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Abstract Quasi-static motion of a three-body system along a horizontal plane in
the presence of dry friction is considered. The control forces are due to pairwise
interaction between the bodies. For the quasi-static motion, the control forces
should be chosen so that the equilibrium conditions hold for each body and, hence,
for the entire system. The quasi-static motions, for which one of the bodies is
moving, while the other two bodies are in a state of rest, are described. It is shown
that if the products of the weight of each body by the corresponding friction
coefficient satisfy the triangle inequalities, then each body can be quasi-statically
moved to any prescribed position in the plane, whereas the other two bodies are at
rest. Thus, quasi-static controllability of the system, subject to the aforementioned
assumptions about the parameters, is proved. An optimal control problem for the
moving body is solved, and the shortest (minimizing the work against friction)
trajectory is shown to be a two-link broken line or a straight line segment. An
algorithm for transferring the system to a given state is presented. The results
obtained can be used for designing control strategies for mobile robotic systems.
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1 Introduction

This paper is closely related to the studies that deal with the motions of robotic
systems with variable configuration in resistive media. The control variables in
such systems are either the forces acting between the components of the system or
the rate at which the generalized coordinates that characterize the relative positions
of these components change. When the configuration of the system changes, the
velocities of its components, in the general case, change too, which causes a
change in the external resistance forces.

One of the classes of systems outlined above are multilink systems moving
along a horizontal plane, subject to dry friction. In papers [1–3] control problems
for two-link and three-link systems that form an open chain of consecutively
connected bodies are solved. It was proved that these multilink systems can be
driven to any prescribed position in a plane by alternating slow (quasi-static) and
fast motions.

There were also studied the quasi-static motions of multilink systems in the
plane in the presence of dry friction forces, i.e., the motions where accelerations
and velocities can be neglected. The control forces in a quasi-static motion
coincide in order of magnitude with the forces of friction. It was proved [4] that
multilink systems with at least four links can move quasi-statically along a straight
line, whereas two-link systems are quasi-statically uncontrollable and their motion
is fully preset by the initial position [5]. A three-link system of star-like type, as
well as a three-link system with consecutive connection of the links can be moved
to any position in the plane [6]. However, these motions are rather complex
because of the kinematic constraints between vertices of the system.

In this paper, a three-body locomotion system on which no kinematic con-
straints are imposed is considered. The forces of interaction between the bodies are
taken as the control forces. Dry friction forces act between the contact points and
the plane. The system under consideration can be a model of a mobile robot that
can move along a plane. Since the system has three contact points, it is statically
determinate.

2 Equation of a Quasi-static Motion

Let us consider the system consisting of three point masses Mi, i = 1, 2, 3, on a
horizontal plane (Fig. 1). Between each pair of masses Mi, control forces act. The
system is a model of a mobile robot that can move along a plane, and we study
possible quasi-static motions of the system.

Dry friction force Fi exerted upon point Mi of mass mi is given by equations
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Fi ¼ �kimig
vi

jvij
; vi 6¼ 0; jFij � kimig; vi ¼ 0; ð1Þ

where vi is the velocity of point Mi, ki is the friction coefficient, and g is the gravity
acceleration. For any pair of indices i 6¼ j , we have the interaction control force
fij acting from point Mi upon point Mj and directed along MiMj

f ij ¼ �f ji; f ij � ðri � rjÞ ¼ 0; i; j ¼ 1; 2; 3; i 6¼ j ð2Þ

where ri is the radius-vector of Mi. We consider only such control forces fij that
lead to quasi-static motion of each point Mi. In such motions, the equilibrium
equations hold

Fi þ f ji � f ik ¼ 0; i 6¼ j 6¼ k; i; j; k ¼ 1; 2; 3: ð3Þ

From Eqs. (2), (3), it follows

X3

i¼1

Fi ¼ 0;
X3

i¼1

ri � Fi ¼ 0: ð4Þ

It is shown that if forces Fi satisfy Eq. (4), then forces fij exist such that Eq. (3)
hold. Suppose the parameters of the system satisfy the following triangle
inequality

k1m1 þ k2m2� k3m3 ð5Þ

and two other analogous inequalities that differ from (5) by the permutation of
indices. It can be shown that (5) is a necessary condition for the possibility to move
mass M3.

Fig. 1 Three-body
mechanism
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3 Quasi-Static Motions with One Moving Point

Let us find all quasi-static motions such as two masses of the system (for example,
M1 and M2) do not move, whereas the third mass (M3) moves. Let D be the
intersection of the circles with centers at points M1 and M2 and radii
ak2m2=ðk3m3Þ; ak1m1=ðk3m3Þ respectively, where a is the distance between the
fixed points. The radii of the circles are the distance a between the fixed points
multiplied by the ratio of the maximal friction forces at the fixed points to the
maximal friction force at the moving point. Set D is not empty, according to
inequality (5).

Proposition 1 Quasi-static motion of mass M3, with points M1 and M2 fixed, is
possible iff the straight line containing point M3 and parallel to its velocity
intersects set D.

Corollary Under conditions (5) the system consisting of three masses M1, M2,
and M3 is quasi-statically controllable, i.e., can be quasi-statically brought to any
preset position.

4 Optimal Quasi-static Motions

Let us consider optimal control problem for the moving mass. Let two points A and
B be fixed on the plane. It is required to move quasi-statically mass M3 from point
A to point B with minimal work against friction, i.e., to construct the trajectory of
quasi-static motion for mass M3 with the minimum length. If the straight line AB
intersects set D, then the trajectory with the minimum length is the segment AB.

Proposition 2 If the intersection of the setDwith the straight line AB is empty,
then the trajectory with the minimum length for mass M3quasi-statically moving
from pointAto pointB,is polygonal chain ACB.The line segments ACandBCbelong
to the supporting straight lines of set D; here, pointAand set Dare located on
different sides of straight lineBC, and pointBand setDare located on different sides
of straight lineAC(Fig.2).

The algorithm for the displacement of the three—body system from any initial
position to any given terminal one is presented. At any moment, only one mass Mi

is moving, and each mass moves only during one time interval. There exist six
ways of displacement, corresponding to six possible permutations of mass num-
bers. If permutation (i, j, k) is chosen, then points Mi, Mj, Mk move one after
another, while two other masses are at rest. During each time interval the moving
mass follows along the shortest trajectory which is either a straight line or a
polygonal chain of two line segments, according to Proposition 2. Comparing
these six ways of displacement, the algorithm corresponding to the minimum work
can be chosen.
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5 Conclusions

Quasi-static motions of a three-body system on a horizontal plane in the presence
of dry friction is analyzed. Interaction forces between each pair of bodies are
considered as controls. The case in which one body is moving whereas two others
are at rest is considered. It is shown that, if the triangle inequality for the masses
and friction coefficients holds, then the moving body can be relocated from any
initial position to any terminal one. Optimal trajectory (minimizing the work
against friction along the trajectory) is found and is proved to be a polygonal chain
of one or two line segments. Quasi-static controllability of the system is estab-
lished. The algorithm for relocating of the system to the given state is presented.
The results obtained can be used for the development of control for mobile robotic
systems.
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Fig. 2 Optimal trajectory
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