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Abstract This paper presents a symbolic and recursive calculation of the stiffness
and mass matrices of parallel robots. In order to reduce the computational time
required for simulating the elastodynamic behavior of robots, it is necessary to
minimize the number of operators in the symbolic model expression. Some
algorithms have been proposed for the rigid case or for parallel robots with lumped
springs. In this paper, we extend the previous works to parallel robots with dis-
tributed flexibilities. The proposed algorithm, that takes advantage of recursive
calculations for the computation of the Jacobian matrices defining the kinematic
constraints, is used to compute the natural frequencies of a robot developed at
IRCCyN: the NaVARo.
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1 Introduction

The large computational time required for calculating the natural frequencies of a
robot prevents to use them in many applications, such as real-time control, design
optimization process, etc. To decrease the computational cost, this paper focuses
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on the efficient symbolic computation for the stiffness and mass matrices of
flexible parallel robots. This approach could be combined with model reduction
methods [6, 9, 10], but this is not the main goal of that paper.

For the computation of the robot natural frequencies, two main approaches are
generally proposed (see [11] for a large literature review): (i) lumped modeling
[13, 18] and (ii) modeling using distributed flexibilities [2, 3, 7, 16, 17]. The
lumped modeling is generally simpler to use by non-experts in finite element
methods but, to obtain a correct model accuracy, higher number of elements is
required, thus increasing the computational time.

Contrary to lumped modeling, using distributed flexibilities allows the
improvement of the model accuracy. However, such methods require highly-
skilled users. In [2, 16, 17], some general methodologies are proposed. In the case
of closed-loop mechanisms, some Jacobian matrices are computed that allow
taking into account the kinematic dependencies. However, such general method-
ologies are not specifically designed for parallel robots and they do not guarantee
the minimization of the number of operators for the symbolic computation of the
model. To the best of our knowledge, a systematic procedure to compute the mass
and stiffness matrices (using distributed flexibilities) of parallel robots with a
minimal numbers of operators has never been proposed.

The present work aims at filling this gap. In order to minimize the number of
operations, the Jacobian matrices defined in the principle of virtual powers (PVP)
are computed using recursive algorithms. For computing the stiffness and mass
matrices of parallel robots, the approach proposed in [5] is adapted. It proposes to
(1) convert the parallel robot into a virtual system defined by a tree-structure robot
composed of the kinematic chains of the actual robot for which all joints (passive
and active) are considered actuated and a free body (the platform which is con-
sidered as rigid) (Fig. 1), (2) compute the elastodynamic model of this new virtual
system, and (3) finally, close the loops by using the PVP.

This method is effective, systematic, can be applied to any parallel robot.
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Fig. 1 A general parallel robot composed of flexible elements. a Kinematic chain. b Virtual tree
structure. c A single flexible link

124 S. Briot and W. Khalil



2 Stiffness and Mass Matrices for the Virtual System

Let us consider a parallel robot composed of one rigid fixed base (denoted as
element 0), one rigid moving platform and n legs, each leg being a serial kinematic
chain composed of ðmi � 1Þ elements1 connected by mi joints of coordinates qik

(revolute, prismatic or fixed joints—i ¼ 1; . . .; n) located at points Aik

(k ¼ 1; . . .;mi—Fig. 1a). The j-th element of the i-th leg is denoted by ij and its
displacement can be parameterized by the coordinates ijtij

2 which represents the
twist of the body ij at the origin of the local frame Fij (Fig. 1c) and _qeij

that are the

generalized velocities characterizing the elastic displacement of the body ij

ijteijðMijÞ ¼ UijðM0ijÞ _qeij
ð1Þ

where ijteijðMijÞ is the deformation twist due to the body elasticity that can be
parameterized using truncated series of Rayleigh-Ritz shape functions Uij [4].

The vector of generalized coordinates of the tree-structure is given by

qt ¼ qT
t1
� � � qT

tn

h iT
, where qti regroups all joint variables (denoted as

qT
pi
¼ qi1 . . .qimi½ �) and elastic generalized coordinates qT

ei
¼ qT

ei1
� � � qT

ei;mi

h i
for the

real i-th leg.
The Lagrangian of the tree structure system can be expressed as:

Lt ¼
1
2

X
i;j

ijtT
ij _qT

eij

h i
Mij

ijtij

_qeij

� �
� qT

eij
Kijqeij

� �
ð2Þ

where Mij and Kij are the mass and stiffness matrices of the link ij whose full
expressions in the most compact form are given in [4, 15]. To express the
Lagrangian as a function of qt and _qt, let us express the displacement of the
element ij frame located at Aij using the following equations obtained by a
recursive algorithm [4]

ijtij ¼ Jtij _qt with Jtij ¼ij Tiðj�1ÞJtiðj�1Þ þUqeij
þ Aij and ð3Þ

Uqeij
¼ 0 � � � ij Riðj�1ÞUiðj�1ÞðAijÞ � � � 0
� �

; Aij ¼ 0 � � � ij aij � � � 0
� �

ð4Þ

where aij is the unit twist describing the joint ij axis [4] and, in Uqeij
(Aij, resp.), the

term ijRiðj�1ÞUiðj�1ÞðAijÞ (ijaij, resp.) is located at the columns corresponding to the
variables _qeiðj�1Þ

( _qij, resp.). Moreover, in the previous expressions,

1 Note that each robot link can be composed of one element or several elements.
2 In what follows, the preceding superscript ‘‘ij’’ denotes that the vector is given in the frame
Fij.
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ijRiðj�1Þ ¼
ijRiðj�1Þ 0

0 ijRiðj�1Þ

� �
; ijTiðj�1Þ ¼ ij Riðj�1Þ

I3 �iðj�1Þr̂iðj�1ÞðAijÞ
0 I3

� �
ð5Þ

where I3 is the (3 9 3) identity matrix, ijRiðj�1Þ is the rotation matrix between

frames Fij and Fiðj�1Þ, iðj�1Þr̂iðj�1ÞðAijÞ is the cross-product matrix associated with

the vector iðj�1Þriðj�1ÞðAijÞ, i.e. the position of point Aij � Biðj�1Þ in Fiðj�1Þ (Fig. 1c).

Finally, a global Jacobian matrix Jij defined such as ijtT
ij _qT

eij

h iT
¼ Jij _qt can be

computed as JT
ij ¼ JT

tij
OT

qeij

h i
where Oqeij

is defined such that _qeij
¼ Oqeij

_qt.

Introducing ijtT
ij _qT

eij

h iT
¼ Jij _qt into (2) leads to

Lt ¼
1
2

X
i;j

_qT
t JT

ijMijJij _qt � qT
t OT

qeij
KijOqeij

qt

� 	
¼ 1

2
_qT

t Mt _qt � qT
t Ktqt


 �
ð6Þ

where Mt and Kt are the mass and stiffness matrices of the tree structure.
Adding the contribution of the rigid platform into (6), the Lagrangian of the

total system can be written as:

L ¼ 1
2

_qt

tp

� �T
Mt 0
0 Mp

� �
_qt

tp

� �
� qt

xp

� �T
Kt 0
0 0

� �
qt

xp

� � !

¼ 1
2

_qT
g Mg _qg � qT

g Kgqg

� 	
ð7Þ

Mp is the mass matrix of the rigid platform and xp represents the platform dis-
placement (tp its twist). Mg and Kg are the total mass and stiffness matrices of the

virtual system. qT
g ¼ qT

t xT
p

h i
is its vector of generalized coordinates.

3 Stiffness and Mass Matrices for the Parallel Robot

It is now necessary to determine one possible subset of generalized coordinates for
the parallel robot. Using (3) for computing the twist i;mi ti;mi of the tip of leg i:

i;mi ti;mi ¼ Ji
ti;mi

_qti ð8Þ

where Ji
ti;mi

can be obtained from Jti;mi
by extracting the columns corresponding to

the vector _qT
ti
¼ _qT

pi
; _qT

ei

h i
, i.e. the vector stacking all variables of the leg i.

As the leg extremity is also linked to the rigid platform, its twist can be related
to the platform twist tp via the rigid body displacement relation:
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i;mi ti;mi ¼ Ji
ptp;where Ji

p ¼ i;mi R0
I3 �0p̂i

0 I3

� �
ð9Þ

in which 0p̂i is the cross product matrix of vector 0pi that characterizes the position
of the attachment point Ai;mi w.r.t. the platform center (Fig. 1a) and i;mi R0 is the
(6 9 6) rotation matrix between the global frame and the local frame Fi;mi .

Thus, the following set of equations can be obtained:

J1
t1;m1

� � � 0

..

. . .
. ..

.

0 � � � Jn
tn;mn

2
664

3
775

_qt1

..

.

_qtn

2
64

3
75�

J1
p

..

.

Jn
p

2
64

3
75tp ¼ 0, Jt _qt � Jptp ¼ Jt �Jp½ � _qt

tp

� �

¼ Jg _qg ¼ 0

ð10Þ

where Jg is a ðrn� nqgÞ matrix, nqg [ rn (r = 6 for a spatial robot, r = 3 for a
planar robot). This means that a subset _qd of rn variables in vector _qg is linked to
the others. This subset is not unique. As most of parallel robots have identical legs,
an idea is to put in _qd the last r components _qf

ti
of each vector _qti which can be

decomposed into two parts _qT
ti
¼ _q0T

ti
_qfT

ti

h i
:

�
Jf 1

t1;m1
� � � 0

..

. . .
. ..

.

0 � � � Jfn
tn;mn

2
664

3
775

_qf
t1

..

.

_qf
tn

2
64

3
75 ¼

J01
t1;m1

� � � 0 �J1
p

..

. . .
. ..

. ..
.

0 � � � J0n
tn;mn

�Jn
p

2
664

3
775

_q0
t1

..

.

_q0
tn

tp

2
6664

3
7775, Jf

t _qf
t

¼ Jtp _q:

ð11Þ

This can be rewritten as

_qf
t ¼ Jf

t


 ��1
Jtp _q ¼

Jd1;1 � � � Jd1;n Jd1;nþ1

..

. . .
. ..

. ..
.

Jdn;1 � � � Jdn;n Jdn;nþ1

2
64

3
75 _q ¼ Jd _q: ð12Þ

If the coordinates _qf
ti

are those of the last elastic element of the leg (which is

most often the case), the k-th column of matrix Jfi
til corresponds to a unit twist that

describes the displacement of the leg extremity due to the k-th coordinate of qf
ti ,

i.e. [12]
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Jfi
til
¼

i;mi Ril �i;mi Ril
ilp̂il

0 i;mi Ril

� �
ð13Þ

where i;mi Ril is the rotation matrix between the local frame linked at element i;mi

and the local frame linked at element il and ilp̂il is the cross product matrix of the
vector ilpil that characterizes the position of the leg extremity with respect to the
frame linked at element il. Thus its inverse is equal to

Jfi
til

� 	�1
¼

i;mi RT
il p̂i;mi

il RT
il

0 i;mi RT
il

� �
ð14Þ

which does not require much calculation. Finally, from (12) and the definition of

_qT
g ¼ _qT

t1
; . . .; _qT

tn
; tT

p

h iT
, the matrix J defined such that _qg ¼ J_q can be computed.

Introducing _qg ¼ J_q into (7) leads to:

L ¼ 1
2

_qT JTMgJ_q� qT JT KgJq

 �

¼ 1
2

_qT M_q� qT Kq

 �

ð15Þ

from which the natural frequencies fi ði ¼ 1; . . .; nqg � r nÞ of the parallel robot can

be computed as fi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eig M�1K

 �q

=ð2pÞ. It should be noticed that obviously,

matrices M and K depend on the robot configuration.
To automatize the calculation of the mass and stiffness matrices of the robot, for

each computation, the elements of a vector or a matrix containing at least one
mathematical operation are replaced by an intermediate variable. This variable is
written in an output file which contains the model. The elements that do not
contain any operations are not modified. The obtained vectors and matrices are
propagated in the subsequent equations. Consequently, at the end, the model is
obtained as a set of intermediate variables. Those that have no effect on the desired
output can be eliminated. This algorithm has been successfully implemented with
Mathematica.

4 Case Study: The NaVARo

The NaVARo is a 3-dof planar parallel manipulator developed at IRCCyN
(Fig. 2a) and composed of 3 identical legs and one moving platform made up of 3
segments E1P, E2P and E3P rigidly linked at point P. The i-th leg contains four
links connected with five revolute joints in such a way that AiBiCiDi is a paral-
lelogram linkage, i ¼ 1; 2; 3. The base frame Fb O; x0; y0; z0ð Þ (not shown in
Fig. 2b) is defined such as point O is located at the geometric centre of the
equilateral triangle A1A2A3. Frame Fp P; xp; yp; zp


 �
is attached to the moving

platform. In the home configuration shown in Fig. 2, Fb and Fp P; xp; yp; zp


 �
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(attached to the moving platform) coincide. xp; yp


 �
are the Cartesian coordinates

of point P expressed in frame Fb and hp is the orientation angle of the platform
(the angle between x0 and xp).

Three double clutches are mounted to the base at points Ai, i ¼ 1; 2; 3, in order
to actuate either angle q1i or angle q2i. As a consequence, the NaVARo has 8
actuation modes [1, 14]. Therefore, the platform can be moved throughout the
workspace without reaching any parallel singularity thanks to a judicious actuation
scheme. The kinematics of the i-th leg is described by the modified Denavit-
Hartenberg parameters (MDH) [12] given in Table 1, in which ci ¼ p=2 if i = 1,
ci ¼ �5p=6 if i = 2 and ci ¼ �p=6 if i = 3. Besides, the circumradius of the
moving-platform is equal to 0:2027 m, i.e., l5i ¼ 0:2027 m. Each link, of rectan-
gular cross-section, is made up of duraluminum alloy. Table 1 gives their cross-
section area and inertia.

In the experimental setup, the rotation of links 1i and 2i about point Ai,
i ¼ 1; 2; 3, is locked thanks to the double clutch mechanisms. A single 3D beam
element is used to model links 1i, 2i, 3i and 5i while two 3D beam elements of
equal lengths are used to model links 4i, the latter being twice longer than the
former.

(a) (b)

Fig. 2 The NaVARo. a Prototype of the NaVARo. b Shematics of the NaVARo

Table 1 MDH parameters of the i-th leg and characteristics of the beam cross-sections

ji a(ji) rji cji bji aji dji ðmÞ hji rji

1i 0 0 ci 0 0 d1 ¼ 0:4041 q1i � ci 0
2i 0 0 ci 0 0 d1 ¼ 0:4041 q2i � ci 0
3i 2i 0 0 0 0 d3 ¼ 0:2100 q3i 0
4i 3i 0 0 0 0 d4 ¼ 0:2100 q4i 0
5i 4i 0 0 0 0 d5 ¼ 0:4200 q5i 0

link Aij ðm2Þ Iyij ðm4Þ Izij ðm4Þ Ipij ðm4Þ I0ij ðm4Þ
1i, 2i, 3i, 4i 2:4 � 10�4 1:152 � 10�8 2:000 � 10�9 1:352 � 10�8 5:902 � 10�9

5i 4 � 10�4 3:333 � 10�8 5:333 � 10�8 8:666 � 10�8 1:123 � 10�8
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Thus, the NaVARo is modelled as a spatial mechanism and its model contains
144 generalized coordinates, among which only 90 are independent (see Sect. 3).
The model has been calculated using the proposed procedure and compiled into C
code to obtain the robot natural frequencies. The computation involve the use of
36183 ‘+’ or ‘-’and 37341 ‘*’ or ‘/’ operators, while 21383 variables are defined.

To the best of our knowledge, there exist no works that try to minimize the
number of operators in the elastodynamic models of parallel robots. Therefore, the
efficiency of the proposed solution may be difficult to analyze. However, for
reasons of comparison, the obtained frequencies were validated by means of an
equivalent model developed using Cast3 M software [8]. For the simulations,
Cast3 M gives the result after around 6 s of computation while our model send the
results in around 0.01 s (for a Pentium 4 2.70 GHz, 8Go of RAM). Both models
give the same values for the first 90 natural frequencies of the NaVARo. Table 2
gives the first 5 natural frequencies of the NaVARo for the 4 robot postures shown
in Fig. 3.

5 Conclusions

The paper has presented a symbolic and recursive calculation of the stiffness and
mass matrices of parallel robots. The proposed algorithm, that takes advantage of
recursive calculations for the computation of the Jacobian matrices defining the
kinematic constraints, is used to compute the natural frequencies of a robot
developed at IRCCyN: the NaVARo. Results have shown that the proposed model
was able to give the same values as a FEA software for the first 90 natural
frequencies of the NaVARo but in a considerably reduces computational time
(around 0.01 s for our model while FEA results were obtained in several sec.).

(a) (b) (c) (d)

Fig. 3 The four test poses fxp; yp; hpg (positions in meters, orientation in radian). a f0; 0; 0g.
b f0; 0;�p=3g. c f0:12; 0:07;�p=3g. d f0:18; 0:11;�p=3g
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