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Abstract. In this paper a robust regions-of-suspicion (ROS) diagnosis system 
on mammograms, recognizing all types of abnormalities is presented and eva-
luated. A new type of descriptors, based on Shapelet decomposition, derive the 
source images that generate the observed ROS in mammograms. The Shapelet 
decomposition coefficients can be used efficiently to detect ROS areas using 
Support-Vector-Machines (SVMs) with radial basis function kernels. Extensive 
experiments using the Mammographic Image Analysis Society (MIAS) data-
base have shown high recognition accuracy above 86% for all kinds of breast 
abnormalities that exceeds the performance of similar decomposition methods 
based on Zernike moments presented in the literature by more than 8%. 
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1 Introduction 

Breast cancer has been a major cause of fatality among all cancers for women [1]. 
However, mortality rates have been decreasing during the last years due to better 
diagnostic facilities and effective treatments [2]. Screening mammography using X-
ray imaging of the breast is the most effective, low-cost, and highly sensitive tech-
nique for detecting early, clinically unsuspected breast cancer [3]. The radiographs are 
searched for signs of abnormality by expert radiologists but complex structures in 
appearance and signs of early disease are often small or subtle. That’s the main cause 
of many missed diagnoses that can be mainly attributed to human factors [3,4]. Stu-
dies have shown an error rate between 10% - 30% for detection of cancer in screening 
studies [5], [6]. Of these, a percentage of 52% can be attributed to breast cancer signs 
misinterpretation while another 43% is mainly due to sheer overlook of signs in ab-
normal scans [6] by expert radiologists. The consequences of errors in detection  
or classification are costly, so there has been a considerable interest in developing 
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2 The Proposed Method 

The proposed system consists of a feature extraction module that decomposes each 
examined ROS into a linear composition of a set of localized basis functions with 
different shapes. The feature vectors which are composed by the calculated shapelet 
coefficients are used in the neural classifier module which is comprised by a scheme 
of support vectors machine (SVM) [22]. 

2.1 Feature Extraction 

Shapelet Based Feature Extraction 

Shapelets in the Cartesian Domain 
  
The Shapelet image decomposition method was introduced in [19], providing an effi-
cient method for the estimation of discrimination data for accurate detection of ROS 
areas, based on several expressions of the spatial pixels distribution of an object as a 
linear sum of orthogonal 2D functions, 
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where ௡݂భ,௡మ  are the Shapelet coefficients to be determined, whereas the Shapelet 
basis functions Φ௡భ,௡మሺݔ, ;ݕ  ሻ areߚ
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where H௡ሺ. ሻ is a Hermite polynomial of order ݊, and ߚ is the scaling factor of each 
Shapelet. The Hermite polynomials form an orthonormal basis set, ensuring that the 
features which are extracted from any image can be determined by: 

 ( ) ( )
1 2 1 2, ,, , ;φ β= ⋅ ⋅ ⋅n n n nf f x y x y dx dy  (3) 

Shapelets in the Polar Domain 
 

Polar shapelets have been introduced in [19]. They include all the major properties of 
the Cartesian Shapelets with a scaling ߚ in spite of the polar shapelets are separable 
in ݎ and ߠ. For this reason, the polar shapelets coefficients are easier to comprehend 
in terms of rotational symmetries, are simpler and more intuitive. A function ݂ሺݎ,  ሻߠ
in polar coordinates is decomposed as a weighted sum: 
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Fig. 2. The feature extraction process using the real parts of the polar shapelets basis functions  
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where ݔ௡,௠ሺݎ, ;ߠ |ሻ are the polar basis functions related to Laguerre polynomials L೙ష|೘|మ|௠ߚ  
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with ݊ and ݉ both even or odd, respectively. 
The polar shapelets coefficients of order ݊ and ݉ are calculated using the overlap 

integral 
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In Fig. 2 we present the feature extraction process with the 36 estimated shapelets in 
the polar domain. 

Zernike Moments Based Feature Extraction 
 
In optical systems, which are constructed using lenses, optical fibers or other optical 
components are often circular, therefore when the structure of the measured deforma-
tions and aberrations is required to be characterized efficiently the Zernike functions 
forming a complete, orthogonal basis set over the unit circle. The Zernike moments 
firstly introduced in digital image analysis problems in 1980 [23, 24] and evaluated 
for many types of images [25-27]. In digital mammography, Zernike moments have 
been already been proposed and used in Computer Aided Diagnosis Systems (CAD) 
for the diagnosis of breast masses as descriptors (features) of shape and marginal 
characteristics [21]. 

The Zernike moments defined as a family of orthogonal functions over the unit 
disk, ensuring that there is minimum correlation among the moments and consequent-
ly, minimum redundancy of information, invariant both to rotation and displacement. 
In polar coordinates the Zernike function ܼ௡௠ሺݎ,  :ሻ is defined byߠ

 ( ) ( ), θθ± = ⋅m m jm
n nZ r R r e  (7) 

where ܴ௡௠ሺݎሻ are the Zernike polynomials. The index ݊ is the degree of the poly-
nomial, while ݉ is the polynomial order. The Zernike polynomials are defined as a 
finite sum of powers of ݎଶ: 
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where ݊ ൌ 0,1,2, … ,∞ and ݉ ൌ െ݊,െ݊ ൅ 2,െ݊ ൅ 4,… ,൅݊, with ݊ െ |݉| ൌ  ݊݁ݒ݁
and |݉| ൑ ݊. 

2.2 The SVM Classifier 

The main idea behind SVMs, when dealing with a real life pattern classification prob-
lem, is to find an optimal hyperplane in a vector space called, feature space, where the 
original data are embedded via a nonlinear mapping. By the term optimal, it is sug-
gested that for a separable classification task (linear separable in feature space), the 
hyperplane (w, b) with the maximum margin from the closest data points belonging to 
the different classes is selected among the infinite choices of hyperplanes. 

Using mathematical notation, having a data set ܦ ൌ ሼሺ࢞௜, ௜ሻሽ௜ୀଵ௡ݕ  of labeled exam-
ples ݕ௜ א ሼെ1,1ሽ and a nonlinear mapping from the input space into a high dimen-
sional feature space ࣐ሺ. ሻ where the data samples are linearly separable we are seek-

ing for the vector ܟ଴ that minimizes 
ଵଶ ԡܟԡଶ subject to the constraints  
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 ( )( ) 1ϕ + ≥T
i iy bw x   1,...,=i n . (9) 

However, the mapping into a higher feature space through a nonlinear function 
does not guaranty perfect separation of the classes for many real-life problems. There-
fore we have to introduce slack-variables ߦ௜ that measure the deviation of a data point 
from the ideal condition of pattern separability and relax the hard margin constraints 
as follows: 

 ( )( ) 1ϕ ξ+ ≥ −T
i i iy bw x , 0ξ ≥i , 1,...,=i n . (10) 

From the above formulation it is obvious that data with 1 ൒ ௜ߦ ൒ 0 are correctly 
classified while data with ߦ௜ ൐ 1 are classified incorrectly. With the introduction of 
the slack variables the goal is to maximize the margin and at the same time to keep 
the number of data samples with ߦ ൐ 0 as small as possible (for ߦ௜ ൌ 0 for all ݅ we 
have the linear separable case and all the data have at least maximum margin from the 
separating hyperplane). Therefore the quantity that has to be minimized is 
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The above problem is a combinatorial problem, which is difficult to solve and as a 
result an alternative approach is required. A mathematical tractable implementation of 
the previous two demands is given by minimizing  
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which corresponds to the so called L1 soft margin SVMs. The parameter ܥ is a posi-
tive constant that controls the relative influence of the two competing terms. The solu-
tion to this optimization problem subject to the constraints is given by the saddle point 
of the primal Lagrangian equation: 
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This leads to the dual maximization problem of the dual Langrangian equation: 

 ( ) ( ) ( )( )
1 , 1

1

2
α α α

= =
= − 

n n
T

d i i j i j i i
i i j

L y yα φ x φ x  (14) 

subject to the constraints 
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The solution of the above optimization problem leads to the optimal discriminating 
function: 
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The points for which ܽ௜ ൐ 0 are called Support Vectors and they are usually a 
small portion of the original data set. Especially those support vectors that have ܽ௜ ൌ  are those that lie within the margin or in the wrong side of the separating ܥ
hyperplane have the strongest influence on the solution ܟ଴. The choice of ܥ which is 
done a-priori by the user heavily affects the width of the margin. 

In this formulation, if the nonlinear mapping function is chosen properly, the inner 
product in the feature space can be written in the following form  

 ( ) ( ) ( , )φ φ⋅ =T
i j i jx x K x x  (17) 

where ܭ is called the inner-product kernel. A kernel function is a function in input 
space and, therefore, we do not explicitly perform the nonlinear mapping ߮ሺ. ሻ. In-
stead of calculating the inner product in a feature space ்߮ሺݔ௜ሻ · ߮൫ݔ௝൯, one can indi-
rectly calculate it using the kernel function ܭ൫ݔ௜, -௝൯. Different kernels produce difݔ
ferent learning machines and different discriminating hypersurfaces. 

Among others the most popular are the polynomial learning machines, the radial 
basis function networks and the two-layer perceptrons. In our experimental procedure 
we have employed radial basis function machines (the width ߪଶ, which is common to 
all kernels is specified also a priori by the user) 
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for recognizing healthy and abnormal mammographic tissue testing all kinds of ab-
normalities. 

3 Experimental Results  

3.1 The MIAS Data Set 

In our experiments the MIAS MiniMammographic Database [28], provided by the 
Mammographic Image Analysis Society (MIAS), was used. The mammograms are 
digitized at 200-micron pixel edge, resulting to a 1024 ൈ 1024 pixel resolution. In 
the MIAS Database there is a total of 119 ROS containing all kinds of existing  
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abnormal tissue from masses to clustered microcalcifications. The smallest abnor-
mality extends to 3 pixels in radius, while the largest one to 197 pixels. These 119 
ROS along with another 119 randomly selected sub-images from entirely normal 
mammograms were used throughout our experiments. A database of 238 ROSs of 35 ൈ 35 pixels size is used. The image database has been designed to include all 
types of different ROS areas abnormalities, i.e. circumscribed, spiculated, ill defined 
masses, microcalcifications, asymmetry and architectural distortion as well as regions 
with normal (healthy) tissue. 

3.2 Training and Evaluation of the SVM Classifier 

From a total number of 238 ROS included in the MIAS database, 119 regions are 
used for the training procedure: 60 groundtruthed abnormal regions along with 59 
randomly selected normal ones. In the evaluation procedure, the remaining 119 re-
gions are used that contain 59 groundtruthed abnormal regions together with 60 en-
tirely normal regions. Therefore, no ROS was used both in the training and testing 
procedure. The above procedure was repeated 10-times using randomly chosen ROSs 
in the training and testing sets in order to get the unbiased classification performance 
of the SVM. 

Each ROS image is converted in polar coordinates and the inner product among 
images and each mask of the polar Shapelets basis functions is obtained. In this re-
search, basis functions of order ݊ ൌ 7  and െ݊ ൑ ݉ ൑ ݊  have been chosen. The 
feature vector is composed by the real parts of the polar Shapelets resulting to 36 
coefficients (SH-Features), defining the image information used for detection of ROS 
areas. Therefore, each ROS image is described by a feature vector with 36-
dimensionality. In the classification experiments, the features derived by the polar 
Shapelets are used to train the SVM scheme. In order to find the SVM configuration 
for maximum recognition accuracy the values of ሺߪଶ,  ሻ for the RBF machine, aܥ
grid-search approach was used in a systematic manner with different values for the 
parameters followed by a cross validation. 

For comparison reasons we have also estimated the Zernike moments of an image ܫሺݎ,  ሻ in polar coordinates, by projecting the image onto the orthogonal basis of theߠ
Zernike functions, thus resulting to the following complex numbers: 
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The factor 
௡ାଵగ  is used to normalize the moment’s expression. In this research, 

Zernike functions of degree ݊ ൌ 6 and order ݉ ൌ െ݊,െ݊ ൅ 2,െ݊ ൅ ڮ,4 ,൅݊ have 
been chosen. The feature vector is composed by the real parts of the Zernike moments ܽ௡േ௠ resulting to 28 coefficients. 

In Fig. 3 we present the recognition accuracy when different values of the shapelet 
scaling factor ߚ where used. It is clear that the best results were achieved when using 
a scaling factor equal to 0.2 that results to the best overall true positive identification 
rate of over 86% for RBF machines.   
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Fig. 3. The performance of the Shapelet features using different values of scaling factor  

 

Fig. 4. The ROC curve of the proposed method 
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the classification result will be. Additionally, a quantitative comparison of the pro-
posed feature extraction method’s accuracy is shown in Fig. 4 where the ROC curve 
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is compared with the corresponding ROC calculated using Zernike moments (ZE-
features) based features described in the previous section. As it is shown, the pro-
posed features outperform Zernike based features resulting in 86% classification ac-
curacy compared to 78.5% obtained by ZE-Features for RBF support machines. 

4 Conclusions 

In this paper we investigated the performance of a classifier based on Support Vector 
Machines and a novel set of features based on Shapelet image decomposition, in the 
problem of recognizing breast cancer in ROS of digital mammograms. It is well 
known that the disease diagnosis on mammograms is a very difficult task even for 
experienced radiologists due to the great variability of the mass appearance. The ex-
perimental results showed superior performance and accuracy of the proposed feature 
set compared to similar features that have already been proposed when used to recog-
nize all different types of breast abnormalities. However further studies will address 
the problem of automatic selection of the shapelet scaling ߚ and order in more com-
plex tasks such as the discrimination between different types of abnormalities. 
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