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Abstract In this paper we analyze singularities of the 3-DOF translational parallel
mechanism with three kinematic chains, each consisting of five revolute joints.
Both Jacobian and Screw theory methods are used to determine singular points of
different types. Constraint singularity is also studied.
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1 Introduction

For last decades, the class of parallel robots is certainly attracting much attention
of researchers and manufacturers. For instance, Gogu [1] has over 700 pages
concerning only 2- and 3-DOF translational parallel mechanisms’ topologies.
However, along with undoubted advantages, several typical problems also exist for
this class of manipulators.

The problem of singularities is a very common issue in parallel robots. There
are some points within the workspace of a mechanism where losing a degree of
freedom or uncontrollable motion of a moving plate is possible. These points are
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called singular [2]. Minimizing the number of such points [3], finding reasonable
ways to avoid them [4] and determining singularity-free zones [5] are among the
main problems in parallel mechanism design.

It is also possible to design singularity free manipulators. For translational
parallel mechanisms this topic was deeply studied in Carricato [6].

There exist several approaches in finding and classifying singularities, for
instance [7, 8]. The most popular method of finding singular points and zones is
based on Jacobian analysis [9], and Screw theory approaches [10, 11] is also used
quite often. Here we will be using a classification proposed in Gosselin and
Angeles’ paper.

In this paper we present a singularity analysis of 3-DOF translational parallel
mechanism with three RRRRR legs. The mechanism was mentioned earlier as a
part of a family of translational parallel mechanisms, for instance in [12] and [13].
Later it was analyzed in detail in [14] where results of the overall kinematics,
dynamics and workspace analysis of the mechanism were presented.

2 Mechanism Overview

In this section we provide a quick overview of the analyzed parallel mechanism
and the results obtained during initial singularity analysis presented in our previous
paper.

The mechanism has three legs (or kinematic chains) with five revolute joints
each (Fig. 1).

Let l1 = AiBi, l2 = BiCi, l3 = CiDi, l4 = DiEi, l5 = EiF, lA = OAi then the
relationship between Cartesian coordinates x, y, z and generalized coordinates
(rotation angles) h1, h2, h3 can be expressed using system of three equations which
we can treat as three implicit functions

f1ðx; y; z; h1Þ ¼ ðy� lx sin h1Þ2 þ ðzþ lx cos h1Þ2 � l2
2 ¼ 0

f2ðx; y; z; h2Þ ¼ ðz� ly sin h2Þ2 þ ðxþ ly cos h2Þ2 � l2
2 ¼ 0

f3ðx; y; z; h3Þ ¼ ðx� lz sin h3Þ2 þ ðyþ lz cos h3Þ2 � l22 ¼ 0

ð1Þ

where

lx ¼ l2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� xþ l2
l2

� �2
s

; ly ¼ l2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� yþ l2
l2

� �2
s

; lz ¼ l2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� zþ l2

l2

� �2
s

Note that we assume l4 = l2 and lA + l2 = l1 + l3 + l5. These conditions
ensure that in initial position (Fig. 1) all angles between links are right angles.

Previously we have conducted a singularity research based on Jacobian and
Screw theory methods.
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Using both methods, it was analytically discovered that Type 1 singularity (loss
of moving platform mobility) can occur only at the theoretical edge of the
workspace. For Type 2 singularities (uncontrollable motion of the moving plat-
form) no analytical conditions were found, and iteration analysis was used instead.
Analytical conditions for Type 3 singularities (can be treated as a manifestation of
both Type 1 and Type 2 singularities simultaneously) were proven to be included
in conditions for Type 1 singularities.

Iteration analysis of Type 2 singularities resulted into a statement that the
mechanism has no such singularities. Later we found that is only true for two of
eight possible mechanism configurations, corresponding to the number of inverse
kinematics solutions, and for iteration step 0.05l2 that we used in our previous
paper during singularity analysis.

In next two sections we present a more detailed iteration analysis of Type 2
singularities followed by analysis of constraint singularities. All numerical cal-
culations are done in MATLAB (using built-in functions if needed), and took no
longer than 787 s on a laptop with average characteristics.

3 Type 2 Singularities Analysis

We start with Jacobian analysis of Type 2 singularities. We can find partial
derivatives of (1) and form the following matrix.

Fig. 1 Scheme of the
mechanism
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@

1

C

C

A

ð2Þ

Type 2 singularity occurs when matrix (2) is singular, i.e. det(A) = 0.
As we mentioned earlier, we use an iteration method to find such singularities.

The idea is to scan a workspace of the mechanism with a relatively small step and
find a value of matrix determinant in each point. Then we assume that if for two
neighbor points the determinant value have different signs (‘‘+’’ and ‘‘-’’) than
there is a some point between those two where det(A) = 0, so Type 2 singularity
occurs.

With this said and assuming iteration step is equal to 0.025l2 and l2 = 20, we
have found that for two of eight possible configurations of the mechanism’s legs
approximately 0.27 % of analyzed workspace points have det(A) [ 0 while all
other points have det(A) \ 0. These points form three small volumes lying very
close to the edge of the workspace (Fig. 2). Thus, these volumes are separated
from the workspace by surfaces consisting of Type 2 singular points.

Mechanism configuration is determined by choosing the solution of inverse
kinematics problem. Figure 3 illustrates two possible configurations of Leg 1 with
two different values of rotation angle h1.

Thus having two different possible configurations for each leg with corre-
sponding hi one can easily see that for any point in the workspace (except Type 1
singular points) there are eight possible configurations and eight different sets of
(h1,j, h2,j, h3,j) in total where j = 1, 2. For example, configuration in Fig. 1 cor-
responds to a set (h1,2, h2,2, h3,2).

Figure 2 corresponds to a set (h1,1, h2,1, h3,1). Using set (h1,2, h2,2, h3,2) also
produces only 0.27 % loss of total workspace volume, however volumes shown in
Fig. 2 will be rotated by 90�.

For other six possible configurations, Type 2 singularities divide the workspace
into several significantly large zones. Shape of these zones varies depending on the
configuration. In Fig. 4 two ‘‘slices’’ of the workspace are shown. Slice (a) cor-
responds to a set of angles (h1,1, h2,1, h3,1) and slice (b) corresponds to a set (h1,2,
h2,1, h3,1). Here l2 = 20 and coordinate z is fixed at z = -18.

Darker areas present points where det(A) [ 0 and lighter areas present points
where det(A) \ 0. The lightest area around does not belong to the workspace.

One can see that for set (h1,1, h2,1, h3,1) the area separated by Type 2 singu-
larities from the main workspace is quite insignificant while for set (h1,2, h2,1, h3,1)
it appears to be much bigger, and Type 2 singularity can occur in the middle part
of the workspace. Furthermore, moving plate of real mechanism most likely will
not be capable to reach the volumes shown in Fig. 2 because it requires AiBi, BiCi,
and CiDi to be on the same line and at the same place.
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Thus, Type 2 singularities depend on mechanism configuration but undesirable
configurations can be easily avoided by choosing one of two optimal configura-
tions and corresponding set of rotation angles: (h1,1, h2,1, h3,1) or (h1,2, h2,2, h3,2).

Fig. 2 Volumes separated
from the workspace by Type
2 singularities

Fig. 3 Two possible
configurations of Leg 1
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4 Constraint Singularities Analysis

Constraint singularity is a phenomenon that arises for mechanisms with less than
six degrees of freedom while legs of the mechanism have more degrees of freedom
than a mechanism itself [15]. This type of singularity cannot be analyzed by
Jacobian method because it deals with degrees of freedom that a mechanism
normally does not have. For instance, a translational parallel mechanism can
obtain a rotational degree of freedom when such singularity occurs.

In order to analyze constraint singularities, Screw theory approach must be
used. We need to find screws that form a matrix of constraints.

First step is to find corresponding twists for each leg. Using Plücker coordi-
nates, such twists for Leg 1 can be written in the form of a matrix as follows

1 0 0 0 0 0
0 cos h1 sin h1 0 � sin h1 lA � l1ð Þ cos h1 lA � l1ð Þ
0 cos h1 sin h1 lx � sin h1 xþ l5 þ l3ð Þ cos h1 xþ l5 þ l3ð Þ
1 0 0 0 �lx cos h1 �lx sin h1

1 0 0 0 z �y

0

B

B

B

B

@

1

C

C

C

C

A

For these twists we can now find a reciprocal wrench. Doing this for each leg,
we obtain three wrenches and can form a matrix of wrenches. For the discussed
mechanism this matrix is

0 0 0 0 sin h1 � cos h1

0 0 0 � cos h2 0 sin h2

0 0 0 sin h3 � cos h3 0

0

@

1

A

Fig. 4 Slices of the workspace at z = -18
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When this matrix loses its maximum rank (3 in this case) a constraint singu-
larity occurs.

Using the same iteration approach as for Type 2 singularities analysis we have
found that for sets (h1,1, h2,1, h3,1) or (h1,2, h2,2, h3,2) approximately 4.48 % of total
workspace volume will be separated by a surface consisting of points of constraint
singularity. This volume is situated at the top part of the workspace (Fig. 5).

The research shows that for other six possible configurations the workspace
divided into several parts. Though, the shapes of these parts are different, such
situation is clearly as unacceptable as it was with undesirable mechanism con-
figurations when we analyzed Type 2 singularities.

The volumes shown in Figs. 2 and 5 intersect, and total theoretical workspace
volume loss is 4.69 % due to both Type 2 and constraint singularities.

Thus, constraint singularities, just like Type 2 singularities, depend on mech-
anism configuration. Undesirable configurations can be avoided by choosing
between two optimal configurations which are the same for Type 2 singularity
avoidance.

5 Conclusion

In this paper the analysis of 3-DOF translational parallel mechanism (focused on
Type 2 and constraint singularities) is presented. The two optimal configurations
of mechanism links and corresponding sets of input rotation angles were discov-
ered, so the total loss of the theoretical workspace volume is about 4.69 %. This

Fig. 5 Volume separated
from the workspace by
constraint singularities
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means that for actual mechanism, if designed with taking these results into
account, at least 95.31 % of the workspace volume will be singularity-free with
singular points of any kind only at the edge of this volume.
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