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Abstract In this paper, the motion performance of manipulators considering the
uncertainty in the kinematic parameters is investigated. Interval analysis is
employed to deal with the uncertainty in the kinematic parameters in the form of
small uncertainty boxes. For a given range of uncertainties in the kinematic
parameters, the interval linear equations are formulated to relate the velocity of
joints to the end effector velocity with the Jacobian matrix. A novel approach for
calculating the exact size and shape of the solution for the system of interval linear
equations is presented. A 2 degrees of freedom planar serial manipulator is used as
a case study to analyze the motion performance of the manipulator in the presence
of uncertainties.

Keywords Interval analysis � Robot manipulators � Uncertainty � Parametric
method � Parameter solution set

1 Introduction

Robot manipulators are typical of systems that are intrinsically subjected to
uncertainties. The nominal relationship between the end effector pose and joints
displacement is known but this relationship is not necessarily accurate due to
changes in the robot hardware and uncertainties in the kinematic parameters [1]. A
real robot analysis should be performed in the presence of uncertainties in the
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modeling of the manipulator and measurements of the kinematic parameters. The
sources of uncertainties include the manufacturing tolerances of the mechanical
parts, measurement error, control error, and round-off error. All types of uncer-
tainties can be accommodated as bounded variations in the kinematic parameters.

Several methods are known for calculating the lower and upper bounds for each
component of the solution set in the interval linear systems. One of the first
contributions on determining the bounds of the solution set was given in [2]. It was
shown that the solution set for this system is a polyhedron. More general algo-
rithms for determining the bounds containing the exact solution were presented in
[3–5]. These bounds were not necessarily identical to the exact solution. The exact
solution was determined in [6] as the union of finitely many convex polytopes
whose vertices were denoted by matrices with entries equal to the lower or upper
bounds of the interval coefficient matrix. The shape of the solution set, in general,
was a non-convex polyhedron.

The exact solution of the interval linear systems is generally complicated and not
easily described. Therefore, calculation of this solution is computationally expen-
sive and, hence, is not convenient to use for the real time application. Accordingly,
the researchers are drawn to find the fastest methods to enclose the exact solution.
One of the first publications on parametric interval systems for special coefficient
matrices, such as symmetric and skew-symmetric matrices, was presented in [7, 8].
The characterization of the boundary of the solution set of the parametric system
based on a set of inequalities was done by [9]. This approach was designed par-
ticularly for visualizing the boundary of the parametric solution set.

In this paper, the motion performance of manipulators with uncertainty in the
kinematic parameters is investigated using parametric interval method. The
organization of paper is as follows. The basic principles of the interval analysis
and the parametric interval systems are given in Sect. 2. The proposed method-
ology for formulating the exact solution, which is based on parameterizing the
interval linear systems, is presented in Sect. 3. The simulation results are reported
in Sect. 4 and the paper is concluded in Sect. 5.

2 Parametric System of Interval Linear Equations

Interval analysis is a numerical method of representing the uncertainty in values
by replacing a number with a finite range of values. An interval denoted by
½X] = [X; X� is the set of real numbers X verifying X�X�X where X and X are
the lower and upper bounds of the interval, respectively. The interval is also
represented by the midpoint, Xc, and the radius, DX, as ½X� ¼ ½Xc � DX;Xc þ DX�
or ½X� ¼ Xc þ DX½�1; 1�. A real number is a special case of an interval in which
X ¼ X. The width of the interval ½X] is defined as ðXÞ ¼ X� X. The midpoint of
½X] is given by mðXÞ ¼ 1

2 ðXþ XÞ. A matrix whose entries are interval is called an
interval matrix and denoted by ½A�; Ac, is the midpoint of ½A� whose entries are the
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midpoints of the corresponding entries of ½A�, the radius of the interval matrix, D,
is defined as 1

2 ðA�AÞ.
In manipulators, the Jacobian matrix relates the joint velocity vector to the end

effector velocity vector. Due to the uncertainty in the kinematic parameters, the
relationship between the joint velocity vector and the end effector velocity vector
takes the form of the interval linear system. This interval system is parameterized
as J ½p�ð Þ½ � _q ¼ ½V ½p�ð Þ� in which the entries of the Jacobian matrix and the end
effector velocity vector linearly depend on parameters p½ � ¼ p1½ �; p2½ �; . . .; pK½ �ð Þ
even though in general, the entries of the Jacobian matrix and the velocity vector
could be nonlinear functions of the interval parameters ½p�. The exact values of
these parameters are unknown but bounded within given intervals. Considering the
serial manipulator in Fig. 1a and using a linear parametric model for each entry of
J ½p�ð Þ½ � and ½V ½p�ð Þ�, the entries of the Jacobian matrix and the velocity vector

could be defined as
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Fig. 1 a 2 DOF planar serial manipulator, b one of two-parameter solution sets in red, c all two-
parameter solution sets in red and the exact solution in blue, d a three-parameter solution set in
red and the smallest box containing the exact solution in green
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½Jjk ½p�ð Þ� ¼ Jjk;0 þ
XK

l¼1

Jjk;l ½pl�; ½Vj ½p�ð Þ� ¼ Vj;0 þ
XK

l¼1

Vj;l ½pl� ð1Þ

where Jjk;l;Vj;l 2 R; ; l ¼ 1; . . .; k; j ¼ 1; . . .;m; k ¼ 1; . . .; n; m is the task space
dimension and n is the number of joints. The value of parameter K depends on the
number of the interval parameters used to parameterize the interval system. The
maximum number of the interval entries of ½J� and ½V� is mn and m, respectively.
Depending on the uncertainty of the kinematic parameters in the manipulator,
some entries of the Jacobian matrix and the end effector velocity vector may not be
interval.

3 Parametric Method for Exact Solution

In this section, the exact solution of the interval system is calculated using solution
sets obtained from parameter groups of interval systems. Depending on the number
of interval parameters involved in the Jacobian matrix and the velocity vector, the
exact solution will be characterized. The parameter assignment of the entries of ½J�
and ½V� in the manipulator is performed by selecting some interval entries of either
½J� or V½ � as parameters ½pl� and formulating other entries as functions of interval
parameters ½pl�. All parameter assignments of the entries of ½J� and V½ � which lead
to the same solution set are collected as one parameter group. That is, a parameter
group may consist of one or several different parameter assignments.

The number of parameter groups in each interval system depends on the total
number of interval entries of ½Jð½p�Þ� and ½Vð½p�Þ�, denoted as g, and the number of
interval parameters in the interval system, K. The solution sets of all parameter
assignments of the interval system are checked and the parameter assignments
which result in the same solution set are categorized as one parameter group.
Considering a general spatial serial manipulator, to form ½J� q

: ¼ ½V� with g
interval entries in ½J� and V½ � and 2 interval parameters, K ¼ 2, there exist

1
2

Pg�1
i¼K�1

g
i

� �
¼ 1

2

Pg�1
i¼1

g!
g�ið Þ!i! different parameter groups. When the number of

interval parameters is K ¼ 3; all the number of possible parameter groups is

calculated as
Pg�2

i¼K�1

g
i

� �
g� i

2

� �

g�i�2ð Þ! ¼
Pg�2

i¼2
g�i�1ð Þ g�ið Þ...ðgÞ

2!i! g�i�2ð Þ! .

In this paper, once the numerical interval matrix ½J� is calculated, the entries of
½Jð½p�Þ� and ½Vð½p�Þ� are expressed as linear functions of the interval parameters
½pl�; 1� l�K: Considering entry ½Jjk� and ½Vj� as linear function of ½pl�, then
½Jjkð½pl�Þ� ¼ Jjk;0 þ Jjk;l½pl� and ½VjðplÞ� ¼ Vj;0 þ Vj;l½pl�: The lower and upper
bounds of any interval entry ½Jjk� ¼ ½Jjk; Jjk� are related to those of interval

parameter pl 2 ½pl; pl�; pl 6¼ pl through the following system of linear equations
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Jjk ¼ Jjk;0�pl þ Jjk;l

Jjk ¼ Jjk;0p
l
þ Jjk;l

(
)

�pl 1
p

l
1

� �
Jjk;0

Jjk;l

� �
¼ Jjk

Jjk

� �
ð2Þ

The coefficients iJjk;0 and iJjk;l are calculated by taking inverse of Eq. (2) as

Jjk;0

Jjk;l

� �
¼

�pl 1
p

l
1

� ��1
Jjk

Jjk

� �
ð3Þ

The same procedure is performed to formulate the entry of ½Vj� as a function of
½pl�. It should be noted that the entry of ½Jð½p�Þ� or ½Vð½p�Þ� nominated for the
interval parameter must be interval. Otherwise, the matrix in Eq. (2) would be
singular and the entry ½Jjk� cannot be formulated in terms of parameter ½pl�. If
½Jð½p�Þ� is an n� n square matrix and non-singular for each pl 2 ½pl

; pl�; l ¼
1; . . .;K; ½J�1ð½p�Þ� exists and ½ _qð½p�Þ� ¼ ½J�1ð½p�Þ�½Vð½p�Þ� is a function of
K interval parameters which is continuous [9]. This parametric joint velocity
vector provides the solution set for each parameter group.

When the parametric Jacobian matrix is of full-row rank, the solution which
minimizes the 2-norm of the joint velocity vector is selected. If the square para-
metric matrix ½J p½ �ð Þ�½JT p½ �ð Þ� is regular for every pl 2 ½pl

; �pl�; the minimum 2-

norm solution set to the parametric system exists and is formulated as a function of

interval parameters ½ _q ½p�ð Þ� ¼ ½JT ½p�ð Þ� ½J p½ �ð Þ�½JT p½ �ð Þ�
� ��1½V p½ �ð Þ�. If the manip-

ulator has a combination of revolute and prismatic joints, the joint velocity vector
is not physically consistent. If the interval entries with the same dimension are
parameterized, a weighting matrix would be required to calculate the generalized

(Moore-Penrose) inverse of ½J p½ �ð Þ� as J# ¼W½JT ½p�ð Þ� ½J p½ �ð Þ�W½JT p½ �ð Þ�
� ��1

.
Similarly, when parametric Jacobian matrix ½J p½ �ð Þ� is of full column-rank and

½JT p½ �ð Þ�½J p½ �ð Þ� is regular for every pl 2 ½pl; �pl�, the least square solution set is

calculated. The weighted left generalized inverse of J p½ �ð Þ½ � is calculated as J# ¼
JTð½p�ÞWJ ½p�ð Þ
� 	�1

JT ½p�ð ÞW if the interval entries of the Jacobian matrix are
parameterized using the interval parameters with the same dimension.

4 Case Study

In this section, the 2 DOF planar serial manipulator in Fig. 1a with two revolute
joints is used as a case study for the interval analysis to visualize the solution set.
The manipulator has uncertainty in two joint variables h1 and h2 and the link
lengths a1 and a2.

For the joint variables h1 ¼ p
6 rad and h2 ¼ p

4 rad, the link lengths
a1 ¼ a2 ¼ 0:5 m, the radius of uncertainty p

180 rad in h1 and h2 and the radius of
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uncertainty 0:010 m in link lengths, the interval Jacobian matrix is

½J� ¼ �0:760;�0:706½ � �0:497;�0:469½ �
0:530; 0:595½ � 0:110; 0:149½ �

� �
. The desired end effector velocity

is V ¼ ½vxvy�T ¼ 1 1½ �T m=sð Þ.
If the Jacobian matrix and the end effector velocity vector are functions of two

parameters ½p1� and ½p2�, i.e., l ¼ 1; 2; the parametric linear system will be

½Jð½p�Þ�
_h1
_h2

� �
¼ ½vxð½p�Þ�
½vyð½p�Þ�

� �
ð4Þ

The parameter solution set is derived using the inverse of ½Jð½p�Þ� as

½ _hð½p�Þ� ¼ ½ _h1ð½p�Þ�
½ _h2ð½p�Þ�

� �
¼ ½Jð½p�Þ��1 ½vxð½p�Þ�

½vyð½p�Þ�

� �
ð5Þ

Generally, the entries of the Jacobian matrix and the end effector velocity
vector can be parameterized such that the entries with the consistent dimension are
categorized in the same groups. In this example, the Jacobian matrix has physi-
cally consistent entries. Therefore, the parameter assignment can be performed to
any entries of the Jacobian matrix. If the entries of the end effector velocity vector
are interval and have the same dimension, e.g., m=s, these entries could be
parameterized using an interval parameter with the same dimension, e.g., m=s. In
the case study, the entries of the end effector velocity vector are not interval.
Therefore, they are not functions of an interval parameter, i.e., ½Vj� ¼ Vj;0 ¼ 1;
j ¼ 1; 2.

Entries ½J12� and ½J11� are selected as the interval parametersp1 2 �0:497;½
�0:469� and p2 2 �0:760;�0:706½ �, entries ½J21� and [J22� are assigned as func-
tions of ½p1� and entries vx and vy are constant values 1. The interval entries of
Eq. (3) are substituted into Eq. (5) and the two-parameter solution set for this
parameter group is formulated as

_h p1; p2ð Þ ¼
�0:372½p1��0:792

1:669½p1��0:792½p2��1:372½p1�½p2�þ2:291½p1�2
2:291½p1��½p2�þ1:669

1:669½p1��0:792½p2��1:372½p1�½p2�þ2:291½p1�2

0

@

1

A ð6Þ

Similar to the procedure in calculating the two-parameter solution set in
Eq. (6), the two-parameter solution set for each parameter group is formulated.
Other parameter groups are obtained by new parameter assignment of the interval
entries of ½Jð½p�Þ� as either ½p1� or ½p2� and the rest of entries as functions of ½p1� and
½p2�. The new parameter solution set for each parameter assignment forms a
parameter group. The boundary curves of the solution set for each group of

parametric linear system are specified by 4 curves; two curves _hðp1; p2
Þ and

_hðp1; �p2Þ in 2-dimensional space when p1 varies from p
1

to �p1 and p2 is set once to
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the lower bound and then to the upper bound. Similarly, the other two curves
_hðp2; p1Þ and _hðp2; �p1Þ are formulated when p2 varies from p

2
to �p2 and p1 is set to

the lower bound and the upper bound, respectively. In the resulting solution set
enclosed by four curves, each curve is connected to the other two curves in two

points and the two attached curves share a point. Therefore, four points _hðp
1
; p

2
Þ,

_hð�p1; �p2Þ, _hðp
1
; �p2Þ and _hð�p1; p2

Þ form vertices of the solution set for each

parameter group. This two-parameter solution set (in red color) is illustrated in
Fig. 1b and completely lies inside the exact solution (in blue color).

To characterize the exact solution, first all parameter groups which result in the

same solution sets are determined and then plotted in _h1– _h2 plane. In this example,
since there are four interval entries in the Jacobian matrix, g ¼ 4; there will exist
1
2

Pg�1
i¼1

g!
g�ið Þ!i! ¼ 1

2

P3
i¼1

4!
4�ið Þ!i! ¼ 1

2 4þ 6þ 4ð Þ ¼ 7 different parameter groups

among all possible solution sets, i.e., 24 ¼ 16. These 16 solution sets are illustrated
in red color in Fig. 1c. The outer vertices of the different groups of the two-
parameter solution sets are connected to form the boundary of the exact solution
(in blue color). Generally speaking, when the exact solution is non-convex, the
two-parameter solution sets might not be able to distinguish the indented vertices.

In the three-parameter case, each parameter group includes interval parameters
½p1�; ½p2� and ½p3�, i.e., l ¼ 1; 2; 3. The procedure to calculate the solution set for
each parameter group is similar to that of the two-parameter case. The parameter

groups for three interval parameters are
Pg�2

i¼2
4�i�1ð Þ 4�ið Þ...ð4Þ

2!i! 4�i�2ð Þ! ¼ 6. The solution set

corresponding to each parameter group consists of 12 curves; the two parameters
p1; p2 are set to either lower or upper bounds and the resulting 4 curves, which are
functions of parameter p3, are plotted when p3 varies within the lower and upper
bounds. The formulation of the solution set of the interval system including three
parameters is applicable to the Jacobian matrices of the manipulators with more
than 2 joints such as planar 3 DOF manipulators. The process is repeated when
½p1�; ½p3� are set to either the lower or upper bounds and the next 4 curves are
functions of ½p2�. The last 4 curves are formulated as functions of ½p1� when
½p2�; ½p3� are set to either the lower or upper bounds. The resulting 12 curves form a
hypersurface which may have surfaces on the boundary surface of the exact
solution.

To show the solution set for a group of parametric linear system with three
interval parameters, the same example as the two-parameter case is considered.
For entries ½J11� and ½J12� and J21½ � as interval parameters p1 2 �0:760;�0:706½ �,
p2 2 �0:497;�0:469½ � and p3 2 0:530; 0:595½ �, respectively, ½J22� as a function of
½p1�, and ½vx� and ½vy� as constant values, the three-parameter solution set is plotted
in Fig. 1d. As illustrated, some edges of this solution set lie on the boundary of the
exact solution. The commonly calculated smallest box containing the exact
solution is depicted in Fig. 1d in green color. As shown, this solution is much
larger than the exact solution.
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In general, for K-parameter case, the number of curves involved to form the
solution set of each parameter group is calculated to be K � 2ðK�1Þ. For instance,
in three-parameter case, the number of curves which forms the solution set for
each parameter group is 3� 22 ¼ 12: It should be noted that as the size of the
interval matrix, especially the interval entries of the matrix, increases, the total
number of the parameter groups which have different solution sets drastically
grows.

The drawback of the two-parameter solution set is that the indented vertices of
the exact solution, if there is any, may be ignored. The three-parameter solution set
overcomes this limitation as more curves are contributed to characterize each
three-parameter solution set, and hence the actual vertices of the exact solution set
are obtained. The interval analysis in this paper is performed using INTLAB [10].

5 Discussion and Conclusions

In this paper, the motion analysis of manipulators considering uncertainty in the
kinematic parameters were investigated, and a novel method to identify the exact
solution of joint velocities for the given end effector velocities was presented. To
model the uncertainty in kinematic parameters, interval analysis was applied and
the lower and upper bounds of each entry of the Jacobian matrix were determined
and the interval linear equations were formulated to relate the velocity of joints to
the end effector velocity. Although the range of uncertainties in the kinematic
parameters was small, the accumulation effect of uncertainties caused a relatively
wide solution for the velocity of the joints. The lower and upper bounds of the joint
velocity components depended on the length of the links, the range of uncertainties
and the configuration of the manipulator. When the manipulator is close to the
singular configuration, even for small values of uncertainties, the width of joint
velocity components increases. The proposed method has been implemented for
the serial and parallel manipulators. Due to space limitation, only the results for a
serial manipulator were reported here.

Generally, there is a trade-off between the accuracy of the solution and the
computation time. The parametric interval system provides the exact solution with
more computation effort. For offline analysis such as the investigation of work-
space of manipulators, since the calculation time is not a concern, the parametric
interval method is valuable. In real time applications, methods that are not com-
putationally expensive are better suited. As a future work, the motion analysis of
manipulators with uncertainty in the kinematic parameters, velocity limits of the
joints and the joint failure will be investigated.
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