
Accuracy Improvement of Robot-Based
Milling Using an Enhanced Manipulator
Model

Alexandr Klimchik, Yier Wu, Stéphane Caro, Benoît Furet
and Anatol Pashkevich

Abstract The paper is devoted to the accuracy improvement of robot-based
milling by using an enhanced manipulator model that takes into account both
geometric and elastostatic factors. Particular attention is paid to the model
parameters identification accuracy. In contrast to other works, the proposed
approach takes into account impact of the gravity compensator and link weights on
the manipulator elastostatic properties. In order to improve the identification
accuracy, the industry oriented performance measure is used to define optimal
measurement configurations and an enhanced partial pose measurement method is
applied for the identification of the model parameters. The advantages of the
developed approach are confirmed by experimental results that deal with the
elastostatic calibration of a heavy industrial robot used for milling. The achieved
accuracy improvement factor is about 2.4.
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1 Introduction

At present, the conventional CNC machines are progressively replaced in industry
by robotic manipulators to perform main manufacturing tasks. For those appli-
cations, industrial robots are considered to be very competitive due to their
manufacturing flexibility, large workspace and cost-effectiveness. At the same
time, the robotic-based machining introduces some difficulties. For instance, link
and joint compliances become non-negligible when robot is under substantial
external loading. So, in order to achieve high processing accuracy, essential
revision of relevant mathematical models and control strategies are required.

The stiffness modeling of robotic manipulators has been in the focus of the
research community for more than 30 years [1]. There exist different approaches
that are able to take into account particularities of serial and parallel manipulators
[2, 3]. Among a number of existing stiffness modeling approaches, the Virtual
Joint Modeling (VJM) method looks the most attractive in robotics. Its main idea
is to take into account the elastostatic properties of flexible components by pre-
senting them as equivalent localized virtual springs [4]. However the stiffness
modeling of the manipulators with gravity compensators has not found enough
attention yet. Another difficulty related to the stiffness modeling of robotic
manipulators is the identification of their model parameters. This issue is quite new
in robotics, the existing approaches are usually suitable for strictly serial manip-
ulators only [5]. Therefore, this paper aims to obtain a sophisticated elasto-static
model for heavy industrial robots with a gravity compensator and to identify their
parameters.

2 Problem of the Compliance Errors Compensation

In common engineering practice, robot behavior under an external loading can be
described by the following force-deflection relation [6]

Dt ¼ Jh � Kh �Hhhð Þ�1 �JT
h

� �
� F ð1Þ

where Jh and Hhh are the Jacobian and Hessian matrices respectively, the matrix
Kh describes the elastic properties of the manipulator components. This model
allows us to compute the end-effector deflection Dt due to the external loading
F. Since the manipulator deflection caused by the loading is known, it can be used
to improve the positioning accuracy by means of error compensation technique
(Fig. 1). However in practice, only geometrical parameters are provided by the
robot manufacturer, while elastostatic parameters should be identified using ded-
icated calibration techniques. Usually the force-deflection relation (1) is rear-
ranged in the linear model suitable for the identification procedure, which is a
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linear mapping between the parameters to be identified and the end-effector
displacement

Dti ¼ Ai k; A ¼ J1iJ
T
1iFi; . . .; JniJ

T
niFi

� �
ði ¼ 1;mÞ ð2Þ

where the vector k collects elastostatic parameters of the matrix kh ¼ K�1
h .

It should be mentioned that such a model can be efficiently applied for strictly
serial manipulators (without closed-loops) while for heavy manipulators with a
gravity compensator this procedure should be revised in order to take into account
particularities of the stiffness model. Another difficulty is related to the gravity
compensator modeling, whose parameters are usually not given.

Hence, the goal of this work is to obtain a sophisticated elastostatic model that
can be used for compliance errors compensation. Accordingly, two problems
should be considered: (i) developing the model for the compensator and meth-
odology for the identification of its parameters; (ii) integration of the compensator
into conventional elastostatic model and identification of its parameters.

3 Parameters of the Enhanced Manipulator Model
and Their Identification

Considered industrial robot KUKA KR-270 incorporates gravity compensator that
is used to balance link-weights but also affects manipulator elastostatic properties.
The mechanical structure of the gravity compensator under study is presented in
Fig. 2. The compensator incorporates a passive spring attached to the first and

Fig. 1 Off-line compliance errors compensation strategy
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second links, which creates a closed loop that generates the torque applied to the
second joint of the manipulator. The compensator geometrical model includes
three node points P0, P1, P2, which yield three principal geometrical parameters
L ¼ P1;P2j j; a ¼ P0;P2j j; s ¼ P0;P1j j. Let us also introduce some auxiliary
parameters (such as ax and ay), whose geometrical meanings are described in
Fig. 2. The fact that the gravity compensator affects on the second joint only
allows us to replace the constant parameter Kh2 in the model (1) by the non-linear
one that also takes into account elasto-static properties of the compensator.

The variable s describing the compensator spring deflection can be computed as
a function of the second joint coordinate q2 as follows:

s2 ¼ a2 þ L2 þ 2 a L cosða� q2Þ ð3Þ

Therefore, the equivalent stiffness of the second joint (comprising both the
manipulator and compensator stiffnesses) can be expressed as

Kh2 ¼ K0
h2
þ Kc a L

s0

s

a L

s2
sin2ða� q2Þ þ cosða� q2Þ

� �
� cosða� q2Þ

� �
ð4Þ

where Kc is the gravity compensator stiffness, the value s0 corresponds to the
distance P0;P1j j for the unloaded spring. This allows us to extend the classical
stiffness model (1) of the serial manipulator by modifying the virtual spring
parameters in accordance with the compensator properties. In this case, the
Cartesian stiffness matrix Kc can be computed using the following expression:

KC ¼ Jh � ðKhðqÞ �HhhÞ�1 � JT
h

� ��1
ð5Þ

which includes both the first and second order derivatives (Jacobians and
Hessians) of the functions g(q, h) describing the manipulator geometry [4]. Here,
the vectors q and h collect actuator coordinates and the corresponding deflections.

The equivalent stiffness of the second joint (4) depends on several geometrical
parameters (L, ax, ay) that are unknown and should be identified using reference

Fig. 2 Gravity compensator and its model
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points shown in Fig. 2b. By considering particularities of the experimental setup
for the geometric parameters identification, where for each measurement of the
point P1 joint coordinate q2 is given, the value of L can be computed as

L ¼
Xm

i¼1

p
_T

i R u
_

i

,Xm

i¼1

u
_T

i u
_

i ð6Þ

where p
_

i ¼ pi � m�1
Pm

i¼1 pi; u
_

i ¼ ui � m�1
Pm

i¼1 ui; ui ¼ ½cos qi; sin qi; 0�T ;
pi is the Cartesian coordinate vector of point P1 for the ith measurement and m is
the number of measurements and the orthogonal matrix R = VUT can be obtained

using the following SVD-factorization
Pm

i¼1 u
_

ip
_

i ¼ U R VT . The remaining geo-
metrical parameters (ax and ay) are x and y coordinates of the vector

p0 ¼
1
2

I�nnT
� 	 Xk

j¼1

Xm

i¼1

p
_ j

i p
_jT

i

 !�1Xk

j¼1

Xm

i¼1

s
_ j

i p
_ j

i þ k�1m�1 nnT
Xk

j¼1

Xm

i¼1

p
_ j

i ð7Þ

where p
_ j

i ¼ p j
i � m�1

Pm
l¼1 p j

l ; s
_ j

i ¼ pjT
i p j

i � m�1
Pm

l¼1 pjT
i p j

i ; p j
i is the Cartesian

coordinate vector of point P0j for the ith measurement, k is the number of reference
points and m is the number of measurements. Here, the vector n is the last column

of the matrix V of the following SVD-factorization
Pk

j¼1

Pm
i¼1 p

_ j

i p
_jT

i ¼ U R VT .
Since all geometrical parameters are known, the elastostatic ones can be

identified. To take into account the compensator influence while retaining the
approach developed for serial robots without compensators, manipulator elasto-
static parameters can be identified into two steps. The first step aims to compute
the extended set of elastic parameters that includes all equivalent virtual springs
for the second joint by using the standard least-square technique

k ¼
Xm

i¼1

B
ðpÞT
i B

ðpÞ
i

 !�1

�
Xm

i¼1

B
ðpÞT
i Dpi

 !
ð8Þ

where the vector Dpi is the small displacement of the end-effector under the

external loading Fi, matrix B
ðpÞ
i is a rearranged matrix Ai that integrates positional

components only and considers the shape and meaning of vector k. The second
step deals with the identification of the gravity compensator parameters and
compliance of joint #2 that can be obtained from the following equation

K0
h2

Kc s0 �Kc
� �T¼

Xmq

i¼1

CT
i Ci

 !�1 Xmq

i¼1

CT
i Kh2i

 !
ð9Þ

where mq is the number of different angles q2 in the experimental data,
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Ci ¼ 1 � aL � cos a� q2ið Þ aL=s � aL=s2 � sin2 a� q2ið Þþ cos a� q2ið Þ
� 	� �

ð10Þ

In order to ensure high calibration efficiency, the design of experiments should
be considered while choosing measurement configurations. To the best of our
knowledge, the best results for particular industrial applications can be achieved
by using the test-pose based approach [7], which reduces optimal pose selection to
the following optimization problem:

trace A
ðpÞ
0

Xmq

j¼1

Xm

i¼1

A
jðpÞT
i A

jðpÞ
i

 !�1

A
ðpÞT
0

0
@

1
A! min

fqi;wig
ð11Þ

Here matrix A
ðpÞ
0 has the same structure as matrix A

ðpÞ
i , but is defined by the

desired test pose configuration q0 and the external loading F0. The values of q0, F0

are usually related to a typical machining configuration and force generated by the
tool-workpiece interaction. Such an approach allows us to ensure the highest
positioning accuracy after compensation compliance errors caused by the tech-
nological process.

Using theoretical results presented in this section, it is possible to obtain a
sophisticated elasto-static model that can be used for further error compensation.
In the next section, these results are used to obtain the stiffness model of the
KUKA KR-270 robot.

4 Experimental Results and Comparison Analysis

The main geometric parameters of the gravity compensator are L, ax and ay (see
Fig. 2). They can be identified by using relative locations of points P0 and P1 with
respect to point P2. Since the adopted geometric model is a planar one, here the
laser tracker base frame is defined in a particular way in order to ensure that the
marker locations relative to the XY-plane are not significant. Another important
issue is related to the selection of the marker point locations on the rigid part of the
gravity compensator. To ensure high identification accuracy, these markers should
be located on the opposite sides of the compensator rotational axis, such that the

optimal conditions
Pk

j¼1 Rj cos bj ¼ 0 and
Pk

j¼1 Rj sin bj ¼ 0 are satisfied. To
increase the identification accuracy, four marker points are used in the calibration
experiments and are denoted as P01, P02, P03 and P04, respectively. Their locations
are shown in Fig. 1, where the radii R1 = R3 and R2 = R4, and the angles b3 ¼
pþ b1 and b4 ¼ pþ b2. The measurement data have been obtained using a Leica
laser-tracer for the set q2 ¼ 0�;�30�;�60�;�90�;�120�;�140�f g. The values of
the identified geometrical parameters and corresponding confidence intervals are
given in Table 1.
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For the identification of manipulator elastostatic parameters, 15 measurement
configurations (with 5 different values for q2) were obtained based on the industry
oriented performance measure (10), for which the Cartesian coordinates of the
reference points (P1, P2 and P3) were measured three times (before and after the
loading). The corresponding experimental setup is illustrated in Fig. 3. The desired
elastostatic parameters have been obtained using a two-step identification proce-
dure. On the first step, the base and tool transformations have been computed. On
the second step, all measurement data as well as the obtained base and tool
transformations have been used for the identification of the manipulator elasto-
static parameters. Corresponding numerical results are given in Table 2.

To show the advantages of the developed approach, the manipulator accuracy
after calibration has been compared for two distinct plans of calibration experi-
ments. The first one has been obtained using the industry-oriented performance
measure and implements enhanced numerical routines. In this case, the manipu-
lator was presented as a quasi-serial chain, and the calibration data were obtained
using the enhanced partial pose measurements. The second plan used measurement
configurations that were selected semi-intuitively, in accordance with some
kinematic performance measures [5]. A relevant manipulator model corresponding
to the strict serial architecture, and the calibration data were obtained using con-
ventional full-pose measurements.

Using these two sets of calibration data, the identification yielded two slightly
different sets of manipulator parameters (Table 2). Then, the obtained parameters
(both sets) may be used to compute the end-effector positions for the validation
configurations (that were not used in both identification routines). Comparing these

Table 1 Identification
results for the compensator
geometric parameters

L (mm) ax (mm) ay (mm)

Value 184.72 685.93 123.30
CI ±0.06 ±0.70 ±0.69

Fig. 3 Experimental setup for manipulator elastostatic calibration
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results with the corresponding position measurements, it is possible to evaluate the
‘‘calibration quality’’ and relevant plans of the experiments.

For comparison purposes, the manipulator accuracy improvement due to elas-
tostatic errors compensation has been studied based on the error analysis before
and after compensation. Relevant results are shown in Table 3, where the maxi-
mum and RMS values of the distance-based residuals are provided. As follows
from the obtained results, using the identified elastostatic parameters, it is possible
to compensate 91.2 % of the end-effector deflections (in average). In general, the
manipulator positioning accuracy has been improved by a factor of 11.1 compare
to a non-compensated robot. Compare to the previous results, the compensation
efficiency has been increased by a factor of 2.4 using almost the same number of
configurations, which is also referred to as the accuracy improvement factor.
Hence, the above presented analysis shows the advantages of theoretical contri-
butions presented in this work. The developed calibration technique allows us to
increase essentially the manipulator positioning accuracy under external loading
using a reasonable number of measurement configurations. It should be noted that
the obtained elastostatic parameters can be used for elaso-dynamic analysis.

5 Conclusion

The paper deals with the accuracy improvement of a heavy industrial robot used
for milling operations. It provides a sophisticated geometric/elastostatic model for
quasi serial manipulators with gravity compensator and techniques for the iden-
tification of their model parameters. In order to improve the identification accu-
racy, design of experiments technique based on industry oriented performance
measure was used. The advantages and practical significance of the proposed
approach have been shown by experimental results and a comparison analysis. The
improvement factor is about 2.4.

Table 2 Manipulator elastostatic parameters obtained using different approaches, [lrad/Nm]

k1 k2 k3 k4 k5 k6

The results
obtained in this work

0.623 Inline media 0.416 2.786 3.483 2.074

Dumas et al. 2011 [5] 3.798 0.248 0.276 1.975 2.286 3.457

Table 3 The manipulator accuracy improvement after elastostatic error compensation

Criterion Before
compensation

After compensation Improvement factor

Dumas et al. 2011
[5]

(This
work)

Dumas et al. 2011
[5]

(This
work)

max [mm] 8.28 1.77 0.78 4.6 10.4
RMS [mm] 5.90 1.27 0.53 4.6 11.1
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