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Abstract

Modern information technology is transforming the collection, management,

and sharing of scientific data in ways that greatly encourage convergence. Data-

intensive science has evolved beyond the point at which all the information

required for a research study can be centrally located, so interoperability across

systems is required, with the additional benefit that data from different sources

can be combined. Interoperability of heterogeneous data is a difficult challenge,

requiring carefully specified metadata and well-conceptualized data manage-

ment approaches like Digital Object Architecture. Scientific literature has

become so complex and voluminous that it also must be managed in new

ways, for example, using knowledge graphs to map connections as in Semantic
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Medline. In the commercial realm, systems like Google Knowledge Graph and

the related Knowledge Vault have begun to appear. For more than a decade, it

has been recognized that future science will depend heavily upon distributed

resources, including data archives, distant experimental facilities, and domain-

specific research tools to enable new scientific discoveries and education across

disciplines and geography. Similar approaches will become valuable for the

development of abstract theory, for example, the cooperative construction of

rigorous modular theories, in fields as diverse as physics and sociology, as

scientists around the world contribute concepts and connect them by means of

computer-based online tools.

Introduction

The convergence of knowledge is the subject of this handbook. However, in science

the convergence of knowledge is hampered by the huge size and complexity of

science and of the scientific record. Regarding size of the scientific record, many

scientists cannot even keep up with the new knowledge being created by their own

field, let alone that of allied fields. For example, the US National Library of

Medicine (NLM) maintains a database of the titles and abstracts of biomedical

research articles called Medline (Kharazmi et al. 2014). This database currently

contains 22 million articles. Regarding the complexity of science, there is disci-

plinary isolation created by independent technical vocabularies and

non-interoperable data. This chapter will describe recent developments in informa-

tion technology (IT) that are extending the scientific paradigm in ways that promise

to increase interoperability and to support convergence by enabling connections

among otherwise isolated knowledge fragments. Early realizations of these impor-

tant developments will be highlighted.

The Rise of Information Technology and Its Impact on Science

Modern IT might be said to have begun with the telegraph in the mid-nineteenth

century or with punch card data processing at the turn of the twentieth century

(Bainbridge 2004). However, the computer surely was the steam engine of the

twentieth century. It emerged around the time of WWII and has increasingly

influenced our technological society since then (Bainbridge 2006). The computer

led to the Internet, which has integrated telecommunications into the digital revo-

lution. In the early twenty-first century, the Internet has interconnected billions of

people and computers as well as untold amounts of information.

Now the Internet is being augmented by the so-called Internet of Things (IoT), in

which billions of currently connected people and computers will be joined by

billions of connected devices such as scientific instruments, surveillance cameras,

household appliances, and environmental monitors (Pew Research Center 2014).
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These devices will contribute greatly to the flood of “big data,” which science and

society are already coping with. The IoT will accelerate the collection, processing,

and communication of digital science data, but it could also increase the amount of

non-interoperable data. Oceans of data will naturally connect the continents that

represent major fields of science and engineering, thus promoting convergence. But

convergence of multiple fields will also be required to create the IoT. For example,

Jayakumar et al. (2014) have distinguished five types of IoT, depending upon their

power supply needs:

1. Wearable devices such as smartwatches that must go several days between recharging.

2. Set-and-forget devices such as home security sensors that may operate for years without

maintenance.

3. Semi-permanent devices such as sensors that monitor bridges and other public

infrastructure.

4. Passively powered devices that lack batteries or permanent connections, such as smart

cards carried in the user’s pocket and activated by a reader machine.

5. Conventionally powered appliances, like smart kitchen microwaves, plugged into a

power outlet while perhaps wirelessly connected to Internet.

A particularly promising new related trend is called distributed manufacturing
from an industrial perspective or the Maker Movement from a popular perspective.

The movement is a social phenomenon that resurrects traditional crafting hobbies

through new technologies like 3-D printers, computer-assisted design, and online

social media for sharing creative ideas (Axup et al. 2014). The Maker Movement is

potentially far more than a hobbyist fad or an educational tool, as valuable as they

can be, because it prototypes a form of manufacturing that could end reliance upon

foreign industries and serve human needs better. In future, distributed manufactur-

ing could create most products locally, customized for local cultures and condi-

tions, in relatively small workshops employing local people who learned their skills

in the Maker Movement, connected by information technology into the Internet of

Things. Many fields of science and engineering must combine to make this vision

practical, but absolutely central are computer-based systems for product design,

coordination across a diversity of machines producing components from different

materials, and management of the nationwide supply chain and local market.

Technology has always been an enabler of science. Early examples include

Galileo and the telescope initiating modern astronomy and van Leeuwenhoek and

the microscope initiating modern biology. Since the mid-twentieth century, IT has

increasingly enabled all of science. The first electronic computers created “islands

of computation,” which quickly replaced armies of humans operating manual

calculators. The most important science application that emerged at that time was

the simulation and modeling of physical systems, which is now called computa-

tional science. Some observers have called it the third paradigm of science, placing

it alongside theory and experimentation. Others have called it a new form of theory.

Regardless of what it is called, most observers would agree it has had a profound

effect on science. An even newer application of IT to science has been called the
fourth paradigm by advocates (Hey et al. 2009). With less flair, it is also called
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data-intensive science (Agarwal et al. 2011). The IT developments highlighted here

are examples of data-intensive science and other data-intensive applications that

promote convergence and connections.

Data-Intensive Science

Data-intensive science emerged as computer storage capacities increased and costs

decreased. First, it produced “islands of information” around large computers. With

this development, huge output files, for example, from simulation runs, could be

stored for later analysis. Then, as computers connected to the increasingly high-

performance Internet, a “continent of information” was created. However, this

continent consisted of heterogeneous data that were (and still are) largely

non-interoperable. For the purposes of this chapter, interoperable data are those

which can be employed together in computer applications. This is a problem in

today’s IT world because existing databases differ in almost every imaginable way,

from having unrelated conceptual schemes for organizing the data to incompatible

data storage structures, even just within one field, such as bioscience (Sansone

et al. 2012).

Data can sometimes be made interoperable by time-consuming, expensive

manual transformations. However, the goal of interoperability is to store scientific

data in a form that such transformations can be performed automatically. One step

in this direction is to add computer readable metadata – data about the data – to

each data set. However, the form of the metadata must be sufficiently standardized

to enable computer software to find and utilize it. Where interoperability has been

achieved, such as with the Human Genome Project, major scientific advances have

occurred.

The automatic interoperability of heterogeneous data will be realized when

computers “understand” the data well enough to perform any required transforma-

tions. A similar understanding of textual information could aid science by greatly

improving scientists’ access to the articles most relevant to their research. Such an

understanding could also advance science by enabling software to automatically

deduce new results by combining results found in existing articles. Current

computer-based keyword searches of huge databases have been a great step beyond

manual searches. However, new IT developments are poised to take this activity as

far beyond keyword searches as keyword searches are beyond manual searches.

A data-intensive society is also a defining characteristic in the early twenty-first

century. As the World Wide Web was layered on top of the Internet in the early

1990s, the creation of Web pages exploded. Then search engines such as Google

were developed to organize those pages to be able to respond to user queries. Those

queries have traditionally been accomplished by means of keyword searches.

Keywords are “meaningless strings of characters” (i.e., meaningless to computers),

but they have been remarkably successful in locating pages that are often of use to

persons performing queries. However, a second generation of search engines is

emerging at this time. These new search engines can conduct “meaningful”
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searches; that is, they focus on the entities referred to by keywords rather than the

keywords themselves. Google’s characterization of second-generation search is that

the search is for “things, not strings.”

Interoperability of Heterogeneous Data

This section will focus on an approach to data management that lays a foundation

for interoperability. It is called the Digital Object Architecture (DO Architecture)

and was developed by Dr. Robert Kahn and his colleagues at the Corporation for

National Research Initiatives (CNRI) in Reston, Virginia (Kahn and Wilensky

2006; Hoang and Yang 2013). Kahn was the codeveloper of the TCP/IP protocols,

which are the foundation of the Internet, and the DO Architecture seeks to do for

non-interoperable data what the Internet did for non-interoperable networks.

Because of this analogy, a very brief (and partial) overview of the Internet archi-

tecture will be given.

The Internet is a virtual network, implemented only in software and riding on top

of underlying “real” networks implemented in telecommunications hardware. The

underlying networks are in general heterogeneous and non-interoperable. The

Internet “stitches them together” with computers called routers, each of which is

attached to two or more of the underlying networks. Ideally, every component and

level of this set of networks needs to be optimized for data-intensive science (Dart

et al. 2013).

One of the capabilities of the Internet is to enable the transfer of files from a

computer on one network to a computer on another one. The World Wide Web,

which has ridden on top of the Internet since the early 1990s, defined a protocol

called Hypertext Transfer Protocol (HTTP) that enabled the convenient sharing of

human readable information called Web pages (and now other applications such as

e-commerce). In a sense, the Web provided for the human interoperability (i.e.,

information to be read by humans) of homogeneous data (Web pages which have a

common format). A goal of the DO Architecture is to provide for machine inter-

operability of heterogeneous data. We now proceed to give an overview of the DO

Architecture and to indicate how it can provide for such interoperability.

The Digital Object Interface Protocol (DOIP) is the DO Architecture analog to

HTTP in the Web. The software of both of these systems can be visualized as an

“hourglass,” with application procedures in the top half and implementation pro-

cedures in the bottom half. At the narrow waist of the DO Architecture hourglass is

DOIP, just as HTTP is at the waist of the Web. The Web defines both Web pages

and URLs (identifiers) that resolve to Web pages, and the DO Architecture defines

digital objects (DOs) and handles (identifiers) that resolve to digital objects. AWeb

URL is composed of a computer name followed by a “/” followed by a file name,

and a handle is composed of a prefix followed by a “/” followed by a suffix (the

prefix is assigned to an organization by the handle authority, and the suffix is

assigned by that organization, but neither part is intended to be a semantically

meaningful name). The DO resolved by the handle system differs from a Web page

Information Technology Supported Convergence 283



in that it is the information about the data being referenced, not the data itself as it is
in a Web page. In other words, the DO resolved by a handle contains state
information about the data.

Two special types of digital objects are digital repositories and digital registries.

All DOs are logically contained in a digital repository, and metadata for digital

objects can be placed in separate digital registries or as part of a digital repository.

When the handle of a DO is resolved, one of the pieces of information returned is

the location of the digital repository that contains that DO.

As was stated above, the Internet can be viewed as a virtual network,
implemented only in software and relying on underlying real networks

implemented in telecommunications hardware. Similarly, the DO Architecture

can be viewed as a virtual database system, implemented only in software and

relying on underlying “real” database systems implemented in database hardware.

Handles identify data independently of the computer(s) where the data may

currently reside. With proper management, there will be no “broken links” such as

there are in the Web when a page is moved to a different computer. Another

difference is that a DO is always parsable. That is, it can be “understood” by the

software on an accessing computer because it is always in a standard form: a list of

type-value pairs. Moreover, the types are also represented as handles and, therefore,

can be resolved when the software does not understand them (but some software

will be designed to expect and therefore to understand certain type elements).

HTTP laid a foundation for, but did not provide, many of the services that Web

users expect today, such as easy-to-create and easy-to-read Web pages (via

browsers), search engines to find relevant pages (Google, Bing, etc.), e-commerce

sites (Amazon, United.com, etc.), and social media (Facebook, LinkedIn, etc.). Just

as these applications have been developed in the upper half of the Web hourglass,

many applications can be expected to emerge in the upper part of the DO Archi-

tecture hourglass. Because of this design, applications will have a built-in capability

to establish interoperability of heterogeneous data. An example of the use of the DO

Architecture to facilitate interoperability will be given below.

Creating “Knowledge Graphs” from Scientific Literature

Semantic Medline is a knowledge graph created from Medline by Dr. Thomas

Rindflesch and his colleagues at NLM. A knowledge graph can be defined as a

graph database, which is a database in which the connections between the database
elements are explicitly expressed (Pujara et al. 2013). That is, the elements are the

nodes of the graph, and the relations between the elements are the arcs of the graph.

For a convenient example in an overview of Semantic Medline, the team uses the

example of clock genes, which as the name suggests manage time-related responses

and are found apparently in all organisms, from fruit flies to humans (Rindflesch

et al. 2011). In this case, the graph is a map of related concepts, which may belong

to many different subfields of scientific research. Naturally, there are lines

connecting “clock gene” with two specific genes, Cry1 and Cry2, which support
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sensitivity to blue light and are involved in circadian rhythms that adjust behavior

over the cycle of a day. But the graph also connects to some very human problems,

including winter depression or mood disorders and even tumor growth. By

connecting concepts, a graph such as this accomplishes an effective form of

conceptual convergence.

A semantic graph database such as the Semantic Web also has built-in features to

represent taxonomies and other hierarchical information structures. A graph can,

among other ways, be represented in a computer as a collection of “triples” of the

form (element, relation, element). Semantic Medline creates a knowledge graph

from the text of the Medline abstracts. In each Medline abstract, there are “key

sentences” which describe the results of the article. These key sentences can, in

general, be restricted to the simple form subject-predicate-object. One of the

contributions of Semantic Medline is a natural language processing module

(NLP), which can find many of the key sentences in the abstracts. A related NLM

development that is utilized by Semantic Medline is the Unified Medical Language

System (UMLS), which is used to solve the synonym problem (Bodenreider 2004).

That is, it provides for a controlled vocabulary which includes a unique identifier

for each synonym class. These unique identifiers are used in the knowledge graph

constructed from the key sentences. The controlled vocabulary enables the results

of different articles to be put into a common language, thereby highlighting article

commonalities. The subject and object nouns of each key sentence are nodes in the

knowledge graph, and each predicate verb is an arc connecting its subject and

object. On the average, three key sentences are discovered by Semantic Medline in

each abstract, so 66 million key sentences currently constitute the knowledge graph.

The Semantic Medline knowledge graph can be both browsed and searched.

Browsing via a graphical user interface enables an investigator to literally see con-

nections among concepts and tie them back to the relevant abstracts. Graph search

languages such as SPARQL enable scientific discovery by connecting isolated facts

from the 22 million articles (DuCharme 2013). For example, the SPARQL query,

Select "testosterone", ?relation1, ?x, ?relation2,
"sleep_problems"

Where {
"testosterone" ?relation1 ?x.
?x ?relation2 "sleep_problems".
}

discovered two articles, the first asserting that testosterone inhibits the hormone

cortisol and the second asserting that cortisol causes sleep problems. This discovery

provided the first clue as to how decreasing testosterone in aging men might contrib-

ute to sleep problems. That is, no single researcher was aware of both articles.

As this ability to utilize the scientific record for science discovery becomes

better understood, it will spread to other disciplines. One reason it has not been

widely adopted so far is that the construction of language systems like UMLS is a

labor-intensive process. As more automated methods for creating such language
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systems emerge, this restriction will be alleviated. Assuming that the language

systems across different disciplines can be properly articulated with one another,

which will not be a simple undertaking given the international scope of science,

interdisciplinary science discovery will be facilitated (Frade et al. 2012).

A second system for creating knowledge graphs from biomedical literature has

emerged in Europe. Professor Barend Mons and his colleagues at the University of

Leiden Medical Center in the Netherlands have developed nanopublications (Mons

et al. 2011), in which the authors of publications identify and publish the key

sentences as they write their abstracts. The requirement for a controlled vocabulary

of concepts still exists, but no NLP module is required to find the key sentences.

The Semantic Medline approach is very useful for the 22 million extant articles, but

for new articles the nanopublication approach could be a viable option – if authors

agree to take on the task of identifying their key sentences. Perhaps a hybrid

approach will emerge, where Semantic Medline would be used to suggest key

sentences to the author who could then accept or modify them.

Knowledge Graphs: Science and Beyond

The “key sentences” described above as subject-predicate-object triples derived

from text also have an interpretation as assertions about data, which enables

knowledge graphs to naturally combine scientific literature and data into the same

knowledge structure (Hebeler et al. 2009; cf. Cho and Kim 2015). This combination

greatly enhances the possibilities of discovering new knowledge by mining the

scientific record. As a simple example of how triples are used to describe data,

consider a table of values where the rows represent experimental subjects and the

columns represent specific attributes (e.g., one person per row and attributes such as

weight and height in specified columns). In this context, a triple becomes subject-

attribute-value, which is in the same “triple form” as key sentences. For example, a

triple from such a table might be person1-weight-150, attributing a weight of

150 units to a specified individual human being. A controlled vocabulary

representing the row and column names is required as it is for key sentences.

Converting tables into triples is easier than converting text, and such conversions

of “structured data” has begun to occur. For example, DBpedia has converted the

tabular parts of Wikipedia into triple form (Bizer et al. 2009).

Any data table can also be represented as a DO. That is, a handle can be created

that dereferences to a DO that contains state information about the table. That state

information includes identifying the data as a table and indicating the number of

rows and columns and the format of the data values. If the metadata also includes

the controlled vocabulary information for the row and column headers, it would be

a straightforward programming task to convert any such table into triples for a

knowledge graph. At this time, however, the construction of the DO pointing to the

data table may itself be a manual task. Assuming the DO Architecture comes into
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general use, the creation of a DO for a data table could be automated, just as the

creation of an HTML version of a document can be automated by a word processing

system.

Finally, another possible use of the DO Architecture could be the use of handles

to represent entities. As discussed above, UMLS and other entity systems determine

the classes of synonyms (the entities) and assign a unique identifier to each one. In

the Semantic Web implementation of a knowledge graph, the unique identifier is an

International Resource Identifier (IRI). However, IRIs derive from Web URLs and

hence at least appear to involve the names of computers rather than the computer-

independent DO reference provided by handles.

As mentioned above, the effort to help computers better understand human

intentions has moved into the quest for “second-generation search engines.” This

section focuses on Google’s developments as an early example, but other vendors

have signaled their intent to develop similar services (e.g., Microsoft announced

that its Bing search engine will have a digital assistant called Satori

Knowledge Base).

The Google Knowledge Graph and the related Knowledge Vault (Dong

et al. 2014) will support three new dimensions for search: answer, converse, and

anticipate. First, second-generation search will increasingly be able to answer

questions rather than just identifying documents that may contain answers. (There

currently exist several “answer engines,” such as Wolfram Alpha, with similar

goals.) Second, conversing might begin with disambiguation (e.g., “Do you mean

jaguar the animal or jaguar the car?”) and proceed to supporting additional search

depth. Finally, Google can use the accumulated information from other searches to

anticipate next search questions (e.g., “Previous searchers for jaguar the animal

next searched for. . .”).
As of 2012, the Google Knowledge Graph contained more than 500 million

entities and billions of facts related to those entities. These numbers already dwarf

the several million entities and 66 million facts that Semantic Medline has assem-

bled. Thus, the “big data” dimension of computer semantics is being accommo-

dated, just as the big data dimension Web search was accommodated by the

development of novel “Web organizing” systems such as MapReduce developed

by Google.

A Range of Possibilities

A dozen years ago, the Interagency Working Group of Information Technology

Research and Development identified a list of grand challenges, long-term scientific

advances that require information technology breakthroughs and would benefit

humanity. The first priority identified by this team was Knowledge Environments
for Science and Engineering, defined through these introductory sections of a

substantial analysis (Strawn et al. 2003, p. 12):
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Description of the Multi-Decade Grand Challenge

Organize and make broadly available distributed resources such as supercomputers, data

archives, distant experimental facilities, and domain-specific research tools to enable

new scientific discoveries and education across disciplines and geography

Focus in the Next Ten Years

Understand the needs of scientists and how science is changing (for example, data sets are

more complex and teams are more interdisciplinary)

Increase access to computing systems, archives, instruments, and facilities

Build on successful experiments:

Upper Atmospheric Research Collaboratory (UARC) and Space Physics and Aeronomy

Research Collaboratory (SPARC)

Network for Earthquake Engineering Simulations (NEES)

Biomedical Informatics Research Network (BIRN)

National Virtual Observatory (NVO)

Benefits

New discoveries across disciplines (for example, discoveries in one field can apply to other

fields)

Establish new fields of science and engineering

Clearly, there has been tremendous progress since this report was published, and

we have passed the end of the decade on which it primarily focused. Yet, this grand

challenge could legitimately be made again, in essentially the same language,

because progress has been a matter of degree, and we can reasonably imagine

much more progress in the coming years. The discussion of this grand challenge

went into some detail about what the technological challenges were, but its con-

cluding section listed points that could be applied much more broadly (Strawn

et al. 2003, p. 13):

Indications of Progress

More users of distributed science and engineering environments

More distributed science and engineering collaborations

More scientists and engineers in remote parts of the country

New tools and applications for more areas of science and engineering

New science and engineering ideas and innovations

Scientists and engineers achieve their goals more efficiently and effectively

More “hands-on” science education in K-12 and undergraduate school

The terms “distributed and remote” directly suggest convergence, and most

“new tools and applications” would be valuable for multiple fields of research

and development, thereby linking them. Convergence does not necessarily mean

uniformity, however. This chapter has stressed the importance of connecting

diverse sources of data that may have been assembled in different frameworks

but have some commonality of conceptualization or domain. In many ways, human

knowledge is far more chaotic that it could or should be, and much of the scientific

and engineering effort needs to be invested in mastering that chaos. But an

important part of success in that Herculean effort will be recognizing when funda-

mental commonalities do not exist and diversity must be maintained. For example,

even within one field, there may be competing paradigms that would categorize

data very differently. But that can be a good thing, because bringing the paradigms
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together can result in new theory or theories in parallel rather than uniformity

(Lewis and Grimes 1999).

A classic example relevant to the topic of this chapter is the constant but

incomplete enthusiasm for propositional logic, production systems, or rule-based

reasoning throughout the history of artificial intelligence. Alternative exists, such as

neural networks of probabilistic methods. It is noteworthy that AI-pioneer Allen

Newell (1990) titled his classic book on this topic, Unified Theories of Cognition,
asserting that human and machine cognition could be explained by the same

theories and directly promoting convergence. The general approach is to construct

a system of propositions or if-then rules, based on clear definitions and axioms,

logically deriving a potentially complex system of statements from rather simple

elements. Superficially, this looks like divergence, but it actually achieves conver-

gence of many empirically supported observations by finding a closed set of

principles from which their complexity can be derived. Indeed, explanation

becomes a form of convergence.

However, as in constructing a factory or a cathedral, much of the intellectual

work of science as well as engineering requires assembly of many parts into larger

structures. In a historically grounded analysis of theory in physics, Olivier Darrigol

(2008, p. 196) describes this balance between divergence and convergence:

any non-trivial theory has essential components, or modules, which are themselves theories

with different domains of application. Even in alleged cases of reduction, modules remain

indispensable because they play an essential role in the construction, verification, applica-

tion, and comparison of theories. In this view, the heterogeneity of physical theory is best

understood as modular structure; most of its unity rests on the sharing of modules.

Principles such as these can be applied to social science, as well as to physics and

artificial intelligence. Barry Markovsky (2010) has applied the same logic to small

group theory in sociology and social psychology, even citing Darrigol specifically.

As George Homans (1950) pointed out in his classic The Human Group, individuals
seek gratifying rewards but seldom can obtain them without help. Therefore, they

form small groups of cooperating individuals, who come to conceptualize their

aggregation as a valuable entity in its own right. Markovsky notes that modular

theory requires development of explicit definitions of terms, distinct propositions

stating meaningful principles, and logical rules for deriving hypotheses. Just as this

approach can build a theory of small groups by assembling principles about

individual behavior, principles about individuals and small groups can be assem-

bled to produce rigorous theories of large societies. Within those vast social

systems, hypotheses about science may be assembled with hypotheses about com-

mercial institutions to produce a general theory of technological advance.

The fact that commercial search engine vendors are entering the field of com-

puter semantics is a very good signal that the research phase of this field is about to

give way to the early adopters phase, as modular theory might deduce. And these

commercial systems will contribute to the development of additional systems for

science like Semantic Medline, just as science systems will contribute to the further
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development of commercial systems. In other words, another important public-

private partnership is emerging in the dynamic IT industry. Similarly, the emer-

gence of a commercial Internet of Things and the associated cyber-physical systems

that are being built on top of it have a strong need for data interoperability, such as

enabled by the Digital Object Architecture. Here, too, a public-private partnership

is emerging that will serve the needs of both science and society.

The convergence of scientific knowledge is hampered by the size and complex-

ity of science and the scientific record. We must improve our ability to find

connections within and among the various science domains if convergence is to

proceed unimpeded. As the scientific record, both data and articles, are digitized

and made interoperable, an important barrier to the convergence of scientific

knowledge will be reduced. Systems such as the Digital Object Architecture,

Semantic Medline, and nanopublications will be applied to more, perhaps all,

science fields, as well as fields beyond the science and technology enterprise, as

the Google Knowledge Graph demonstrates. These systems, applications of the

fourth paradigm of science, will increasingly contribute to the convergence of

knowledge.
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