7 %. Furthermore, NEH is actively used as a seed sequence for
metaheuristic techniques.

The NEHT was also evaluated by Rad et al. [58] with surprising results. For
example, in the 10 instances of the largest size (500 � 20) from the benchmark
of Taillard [72], NEHT managed to give an average percentage deviation from the
best known solutions (these solutions have been proved to be “almost optimal” with
very small gaps between the highest known lower bound and lowest known upper
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bound or best solution known) of just 2.24 %. Furthermore, this 2.24 % deviation
from a very close to optimum solution was achieved in an average of just 0.0773 s.
Extensions of the NEH presented in the same paper of Rad et al. [58] resulted
in much better performance, reaching an average percentage deviation from best
known solutions of just 1.4 % in CPU times under 2 s.

With these results, it is easy to see why the NEH is such an important and
widely studied heuristic. Studies about the NEH have been numerous over the years.
The papers of [10, 12, 13, 23, 32–35, 58] and more recently Fernandez-Viagas and
Framinan [17] are some examples. Furthermore, the NEH does not rely on specific
problem knowledge, and it is relatively easy to extend it and apply it to different
scheduling problems. Such extensions are numerous in the scheduling literature,
mainly over flow shop problems but also in hybrid settings and other problems.

A Brief Introduction to the Shifting Bottleneck Heuristic for the Job
Shop Problem

The shifting bottleneck heuristic or SBH for short was initially proposed by Adams
et al. [1] for the job shop problem and makespan minimization (F ==Cmax). Many
improvements on the initial SBH for the same problem were presented over the
following years. Additionally, SBH has been extended by many authors to other
objectives and problems. It is a very interesting method because it mimics the reality
of a production floor. In real factories one production stage or machine is usually
the bottleneck of the whole plant, i.e., productivity or the measured objective is hard
to improve unless the scheduling or capacity of this stage is improved. SBH tries
to optimize the schedule of the bottleneck machine first as the contribution of this
machine to the final makespan is large. Since in a job shop there are m machines and
jobs are made of many tasks with precedence relationships among them, scheduling
only the bottleneck machine is not straightforward. The procedure can be simply
described as follows:

1. Determine the bottleneck machine.
2. Schedule all previous tasks of the n jobs on the other machines to obtain the

release dates (rj) of the jobs on the bottleneck machine.
3. Schedule all subsequent tasks of the n jobs on the other machines to obtain the

due dates (dj) of the jobs on the bottleneck machine.
4. Schedule the bottleneck machine as a single machine problem with release dates

and due dates, minimizing the maximum lateness (1=rj ; dj = max Lj ).
5. Repeat all previous steps for the remaining m � 1 machines until all machines

have a sequence.

Note that the single machine problem is solved m times. The 1=rj;dj = max Lj

is in itself a hard problem. However, efficient methods do exist for its solution. In
particular, the original SBH heuristic of [1] uses the algorithm of [9]. Additional
details about the SBH procedure, including examples, are given in [57] and in [24].
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The performance of the SBH is outstanding, especially if one considers that the
job shop problem is incredibly hard to solve. Back at the time the authors were able
to solve problems of up to 50 jobs and 10 machines to optimality in some cases.
As a result, the literature on the SBH is incredibly large. More details about this
heuristic and many other related bottleneck decomposition methods are given in the
book of [51].

Metaheuristics

While heuristics are usually devised for specific problems with a given objective
function, they are, in principle, more generic. This distinction is far from clear as
many heuristics are indeed general as well, like the aforementioned NEH. In any
case, metaheuristics can be seen as general algorithmic templates that exist without
the particular problem or application. Additionally, metaheuristics are commonly
more demanding and CPU intensive than regular heuristics. The desired effect of
this additional computation is a better solution quality. Other common characteris-
tics of metaheuristics are mechanisms to escape local optimality and to reduce the
effect of the myopic nature of heuristic approaches by diversification mechanisms.
The field of metaheuristics is interdisciplinary and terribly prolific with literally
thousands of papers being published every year in many different fields, not to
mention the large number of monographs dedicated to them. Scheduling being an
important problem, the application of metaheuristics to scheduling is frequent. A
good starting point are the books of [15, 29].

Metaheuristics are roughly grouped into families or classes. Each family stems
from a basic metaheuristic template that, with relatively few modifications, can
be applied to a specific scheduling problem, and reasonable results might be
obtained. To obtain very high-quality solutions, more specific operators and local
search schemes are usually needed. This also results in slower methods. The
main categories are simulated annealing, tabu search, genetic algorithms, ant
colony optimization, scatter search, variable neighborhood search, GRASP and
iterated local search, etc. In the following section, the main constructs inside most
metaheuristic algorithms are described, to be followed by a brief description of a
successful metaheuristic that is at the same time simple: iterated greedy.

Main Concepts of Metaheuristics in Scheduling

Most metaheuristic classes require at least the instantiation of some of the following
elements:

• Representation of the solution. At the lowest level, solutions contain variables
and these might be continuous, discrete, binary, etc. A representation is just how
the variables are represented and arranged. In scheduling problems that require
permutations and an array or list of integers, each one representing a job is an
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indirect representation of the final solution. Such a solution is “scheduled” (i.e.,
starting and finish times for each job and/or task are calculated) in order to
calculate the desired objective function. For parallel machine problems where
only the assignment is relevant (e.g., the P ==Cmax), each job might have an
integer indicating the machine to which it is assigned to. The representation is
very important for the final performance of the metaheuristic.

• Initial solution or population generation. Most metaheuristics require an initial
solution to start the process. Population-based metaheuristics require a set of
solutions. The easiest procedure is to randomly generate these initial solutions.
Of course, this results in initial solutions of mediocre quality. The most com-
monly employed alternative is to use high-performance heuristics to generate
initial schedules.

• Intensification and diversification mechanisms. Initial solutions are worked on
through local search and/or other procedures like selection and crossover in ge-
netic algorithms. The objective is to find new and better solutions. There are many
procedures and techniques but all of these fall more or less into what is referred to
as intensification. To avoid stagnation in the search process, most metaheuristics
include diversification mechanisms by which existing solutions are disrupted
or altered (or new solutions are generated) in order to allow the intensification
procedures to work over different parts of the solution and search space.

• Acceptance criterion. New solutions generated through the intensification and
diversification processes have to be examined in order to decide if they replace
current incumbent solutions or not. The simplest scenario is when new solutions
are accepted if and only if they improve on the current or best objective function
value found so far during the search. This criterion leads to premature conver-
gence and stagnation, and most metaheuristic templates consider more elaborated
alternatives where worse solutions might be accepted, often temporarily.

• Termination criterion. Metaheuristics iterate continuously unless a user-
given termination criterion is met. For most metaheuristics, optimality is not
guaranteed. Furthermore, most applications of metaheuristics do not have
an indication of when an optimal solution has been found in order to stop
the search. Therefore, common termination criteria include a number of
iterations or a consecutive number of iterations without improvements (or small
improvements), elapsed CPU time, etc.

The previous operators are only a very small list where not even all of them might
be needed to construct a simple method. Furthermore, elaborated metaheuristics
might have many operators and procedures. Actually, in the last decade, many
natural or man-made processes have inspired a real tsunami of metaheuristic
methods. As a result there are algorithms that are referred to as particle swarm,
imperialist competitive, honey bees, fruit flies, and even more bizarre methods like
intelligent water drops or galaxy optimization. Currently, such “novel” methods are
being criticized. The papers of [70, 81] are two examples. In this chapter these
criticisms are supported and very successful, but at the same time really simple
metaheuristic is described.
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Iterated Greedy as an Example of a Simple- and High-Performing
Method

The first application of the concepts of iterated greedy (IG) to a scheduling problem
was presented by [65]. The authors dealt with the permutation flow shop problem
with makespan criterion (F =prmu=Cmax). Being a metaheuristic, IG starts from an
initial heuristic solution. Then three phases are iteratively applied until a termination
criterion is met. The first phase is a partial destruction of the current solution.
Some jobs are randomly removed from the permutation. The second phase is the
reconstruction of the (now) incomplete solution. All removed jobs are inserted,
one by one, into all positions in the partial solution using the NEH heuristic. Each
job is placed into the position resulting in the best objective function value. An
optional step is a local search each time a complete solution is obtained. This local
search is carried out in the insertion neighborhood until local optimality. The third
last step is an acceptance criterion. A detailed pseudoalgorithm listing is given in
Fig. 3.

As one can see, IG carries out intensification with the reconstruction and local
search operators and diversification with the destruction. The acceptance criterion is
a simplification of simulated annealing. With a constant temperature factor, worse
solutions are accepted with a probability that decreases with the quality of the new
solution.

The results of the IG method for the permutation flow shop problem are state-
of-the-art even today. According to the results of [65], IG was able to reduce
the average relative percentage deviation from the best known solutions in the
120 instances of [72] to just 0.44 % in little under a minute on average. It was
computationally and statistically demonstrated that IG produced better results than
competing methods. Later, [78] were able to further reduce this deviation to 0.22 %
using a simple island model parallel version of the IG.

IG has been applied to different scheduling problems with good results. Ruiz
and Stützle [66] extended the previous results with the consideration of sequence-
dependent setup times. IG for no wait and blocking flow shops were studied by
[54,62], respectively. IG showed excellent performance in no-idle and mixed no-idle
flow shops in [68] and [53]. Non-permutation flow shops were approached by [83].
Distributed scheduling problems have been solved with IG methods by [18, 40]. IG
also gives good results in other objectives aside from makespan like tardiness in [20]
or total flow time in [52], to name just a few. Multi-objective extensions of IG have
proven effective for Pareto flow shops without and with setups in [47] and in [11],
respectively. Parallel machine problems were successfully solved with IG methods
by [16]. Finally, hybrid flow shops were studied by [82] and complex realistic hybrid
flow shops by [75–77]. There are many other applications of the IG methodology
to other scheduling problems and also to several other combinatorial problems
as well.

What is noteworthy about all previous studies is that IG algorithms are shown
to produce state-of-the-art results that on many occasions are competitive or better
than those produced by other much more complex metaheuristics.
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Fig. 3 Iterated greedy (IG) algorithm (Adapted from [65]). random is a random number
distributed uniformly in the range Œ0; 1�. Temperature and destruct are the two parameters of IG

There are highly successful applications of different metaheuristics for prac-
tically every formulated scheduling problem. Many are listed in [24] and the
references therein.

Conclusions

In this chapter the scheduling field has been introduced, pointing out its relevance,
difficulty, and hardness. Scheduling problems are varied, hard, and difficult to
solve optimally. However, in many settings, obtaining approximated solutions of
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sufficient quality is within reach if modern heuristic methodologies are employed.
The notation of scheduling problems has been introduced. A succinct explanation of
simple dispatching rules is provided. An example that shows the lack of correlation
between otherwise seemingly correlated objectives has been presented which
again highlights the fact that scheduling problems are neither easy nor intuitive.
Furthermore, in a briefly summarized application, it has been shown how a very
simple dispatching rule can result in almost optimal solutions for real problems of
a large size. Even though elaborated and combined dispatching rules are powerful,
advanced heuristic methods are many times better. The NEH method for the flow
shop and the SBH for the job shop are the clearest examples. High-performance and
close-to-optimal solutions are perfectly possible in negligible CPU times. Finally,
in an ever-growing field, metaheuristics propose themselves as modern heralds of
flexibility, robustness, and finest solution quality. A summary of the iterated greedy
method has been presented which apart from the previous qualities manages state-
of-the-art results without unnecessary complexities in its design.

As for the future of scheduling heuristics, it is argued for even simpler and more
robust approaches, capable of solving hard and varied scheduling problems with
little to no instantiation and adaptation. Such frameworks and methodologies could
prove invaluable in closing the gap between the theory and practice of scheduling.

Cross-References

� Iterated Greedy
� Iterated Local Search
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Introduction to String Problems

Among string selection and comparison problems, there is a class of problems
known as strings consensus, where a finite set of strings is given and one is interested
in finding their consensus, i.e., a new string that agrees as much as possible with
all the given strings. In other words, the objective is to determine a string called
consensus, because it represents—in some way—all the given strings. The idea
of representation and of being in consensus can be related to several different
objectives listed in the following:

(i) the consensus is a new string whose total distance from all given strings is
minimum (closest string problem);

(ii) the consensus is a new string close to most of the given strings (close to most
string problem);

(iii) the consensus is a new string whose total distance from all given strings is
maximum (farthest string problem);

(iv) the consensus is a new string far from most of the given strings (far from most
string problem).

Computational intractability of the general strings consensus problem was first
proved in 1997 by Frances and Litman [7] and in 1999 by Sim and Park [28].

As a constring of the linear coding of DNA and proteins, many molecular biology
problems have been formulated as computational optimization problems involving
strings and sequences. Biological applications of computing distance/proximity
among strings occur mainly in two varieties. Some require that a region of similarity
be discovered, while other applications use the reverse complement of the region,
such as designing probes or primers. In the following, some relevant biological
applications are outlined.

Creating Diagnostic Probes for Bacterial Infections

Probes are strands of either DNA or RNA that have been modified (i.e., made either
radioactive or fluorescent) so that their presence can be easily detected. One possible
application of string problems arises in creating diagnostic probes for bacterial
infections [14, 21]. In this scenario, given a set of DNA strings from a group of
closely related pathogenic bacteria, the task is to find a substring that occurs in each
of the bacterial strings (as close as possible) without occurring in the host’s DNA.
Probes are then designed to hybridize to these target strings, so that the detection of
their presence indicates that at least one bacterial species is likely to be present in
the host.
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Primer Design

Primers are short strings of nucleotides designed such that they hybridize to
a given DNA string or to all of a given set of DNA strings with the aim of
providing a starting point for DNA strand synthesis by polymerase chain reaction
(PCR). The hybridization of primers depends on several conditions, including some
thermodynamic rules, but it is largely influenced by the number of mismatching
positions among the given strings, and this number should be as small as possible
[9, 10, 17].

Discovering Potential Drug Targets

Another biological application of string selection and comparison problems is
related to discovering potential drug targets. Given a set of strings of orthologous
genes from a group of closely related pathogens and a host (such as a human, crop,
or livestock), the goal is to find a string fragment that is more conserved in all or
most of the pathogens strings but not as conserved in the host. Information encoded
by this fragment can then be used for novel antibiotic development or to create
a drug that harms several pathogens with minimal effect on the host. All these
applications reduce to the task of finding a pattern that, with some error, occurs
in one set of strings (closest string problem) and/or does not occur in another set
(farthest string problem). The far from most string problem can help to identify a
string fragment that distinguishes the pathogens from the host, so the potential exists
to create a drug that harms several but not all pathogens [9, 10, 17].

Motif Search

A motif is a string that occurs approximately preserved as a substring in some/-
several of the DNA strings of a given set. Approximately preserved means that the
motif occurs with changes in at most t positions for a fixed nonnegative integer t .
The importance of a motif lies in its characteristic of being a candidate for substrings
of noncoding parts of the DNA string that have functions related to, e.g., gene
expression [9, 10].

For most consensus problems, Hamming distance is used instead of other
alternative measures, such as, for example, the editing distance. The biological
reasons justifying this choice are very well described and motivated by Lanctot et al.
in [14–16] and can be summarized claiming that the “edit distance is more suitable
to measure the amount of change that has happened, whereas the Hamming distance
is more suitable to measure the effect of that change.”

The remainder of this chapter is organized as follows. The next section lists
notation and definitions used throughout the paper. The following four sections are
devoted to the closest string, the close to most string, the farthest string, and the
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far from most string problem, respectively. All these problems are mathematically
formulated and their properties analyzed. The most popular solution techniques for
them are surveyed, along with the computational results obtained and analyzed
in the literature. The second last section reports computational results which
demonstrate empirically the efficiency of the state-of-the-art algorithms. Concluding
remarks and future directions are discussed in the last section.

Notation

Throughout this chapter, the following notation and definitions will be used:

• An alphabet † D fc1; c2; : : : ; ckg is a finite set of elements, called characters.
• si D .si

1; si
2; : : : ; si

m/ denotes a string of m characters (that is, of length m) over
alphabet †, i.e., si

j 2 †; j D 1; 2; : : : ; m.

• Given two strings si and sl on † such that jsi j D jsl j, dH .si ; sl / denotes their
Hamming distance and is given by

dH .si ; sl / D

jsi jX

j D1

ˆ.si
j ; sl

j /; (1)

where si
j and sl

j denote the character at position j in string si and in string sl ,
respectively, and ˆ W † � † ! f0; 1g is a predicate function such that

ˆ.a; b/ D

�
0; if a D bI

1; otherwise:

• For all consensus problems, each string s of length m over † is a valid solution.

The Closest String Problem (CSP)

Given a finite set of strings � on †, the problem is to find a center string s� 2 †m

such that the Hamming distance between s� and all strings in � is minimal; in other
words, s� is a string to which a minimal value d corresponds such that

dH .s�; si / � d; 8 si 2 �:

The closest string problem can be formulated as an integer linear program (ILP). In
fact, let †k � † be the set of characters appearing at position k in any of the strings
from �.

For each k D 1; 2; : : : ; m and j 2 Vk , let us define the following binary
variables:
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xck D

�
1; if character c 2 †k is used at position k of the solutionI

0; otherwise:

Then, the CSP admits the following ILP formulation:

min d

subject to:
X

c2†k

xck D 1 for k D 1; 2 : : : ; m

m �

mX

kD1

xsi
kk � d for i D 1; 2 : : : ; n

d 2 N
C;

xck 2 f0; 1g; for k D 1; 2; : : : ; m; 8 c 2 †k:

(2)

(3)

(4)

(5)

(6)

Equalities (3) guarantee that only one character is selected for each position
k 2 f1; 2; : : : ; mg. Inequalities (4) impose that if a character in a string si is not
in the solution defined by the x-variables, then that character will contribute to
increasing the Hamming distance from solution x to si . Finally, (5) forces d assume
a nonnegative integer value and (6) define the decision variables.

This problem was first studied in the area of coding theory [27] and has been
independently proved computationally intractable in [7, 15, 16].

In 2004, Meneses et al. [26] used a linear relaxation of the above-described
mathematical model to design a branch and bound algorithm. At each iteration,
the next node in the branching tree to be explored is the one with the smallest linear
relaxation objective function value (also known as the best-bound first strategy).
Once selected the next node and obtained an optimal fractional solution x0

ck 2 Œ0; 1�,
k D 1; : : : ; m, 8 c 2 †k , for the linear relaxation of the corresponding subproblem,
the algorithm branches on the fractional variable xck with maximum value of x0

ck .
The bounding phase is very important in any branch and bound algorithm: the better
is the computed bound, the smaller is the number of nodes that need to be explored
and that can therefore be pruned. For the bounding phase, Meneses et al. computed
an initial bound selecting one of the given input strings and modifying it until a local
optimal solution is found. The authors have empirically shown that their branch and
bound algorithm is able to solve in reasonable running times small-size instances
with 10–30 strings, each of which is 300–800 characters long.

Further exact methods proposed for the CSP are fixed-parameter algorithms [11,
20, 30] that are applicable only when the maximum Hamming distance among all
pairs of strings is small. In fact, since these algorithms are designed to solve the
decision version of the problem, it is necessary to apply them multiple times in
order to find an optimal solution that minimizes the Hamming distance.
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The first approximation algorithm for the CSP was proposed in [16] with a worst-
case performance ratio of 2. It is a simple algorithm that constructs an approximate
feasible solution in a pure random fashion. Starting from an empty solution, the
algorithm selects at random the next element to be added to the solution under
construction.

Better performance approximation algorithms proposed in the literature are
based on the linear programming relaxation of the previously described ILP model.
The basic idea consists in solving the linear programming relaxation of the ILP
model and in using the result of the relaxed problem to find an approximate
solution to the original problem. Following this line, [16] also proposed a 4

3
.1 C �/-

approximation algorithm (for any small � > 0) that uses the randomized rounding
technique for obtaining an integer 0–1 solution from the continuous solution for the
relaxed problem. The randomized rounding technique works by defining the value
of a Boolean variable x 2 f0; 1g to be x D 1 with a certain probability y, where
y is the value of the continuous variable corresponding to x in the relaxation of the
original integer programming problem. In 1999, Li et al. [17] used the rounding
idea to design a polynomial-time approximation scheme (PTAS). A PTAS is a
special type of approximation algorithm that, for each � > 1, yields a performance
guarantee of � in polynomial time. Thus, this can be viewed as a way of getting
solutions with guaranteed performance, for any desired threshold greater than one.
The PTAS proposed in [17] is also based on randomized rounding that here is
refined to check results for a large (but polynomially bounded) number of subsets of
indices. However, since a large number of iterations involve the solution of a linear
relaxation of an ILP model, the algorithm becomes impractical for any instance with
large strings. To efficiently deal with real-world scenarios and/or medium- to large-
sized problem instances, several heuristic and metaheuristic algorithms have been
proposed in the last few years.

In 2005, Liu et al. [18] designed a genetic algorithm and a simulated annealing
algorithm, both in their sequential and their parallel versions. Genetic algorithms
(GAs) are population-based metaheuristics that have been applied to find optimal
or near-optimal solutions to combinatorial optimization problems [8, 12]. They
implement the concept of survival of the fittest making an analogy between a
solution and an individual in a population. Each individual has a corresponding
chromosome that encodes the solution. A chromosome consists of a string of
genes. Each gene can take on a value, called an allele, from some alphabet. A
chromosome has an associated fitness level which is correlated to the corresponding
objective function value of the solution it encodes. Over a number of iterations,
called generations, GAs evolve a population of chromosomes. This is usually
accomplished by simulating the process of natural selection through mating and
mutation. For the CSP, starting from an initial randomly generated population, at
each generation 0 � t � number � generations of the Liu et al.’s GA, a
population P .t/ of popsize strings of length m is evolved, and the fitness function
to be maximized is defined as the difference m � dmax, where dmax is the largest
Hamming distance between an individual of the population P .t/ and any string in
�. The production of offspring in a GA is done through the process of mating or
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crossover, and Liu et al. used a multipoint crossover (MPX). In more detail, at a
generic generation t , two parental individuals x and y in P .t/ are randomly chosen
according to a probability which is proportional to their fitness. Then, iteratively
until the offspring is not complete, x and y exchange parts between two randomly
picked points. The resulting offspring have a new order of the strings, one part from
the first parent and the other part from the second parent. Afterward, a mutation
of any individual in the current population P .t/ is executed with some given
probability. During this phase, two positions are randomly chosen and exchanged
in the individual.

In their paper, Liu et al. proposed also a simulated annealing (SA) algorithm
for the CSP. Originally proposed in [13], in the optimization and computer science
research communities, simulated annealing is commonly said to be the “oldest”
among the metaheuristics and surely one of the first techniques that had an explicit
strategy to escape from local minima. Its fundamental idea is to allow moves
resulting in solutions of worse quality in terms of objective function value than
the current solution (uphill moves) in order to escape from local minima. The origin
of simulated annealing and the choice of the acceptance criterion of a better quality
solution lie in the physical annealing process that can be modeled by methods based
on Monte Carlo techniques. One of the early Monte Carlo techniques for simulating
the evolution of a solid in a heat bath to thermal equilibrium is due to [24], who in
1953 designed a method that iteratively (until a stopping criterion is met) generates
a string of states of the solid in the following way. At a generic iteration k, given a
current state i of the solid (i.e., a current solution x),

• Ei is the energy of the solid in state i (objective function value f .x/).
• a subsequent state j (solution x) is generated with energy Ej (objective function

value f .x/) by applying a perturbation mechanism such as displacement of a
single particle (x is a solution “close” to x);

• if Ej � Ei < 0 (i.e., x is a better quality solution), j (x) is accepted; otherwise,
j (x) is accepted with probability given by

exp

�
�

Ej � Ei

kBTk

� �
exp

�
�

f .x/ � f .x/

kB � Tk

��
;

where Tk is the heat bath temperature and kB is the Boltzmann constant.

As the number of performed iterations increases, the current temperature Tk is
decreased, resulting in a smaller probability of accepting not improving solutions.
For the CSP, Liu et al.’s SA sets the initial temperature T0 to m

2
. The current

temperature Tk is reduced every 100 iterations according to the “geometric cooling
schedule” that is, TkC100 D � � Tk , where � D 0:9. The stopping criterion is to
reach a current temperature less than or equal to 0.001. Despite the interesting ideas
proposed in [18], the experimental analysis involves only small instances with up to
40 strings of length 40.
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For the special case of j�j D 3 and j†j D 2, [19] designed an exact approach
called distance first algorithm (DFA), whose basic idea is to let the Hamming
distance dH .s�; si /, i D 1; 2; 3, be as close as possible. The algorithm decreases
the distance between the string that is farthest to the other two strings and solution
s� while increasing the distance between the string that is closest to the other two
strings and solution s�. For the general case, the authors proposed a polynomial-time
heuristic resulting from a combination of local search strategies inspired by [26] and
an approximation algorithm called Largest Distance Decreasing Algorithm (LDDA)
which is based on similar ideas as DFA.

More recently, Tanaka [29] proposed a novel heuristic (TA) based on the
Lagrangian relaxation of the ILP model of the problem that allows to decompose
the problem into subproblems, each corresponding to a position of the strings.
The proposed algorithm combines a Lagrangian multiplier adjustment procedure
to obtain feasibility and a tabu search as local improvement procedure. In [4], Della
Croce and Salassa described three relaxation-based procedures. One procedure (RA)
rounds up the result of continuous relaxation, while the other two approaches (BCPA
and ECPA) fix a subset of the integer variables in the continuous solution at the
current value and let the solver run on the remaining (sub)problem. The authors
also observed that all relaxation-based algorithms have been tested on rectangular
instances, i.e., with n � m, and that the instances such that n � m are harder
to be solved due to the higher number of constraints imposed by the strings,
which enlarges the portion of non-integer components in the continuous solution
of the problem. In the attempt to overcoming this drawback, Croce and Garraffa
[3] designed a multistart relaxation-based algorithm (called the selective fixing
algorithm) that for a predetermined number of iterations takes a feasible solution
as input and iteratively selects variables to be fixed at their initial value until the
number of free variables is small enough that the remaining subproblem can be
efficiently solved to optimality by an ILP solver. The new solution found by the
solver can then be used as initial solution for the next iteration. The authors have
experimentally shown that their algorithm is much more robust compared to the
state-of-the-art competitors and is able to solve a wider set of instances of different
types, including those with n � m.

The Close to Most String Problem (CTMSP)

The closest string problem can be seen as a special case of the so-called close
to most string problem (CTMSP) that consists in determining a string close to
most of the strings in the input set �. This can be formalized by saying that,
given a threshold t , a string s� must be found maximizing the variable l such
that

dH .s�; si / � t; for si 2 P � † and jP j D l :
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max
nX

iD1

yi

subject to:
X

c2†

xck D 1 for k D 1; : : : ; m

mX

kD1

xsi
kk � m � yi � t for i D 1; : : : ; n

xck; yi 2 f0; 1g

(7)

(8)

(9)

Constraints (8) ensure that for each position k of a possible solution, exactly one
character from †k is chosen. Constraints (9) ensure that yi can only be set to 1 if
and only if the number of differences between si 2 � and the possible solution (as
defined by the setting of the variables xck) is less than or equal to t . Remember, in
this context, si

k denotes the character at position k in si 2 �.
Despite its similarity with the CSP, the CTMSP has not been widely studied.

In [2] it was proved that this problem has no polynomial-time approximation scheme
(PTAS) unless NP has randomized polynomial-time algorithms.

The Farthest String Problem (FSP)

Given a finite set of strings � over alphabet †, a problem complementary to the
CSP is that of finding a string s� 2 †m farthest from the strings in �. This type of
problem can be useful in situations such as finding a genetic string that cannot be
associated to a given number of species.

Like the CSP, the farthest string problem can be formulated mathematically in
form of an ILP, where both decision variables and constraints have an interpretation
which is contrary to the one in the CSP:

max d

subject to:
X

c2†k

xck D 1 for k D 1; 2 : : : ; m

m �

mX

kD1

xsi
kk � d for i D 1; 2 : : : ; n

d 2 N
C;

xck 2 f0; 1g; for k D 1; 2; : : : ; m; 8 c 2 †k:

(10)

(11)

(12)

(13)

(14)
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The computational intractability of the FSP was demonstrated in [16], where it
was proved that the problem remains intractable even for the simplest case where
the alphabet has only two characters.

Despite its inherent computational intractability, it has be shown in [16] that
there is a PTAS for the FSP. The algorithm is based on the randomized round-
ing of the relaxed solution of the above-reported ILP and uses the randomized
rounding technique together with probabilistic inequalities to determine the max-
imum error possible in the solution computed by the algorithm. Note that, the
mathematical formulation of FSP is quite similar to the one used for the CSP,
with only a change in the optimization objective, and the inequality sign in the
constraint

m �

mX

j D1

xsi
j j � d; i D 1; 2; : : : ; n:

Thus, to solve the problem using an ILP formulation, one can use similar tech-
niques to those employed for solving the CSP. In 2011 [31] and more recently
in 2015 Zörnig [32] proposed a few integer programming models for some
variants of the farthest string problem and the closest string problem. The number
of variables and constraints is substantially less compared with state-of-the-art
integer linear programming models, and the solution of the linear programming
relaxation contains only a small proportion of non-integer values, which consid-
erably simplifies both a subsequent rounding process and a branch and bound
procedure.

The Far From Most String Problem (FFMSP)

A problem closely related to the farthest string problem is the far from most string
problem (FFMSP). It consists in determining a string far from most of the strings in
the input set �. This can be formalized by saying that, given a threshold t , a string
s� must be found maximizing the variable l such that

dH .s�; si / � t; for si 2 P � † and jP j D l :

In [1], the FFMSP has been mathematically formulated as an ILP. In fact, by
defining a Boolean variable xck for each position k (k D 1; 2 : : : ; m) of a possible
solution and for each character c 2 †k and a Boolean variable yi (i D 1; 2 : : : ; n)
for each of the n input strings provided in set �, the FFMSP can be stated as the
following ILP:
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max
nX

iD1

yi

subject to:
X

c2†k

xck D 1 for k D 1; 2 : : : ; m

mX

kD1

xsi
kk � m � t � yi for i D 1; 2 : : : ; n

xck; yi 2 f0; 1g

(15)

(16)

(17)

Constraints (16) ensure that for each position k of a possible solution, exactly
one character from †k is chosen. Constraints (17) ensure that yi can only be set to 1
if and only if the number of differences between si 2 � and the possible solution (as
defined by the setting of the variables xck) is greater than or equal to t . Remember,
in this context, si

k denotes the character at position k in si 2 �.
Despite the similarity, it can be shown [16] that the FFMSP is much harder to

approximate than the FSP, due to the approximation preserving reduction to FFMSP
from the independent set problem, a classical and computationally intractable
combinatorial optimization problem. In particular, [16] demonstrated that for strings
over an alphabet † with j†j � 3, approximating the FFMSP within a polynomial
factor is NP-hard.

The first attempt in the direction of the design of heuristic methods to efficiently
solve the FFMSP was done in [22, 23], who proposed a heuristic algorithm
consisting of a simple greedy construction followed by an iterative improvement
phase. Later, [6] designed a simple GRASP, recently improved in [25]. Mousavi
et al. noticed that the search landscape of the FFMSP is characterized by many
solutions having the same objective value. Consequently, local search is likely to
visit many suboptimal local maxima. To efficiently escape from these local maxima,
Mousavi et al. devised a new hybrid heuristic evaluation function and used it in
conjunction with the objective function when evaluating neighbor solutions during
the local search phase in the GRASP framework.

Ferone et al. [5] designed the following pure and hybrid multistart iterative
heuristics:

• a pure GRASP, inspired by [6];
• a GRASP that uses forward path-relinking for intensification;
• a pure VNS;
• a VNS that uses forward path-relinking for intensification;
• a GRASP that uses VNS to implement the local search phase; and
• a GRASP that uses VNS to implement the local search phase and forward path-

relinking for intensification.
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The algorithms were tested on several random instances, and the results showed
that the hybrid GRASP with VNS and forward path-relinking always found much
better quality solutions compared with the other algorithms, but clearly with higher
running times as compared to the pure GRASP and the hybrid GRASP with forward
path-relinking. The best objective function values found by GRASP and its hybrids
were when the construction phase was more greedy than random. The integration of
forward path-relinking as an intensification procedure in the pure metaheuristics was
beneficial in terms of solution quality. A further investigation conducted, studying
the empirical distributions of the random variable time-to-target-solution value,
revealed that, given any fixed amount of computing time, GRASP with forward
path-relinking has an empirically higher probability than all competitors of finding
a target solution.

In [1], besides the first linear integer programming formulation for the FFMSP
described above (15), (16), and (17), a hybrid ant colony optimization approach
has been proposed. This hybrid approach consists of two phases. A first phase
applies ant colony optimization until the convergence of the pheromone values is
reached. After this first phase, the algorithm possibly applies a second phase in
which the hybridization with a mathematical programming solver takes place. Both
the linear integer programming formulation and the hybrid ant colony algorithm
have compared to the most performing hybrid GRASP with path-relinking, and
computational results on a large set of randomly generated test instances have
indicated that the hybrid ACO is very competitive.

A Simple ILP-Based Heuristic

In the following we present the results of a quite simple ILP-based heuristic which
can be applied to all four problems described before: the closest string problem
(CSP), the clost to most string problem (CTMSP), the farthest string problem (FSP),
and the far from most string problem (FFMSP). The heuristic is based on the ILP
models of the four problems. It works as follows. Given a fixed computation time
limit (tlimit), maximally half of this computation time is given to an ILP solver for
tackling the mixed integer linear problem (MILP) that is obtained by relaxing the
xck-variables involved in all four ILP models. The used ILP solver returns the best
solution found in the given computation time. Note that this solution may, or may
not, correspond to the optimal MILP solution. The fractional values of the xck-
variables after termination of the solver are henceforth denoted by x0

ck . In the second
phase of the heuristic, the corresponding ILP models are solved in the remaining
computation time, with the following additional constraints:

xck D 1 for k D 1; : : : ; m; c 2 †k; x0
ck D 1 (18)

In other words, whenever a variable xck in the best-found MILP solution has a value
of 1, this value is fixed for the solution of the ILP model.
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Experimental Evaluation

The heuristic described above is compared, in the case of all four problems, with the
application of the ILP solver to the original ILP models. Moreover, a simple greedy
algorithm was applied. This greedy algorithm generates a solution by selecting for
each position of the solution string the letter which, in the case of the CSP and
the CTMSP, has the least number of appearances at this position in the set of
input strings and which, in the case of the FSP and the FFMSP, has the highest
number of appearances at this position in the set of input strings. The greedy
algorithm is henceforth denoted by GREEDY. As (M)ILP solver we used IBM ILOG
CPLEX V12.1. The experimental results were obtained on a cluster of PCs with
“Intel(R) Xeon(R) CPU 5160” CPUs of four nuclei of 3000 MHz and 4 GB of
RAM. Moreover, CPLEX was configured for single-threaded execution. Depending
on the problems, we used two different computation time limits: tlimit D 200 s and
tlimit D 3600 s per problem instance. The different applications of CPLEX and
the ILP-based heuristic, respectively, are named accordingly: CPLEX-200, CPLEX-
3600, HEURISTIC-200, and HEURISTIC-3600.

All the algorithms described above were applied, in the context of all four
problems, to a set of benchmark instances that was originally introduced in [5]
for the FFMSP. This set consists of random instances of different size. More
specifically, the number of input strings .n/ is in f100; 200g, and the length of the
input strings .m/ is in f300; 600; 800g. In all cases, the alphabet size is four, that
is, j†j D 4. For each combination of n and m, the set consists of 100 random
instances. This makes a total of 600 instances. Note that, in the context of the
CTMSP and the FFMSP, a value for parameter t must be specified before running
the algorithm(s). However, a sensible choice of t is not trivial. For example, in
the context of the CTMSP, the lower the value of t , the easier it should be, for
example, for CPLEX to solve the problem to optimality. In order to be able to choose
meaningful values for t , the following experiments were executed. CPLEX was
applied to each problem instance—both concerning the CTMSP and the FFMSP—
for each value of t 2 f0:05; 0:02; : : : ; 0:95 mg. This was done with a time limit
of 3600 s per run. The corresponding optimality gaps (averaged over 100 problem
instances) and the number of instances (out of 100) that was solved to optimality are
graphically presented in Fig. 1. The results reveal that, in the case of the CTMSP,
the problem becomes difficult for approx. t � 0:72 m. In the case of the FFMSP, the
problem becomes difficult for approx. t � 0:78 m. Therefore, the following values
for t were chosen for the final experimental evaluation: t 2 f0:65; 0:7; 0:75 mg in
the case of the CTMSP and t 2 f0:75; 0:8; 0:85 mg in the case of the FFMSP.

The numerical results for the CSP are shown in Table 1. They are presented as
averages over the 100 instances for each combination of n (the number of input
strings) and m (the length of the input strings). For all three algorithms, we provide
the values of the best-found solutions (averaged over 100 problem instances) and
the computation time at which these solutions were found. In the case of CPLEX-
200, the average optimality gap is additionally provided. The results clearly show
that HEURISTIC-200 outperforms both GREEDY and CPLEX-200.
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Fig. 1 Justification for the choice of parameter t in the context of the CTMSP and the FFMSP.
(a) Average optimality gap (in percent) of CPLEX for the CTMSP. (b) Number of instances solved
(out of 100) by CPLEX for the CTMSP. (c) Average optimality gap (in percent) of CPLEX for the
FFMSP. (d) Number of instances solved (out of 100) by CPLEX for the FFMSP



42 Selected String Problems 1235

Table 1 Numerical results for the CSP

GREEDY HEURISTIC-200 CPLEX-200

n m Value Time Value Time Value Time Gap

100 300 228:55 <0:009 213:33 10:79 213:48 10:53 0:88

100 600 446:91 <0:009 422:90 7:36 423:06 5:22 0:47

100 800 590:08 <0:009 562:40 6:86 562:52 7:19 0:36

200 300 235:02 <0:009 219:99 12:74 220:03 33:42 1:38

200 600 457:19 <0:009 434:33 14:03 434:36 67:29 0:78

200 800 604:49 <0:009 576:95 11:59 577:01 87:03 0:60

Table 2 Numerical results for the FSP

GREEDY HEURISTIC-200 CPLEX-200

n m Value Time Value Time Value Time Gap

100 300 221:67 <0:009 236:53 4:46 236:41 9:34 0:68

100 600 455:15 <0:009 476:55 7:13 476:39 7:10 0:38

100 800 611:61 <0:009 636:58 10:13 636:45 9:09 0:27

200 300 215:74 <0:009 230:11 9:29 230:14 25:72 1:24

200 600 443:88 <0:009 465:68 10:81 465:59 53:41 0:67

200 800 596:41 <0:009 622:81 10:52 622:72 60:49 0:51

Similar conclusions can be drawn in the case of the FSP, for which the results
are presented in Table 2. Except for one case (n D 200, m D 300), HEURISTIC-200
outperforms both GREEDY and CPLEX-200.

In the case of the CTMSP, both the ILP-based heuristic and CPLEX were applied
with computation time limits 200 and 3600 CPU seconds. Therefore, Table 3
contains results for HEURISTIC-200, HEURISTIC-3600, CPLEX-200, and CPLEX-
3600. The following observations can be made:

• Both CPLEX and the ILP-based heuristic greatly outperform GREEDY.
• When the problem is rather easy—that is, for a setting of t D 0:75 m—CPLEX

has usually slight advantages over the ILP-based heuristic. This is the case
especially for the instances with larger number of input strings (n D 200).

• With growing problem difficulty, the ILP-based heuristic starts to outperform
CPLEX. In particular, for a setting of t D 0:65 m, the differences in the
qualities of the obtained solutions between the ILP-based heuristic and CPLEX
are significant.

Not surprisingly, the same observations can be made in the context of the FFMSP,
for which the results are provided in Table 4. As the considered benchmark instances
were originally used for the FFMSP, we are able to compare to current state-of-the-
art results for this problem (see [1]). This comparison is graphically presented in
Fig. 2 for all instances concerning the interesting cases t D 0:8 m and t D 0:85 m.
The results show that, for t D 0:8 m, HEURISTIC-3600 is generally outperformed
by the other state-of-the-art methods. However, note that when the instance size
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Fig. 2 Graphical representation of the comparison between HEURISTIC-3600 and the current
FFMSP state-of-the-art methods (GRASP+PR, ACO, and ACO+CPLEX) for t D 0:8 m (see (a))
and t D 0:85 m (see (b))

(in terms of the number of input strings and their length) grows, HEURISTIC-3600
starts to produce better results than the competitors. In the case of t D 0:85 m,
which results in more difficult instances than t D 0:8 m, HEURISTIC-3600 clearly
outperforms the current state-of-the-art methods.

Conclusions

The goal of this chapter was to provide an overview of some string selection and
comparison problems, with special emphasis on the optimization and operational
research perspective. Besides mathematical models that can be used to find exact
solutions only up to a certain instance size, there are many approximate techniques,
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proposed by researchers from several heterogenous communities, which are more
or less efficient, depending on the input data and the type of information they make
use of. Not surprisingly, generally there is no single best approach that wins in every
aspect. Therefore, we proposed a simple ILP-based heuristic that can be used for
any of the four considered problems. We have shown that this heuristic outperforms
both a general greedy algorithm and the application of an ILP solver (CPLEX) to
the original ILP models. In the case of the far from most string problem, we were
even able to show that this simple heuristic is able to produce state-of-the-art results
for instances which are intrinsically difficult to be solved.

Cross-References

�Genetic Algorithms
�GRASP
�Variable Neighborhood Descent
�Variable Neighborhood Search
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Abstract

Supply chain management (SCM) is related to the management of all activities
along a network of organizations to provide a good or a service to final customers.
The efficiency of these activities can have a great impact on customer‘s satisfac-
tion and cost reduction. However, SCM is not just the sum of activities along
the supply chain but, instead, it must consider the organization, supervision,
and control of all activities in the chain from an integrated and collaborative
perspective aiming to provide a competitive advantage. From this point of
view, an increase in the dimension and complexity of the decision problems
involved is expected, as several actors with different goals must be considered
to administrate efficiently the activities within the supply chain.
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This chapter briefly reviews the main concepts of SCM, identifying relevant
decision and optimization problems and discussing possible solution approaches.
Heuristics and metaheuristics are two of the best optimization tools to be used
in solving and providing business insights for the SCM problems. This chapter
also describes some successful metaheuristic approaches to SCM and it examines
future research trends. A large number of applications of metaheuristics to SCM
integrating new subjects, such as open and big data, smart cities, and online
decision-making, just to mention a few, are foreseen.

Keywords
Supply chain management � Optimization problems � Metaheuristics

Introduction

Supply chain management (SCM) consists in integrating processes by linking
major business functions from a particular company as well as across companies
with business relationships. SCM is more than just summed up of a series of
interconnected activities among business; it consist of integrated and collabora-
tive processes within a clear business model that leads to a more cohesive and
efficient performance of companies and better customer services. Being able to
optimize the activities and processes along a supply chain is strategical for most
businesses.

The activities and processes in the supply chain management include topics like
location and network design, sourcing and inventory strategies, manufacturing and
resource strategies, sustainability and green strategies, and also transportation and
distribution strategies. At the operational level, we can find different topics as for
example customer service management, demand management, returns management
etc. To efficiently manage these areas, in many situations large-scale complex
combinatorial optimization problems must be solved in a very effective way to be
able to answer the increasingly demanding market.

Companies like INDITEX, AMAZON, DELL, etc. (just to mention some)
have used and applied the concept of supply chain management to improve their
processes and customer service with great success. These companies manage all
activities along the supply chain in a collaborative way with the final objective to
serve efficiently the final customer.

This chapter argues that metaheuristics can be an outstanding tool to help in the
SCM decision-making. On the one hand, problems associated with SCM are becom-
ing more complex and bigger causing greater impact on business performance. On
the other hand, metaheuristics have attributes (as accuracy, speed, simplicity, and
flexibility [1]) that can help dealing with problems that have arisen in SCM.

The objective of the chapter is to emphasize previous and potential metaheuris-
tic’s applications to SCM problems. We also revised some of the most relevant work
in the literature that combines and apply metaheuristics to problems in the area of
supply chain management.
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The chapter is organized as follows: The first two sections describe main
concepts and decision-making problems in SCM. Next, relevant applications of
metaheuristics to different decision-making problems in SCM are presented and
discussed. Relevant current and future topics in SCM where heuristics and meta-
heuristics can have a significant impact on the management of a supply chain are
also examined. Finally, conclusions are drawn.

What Is Supply Chain Management?

Supply chain management has been a very popular topic in the last decade not
only in business but also in academia. However, it is still possible to find some
ambiguity in the concept and definition of SCM [2]. In this section, the most relevant
definitions are presented and discussed to clarify SCM concepts. This definition will
help us to identify the optimization problems within SCM and consequently the
applications of Metaheuristics to this area.

A supply chain is a set of organizations, activities, people, resources, and
products that interact to provide a service or a good to a customer, from the raw
material initial stages to the end users and backward when reverse logistics is
relevant. Therefore, it is a network of elements interacting with each other with
the objective of satisfying customers while minimizing costs. The management of
all activities along the supply chain is known as supply chain management. These
activities include logistics, manufacturing and operations, sourcing, distribution,
sales and marketing, accounting and finance, product design, and information
technology activities among others that can be specific for each type of industry.
The supply chain is related to the flow of products and goods along the chain, but
information flow also plays a relevant role in its efficient management. Another
related matter in SCM is the collaboration and integration of the activities in the
chain since decisions in one element affect directly the whole supply chain. Thus,
decision based on suboptimization approaches may lead to enormous inefficiencies
in the chain. Consequently, the decision-making problems in SCM are usually more
complex and have greater dimensions than other decision problems in traditional
individual businesses.

In the literature, several definitions can be found. However, in this chapter, only
two of the most commonly mentioned are analyzed.

The Council of Supply Chain Management Professionals (CSCMP) defines SCM
as: “Supply Chain Management encompasses the planning and management of
all activities involved in sourcing and procurement, conversion, and all logistics
management activities. Importantly, it also includes coordination and collaboration
with channel partners, which can be suppliers, intermediaries, third-party service
providers, and customers. In essence, supply chain management integrates supply
and demand management within and across companies” [2].

Simchi-Levi et al. [3] describes SCM as: “. . . a set of approaches utilized
to efficiently integrate suppliers, manufacturers, warehouses, and stores, so that
merchandise is produced and distributed in the right quantities, to the right locations,
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and at the right time, to minimize system-wide costs while satisfying service level
requirements.”

Janvier-James [4] presents a discussion on the lack of consensus in the definitions
of SCM, a list of definitions found in the literature, and review on the theory and
practice of SCM. In chapter 2 of [5], it can be found a history of SCM and also a
discussion on its definition.

When focusing on the common aspects of these definitions, it is possible to see
that a supply chain can be understood as a set of interconnected entities and activities
which are concerned with the plan, coordination, and control of materials, parts,
and finished goods from suppliers to customers. An essential aspect of a successful
management of these activities is the integration, cooperation, and coordination of
the decision-making processes as well as in the sharing of information throughout
the entire supply chain. Integrated decisions in SCM are related to cross functional
planning. SCM coordination attempts to maintain an efficient and smooth flow
of products and services. An effective SCM is not just a sum of management
individual activities, but it must take into account the effect of their interrelation,
seeking collaborative actions among the chain. But the importance of concepts as
performance and quality service cannot be ignored. The ideas around integration
and collaboration arise to improve the customer service and the performance by
taking advantages of the synergies among the elements of a supply chain and to
have a common objective and align the targets to satisfy the final customer.

In the literature, there is still some uncertainty about the definitions of SCM and
Logistics Management (LM). Although, these two areas have a serious overlap;
LM is a functional area of business while SCM crosses the businesses borders
including relationships and interactions from different entities, as providers and
customers for example. The CSCMP defines Logistics Management as follows:
“Logistics management is that part of SCM that plans, implements, and controls
the efficient, effective forward and reverses flow and storage of goods, services and
related information between the point of origin and the point of consumption to
meet customers’ requirements” [2].

Other similar definition can be found in Johnson et al. [6]: “Logistics define the
entire process of materials and products moving into, through, and out of a firm. In-
bound logistics covers the movement of materials received by the suppliers. Material
management describes the movements of materials and components within a firm.
Physical distribution refers to the movement of goods outwards from the end of the
assembly line to customers. Finally, SCM is a larger concept than logistics, dealing
with managing both the flow of materials and the relationships among channel inter-
mediaries from the point of origin of raw materials through to the final consumer.”

Supply chain management gives a particular emphasis on the integration of the
entire supply chain, including the logistics, marketing, operations and other activ-
ities within the organization, and with suppliers, suppliers of suppliers, customers,
and customers of customers, etc. Therefore, in this chapter, we focus on cross
functional aspects of the business collaboration and integrated activities as well as
the decisions in SCM.
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Decision-Making Problems in SCM

The decision-making in SCM is very complex as it may involve a large number
of elements and processes, different businesses, or economic functions within each
business. This section presents some general and relevant decision-making problems
in SCM and relates them to optimization problems. Depending on the segment
of the economy or industry sector, the SCM may have specific characteristics,
sharing common difficulties. However, this chapter focuses on problems dealing
with integration and collaboration issues along the supply chain.

The decision-making problems may be categorized into two groups: plan-
ning (long-term decision-making) and execution (tactical and short-term decision-
making).

In planning, the most relevant decisions relate to the following areas: network
design, sourcing and inventory strategies, manufacturing and resource strategies,
sustainability and green strategies, transportation and distribution strategies, infor-
mation strategies, and global supply chain strategies [7–10].

In execution, it is possible to identify several processes related to supply,
manufacturing, logistics and distribution, and post-sale [11]. The problems that arise
from these processes share cross functional issues along the chain.

How should the supply chain efficiency be evaluated? The main criteria men-
tioned in the literature are speed, reliability, cost, and customer satisfaction [4].
Other authors suggest resources measures (cost), output measures (customer re-
lated), or flexibility measures [10]. Therefore, the decision problems that can
occur in SCM are in general related to finding solutions that perform well for the
mentioned criterions.

Next, some examples of decision-making problems in a supply chain are
described, emphasizing the ones where metaheuristics have been or can be applied.
Please note that there is no intention to make an exhaustive list of problems but
exemplify some important problems in SCM where heuristics and metaheuristics
can be successfully applied. Some of these problems are already well known in
the operations research literature; however very few of them have considered the
integration and coordination aspect of SCM.

In SCM planning, two of the most relevant subjects are network design and
facility location problems. Location problems have been extensively studied in
operations research, and there is a large amount of applications of heuristics and
metaheuristics to this area. However, the problems in this chapter on location
and network design are problems from an integrated and collaborative perspective
within a supply chain. For a survey on managerial issues in supply chain and
network design, see [11]. The authors describe the main issues in network design,
as determining its size, number and locations of the facilities, integration with
tactical decisions as distribution, transportation, and inventory policies, as well
as fulfilling customers’ demand. They also evaluate supply chain network design
where competition among supply chains is taking into account in the design phase.
For the optimization point of view, the authors mention interesting objectives that
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should be considered in the network design problem as social, environmental,
economical, agility, and uncertainty considerations. Melo et al. in [12] presented a
literature review of facility location models within a SCM context. One interesting
aspect of this work is the identification of the key features that these models should
capture in the strategic planning of the supply chain. They consider not only the
common objectives and constraints of standard location problems but also its inte-
gration with other decision aspects of the chains as capacity, production, inventory,
transportation, procurement, and routing. All of them received little attention in
the literature. Other problems still very relevant in network design problems are
globalization and internationalization of the supply chain, financial and taxation
factors, risk factors, and multiobjective models (due to the consideration of multiple
actors).

The sourcing and inventory strategy in SCM refers to several elements, for
example, inventory positioning in the network, inventory objectives balancing
cost and product availability, pull versus push systems, and inventory policies as
VMI (vendor management inventory) or restock policies. Inventory and sourcing
represent a large percentage of the supply chain’s cost, thus the optimization
of these elements is of critical importance. Notice that some decisions related
to sourcing and inventory must be taken considering the whole supply chain
including the production, transportation, and distribution decisions. These problems
are well studied in the literature [13–17]. However, less attention has been done to
strategic problems considering a collaborative and integrated point of view. There
are few studied problems in inventory and sourcing from SCM perspective, the
inventory-routing problem [18,19] and the vendor-managed inventory [20] are a few
examples.

The manufacturing and resource strategies are associated with the process of
producing a good or a service. Most problems and relevant decisions are related to
the production planning and scheduling, global production assignment, postpone-
ment strategies, resource utilization, and resource investments. Also, related issues
as market forecasts and product design make a great impact on the manufacturing
and resource strategies. Once again, many problems can be defined within this
subject; however, only recently the supply chain perspective has been considered
when defining business strategies for manufacturing and resource use. This broad
strategy leads to larger and complex problems if compared with the traditional
single business perspective. Production planning within a supply chain can be a
very challenging problem, as its solution may affect several elements of the chain,
horizontally and vertically. For example, job scheduling has been mostly applied
to deal with operational decision problems, but its integration with the production
planning decision [21] and among different production plants is not commonly
considered. Their integration with the availability of raw materials, the global
forecasting, and distribution decisions can also be of great interest in the SCM. An
overview of production and scheduling problems in the supply chain can be found
on [22, 23].

Sustainability SCM must be taken into consideration from product design and
production to transportation and waste management. Good decisions in sustainabil-
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ity and green strategies have a significant impact on the economics and market value
of the business. For a literature review on the implications and interrelationships of
SCM, sustainability, and lean management, we refer to [24]. The environmental
and waste costs are often quite significative. Thus it should be taken into account
in almost all SCM decisions mentioned in this chapter, for example, the impact of
carbon dioxide emissions in transportation strategies. The design of green and lower
environmental impact routes is attracting many researchers [25]. The sustainability
or green strategies and returns management should also be considered in network
design strategies, the latter is known as closed-loop network design, for example,
Devika et al. in [26] apply metaheuristics to solve a similar type of problem
successfully.

Transportation and distribution strategies are key elements in SCM. The con-
nections among the elements are based on transportation activities or information
interchange. Transportation elements not only permit to connect components in
the chain but also it represents in many cases a substantial overall cost to the
organizations in the chain. Therefore, managers need to have a good understanding
of the transportation system and develop good transportation strategies. To the
development and design of these strategies, several elements must be taken into
account, i.e., transportation costs and performance, transit time and variability,
loss and damage costs, transportation mode, international issues, transportation
outsourcing, and collaborative transportation, just to mention a few. From the
metaheuristic literature, a potential application is the study of the impact of
transportation decisions in the SCM.

Today’s information technologies allow companies to collect vast amounts of
data related to several activities in the supply chain: from demand data to stock
levels data, from the location of the transportation vehicle data to order delivery
status, etc. Information strategies should be carefully considered since the impact
on the business’ performance is significant [27]. In reality, it is difficult to discuss
SCM without mentioning information technologies. The capability of integration,
collaboration, and coordination along a supply chain will not be possible without
the information flow along the network. It should also be easy to understand that a
good use of this information may lead to improvements in the decision-making and
consequently on the overall performance of the business and customer satisfaction
[28]. SCM strategic decisions on information are related to where and which data
should be collected, accessed, storage, analyzed, and shared with other supply chain
elements [28]. Notice that these decisions can affect all optimization problems,
since all of them have the need for high-quality input data [29]. Other significant
problems raised in this activity are related to how to deal with the enormous amount
of available data. Feature selection and classification problems, as well as other
data mining difficulties, must be formulated and solved to improve the information
quality. Thus, metaheuristic techniques are usually an appropriate method to solve
such large problems in a reasonable amount of time, avoiding suboptimizations,
poor data aggregation, and other simplifications procedures. The availability of huge
quantities of data will probably lead to a widespread use of metaheuristics and better
decisions on SCM.
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Several businesses have a worldwide presence, so global supply chain strategy
is a relevant topic in SCM. Companies frequently produce globally but with some
local personalization to improve sales numbers. So, strategic decisions related to
marketing, financial, logistics, distribution, production, and postponement within
a global supply chain can represent high complexity but at the same time make
a great impact on the performance of the elements of the supply chain. Some of
these SCM strategic decisions are, for example, where to produce or store the
goods or how to distribute globally produced products and always considering:
global market characteristics, technological aspects, global costs, and economic and
political scenes [30]. The consideration of all these issues usually leads to very
complex problems and eventually with nonlinear objective functions, where again,
the use of metaheuristics can be extremely useful.

The characteristics of metaheuristics [1] make them one of the best tools to
evaluate different scenarios during strategic decision-making processes. Managers
face complex, integrated, and stochastic problems, and being able to obtain relevant
insights by using optimization methods certainly provides them with a competitive
advantage.

In the SCM execution area, the well-established supply chain processes as
defined in Croxton et al. [31] are considered. These processes are:

• Customer relationship management
• Customer service management
• Demand management
• Order fulfillment
• Manufacturing flow management
• Supplier relationship management
• Product development and commercialization
• Returns management

Many other processes are suggested in the literature. However, they are quite
similar since all include functional processes in supply, manufacturing, logistics and
distribution, and post-sales.

Next, some examples of decision problems that occur in the abovementioned
processes are briefly described. It is important to remember that the list of problems
is not exhaustive, as the goal is to mention relevant examples with a focus on the
use of metaheuristics.

Customer relationship management (CRM) is a well-established area in SCM
and closely related to marketing. The objective of CRM is to identify target markets
and implement marketing programs with key customers. Most of the literature has
a focus on the marketing area. However, recently, there is an increase number
of applications of operations research and metaheuristics to marketing and CRM
processes. The main reason of this interest is due the increased complexity and di-
mensions of the decision problems, as for example: identification and segmentation
of target customers and optimization of product portfolio, recommendation systems,
and characteristics of the potential clients.
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Customer service management (CSM) is the coordination structure for managing
the business’ relations with current and future clients. It includes the management
of the sales department and information providers and it must deal with the
communication among all departments and companies within the supply chain that
provide products or services to customers. This process has a strong component of
information systems, and different processes, from inventory problems, assignment
of the corresponding customer support or representative, to optimize the sales team’s
organization. Most examples of applications of metaheuristics in CSM are found in
inventory management, as [32, 33], and also in staff scheduling [34].

The main objective of the demand management process is to meet the customer’s
demand and balance their requirements with the capacities of the organizations
in the chain. This is a crucial process, and one of its essential elements is the
synchronization between the procurement, production, and distribution function to
satisfy customer’s demand and orders. Forecasting plays a major role in this process,
as well as its integration into the resource planning and allocation [35].

The order fulfillment process provides for timely and accurate delivery of
customer orders. One of the most relevant decisions in this process is the well-
known capacitated vehicle routing problem (CVRP) [36]. The CVRP has been
extensively studied in operations research area and is one of the problems with
the largest number of applications of metaheuristic algorithms [37–40]. But from
the SCM perspective, it is important to go beyond the classical CVRP and extend
this problem to take into consideration more aspects within the supply chain. For
example, the collaborative CVRP, that is, where several distribution companies
collaborate to deliver their products [41, 42]. Another example is the CVRP with
environmental and reverse logistics considerations [43, 44]. An important area of
research is also the consideration of inventory constraints and costs in the routing
decisions [18] or rich routing problems as in [45, 46], where metaheuristics have
already been successfully applied.

The manufacturing flow management process is related to the production of the
goods and services to serve the customers, including the moving of products through
the plants and businesses. Within an SCM context, the production planning must
take into account providers and customers, as well as the production capacity of the
organization, differing significantly from the usual individual standpoint. Aspects as
the production flexibility, batch size, cycle time, postponement, make to order, make
to stock, customer order forecast, production scheduling, etc. must be considered
when setting the production flow. Examples of applications of metaheuristics in this
process can be found on [47, 48].

The supplier relationship management is associated with the relationships
upstream in the supply chain and can be seen as a minor image of the CRM.
Some of the important decision problems in this process are the selection of
the right suppliers, cross docking systems, inventory coordination, and planning
between providers and customers. The product development and commercialization
process integrates all necessary activities to develop new products or services
as their introduction to the market. The decision problems in this process are
related to activities in the CRM and fulfillment; therefore issues such as market
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and promotion planning, sales force training scheduling, make or buy decisions,
inventory decisions, transportation planning, or commercialization planning are
relevant. One example is the application of genetic algorithms to design different
product structures considering different product parts, production processes, and
green strategies [49].

The process of returns management is related to the reverse logistics and closed-
loop supply chain processes. Over the last decade, business and academia have
been increasing their attention to this issue due to three main reasons: impact on
the environment and laws forcing the right disposal of products, recognition of the
sustainable issues by the society, and social responsibility by the businesses. The
forward logistics activities are already difficult to plan and optimize. The returns
activities have an increased difficulty due to the stochastic aspect of the “demand.”
For example, if a company uses reused/recycled components in their production,
the collection of these components can vary significantly along the time horizon,
leading to an increased complexity of the production planning. Some applications
of metaheuristics to design closed-loop supply chains have been addressed by [50]

The metaheuristics have already being applied to SCM at the operational level
as it will be discussed in more detail in the next section. However, the need to
consider integration and coordination aspects still exists, and future applications
of metaheuristics to SCM must examine these issues as well as its computational
efficiency and flexibility.

Metaheuristic Algorithms for SCM Problems

In the last years, there have been several applications of heuristics and meta-
heuristics to SCM decision problems. The reasons are quite clear, the increase in
complexity due to the horizontal and vertical integration and the need for quick and
flexible algorithms granted to metaheuristics, a special place in the methodologies
applied to SCM.

In this section, we review relevant publications of heuristic algorithms applied to
SCM problems. Note that the literature review is not exhaustive and readers are also
referred to a recent survey on this topic [51].

In [52], the problem of distribution planning of a network of manufacturing
plants, depots, and customers is analyzed. A heuristic based on an evolutionary
algorithm approach (�Chap. 15, “Genetic Algorithms”) is proposed where the
solution consists in deciding which depots should be considered and how the
product should be distributed from depots to clients minimizing fixed and delivery
costs. The approach considers a bi-level structure; the upper level decides how
the customers are supplied from the depots. The lower level decides on the
manufacturing process.

The problem of coordinating the production schedule and the transportation
of orders is analyzed in [53]. The problem aims to establish the best allocation
of orders specifying, at the same time, their production sequence and completion
times with the objective of minimizing the total cost of the supply chain. Two
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genetic algorithms (�Chap. 15, “Genetic Algorithms”) are proposed with different
integration strategies, where the best approach allocate more CPU time in solving
the scheduling problem.

Considering a seven-layer recovery network, including primary customers,
collection/redistribution centers, recovery, recycling and disposal centers, and
secondary customers, the problem of recovering products is analyzed in [54]. A
mixed integer linear programming model is proposed to determine the collection
and recycling centers for the logistic of recovered products, minimizing the total
cost. To deal with real-sized instances, the authors propose heuristic approach based
on Tabu search (�Chap. 25, “Tabu Search”), to design and select the best recovery
option while minimizing fixed and variable costs.

Considering the same type of problem, but on a multiobjective approach, Devika
et al. [26] analyzes a general closed-loop supply chain network with six echelons.
They consider the minimization of total costs, the minimization of environmental
impacts, and the maximization of social benefits. Considering two metaheuris-
tics, adapted imperialist competitive algorithm (AICA) and variable neighborhood
search (VNS) algorithm (�Chap. 26, “Variable Neighborhood Search”), three
hybridization approaches are designed and tested against benchmark algorithms and
on a case study. Other examples of quantitative approaches to green SCM can be
found on [55–58].

There are few studies considering the transportation and distribution decisions at
the strategic level. Lourenço and Ribeiro [59] explore the impact of considering
logistics and marketing issues in the design of distribution strategies. Schmid
et al. in [45] describe basic models for extensions of vehicle routing problems
in the context of SCM. These extensions consider other elements in the supply
chain as scheduling, packaging, batching, intermodality, etc. They also describe
an important extension where inventory is considered. The inventory and routing
interconnectivity is a well-known area in the operations research literature; see for
example [18, 60, 61].

Considering a two-echelon supply chain, Cardona-Vales et al. [62] work on a
bi-objective optimization problem, minimizing the cost for opening warehouses and
the expected value of transportation costs and the maximum traveling time through
the whole supply chain. Locations for warehouses and the assignment between
warehouses and distribution centers have to be decided by the actual value of the
demand. To deal with this stochastic problem, a hybrid heuristic based on Tabu
search and GRASP (�Chap. 16, “GRASP”) is designed to consider a multiobjective
approach.

The design and evaluation of cooperative purchasing strategies for healthcare
supply chains are evaluated in [63]. The authors propose hybrid heuristic algorithms
based on variable neighborhood search and Tabu search. Considering a set of
hospitals, they want to determine the best cooperation arrangements, to foresee
global and individual savings and organize their joint supply chain to take advantage
from cooperation.

Regarding customer relationship management, several examples of applications
of metaheuristics can be found on market basket analysis [64,65], product portfolio
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optimization [66], store operation within CRM systems [67], or data mining appli-
cations in CRM [68]. The CRM process is receiving more attention from the SCM
point of view; however, we could observe few publications using metaheuristics. We
identify that there is great potential to apply these techniques to complex problems
in CRM.

Although it is possible to see an increased number of metaheuristic applications
to SCM, there are still several problems to be mathematically formulated. As a
consequence, there is a lack of proper benchmarks and test beds leading to a
deficiency in algorithm comparison and analysis.

Current and Future Research Trends in SCM

Supply chain management will continue to be a relevant topic in the following
years, and the decision-making problems will be growing in quantity, dimension,
and complexity. In this section, current and future research trends in metaheuristics
applied to SCM are discussed. Many of them have not been yet extensively
considered in the metaheuristic research literature.

Main topics:

• Greater integration and collaboration, horizontal and vertical, along with the
supply chain

• Uncertainty decision-making in SCM
• Multiobjective approaches
• E-commerce and SCM
• Online decision-making in SCM
• Open and big data in SCM
• Smart cities and SCM

One of the main characteristics of SCM is the relevance of integration and
collaboration between the elements of the chain. If this integration is not taken
into account, there is not a truly SCM setting. However, most current works do
not always consider these aspects. We conjecture that the main problem is that
incorporating objectives and constraints to model the integration and collaboration
of processes lead to very complex and in many cases nonlinear problems. Still,
models and algorithms in the SCM decision-making must consider these aspects to
obtain a real impact and add value to the business in general.

As previously mentioned, an increase in the dimension and complexity of the
problem is expected. Thus, metaheuristics are certainly a clear option to deal with
this new problem profile, especially when accurate solutions are needed in fast time.
High-performance computing and hybrid methods are clear options to deal with this
increased size and complexity. From the application point of view, cloud computing
algorithms seem to be a good option for medium-sized companies willing to have
access to low-cost distributed algorithms.
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Efficient decisions in SCM must take into account an important element:
uncertainty. Uncertainty is present all over the supply chain: uncertainty de-
mand, travel times, cost, resource availability, etc. The uncertainty parameters
make it difficult to optimize the system-wide costs and performance in SCM.
The consideration of scenario strategies, robust methods to deal with the pa-
rameter’s uncertainty, will play a major role in helping the decision-making.
For example, a new line of research called simheuristics [69, 70] extends meta-
heuristic capabilities through simulation for solving problems with uncertainty
parameters.

The need for integration of different elements of the supply chain often leads to
optimization problems where many different objective functions must be assessed.
Therefore, metaheuristics once again present themselves as an excellent option to
efficiently deal with multiobjective problems in a complex environment.

E-commerce is already a reality, and with this new form of commerce had
appeared new decision problems [71]. The e-commerce will be shortly a central part
in many businesses, and this involves not only the retailing companies but also many
other elements integrated into a supply chain, as production and logistics companies.
The need to a fast response in e-commerce is also a reality, so the decision-
making in a supply chain presents a different set of problems than the traditional
ones.

The availability of technology and online data, as well as the need for flexibility
and immediate responses, pushes the decision-making processes from an offline
to an online perspective. In this new perspective, we do not count with the whole
instance data but rather a sequence of input portions that must be solved as they
arrive. Thus, online algorithms must take into account the current state of the system
and react as a new portion of information arrives. Once again, the trade-off of
computer efficiency and solution quality has to be carefully analyzed, but due to the
complexity of the problems and the size of real scenarios, metaheuristic approaches
are again promising in this new context.

Open email accounts, Internet search browsers, and mobile phones are just some
of the new ways to capture online consumer’s habit information. This incredible big
amount of data represents an excellent opportunity to find commercial advantages.
The problem is now how to extract good-quality information from these vast
databases that usually cannot fit in regular servers and lacks proper structure [72].
The fact that these databases are relatively open in today’s business increases the
potential of the impact of this information in the SCM. Due to the characteristics
of metaheuristics, these methods have an enormous potential to be applied in SCM
decisions involving big and open data.

Although there are several different definitions of a smart city, the main concept
behind the idea is to consider a city as an integrated system. The available infor-
mation from its infrastructure and dynamical systems are continuously analyzed
for the improvement of all the systems as energy, transport, healthcare, buildings,
etc. [73]. The large amount of sensors and available data have a great impact on
urban supply chain management. The availability of the resources of smart cities
can provide substantial improvements in mobility, sustainability, distribution, and
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many other SCM activities. Notice that in a smart city environment, the decision
problems in SCM will become more complex, with a need for a faster and online
response. For example, retailing companies can identify the closest transportation
vehicles and make collaborative distribution decisions online.

These issues are only some of the actual and future relevant topics that must be
addressed in SCM. Metaheuristics, as one of the available optimization tools, can
provide better quality insights to these important issues in a faster time, improving
significantly the decision making.

Conclusions

An efficient supply chain management is of critical importance in today’s busi-
nesses; if we take into account the market’s globalization and the increasing demand
for flexibility and quality, a good SCM will be vital for the survival of any company.

This chapter reviews the main concepts and decision problems of SCM. The
challenges for obtaining relevant business insights and decisions are associated with
methods in the area of heuristics and metaheuristics.

Decision problems that have arisen in SCM are becoming more complex
and larger; the need for integrating all the elements of the supply chain is an
enormous challenge, as it relates to different objective functions, online decisions,
big databases, and uncertainty data. Thus, this chapter argues that heuristics and
metaheuristics are the most promising tools to solve the decision problems in SCM.
The attributes of metaheuristics, as well as the successful cases mentioned in this
work, support the argument that these methods can address the main challenges of
the actual and future SCM problems.

A larger number of applications of heuristics in metaheuristics to problems in
SCM are foreseeing shortly. The vast amount of available data, the need for more
integration and coordination, the need for online solutions, the consideration of
uncertainty, and many other new constraints will produce a significant amount of
complex decision problems with the need for a fast and efficient solution method.
The use of metaheuristics may provide a significant contribution in SCM from a
theoretical and practical perspective.

Cross-References

�Genetic Algorithms
�GRASP
�Tabu Search
�Variable Neighborhood Search
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Abstract

In this chapter we review heuristic approaches for two classical and closely
related problems of finding a maximum clique and an optimal vertex coloring.
Both problems have a wide variety of practical applications, and due to their
computational intractability, a significant effort has been focused on developing
heuristic methods. This chapter discusses construction heuristics, local search
strategies, and metaheuristics designed and/or adapted for the maximum clique
and vertex coloring problems.
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Introduction

Given a simple graph G D .V; E/, a clique is defined as a subset C � V of mutually
adjacent vertices. A graph is called complete if the set of its vertices forms a clique.
A maximal clique is a clique that cannot be extended to a clique of larger size by
simply adding a new vertex to this clique. The maximum clique problem asks for a
clique of the largest cardinality in the graph. The size of a maximum clique is called
the clique number of G and is usually denoted as !.G/.

An independent set (or stable set) is a subset I � V of vertices with no edge
between them. It is easy to see that a clique in G is an independent set in the
complement graph of G, NG D .V; NE/, where NE D f.i; j / W .i; j / … E 8i; j 2

V; i ¤ j g, and vice versa. Finding a maximum clique in G is equivalent to finding
a maximum independent set in NG. The cardinality of a maximum independent
set in G is called the independence or stability number of G, denoted ˛.G/, and
˛. NG/ D !.G/.

A proper vertex coloring (also referred to as a coloring for simplicity) is an
assignment of a color (or a label) to each vertex in a graph such that no adjacent
vertex has the same color. More formally, given a set of colors f1; 2; : : : ; kg, a proper
k-coloring is a mapping f W V ! f1; 2; : : : ; kg, where f .vi / ¤ f .vj / 8.i; j /

2 E. Then the vertices with the same value of f belong to the same color class.
The chromatic number of a graph G, denoted �.G/, is the minimum number of
colors necessary to color G. An optimal coloring of a graph is a proper coloring
that uses exactly �.G/ colors.

It is easy to see that the vertices that belong to the same color class form an
independent set and the vertices of a clique all belong to different color classes.
Then it follows that for a given graph G:

�.G/ � jV j=˛.G/;

and

�.G/ � !.G/:

The maximum clique and vertex coloring problems often arise in similar
applications, where they play complementary roles. For example, let the vertices
in the graph represent elements of a system and the edges between them – the
incompatibility between those elements. Then a maximum clique will represent a
set of mutually incompatible elements of the largest size in the system, whereas the
color classes will correspond to sets of mutually compatible elements.

Both problems find a wide range of practical applications in various domains.
Some of the earliest and best-known applications of the maximum clique problem
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are in computer vision, experimental design, information retrieval, coding theory,
fault diagnosis, social network analysis, and computational biochemistry and
genomics, among other areas [32,150,182]. As for the coloring, it is commonly used
for scheduling [125, 140], timetabling [173, 174, 178], frequency assignment [74,
176], circuit board testing [76], register allocation [38, 42], and, more recently,
various problems in transportation [35,177]. A discussion of both clique and vertex
coloring applications in telecommunications is presented in [12].

The maximum clique and vertex coloring problems are both well-known NP-
hard problems [75,119] that are hard to approximate within a factor of n1�� for any
� > 0, where n D jV j [6,7,59,60,97,187]. Such intractability results, along with the
practical interest, have led to a considerable effort in devising numerous heuristic
approaches. Almost all known types of heuristic methods have been applied to these
problems. Some of the early surveys on heuristic methods for the vertex coloring
problem can be found in [151,175] and more recent in [41,71,73,132,153], among
which [41, 71] review just the local search methods and [73] focuses on the recent
approaches. As for the maximum clique problem, the first extensive surveys date
back to the 1990s [22,150], while the most recent one [182] focuses mostly on local
search techniques. Other brief discussions on heuristic approaches for the maximum
clique problem can be found in [150, 153]. It should be noted that most of these
surveys also discuss exact algorithms, many of which take advantage of heuristics
to enhance their performance.

The remaining sections of this chapter are organized as follows. The most
common construction heuristics for the maximum clique and vertex coloring
problems are discussed in section “Construction Heuristics.” In section “Lo-
cal Search,” we briefly outline the local search strategies used for both prob-
lems. Section “Metaheuristics” covers various metaheuristic approaches. It is
followed by Sections “Heuristics Based on Continuous Formulations,” “Other
Heuristics,” “Computational Results,” and “Conclusion,” respectively.

Construction Heuristics

Construction heuristics are used to build an initial feasible solution. The most
intuitive and common construction heuristics are sequential ones, which recursively
update the current, partial (and not necessarily feasible) solution one step at a time.
Based on how the next step is selected, most of these heuristics can be classified as
either greedy, random, or a combination of both. Greedy selection rules typically
aim to ensure the highest level of flexibility (i.e., the largest possible “candidate
set”) in the future steps.

The most common sequential greedy heuristics for the maximum clique problem
are best in and worst out, as named by Kopf et al. in [123]. Best in algorithms are
those that start with an empty set as an initial solution and iteratively add a vertex
with the largest degree among the candidate vertices, whereas worst out are the ones
that start with a whole graph and recursively delete vertices with the lowest degree
until the remaining graph is complete. The best in heuristic applied for finding the
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maximal independent set yields a solution of size at least jV j
ıC1

, where ı D 2jEj
jV j

[58].
The best in heuristic was also shown to be “provably best” for the maximum clique
problem in [115]. A heuristic is called provably best if no other polynomial-time
algorithm can guarantee a better solution whenever one exists (assuming P ¤ NP).

As for the vertex coloring problem, any heuristic that finds a coloring using at
most �.G/ colors (referred to as Brooks’ coloring), where �.G/ is the maximum
vertex degree in G, is provably best [115]. According to Brooks’ theorem [24],
a simple, connected graph G that is neither complete nor an odd cycle satisfies
�.G/ � �.G/. Brooks’ coloring can be obtained using several heuristics [85, 91,
116, 118, 128, 163].

Many popular heuristics for the vertex coloring problem are based on sequential
construction approaches. Sequential construction heuristics usually iteratively as-
sign each vertex with the smallest feasible color such that no conflicts with already
colored vertices occur. The order in which vertices are colored is either static and
determined beforehand (preorder) or dynamic and updated on the fly. It is easy to
see that the quality of the solution depends entirely on how the vertices are ordered
and that there exists such vertex ordering that produces an optimal coloring [175].
Therefore, a lot of attention has been placed on studying and designing different
ordering schemes.

Two examples of preorder sequential coloring heuristics are the largest first
(LF) [173] and the smallest last (SL) [139]. LF sorts the vertices in decreasing order
of their degree, and the ordering .v1; : : : ; vn/, produced in such manner, results in
the coloring with at most 1 C max1�j �n dj .vj / colors, where dj .vj / is the degree
of vertex vj in the induced subgraph Gj D GŒfv1; : : : ; vj g�. SL is similar to LF,
but it sorts the vertices in the reverse order. First, a vertex of the minimum degree in
graph G is selected and labeled vn. Then, iteratively for each j D n � 1; : : : ; 1, a
vertex of the minimum degree in Gj is selected and labeled vj .

A notable sequential coloring approach that does not preorder vertices is the
DSATUR [23] heuristic. A decision on what vertex to color next is based on the
value of the vertex saturation degree – a number of the differently colored neighbors
of this vertex. A vertex with the maximum saturation degree is selected. Another
example of a heuristic that does not preorder vertices is the recursive largest first
(RLF) [125]. This heuristic generates a color class one at a time and does not
proceed to another color class until no more vertices can be assigned to the current
class. Such an assignment is implemented in the following manner. When a new
color class is generated, set U1 contains all uncolored vertices, and set U2 is empty.
Iteratively, a vertex v 2 U1 is selected, assigned to the current color class, and
removed from U1. If v has any neighbors in U1, they are removed from U1 and
placed in U2. The vertex assignment proceeds while U1 is not empty. The very first
vertex to be assigned to the new color class is the one with the maximum degree in
GŒU1�, and all the rest are the ones with the maximum degree in GŒU2�. When U1

becomes empty, the next color class is generated, and the process repeats.
In another study [20], a maximal independent set is iteratively extracted from

the set of uncolored vertices, and all the vertices forming this independent set are
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assigned the same color. The process repeats until the whole graph is colored.
Similar technique is used in the algorithm called XRLF [114], which is a version of
RLF [125]. Several independent sets are first constructed, and then the one whose
removal yields a residual graph with the smallest edge density is selected as a
new color class. This process is repeated until a threshold number of uncolored
vertices are left, which are then colored using an exhaustive search. Independent
set extraction approach has been used to construct initial colorings within various
metaheuristic frameworks [39,66,73,99,142]. Recently, a few enhanced approaches
based on independent set extraction were proposed. Namely, in [179], the authors
suggest to preprocess large graphs by iteratively extracting a maximal number of
pairwise disjoint independent sets of the same size. Such strategy was shown to
assign more vertices to the same number of color classes than that with a one-
at-a-time independent set extraction. This yields smaller in size residual graphs
of uncolored vertices, which are easier to color. In [96, 181], the authors observe
that an independent set extracted may not necessarily define a color class in an
optimal coloring and that removing such sets during preprocessing may prevent
one from reaching an optimal solution. To mitigate this drawback, the authors
of [96,181] suggested a framework that reconsiders a certain number of the removed
independent sets and allows some of the vertices forming those sets to change
a color. Different strategies on how many and which extracted sets to reexamine
were studied, and the experiments on some large and hard graph instances reported
in [96, 181] demonstrate an encouraging performance of the proposed approach.

To improve the quality of solutions generated by the greedy sequential methods,
different techniques ranging from randomization, multiple restarts, and local search
(section “Local Search”) to sophisticated metaheuristic frameworks (section “Meta-
heuristics”) can be used. We will cover here a few simple strategies and discuss the
rest in the later sections.

For the maximum clique problem, Jagota et al. [109] proposed several en-
hancements to a basic greedy sequential heuristic, which include randomization,
multiple restarts, and an adaptive mechanism. A randomization is embodied by a
probabilistic greedy vertex selection rule. Three kinds of adaptation are studied: an
update of the initial state (AI), an update of the probability distribution used by
a selection rule (AW), and no adaptation at all (NA). The corresponding updates
take place at each restart and are based on the information obtained in the previous
restart. NA heuristic was shown to perform poorly compared to AI and AW. Grosso
et al. [87] used similar techniques and developed a two-phase heuristic, called a
deep adaptive greedy search (DAGS). In the first phase of DAGS, the modified
variant of a sequential greedy heuristic is applied for all the vertices in the graph.
The modification consists of allowing to swap already added vertices with the better
candidates. The second phase is used for diversification purposes. It is a restart-
adaptive greedy heuristic performed on a set of vertices that appear less frequently
in the cliques obtained during the first phase. Each vertex is assigned a weight
associated with its quality as a potential candidate for a solution. Such weight is
updated at each restart by means of a learning-like mechanism.
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For the vertex coloring problem, an improvement procedure called an iterative
greedy (IG) heuristic was proposed in [46, 47]. It is based on the observation that
given a feasible coloring and an ordering in which vertices belonging to the same
color class are grouped together, applying a sequential greedy heuristic to such an
ordering will produce a solution at least as good as the previous one.

Local Search

Local search is a technique of improving a current solution by exploring its
local neighborhood and moving to better neighboring solutions until no more
improvement can be achieved. A local neighborhood of a solution is defined by
a neighboring function which can also be thought of as a distance or a difference
between neighboring solutions. Local search methods vary based on the definition
of a neighboring function and a corresponding local neighborhood, as well as the
choice of a search space and a function that evaluates the quality of a solution.

As suggested in [182], local search strategies for the maximum clique problem
can be categorized into legal and k-fixed penalty ones. A legal strategy is a
traditional local search, where a search space consists of legal (feasible) solutions,
cliques; an evaluation function is the size of a clique; and a neighboring function is
a list of vertex operations to be performed to move from one clique to another. The
most common neighboring functions are .a; b/-interchanges, where a is the number
of vertices removed from the current solution and b is the number of added vertices,
with a usually smaller than b to ensure that such interchange increases the size of
the solution by .b � a/.

A k-fixed penalty strategy, on the other hand, can be thought of as a technique
that solves the decision version of the problem that answers the question “is there a
clique of size k?” This type of a local search deals with infeasible solutions, sets that
are not necessarily cliques. An evaluation function is defined as the number of edges
in the set. By moving to sets with larger number of edges, a local search attempts
to eventually reach a feasible solution – a clique. For this type of a local search, a
(1,1)-interchange is usually used, where a vertex to be removed is usually the one
with the smallest number of neighbors in the solution and a vertex to be added is the
one adjacent to the largest number of solution members. Such a technique does not
guarantee finding a feasible solution; therefore, it is usually used as a part of a more
sophisticated local search framework (section “Metaheuristics”).

For the vertex coloring problem, the local search strategies can also be catego-
rized into legal and k-fixed ones. Moreover, as discussed in [71], they can be further
grouped into legal, k-fixed partial legal, penalty, and k-fixed penalty ones. Here,
the legal and the k-fixed penalty strategies, similarly to the local search strategies
for the maximum clique problem, are the local searches on either feasible (proper)
colorings or infeasible k-coloring, respectively. For the legal strategy, the local
neighborhood is explored in an attempt of finding a feasible coloring with fewer
number of colors. An infeasible coloring is such that contains at least one pair
of adjacent vertices assigned the same color. An edge connecting a pair of such
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vertices is referred to as conflicting. Then for this strategy, a local search aims at
performing moves resulting in the minimization of the number of conflicting edges
in the solution.

Under a k-fixed partial legal strategy, the search space contains partial feasible
k-colorings. A partial feasible k-coloring corresponds to a coloring of a subset of
vertices V 0�V that uses k colors and is feasible with respect to already colored
vertices in V 0. The rest of the vertices in V n V 0 are not yet colored. The local
neighborhood is explored in an attempt to find a complete feasible k-coloring. For a
pure penalty strategy, the search space contains infeasible colorings, and the number
of colors used is unfixed. The local search under this strategy tries to detect a feasible
coloring with the minimum number of colors used. The quality function usually
combines both the number of conflicting edges and the number of colors used.

The most common neighboring functions for coloring are also inter-
changes [139]. They are performed by moving vertices from one color class to
another, in an attempt of emptying one of the classes and, thus, reducing the number
of colors used. Under the penalty and k-fixed penalty strategies, such interchanges
are allowed to result in infeasible solutions.

Local search approaches also vary based on the rules of determining when
to move to a better solution. By the best improvement strategy, the entire local
neighborhood is explored, and the best neighbor is selected as a new solution,
whereas the first improvement strategy updates the current solution with the first
found neighbor of a better quality. However, with either of these strategies, a local
search tends to get trapped in local optima of poor quality. To overcome this
drawback and explore more regions of a search space, different techniques, e.g.,
allowing non-improving moves and recording the search process to direct the future
exploration, have been devised and will be discussed in the following section.

Metaheuristics

In this section, we will review the most common metaheuristics for the maximum
clique and vertex coloring problems. The metaheuristics can be classified with
respect to various criteria [19]. Based on the number of solutions maintained at the
same time, the algorithms can be divided into single-point search ones, encompass-
ing most local search-based heuristics (section “Local Search-Based Methods”), and
population-based ones (section “Population-Based Methods”), which deal with a
pool of solutions at a time and perform evolution-like search processes.

Local Search-Based Methods

The most successful techniques to enhance local search have proven to be the ones
that allow non-improving moves in the process of local neighborhood exploration.
One of them, simulated annealing (section “Simulated Annealing”), allows moving
to a worse solution with a certain probability, while another one, tabu search
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(section “Tabu Search”), records the moves and forbids (tabu) their future usage
for a certain number of iterations to prevent cycling. Other successful local search-
based methods have been devised and will be discussed in section “Other Local
Search-Based Methods”.

Simulated Annealing
Simulated annealing (SA) method is a randomized neighborhood search introduced
by Kirkpatrick et al. [121] and covered in a separate chapter of this book. SA
is analogous to a physical annealing – a process of heating up a solid material
and slowly cooling it down in order to obtain a low energy configuration. The
main idea of SA is to iteratively select random candidate solution in the local
neighborhood and, if it is of better quality, move to the candidate solution; otherwise
perform the move with a certain probability of acceptance. Such probability is
usually defined as exp.��/=T , where � is a difference between the objective
function values of the new and the current solutions and T is a parameter called
the temperature. As the heuristic progresses, the probability is being decreased,
ensuring fewer random walks and directing the search toward improvement. The
rate at which the probability decreases is usually referred to as a “cooling schedule.”
The cooling schedule that follows the logarithmic law guarantees the convergence
of the algorithm to a global optimum [19]; however, it may result in an exponential
running time. Hence, faster cooling schedules are usually used in practice.

The most influential papers devoted to application of SA to the maximum clique
problem date back in the late 1980s and mid-1990s and are all covered in [22].
Since, to the best of our knowledge, no novel SA methods for the maximum clique
problem have been designed since then, we will follow [22] and briefly review here
the same studies.

An application of SA to the maximum clique (independent set) problem was
first described by Aarts et al. in 1988 [1]. Without providing any experimental
results, they proposed a penalty function method (k-fixed penalty strategy), for
which a possible solution can be any set, not necessarily independent, and the
quality of the solution is determined by the function f .V 0/ D jV 0j � �jE 0j,
where V 0 and E 0 are the vertex and edge sets of the solution and � is a certain
weighting factor. A few years later, Jerrum et al. [111] have theoretically proven a
poor performance of SA application to the maximum clique problem. In particular,
they studied a variant of SA with the temperature parameter fixed and a solution
space consisting of legal cliques (legal strategy). Feo et al. [64] implemented
SA for the maximum independent set problem utilizing the penalty method and
observed that it was inferior to the greedy randomized adaptive search procedure
(GRASP) they proposed. However, the computational experiments presented by
Homer et al. [104, 113] in the Second DIMACS Implementation Challenge showed
that SA can be very effective. In their work, Homer et al. used the idea of penalty
method described by Aarts and implemented it for the maximum clique problem.
The results of the experiments on large graphs, reported in [104, 113], were quite
promising, and SA was ranked one of the best heuristics in the Second DIMACS
Implementation Challenge.
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One of the first attempts to apply SA to the vertex coloring problem dates back
to 1987, when Chams et al. [39] considered the following variant of the method.
The neighborhood structure consists of k-colorings that are not necessarily legal
(k-fixed penalty strategy), and the objective function to be minimized is defined
by the number of conflicting edges. According to the experimental results reported
in [39], the pure SA did not perform as strongly as when it was combined with other
methods. In particular, when SA was combined with RLF [23], where RLF was
used to generate color classes and SA to color the rest of the uncolored vertices, the
performance of such combined method dominated all other methods tested in the
paper (DSATUR and RLF). In 1991, Johnson et al. [114] conducted a detailed study
of different schemes of SA adopted to the vertex coloring problem. The first scheme
tested is a penalty function method, where the neighborhood structure is defined
by infeasible solutions (penalty strategy), i.e., colorings with conflicting edges. The
number of colors used in a particular solution is not fixed. Let Ci denote a color
class, let Ei be an edge set in the subgraph induced by Ci (i D 1; : : : ; k), and let
˘ D C1; : : : ; Ck (1 � k � jV j/ be a solution. Then the cost (penalty) function
associated with ˘ is defined as follows:

f .˘/ D

kX

iD1

2jCi j � jEi j �

kX

iD1

jCi j
2:

The first component of f .˘/ favors independent sets, while the second one favors
large color classes. Minimization of f .˘/ results in eliminating the conflicting
edges and reaching a legal coloring and also, as the authors argued, in potentially
reducing the number of color classes as a side effect. The second scheme is by
Morgenstern and Shapiro [143], and it utilizes so-called Kempe chains, which
are defined in [114] as the connected components of the union of two disjoint
independent sets. In this method, the same cost function as in the penalty function
method is retained, but the search space contains legal k-colorings. The new
candidate solution is generated in the following way. Two color classes Ci and Cj

(i ¤ j ) are picked at random, and a Kempe chain defined by a set H � Ci [ Cj is
constructed. Next Ci is replaced by Ci � H and Cj – by Cj � H , where X � Y

denotes a symmetric difference .X � Y / [ .Y � X/ between X and Y. The third
scheme uses the same strategy as in [39], where the number k of colors is fixed and
the objective is to minimize the number of conflicting edges in an attempt to find a
feasible k-coloring. According to the results of the experiments reported by Johnson
et al., none of the three methods was found dominant over the other.

A simplified version of SA with the temperature parameter remaining fixed was
used by Morgenstern [113, 142] for the Second DIMACS Implementation Chal-
lenge. In this paper, a new neighborhood structure, called impasse neighborhood,
was defined. It turned out to be very effective and many approaches have used it
thereafter. This neighborhood structure operates with a fixed number k of colors
and aims to improve a partial coloring, in which not all vertices are colored, to
a complete coloring with k colors. A feasible solution is a partition of the set of
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vertices into k C 1 subsets fV1; : : : ; Vk; VkC1g, where V1; : : : ; Vk are independent
sets representing a partial k-coloring and VkC1 is the set of uncolored vertices that
needs to eventually be emptied in order to obtain a proper k-coloring of all vertices.
A neighbor of a solution is obtained by moving a vertex v from VkC1 to one of the
k independent sets, say Vi , and then moving to VkC1 all vertices from Vi that are
adjacent to v.

Tabu Search
Tabu search was developed by Glover [81] and, independently, by Hansen and
Jaumard [93]. See the �Chap. 25, “Tabu Search” for more details. It is a modified
local search which allows performing moves yielding worse quality solutions, thus
diversifying the search path. The algorithm uses the so-called tabu lists to store
certain information about the previously visited solutions to forbid future local
search moves that can result in cycling. The length of the tabu lists, called tabu
tenures, allows to control the level of diversification and intensification of the search.
Sometimes the tabu restriction is relaxed if a solution meets certain aspiration level
condition.

In 1989, Friden et al. [68] used tabu search ideas to construct a heuristic called
STABULUS for finding stable (independent) sets. STABULUS is based on the k-
fixed penalty local search strategy (see section “Local Search”), where the search
space consists of the sets of size k, and the algorithm tries to minimize the number of
edges in the set. To find an independent set of the largest cardinality, STABULUS is
applied iteratively, incrementing k each time an independent set of size k is detected.
Three tabu lists were used in STABULUS, one for storing visited solutions, and the
other two contained added and deleted vertices.

A few years later, Gendreau et al. [78] proposed two simple variants of tabu
search for the maximum clique problem, deterministic and probabilistic, where in
the former, at each iteration, the entire set of the solution neighbors is explored
and, in the latter, the sampling of the neighborhood is applied. In both variants
the legal local search strategy was exploited, where the search space contains the
feasible cliques and the objective is to find a clique of the maximum size. In the
deterministic approach, it is allowed to remove only one vertex per iteration, while
in the probabilistic it is a few at a time. Later these heuristics were enhanced
with the diversification strategies [166], such as greedy restart and continuous
diversification. The first one is a very simple approach of restarting the algorithm
with the new solution after a certain number of iterations without improvement
have been performed. A new solution is constructed from vertices that have not
been visited yet or have been visited less frequently. The continuous diversification
works in “on-the-fly” mode. It guides the search path by evaluating each vertex
addition/removal using the information on how frequently the vertex has been added
to the solution and how long it has stayed in the solution. Both diversification
techniques and their combination have proven to be beneficial if used along with
the simple basic search. The more efficient and sophisticated the search is, the less
improvement the diversification is able to add to it. It also did not appear to work
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well with the probabilistic version of the tabu search heuristic. The heuristics were
tested on DIMACS instances, and the results were reported in [167].

A similar idea of prohibiting the future moves in order to prevent cycling was
used in reactive local search (RLS) [14]. However, contrary to the traditional
tabu search, where certain parameters (tabu tenure, depth of the search, etc.) are
determined by the user through numerous preliminary experiments and are usually
sensitive to certain specific structures of the instances, RLS determines all of this
information dynamically within its execution. The length of tabu lists is adjusted
based on previously stored information on how often the algorithm cycles, etc.
Also, the algorithm is equipped with a memory-influenced restart procedure to
provide additional long-term diversification. RLS showed excellent performance on
DIMACS instances and is considered one of the best local search-based heuristics
for the maximum clique problem.

Recent efforts of applying tabu search to the maximum clique (independent set)
problem include works by Wu et al. [112,180,183]. In [180], the authors developed
an adaptive multistart tabu search approach that uses a k-fixed penalty local search
strategy. The exploration of a search space is performed by moves that swap a vertex
from the current solution with a vertex from the solution constrained neighborhood.
The algorithm employs a restart strategy, under which a new solution is constructed
from the vertices that were less frequently used throughout the algorithm, that
way visiting unexplored search space regions. The algorithm showed excellent
performance when compared against several other state-of-the-art algorithms. The
study of the relationship between the number of restarts and the quality of the
evaluation function performed by the authors suggested that for structured instances,
more frequent restarts yield better results, while the reverse holds for random graphs.

For the vertex coloring problem, tabu search techniques were first applied by
Hertz and de Werra [99]. In their proposed algorithm, named TABUCOL, the search
space consists of the complete k-colorings, where k is fixed. Some colorings might
have conflicting edges, and, hence, the algorithm’s goal is to move to the solutions
with smaller number of conflicting edges by changing the color assignment of the
endpoints of conflicting edges. The tabu lists store these color assignments. The
algorithm uses the same local search strategy as in [39] but yields better results than
those obtained by SA in [39].

Recently, Blöchliger and Zufferey [18] designed several variations of the tabu
search framework for the vertex coloring problem. The main ingredients they used
were the partial k-coloring local search strategy and reactive tabu tenure, adjusted
based on the fluctuations of the objective function.

Tabu search has also been applied to both the maximum clique and vertex
coloring problems as a part of more complex metaheuristics, such as evolution-
ary algorithms, yielding the so-called hybrid algorithms (discussed in section
“Population-Based Methods”).

Other Local Search-Based Methods
The greedy randomized adaptive search procedure (GRASP) [62, 63], described in
the �Chap. 16, “GRASP” in this volume, is a simple metaheuristic that combines



1270 O. Yezerska and S. Butenko

a constructive heuristic, a local search, and a restart policy. Its construction part
uses both greedy and random selection rules. More precisely, the initial solution
is built by randomly selecting a vertex from a so-called restricted candidate list
(RCL), which consists of a certain number of the best candidates. This number
ranges between 1 and the size of the candidate list, where the closer it is to 1, the
greedier the selection rule is, and the closer it is to the candidate list size, the more
randomness is involved. Every time a solution is constructed, an attempt to improve
it is made using an appropriate local search technique (see section “Local Search”).
The algorithm restarts a certain number of times, and the best found solution is
recorded. GRASP has been successfully applied to the maximum clique (maximum
independent set) [2, 64, 161] and the vertex coloring problems [124].

Variable neighborhood search (VNS) [94, 141] is a metaheuristic that system-
atically explores different neighborhood structures of the same problem in the
search for a better solution. This method is introduced in the �Chap. 26, “Variable
Neighborhood Search”. VNS approach was applied to the maximum clique problem
in [95]. For the vertex coloring, an algorithm based on VNS was proposed in [8]. It
uses more than ten different neighborhoods and utilizes tabu search techniques. An
extension of VNS, called variable space search (VSS) was proposed for the vertex
coloring problem by Hertz et al. in [101]. In VSS, when the search is trapped in a
local optimum, the entire search space, including the neighborhood searched and the
objective function, is changed. The proposed algorithm, called VSS-Col, explores
three different search spaces for the vertex coloring problem and yields excellent
results. An iterated local search (see the �Chap. 19, “Iterated Local Search” in this
handbook for more information), which upon reaching a local optimum perturbs it
so that the local search can keep going, was applied to the vertex coloring problem
in [40, 148]. In [40], the authors analyzed the performance of different types of
solution perturbations.

An algorithm based on variable depth search for the maximum clique problem,
based on k-opt local search (KLS), was proposed by Katayama et al. [120]. The
k-opt search is essentially an .a; b/-interchange with a > b and a C b D k,
where a vertices are removed from the current clique and b vertices from the local
neighborhood are added to the solution yielding a clique of a larger size. The value k

is determined dynamically throughout the execution of the algorithm. The reported
results on selected DIMACS instances show the algorithm’s competitiveness with
RLS [14].

Pullan and Hoos [159] introduced a dynamic local search (DLS) algorithm for the
maximum clique problem. DLS is based on alternating between a clique expansion
phase, during which vertices are added to the current clique, and plateau search,
during which vertices of the current clique are swapped with vertices outside of
the current clique. The selection of vertices is based on the penalties assigned to
them dynamically during the search in a similar way used in DAGS [87]. When
no more expansion or swapping is possible, a perturbation mechanism is applied
to overcome search stagnation. The algorithm achieves substantial improvements
over some state-of-the-art algorithms on many DIMACS instances. However, the
algorithm has a disadvantage of being sensitive to the penalty delay parameter,
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which controls the frequency at which vertex penalties are decreased and needs
to be determined beforehand by preliminary experiments and thorough calibration.
This issue has been addressed in [158], where a modified algorithm, called a Phased
Local Search (PLS), was proposed. Similarly to DLS [159], the algorithm is a
combination of a clique expansion and a plateau search. Moreover, it operates three
sub-algorithms, which differ in their vertex selection rule: random selection, random
selection within vertex degree, and random selection within vertex penalties. In the
latter one, the parameter responsible for the frequency of penalty decreases does not
have to be fixed and defined externally as in DLS but is modified adaptively. PLS
has shown to have a comparable and sometimes improved performance to DLS.
Grosso et al. [88] performed a detailed computational study of the main components
of DLS, such as usage of vertex penalties as a selection rule, plateau search, etc.,
in an attempt to design simple and efficient iterated local search techniques for
the maximum clique problem. Another study that analyzes the key ingredients of
RLS and DLS was performed by Battiti et al. in [13] and yielded several enhanced
modifications of the mentioned algorithms.

Recently, Pullan et al. [160] introduced a parallelized hyper-heuristic algorithm
for the maximum clique problem, called a cooperating local search (CLS). Hyper-
heuristics [29] are heuristic search methods that manage the low-level heuristics. In
particular, CLS is a methodology that controls the four PLS-based heuristics and
dynamically reconfigures their allocation to cores, based on information retrieved
from a trial in order to ensure the appropriateness of selected heuristic for a
particular instance. In [5], Andrade et al. introduce efficient implementations
of .1; 2/ and .2; 3/-interchange legal strategy local searches for the maximum
independent set problem. These two local searches are integrated into an iterated
local search metaheuristic, which according to the results reported in [5] yield great
results, especially on large and difficult instances. Benlic and Hao [15] devised
an algorithm, called breakout local search (BLS). BLS is an iterated local search,
which, when a local optimum is discovered, applies a certain diversification strategy
to perturb the current solution, so it can be used as a starting point to explore another
region of the search space. The magnitude of perturbation is adapted dynamically
according to the current search state. The results of the experiments showed that
BLS competes favorably with RLS [14], VNS [95], and PLS [158].

Population-Based Methods

As opposed to local search algorithms, where one solution is maintained at each
iteration, the population-based algorithms deal with several solutions (a population)
at a time. The new population is produced by certain interactions between the
members of a current population. Namely, the population generation techniques
in evolutionary and genetic algorithms (section “Evolutionary and Genetic Al-
gorithms”) are based on imitating the mechanisms of evolution, whereas in ant
colony algorithms (section “Ant Colony Optimization”), the solution construction
is inspired by the behavior of ants seeking paths to food sources.
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Evolutionary and Genetic Algorithms
Evolutionary and genetic algorithms [82, 103] (see also the corresponding chapters
in this volume) are inspired by the evolution and natural selection and are based
on the following evolution principles: “the fittest survives,” “two fit parents will
have even fitter offsprings,” and mutation. In the genetic algorithms, these principles
are embodied with the help of respective mechanisms: reproduction, crossover, and
mutation operators. At each iteration (in evolutionary terminology – generation) of
an algorithm, the population of solutions (individuals) is subjected to all or some
of those operators. Reproduction operator selects the “fittest” solutions, where the
fitness level is represented by a fitness function (or objective function in optimization
terms). Then, with the help of the crossover operator, the “offspring” solutions are
produced as a result of merging one or several parts of one parent solution with one
or several parts of another parent solution. The mutation operator changes a small
part of a solution to provide randomization.

For the maximum clique problem, the most intuitive way to encode a solution is
to use a binary array of the size equal to the cardinality of the given graph’s vertex
set, where an entry contains 1, if the corresponding vertex is included in the current
solution, and 0, otherwise. The definition of the solution fitness function can vary.
A fairly simple fitness function assesses the size of a vertex subset if it is a clique,
or equals 0, otherwise. It can also be a little more complex. For example, it can
combine several terms, such as the density of the induced subgraph and its size. It
can also include a term to penalize the infeasible solutions.

The early work on adapting genetic algorithms to the maximum clique problem
is covered in great detail in [22]. We will review in the following the same studies
and also discuss several recent advancements.

One of the earliest studies on the effectiveness of genetic algorithms at solving
the maximum clique problem was done by Carter et al. [37]. The authors showed
that the pure genetic algorithm performs poorly and designed several modifications,
including an annealed fitness function and the modified crossover operators, to
improve its performance. However, their results were still not satisfactory and
led to a conclusion that genetic algorithms have to be significantly customized to
be able to perform well and that they are very computationally expensive. Their
later studies in [152] report that genetic algorithms are ineffective for solving
combinatorial optimization problems and are inferior to other heuristics, such as
simulated annealing. However, in another study [9], Back et al. showed quite
the contrary results. They designed a genetic algorithm called GENEsYs with a
fitness function which included a component for penalizing infeasible solutions. The
performance of GENEsYs for the maximum independent set problem on graphs
with up to 200 vertices was promising and suggested that with the right fitness
function, genetic algorithms are capable of yielding satisfactory results. In another
approach, Murthy et al. [146] introduced a new crossover mechanism, called a
partial copy crossover, and suggested to split a mutation operator into a deletion
and addition operators. The results presented in the paper are based on experiments
with small graphs (up to 50 vertices), making it difficult to evaluate the algorithm’s
effectiveness.
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In [67], Foster and Soule developed two variations of genetic algorithms for
the maximum clique problem. One of them uses a different problem-encoding
approach, referred to as a grouping representation, which instead of encoding
each solution as a binary string, uses an array that stores information about all
the solutions in the current population. Such encoding scheme showed to increase
effectiveness of the crossover operation. The other variant of the algorithm uses
the time-weighted fitness function, which showed to improve the algorithm’s
performance. Hifi [102] adopted a genetic algorithm for solving the maximum
weighted independent set problem. The necessary algorithm modifications included
an introduction of a so-called two-fusion crossover operator and a replacement of
a mutation operator by a heuristic-feasibility operator. The two-fusion crossover
operator takes into account both the structure and the fitness of two parent solutions
and produces two children, while the heuristic-feasibility operator transforms
infeasible solutions into feasible ones. The main contribution of the designed
approach is that it is easily parallelizable.

Aggarwal et al. [4] designed an optimized crossover mechanism (inspired by a
heuristic CLIQMERGE proposed in [10] by Ballas and Niehaus) and applied it to
the maximum independent set problem. The new crossover operator exploits the
structure of the solution rather than its encoding. More precisely, when a crossover
operator is applied to two solutions from the population, one of the new solutions
is generated in such a way that it has the best fitness function value, while the other
one is constructed in a way that ensures the diversity of the search space. Promising
results of the proposed mechanism inspired authors of CLIQMERGE, Balas and
Niehaus, to examine this strategy even further [11]. The authors also considered
a different way of population replacement called a steady-state replacement and a
different selection method. The results of the experiments reported in [11] were even
more encouraging than those by Aggarwal et al. in [4].

Since most of pure genetic algorithms have shown to be not very effective
for solving hard combinatorial optimization problems, they are usually enhanced
by incorporating different techniques. Bui and Eppley [26] designed a hybrid
strategy with vertex preordering phase and a local optimization at each iteration
of the genetic algorithm. The authors claim that the performance of their hybrid
algorithm is comparable to a continuous-based approach by Gibbons et al. [79]
but inferior to tabu search- and simulated annealing-based approaches. Fleurent
et al. [65] used tabu search and other techniques as alternative mutation operators.
The performance of their approach was satisfactory with respect to the quality of
the obtained solutions but rather disappointing with respect to the computational
effort. Marchiori [136] developed an approach that combines a genetic algorithm
and a greedy heuristic, referred to as HGA. At each iteration of genetic algorithm,
the greedy heuristic is applied to each member of the population to extract maximal
cliques. That way, the genetic part of the approach provides exploration of the search
space, while the greedy heuristic provides exploitation. Despite its simplicity, the
approach has shown very good results [136, 137]. Zhang et al. [186] developed an
approach called EA/G which uses similar techniques as HGA but also incorporates a
guided mutation operator. The results of the experiments indicated that the algorithm
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was superior to HGA. Singh and Gupta [162] designed a framework which consists
of two phases: generation of cliques by a steady-state genetic algorithm and
extending them to maximal cliques by a heuristic which combines a randomized
sequential greedy approach and the exact algorithm of Carraghan and Pardalos [36].
The results of the experiments show that the algorithm outperformed three other
evolutionary algorithms, of Balas and Niehaus [11], Marchiori [137], and Fenet and
Solnon [61], but its performance is inferior to that of one of the most effective local
search-based techniques (RLS) of Battiti and Protasi [14].

More recently, Guturu and Dantu [90] designed an approach that combines
an impatient evolutionary algorithm and a probabilistic tabu search. Brunato and
Battiti [25] presented a hybrid algorithm similar to EA/G by Zhang et al. in [186].
In the proposed algorithm, which they refer to as R-EVO, the new solutions are
initialized according to an estimated distribution which is based on knowledge
extracted from the previous generations of the population. The solutions are then
evolved through a simplified version of RLS technique.

Despite such a significant effort in studying and designing different variations
of evolutionary and genetic algorithms, these approaches are still considered to be
far less effective for the maximum clique problem than the local search-based ones.
Perhaps, their inability to compete with the simple local search techniques lies in
the fact that there is no intuitive relationship between the crossover operator and a
discovery of improved cliques, and no such a meaningful operator has been devised
yet [182].

For the vertex coloring problem, the solutions are usually encoded either as
permutations of the vertices and referred to as order-based encoding or as color
partitions and referred to as direct encoding. The direct encoding can further be
categorized into the assignment based and partition based. Under the former one,
a solution is represented as an array, where each entry is associated with a certain
vertex and contains an index of the class the corresponding vertex belongs to. The
latter one, on the other hand, represents a solution as a partition of the vertices into
the color classes. Even though more satisfactory results have been achieved using
direct encoding techniques, the order-based encoding has a powerful advantage of
always corresponding to a feasible solution. Hence, it has been somewhat exploited
as well [48, 57, 145].

One of the first attempts to apply evolutionary algorithms for vertex coloring
problem is by Davis [48]. The author used order-based encoding, and a solution
was evaluated using a greedy sequential heuristic, which colors the vertices in the
order defined by the permutation. The algorithm yielded unsatisfactory results, as
was also shown in [66]. All of the later efforts of applying evolutionary algorithms
to the vertex coloring problem involved the incorporation of other techniques, such
as local search. The pioneers of this direction were Costa et al. [44] and Fleurent
and Ferland [66], replacing the mutation operator by a simple descent method in
the former and tabu search in the latter, respectively. In both papers the uniform
crossover operator or its slightly enhanced modification [66] is used. The algorithms
yielded slightly better results than their pure counterparts; however, the importance
of designing better crossover operators was concluded in [66].
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In later developments, the focus shifted to designing more advanced crossover
operators tailored to the specifics of the problem of interest. More precisely,
Dorne and Hao [52] used a specialized crossover based on the notion of the
union of independent sets, which, with the combination of tabu search, led to a
simple yet very powerful algorithm. Galinier and Hao [70] devised a new class of
crossover mechanisms based on the partition of vertices into color classes rather
than assignment of colors to vertices. The crossover operator called greedy partition
crossover (GPX) transmits the subsets of color classes from parent solutions to the
offspring solution. The power of this operator lies in its ability to retain some of
each parent’s structure in the offspring solution. The hybrid algorithm that uses this
crossover operator and a tabu search was tested on large and difficult DIMACS
instances and showed to be one of the best performing compared to other coloring
algorithms [70]. A few years later, Glass and Prügel-Bennett [80] examined the
hybrid algorithm of Galinier and Hao [70] by replacing the tabu search part of
the algorithm with a steepest descent. The results of the experiments showed that
the algorithm still remained powerful, which led to a conclusion that its success
is due to the crossover operator. Hamiez and Hao [92] presented a scatter search
algorithm devised for the vertex coloring problem. A scatter search is a subclass
of evolutionary approaches, where replacements of the population are based not
only on the improvement of the fitness function but also on the improvement of the
population diversity; see the corresponding chapter in this handbook for more detail.
The algorithm proposed in [92] was able to obtain results similar to the best-known
approaches, but it was more expensive computationally.

More recently, Galinier et al. [72] proposed an adaptive memory algorithm,
called AMACOL, where portions of solutions (color classes) are stored in a central
memory and are then used to build new solutions. The algorithm uses a tabu search
and yields results comparable to those obtained by an algorithm proposed in [70].
Malaguti et al. [133] designed a two-phase metaheuristic algorithm, called MMT,
for the vertex coloring problem. The first phase is a combination of an evolutionary
algorithm with a crossover similar to GPX from [70] and a tabu search with an
impasse neighborhood, proposed in [142]. The second phase of MMT is a post-
optimization procedure based on the set covering formulation of the problem. The
algorithm yields promising results.

Ant Colony Optimization
Ant colony optimization, discussed in more detail in a separate chapter of this book,
was originally introduced by Dorigo [51] and was inspired by the way the ants use
pheromone to communicate with each other and search for better paths to a source
of food. As they search for food, each ant leaves a pheromone trail. All subsequent
ants will follow the path with stronger pheromone. Since the pheromone evaporates
over time, it will last longer on better (shorter) paths. This way, these paths will be
followed by more ants and will subsequently have more pheromone laid. Eventually
all the ants will follow one single best path. The main idea of ant colony optimization
algorithms is to mimic this process. Each ant is thought of as a constructive heuristic,
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which builds a solution step by step using a greedy force and a trail information on
the history of the search obtained from other ants.

First attempt to investigate ant colony capabilities to tackle the maximum clique
problem was by Fenet and Solnon [61]. They introduced an algorithm, called Ant-
Clique, that generates maximal cliques by repeatedly adding vertices to partial
solutions, where each vertex is chosen according to the probability that depends
on the level of pheromone. The pheromone deposition is proportional to the quality
of previously constructed cliques. The performance of the algorithm was compared
to that of [137] and showed that on average Ant-Clique is capable of reaching better
solutions on the majority of tested instances. Youseff and Elliman [184] introduced
an algorithm that combines the capabilities of ant colony optimization and local
search techniques with prohibition rules. The algorithm was compared to the genetic
local search of [137] and has shown to be somewhat competitive. Incorporation
of local search techniques into the ant colony algorithm has also been addressed
in [165] and has shown to improve the solution process.

One of the first ant colony algorithms for the vertex coloring problem was
designed by Costa et al. [43]. Their algorithm, called ANTCOL, considers each
ant as a constructive heuristic derived from DSATUR [23] and RLF [125]. Even
though the algorithm was not superior of the best graph coloring heuristics of that
time, its performance was still promising enough to encourage more research in
this direction. Dowsland and Thompson further applied the same algorithm for
examination scheduling [53] and later enhanced it by strengthening the construction
phase and incorporating it with a tabu search improvement phase [54].

Hertz and Zuffrey [100] argued that an algorithm, where each ant has only
a minor role, is still competitive with the other ant algorithms. Namely, in their
proposed algorithm, each single ant does not build an entire solution but only colors
a single vertex. A similar idea was explored by Bui et al. [27]. In their algorithm,
instead of coloring the entire graph, each ant colors only a portion of the graph. The
performance of the algorithm seemed to be rather encouraging. Plumetta et al. [155]
proposed an ant local search algorithm, where each ant is considered as a local
search, rather than a constructive heuristic. The algorithm showed to be competitive
with other evolutionary methods available at that time.

Recently, Zufferey [188] conducted an analysis of importance of different ant
roles, ranging from insignificant ones, used to make a minor decision, to more
crucial ones, by performing a refined local search. It was shown experimentally that
the ant algorithms are more efficient when ants have strong roles like local search
procedures.

Heuristics Based on Continuous Formulations

A remarkable result by Motzkin and Straus [144], which provides an elegant
connection between maximum cliques and a certain quadratic program, has been
extensively explored to devise efficient heuristics for the maximum clique problem.
Some of the early methods are discussed in detail in [22].
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Given a graph G D .V; E/, let AG be the adjacency matrix of G. Consider the
following quadratic problem:

max g.x/ D xT AGx;

s.t. eT x D 1;

x 2 RjV j;

where e is a unit vector.
Motzkin and Straus [144] showed that the size of a maximum clique in G is

equal to:

!.G/ D
1

1 � g.x�/
;

where x� is a global maximizer of the above problem.
One drawback associated with this result is that a solution vector x� does

not always correspond to a maximum clique C , hence, making it hard to extract
the clique’s vertices. Bomze [21] proposed a regularization of the Motzkin-Straus
formulation by adding 1

2
xT Ix to the objective, where I is the corresponding identity

matrix. He has shown that every local maximum of the modified formulation
corresponds to a maximal clique in the graph as follows: C is a maximal clique
of G if and only if x�, such that x�

i D 1=jC j if xi 2 C and x�
i D 0 otherwise, is a

local maximum of the regularized Motzkin-Straus formulation.
One of the early approaches based on the Motzkin-Straus result was an iterative

clique retrieval procedure [149], which turned out to be of very high computational
cost and was only able to solve instances on less than 75 vertices. Gibbons et al. [79]
proposed to modify the Motzkin-Straus formulation so that it becomes a problem
of optimizing a quadratic function over a sphere. Even though such problem is
polynomially solvable, it, however, yields approximate solutions that need to be
rounded. Similar approaches, with a few advances, can be found in [30,31]. Simple
heuristics based on formulations of the maximum independent set problem as
maximization of polynomial functions over a unit hypercube were studied in [3].

Gruzdeva [89] proposed to add a non-convex quadratic constraint represented
by the difference of two convex functions (DC contraints) [105] to a continuous
formulation of the maximum clique problem. The author showed that the proposed
approach is competitive with other methods based on continuous formulations.

Massaro et al. [138] transformed the Motzkin-Straus formulation of the
maximum clique problem into its corresponding linear complementary problem
(LCP) [45]. To deal with the inherent degeneracy of the derived LCP, the authors
designed a variation of a classical Lemke’s method [126] with an effective “look-
ahead” pivot rule.

Recently, Butenko et al. [34] proposed variable objective search, a metaheuristic
framework that performs a local search with respect to different alternative for-
mulations of the same combinatorial optimization problems. To test their method,
authors considered the maximum independent set problem and its two equivalent
non-convex programs discussed in [3].



1278 O. Yezerska and S. Butenko

Another notable result – the “sandwich theorem” [122] – has inspired appearance
of several heuristic algorithms for both the maximum clique (independent set) [28,
55] and vertex coloring problems [56, 84, 117]. For a given graph G, the sandwich
theorem states that the following relationship holds:

!.G/ � �. NG/ � �.G/;

where �. NG/ is the Lovász theta, which can be computed in polynomial time [129].
In [28], the authors study rank-one and rank-two formulations of the semidef-

inite programming (SDP) formulation of the Lovász theta number. Based on the
obtained further continuous formulations, they designed heuristics for the maximum
independent set problem. As for the vertex coloring problem, the proposed solution
algorithms also used a semidefinite programming (SDP) formulation of the Lovász
theta and were capable of obtaining near-optimal solutions for problems of medium
sizes [56].

Other Heuristics

Many other interesting heuristic approaches have been devised to tackle the maxi-
mum clique and the vertex coloring problems. Balas and Niehaus [10] developed a
heuristic, called CLIQMERGE, that generates large cliques by repeatedly finding
a maximum clique in the subgraph induced by the union of two cliques. Such
procedure is performed by finding the bipartite matching of the complement
subgraph. A heuristic for the maximum independent set problem based on the
operation of edge projection, which is a specialization of Lovász and Plummer’s
clique projection [130], has been designed in [135]. Goldberg and Rivenburgh [83]
used a restricted backtracking for detecting cliques in graphs. DNA computing was
applied to the maximum clique problem in [147,185]. Neural network approach has
been very popular in tackling the maximum clique problem since the mid-1980s.
A detailed discussion on neural network-based methods applied to the maximum
clique problem developed before 1999 is presented in [22]. The interested readers
are also referred to [86, 106, 107, 110].

For the vertex coloring problem, the neural network approach has also been
applied in [16, 17, 77, 108, 154, 168, 169]. An algorithm which inherits ideas from
quantum mechanics was proposed in [171].

Computational Results

In this section we summarize best computational results achieved by heuristic
algorithms on selected hard benchmark instances for the problems of interest. We
disregard running times and focus on the quality of the reported solutions. More
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specifically, we only report the best found solutions for the instances with no known
optima and list the methods that were able to attain these solutions.

The results for the maximum clique instances are presented in Table 1. First
three columns contain information about the graph instance (name, number of
vertices jV j, and edges jEj). In the next columns, we report the size of the largest
detected clique (!lb) and list references of the methods that were able to attain such
solution. Note that the first two graph instances in Table 1 are from the Second
DIMACS Implementation Challenge [49], the next three instances are from the
Tenth DIMACS Implementation Challenge [50], and the rest of them are from the
so-called CODE family [164], which is a collection of challenging graph instances
arising from the coding theory.

The computational results related to the coloring problem are contained in
Table 2. Here, the first three columns are the same as in Table 1. The fourth and
fifth columns contain the size of the lower (�lb) and upper (�ub) bounds on the
chromatic number. The majority of the results related to the lower bound size is
by [98]. The last column in Table 2 lists the references to the algorithms which have
achieved �ub . The first 27 instances presented in this table are from the Second
DIMACS Implementation Challenge [49]; the next 12 are from Stanford Large
Network Dataset Collection [127], referred to as the SNAP; and the last 8 are from
the Tenth DIMACS Implementation Challenge [50].

More detailed discussions on computational performance of various heuristics
can be found in some of the recent surveys [73, 132, 182].

Table 1 Approximate solutions to the maximum clique problem

Instance jV j jEj !lb !lb obtained by

Keller6 3,361 4,619,898 59 [5, 14, 15, 90, 95, 112, 158–160, 180, 183]

Hamming10-4 1,024 434,176 40 [14, 15, 90, 95, 112, 158, 159, 180, 183]

c500.9 500 112,332 57 [14, 15, 90, 95, 112, 158–160, 180, 183]

c1000.9 1,000 450,079 68 [5, 14, 15, 90, 95, 112, 158–160, 180, 183]

c2000.9 2,000 1,799,532 80 [15, 112, 180, 183]

1dc.1024 1,024 24,063 94 [5, 33, 112]

1dc.2048 2,048 58,367 172 [5, 33, 112]

1et.1024 1,024 9,600 171 [5, 33, 112]

1et.2048 2,048 22,528 316 [5, 33, 112]

1tc.1024 1,024 7,936 196 [5, 33, 112]

1tc.2048 2,048 18,944 352 [5, 33, 112]

1zc.1024 1,024 33,280 112 [5, 33, 112]

1zc.2048 2,048 78,848 198 [5, 33, 112]

1zc.4096 4,096 184,320 379 [5, 33, 112]

2dc.1024 1,024 169,162 16 [5, 33, 112]

2dc.2048 2,048 504,451 24 [5, 33, 112]
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Table 2 Approximate solutions to the vertex coloring problem

Instance jV j jEj �lb �ub �ub obtained by

DSJC250.5 250 15,668 26 28 [40, 69, 70, 72, 84, 131, 133, 142, 157, 171]

DSJC500.1 500 12,458 9 12 [18,40,52,69,72,84,101,131,133,142,155–
157, 171]

DSJC500.5 500 62,624 43 48 [18, 52, 70, 72, 101, 131, 133, 142, 155–157,
170, 171]

DSJC500.9 500 1,124,367 123 126 [40, 40, 52, 72, 101, 131, 155–157, 170, 171]

DSJC1000.1 1,000 49,629 10 20 [18,52,70,72,96,101,131,133,155–157,170,
171, 179]

DSJC1000.5 1,000 249,826 73 83 [52, 70, 96, 131, 133, 142, 156, 170, 171, 179]

DSJC1000.9 1,000 449,449 216 222 [96, 170, 171, 179]

r1000.1c 1000 485090 96 98 [18, 69, 96, 131, 133, 142, 156, 157, 171]

latin_square_10 900 307,350 90 97 [170]

1-Insertions_5 202 1,227 4 6 [72, 134]

1-Insertions_6 607 6,337 4 7 [72, 134]

2-Insertions_4 149 541 4 5 [40, 72, 134]

2-Insertions_5 597 3,936 3 6 [72, 134]

3-Insertions_4 281 1,046 3 4 [40]

3-Insertions_5 1,406 9,695 3 6 [40, 134]

4-Insertions_4 475 1,795 3 5 [72, 134]

4-FullIns_5 4,146 77,305 7 9 [40, 134]

5-FullIns_4 1,085 11,395 8 9 [134]

wap01 2,368 110,871 41 42 [40, 96]

wap02 2,464 111,742 40 41 [96]

wap03 4,730 286,722 40 44 [96]

wap04 5,231 294,902 40 42 [96]

wap07 1,809 103,368 40 41 [96]

wap08 1,870 104,176 40 42 [96, 134]

c2000.5 2,000 999,836 99 145 [96]

c2000.9 2,000 1,799,532 80 408 [96]

c4000.5 4,000 4,000,268 107 259 [96]

Wiki-Vote 7,115 100,762 19 24 [172]

p2p-Gnutella04 10,876 39,994 4 6 [172]

p2p-Gnutella25 22,687 54,705 4 6 [172]

p2p-Gnutella24 26,518 65,369 4 6 [172]

Cit-HepTh 27,770 352,285 23 25 [172]

Cit-HepPh 34,546 420,877 19 21 [172]

p2p-Gnutella30 36,682 88,328 4 6 [172]

p2p-Gnutella31 62,586 147,892 4 6 [172]

soc-Epinions1 75,879 405,740 25 30 [172]

Email-EuAll 265,214 364,481 18 20 [172]

WikiTalk 2,394,385 4,659,565 31 51 [172]

cit-Patents 3,774,768 16,518,947 11 12 [172]

(continued)
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Table 2 (continued)

Instance jV j jEj �lb �ub �ub obtained by

kron_g500-simple-logn16 65,536 2,456,071 136 155 [172]

G_n_pin_pout 100,000 501,198 4 8 [172]

smallworld 100,000 499,998 6 8 [172]

wave 156,317 1,059,331 6 9 [172]

audikw1 943,695 38,354,076 36 44 [172]

ldoor 952,203 22,785,136 21 35 [172]

333SP 3,712,815 11,108,633 4 5 [172]

cage15 5,154,859 47,022,346 6 13 [172]

Conclusion

In this chapter, we discussed various heuristics for approximating the maximum
clique and the vertex coloring problems that were developed in the past 20–30
years. The local search-based metaheuristics proved to be more effective than
the population-based ones. Nevertheless, the latter ones still have gained a lot of
attention among the researchers. Indeed, when combined with effective local search
techniques, they can actually yield competitive results; moreover, they can be easily
parallelized. Heuristics based on continuous optimization represent an interesting
and promising direction for future research.

Cross-References
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�Variable Neighborhood Search
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84. Govorčin J, Gvozdenović N, Povh J (2013) New heuristics for the vertex coloring problem
based on semidefinite programming. Cent Eur J Oper Res 21(1):13–25

85. Grable DA, Panconesi A (1998) Fast distributed algorithms for Brooks-Vizing colourings. In:
Proceedings of the ninth annual ACM-SIAM symposium on discrete algorithms. Society for
Industrial and Applied Mathematics, pp 473–480

86. Grossman T (1996) Applying the inn model to the maximum clique problem. In: Johnson
DS, Trick MA (eds) Cliques, coloring, and satisfiability: second DIMACS implementation
challenge. American Mathematical Society, Providence, pp 125–146

87. Grosso A, Locatelli M, Della Croce F (2004) Combining swaps and node weights in an
adaptive greedy approach for the maximum clique problem. J Heuristics 10(2):135–152

88. Grosso A, Locatelli M, Pullan W (2008) Simple ingredients leading to very efficient heuristics
for the maximum clique problem. J Heuristics 14(6):587–612

89. Gruzdeva TV (2013) On a continuous approach for the maximum weighted clique problem.
J Glob Optim 56(3):971–981

90. Guturu P, Dantu R (2008) An impatient evolutionary algorithm with probabilistic tabu search
for unified solution of some np-hard problems in graph and set theory via clique finding. IEEE
Trans Syst Man Cybern B Cybern 38(3):645–666

91. Hajnal P, Szemerédi E (1990) Brooks coloring in parallel. SIAM J Discret Math 3(1):74–80
92. Hamiez JP, Hao JK (2002) Scatter search for graph coloring. In: Artificial evolution. Springer,

Berlin/Heidelberg pp 168–179
93. Hansen P, Jaumard B (1990) Algorithms for the maximum satisfiability problem. Computing

44(4):279–303
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Abstract

The lot sizing problem consists in determining lot sizes and their scheduling
to meet the required demands. This chapter focuses on a multi-plant lot sizing
problem with planning for multiple items, each plant with their own demands
and multiple periods. In spite of not been widely investigated, their theoretical
and practical importance are supported by applications from private and public
sectors. This chapter pays special attention to the multi-plant uncapacitated lot
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sizing problem (MPULSP). In particular, a novel network flow formulation is
introduced, and some computational experiments were carried out to assess
the performance of commercial solvers in solving a number of large instance
problems. Moreover, a comparative analysis is performed by considering two
other formulations for the MPULSP found in the literature.

Keywords
Lot sizing problem � Multi-plant � Network flow

Introduction

Lot sizing plays an important role in improving the profits of the companies in
addition to other goal effects, as, e.g., the environmental impacts. Many features
and requirements of the companies influence and impose additional constraints and
limitations on a lot sizing problem. As a consequence, a number of variants on
this subject, each of them suitable for particular applications, can be found in the
literature.

Karimi et al. [9] and Buschkühl et al. [3] defined, in a comprehensive literature
review, the primary characteristics and existing variants of lot sizing problems.
Nevertheless, Karimi et al. [9] do not mention lot sizing problems involving more
than one plant, best known as multi-plant lot sizing problems (MPLSP). Buschkühl
et al. [3] briefly discuss the MPLSP, but because of the general scope of their review
of dynamic lot sizing problems, they do not go into detail on this problem. Highly
relevant in certain industry sectors such as mattress companies [14], the MPLSP has
received a reasonable amount of attention in the last two decades even though a very
small number of solution methods has been studied to approach it. This chapter,
therefore, focuses on the MPLSP presenting the state-of-the-art solution methods
and mathematical models.

There are two cases of the MPLSP in the literature: the capacitated case
(MPCLSP) [14] and the uncapacitated case (MPULSP) [13]. The studies presented
in [4, 14, 17] approach two mathematical formulations for the capacitated case. To
approach the uncapacitated case, it is enough to delete the capacity constraints of
the capacitated models. Both problems have been proved to be NP-hard [13]. The
solution methods of the literature mostly focus on the MPCLSP [11, 14, 15].

This chapter also introduces a network flow-based mathematical model for
the MPULSP and computational experiments with benchmark MPCLSP instances
ignoring the capacity limitations.

The Lot Sizing Problem

Lot sizing is a research topic widely studied due to its importance for the production
planning. According to Karimi et al. [9], lot sizing belongs to the medium-term
decision making, when it is necessary to determine the timing and how much of the
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items to produce to meet the demands and minimize the total costs. This tactical
planning is responsible for the productivity of the company, where the decisions
must consider the requirements and limitations of the manufacturing process.

Many variants of the lot sizing problem and their solution methods can be found
in the literature. Among the numerous features that define the different variations of
the problem, we can highlight the finite planning horizon divided into periods, single
or multiple production levels, single or multiple items, single or multiple machines
in each plant, single or multiple plants, uncapacitated or capacitated, stochastic or
deterministic demand, with or without setup time, and limited or unlimited inventory
capacity or not. These characteristics define the primary traits of the classical lot
sizing problems.

The next section further describes these features loosely based on [9].

Demands

The demand of an item is the required amount to produce in the desired production
planning. This amount comprises the estimated value according to the history of the
productive process or the quantity of the order of clients. The types of demands are
stationary (static or dynamic). Stationary demands mean they do not vary over time.
The values of dynamic demands may change over time [19].

Apart from being stationary or dynamic, the demands can be deterministic
or non-deterministic. The determinism of demands means that they are known
beforehand, and most of the existing studies in the literature consider this type
of demand. The non-deterministic or stochastic demands depend on a probability
function or an information subject to uncertainty.

Planning Horizon

Scheduling the production up to a certain time in the future is a relevant character-
istic of lot sizing problems. In general, one defines this planning as finite, infinite,
and rolling. The main characteristics regarding these types of planning horizon are
enumerated as follows:

• The time interval of a finite planning horizon is limited.
• There is no time limit imposed in an infinite planning horizon. Demands, in this

case, are generally stationary.
• The rolling planning horizon is a strategy that projects the actual planning

horizon that has been scheduled to part of or to the entire next interval of time.
This planning aims at keeping running the production of a firm based on past
plannings.

Lot sizing problems with rolling planning horizon are hard to evaluate as
discussed in [6].
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Items

The production system can produce a single or multiple types of items. In
single-item systems, only one type of item is considered as the final product. Multi-
item systems involve the production of more than one type of item as the final
product.

Multi-item production may be an item independent problem. In problems with
item dependency, an item can only be manufactured after the production of another
item. Dependencies on items are usually found in problems with more than one
level.

Levels

The dependence between tasks performed for the transformation of the raw material
into a final product is modeled by levels in the production system.

• Single level: In a single-level production system, the transformation of raw
material into the final product (item) is direct. This means that there are no
intermediate steps, that is, the production of items are independent.

• Multilevel: The production of some final product (item) depends on the opera-
tions performed at different levels of the production system. In other words, the
production of an item depends on the availability of items produced at previous
levels.

Plants

A production system must have a facility (plant) where the items are produced.
There are problems in which there is more than one production facility. In these
multi-plant lot sizing problems, each plant has its own demand and capacity, and lot
transfers between plants are possible subject to the transportation costs.

Machines

A production facility may have a single or multiple machines to produce items.
In particular, multiple identical parallel machines produce the same items with the
same setup costs and times. The problem can be uncapacitated and capacitated when
the machine production is limited by an upper bound and is located at the same
facility.

Setup Structure

A setup cost is incurred to produce an item type, and a setup time is required
to prepare the machine. These two components characterize the machine setup
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structure in a production system, which can be classified as simple or complex. In
the simple setup, the time and cost of preparation are not influenced by production
in previous periods. In the complex setup, both time and cost of setup may depend
on the sequencing of tasks and decisions taken in previous periods, as follows:

• Setup carry-over: If the preparation of the machine is ready at the end of a period
for the production of a certain type of item, there is no need to re-prepare the
machine in the beginning of the following period, if the same type of item is the
first to be produced.

• Setup crossover: This type of setup enables a setup starting at the end of a period
be interrupted and resumed in the beginning of the next period.

• Setup by similarity: The preparation is carried out taking into consideration the
group of items to be produced. Similar items can be produced without additional
preparation if they are produced in the sequence.

• Sequence-dependent setup: The preparation is dependent on the sequence deter-
mined for the production of the items.

Inventory and Backlogging

When the amount of production of an item exceeds the demand for the item in
the period produced, the production stock may be subject to costs, and it may be
restricted to the capacity of the storage warehouse, among other factors [14, 15]. In
another case, a delay (backlogging) in the supply of demand is allowed, subject to
some penalty costs.

On the Complexity
Wagner and Whitin [19] proved that the uncapacitated lot sizing problem with
multiple items (or a single item), setup time, and deterministic demand can be solved
in polynomial time by a dynamic programming algorithm. Bitran and Yanasse
[1] proved that the capacitated lot sizing problem is NP-hard. Maes et al. [10]
proved that to decide whether an instance of the capacitated lot sizing problem with
setup times is feasible is NP-complete. The existing studies include new problems,
reviews, and surveys, and they present methods, their computational complexity,
and mathematical formulations [2, 3, 6, 8, 9, 12]. The computational complexity of
the different variants of the lot sizing problem depends on their features, such as
limited capacity and existence of setup times.

Among the plethora of variants and possibilities to approach this problem, this
chapter limits the attention to the description of the multi-plant lot sizing problem
with setup time and unlimited inventory.

Different from most uncapacitated lot sizing problems that, even with setup times
have polynomial time solution, the MPULSP has been proved NP-hard [13].
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The Multi-plant, Multi-item Lot Sizing Problem
The multi-plant lot sizing problem (MPLSP), where all plants produce the same
items and have limited capacity, is known as multi-plant capacitated lot sizing
problem (MPCLSP). For this problem, the literature on mathematical formulations
presents two different mixed integer programs. First, in this chapter, the formulation
proposed in [13] is presented.

Let one define the following parameters of the problem:

n : number of items;
m : number of plants;
p : number of periods;

csij : setup cost for producing item i at plant j ;
cij : unitary production cost of item i at plant j ;
hij : unitary inventory cost of item i at plant j ;
rjk : unitary transportation cost of items from plant j to plant k;
dijt : demand of item i at plant j in period t ;
bij : processing time of item i at plant j ;
fij : setup time for preparing the machine for producing item i at plant j ;
Cjt : capacity of production at plant j in period t .

To formulate the MPCLSP, Sambasivan and Schimidt [14] considered the
following variables:

xijt : the quantity of item i produced at plant j in period t

yijt : binary setup variable that receives 1 if item i is produced at plant j in period
t and 0, otherwise;

Iijt : variable that controls the inventory of item i at plant j at the end of period
t ;

wijkt : variable that specifies the amount of item i transferred from plant j to plant
k in period t .

min
nX

iD1

mX

j D1

pX

tD1

0

@csij yijt C cij xijt C hij Iijt C
X

k¤j

rjkwijkt

1

A (1)

subject to:

xijt C Iij;t�1 � Iijt �
X

k¤j

wijkt C
X

l¤j

wi ljt D dijt 8i; j; t (2)

nX

iD1

.bij xijt C fij yijt / � Cjt 8j; t (3)

xijt � Lyijt 8i; j; t (4)

yijt 2 f0; 1g; xijt � 0; Iijt � 0; wijkt � 0 8i; j; t I j ¤ k (5)
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The objective function (1) is the minimization of the sum of setup, produc-
tion, inventory, and transfer costs. Constraints (2) balance inventory production
transference and demand of items at each plant in each period t . Constraints (3)
limit the time production capacity of plant-period .j; t/. Constraints (4) ensure the
production of item i at plant j in period t can occur only if the corresponding setup
is performed. Finally, constraints (5) define the domain of the variables.

Silva [16] proposed a mathematical formulation for the MPCLSP based on the
study found in [7]. Carvalho and Nascimento [4] refined this integer program and
the formulation, presented next.

This formulation possesses the following parameters:

cijtku D

�
0; if u < t;

cij C �ijtku; otherwise:

where

�ijtku: is the inventory and transfer costs for producing one unit of item i at plant
j in period t to meet the unitary demand of item i at plant k in period u. It
is given by

�ijtku D minf.u�t /hij Crjk; min
1�v�p

f.u�t /hiv Crj v Crvkg; .u�t /hik Crjkg (6)

cijtku is the cost of producing one unity of item i at plant j in period t plus the
least inventory and transportation costs of this unity of i from plant j to plant k

from period u to t . In addition to yijt defined as previously, the following variables
are used:

xijtku: is the production of item i at plant j in period t to meet the demand of item
i at plant k in period u.

The model of [4] for the MPCLSP is:

min
nX

iD1

mX

j D1

pX

tD1

mX

kD1

pX

uD1

.cijtkuxijtku/ C

nX

iD1

mX

j D1

pX

tD1

.csij yijt / (7)

subject to

mX

j D1

uX

tD1

xijtku D diku 8.i; k; u/ (8)

nX

iD1

 
fij yijt C

mX

kD1

pX

uDt

bij xijtku

!
� Cjt 8.j; t/ (9)
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xijtku � min

�
dikuI

�
Cjt � fij

bij

��
yijt 8.i; j; t; k; u/ (10)

xijtku 2 N 8.i; j; t; k; u/ (11)

yijt 2 f0; 1g 8.i; j; t/ (12)

The objective function aims at minimizing the total costs: production, setup,
inventory, and transference between plants. Constraints (8) ensure that the demands
of all plants are met; constraints (9) ensure the production capacity at each plant
in every period is not violated. In constraints (10), if item i is produced at plant j

in period t , then yijt assumes value 1, that is, a corresponding setup cost must be
added to the total cost. Constraints (11) and (12) define the domain of the decision
variables.

It is noteworthy that the number of variables of this formulation asymptotically
grows faster with the size than the variables of the model of [14]. Consequently,
there is a major influence on the performance of exact solution methods in solving
the problems regarding different sizes of instances.

As some applications involving MPLSP have a large number of items, heuristics
are solution methods that play an important role in this problem, as discussed in the
next section.

Solution Methods
In the literature, one can find a few heuristic methods specially designed for solving
both MPULSP and MPCLSP. They are a simple heuristic based on lot transfers
[14], a Lagrangian heuristic [15], a greedy randomized adaptive search procedure
(GRASP) with path relinking [11], and Lagrangian heuristics [4].

The Lagrangian heuristic proposed in [15] aims at finding a heuristic solution
for the relaxed uncapacitated problem and posteriorly transfers lots of production of
items as an attempt of achieving a feasible solution for the MPCLSP. The authors
take into consideration the mathematical formulation proposed in [14] to develop
their method. They evaluate the performance of the Lagrangian heuristic by using
artificial instances they generated. As a result of the experiments, the Lagrangian
heuristic systematically achieved better results than the first heuristic proposed to
solve the MPCLSP, found in [14].

Later, Nascimento et al. [11], besides proposing a novel hybrid metaheuristic, set
forth a new set of instances with a more diversified structure and classified them as
indicated in the section of experiments of this chapter. In their experiments using
the set of instances introduced in [15], they show that the hybrid metaheuristic,
GPheur, had a better performance than the Lagrangian heuristic [15]. In order to
better investigate the performance of their metaheuristic, they carry out experiments
with the set of instances they suggested. For these instances, GPheur could not find
optimal solutions for the hard instances, even though the heuristic method achieved
better results than CPLEX v. 7.5.

More recently, Carvalho and Nascimento [4] proposed a pair of Lagrangian
heuristics that make use of CPLEX v.12.6 to find the optimal solution of the
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uncapacitated problem, by considering the model introduced in [16]. One is a
Lagrangian heuristic, named by the authors as Lag, and the other is a hybrid version,
referred as LaPRe. For finding feasible solutions for the capacitated problem, both
feasibility strategies, adapted for tackling the MPCLSP from [18] and the local
search phase of the GRASP from [11], were embedded in the strategy. To enhance
the quality of the solutions, the path relinking, also proposed in [11], was used to
compose the hybrid Lagrangian heuristic. In experiments, the authors show that
both LaPRe and Lag significantly outperformed GPheur achieving feasible solutions
for the whole set of instances. However, for smaller instances, CPLEX v. 12.6
outperformed the Lagrangian heuristics on most of the classes of instances. On the
other hand, when considering large instances, CPLEX could not find good solutions
for all instances in a limit of 1800 s established by the authors to run each instance of
the experiment, whereas the Lagrangian heuristics presented better lower and upper
bounds.

Network Flow-Based Formulation

Because of the importance of the multi-plant lot sizing problems, this chapter gives
a new insight to the MPULSP. For this, it presents a network flow-based formulation
for the MPULSP, different from the formulations proposed in the literature.

In unlimited capacity lot sizing problems, the production of items is independent.
Therefore, the formulation will disregard item indices, without loss of generality.

In a network flow, consider the following parameters:

csj : setup cost of an item at plant j ;
djt : demand in plant j in each period t ;
hj : inventory cost at each plant j ;
cj : production cost of an item at plant j ;

rjk : transfer cost between plants j and k;
cj : production cost of an item at plant j ;
M : sum of the demands of every plant-period.

Therefore, if a machine is ready to produce an item, the cost of producing at plant
j in period t to meet the demand at plant k in period u is:

�0
jtku D cj C minf.u � t /hj C rjk; min

1�v�p
f.u � t /hv C rj v C rvkg; .u � t /hk C rjkg

In the most general case, other plants can be considered in the transfer of the
produced item. To calculate the costs of the arcs, it is necessary to determine them
by solving the minimum cost problem between the pair of vertices of the network.
Consider a toy example with two plants and three periods as illustrated in Fig. 1.

In Fig. 1, node 0 is the source of the network. It receives the sum of the demands
of all periods in each plant. The nodes represented as yellow rectangles are the
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Fig. 1 Example with two plants and three periods

setup nodes, whereas round blue nodes indicate the demands to be met. The labels
of yellow nodes, skt , indicate the setup at plant k in period t . The labels of round
nodes, kt , represent the planning in the plant k at period t . A sink node is associated
with each blue node, to represent the addressing of the corresponding demand. Arcs
with heads incident to demand nodes are only those with tails in setup nodes or
with tails from the immediately previous period at the same plant. These conditions
ensure the machine to be prepared for producing that item. Aggregated to such arcs
are the aforementioned costs. Moreover, arcs with head in setup nodes have tails in
the production or source nodes.

To formally introduce the network flow-based problem, referred here as NYC,
consider the following variables:

yjt : binary setup variable that receives 1 if there is setup to produce demands
at plant j in period t and 0, otherwise;

xjt�1;jt : is an arc that carries demands from plant j not produced up to period
t � 1;

xjt�1;sjt : is the amount of demand not met up to period t � 1 to be produced at
plant j in period t ;

xsjt ;ku : is the amount of demand produced at plant j in period t to meet the
demand of plant k in period u.
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The domains of the indices are the following: j; k 2 f1; : : : mgI t 2

f1; : : : ; pgI and u 2 ft; : : : ; pg. The general formulation is, thus, the following:

min
mX

j D1

mX

kD1

pX

tD1

pX

uDt

�0
jtkuxsjt ;ku C

mX

j D1

pX

tD1

csj yjt (13)

subject to:

mX

j D1

.xj 0;sj 1 C xj 0;j 1/ D

mX

j D1

pX

tD1

djt (14)

xjt�1;sjt D

mX

kD1

pX

uDt

xsjt ;ku 8j; t (15)

xjt;sj;tC1
C xjt;jtC1 � xjt�1;jt D 0 8j; t D 1; : : : ; p � 1 (16)

mX

j D1

uX

tD1

xsjt ;ku D dku 8k; u (17)

xjt�1;sjt � Myjt 8j; t (18)

yjt 2 f0; 1g 8j; t (19)

xsjt ;ku; xjt�1;sjt ; xjt�1;jt � 0 8j; k; t � u (20)

Constraints (14) define the set of source nodes assigning to them the sum of the
demands of the plants. Constraints (15) refer to the flow conservation constraints
of setup nodes. Constraints (16) ensure the flow conservation of production nodes.
Constraints (17) ensure that the demands of all plants are met. Constraints (18)
ensure the setup variables to be 1 if there is production in period t , whereas
constraints (19) and (20) define the domains of the variables of the model.

In the next section, computational experiments were carried out to evaluate the
performance of CPLEX v.12.6 with the three models discussed in this chapter.

Computational Experiments

For the analysis of the proposed network flow-based model, we performed an
experiment comparing its results with those achieved by CPLEX v.12.6 considering
the formulations presented in [14] and [16] refined and introduced in [4].

All algorithms were implemented in the C++ language and the experiments
carried out in an Ubuntu Server 14.04, Intel Core i7 with 3.4 GHz, 500 MB CPU,
and 16 GB DDR RAM.

For the experiment, we employed a set of instances generated as suggested in
[11]. It is a set of 8 classes of datasets with 160 instances. The division into classes
was due to three main characteristics of the instance: capacity, setup cost, and
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setup time. Accordingly, the instances were classified as having tight (T) or normal

(N) capacity. Considering ˇ D
pP

tD1

nP
iD1

.dijt bij Cfij /

p
, instances with normal and tight

capacities have their parameter Cjt set as 1 � ˇ and 0:9 � ˇ, respectively.
Regarding the setup costs, instances were defined with low (L) or high (H). In the

former, csij was chosen randomly within interval Œ5:0I 95:0�. In the latter, instances
were chosen randomly within interval Œ50:0I 950:0�.

To define each fij , it was picked randomly a value within interval Œ10:0I 50:0�

when considering an instance with low setup time (L), and from interval Œ15:0I 75:0�

if it was a high setup time (H) instance.
The remaining parameters, cijt , hij , rjk , bij , and dijt , were set selecting at ran-

dom values from the respective intervals: Œ1:5I 2:5�, Œ0:2I 0:4�, Œ0:2I 0:4�, Œ1:0I 5:0�,
and Œ0; 180:0�.

Therefore, a class of instances of the type NHL has instances with normal
capacity, high setup cost, and low setup time. In the first set of instances, generated
in [11], each instance corresponds to a problem with 12 periods, 2 plants, and 100,
200, 300, or 400 items. For each combination, the set has 5 problems, totaling 20
instances in each class.

Setup of the Experiments

To describe the results of the experiments and computationally compare the models,
the performance profiles of [5] will be employed. This profile consists in a plot that
displays the relation between the metric to be evaluated, in this case, the time to
solve every instance, and the performance of each algorithm in solving the instances,
being the reference the best solution times found among all algorithms. For this,
consider the ratio in Eq. (21).

�a;� D
1

jS j
fs 2 S W rsa � �g (21)

The factor � in Eq. (21) means specifically the factor that multiplied by the best
solution found considering all algorithms results in a lower bound for the solution
found by algorithm a for instance s. Therefore, rsa can be calculated as indicated in
Eq. (22).

rsa D
tsa

minftsa0 W a0 2 A g
(22)

In Eq. (22), tsa corresponds to the metric used for evaluating the solutions that
must be minimized. Therefore, rsa is the performance of algorithm a to solve
instance s in comparison to every algorithm. Consequently, �a;� is the percentage
of solutions of the set of instances solved by algorithm a that respects the bound � .
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Results of the Experiments

In this experiment, the network flow-based formulation, named NYC, the model
presented in [14], SS02, and the formulation adapted in [4], named CN16, were
compared. As mentioned before, the time to achieve the optimal solution is the
object of assessment. For this, the first performance profiles displayed in Fig. 2
assesses only the small-sized instances (those with a number of items lesser than
or equal to 50). In this case, it was possible to consider the time elapsed considering
SS02, since it was comparable with NYC.

According to the results of the experiment, CN16 presents a clear advantage in
performance in comparison to the other formulations. NYC achieves better results
than SS02 even though their performances were very close. However, the difference
between the performance profiles of NYC and SS02 becomes more evident with the
increase in the number of items.

Figure 3 plots the performance profiles considering the larger instances (with
a number of items larger than or equal to 100). This evaluation only takes into
consideration the results achieved using models CN16 and NYC since to run
instances modeled as SS02 was time-consuming.

Although the performance of NYC was poorer than CN16, it is noteworthy that
their difference in performance fell in relation to the smaller instances. The value of
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Fig. 2 This figure shows the performance profiles considering the two existing models in the
literature, SS02 and CN16, and the formulation proposed in this chapter, NYC
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Fig. 3 This figure shows the performance profiles considering the existing model in the literature
CN16 and the formulation proposed in this chapter, NYC

� for NYC to have at least half of the instances with results comparable to CN16 is
6. On the other hand, for larger instances it was approximately 2.

Conclusions

Lot sizing plays a fundamental role in production planning. Considering the
planning horizon phased into periods, this problem consists in making decisions
with regard to plant, period, item, and amount of items to produce to meet all
demands without delay. In multi-plant capacitated lot sizing problem, it is possible
to schedule items on multiple machines/plants enabled by transferring items to
plants where they are demanded. This is the subject of this study about which is we
presented a brief literature review, primarily focusing on existing solution methods
and approaches to its solution.

A few efficient solution methods were specially designed to tackle the multi-
plant capacitated lot sizing problem (MPCLSP). The hard nature of this problem, for
which not even the uncapacitated variant has a polynomial algorithm to find optimal
solutions, may be the reason behind the lack of interest in developing frameworks.
Nevertheless, two Lagrangian heuristics recently proposed achieved good results
mainly on large-scale instances and instances with high setup costs. For smaller
instances and those with low setup costs, CPLEX significantly outperformed them.
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Despite being NP-hard, few formulations were specially designed for the multi-
plant uncapacitated lot sizing problem (MPULSP). The relevance in studying
the MPULSP, besides approaching production lines that do not have capacity
constraints, is to enable a study of strategies that relax capacity constraints to browse
the search space for feasible solutions for the MPCLSP. This chapter introduces a
network flow-based formulation for the MPULSP and evaluates a recently proposed
mathematical formulation for the MPCLSP by relaxing the capacity constraints
to contrast their performance in solving instances according to solver CPLEX.
Moreover, the first proposed formulation for the MPULSP was investigated in
the computational experiments. Experiments with instances found in the literature
were carried out by evaluating the time to solution, assessed with Dolan-Moré
performance profiles.
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Abstract

Trees and forests have been a fascinating research topic in Operations Research
(OR)/Management Science (MS) throughout the years because they are involved
in numerous difficult problems, have interesting theoretical properties, and cover
a large number of practical applications. A tree is a finite undirected connected
simple graph with no cycles, while a set of independent trees is called a forest.
A spanning tree is a tree covering all nodes of a graph. In this chapter, key
components for solving difficult tree and forest problems, as well as insights
to develop efficient heuristics relying on such structures, are surveyed. They
are usually combined to obtain very efficient metaheuristic algorithms, hybrid
methods, and matheuristics. Some emerging topics and trends in trees and
forests are pointed out. This is followed by two case studies: a Lagrangian-
based heuristic for the minimum degree-constrained spanning tree problem and
an evolutionary algorithm for a generalization of the bounded-diameter minimum
spanning tree problem. Both problems find applications in network design,
telecommunication, and transportation fields, among others.

Keywords
bi-objective heuristic � DBMST � DCMST � forest � heuristics � Langrangian
heuristic � tree

Introduction

Trees and forests have been a fascinating topic in Operations Research (OR)/Mana-
gement Science (MS) throughout the years because they are the core of difficult
problems, have interesting theoretical properties, and cover a large number of
practical applications. Their interest remains intact due to the technical and scientific
challenges and the rich diversity of applications using such structures. For instance,
several applications have been recently addressed: people tracking is modeled
as a minimum cost arborescence problem by [32]; cluster-based topologies with
connecting requirements are defined as a minimum spanning tree (MST) to improve
wireless sensor network lifetime in [51]; peer-to-peer distributed interactions are
studied by [39] as a spanning tree, where end-to-end delays are minimized; reliable
telecommunication networks have been investigated by [54], in which redundancy
is added to spanning trees by introducing k-cliques .k � 2/; and difficult
MST problems have been investigated including uncertain data [35], new variants
for optical multicast network design [55], or even multiobjective MST versions
[52, 56].

Let G D .V; E/ be a finite, undirected, connected, and simple graph with a
set V of vertices and a set E of edges, where n D jV j and m D jEj. A tree
T D .V 0; E 0/ is a connected subgraph of G with no cycles, such that V 0 � V

and E 0 � E. Whenever V 0 D V , the corresponding tree defines a spanning tree
of G. An arborescence is a special directed tree with a root node r . Moreover, a
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Fig. 1 Examples of tree, spanning tree, arborescence and forest. (a) Graph G0. (b) Tree.
(c) Spanning tree. (d) Arborescence. (e) Forest

forest is a set of disjoint trees F D fT1; T2; : : : ; Tlg. An example of graph G0 is
given in Fig. 1a, followed by examples of a tree, a spanning tree, an arborescence,
and a forest of G0, respectively, in Fig. 1b–d where r D 1, and (e). In this chapter,
we assume familiarity of the reader with basic graph definitions such as connected
graphs, connected components, subgraphs, paths, cycles, edges incident to nodes,
node degree, etc.

The basic minimum spanning tree (MST) problem is defined on a weighted graph
G, where a cost cij � 0 is associated with every edge Œi; j � 2 E. It aims at
finding a spanning tree T of G such that its total cost is minimized. The number
of possible MSTs for a graph is very high with up to nn�2 for complete graphs
[12]. However, polynomial-time algorithms such as Prim’s, Kruskal’s, Boruvka’s,
and cycle elimination algorithm [14] are available to compute an MST. The general
idea of Prim’s algorithm is to extend an MST from an initial node i 2 V . At each
step it includes the cheapest-weight edge Œi; j � 2 E such that one of its extremities
belongs to the tree, while the other one does not. Thus, the connected component is
extended until all nodes i 2 V belong to the solution. Kruskal’s algorithm performs
forest merging as follows. Initially, each vertex is a tree. Then, at each iteration, the
cheapest edge connecting two forests is selected, and the two forests are merged.
Boruvka’s algorithm is quite similar to Kruskal’s algorithm, except that, at each
iteration, the cheapest edge connecting each forest to another one is selected. Then
the merges are done accordingly. Both Kruskal’s and Boruvka’s algorithms can be
developed with asymptotic complexity of O.m log n/, as well as Prim’s algorithm
using binary heaps. Moreover, Prim’s algorithm complexity can be improved to
O.m C nlogn/ by using Fibonacci heaps; see [14] for details. The cycle elimination
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algorithm scans the graph using a depth-first search (DFS) strategy. The edge Œi; j �

is added to the tree whenever a vertex j 2 V not yet visited is found from the current
node i of the DFS. However, if j has already been visited, it means a cycle has been
found. In this case, the highest-weight edge from the found cycle is removed from
the incumbent partial solution. DFS complexity is O.m C n/. Thus, considering
a complete graph, the cycle elimination algorithm runs in O.mn/ since there are
O.m � n � 1/ possible back edges and a cycle scan is done in O.n/. Several
NP-hard problems rely on an MST with additional constraints on nodes, on edges,
or even on the MST general structure. Thus, algorithms that compute an MST are
usually adapted for such NP-hard extensions in order to define basic heuristics and
obtain initial feasible solutions.

A large number of difficult problems rely on trees and forests. Studies [10, 22,
33, 41] provide a collection of such problems, along with their complexity analysis.
An example where constraints on the tree structure make the problem difficult is
the Steiner Tree problem [3, 24, 34, 38]. Given a subset N � V of Steiner nodes
(also referred as terminal nodes), the Steiner Tree problem consists in determining
a particular minimum tree covering N . Also, setting constraints on the nodes or on
the edges (paths) of an MST can transform the problem into an NP-hard problem.
For instance, the degree-constrained minimum spanning tree (DCMST) problem [4,
13,15] consists in finding an MST such that each vertex has a degree not larger than
a maximum given value k 2 N

�. The bounded-diameter minimum spanning tree
(BDMST) problem [26,40,52] is an example of a difficult problem where constraints
are imposed on the MST diameter, i.e., the diameter of a tree is the number of edges
in the longest path among any pair of vertices. Thus, the BDMST aims at finding
an MST where the unique path between any pair of nodes does not exceed a given
number of edges. Basic problems can also become difficult due to the nature of the
data. For instance, the Minimum Arborescence problem [20] is defined in a digraph
with real cost values associated with each arc. The objective is to find a minimum
cost arborescence. Thus, for problems involving trees and forests, adding constraints
or even changing few parameters or data can turn a problem in P into one that is NP-
complete.

Key components for solving difficult tree and forest problems, as well as
insights to develop efficient heuristics relying on such structures, are surveyed
here. They are usually combined to obtain very efficient metaheuristics, hybrid
methods, and matheuristics. Section “Basic Features for Trees and Forests” is
dedicated to a number of basic heuristics, local searches, etc. Then, two applications
are described as examples, respectively, in sections “A Lagrangian Heuristic for
DCMST and Evolutionary Heuristic for a Generalization of BDMST”. Two different
strategies to handle the difficult constraints are presented in these sections. The
strategy used for DCMST consists of removing the difficult constraints and adding
them into the objective function, following a Lagrangian relaxation. Another
strategy is considered for the BDMST, where the difficult constraints are addressed
as a new criterion and a bi-objective genetic algorithm is used.
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Basic Features for Trees and Forests

Several heuristics, local search algorithms, operators, different encodings, and
perturbations are available in the literature to build trees and forests. They are
very often combined to produce sophisticated methods. The most common heuristic
structures are classified as shown in Fig. 2. The idea of this classification is not
to cover all available heuristics for trees and forests, but to introduce the most
used strategies having a strong potential to derive other heuristics for various
difficult problems. There are two major classes of heuristics: constructive and
improvement heuristics. The former adds edges or nodes at each iteration to obtain a
feasible solution. The latter starts with an initial solution (e.g., a spanning tree), not
necessarily feasible, and try to improve it in order to obtain better feasible solutions.
Constructive and improvement heuristics are presented below, in such a way they
can be adapted and applied to different difficult problems on trees and forests, where
nodes, edges, or structural additional constraints are considered.

Constructive heuristics generate a feasible solution iteratively, using mainly two
strategies: tree expansion and tree fusion. In the tree expansion strategy, one node
is added at a time by means of an edge e D Œi; j � 2 E, where one extremity
of e belongs to the solution under construction and the other extremity does
not. Thus the partial incumbent solution is always a connected component. Tree
expansion heuristics are usually implemented using Prim’s algorithm. Examples of
tree expansion heuristics are the One Time Tree (OTT) [1] and randomized greedy
heuristic (RGH) [47] developed for the BDMST. Fusion heuristics start from initial
disconnected forests and try to connect them by adding an edge e D Œi; j � 2 E at a
time. Thus a partial solution contains several connected components and Kruskal’s
algorithm can be adapted and applied [37] (see section “A Greedy Heuristic for
DCST”). The way new edges/vertices are selected for inclusion in partial solutions
(e.g., constructive heuristics) or for removal from a solution (e.g., improvement
heuristics), after evaluating the objective function, has a strong impact on the final

Heuristics

Constructive Improvement

Expansion Fusion Restoration Local search

Lagrangian

Fig. 2 A classification of heuristics for trees
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solution quality. The most common ways to select edges/vertices are greedy, semi-
greedy, and random. They can also be handled considering a single criterion or
multi-criteria. Without loss of generality and considering a minimization function, a
greedy criterion selects the edge/vertex insertion that leads to the smallest increase
in the objective function. One way to handle a semi-greedy criterion is to build a
list of good candidates to enter the solution, not necessarily the best ones, and make
a random choice from this list. Another idea frequently found in the literature is to
consider a normalized ratio between the cost and the impact on difficult constraints,
e.g., a ratio between the edge cost and the additional increase in the diameter for the
BDMST. Various criteria can also be addressed using a priority order instead of a
ratio. For instance, one can use a second optimization criterion to select one edge,
e.g., the impact on difficult constraints, whenever several edges with the smallest
costs occur.

Improvement heuristics start from a solution, not necessarily feasible, and try to
obtain a feasible solution by exchanging edges in the tree (resp. in a forest) with
edges outside the solution. They can be roughly classified as restoration and local
search heuristics. The restoration heuristics try to transform solutions in feasible
ones by minimizing violations. A classical example of restoration heuristics is
Lagrangian heuristics which have appeared with the pioneering works of [29, 30].
They have been broadly applied to a number of difficult problems relying on trees
and forests [5, 16, 42]. The general idea is to relax difficult constraints and transfer
them to the objective function, keeping a simple problem that is refined until a good
solution to the overall problem is obtained. Consider a generic NP-hard optimization
problem given by Z D fmin cx W Ax � b; Bx � d; x 2 f0; 1gt g,
where A and B are matrix with rational coefficients having dimensions r � t

and s � t , respectively; b, c, and d are rational vectors, and x 2 f0; 1gt are
integer variables. Let fmin cx W Bx � d; x 2 f0; 1gt g be an easy problem
that can be solved in polynomial time, and Ax � b be the difficult constraints.
Thus, Lagrangian multipliers � 2 R

r
C are associated with the difficult constraints

and added into the objective function. The Lagrangian problem (LP) is given by
LP D fmin cx C �.b � Ax/ W Bx � d; x 2 f0; 1gt g which is a lower
bound on Z. The best lower bound is given by LP.��/ D maxfLP.�/; � � 0g,
called dual Lagrangian problem. The dual Lagrangian problem can be solved by
using, for example, the subgradient methods of [21] or the volume algorithm of [7]
or even by computing the Lagrange multipliers approximately using the multiplier
adjustment method [9]. Theoretical results to determine the conditions stating when
a Lagrangian relaxation can be better than a linear relaxation are provided by
[28]. Obviously, the mathematical formulation and the decomposition will strongly
impact the quality of solutions produced using Lagrangian relaxation. This kind of
restoration heuristic has an interesting property: at each iteration dual and primal
solutions can be built.

Local searches are very sophisticated improvement heuristics which contribute
to producing very good local optima (eventually global optima). The most common
local search moves, broadly applied to trees, are the edge drop move and the edge
insertion move [18, 40]. Given an initial feasible solution for a difficult problem
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Fig. 3 Example of an edge drop move. (a) Tree. (b) Disconnecting 1 and 3. (c) Reconnecting 3
and 5
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Fig. 4 Example of an edge insertion move. (a) Tree. (b) Connecting 5 and 6. (c) Disconnecting 1
and 3

relying on a tree, the edge drop move consists of removing an edge from the tree.
This produces two distinct connected components which are reconnected using an
edge not in the tree. The greedy and semi-greedy criteria and multi-criteria can be
used to choose the edge to enter the tree. Figure 3 illustrates an example, where
Fig. 3a is a feasible initial solution. Then edge Œ1; 3� is removed as shown in Fig. 3b,
generating two separate connected components. Consider Œ3; 5� as the edge which
produces the best improvement possible. Thus it enters the solution following a
greedy strategy as shown in Fig. 3c.

On the other hand, in the edge insertion move, an edge is first inserted in the
tree. By definition of a tree, it necessarily results in a cycle. Then, an edge may
be removed from the cycle. Figure 4 depicts an example for this move. A feasible
solution is presented in Fig. 4a. In the sequel, edge Œ5; 6� is introduced and the cycle
f5; 6; 3; 1; 2; 5g is formed as shown in Fig. 4b. Suppose that removing edge Œ1; 3�

will produce the highest gain in the objective function. Thus this edge is dropped
following a greedy strategy as depicted in Fig. 4c.

A number of variations on the edge drop and edge insertion moves are found
in the literature. These moves are also referred as 1-opt since one edge in the
incumbent solution is replaced by another one that does not belong to the solution.
When applied to trees, two strategies are available to perform such a 1-opt move:
either first dropping an edge or first inserting an edge. This may lead to different
final solutions. The k-opt generalizes the 1-opt move by replacing k edges from an
incumbent solution. This move is formalized in section “A Lagrangian Heuristic for
DCMST.”
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Data Structures for Trees

Choosing the right data structure for representing and manipulating a solution
is a critical task since it directly impacts the complexity of basic operations.
They include both building and modifying a solution. Two mapping functions are
associated with the data structures: how to store the information from a given
tree (encoding) and how to obtain a tree out of the information (decoding). In
this section, a basic direct representation is presented as well as several data to
handle additional constraints on the trees. In section “Encodings for Trees,” other
representations are presented, along with the way to obtain the associated tree.
Several insights are given regarding their use in evolutionary algorithms.

Let G D .V; E/ and s 2 V be, respectively, a graph defined as before and an
arbitrary root vertex [14]. The following data structure can be used for directed and
undirected trees, depending on the root node which may or not be artificial. The
predecessor j of a vertex i in a tree is the first vertex in the path from i to s. By
definition of a tree, j is unique and only depends on the choice of s. A successor j

of a vertex i is a vertex whose predecessor is i . One of the simplest ways to store
the information of a tree in a fixed-size data structure is to use the predecessors.
This direct representation keeps the predecessors in a vertex-indexed vector pred .
Thus pred.i/ is the predecessor of vertex i or, alternatively, the edge between i

and pred.i/. The root has no predecessors; then pred.s/ D ;. Such a structure
allows an O.1/ access to each predecessor and to each edge connecting the subtree
rooted at i with the rest of the tree. It also allows a scan of all edges of a tree
in O.n/.

Additional redundant data may be useful to perform tree manipulation and to
allow efficient checking operations. One such data is the list of all the direct
successors of a vertex. It can be explicitly defined as a list of vertices for each
vertex, as well as be implicitly stored by adding two attributes to each vertex i : its
first successor succ.i/ and next.i/, the next successor for pred.i/. For instance, if
the direct successors of vertex a are fb; c; dg, the first successor of a is b D succ.a/.
The successors of a are as follows: c D next.b/, d D next.c/ and next.d/ D ;.
This encoding shares similarities with the forward star structure presented in [2]
for graphs, and the implicit list can be made bidirectional by adding an attribute
prev.i/ to each vertex which stores the previous successor in the list of pred.i/.
This way, O.1/ operations such as successor insertion or deletion are ensured. The
number of direct successors nb_succ.i/ can be kept as well.

Successor and predecessor structures allow managing several operations such as
finding a cycle for edge insertion moves, finding the cheapest-weight costs for edge
drop moves, and, with a few additional information, addressing difficult constraints
like degree and diameter constraints. For instance, the depth.i/ of a vertex i is
equal to the number of edges in the unique path from a given root vertex s to i . It
can be used for checking hop and diameter constraints.

Scanning a cycle created by adding an edge Œi; j � 2 E into a spanning tree can be
done efficiently using the predecessor structure. First, each node in the path i ! s is
set as visited. The same is done in the path j ! s, stopping as soon as a given vertex
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k has already been visited. Thus k belongs to both paths i ! s and j ! s. Getting
the edge with the highest cost can be done by keeping the edge with the highest
cost found when scanning the path i ! s (resp. j ! s) at each visited node. A
modified DFS or breadth-first search (BFS) starting at i and stopping as soon as j

is found could also be used. However, this would require more sophisticated tree
data structures to obtain O.n/ complexity as for the predecessor vector. This way,
the edge insertion move can be performed in O.n/.

Another useful data structure can be defined to quickly check if a vertex belongs
to a subtree. Let f irst.i/ and last.i/ be two indexes associated with each vertex i .
A DFS is applied on the tree, starting from s. Then f irst.i/ stores the DFS vertex
counter the first time i is visited and last.i/ gets the DFS vertex counter when the
DFS leaves the subtree of i . Thus, vertex j belongs to the subtree of vertex i if and
only if first.j / 2 Œfirst.i/; last.i/�. Besides, the number of vertices in the subtree
of i , i included, is size.i/ D last.i/ � first.i/ C 1. This information can be used
to check for special cases in edge insertion moves, if one extremity belongs to the
subtree of the other one. The same idea can be used to check if a tree is feasible
in the capacitated MST [18, 22]. A demand Di is associated with each vertex i and
the sum of the demands in any subtree must not exceed a capacity Q. A demand
counter is used instead of a vertex counter in the DFS.

The edge drop move requires reconnecting two trees disconnected after an
edge Œi; j � has been removed. Without loss of generality, suppose i is the prede-
cessor of j , i.e., i D pred.j /. First, all the vertices are set as unvisited. Then, all
vertices in the subtree of j (included) are set as visited by performing a DFS or
a BFS, using the list of successors presented before. Getting the lowest cost edge
reconnecting the two trees can be done in O.m/ by finding the smallest edge in
E with one extremity visited and the other one unvisited. This last operation is the
most expensive and the edge drop move is in O.m/.

As mentioned before, the depth of a vertex from the root in a tree can be used
to check hop and diameter constraints. For the root vertex, depth.s/ D 0. A simple
DFS or BFS starting from s is sufficient to compute the depth of each vertex in O.n/.
They may require an artificial vertex 0 playing the role of center, depth.0/ D 0.
The artificial vertex connects the central vertex whenever D is even and one of the
extremities for a central edge if D is odd. Let L D D=2 resp. L D .D�1/=2 be the
maximum depth allowed for a node, respectively, when D is even resp. odd. Thus,
whenever an artificial vertex is used, a diameter limit D on the tree corresponds to
a depth limit LC 1 for each vertex from vertex 0. Checking the degree is simpler;
one may just add the number of successors and predecessors for each vertex.

Encodings for Trees

The tree representation given in the section “Data Structures for Trees” can
be used for most constructive heuristics and for moves in local searches and
metaheuristic algorithms. However, evolutionary algorithms (EAs) usually require
additional properties in the representation, and several other tree encodings have
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been proposed. In EAs, operations are mostly done on encodings (the chromosomes)
rather than on the solutions. These usually consist of crossovers and mutations in
order to make the set of encodings (the population) evolve. Selection is done to
obtain the best elements. It requires the evaluation of each element through the
construction of the associated solution, named decoding.

Several properties of the encoding/decoding, i.e., the mapping between encod-
ings and solutions, are needed to fully benefit from the design of EAs: (i) the
time and space complexities for those operations should be as low as possible, (ii)
any encoding should correspond to a feasible solution, (iii) the decoding should be
unbiased, (iv) there should be at least one encoding leading to each optimal solution,
(v) any offspring obtained from crossover and mutation should be valid, and (vi) the
offsprings should share as much similarities as possible with their parents.

According to those criteria, the predecessor structure presented before offers a
O.n/ complexity for encoding/decoding. However, a random vector of predecessors
is very unlikely to be feasible. Classical crossovers and mutations also generate
infeasible offsprings and a repair operator is required. On the other hand, there
always exists one encoding for each optimal solution and the feasible offsprings
inherit a lot of similarities from their parents.

Another classical representation is the Boolean edge-indexed vector. The status
of each edge (used/unused) is stored in the solution. Thus it follows the binary
encoding paradigm suggested in the early versions of genetic algorithms (GAs).
However, a random vector is highly unlikely to be feasible and crossovers and mu-
tations seldom produce feasible offsprings. Thus the repair operator is mandatory,
unless defining dedicated crossovers and mutations.

Prüfer sequences have also been used to encode trees. They were introduced
in [45] to prove the Cayley’s theorem [12] and there is a bijection between the
set of spanning trees and the set of Prüfer sequences. They are basically repetition
vectors of size n� 2 in which each vertex i appears degree.i/� 1 times. Encoding
and decoding can be done in O.n log n/. There is no need for repair operator since
every sequence corresponds to a feasible spanning tree. However, while appealing,
this representation suffers from several drawbacks [23], especially with respect to
property (vi) since a small change in the sequence might lead to a complete different
solution.

Random keys [8] have also been used and are quite popular. A random key is
a weight in Œ0; 1�. For trees, one random key is associated with each edge, leading
to a real-valued vector of size m. The decoding first consists of sorting the edges
according to their random key and then applying a Kruskal-based constructive
heuristic. Thus, it is done in O.m log m/. It always leads to a feasible spanning
tree and does not require a repair operator.

All the encodings suffer from shortcomings with respect to the properties (i)–(vi)
mentioned before [46]. Moreover, they may not be able to handle sparse graph
or additional constraints on the tree structure. Aside from random keys, a good
alternative seems to be edge-set encoding [46]: the edges of the tree are directly
stored in a variable-length vector. Thus, this is an explicit variable-size encoding
whose encoding/decoding can be done in O.n/. It is less biased toward special
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trees than random keys. It has been shown to be quite effective for solving NP-hard
extensions of MST, provided dedicated crossovers and mutations are used.

A Lagrangian Heuristic for DCMST

The use of Lagrangian relaxation in heuristic procedures has been proved to be a
quite powerful tool for solving certain problems, especially DCMST. A Lagrangian
heuristic (LH) involves a small number of ingredients that can be implemented effi-
ciently: (i) determining Lagrange multipliers and evaluating Lagrange subproblems,
(ii) obtaining feasible solutions from the Lagrange multipliers, and (iii) improving
feasible solutions by a local search. The main advantages of an LH are that it is
simple to implement, solutions of good quality can be obtained in a reasonable
computational time, and lower bounds (LB) and upper bounds (UB) are available at
each iteration. In addition, an LH can be used to obtain starting incumbent solutions
in more complex exact algorithms.

Let G D .V; E/ be a graph defined as before. Costs ce 2 R
C are associated with

each edge e 2 E, and a maximum degree dv 2 N
� is associated with each node

v 2 V . The DCMST problem consists in finding a minimal cost spanning tree T of
G such that the degree constraints are ensured for each node.

Figure 5a illustrates an example of a graph G, in which edge costs are reported
in the middle of each edge and the maximum node degree constraints for spanning
trees of G are given in brackets near each node. An MST of G, with cost equal to
5, is given in Fig. 5b. One may note that this MST violates the degree constraint in
node 1. A feasible solution for the degree-constrained spanning tree (DCST) for G

is provided in Fig. 5c, with cost equal to 9.

Problem Formulation

In order to present a mathematical model for DCMST problem, let E.S/ � E be
the set of edges with both extremities in S � V . Let ı.v/ � E be the set of edges
adjacent to v 2 V . Binary variables xe , for all e 2 E, represent the characteristic
vector for a spanning tree of G, where xe D 1 if an edge e belongs to the solution,
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Fig. 5 Example of a tree with degree constraints. (a) A graph G. (b) MST of G. (c) A DCST of G
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and xe D 0 otherwise. The mathematical formulation is given from (1) to (4).

.P / min
x2f0;1gm

X

e2E

cexe (1)

s:t:
X

e2E

xe D n � 1; (2)

X

e2E.S/

xe � jS j � 1; S � V; (3)

X

e2ı.v/

xe � dv; 8 v 2 V: (4)

An MST is defined from (1) to (3) and constraints (4) control the degree of each
vertex. These last constraints are the difficult ones. Thus they are relaxed in the LH
presented next. Note that when dv D 2, for all v 2 V , the problem is reduced
to finding a Hamiltonian path of minimum cost in G. Thus the DCMST is NP-
hard [22].

The role of Lagrange penalties or multipliers is to take into account violations
of some relaxed constraints. Given a tree T and for every node v 2 V , the amount
of node violation is the difference

P
e2ı.v/ xe � dv between its maximum degree

dv and its degree in T . In a DCST only nonpositive node violations are allowed.
Positive node violation is penalized by associating a nonnegative penalty �i with
each violated node i . In this case, every edge incident to i has its cost increased by
�i . When both end nodes i and j of an edge Œi; j � 2 E have positive penalties �i

and �j , respectively, the resulting Lagrange cost becomes cij C �i C �j .
Consider the MST in Fig. 5b. It violates the degree constraint of node 1 (three

edges are adjacent to this node and the maximum allowed is one). Figure 6 illustrates
an example of MSTs computed with edge costs modified by Lagrange multipliers,
where spanning trees of minimum cost are defined by solid lines in each graph. If a
penalty �1 D 10 is set and �i D 0 for i 2 V n f1g and an MST is computed for the
graph with modified edge costs, the spanning tree in Fig. 6a is obtained. The degree
constraint of node 2 is violated. Alternatively, if �1 D 10, �2 D 2, and �i D 0 for
i 2 V n f1; 2g, an MST on the modified graph is in Fig. 6b. It is also feasible for the
original graph G in Fig. 5a.

Thus, the idea is to determine the “best” set of Lagrange multipliers leading to
an MST on the graph with modified edge costs whose Lagrangian solution value is
equal to the value of an optimal DCMST. To do so, the Lagrangian problem .P�/

is defined by associating Lagrange multipliers � 2 R
n
C with constraints (4) and

bringing them to the objective function (1).

.P�/ min
x2f0;1gm

X

Œi;j �2E

.cij C �i C �j /xij �
X

i2V

�i di (5)

s:t: (2)–(3):



46 Trees and Forests 1319

a

1

10

2

0

3

0

4 0G1 G2

2+10

2 + 10

4

1+10

33

b

1

10

2

2

3

0

4 0

1+10+2

2 +10

4+2

2+10

33+2

Fig. 6 Example of graphs with edge cost modified by Lagrange multipliers. (a) MST with �1D10.
(b) MST with �1 D 10; �2 D 2

For any � � 0, the solution value of .P�/ is a lower bound on the optimal solution
of .P /. Consequently, the solution of the problem .D/ is the best lower bound one
can get for the solution of .P /. Problem .D/ is the Lagrangian dual problem of .P /.

.D/ max
��0

min
x2f0;1gm

X

Œi;j �2E

.cij C �i C �j /xij �
X

i2V

�i di (6)

s:t: (2)–(3):

The MST on the graph G2 in Fig. 6b has a cost .3C 5C 12/� .10 � 1C 2 � 1/

D 8. This is a lower bound on the optimal DCMST value of the graph in Fig. 5a. It
is optimal since that solution is feasible for G and its original cost in G is 8.

A Subgradient Procedure for DCMST Problem

The classical subgradient (SG) method of Held et al. [31] is used to compute
Lagrange multipliers � iteratively for problem .P�/. At each iteration k of the
method, the idea is to find a direction sk and a step size tk to move from �k to a
new set of multipliers �kC1:

�kC1 D maxf0; �k C tkskg (7)

sk is the subgradient of .P�k / with respect to the Lagrangian solution xk . Its
coordinates are given by

sk
i D

X

e2ı.i/

xk
e � di ; 8 i 2 V (8)
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Determining the step size tk requires an incumbent UB on the optimal solution
value of .P /, the Lagrangian value LBk referred to xk , and the norm of the
direction sk . It is defined as

tk D
˛.UB � LBk/

jjskjj2
(9)

where ˛ is a scaling factor. Initially ˛ D 2 and it is reduced (usually ˛  ˛=2)
after some iterations with no improvement of the best LB. Thus, convergence of the
SG algorithm is ensured. The number of iterations can be limited to a maximum
value determined according to the characteristic of the problem instances being
solved. If the Lagrangian solution is feasible for .P / and its Lagrangian value
is equal to UB, it is optimal and the algorithm stops. Further details on the SG
algorithm for DCMST problem can be found in [5].

As an example, the SG algorithm is applied to the graph G in Fig. 5a. Initially
�0 D 0 and the resulting graph G.�0/ has the same edge costs as in G. The
Lagrangian solution T 0 for G.�0/ is the MST of G (Fig. 5b), and its Lagrangian cost
is LB0 D 5. The degree of nodes 1, 2, 3, and 4 in T 0 are 3, 1, 1, and 1, respectively.
The initial subgradient direction is .s0/t D .2; 0;�2;�1/. Figure 8 presents graphs
G.�k/ of each SG iteration k. The Lagrange edge costs are displayed near each
edge and Lagrange multipliers near each node. Moreover, Lagrangian solutions T k

of G.�k/ are defined by solid lines. Lagrange multipliers are computed according to
Fig. 5 as follows: suppose the incumbent UBD 9 is given by the DCST in Fig. 5c,
as computed by heuristic in section “A Greedy Heuristic for DCST”. The new set
of Lagrange multipliers is .�1/t D .16=9; 0; 0; 0/. The corresponding graph G.�1/

leads to the Lagrangian solution T 1 in Fig. 7, in solid lines. The new direction s1

is carried forward in Fig. 8, column T 1. The SG algorithm iterates until iteration 4,
where the Lagrangian solution T 4 is a feasible DCST for G. The original cost of T 4

in G is 8 and its Lagrangian cost is LB4 D 596=75. As all edges of G have integer
costs, the optimal solution value must be integer. Therefore, the optimal solution
value UB� is such that d596=75e �UB� � 8. Thus T 4 is optimal and the algorithm
stops.
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Fig. 7 Example of iterations for the SG method. (a) G.�1/. (b) G.�2/. (c) G.�3/. (d) G.�4/
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Fig. 9 Example of Kruskal-based heuristic for DCST. (a) Initial. (b) First edge. (c) Second edge.
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A Greedy Heuristic for DCST

Kruskal’s algorithm can be adapted [5] to compute DCSTs on a graph G D .V; E/.
It consists of (i) ordering the edges in E by nondecreasing edge costs; (ii) creating
a forest with jV j trivial trees Ci D fig, for all i 2 V ; and (iii) connecting all
disjoint trees (forests) by including one edge at a time, using the ordered list until a
spanning tree is obtained. A vertex is saturated if its degree matches the maximum
degree allowed. A tree is saturated if all its vertices are saturated. Then, an edge
Œu; v� 2 E is inserted in the solution if both u and v are not saturated and if they do
not belong to the same tree. Moreover, merging the two trees using Œu; v� must not
lead to a saturated tree, except if the resulting tree spans V .
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Consider the graph G in Fig. 5a and assume that the ordered list of edges is
fŒ1; 2�; Œ1; 4�; Œ1; 3�; Œ2; 4�; Œ3; 4�; Œ2; 3�g. Initially, each vertex is a trivial tree. The
first edge to be considered is Œ1; 2�. It is discarded as its inclusion would result in
a saturated tree. In the sequel, edge Œ1; 4� can be added since it does not saturate
vertices 1 and 4 nor create a cycle. Node 1 is saturated; thus, the third edge Œ1; 3�

is rejected. The fourth edge Œ2; 4� is also not accepted because it would result in
a saturated tree. The fifth edge Œ3; 4� is included, idem for the sixth edge Œ2; 3�.
Then the algorithm stops with a feasible DCST. Note that this heuristic stops with a
feasible solution for complete graphs only. Figure 9 presents this example with the
ordered list of edges defined above. Solid lines correspond to edges included, while
dotted lines correspond to discarded edges.

This heuristic can also be applied to graphs with modified Lagrange edge costs
during the SG and compute its cost on the graph G. Nevertheless, doing this every
SG iteration is time consuming. Finally, this heuristic can be used only when a
Lagrangian solution improves the best incumbent LB on the optimal solution of .P /.

Improving DCSTs with a Local Search

Given a graph G D .V; E/ and a spanning tree T of G, let E.T / be the set of
edges in T . Moreover, consider a given subset fe1; e2; � � � ; ekg � E.T / of the edges
belonging to T . If there is a subset of edges f Oe1; Oe2; � � � ; Oekg � E n E.T / such that
E.T / n fe1; e2; � � � ; ekg [ fOe1; Oe2; � � � ; Oekg induces a spanning tree OT of G, then
OT is said to belong to a k-neighborhood of T , denoted by OT 2 Nk.T /, and that
T 2 Nk. OT /.

Consider kC1 connected components C1; C2; � � � ; CkC1 obtained after removing
k edges fe1; e2; � � � ; ekg � E.T / from a given spanning tree T . If f Ne1; Ne2; � � � ; Nekg �

E n E.T / is a minimum cost subset of k edges to reconnect the k C 1 compo-
nents C1; C2; � � � ; CkC1 forming a new spanning tree, then T [ fNe1; Ne2; � � � ; Nekg n

fe1; e2; � � � ; ekg is called a k-opt edge exchange. Such a move corresponds to
applying k times an edge drop or an edge insertion move, as seen in section “Basic
Features for Trees and Forests”.

Figure 10 illustrates an example of a 2-opt edge exchange. Tree T 1 in Fig. 10b
is obtained from T in Fig. 10a by removing the edges Œ1; 4�; Œ2; 3� and adding the
edges Œ1; 3�; Œ2; 4� while keeping the feasibility of the resulting tree.

Determining the best k-opt edge exchange move among all
�

jE.T /j
k

�
combinations

of k edges of E.T / is very time consuming. A reasonable trade-off between solution
quality and processing time is to limit k to 3. A greedy local search then iteratively
performs k-opt edge exchange moves, until reaching a local optimum.

A Lagrangian Heuristic for DCMST

Using the components presented before, Algorithm 1 is a Lagrangian heuristic
for DCMST problem. Given a graph G D .V; E/, a feasible starting DCST
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Fig. 10 Example of a 2-opt edge exchange move. (a) Tree T . (b) Tree T 1

T � is computed by the heuristic in section “A Greedy Heuristic for DCST”. A
limit MaxI ter is set to the number of SG iterations. Basically, the subgradient
method (section “A Subgradient Procedure for DCMST Problem”) is used to update
Lagrange multipliers until the stopping criterion (number of iterations or optimal
solution) is met. At each iteration k, the classical Kruskal’s algorithm [37] computes
a Lagrangian solution T k on the graph G.�k/: T knMST .G.�k//. The Lagrangian
solution cost of T k (LagrCost.T k/) gives a lower bound LBk on the optimal
solution value. If it improves LB, the new value LBk is updated. Eventually, T k

is a DCST. In this case, a local search procedure (section “Improving DCSTs with a
Local Search”) is called to improve T k if the cost Cost.T k/ of T k in G improves
UB: T �nLocalSearch.T k/.

Algorithm 1: Lagrangian heuristic [5]
Data: a graph G D .V; E/, a DCST T �, a maximum number of iterations

MaxI ter ;
Result: a DCST of G;
initialization: k  0; �0  0; T 0  MST .G.�0//; LB LagrCost.T 0/;
UB Cost.T �/; while (LB<UB and k < MaxI ter) do

compute �kC1 by using Equation (7);
set T k  MST .G.�k// and LBk  LagrCost.T k/;
if (LBk > LB) then

LB LBk ;
end
if (T k is a DCST and Cost.T k/ <UB) then

T �  LocalSearch.T k/;
UB Cost.T �/;

end
k  k C 1;

end
return T �;
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As mentioned before, halving ˛ after some SG iterations without any improve-
ment on LB guarantees the convergence of the subgradient procedure. Also, one can
work with a reduced instance G0 D .V; E 0/ of the problem, by considering only a
subset E 0 � E of ordered edges required to obtain a feasible DCST for the problem,
by using the modified Kruskal’s algorithm from section “A Greedy Heuristic for
DCST.” Moreover, more sophisticated local searches and even metaheuristics can
be used instead of the local search presented in section “Improving DCSTs with a
Local Search”. For instance, variable neighborhood search (VNS), dynamic variable
neighborhood descent (VND), and absorption function [57] have been used in [4].
As the k-opt local search procedure is based on a greedy criterion, the Lagrangian
heuristic may not escape local optima. To overcome this issue, the authors in [4]
suggest the integration of a VNS and a dynamic VND, as well as absorption
functions of [57].

The LH presented here has been applied to a number of benchmark instances
from the literature: Euclidean And-inst, Hamiltonian Ham-inst, Shrd [36], M-graph
and R-graph instances, and the new Dr-inst and De-inst instances [15]. In addition,
the solutions obtained by LH have been used as cutoff to speed up exact methods [4,
15] for DCMST problems.

Results obtained by LH have provided new average gaps of up to 0:188 % and
6:230 % for And-inst and Ham-inst instances, respectively. Moreover, it has solved
to optimality the Shrd, M-graph, and R-graph sets. After introducing the VNS,
optimality was reached for 23 out of 25 And-inst instances, 4 out of 15 Ham-
inst instances, and 8 out of 18 De-inst instances. Furthermore, optimal solutions
were obtained for all Dr-inst instances. Thus, LH has been shown to be a powerful
approach for DCMST problems.

Evolutionary Heuristic for a Generalization of BDMST

In this section, another way to handle difficult constraints is described for a
generalization of the BDMST. The difficult constraints of the problem are defined
on the paths of the tree rather than on the nodes as for DCMST. BDMST is defined
in a connected and undirected graph G D .V; E/, where costs cij � 0 are associated
with each edge Œi; j � 2 E. Consider T as a spanning tree of G. By MST definition,
there is a unique path Pij in T between any pair of nodes i; j 2 V . Thus,
given �ij the number of edges in the path Pij , the diameter D of T is defined as
D D maxf�ij W 8i; j 2 V; i ¤ j g. The BDMST consists in finding an MST such
that its diameter does not exceed a given k 2 N

�, i.e., D � k. This problem belongs
to the NP-hard class whenever 3 < k < n � 1 [22].

An example is shown in Fig. 11 for k D 2, considering the graph given in
Fig. 11a. The MST is presented in Fig. 11b. It violates the diameter since D D 3.
The optimal BDMST solution is provided in Fig. 11c, where the longest path has
two edges .D D 2/.

Several works are found in the literature for BDMST such as mathematical
formulations [25,27,53], exact methods [26,43,44], and heuristics [40,47,49]. Yet,
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Fig. 11 Example of a tree with diameter constraints. (a) A graph G. (b) MST of G (c) A BDMST
of G

optimality has not been proved for an important benchmark of instances proposed
by [47], containing complete graphs whose size varies from 50 to 1000 vertices.
Thus, an original strategy is to investigate the search space of this problem by
using bi-objective approaches to compute the Pareto front. The idea is to drop the
difficult constraints, i.e., diameter, and to consider them as a new criterion. Then a
bi-objective optimization problem is solved. Thus the total tree cost and the diameter
are minimized simultaneously. The problem remains difficult since the goal is to
determine a Pareto front. However, the multiobjective strategy is interesting since
every spanning tree is feasible and efficient algorithms are available to compute
them. Moreover, in recent years, several advances have been done in solving mul-
tiobjective (bi-objective) problems using heuristics and metaheuristics. In addition,
bi-objective heuristics do not depend on a good mathematical formulation. Another
key point is that it is possible to bound the values for each criteria for problems
relying on trees such as BDMST.

Bi-objective optimization for MSTs has already been investigated considering
two cost objective functions. For example, a branch-and-bound was proposed
in [56] and a two-phase enumeration was introduced in [48, 58]. Bi-objective
metaheuristic algorithms are also used for two cost objective functions as in [6,59].
A multiobjective evolutionary algorithm (MOEA) for the network design problem is
presented in [59] to minimize the infrastructure cost and the maintenance cost, while
a multiobjective greedy randomized adaptive search procedure (GRASP) is applied
in [6] to find MST with two costs. Using this idea to handle difficult constraints
seems to be more recent, in particular for the BDMST. Works [17, 50, 52] are
dedicated to multiobjective strategies for the BDMST, referred as the bi-objective
minimum diameter-cost spanning tree (bi-MDCST) problem. One of the most
efficient multiobjective heuristics developed for bi-MDCST is the nondominated
sorting genetic algorithm (NSGA-II), presented in the sequel.

Problem Definition

Without loss of generality, applying bi-objective heuristics for a problem P like
the bi-MDCST implies the minimization of two objective functions fmin f1.x/;
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min f2.x/ jx 2 X g. X is the feasible solution space of P and f .x/ is the vector
of objective functions. For the bi-MDCST, ff1.x/; f2.x/g denote the cost and the
diameter, respectively. Then a set of compromise solutions with respect to the two
objective functions has to be obtained instead of a single solution as for the classical
BDMST.

The concept of dominance is used to define the set of compromise solutions,
usually called Pareto front. Considering two bi-MDCST solutions x and y, x

dominates y if and only if the following conditions hold:

�
fk.x/ < fk.y/ 9k 2 f1; 2g and
fk.x/ � fk.y/ 8k 2 f1; 2g

(10)

A Pareto solution x� is optimal whenever it is not dominated by any solution
in X . The Pareto-optimal front is composed of the Pareto-optimal solutions
(nondominated). The bi-MDCST seeks a set of Pareto-optimal spanning trees T of
G where f1 and f2 are simultaneously minimized. Figure 12 presents three solutions
for bi-MDCST, considering the graph of Fig. 11a. The cost and the diameter for T1,
T2, and T3 are, respectively, f29; 2g, f14; 3g, and f24; 2g. Solution T1 is dominated
by T3 due to the cost. However, solutions T2 and T3 are not dominated by each other
since T2 has a smaller cost than T3, while T3 has a smaller diameter than T2. One may
note that solutions T2 and T3 are not Pareto-optimal because they are, respectively,
dominated by the MST depicted in Fig. 11b of value {7,3} and the solution shown
in Fig. 11c of values {15,2}.

For bi-MDCST, an obvious LB on the cost can be obtained by computing an MST
on the graph. The diameter of this solution also provides an UB on the diameter. In
addition, for complete graphs, the star is also a trivial LB on the diameter. The
minimal cost of a star in the graph can provide an UB for the cost. Spanning trees of
diameters D 2 f2; 3g can be computed in polynomial time as shown in [52]. Those
LB on the diameter may not necessarily exist on general graphs. However, checking
if a graph contains at least one such spanning tree can be done in polynomial
time.
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Fig. 12 Example of solutions for bi-MDCST. (a) Solution T1. (b) Solution T2 (c) Solution T3
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An NSGA-II for Bi-MDCST

The NSGA-II has been proposed by [19] and is one of the metaheuristic algorithms
available to compute Pareto fronts for multiobjective optimization problems. This
method has been applied to a number of multiobjective optimization problems
for the past ten years. Moreover, it uses simple and efficient operators to manage
the Pareto front convergence. Such operators are added to a classical genetic
algorithm (GA), which is very popular in the scientific literature. The two special
multiobjective operators are the ranking and the crowding distance. These two
operators are computed for each solution and are responsible to manage the Pareto
front convergence. Both the ranking and the crowding distance are associated
with each solution. Given a target solution T , the ranking contains the number
of solutions that dominate T . Thus, the lower the ranking, the better the solution.
Fronts are then defined by solutions of same ranking. Given a front of M solutions,
the crowding distance w is computed following Equation (11), where sc.j / and
pr.j / are, respectively, the value which precedes j in w and the value which follows
j in w. For any (nondegenerate) front with more than one solution, zmax

m ¤ zmin
m . The

bi-MDCST involves two objectives m D 1; 2; thus, zmax
m and zmin

m are the maximum
and the minimum objective function values, which need to be properly normalized.
The crowding distance is a kind of Manhattan distance between two solutions from
the same front. Then, the higher the crowding distance is, the more distant the
two solutions are. As a consequence, solutions with larger crowding distance are
preferred since they belong to less covered areas.

wj D

MX

mD1

 
zsc.j /
m � zpr.j /

m

zmax
m � zmin

m

!
(11)

The algorithm performs the following steps: (1) generate the initial population
(set of solutions), (2) compute and order the population using the ranking and
crowding distance, (3) select the first half elements of the population, and (4)
generate the remaining elements using genetic operators and go to step (2). These
steps are repeated until stopping criteria are met and are detailed below. In addition,
a local search can be applied to each new solution in the population, i.e., before
moving to step 2. In the vocabulary of GA, the use of a local search within a GA is
referred as a memetic algorithm (MA). The idea of generating all 2n solutions and
ordering them before cutting n solutions avoids cutting good solutions.

Given a graph G D .V; E/, a solution for bi-MDSCT (also referred as chro-
mosome in the GA vocabulary) can be encoded using a vector of size n containing
the direct predecessor of a vertex in the tree. A population can be generated using
any heuristics (greedy, randomized, etc.) or even randomly generated spanning trees
(step 1). The work [53] suggests an initial population of size 2n which contains (i)
two specific solutions, an MST of G and a spanning tree of diameter D D 2 or
D D 3, if it applies; (ii) half of the population obtained randomly; and (iii) the
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remaining solutions computed using a randomized version of Prim’s algorithm (i.e.,
the vertex entering the solution is randomly selected from a list of good candidates).

As mentioned above, the ranking and the crowding distance are computed
for each solution in the initial population (step 2). Then, these operators will be
responsible for the selection of solutions, following a multiobjective evolutionary
approach rather than directly considering their cost and diameter. The comparison
between two solutions T1 and T2 with respect to their ranking r1 and r2 and their
crowding distance w1 and w2 is as follows:

.r1 < r2/ or . .r1 D r2/ and .w1 > w2/ / (12)

T1 is said to be better than T2 whenever condition (12) holds. In the following
(step 2), the population is ordered. Now, the algorithm proceeds to the selection
(step 3) by keeping the n best solutions for the next iteration. The n new solutions
to enter the population can be generated by the crossover proposed by [11] (step
3). One advantage of this crossover is that feasibility of new solution is ensured,
even for sparse graphs. The way to select the parents in the crossover can follow a
classical elitist strategy, i.e., one parent from the elite set and the other one randomly
selected from the remaining population. The crossover proposed by [11] works as
follows: given two solutions (parents) T1 and T2, a support graph G0 containing
all edges from T1 and T2 is built. Then, an MST is computed on G0 to obtain the
new solution. Figure 13 illustrates this crossover, considering the graph G shown
in Fig. 11a. The two parents T1 and T2 are, respectively, given in Fig. 13a and 13b.
The resulting support graph G0 is presented in Fig. 13c and the new individual is
provided in Fig 13d, for which Cost D 11 and D D 3.

The local search iteratively performs a 2-opt move until no improvement can be
done on the current solution. The 2-opt move uses the edge drop move previously
presented. A specific feature of the 2-opt move for bi-MDCST suggested by [52]
is that a move is accepted if and only if the diameter does not change and the cost
is reduced. This means the local search will reach a local optima having the same
diameter as the current solution.

The main insights obtained in [17, 52] by applying the NSGA-II for bi-MDSCT
are summarized below. Three main sets of instances available in the literature for
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Fig. 13 Example of the crossover operator. (a) Solution T1. (b) Solution T2. (c) Graph G0.
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the BDMST were used in the experiments. They were proposed by [25, 40, 47],
respectively. In addition, two test sets were proposed by [52] containing 9 and 11
instances, named Hamiltonian cycle and Hamiltonian path, respectively. Results
produced by NSGA-II were compared with available optimal values for the BDMST
from [26,53]. The NSGA-II for bi-MDCST manages to find some optimal diameter
values of the BDMST and it is very close in the other cases. The computational
time does not exceed the computational time spent by dedicated and sophisticated
methods for the BDMST. The Pareto-optimal fronts for the test sets used in [40,52]
are published at the site http://di.uern.br/dario/bi-mdcst-problem/.

Some interesting characteristics have been observed: (i) a significant difference
in tree cost occurs in the Pareto-optimal front between solutions with D D 2

and D D 3; (ii) since the instances from [40] have edges with similar cost, there
are several MSTs with different diameters; (iii) some diameters are not interesting
because the best corresponding solutions are dominated; and (iv) for the majority
of instances from the sets mentioned above, up to 15 target diameters exist. The
multiobjective approach has shown to be effective. It works consistently well and
can provide useful information about the search space and the Pareto front for bi-
MDCST problems.

Conclusion

Trees and forests are very rich topics, both in terms of theoretical and practical
issues. Integrating good ingredients in sophisticated heuristics is the first step to
produce good, competitive heuristics and even find new better results for NP-hard
problems relying on these structures. In this context, some basic components for
trees and forests are summarized in this chapter and two ways of addressing difficult
constraints (degree and diameter) are presented, with the hope it will inspire new and
fruitful research on these topics.

In terms of constructive heuristics, two basic ways have been addressed in the
literature: tree expansion and tree fusion. Concerning the improvement heuristics,
two main classes appear: restoration and local search. Some of these strategies use
tree properties such as the local searches based on k-opt moves. In fact, by definition
of a tree, removing an edge from a tree results in two connected components and
inserting an edge in a tree obviously creates a cycle. Thus even a 1-opt can be
considered two ways, either by first removing an edge or by first adding an edge.
Even if they basically are 1-opt moves, these may impact the way the search space
is explored.

Some key points are also provided in order to represent a tree in terms of
data structures. Encoding and decoding a tree can be done directly by means of
predecessor vectors indexed on the vertex or edge sets. It can also be done indirectly
by using random keys. Additional data structures are also required to handle difficult
constraints such as degrees and diameter. The choice of data structures will mainly
impact the algorithm complexity. As a consequence, careful choices can save
running time.

http://di.uern.br/dario/bi-mdcst-problem/
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Two different strategies to address difficult constraints have been presented. The
first, more classical, relies on a Lagrangian relaxation in which the constraints are
relaxed and integrated into the objective function using the Lagrangian penalties.
The second way consists of dropping the constraints, considering them as a new
criterion. The resulting bi-objective problem is then solved by multiobjective
approaches. The former presents the advantages of being simple to implement; it
obtains solutions of good quality in a reasonable computational time, and lower and
upper bounds are available at each iteration. A drawback is that it strongly depends
on the mathematical formulation and the chosen decomposition. The latter is far
less investigated in the literature, in particular for addressing difficult constraints.
It has the following advantages: it provides additional information about the search
space, and the computational time to obtain the Pareto front is very close to the
time spent applying sophisticated dedicated methods. Moreover, limits in the search
space can be computed and dominance rules can speed up the inspection of the
solutions. A drawback is that the problem remains difficult since it may involve
solving several NP-hard problems. However, facing NP-hard problems from a
multiobjective perspective remains an interesting direction for further research.

Cross-References

�Evolutionary Algorithms
�Multi-objective Optimization
�Variable Neighborhood Descent
�Variable Neighborhood Search
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Abstract

This chapter presents a heuristic for a multi-objective ranking problem using
a dataset of international interest as an example of its application, namely, the
ranking of the world’s top educational institutions. The problem of ranking
academic institutions is a subject of keen interest for administrators, consumers,
and research policy makers. From a mathematical perspective, the proposed
heuristic addresses the need for more transparent models and associated meth-
ods related to the problem of identifying sound relative rankings of objects
with multiple attributes. The low complexity of the method allows software
implementations that scale well for thousands of objects as well as permitting
reasonable visualization. It is shown that a simple and multi-objective-aware
ranking system can easily be implemented, which naturally leads to intuitive
research policies resulting from varying scenarios presented within. The only
assumption that this method relies on is the ability to sort the candidate objects
according to each given attribute. Thus the attributes could be numerical or
ordinal in nature. This helps to avoid the selection of an ad hoc single score
based on an arbitrary assignment of attributes’ weights as other heuristics do.
To illustrate the use of this proposed methodology, results are presented and
obtained using the dataset on the ranking of world universities (of the years 2007–
2012), by academic performance, published annually by ARWU.

Keywords
Analytics � Digital humanities � Pareto optimality � Ranking � Symbolic
regression

Introduction

Ranking multi-attributed objects is ubiquitous in the twenty-first century. This is
not an overstatement. Every time people use a web search engine and query it
using a particular keyword or phrase, a ranked list of webpages appears on our
screen. This ranking is automatic, in most cases deterministic, and is well defined
in mathematical terms. Not only the speed but the quality of the ranking may decide
the fate of the company that has created that search engine. Every time people read
a newspaper, or watch television, the news stories provided have been edited, and
the core subject has been ranked and selected. Today, our governments want to
decide on spending based on the objective rankings of institutions, their quality,
performance, and delivery of service.

Specifically, the ranking of educational institutions has received increasing
interest from scholars, policy developers, and strategic decision-makers world-
wide. Our society, regardless of nationality, enjoys (and in some cases needs)
to rank tennis players, sport teams, health systems, supercomputers, economical
performance, scientists’ achievements, most and least “liveable” countries and
cities, restaurants, waiting lists for surgery and transplantation [2], targets in



47 World’s Best Universities and Personalized Rankings 1337

structure-based virtual screening of three-dimensional protein libraries [30], genes
in microarray experiments [6, 32] or in association studies [58], athletic training
education programs [63], pedestrian crash zones [47], stressfulness of joints and
joint motions in ergonomics applications [29], movie stars, dental esthetics [8]),
and even US presidents.

The academic ranking of world universities follows the general trend of glob-
alization of the economy. Researchers agree that ranking global universities is
attracting increasing attention as it is a topic of high interest to many different stake-
holders; see, for instance, [7,34,39,40], among others. If you look at universities as
service providers and if their potential students are free to choose among a variety
of them, it is natural to pay attention to rankings to help them select the best tailored
to their interests. This has become of even greater importance in recent years due to
the increased mobility of students, researchers, and staff [52]. Furthermore, strategic
decision-making within institutions, and policy development at a larger scale, relies
on the provision of useful information regarding an institution’s quality, excellence,
and global ranking position.

Needless to say, ranking global universities is a quest of great impact and social
significance [59]; however, the methodologies proposed are naive at best. It could
be said that the problem is inherently ill posed. First, outcomes of ranking activities
should be user centric. A student who has to choose where to go for graduate
school studies may be more interested in the quality of their specific disciplines that
constitute the core set of knowledge she is looking for and may dismiss an institution
that has Nobel Prize winners lecturing using chalk and a blackboard (see [20] for a
discussion on how to define quality). Managers and strategic decision-makers need
to have access to information about how their institution benchmarks against their
“competitors” in order to successfully and optimally allocate their resources and
funds. Furthermore, it is important to remember that different stakeholders have
different expectations about quality [34] and different expectations of an educational
institution in general. In essence, it is important to highlight that ranking systems
should be developed allowing the various users of these systems to easily add or
remove an attribute of the objects in order to suit their specific needs and interests.

The request of [24] “. . . there is still a dearth of peer-reviewed scientific publi-
cations on international ranking methods. Raw data and several key details about
the methodology still remain unavailable to public scrutiny.” [24] easily resonates
with this study. In addition to this, it recognized that the trustworthiness of many
ranking systems is sensitive to the conceptual framework (its indicators) as well
as the modeling choices such as weighting of indicators [52]. In order to fill this
methodological gap, the issue of academic rankings of universities is addressed as an
illustrative test case. This chapter thus aims to differ from Ioannidis et al. who have
well articulated their case for the importance of a common international consensus
on the validity of the measured attributes for each institution. The methodology
presented here moves away from the traditional comparison of one-dimensional lists
between ranked objects.

In this chapter other metrics that can be computed are included as well as a very
simple heuristic that, using raw data, allows users to select/deselect attributes to
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better target their interests. This approach can “tailor” a ranking system according
to the user’s individual preferences. Therefore, this system naturally provides a user-
centric experience, while it is still based on quantitative nonsubjective information.
This said, while this chapter is focussed on the largest online dataset of universities’
performance, its final aim is to exemplify on its use to address the multi-objective
ranking problem from a general methodological standpoint. In this method, the issue
of sensitivity due to arbitrarily assigning of weights to indicators is addressed and
the problems that arise in doing so, rather than using raw data.

The chapter is organized as follows. Section “Materials and Methods” illustrates
where the data was obtained from, a brief description of the data, and an outline of
the methodology used. Section “Results” has several subsections in order to display
the results. Results for the computation of the dominance graph for the period
2007–2009 are displayed in section “University Ranking Results 2007–2009”
followed by results describing transitive dominance as well as the implementation of
symbolic regression modeling (section “Transitive Dominance Example Results”),
mobility of universities in ranking (section “Sensitivity Analysis of Mobility over
the Period 2010–2012”), and case examples of various universities, and, finally, a
brief discussion on the attribute Alumni is included in section “The Case of the
Alumni Attribute”. Section “Discussion” provides a discussion of the results and
includes the limitations thereof and recommendations for possible future areas of
research.

Materials and Methods

To illustrate the proposed analysis methods for ranking, and to ensure reproducibil-
ity and interpretability of the results, the online publicly available information
provided by the Academic Ranking of World Universities (ARWU) is used in this
study. This is an annual publication and the data that is used for their ranking is
provided by the Institute for Higher Education, Shanghai Jiao Tong University, since
2003.

Table 1 Explanation of the institute for higher education, Shanghai Jiao Tong University ranking
system. Note that the attribute “Size” is also referred to as “Per Capita Performance” (PCP) and
the attribute “SCI” is also referred to as “PUB” in various articles and resources

Attribute Weighting Explanation

Alumni 10% Number of alumni of the institution winning Nobel Prizes and Fields Medals

Award 20% Number of staff of the institution winning Nobel Prize and Field Medals
categories

HiCi 20% Number of highly cited researchers in 21 broad subjects

N&S 20% Number of articles published in Nature or Science

SCI 20% Articles in Science Citation Index Expanded, Social Science Citation Index, and
Arts and Humanities Citation Index

Size 10% Academic performance with respect to the size of the institution
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The ARWU from the Shanghai Jiao Tong University is based on the performance
of universities according to six categories (attributes). These attributes are displayed
in Table 1 with their respective weighting given by the Shanghai Jiao Tong
University and their explanations. The six attributes are Alumni, Award, HiCi,
N&S, SCI (or PUB), and Size (or PCP). It is important to note that for institutions
specializing in humanities and the social sciences, such as the London School of
Economics, in the ARWU ranking systems, the attribute of N&S is not considered,
and weighting is distributed to other indicators [34]. This borderline between
institutions, however, is somewhat arbitrary. Therefore, it has to be recognized
that for some institutions only four attributes (with arbitrary weighting) remain for
consideration and that is a natural aspect of its organization on a reduced number
of fields. In each category a university will receive a value between 0 and 100. The
university with the best performance in a particular category receives the top value
of a 100, and the rest of the universities will receive a proportional value against
this measure. Further details and explanation of these attributes and the scoring
procedure can be found on the Shangai Jiao Tong University ARWU website (http://
www.shanghairanking.com) or in Liu et al. [34].

The raw data of this ranking process for the years 2007–2012 is used. From the
top 500 universities in each year, only those that are present in all years since 2007
are included. This means that in total, the scores of 444 universities are used in
the method. With this information, three datasets for analysis are created; one for
the years 2007–2009, another for 2010–2012, and a combined dataset including the
attributes over the whole six-year period. The first two are an array U of 444 rows
and 18 columns, and each value in the array represents the score that the institution
has in each of the six categories in the three years. The combined array has, of
course, 36 columns.

The purpose of this chapter is not to argue the accurateness of this information,
but rather utilize this data for an application of the method proposed. The reader
should recognize that the use of this dataset has been challenged in terms of its
reproducibility by Razvan [50] and also recognize the work by Docampo [14] who
also alert of some problems in the ARWU’s processes. However, as highlighted
by many authors, after recognition of these issues and also noting the criticisms
revolving about the ARWU ranking, this contribution addresses two of them. In
particular, in section “Results”, the Alumni attribute and the attribute related to
Size (PCP) deserve two separate experiments to understand their contribution. On
this point, it can be argued that, to ensure transparency, an international standard
on the universities reporting on performance on specific attributes should be made
available and that it is best, for reproducibility, to work with raw data. This said, this
information is taken bona fide, as correct and complete.

From this set of attributes, other types of ranking systems could create other
attributes or “meta-features” by combining or multiplying multiple attributes of the
dataset. Typically, aggregates should be avoided whenever possible, and normaliza-
tions (e.g., dividing total number of publications by the total number of full-time
employees) can easily be derived should this be required or desired by the user.
Having said this, these standards may not make the dataset used in this study fully
satisfactory (aggregates exist, normalization by full-time employees equivalents are

http://www.shanghairanking.com
http://www.shanghairanking.com
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not made, other problems have been identified in Ioannidis et al. [24]), but this
dataset is one of the world’s best, regarding its coverage, and serves to illustrate our
proposed methodology.

Construction of a Dominance Graph and Transitive Reduction

The method proposed in this chapter uses concepts inspired by transitive dominance
to build a directed acyclic graph (DAG) (G.V; A/). A university x dominates
university y, if and only if, for each attribute i the values of the universities for
this attribute satisify xi � yi ; 8 i W Œ1::m� ^ 9 j 2 Œ1::m� = xj > yj . This means
that the performance of university x is at least better or equal in all attributes than
university y, with at least one attribute at having a higher value. This definition
creates a DAG G.V; A/ where each vertex represents a university, and if there is an
arc axy 2 A, it means that university x dominates university y. Within this chapter
it will be shown that this DAG naturally induces a hierarchy of universities, with
universities at Level 1 being those that are not dominated by any other university in
the set. Here it is implied that the notation xi � yi is general in meaning and is valid
for both numerical and ordinal attributes. It is assumed that the attributes’ measures
are selected in such a way that a higher value on them implies a higher standing.
This is a strength of this method as it can deal with datasets of mixed attribute types.

The resulting graph of this procedure would be hard to visualize in two
dimensions as there are 444 nodes and it is very dense. Therefore, in order to
simplify the DAG, without losing the hierarchy created, a method similar to, but
less restrictive than, transitive reduction [4] is used. As Bang-Jensen and Gutin
[4] describe, a transitive reduction of a directed graph (digraph) D is a spanning
subdigraph H of D with no transitively irrelevant arcs, and it is called minimum
equivalent subdigraph. In transitive reduction, “reachability” between nodes is
not affected as only superfluous arcs are removed [41]. The minimum equivalent
subdigraph of an acyclic digraph can be found in polynomial time and is unique.

However, in this instance, another algorithm that reduces the number of arcs
further is used so that it is less restrictive in maintaining the reachability condition. A
simplified visualization of this procedure is presented in Fig. 1 and is mathematically
outlined here:

1. Identify the set of all universities which are nondominated; this set will be called
the set of “Level 1” universities;

2. Add a dummy vertex vd , which would correspond to a hypothetical nondomi-
nated university by all universities in the set (the Level 0 or “dream university”),
and draw an arc from vd to each of the universities in Level 1 (Fig. 1b);

3. The level of a university (represented by a vertex vi ) is then equal to the number
of arcs that need to be traversed in the longest directed path from the “dream
university” (vertex vd ) to vi ;

4. For each arc axy 2 A if jLevel.x/ � Level.y/j > 1, then A D A � faxyg (see,
for instance, the bold arcs in Fig. 1c are deleted from the DAG Fig. 1d).
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Fig. 1 Construction of the dominance graph. Each vertex represents a university, and there is
an arc from each pair of universities .x; y/ whenever x dominates y, according to the dominance
definition given in the text. This method starts by first identifying the set of universities that are
not dominated by any other university in the set. To illustrate on the algorithm, a set of figures are
produced. Figure (a) shows the initial status. By assigning the nondominated set of universities to
a top level, it would be possible to identify levels for all the other universities in the set. Figures
(b)–(d) illustrate on the procedure to compute this and the resulting reduced graph as some arcs
are removed. In (b) a dummy vertex vd is added, which corresponds to a hypothetical “dream
university” which is nondominated, which would be at “Level 0.” From the dummy vertex to each
of the nondominated universities, an arc is added (as shown in (b)). Then a level of a university
is recursively defined as the maximum number of arcs that need to be transversed from vd to it.
Figure (c) shows arcs that connect universities for which the difference levels are more than one.
These arcs are shown in boldface. Since visualizing such a dense directed graph would be unclear,
these are removed as it would not affect the level of any given university. As a result, a reduced
DAG is produced as shown in (d), and through visualization it is shown how its results now uncover
the underlying layer structure of (a)

The resulting graph from this process has the same hierarchical properties as the
original one. Based on this final reduced graph, university x “closely dominates”
university y if axy 2 A after the reduction.

This heuristic ranking methodology in terms of levels comes from a clear
algorithmic procedure and is nonparametric, and it does not require an ad hoc
definition of weights to be applied to each attribute. It is based on established
grounds in multi-objective optimization and clearly reflects all pairwise comparable
dominance relationships in the data. Furthermore, this method accepts numerical
as well as categorical attributes allowing the inclusion of more variables in ranking
activities.

Following the above process, in order to investigate “global” dominance relation-
ships, the number of institutions that each university is transitively dominated by in
the reduced graph will be calculated. This will provide an overall picture of where
each institution is placed in comparison to all institutions included in the set. As
an extra decision-making tool, it will provide institution leaders with the necessary
information to compare and benchmark against other similar institutions. Examples
of this are provided in section “Results”.
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Symbolic Regression Analysis to Predict Levels Using All Variables

In order to go one step further and investigate which variables are important in
terms of “predicting” which level (rank) a university is going to be a part of,
symbolic regression analysis is used in this chapter. By doing this, it clarifies
whether the results found are consistent when using variables of each year for six
consecutive iterations of the symbolic regression analysis. Symbolic regression is
a data-driven method to find a structure in data. Unlike linear regression methods,
symbolic regression not only finds the best values for a set of coefficients, it also
finds the structure of the model that best fits the target variable [57] (including but
not necessarily limited to linear models). In order to do this, a powerful software
named Eureqa [54] is used which is based on evolutionary computation techniques
to search for the best model. Eureqa runs an evolutionary search procedure to find
the solution that fits the data best with the lowest possible level of complexity as is
consistent with other symbolic regression methods [62].

In Eureqa, the “best models” are those that are observed in a Pareto optimality
curve which imply a trade-off between their complexity and their fit. Complexity
meaning the number of functions and “building blocks” used by Eureqa to fit
a model to the target variable. The user selects a fitness function (for instance,
absolute error or mean squared error) that guides Eureqa in selecting the best
models. Users also have the option to select their preferred “building blocks” (for
instance, arithmetic operations like multiplication, subtraction, and addition or the
introduction of a constant). In a previous publication, the authors of Ref. [64] have
shown the usefulness of symbolic regression and Eureqa in finding “functional
constructs” from online consumer behavior data. Furthermore, the data-driven
nature of symbolic regression is suitable to the context of this study as the aim
is to make inferences on the data based on the information present in the data alone
without a priori parameters or attribute weights.

In this study in particular, the aim is to find those variables that are of importance
when “predicting” which level an institution is in as well as finding out whether the
assignment to levels of all universities can be consistently predicted with variables
from each of the years. To do this, the “level” is set as the target variable in Eureqa,
while it tries to fit a model to predict between Levels 1–11. The level ranking dataset
used for this procedure is the ranking obtain from running the dominance graph on
the whole dataset, i.e., years 2007–2012. Following this, six searches are conducted
in Eureqa in which every search uses only one year of data. The reason is to find
out whether the models are consistent in predicting one outcome of the dominance
graph using variables from several years. The variables in the dataset that are most
frequently used in the models are highlighted, and these are identified as the key
variables in predicting “level membership.” Furthermore, the best simple linear
function found by Eureqa is used for further analysis which is consistent with a
previous publication using this software [64]. In this manner it is possible to inspect
the variables that are found to predict the target variable, in this case, ranking level
in detail.
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In this study, the following “building blocks” were selected for the Eureqa
analysis, the use of a “constant,” “integer constant,” “input variable,” “addition,”
“subtraction,” and “multiplication.” For all of the six years, the six searches are run
two times, once with the error metric as R-squared goodness of fit and once with
squared error Akaike information criterion [AIC]. The squared error with AIC is
selected as AIC provides a means for model selection. AIC deals with the goodness
of fit of the model and the complexity of the model which is in line with the other
selection criteria that are used based on the Pareto optimality curve.

Results

The results based on the construction of the directed dominance graphs are presented
here. The total dataset for the years of 2007–2012 was analyzed and split into two
datasets representing the periods 2007–2009 and 2010–2012. In Figs. 2 and 3 the
hierarchical layout of the graph created for the three-year periods of 2007–2009 and
2010–2012, respectively, can be seen.

Resulting from the ranking procedure, as outlined in the methodology, the graph
of 2007–2009 has 12 levels with a different number of universities in each level
in the first period. In the second period, the graph has 13 levels, with Level 13
only containing one university (University of Jyvaskyla, Finland). Furthermore,
colors are used to highlight the correlation with the Shanghai Jiao Tong University
study. Red corresponds to those institutions that have been considered at the top 10
according to the Shanghai Jiao Tong University study (in the last year included) with
the remaining top 50 in orange, and the remaining top 100 are colored in green. Also
included in this section are the results of the calculation of transitive dominance of
institutions, the symbolic regression analysis testing, the volatility of ranking over
a longer period of time, and the removal of the attribute Alumni as well as the
attribute PCP (Size) in the ranking method and the effects of the removal of each of
these attributes on the outcome. In the representation of results, various institutions
are highlighted as examples in order to communicate the findings of this study.

University Ranking Results 2007–2009

When looking at Level 1 in Fig. 2, some information that is clearly revealed by the
method becomes apparent. The “Level 1” universities correspond to those which
are not dominated by any other university in terms of the attributes considered in
the method. In this graph, these are Harvard University and the California Institute
of Technology (Caltech). While Harvard closely dominates several others, Caltech
does not closely dominate any other institution of Level 2. Level 2 institutions
are Stanford, Columbia University, the University of Tokyo, the University of
California at Los Angeles, the University of Michigan at Ann Arbor, the University
of Pennsylvania, the University of Washington, the University of California at
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Fig. 2 The ranking of 444 world universities according to our proposed methodology using
the same raw data provided by the Institute of Higher Education, Shanghai Jiao Tong
University, for the years 2007, 2008, and 2009. Universities are arranged in levels, and a
university is in a level if there exists another university that closely dominates it and is in the
immediately higher level (the mathematical definition of this concept is outlined in the Methods
Section). This graph provides important information for decision-making. In order to improve
the overall ranking level, the university strategic decision-makers should pay attention to the best
effective way of reaching the next level by improving in those attributes that would allow it to rank
in the next level in the hierarchy. In addition, the university should also closely monitor the set of
universities in the inferior level as they are the in direct competition for a position at the same level
in the hierarchy. For instance, Yale University and Cornell University are two Level 3 universities
that are both closely dominated by University of California at Berkeley. At the same time, these
two institutions have a large number of institutions that they closely dominate at Level 4 (NB: A
high-resolution version of this image can be found in the Supplementary material)

Berkeley, the University of Toronto, the University of Cambridge, Massachusetts
Institute of Technology, and Princeton University.

The reason for Caltech’s position in Level 1 can be explained not by Caltech’s
total productivity but rather its productivity regarding its size. Here it is noted that
instead of normalizing raw data on the institution’s performance by the number
of full-time academics (or their equivalent full-time aggregated data), the Institute
of Higher Education, Shanghai Jiao Tong University proposed the addition of an
attribute called “Academic performance with respect to the size of an institution”
or “Performance Per Capita” (PCP). It is important to remark that Caltech is a
special case in terms of size. As pointed out by Baty in early 2014 [5], Caltech
may be called not just “small,” but “tiny” with its 300 professorial faculty, about
600 research scholars, and, at the last count, only 1,204 graduate students and just
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977 undergraduates. This translates to an almost 3:1 student to faculty ratio. As a
result of the introduction of the “Performance Per Capita” (PCP) attribute, which
relates to the size of the institution in the ranking method, Caltech (with its “tiny”
size) is “singled out” at the top due to its maximum value of this attribute without
any close domination of Level 2 institutions. This reflects the consensus that the lack
of normalization of the other attributes would bias ranking systems to benefit larger
institutions. For instance, Rockefeller University is another small-sized institution
that is very productive and is at Level 3, closely dominated by the Massachusetts
Institute of Technology at Level 2.

Other Level 3 institutions include the Ecole Normale Superioure of Paris,
the University of Chicago, Cornell University, Yale University, the University
of Oxford, the University of California of San Diego, Kyoto University, Duke
University, John Hopkins University, the University of Minnesota at Twin Cities, the
University of Wisconsin at Madison, the University of Sao Paulo, and the University
of Pittsburg. The University of Sao Paulo (Brazil) consolidates its position as a world
Level 3 institution due to its relatively large SCI performance score.

At Level 4, the international mix of institutions is more clear. Level 4 includes
the Hebrew University of Jerusalem (Israel), two German universities (the Technical
University Munich and the University of Munich), three UK institutions (the
Imperial College of Science, Technology, and Medicine, London School of Hygiene
and Tropical Medicine, and the University College London), three from France
(Pierre and Marie Curie University Paris, the University of Paris-Sud, and the
University of Montpellier), the University of Oslo (Norway), the University of
Basel (Switzerland), Moscow State University (Russia), the University of British
Columbia (Canada), Osaka University (Japan), and a large group of USA-based
universities, Carnegie Mellon University, the University of Colorado at Boulder, the

J
Fig. 3 The ranking of 444 world universities according to our proposed methodology using
the same raw data provided by the Institute of Higher Education, Shanghai Jiao Tong
University, for the years 2010, 2011, and 2012. The California Institute of Technology and
Harvard University continue to be the single institutions at Level 1. At Level 2, there is almost the
same group of American institutions (and The Universities of Tokyo and Cambridge). However,
the University of Pennsylvania now is at Level 3, and John Hopkins University and the University
of Oxford now climb a level and now are at Level 2. If a single city of interest is to be highlighted,
the universities in Hong Kong show a clear upward trend with the City University of Hong Kong
climbing (climbing from Level 10 to Level 7), the Chinese University of Hong Kong and the
University of Hong Kong (both raised from Level 8 to Level 6), and the Hong Kong Polytechnic
University (from Level 10 to Level 8). Other Asian institutions raised three levels (Sun Yat-sen
University and Hanyang University, from a Level 11 to Level 8). In Europe the remarkable uphill
move of the Italy’s Scuola Normale Superiore di Pisa that raised from Level 6 to Level 3 can be
noted, as well as Sweden’s Stockholm School of Economics (from Level 7 to Level 4) and Austria’s
Medical University of Innsbruck that from the bottom Level 12 is now at Level 7. However, over
the three-year subsequent period, only 10% of the institutions raised two or more levels (and only
4.05% decreased it by a similar gap) indicating that as a metric is less volatile than other metrics
to evaluate institutional performance (NB: A high-resolution version of this image can be found in
the Supplementary material)
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University of California San Francisco, Pennsylvania State University – University
Park, the University of Illinois at Urbana-Champaign, the University of Texas
Southwestern Medical Center at Dallas, Northwestern University, the University
of California Davis, The Ohio State University Columbus, Case Western Reserve
University, the University of Florida, Washington University in St. Louis, and the
University of Rochester.

Lastly, the Ecole Polytechnique Federale de Lausanne (EPFL) Institute in
Switzerland is also situated on Level 4. This institution is highlighted because
Ioannidis et al. in [24] have pointed out how the EPFL of Lausanne was a missing
institution in the top lists of Shanghai Jiao Tong University ranking system in
previous years, yet the methodology in this chapter has the EPFL institution in
a relatively high position. The EPFL is located at Level 4 as shown in Fig. 2.
Furthermore, as is to be expected, as you move down the levels further, the number
of institutions in each level increases, and the variety of origins becomes more
apparent which can be examined in Fig. 2. A full presentation of institutions at all
remaining levels can be found in Fig. 2.

Transitive Dominance Example Results

As stated, the number of institutions that each university is transitively dominated by
and which ones it dominates has been computed, for instance, looking at the three
UK-based institutions at Level 4, the Imperial College of Science, Technology, and
Medicine, London School of Hygiene and Tropical Medicine, and the University
College London. The Imperial College is transitively dominated by only seven
universities in the world, while it transitively dominates 337 institutions. This is
an impressive number for a Level 4 university, very close to the 346 institutions
dominated by Caltech at Level 1. The University College London (UCL) numbers
are equally impressive with only five institutions that transitively dominate it and
with 377 transitively dominated by UCL. In contrast, the London School of Hygiene
and Tropical Medicine is transitively dominated by only 12 institutions (consistent
with the overall trend of expected dominance for an institution at this high level),
but it does not dominate any other institution.

The same numbers of the three French institutions at Level 4 are Pierre and Marie
Curie University Paris (9 and 209), the University of Paris-Sud (9 and 117), and the
University of Montpellier 2 (13 and 45). This analysis provides some clarity on the
peculiarities of some small-sized but intensively research-oriented institutions.

Sensitivity Analysis of Mobility over the Period 2010–2012

Research policy makers can intuitively evaluate the chances that a university can
climb the level structure by way of improving in different attributes. A university
can climb up one level only if it improves on those categories in which it is being
closely dominated by other institutions (given that those institutions do not move
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Fig. 4 (Continued)
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themselves). The inbound degree and the “weight” of each arc implicitly convey
how likely it is for a university to improve its level. It is intuitive that the lower the
inbound degree and the lower the weights, the easier it is for a university to climb
levels up in the overall ranking.

There is a clear linear correlation trend between changes in levels and changes in
the transitive dominance of a given university. In order to inspect this, a comparison
is made between the change in level position of the 2010–2012 dominance graph
and the 2007–2009 dominance graph. Firstly, several universities are highlighted as
examples of level changes, followed by universities’ changes in level over these two
periods when the attribute PCP is removed from the dominance graph computation.
This will show those changes that occur based on only the other attributes that
remain.

Figure 4 shows five universities that provide different examples of changes
in levels. Firstly, in Fig. 4a, the Netherland’s Radboud University Nijmegen is
shown. In the Figure it is noticeable that the attribute “Alumni” is nonexistent in
the years 2007–2010 and appears for the years 2011–2012. For the case of the
Radboud University Nijmegen, this steep increase is due to the fact that in 2010,
two researchers affiliated to the University obtained the Nobel Prize in Physics for
their research in the properties of graphene [43]. Examining these types of changes
further, results show that the Radboud University Nijmegen shows an impressive
improvement (from 58 institutions dominating it to only 12). Next in Fig. 4b, the
USA-based Thomas Jefferson University attributes are shown which explain its
level improvement to Level 6 from a previous Level 10 position and has only
41 universities dominating it from a previous 162 total. The Figure shows that
between the period 2007–2009 and 2010–2012, the Thomas Jefferson University
increased significantly in the attribute related to size (PCP). The Medical University
of Innsbruck that was at the lowest level in 2007–2009 (Level 12) jumped to Level 7
in 2010–2012 also experienced the largest change in transitive dominance (from 222
to 88) and is shown in Fig. 4c. This is a change of approximately 60% in the number
of institutions that dominate it. In this figure it shows that the Medical University
of Innsbruck has a steep increase in the value for the attribute related to size. As

J
Fig. 4 Attribute values of universities that have changed levels over time – Figure (a) shows
Radboud University which has climbed levels due to their increase in Alumni score. In figure
(b), Thomas Jefferson University provides an example of a university that has improved its level
position due to an increase in Performance Per Capita (PCP), likely due to the institution changing
in size. The Medical University of Innsbruck also provides an interesting example in figure (c) as
it has the largest climb in level (from Level 12 to Level 7). It is possible to see for this university
that all the categories are kept mostly the same, with the exception of category PCP, related to
size. Figure (d) shows the university with the largest change in its level, University of Montpellier
2, which dropped from Level 4 to Level 8 when comparing the two periods that are investigated
in this study. The profile of the university shows an unusual value for the PCP category in year
2008. This is probably due to an error in the data collected or published. Finally, in figure (e), the
University of Alaska Fairbanks drops from Level 7 to 10 which is explained by the drop in the
category N&S, as well as the drop in PCP (Size)
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stated, this attribute measures “Per Capita Performance” (PCP) in terms of research.
Therefore, it could be that either the University reduced in size at this point in time
or that it has significantly increased their research output with the same institutional
size or even that some part of its research output was not previously included.

Furthermore, Fig. 4d shows the French University of Montpellier 2 and its
peculiar values for the attribute “Size” (PCP). When comparing the two periods of
time, the University of Montpellier 2 experiences a large drop in their level position
from Level 4 to Level 8. In the figure it is evident that the University of Montpellier
2 had a steep decline in their score for the attribute “Size” (PCP). It may be argued
that this could be due to an abnormality in one of the values of “PCP” (for the year
2008) which is conspicuously high. As a consequence, this may have affected the
position of this university in the level for years 2010–2012. Finally, Fig. 4e shows
the University of Alaska Fairbanks. This university is also an example of a university
falling in its level position. The University of Alaska at Fairbanks is now at Level
10 from a previous position at Level 7. In the figure it can be seen that this drop is
explained by the decrease in the attribute of N&S as well as a large decline in PCP.

Considering that many universities’ drop in level can be attributed to their change
in PCP, the results of the two periods without the PCP variable are compared. This
will show those universities that still change in level position without considering
their Performance Per Capita and may shed light on which other attributes are
important to level position changes. Fig. 5 shows four universities which provide
examples of this. In Fig. 5a, the UK-based University of Bath is shown. The
University of Bath declined in its position over the years due to a decrease in the
value for N&S attribute. The USA-based Northeastern University and the Australian
University of Tasmania are shown in Fig. 5b, c, respectively, and show the reason
for their level improvement. For both of these universities, their level improvement
can be attributed to their increase in value for the N&S attribute in the new three-
year period. This means that it is likely that each of these institutions shifted
resources, and academics allocated their time differently in order to publish more
in the journals Nature and Science in the second period (2010–2012) than in the
first period (2007–2009). Lastly, Fig. 5d shows the City University of Hong Kong
which experienced a drop in their position due to the decline in citations in N&S.
Interestingly, although their value for “HiCi” improves in the newest three-year
period, the drop in N&S is enough to shift this university’s level position.

A complete list of the results of universities’ mobility over the two time periods,
for those universities that fell or increased more than two levels, is shown in Table 2.

Dominance Graph Computation of 2007–2012 with Symbolic
Regression Analysis

After the periods 2007–2009 and 2010–2012 were examined separately, the results
of the dominance graph for the whole period are examined. The resulting dominance
graph is displayed in Fig. 6.

Examining the results of universities’ position in the dominance graph over a
total of 6 years allows the further investigation of the implications for institutions.



47 World’s Best Universities and Personalized Rankings 1351

Fig. 5 Examples of universities that still moved levels in between the two periods of time
when Performance Per Capita (PCP) was moved – This figure shows four universities that
dropped or improved in their level position in the dominance graphs of 2007–2009 and 2010–2012
without PCP included. Figure (a) shows the University of Bath, which drops two levels between
2007–2009 and 2010–2012 due to their decrease in the value for the attribute N&S. Figure (b)
shows Northeastern University which is the university that shows the largest improvement in level
position in this comparison. As can be seen in this figure, their improvement can be attributed to
their high values for N&S and SCI. Next, in figure (c), the University of Tasmania shows that their
rise from Level 16 to 13 is mainly due to their increase in the category N&S. Finally, figure (d),
the City University of Hong Kong jumps from Level 13 to 10 although they have a value of zero
for the attribute N&S after 2009. The figure shows their level improvement is solely due to the
increase in Highly Cited work HiCi

This is because this graph compiles all the scores for all attributes for each year. With
more information available in one ranking outcome like this, more inferences can
be made for institutions, strategic planning activities, and research policy making.
As stated in section “Materials and Methods”, symbolic regression analysis is used
on the 2007–2012 ranking results to find those variables that are important in
predicting a universities’ rank as well as test for consistencies using data from
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Table 2 Universities that change more than two levels in the Pareto dominance graph in the two
periods of years considered

University Level Change

2007–2009 2010–2012

Medical University of Innsbruck 12 7 �5

Sao Paulo State University 11 7 �4

Thomas Jefferson University 10 6 �4

City University of Hong Kong 10 7 �3

Hanyang University 11 8 �3

Northeastern University 12 9 �3

Scuola Normale Superiore di Pisa 6 3 �3

Stockholm School of Economics 7 4 �3

Sun Yat-sen University 11 8 �3

University of Alaska Fairbanks 7 10 3

University of Montpellier 2 4 8 4

each year to predict the ranking of the 2007–2012 outcome. Using Eureqa, the
aim is to find a linear function using the existing variables in the dataset to
predict the level each university is a “member” of. Two separate error metrics
are used to optimize the R2 goodness of fit (GoF) and the squared error [AIC].
In each experiment the objective was to fit a model to predict the levels of the
dominance graph shown in Fig. 6 using, in turn, the variables from each of the
years 2007–2012. Results for the experiments optimizing R2 GoF are shown in
Table 3. Results optimizing the squared error [AIC] are shown in Table 4. As
can be seen in these tables, all models contain the same variables, Alumni, PUB
(research output), and PCP (related to size), for one exception which includes N&S
(publications in Nature and Science) instead of PUB. However, it is noted that both
PUB and N&S relate to a universities’ research output and could therefore be seen
as interchangeable as different institutions have higher research outputs in varying
disciplines.

Furthermore, all models have highly similar coefficients. All constants at the start
of each model range between 9.59 and 10.91 followed by highly similar coefficient
attached to the Alumni attribute (ranged between 0.02 and 0.04). Following this,
all models, except for that one using 2011 data and the Square Error [AIC],
contain the attribute PUB with a coefficient ranging between 0.05 and 0.06. For
the exception, N&S is included with a coefficient of also 0.05. This shows that
for almost all models, PUB has a greater weighting in predicting universities’
levels than the Alumni attribute does. Finally, for all models other than the 2011
model in Table 4, PCP is the last included attribute with the heaviest weighted
coefficient between 0.09 and 0.10. Again, the exception is the model using squared
error [AIC] using 2011 data which includes PUB as its last variable with a
coefficient of 0.06 (which is similar to the coefficient attached to PUB for all
other models). Besides this one exception, these models show a high level of
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Table 3 Results of the symbolic regression analysis predicting “level membership” or position. In
this table the best linear models found using the R-squared goodness-of-fit measure are presented
including the respective error metric. The experiment was run six times to include variables from
each of the years separately to find consistencies in the variables used by Eureqa. As can be seen,
all models are very similar; include the same three variables, Alumni, PUB (related to number of
publications), and PCP (related to size); and even have almost identical coefficients

Year of variables used Best linear model for level prediction R2 GoF

2007 Level = 10.40 � 0.02(Alumni) � 0.05(PUB) � 0.10(PCP) 0.71

2008 Level = 10.39 � 0.03(Alumni) � 0.05(PUB) � 0.09(PCP) 0.69

2009 Level = 10.41 � 0.02(Alumni) � 0.06(PUB) � 0.09(PCP) 0.71

2010 Level = 10.91 � 0.02(Alumni) � 0.06(PUB) � 0.10(PCP) 0.71

2011 Level = 10.90 � 0.02(Alumni) � 0.06(PUB) � 0.10(PCP) 0.71

2012 Level = 10.87 � 0.02(Alumni) � 0.06(PUB) � 0.10(PCP) 0.71

Table 4 Results of the symbolic regression analysis predicting “level membership.” In this table
the best linear models found using the squared error [AIC] measure are presented including the
respective error metric. As in Table 3, the experiment was run six times to include variables from
each of the years separately to find consistencies in the variables used by Eureqa

Year of variables
used

Best linear model for level prediction Mean squared er-
ror

2007 Level = 10.56 � 0.02(Alumni) � 0.05(PUB) � 0.10(PCP) 1.04

2008 Level = 10.40 � 0.03(Alumni) � 0.05(PUB) � 0.09(PCP) 1.11

2009 Level = 10.75 � 0.02(Alumni) � 0.06(PUB) � 0.10(PCP) 1.03

2010 Level = 10.87 � 0.03(Alumni) � 0.06(PUB) � 0.10(PCP) 1.04

2011 Level = 9.59 � 0.04(Alumni) � 0.05(N&S) � 0.06(PUB) 1.21

2012 Level = 10.76 � 0.03(Alumni) � 0.06(PUB) � 0.10(PCP) 1.05

consistency across which variables are used to predict “level membership” for
universities. These results indicate that PCP (size) has a big impact on predicting
which level a university is part of in the dominance graph of the ARWU dataset.
Furthermore, it can be observed that PUB has a stronger impact on determining
which level a university is on than Alumni and that these three attributes combined
predict the levels of the 2007–2012 dominance graph to reasonable error values
(as shown in Tables 3 and 4). Finally, these symbolic regression results could
assist a university in determining strategies for improvement in the ARWU ranking
as they provide the strongest impacting attributes on which level a university
is on.

To further illustrate the usefulness of the proposed ranking method in this chapter
in detail, various examples are outlined from the 2007–2012 dominance graph. The
universities selected to provide case examples are the University of Copenhagen, the
University of Amsterdam, and the Australian National University (ANU) as these
institutions provide varying interesting cases.
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Case Example of the University of Copenhagen
In the total period of 2007–2012, the University of Copenhagen was positioned on
Level 4 of the dominance graph. As shown in Fig. 7, the University of Copenhagen is
only closely dominated by one university, Yale, while it closely dominates 30 other
institutions in Level 5. The fact that only Yale directly dominates the University of
Copenhagen in our ranking result is a satisfactory achievement for the University
of Copenhagen as this means the “inbound degree” of arcs for Copenhagen is
low. However, it must be outlined that as the weight of the arc between Yale
and Copenhagen equals to 36, it means that Yale dominates Copenhagen in every
attribute for every year (6 � 6 D 36). This shows that the weight of each arc
is important in the dominance graph and provides information to the institutions
wishing to directly benchmark with other institutions having very similar, though
superior, profiles.

Case Example of the University of Amsterdam
In the total period of 2007–2012, the University of Amsterdam (UvA) was
positioned on Level 5 of the dominance graph. It is one of the 30 universities
that is closely dominated by the University of Copenhagen. Those universities that
dominate the UvA and those that the UvA closely dominates are shown in Fig. 8
and create a cone-like shape that the UvA can analyze further for benchmarking
purposes. As can be seen in the figure, the UvA is only closely dominated by
Northwestern University, the University of Copenhagen, and the University of
Illinois at Urbana-Champaign. The University of Amsterdam closely dominates
nine universities at Level 6. Five of these universities are from Asia, Fudan
University in China, Nanyang Technological University in Singapore, the University
of Hong Kong, and the City University of Hong Kong. One such university is from
Brazil, State University of Campinas; two universities from Europe, University
of Erlangen-Nuremberg in Germany and the Swedish University of Agricultural
Sciences; and, finally, one university from Israel, Yeshiva University.

Analyzing the relationship of UvA and the universities it is closely dominated by
provides higher education decision-makers and research policy makers with further
information about where to exert their resources more heavily. For instance, in the
example of the UvA, it is shown how “close” UvA is to those universities that
dominate it and possible areas of concentration for UvA to gradually improve its
rank according to this system. For this, the scores of attributes only for the year
2012 are used as this is the most recent year in this dataset and therefore provide the
most up-to-date answers. The attribute with the smallest difference in score for UvA
and one of the universities is dominated by is “PCP” (Performance Per Capita). The
UvA has a score in 2012 of 25.8, while the Northwestern University has a score of
26.4 making it only a 0.6 difference in score. This means that if the UvA improves
in this item by just a mere 0.6 of a point score, it can change the domination status
of one of the three institutions at a higher level that closely dominate it.

Furthermore, the University of Illinois at Urbana-Champaign has a score of 27.8
for PCP meaning that UvA is only 2% points lower. The University of Copenhagen
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has a score of 32.3 for PCP making it 6.5 points higher than UvA. The second closest
attribute score for UvA and its dominating universities is in “PUB.” UvA’s score in
this attribute in 2012 is 52.8 while the University of Illinois at Urbana-Champaign
has a score of 56.1 meaning there is only a 3.3 point difference. Northwestern
University has a score of 58.1 (5.3 point difference with UvA) and the University of
Copenhagen has a score of 58.6 (5.8 point difference with UvA). These results tell
us that the UvA is closest to its dominating institutions in these attributes. This
can inform management at UvA to focus attention and resources on increasing
publications in certain journals and in doing so improve their Performance Per
Capita (PCP) instead of investing heavily in other attributes in which the differences
are pronounced.

Case Example of the Australian National University
In the analysis using the total period of 2007–2012, the Australian National
University (ANU) was positioned on Level 4 of the dominance graph which is the
same level as the University of Copenhagen (see Fig. 9). ANU is closely dominated
by six universities at Level 3, while it, in turn, closely dominates five universities
at Level 5. The universities that dominate ANU are all from the USA or the UK,
University of California San Diego; Yale University; University College London;

Fig. 9 The position of the National University of Australia at Level 4 in the dominance graph
of the period 2007–2012. It is closely dominated by six universities at Level 3, while it, in turn,
closely dominates five universities at Level 5
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the Imperial College of Science, Technology, and Medicine; Cornell University; and
the University of Chicago. The universities that ANU closely dominates are a more
international mix, the University of Bern in Switzerland, Oregon State University
from the USA, the University of Durham and the University of East Anglia in the
UK, and Korea Advanced Institute of Science and Technology.

ANU is taken as an example of how to investigate the relationship with those
universities a given institution closely dominates. In the case of ANU, there are five.
In this scenario it is important to investigate which universities would be close in
certain attributes or in some cases almost equal. Once the university of interest is no
longer better in all attributes, it will no longer closely dominate those universities.
Again, only the scores from 2012 will be investigated to provide a scenario as up to
date as possible. In the case of ANU, three of the closest scores are in the attribute
“Alumni” which relates to the alumni of the institution that obtain a Nobel Prize. In
most cases, this is extremely difficult to alter, and a discussion on this attribute is
provided in the following section. The next attributes in which universities closely
“compete” with ANU are the attributes N&S and PCP.

The closest university in terms of the attribute N&S is the University of Bern
followed by Oregon State University. These universities have scores less than 4
points below that of ANU making them competitors for ANU in this system. In
terms of PCP, the Korea Advanced Institute of Science and Technology and the
University of Bern again come close to ANU. The reason these attributes are
outlined rather than Alumni is because these attributes are more in the control of
the university than the number of Nobel Prize winners they “produce.” For instance,
ANU could encourage and enable its researchers to publish articles in Nature
and Science rather than other journals in the field. Furthermore, when improving
research output in terms of quality and volume without growing in size, it would
be likely that Performance Per Capita would increase. These results show us the
attributes that ANU needs to focus on in order to keep their competitive advantage
and higher position in the dominance graph due to the universities they closely
dominate.

The Case of the Alumni Attribute

In the ARWU ranking, the attribute measuring “Alumni,” “the total number of
the alumni of an institution winning Nobel Prizes and Fields Medals,” has been
extensively scrutinized and criticized for not measuring actual research or teaching
excellence [25, 45]. As Ioannidis et al. [24] state, there is no doubt that research
excellence could indirectly be measured by the Nobel and Field Medal faculty
members working at a given institution. However, there is no justification to assume
the existence of any clear correlation with the quality of teaching and research as a
whole of the institution. Perhaps, it is only a measure of maturity, sheer size, number
of graduates, financial support, and capital investment on a particular discipline
(only certain disciplines can give Nobel Awards or Field Medals). In addition,
it is unclear why an event with such a low probability of occurrence (very few
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individuals receive Nobel Prizes or Field Medals) has such a large impact on the
activities measured over populations of individuals. Furthermore, Ioannidis et al.
have well argued that, in many cases, the affiliation of the Nobel and Field Medals
differs at the time they actually conducted the award-winning work and the time that
they were awarded the prize [24].

To prove that an attribute in the ranking process may be a spurious one, another
type of sensitivity analysis is conducted as part of this chapter’s proposed heuristic
method. The attribute Alumni is eliminated and its effects on the ranking of the
universities and their levels over the whole period 2007–2012 are subsequently
investigated. It was previously observed that institutions such as the Netherland’s
Radboud University Nijmegen may have obtained dramatic changes in overall level
position due to the attribution of Alumni alone (as can be seen in Fig. 4a shown by
the black bar) which provides yet another reason for the comparison of these two
outcomes.

According to the definition, the category Alumni represents “the total number
of the alumni of an institution winning Nobel Prizes and Fields Medals. Alumni
are defined as those who obtain bachelor, Master’s or doctoral degrees from the
institution”. In order to analyze the effect of this category in the ranking analysis,
the dominance graph without the Alumni category is recalculated. Thus, each of the
444 universities performance is only observed in the remaining five scores in six
consecutive years.

The resulting dominance graph on this dataset has 11 levels which is the same
number of levels as the result of 2007–2012 period with all attributes included. This
means that any changes in levels by a university is significant and provides useful
information. However, here only those universities that increased or dropped by two
or more levels are presented for the sake of brevity.

From the 444 universities, 196 universities (44.14%) do not change in level
when the attribute Alumni is taken out of the dominance graph algorithm. There
are 226 universities (50.9%) that change in only one level and only 21 universities
(4.73%) that fall two or three levels. Furthermore, there is only one university
(City University of New York City College) that falls four levels, indicating the
robustness of this scheme. This points out the irrelevance of the Alumni attribute for
the presented heuristic ranking method. This may please those opposed to Alumni
being included as a proxy for measuring quality.

However, it is interesting to highlight how the performance of individual
institutions may be affected by this choice. Looking at the City University of New
York City College, without its impressive legacy of Nobel Prize winners, falls from
Level 5 to Level 9. It was clearly in a higher level due to its high performance in the
Alumni attribute (with a score of more than 37 in the three years), but the score in
the rest of the categories is no higher than 18.

The three universities that fall more than three levels are Eotvos Lorand Univer-
sity in Hungary which fell from Level 7 to Level 10, University of Chile which fell
from Level 8 to Level 11, and Saint Petersburg State University from Russia which
fell from Level 6 to Level 9. It is clear that these institutions, without their successful
score in the Alumni attribute, fall down to lower levels as their scores reflect much
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Table 5 Universities that
change more than two levels
in the Pareto dominance
graph in the period
2007–2012 when the attribute
Alumni is not considered.
There are another 226
universities that drop one
level

University Levels dropped

City University of New York City College �4

Eotvos Lorand University �3

University of Chile �3

Saint Petersburg State University �3

Case Western Reserve University �2

University of Nebraska Lincoln �2

University of Tuebingen �2

Queen Mary U. of London �2

Technical University of Berlin �2

The University of Connecticut Storrs �2

University of Cape Town �2

Brigham Young University �2

Ecole Polytechnique �2

Technical University Darmstadt �2

The University of Montana Missoula �2

University of Oulu �2

Moscow State University �2

Complutense University of Madrid �2

University of the Witwatersrand �2

University of Warsaw �2

Istanbul University �2

Technical University of Braunschweig �2

lower results in the other categories. It is also interesting to note that the Radboud
University Nijmegen in the Netherlands, which, as pointed out, increased in levels
over the two separated periods (2007–2009 and 2010–2012), actually falls from
Level 5 to Level 6 over the whole period (2007–2012) when the attribute Alumni is
not considered. This strengthens the argument that their climb in levels over the six-
year period is merely due to their Alumni winning the Nobel prize in Physics rather
than a total improvement in “academic excellence” supporting those who argue
the superfluous nature of the Alumni attribute in measuring “academic excellence.”
The results of all universities which dropped or gained two or more levels with the
removal of the Alumni attribute are shown in Table 5.

The Case of the Performance Per Capita Attribute (Size)

In the ARWU ranking, the only way in which the “size” of an institution is taken
into account is through the only per capita measure: Performance Per Capita (PCP).
In the ARWU ranking, PCP is defined by as “The weighted scores of the above
five indicators divided by the number of full-time equivalent academic staff. If
the number of academic staff for institutions of a country cannot be obtained,
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the weighted scores of the above five indicators is used.” [3]. Since this attribute
is the only variable in ARWU’s ranking method which takes an institution’s size
into account, it is an interesting image to see the effect of its removal on our
methodology.

The sample of 444 universities over the total period of 2007–2012 has been used
for the dominance graph algorithm in order to compare its outcome to the result of
the 2007–2012 results for all attributes. There are more changes to the outcome
when PCP is removed than when Alumni was removed. Firstly, the resulting
dominance graph has 12 levels which means that some universities may change
in levels due to a total reorganization of the graph. This means that all universities
which changed more than two levels are significant; however, this presents a total
of 124 universities; therefore, again for the sake of brevity, only those universities
which changed in more than three levels are reported here. In these results, only 138
universities (31.08%) did not change a level, 182 universities (40.99%) changed in
only one level, 84 universities (18.92%) changed 2 levels, and exactly 40 universities
(9%) changed three or more levels.

In the case of deleting the PCP attribute from the method, the most extreme
result is the Scuola Normale Superiore di Pisa in Italy, which drops an impressive 8
levels from Level 3 to Level 11. This incredible drop is likely due to its extremely
small size in terms of staff and students. The Scuola Normale Superiore (SNS) has
only approximately 150 undergraduate students, 120 postgraduates, and only 190
doctoral students as it only takes approximately 60 new students annually through
its highly selective entry exam. However, it is important to note that the SNS in
Italy is an entirely special case. In order to attend this institution, students sit a
rigorous entry exam and must obtain certain levels of grades to remain enrolled in
SNS. Furthermore, what makes SNS a special case is that its undergraduate students
follow courses at the public university, the University of Pisa (Level 6 in the results
without PCP), while living on the SNS campuses. This means that its research
academics are able to devote their time to research and that they only have high-
caliber students. This explains their impressive result in terms of Performance Per
Capita and the incredible drop when PCP is removed from the method.

Furthermore, a small Swiss Institution the Swiss Federal Institute of Technology
(EPFL) located in Lausanne has previously been highlighted. Another small Swiss
institution the Swiss Federal Institute of Technology Zurich (ETHZ) is highlighted
for a different reason. ETHZ was located on Level 3 in the result when all attributes
were included in the method; however, with PCP removed, ETHZ fell to Level 4.
The removal of the PCP attribute also had a negative effect for EPFL which fell
from Level 4 to Level 7. This shows that for many small institutions, the attribute
which takes Size into account is important for their position on the ranking levels.

The last small institution that is discussed here provides a particularly interesting
case, Princeton University. Between the result for 2007–2012 with all attributes
included and the result with PCP removed, Princeton remains on Level 2. In both
results, Princeton University is only closely dominated by Harvard. The only change
is in the universities Princeton closely dominates as it dominates the Scuola Normale
Superiore di Pisa just discussed and Ecole Superieure Paris in the result of all
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attributes but does not closely dominate any institution when PCP is removed from
the method. This is because both these institutions drop in levels when PCP is
removed leaving no Level 3 institution closely dominated by Princeton. From this
result for Princeton University, it can stated that even though it is a small institution
when compared to the likes of Harvard, it “holds its ground” even when the only
per capita measure is removed unlike the other small institutions that have been
discussed.

Discussion

This section elaborates on the findings of the proposed heuristic ranking method
and reflects on the contribution of this chapter from a mathematical standpoint as
well as a research policy making standpoint which is the application in this chapter
to highlight the usefulness of this method. Furthermore, a brief overview of other
existing multi-objective ranking methods is provided as a means for comparing
the method presented in this chapter. This brief review is then used to highlight
several benefits of this chapter’s methodology as well as define any future research
possibilities to improve the method. Firstly, the two main contributions of this
chapter are described in further detail which are a mathematical contribution in
terms of a transparent, user-centric heuristic ranking method through the use of a
dominance graph and the provision of implications for decision-makers, managers,
and research policy makers at educational institutions and governmental offices.

A Transparent and User-Centric Ranking Method

As stated, many authors argue that current ranking systems which include arbitrarily
assigned weights and measurement approaches are generally naive, biased, flawed,
or a combination of all.

This chapter has attempted to provide a different approach to the ranking of
objects with multiple attributes through the use of the global universities ranking
example. Needless to say, the methodology is applicable to other types of problems
and would allow users of this method to naturally deal with attributes that are
numerical and/or ordinal in nature. For example, scores or attributes that have
ordinal values in categories could be taken into consideration for this method
allowing a much wider adoption of this method for different ranking needs that
include a variety of attributes or objects. The aim of discussing particular case
examples was to provide an illustration of the user-centric approach of this method
which allows alternative ranking outcomes to be investigated according to the user’s
interests and needs. It is for these reasons that the simple method used in this chapter
is easily transferable to other situations.

One of the main benefits of the heuristic ranking method proposed here is
that each user with differing interests can be satisfied by selecting which of the
attributes must be included in the ranking. As it has been pointed out, the position
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of several universities changed with the deletion of an attribute. This means that
this system allows users to look at the world ranking of universities based on
attributes that matter to them and exclude those that do not. Naturally, this would
also apply to other ranking and ordering exercises in different situations where
users may have varying interests. Such instances could include the ranking of
medical institutions for possible medical treatments, companies or organizations for
prospective employment, or even the analysis of countries or cities with attributes
relating to “livability.”

Furthermore, the approach to ranking of global universities in this study provides
a more transparent method as it uses raw data rather than accumulated, normalized,
or weighted data. As it is the weighting of the data in the ARWU ranking of
world universities that concerns a large number of authors [25], it is argued that the
proposed heuristic hierarchical method presented in this chapter satisfies a missing
need for transparently ranking universities based on raw data available publicly.
As it has been explained, although current university ranking methods seem to be
flawed and subject to data inaccuracy, scholars and educational institution leaders
agree that these activities are “here to stay” [52]. Hence, utilizing a methodology
which is transparent and user centric may be more appropriate for the world “need”
of global university rankings and other ranking activities.

Implications for Research Policy Makers

As stated before, well-known annual rankings of global universities, such as the
ARWU, are often criticized due to their level of volatility [52]. The advantage of
the methodology proposed in this chapter is that it organizes global universities
in levels based on a dominance graph rather than a “string list.” This means that
the real nature of slow and steady university growth and improvement is reflected
in this method rather than highly volatile changes. As such, this methodological
approach correlates well with the subjective assumption that large institutions, like
universities, when compared with other institutions of similar size and prestige, do
not experience high levels of volatility in terms of their status over periods spanning
just a few years. This level-based scheme induced by a dominance graph shows low
volatility over consecutive periods of three years and therefore reflects the real-life
nature of large educational institution growth.

The ability of an educational institution to compare and benchmark itself within
the “ladders” of the hierarchy of the presented layers is what actually brings univer-
sity leaders a clear path for improvement as outlined in the case of the University
of Amsterdam in section “Case Example of the University of Amsterdam”. Or
conversely, a clear image of close competitors in levels below that institution can be
examined, as highlighted with the example of the Australian National University in
section “Case Example of the Australian National University”. In these examples it
was easily and clearly identified that these universities’ nearest objectives (subset of
the top layer that dominate that university) and those attributes they should consider
to “protect their standing” (the ones a university closely dominates in the layer
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immediately below). This knowledge is of considerable value to universities and
its research policy makers as it aides strategic decisions regarding the distribution
of resources and funding. Although many different approaches to find the optimal
allocation of resources by universities exist, for example, such as in [33], since
global ranking systems are here to stay, ways of improving on these systems will
become more valuable.

Furthermore, it has been found that changes in resource allocation have an impact
on the type of activities academics concentrate on [33]. This means that those
universities in sections “Case Example of the University of Amsterdam” and “Case
Example of the Australian National University”, who needed to improve in areas
such as publications in Nature and Science, can base their decisions for allocations
of resources on numbers that will actually help them in the global standing of
universities.

Overview of Existing Multi-objective Ranking Methods

The problem of multicriteria ranking has been active in the decision-makers research
community for several years. In most cases, authors aim to produce a total order of
the alternatives, or as it has previously been referred to in this chapter, a “string
list” of object number one to the bottom ranked object. It is possible to classify the
methods presented in two approaches: the first one, and most common, is the use
of different ways of aggregating the criteria (features) such that different ways of
combining allow to obtained better rankings. Examples of the above can be found
in [9, 10, 18, 19, 21, 26, 27, 61, 65, 66]. It is arguable whether a specific way of
combining or weighting criteria is better than other. The second approach to solving
this problem is by modeling it as a multiobjective optimization problem and to solve
it by using, for example, evolutionary algorithms. Examples of the above can be
found in [15, 23, 35, 36, 46]. This approach has not been fully exploited, and recent
advances in evolutionary algorithms and other techniques to solve multi-objective
optimization can be applied. It is also well known that the use of specific knowledge
of the problem in the solution leads to good performing methods. In the literature,
several applications of domain-specific multicriteria ranking methods can also be
found, which incorporate characteristics of the problem at hand in order to combine
the different criteria to make the decision. Examples of the above can be found in
[11, 12, 31, 38, 42, 44, 48, 51, 53, 55].

Independently of the approach used, all methods aim to produce more reliable
rankings and benefit decision-makers. The approach presented in this chapter differs
from the ones presented above in that it neither aggregates criteria or produces a total
ranking of the alternatives. The method uses multiple criteria (features) in the way
they are delivered and only compares values of alternatives into each criteria. This
simple method allows the user to scale to several alternatives or objects to be ranked
and produces groups or layers of alternatives that are distinguishable from the
others, but that between them there is no single alternative that is better than other,
according to the criteria considered. In other words, the results of the dominance
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graph heuristic approach “ranking” provides the user with more information for
comparison as the different layers can be compared, as well as the outcomes within
the layers.

Conclusion

This chapter has contributed a simple method for hierarchically ranking a set
of objects according to multiple characteristics and with multiple objectives in
mind. Several extensions and improvements can be made to this method in future
efforts. Firstly, in this study only one dataset is used to present the methodology,
those produced by the annual Shanghai ranking, to illustrate on the use of our
methodology and its implications for research policy. However, even in the case of
ranking global universities, other datasets and information sources are available. For
instance, the Times Higher Education [60] ranks universities annually, utilizing a
different approach. Future research could investigate the combination of information
by the use of attributes that come from the different ranking organizations.

Secondly, as stated multiple times, the use of a dominance graph in order to
investigate ranking problems is transferrable to different situations. For instance,
other researchers could apply this method and test it on other datasets, potentially
including a combination of numerical and categorical (ordinal only) data, without
the need of an ad hoc weighting scheme, which is very useful under different
circumstances. Any research problem in which the objective is to rank or order
based on dominance using multiple variables could implement this method as part
of the process.

In order to highlight the flexibility of the method presented in this chapter, some
extremely different examples are explained. A different use of this method could be
for the increased interest in dealing with protected area zoning for conservation
as a multi-objective optimization problem [17]. For many years, when multiple
geographic areas are examined, the objective is to create a priority ranking of these
natural areas based on a variety of variables such as climax condition, educational
suitability, species significance, community representation, and human impact [16].
Furthermore, as Smith and Theberge [56] explain, when evaluating natural areas
using measurements for a series of criteria, it involves deciding which criteria
are important and most significant based on their measurements. The use of a
dominance graph would allow alteration and the inclusion or exclusion of certain
criteria for each natural area individually and would thus be useful to many different
instances across various natural circumstances. For instance, another circumstance
for such analysis is the prioritization of farmland preservation for multiple objectives
[37] in which the purpose is to preserve it from urbanization.

Another area of obvious application is that of sports [13, 22, 28, 49] and other
ranking games in academia, even if they can turn futile when using the wrong
assumptions [1]. We are also aware that, after the publication of this paper, a number
of other alternative techniques will soon follow that may explore the directed acyclic
graph construction hereby presented. We also envision that some researchers may
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try to exploit the transitive relations of dominance to build up different ranking
scores even for objects at the same level. Given that this method is utilized in
a global ranking of educational institutions could possibly be transferable to an
area so different such as natural area conservation zoning or sports-related ranking
activities, it becomes easy to imagine the wide use of dominance graphs in many
other ranking activities.

In conclusion, this study adds to the literature a diverse and dynamic heuristic
method for ranking multi-variable problems that is transparent and not biased by
arbitrary weightings unilaterally and perpetually selected by the ranking organi-
zation. We have outlined the utility of this method in the case of ranking global
universities using open, publicly available data and, in doing so, provided a novel
methodology to approach the ranking of universities globally. This system allows
for clearer benchmarking of universities which are at a similar standing. Overall
it helps to provide assistance to research policy and decision-makers while at the
same time enables a global standing of the universities in the world’s landscape of
diversified academic offers.
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Cutting and Packing (C&P) problems, 932
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Dynamic optimization, 500
Dynamic tabu search (DTS), 922–924
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1230–1232
Farthest string problem (FSP), 1222,
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Fast local search, 270–271, 274, 275
Feasible solutions, 40
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Functions, 25
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Generalized Max-Mean Dispersion Problem,

982
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GENET, 263
Genetic algorithm (GA), 412–413, 432, 608,

1005, 1089–1091, 1226, 1271–1275
Genetic operators, 438
Genetic programming (GP), 417, 779
Genotype-phenotype mapping, 417
Global distance test (GDT), 1019
Global optimization problem (GOP), 345,

775–779
GLS, see Guided local search (GLS)
Goods distribution centers, 893
Google, 1124
Gradient(s), 232–233, 254

algorithm, 158
Gradient descent (GD) method, 1086
Graph, 1026, 1027, 1035, 1037, 1042
Graph layout, 1026, 1043
Greedy adaptive search procedures, 156, 160
Greedy maximum residual energy, 1154
Greedy methods, 564, 565
Greedy partition crossover (GPX), 1275
Greedy randomized, 729
Greedy randomized adaptive search procedure

(GRASP), 48, 548, 551, 554, 566,
594, 709, 1231, 1232, 1266, 1269

framework, 472
hybridizations of, 476–481
procedures, 471
reactive, 471

Grid data set, 1032
Grouping representation, 1273
Guided fast local search (GFLS), 271,

274–275, 284
Guided genetic algorithm (GGA), 276
Guided local search (GLS), 263

applications, 288–291
in commercial packages, 291
extensions, 275
hybrid, 276–277
multi-objective optimization, 278–281
on TSP, 281–284
variations, 277–278
WSP, 284–288

Guided Pareto local search (GPLS), 279–281
Guided tabu search (GTS), 277
Guiding solutions, 755

H
Hamiltonian cycle (HC), 304–306
Harwell-Boeing data set, 1032
Hazard rate function, 212
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Heuristic(s), 225, 226, 236, 239, 248, 257,
1310

construction, 1261–1264
on continuous formulations, 1276–1278
generation, 491
hyper-heuristics (see Hyper-heuristics)
information, 372
and metaheuristic algorithms, 1226
meta-heuristics (see Meta-heuristic(s))
methods, 262, 1144–1156
ranking (see Ranking Heuristic-feasibility

operator)
selection, 491, 492, 495, 510–515

See also Meta-heuristic(s)
Hill-climbing, 262
History of meta-heuristics

early period, 797–798
framework-centric period, 801–803
metaphor-centric period, 803–804
method-centric period, 798–801
periods, 794
pre-theoretical period, 795–796
scientific period, 804–805

Homologs, 1007
Hybrid algorithms, 1269
Hybrid berth allocation problem, 1055
Hybrid data mining, 41
Hybrid DM-GRASP, 49–56
Hybrid DM-GRASPCVND heuristic, 58–64
Hybrid DM-ILS, 63–70
Hybrid GAs, 434
Hybridised metaheuristics, 609
Hybrid metaheuristic, 801
Hybrid particle swarm optimization (HybPSO),

1177–1178
Hybrid phase; 46
Hyper-heuristics, 14–17, 491

automated parameter control and tuning,
502–503

automatic design of algorithms, 497–498
characteristic of, 491
definition, 491
developments, 508–509
dynamic and uncertain environments,

500–501
educational timetabling applications, 507
games and education, 508
iterated local search (see Iterated local

search based hyper-heuristics
(HHILS))

machine learning methodologies, 501–502
methodology of, 494–497
multi-objective optimization, 499–500
off-line learning, 491

on-line learning, 491
scheduling problems, 503–507
theoretical results in, 498–499

Hypervolume, 185

I
Image alignment, 1080
Image registration, 1080

early evolutionary method, 1088
optimization procedure, 1085
problem statement, 1082
similarity metric, 1083–1085
suitability of MHs in, 1086–1087
transformation model, 1082–1083

Immigrants, 704
Impasse neighborhood, 1267, 1275
Improvement methods, 265–266, 282–283
Incremental, 225, 226, 232, 239, 249, 252–254,

257
Independence number, 1260
Independent multi search, 818–819
Independent set, 1260, 1266, 1268–1273,

1277, 1278
Indicator-Based Evolutionary Algorithm

(IBEA), 185
Individual improvement heuristic, 611
Inertia particle swarm optimization (IPSO),

1168
Inertia weight, 644
Information and communications technologies

(ICT), 895–899
Initiating solution, 755
Integer linear program (ILP), 1224, 1229

CPLEX, 1235
CSP, 1225
FFMSP, 1230–1232
Lagrangian relaxation of, 1228
linear programming relaxation of, 1226

Integrated clustering and routing problem
(ICRP), 1155

Integrative cooperative search, 833–836
Intensification, 243, 244, 257

phase, 911
Intensity-based approach, 1081
Internal vehicle scheduling problem (IVSP),

1065–1070
Invariants, 224, 250–254, 256
Inventory routing problem (IRP), 1173
Inverse folding problem (IFP), 1003, 1007
I-TASSER, 1006, 1016
Iterated greedy (IG), 549, 570–571

acceptance criterion, 554
algorithmic outline of, 551, 555
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Iterated greedy (IG) (Cont.)
construction, 553–554
destruction, 552–553
flow shop scheduling, 558–563
greedy construction heuristics, 550–551
historical development, 563–565
local search, 554–555, 567–568
PFSP, 557–558
principle of, 551
repeated (greedy) construction algorithms,

566–567
for routing problems, 570
for scheduling problems, 569–570
SCP, 556–557
tree search algorithms, 568–569
TSP, 555–556

Iterated local search (ILS), 48, 554, 555,
580–586, 1270

algorithms, 587–590
framework, 583–586
historical development of, 591–592
local search heuristics, 581–583
for other problems, 598–599
relationship of, 592–595
for routing problems, 596
for scheduling problems, 597–598
Iterated local search based hyper-heuristics

(HHILS)
action selection models, 515–518
adaptive heuristic selection, 510–515
HHILS-AP, 519, 521, 522, 524, 529, 530,

532
HHILS-MAB, 519–522, 524, 527, 529, 530
HHILS-PM, 519, 521, 522, 524, 527, 529,

530
HHILS-SA, 519–522, 524, 529, 532
HyFlex, 509–510, 532–533
performance distribution of, 527

Iterations-to-target-solution plot, 708
Iterative closest point (ICP), 1081, 1085–1086
Iterative construction heuristic, 565
Iterative flattening, 565

K
Karush-Kuhn-Tucker conditions, 345
Kempe chains, 1267
Knapsack problem, 904
Knowledge collegial, 814, 830
Knowledge synchronization, 814, 818, 823,

824

L
Labeling, 1027
Lagrangian heuristics, 1312

Lagrangian relaxation, 1310
Landside, 1053
Large neighborhood search method, 565
Large-stop Markov chains (LSMC) algorithm,

591
lbest model, 652
Left vertices, 1035
Legal neighbors, 236
Linear arrangement, 1027, 1031–1035
Linear complementary problem (LCP), 1277
Linear genetic programming (LGP), 24
Linear layout problems

BMP, 1040–1043
CMP, 1029–1032
MinLA, 1032–1035
SumCut, 1038–1040
VSP, 1035–1038

Linear ordering, 1027, 1033
Linear ordering problem (LOP), 165, 747
Linear program (LP), 1156
Linear programming relaxation, 1226, 1230
Linear representation, 25
Linear topology, 1108
Load, 1027, 1032
Local branching, 699

constraint, 774
Localization problem, 1145
Local optima, number of, 157
Local pheromone update, 385
Local search (LS), 262, 548, 550, 552, 558,

559, 561, 565, 567–568, 570, 572,
1311

algorithms, 386
heuristics, 581–583
hybridization, 554–555
parallelization, 815
procedure, 585–586
results, 561–563
strategies, 732
technique, 609

Local search based methods, 352–355,
1265–1266

BLS, 1271
CLS, 1271
DLS, 1270, 1271
GRASP, 1269
iterated local search, 1270
PLS, 1271
simulated annealing method, 1266, 1268
tabu search, 1268–1269
VNS, 1270
VSS, 1270

Location and network design, 1245
Location routing problem (LRP), 691, 1172
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Location routing problem with stochastic
demands (LRPSD), 1172

Logistics
city logistics systems (see City logistics

systems)
definition, 888

Logistics management (LM), 1244
Lot sizing problem, 1292–1293

computational experiments, 1301–1304
determinism on demands, 1293
dynamic demands, 1293
inventory and backlogging, 1295
items, 1294
levels, 1294
machines, 1294
multi-plant, multi-item lot sizing problem,

1296–1299
network flow-based formulation,

1299–1301
non-deterministic/stochastic demands,

1293
NP-complete, 1295
planning horizon, 1293
setup structure, 1294–1295
stationary demands, 1293

Lot transfers, 1294, 1298
Lovász theta, 1278

M
Machine learning methodologies, 501–502
Manufacturing and resource strategies, 1246
Manufacturing flow management process,

1249
Maritime container terminals, 1052, 1053

areas of, 1052–1053
goal of, 1052
landslide, 1053
optimization problems, 1054–1055
seaside, 1052
suitable performance of, 1053
yard, 1053, 1071

Master-slave, 814, 817, 823
Mathematical programming (MP), 122, 760,

769, 772
Matheuristics, 122, 397, 1310
Max-cut problem (MCP), 346, 347
Maximally diverse grouping problem (MDGP),

984
Maximum clique

approximate solutions, 1279
construction heuristics, 1261–1264
local search, 1264–1265
size of, 1260

and vertex coloring construction heuristics,
1261 See also Meta-heuristic(s)

Maximum cut problem, 207
Maximum diversity problem (MDP), 980
Maximum flow problem (MFP), 1126–1127
Maximum MinSum Dispersion Problem, 983
Maximum satisfiability (Max-SAT), 509, 519,

532
problem, 291

Max Mean Dispersion Problem, 982
Max-Mean model, 993
Max-min ant system (MMAS), 373
Max-Min Diversity Problem (MMDP), 980,

982
Max-Min model, 990–991
Max-MinSum model, 993–995
Max-residual-capacity, 1152
Max-Sum Diversity Model, 980
Max-Sum model, 991–993
MDM-MSH, 47, 53, 73

pseudo-code, 47
Medical imaging, 1080
Medium-term decision, 1292
Memetic algorithms (MA), 418, 608–624

applications, 620–621
classical, 611–614
complicated, 614–615
future-generation, 622–623
for network alignment, 616–617
structure, 610–615
for WCSPs, 617–619

Memory-based heuristics, 70–83
Memory-less heuristics, 41, 48–70
Meta-heuristic(s), 40, 122, 225, 236, 239, 257,

501, 505, 535, 558, 564, 567, 580,
582, 583, 592, 599, 760, 762, 775,
784, 1081, 1151, 1265, 1267, 1269,
1270, 1274–1276, 1278, 1281, 1310

algorithm, 263
approach, 613, 622, 623
local search based methods (see Local

search based methods)
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Method-centric period, 798–801
Min-conflict, 239, 240
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Minimum cost flow problem (MCFP), 1127
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Minimum fuel cost problem (MFCP), 1106
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Minimum Linear Arrangement (MinLA)
Problem, 1032–1035

Mixed algorithm portfolio, 217
Mixed-integer nonlinear programming

(MINLP), 1105, 1107, 1114–1117
Mixed-integer programs, 760
Mixed variable neighborhood descent,

362–365
Model, 225, 227, 229–235, 240, 245, 246, 248
Monte Carlo method, 156
Motzkin-Straus formulation, 1276, 1277
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Multi-modal registration, 1085
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hyper-heuristics, 499
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Multi search, 812
Multi-start (MS)-based heuristics, 1153
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Multi-start relaxation-based algorithm, 1228
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vector, 416
Mutation, 608

operator, 440–442

N
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ant colony optimization, 1114–1117
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tabu search, 1111–1114
time-dependent systems, SA for, 1118
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Nearest-to-base-station, 1152
Neighborhood, 225, 228, 235, 238, 241–244,

249, 643
functions, exact, 306
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Neighbor selection, 236
Nested (composite) variable neighborhood

descent procedure, 359–362
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Nonlinear programming (NLP), 1105, 1107,
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O
Objective functions, 226, 229, 233, 235,
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On-line learning hyper-heuristics, 491
Open shortest path first (OSPF), 1129
Open vehicle routing problem (OVRP), 1171
Optimal coloring, 1260
Optimization, 490, 498, 500, 503, 505, 509,

516, 536, 760, 761, 770, 771, 783
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black-box, 496
combinatorial, 495, 497, 509, 536
dynamic, 500
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Order fulfillment process, 1249
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two-dimensional, 498
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Parallel speedup, 213
Parameter �, 267
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IPSO, 1168
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2MPSO, 1180
NPSO, 1181
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VRP (see Vehicle routing problem (VRP))
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Penalty function method, 1266
Performance evaluation, 812
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cost of, 282
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532
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mechanism, 1227
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Pipeline optimization, 1114
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415
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Population based methods
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evolutionary and genetic algorithms,
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Pre-theoretical period, 795–796
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Probability matching (PM), 515, 516, 519,

521, 522, 524, 527, 529, 530
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Production routing problem (PRP), 1173
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method, 1363–1364
university ranking results, 1343–1347

Ranking Heuristic-feasibility operator, 1273
Re-routing algorithm (RRA), 916, 918
Reactive GRASP, 473–474

Reactive local search (RLS), 1269
Recency-based attributive memory, 744
Recombination, 608
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Routing/scheduling problems, 269, 288–289
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Scheduling, 1198
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due date, 1202
EDD, 1208
FCFS, 1207
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job shop, 1203
makespan, 1205
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processing route, 1201
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Search-space decomposition, 812, 817, 838
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Ship routing problem (SRP), 1173
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Similarity metric, 1081
Simulated annealing (SA), 263, 548, 550,
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Single algorithm portfolio, 212
Single machine total weighted tardiness
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Single-objective optimization, 502
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S metric selection (SMS-EMOA), 185
Social-only particle swarm optimization, 1169
Solution construction, 379–381
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Sourcing and inventory strategy, 1246
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Speedup ratio, 217
Stability number, 1260
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Stacking problem, 1072
Static berth allocation problem, 1055
Statistical estimation methods, 163
Steady-state MINLP models, 1108
Steady-state replacement, 1273
Stochastic local search (SLS), 548, 550, 564,

565, 568, 570, 572, 586, 592
algorithms, 40

hybrid, 593–594
population-based, 595
simple, 593

Stochastic search algorithms, 850, 851
Stopping criterion, 268, 912
Storage location assignment problem, 508
Strategic oscillation, 161, 750–755
Strategy parameters, 414
Strength Pareto Evolutionary Algorithm 2

(SPEA2), 182–183
Stretching technique, 656
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1222
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drug targets, 1223
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FFMSP, 1230–1232
FSP, 1229–1230
motif search, 1223–1224
primer design, 1223
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Subgradient methods, 1312
Sub-neighbourhoods, 270
SubneighbourhoodsForMove, 273
SumCut problem, 1038–1040
Super-linear speedup, 212
Supplier relationship management, 1249
Supply chain management (SCM), 1164, 1248

big and open data, 1253
customer relationships management, 1248
customer service management, 1249
definition, 1243–1244
demand management process, 1249
location and network design, 1245
manufacturing and resource strategies,

1246
manufacturing flow management process,

1249
metaheuristics algorithms, 1250–1252
order fulfillment process, 1249
product development and

commercialization, 1249–1250
returns management, 1250
sourcing and inventory strategy, 1246
supplier relationship management, 1249
sustainability and green strategies, 1247
transportation and distribution strategies,

1247
uncertainty, 1253

Survival of the fittest, 1226
Sustainability and green strategies, 1247
Swap move, 348
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Symbolic regression analysis, 1342–1343,

1350–1354
Australian National University, 1358–1359
University of Amsterdam, 1356–1358
University of Copenhagen, 1355, 1356

Synchronous cooperation, 822–823
Syntax trees (ST), 24
Synthesized search, 243–244, 247, 257, 258

T
Tabu, 236, 243, 244, 246, 247, 249, 257

list, 911, 1268
tenures, 911, 1268

Tabu search (TS), 48, 156, 207, 263, 609,
909, 912, 913, 1105, 1111–1114,
1268–1269, 1273–1276

long term memory, 748–750
oscillating assignment, 742
path relinking, 755–757
scatter search, 742
short term memory, 742–748
strategic oscillation, 750–755
strongly determined and consistent

variables, 742
TABUCOL, 1269
Tail inequalities, 860–862
Target vector, 416
Team orienteering problem (TOP), 1172
Terminals, 25
Theoretical foundations hyper-heuristics,

498–499
Threshold accepting algorithm, 162
Time-dependency, 898
Timetabling, 490, 493, 495, 498, 507
Time-to-target-solution-value, 1232
TM-score, 1018, 1019
Tournament, 438
Transformation model, 1082–1083
Transient models, 1109
Transition count, 748
Transitive reduction, 1340–1341
Transportation and distribution strategies, 1247
Transportation networks, 1104, 1108, 1118
Transshipment flows, 1054
Transshipment of freights, 1052
Traveling salesman problem (TSP), 288–289,

373, 374, 519, 520, 525, 532,
555–556, 581, 587–588, 689

metric, 304–306
Tree(s), 1308

representation, 24–25
topology, 1108

Trial vector, 416

U
Uncertainty, 1253
Uniform restart strategy, 208
Upper confidence bound (UCB) algorithm, 517

V
Variable depth search, 1270
Variable neighborhood decomposition search,

699
Variable neighborhood descent (VND), 344,

356–365, 1324
Variable neighborhood search (VNS), 265,

344, 355, 477, 594, 760, 762, 784,
1270, 1324

Variable objective search, 1277
Variable space search (VSS), 1270
Vehicle routing and scheduling problem

(VRSP), 1173
Vehicle routing problem (VRP), 288, 289, 519,

520, 526, 527, 532, 596, 898, 909,
1065, 1174–1184

CVRP, 1171
DVRP, 1172
HVRP, 1173
MDVRP, 1172
OVRP, 1171
PVRP, 1172
VRPFD, 1172
VRPSD, 1171
VRPSPD, 1171
VRPSTT, 1172
VRPTW, 1171
VRPUD, 1173
VRSP, 1173

Vehicle routing problem with fuzzy demands
(VRPFD), 1172

Vehicle routing problem with simultaneously
pickup and delivery (VRPSPD),
1171

Vehicle routing problem with stochastic
demands (VRPSD), 1171

Vehicle routing problem with stochastic travel
times (VRPSTT), 1172

Vehicle routing problem with time windows
(VRPTW), 898, 1171

Vehicle routing problem with uncertain
demands (VRPUD), 1173
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Vehicle scheduling problem (VSP) heuristic
framework for, 1069

Velocity, 643
Vertex coloring, 1259–1264

approximate solutions, 1280
construction heuristics, 1261–1264
local search, 1264–1265
proper, 1260
See also Meta-heuristic(s)

Vertex Separation Problem (VSP),
1035–1038

Violations, 230–233, 241, 243, 245, 247, 254
Virtual network embedded problem (VNEP),

1124, 1134–1135
description, 1135–1136
heuristic approaches, 1136–1138

VND, see Variable neighborhood descent
(VND)

VNS, see Variable neighborhood search (VNS)
VSS, see Variable space search (VSS)

W
Webgraphs, 1124
Weighted constraint satisfaction problems

(WCSPs), 617–619
Weight setting problem (WSP), 1124, 1129

heuristic approaches, 1131–1134
on telecommunication networks,

1130–1131
Wilcoxon test, 1013
Wireless sensor networks (WSN), 1142
Workforce scheduling problem (WSP),

284–288, 290–291
Worst out, 1261

X
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Y
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