
Solving the Quorumcast Routing Problem as a Mixed
Integer Program

Quoc Trung Bui1, Quang Dung Pham2, and Yves Deville1
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Abstract. The quorumcast routing problem is a generalization of multicasting
which arises in many distributed applications. It consists of finding a minimum
cost tree that spans the source node and at least q out of m specified nodes on
a given undirected weighted graph. In this paper, we solve this problem as a
mixed integer program. The experimental results show that our four approaches
outperform the state of the art. A sensitivity analysis is also performed on values
of q and m.

1 Introduction

Multicasting is the problem of delivering a message from a source to a given subset
of nodes, called the multicast nodes, in a network. Suppose given an undirected graph
G = (V,E, c), i.e., V,E are, respectively, the set of nodes and the set of edges. Suppose
further that each edge (i, j) ∈ E is associated with a positive cost cij ∈ R

+. Now, given
a set of multicast nodes S ⊆ V , an integral value q ≤ |S|, and a root node r (without
loss the generality, we may assume that r ∈ S), the objective of the quorumcast routing
problem (QRP) is to find a minimum cost tree T that spans r and at least q nodes
of S [5,24,12,32,29]. QRP is NP-hard, as it reduces to the Steiner tree problem [14]
when q = |S|. QRP appears in many distributed applications, for example, distributed
synchronization and updating a replicated resource (see [5] for more details).

For solving QRP, various incomplete approaches to computing an approximation of
the optimal solution have been proposed in [5,12,32,29], in which the constraint-based
local search algorithm in [29] is currently the state of the art incomplete algorithm. In
addition, two exact algorithms in [24,29] have been proposed for solving this problem
to optimality. In [24], a partial solution is defined to be a set of sub-trees that spans
the root and some multicast nodes; a partial solution is extended by adding one edge at
each step until a feasible solution is constructed; a Confined Area Pruning scheme was
introduced that allows reducing that search space. The Constraint Programming (CP)
approach in [29] is currently th state of the art exact algorithm.

Contributions. In this paper, we propose four mathematical formulations for QRP and
use them to solve QRP as a mixed integer program. These approaches outperform the
state of the art approach based on CP. In addition, through the experimental results, we
show the effect of the values q and |S| on the performance of the proposed approaches.
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2 Mathematical Models

In this section, we propose four mathematical models for QRP. One is proposed directly
on the undirected graph G, and the others are proposed on the corresponding directed
graph of G that is formed by replacing each edge of G by two opposite arcs with the
same cost as the original edge.

These models can exploit the properties of QRP solutions. Let T be a solution of
QRP (q,m) on a graph G. One can easily show that (1) all leaf nodes of T are multicast
nodes [24], and (2) T spans exactly q multicast nodes.

All the models use the binary variables xij stating whether edge (i, j) is in the solu-
tion tree T . (In the undirected graph, we use the convention that i < j). All the models
aim at minimizing

∑
(i,j)∈E cijxij .

2.1 Natural Formulation: Model 1

In this section, we propose a formulation on the undirected graph G = (V,E), called
“the natural formulation.” Many problems have been modeled by similar formulations
[3,27,16,13,26,1]. This model introduces binary variables yi stating whether node i is
in T .

∑

i,j∈C:(i,j)∈E

xij ≤ |C| − 1, ∀C ⊂ V, 2 ≤ |C| ≤ |V | − 1 (1a)

∑

(i,j)∈E

xij +
∑

(j,i)∈E

xji ≥ yi, ∀i ∈ V (1b)

∑

(i,j)∈E

xij +
∑

(j,i)∈E

xji ≤ (|V | − 1)yi, ∀i ∈ V (1c)

1 +
∑

(i,j)∈E

xij =
∑

v∈V

yv (1d)

yr = 1 (1e)
∑

v∈S

yv = q (1f)

xij ∈ {0, 1}, ∀(i, j) ∈ E (1g)

yi ∈ {0, 1}, ∀i ∈ V (1h)

In this model, the constraints (1a) are connectivity constraints (or subtour elimination
constraints). The constraints (1b) and (1c) ensure that if v ∈ T , then yv = 1, and if
v /∈ T , then yv = 0. The constraint (1d) presents a basic property of a tree that requires
the relation between the number of nodes and the number of edges. The constraints (1f)
ensure that T includes exactly q multicast nodes (Property (2)). Finally, the constraint
(1e) ensures that the root r is always in T . Notice that Property (1), stating that all leaf
nodes are multicast nodes, could also be included, but experimental results have shown
that it is useless here as well as in all subsequent models. It is therefore not considered.

In this model, there are |E|+ |V | variables and an exponential number of constraints.



Solving the Quorumcast Routing Problem as a Mixed Integer Program 47

2.2 Formulation Based on Multi-commodity Flows: Model 2

In this section, we propose a multi-commodity flow formulation on the corresponding
directed graph G′ = (V,A). In the literature, many problems have been modeled using
multi-commodity flows [16,10,7,17]. However, this problem is slightly more complex,
as we do not know which multicast nodes are spanned.

This model introduces variables ykij ∈ R
+ measuring the flow, through arc (i, j) ∈

A, from the root node r to a node k ∈ V \ {r}.

∑

(r,i)∈A

(ykri − ykir) ≤ 1, ∀k ∈ V (2a)

∑

k∈S,k �=r,(r,i)∈A

(ykri − ykir) = q − 1 (2b)

∑

(k,i)∈A

(ykki − ykik) ≥ −1, ∀k ∈ V (2c)

∑

k∈S,k �=r,(k,i)∈A

(ykki − ykik) = −(q − 1) (2d)

∑

(j,i)∈A

(ykij − ykji) = 0, ∀k ∈ V, i ∈ V \ {k, r} (2e)

ykij ≤ xij , ∀(i, j) ∈ A, ∀k ∈ V ∪ {r} (2f)

ykij ≥ 0, ∀(i, j) ∈ A, ∀k ∈ V ∪ {r} (2g)

xij ∈ {0, 1}, ∀(i, j) ∈ V (2h)

In this model, the constraints (2f) ensure that a flow is sent along an arc only if the arc
is traversed. The constraints (2b), (2d) and (2e) ensure that there exists a flow from the
root r to q nodes in S (note that we assumed that r is a multicast node). The constraints
(2a), (2c) and (2e) are flow conserving constraints.

In this model, there are |A| × |S| variables and a polynomial number of constraints.

2.3 Classical Formulation: Model 3

In this model, we propose a formulation, called “the classical formulation,” on the cor-
responding directed graph G′ = (V,A). In the literature, many similar formulations
have been proposed for problems related to finding a spanning tree [15,22,26,29].

xir = 0, ∀(i, r) ∈ A (3a)
∑

(r,i)∈A

xri ≥ 1 (3b)

∑

u/∈C,v∈C,(u,v)∈A

xuv ≥
∑

(j,i)∈A

xji, ∀C ⊂ V, 2 ≤ |C| ≤ |V | − 1, ∀i ∈ C, r /∈ C (3c)
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∑

(i,j)∈A

xij ≤ 1, ∀j ∈ V (3d)

∑

i∈S,i�=r,(j,i)∈A

xji = q − 1 (3e)

xij ∈ {0, 1}, ∀(i, j) ∈ A (3f)

In this model, the constraints (3a) indicate that there are no arcs arriving at r. The
constraint (3b) ensures that there exists at least one arc leaving r. The constraints (3c)
are connectivity constraints (see [11,6,19,22] for more details about the connectivity
constraints). The constraint (3e) ensures that the optimal tree T ′ includes exactly q
multicast nodes.

In this model, there are |A| variables corresponding to the number of arcs in the
corresponding directed graph G′, and an exponential number of constraints in (3c).

2.4 Miller–Tucker–Zemlin Formulation: Model 4

In this model, we propose a formulation using Miller–Tucker–Zemlin constraints as
connectivity constraints on the corresponding directed graph G′ = (V,A) [28,21].

This model introduces variables ti constrained by ti ≤ tj if arc (i, j) ∈ T . These
constraints prevent subtours in the solution. The variables pi state whether or not node
i is in T ′.

pr = 1 (4a)

xir = 0, ∀(i, r) ∈ A (4b)
∑

(r,i)∈A

xri ≥ 1 (4c)

∑

(i,j)∈A

xij = pj , ∀j ∈ V \ {r} (4d)

xij ≤ pi, ∀(i, j) ∈ A (4e)

|V |xij + ti + 1 ≤ tj + |V |, ∀(i, j) ∈ A (4f)

1 +
∑

(i,j)∈A

xij =
∑

v∈V

pv (4g)

∑

i∈S

pi = q (4h)

xij ∈ {0, 1}, ∀(i, j) ∈ A (4i)

pi ∈ {0, 1}, ∀i ∈ V (4j)

ti ∈ {1 . . . |V |}, ∀i ∈ V (4k)

In this model, the constraints (4f) present the relative position of the nodes in the
tree. They state that if xij = 1, then ti < tj . This prevents the solution from containing
subtours. The constraints (4c) ensure that the root node r must connect to other nodes
in the arborescence tree.

In this model, there are (|A| + 2 × |V |) variables and a polynomial number of con-
straints.
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3 Solving QRP as a Mixed Integer Program

In this section, we propose four different approaches, based on the above models, to
solve QRP. Model 2 and Model 4 have a polynomial numbers of variables and con-
straints. They can be directly used in a MIP solver (CPLEX). These approaches will
be denoted Mod2 B&B and Mod4 B&B. Model 1 and Model 3 have an exponential
number of constraints. The constraints are relaxed, and Branch & Cut approaches are
employed.

3.1 Lazy Constraint Approach

This approach is applicable to Model 1 and Model 3, where connectivity constraints
(1a) and (3c) are considered as lazy constraints. The linear programming relaxation of
the initial model without lazy constraints is solved. All isolated components are identi-
fied for every feasible integral solution that is not yet feasible. If a solution to a linear
programming relaxation is feasible, then there is no isolated component. To check for
isolated components, we use the union-find data structure [9,18]. If there is only one
component, then the solution is feasible. Otherwise, there is a cycle in some compo-
nents, a lazy constraint is then added for each component as follows. For Model 3, C is
the set of all nodes of the component and i is a random node in C; for Model 1, C is the
set of all nodes of the component. All these lazy constraints are then added directly to
the model, and the linear programming relaxation of the current model is reoptimized.
This procedure is repeatedly executed until an optimal solution has been found. The
two corresponding approaches will be denoted Mod1 B&C lazy and Mod3 B&C lazy.

3.2 Dynamic Constraint Separation Approach

This approach can be applied to Model 3, where connectivity constraints (3c) are dy-
namically separated [11]. This approach, denoted by Mod3 B&C dyn, finds violated
connectivity constraints on the support graph. Given a solution x∗ to a linear program-
ming relaxation (containing all connectivity constraints separated so far), the support
graph G∗ of x∗ has all nodes V and edges {(i, j) ∈ E : x∗

ij > 0}[4].
This approach consists of two stages. First, the support graph is checked for iso-

lated components not connected to the root node. For each isolated component, only
constraint (3c) is added to the current model, where C is the set of all nodes in the
isolated component and i is a random node in C. Second, if the support graph has
only one component that includes the root node r, a maximum r − v−flow/minimum
r−v−cut problem is solved for each node v 	= r in the component. To solve maximum-
flow/minimum-cut problems, we use code written by Skorobohatyj [30]. A maximum
flow that is less than the absolute inflow to v indicates a violated connectivity constraint
(3c), in which C are all nodes on the same side of the r − v cut as v (of course node i
in the constraint is the node v).

3.3 Preprocessing

Different reduction checks have been proposed for the minimum Steiner tree problem
and others [22,19,25,31,23,2]. In the preprocessing of QRP, the following check for
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useless nodes is useful. It is performed on the undirected graph G. If a node is not a
multicast node and its degree is only one, then this node (and its edge) can be removed
from the graph G. If a node v is not a multicast node with exactly two neighbors u and
w, then the node v and the edges (u, v) and (v, w) can be removed. If there exists an
edge (u,w) with cost cuw, this cost is updated to min(cuw, cuv + cvw). Otherwise, an
edge (u,w) is added with cost cuv + cvw. These checks can be applied iteratively until
the graph remains unchanged. In practice, we limit ourselves to three iterations. Other
reductions were considered, but they had only very marginal impact.

4 Computational Experiments

In [29], our approach based on CP was tested on 960 random instances, with the largest
graph having 60 nodes. It was shown that the CP approach was better than the exist-
ing state of the art complete approaches. We reuse these instances. We collect these
instances into a class called C1.

We also collect 2500 instances in a class C2, generated from 100 undirected graphs
of 160 nodes and 25 couples 〈q, |S|〉, ranging from {〈3, 20〉 to 〈119, 140〉 }. These 100
undirected graphs were extracted from 100 minimum Steiner tree instances of test set
I160 in the library SteinLib [20]. The multicast nodes were randomly chosen.

All MIP approaches were implemented in C++, using IBM Ilog Cplex Concert Tech-
nology, version 12.4. The standard Cplex cuts were automatically added. The CP ap-
proach in [29] was implemented in Comet [8]. Finally, all experiments were performed
on XEN virtual machines with 1 core of a CPU Intel Core2 Quad Q6600 @2.40GHz
and 1GB of RAM. The time limit for each execution of an algorithm was 30 minutes.

4.1 Comparing the Approaches

We first compare the MIP approaches as well as the CP approach from [29]. Figure 1
gives a summary of the experimental results. The columns have the following meanings:
%opt is the percentage of instances solved to optimality within the time limit of 30
minutes; I is the average number of iterations; N is the average of the number of nodes
in the branch-and-bound tree; C is the average of the number of separated constraints; T
is the average computational time in seconds (on the solved instances). Figure 2 shows
the evolution of the percentage of solved instances in C2 with respect to the time limit.

It is clear that all the MIP approaches significantly outperform the CP approach. In
the class C1, the MIP approaches are two orders of magnitude faster than CP. In the
class C2, CP only solved two instances out of 2500, while Mod4 B&B solved 95.2% of
the instances. In Figures 1 and 2, there is no major difference between Mod3 B&C lazy
and Mod4 B&B, nor between Mod1 B&C lazy and Mod3 B&C dyn. It is clear that
Mod3 B&C lazy and Mod4 B&B are the best two approaches, both in the percentage
of solved instances and in the execution time. The approach Mod2 B&B is the worst
among the MIP approaches, although it develops few nodes. The low number of nodes
results from the fact that the integer relaxation version of this model is quite close to the
optimal solution [17]. It is worth noting that Mod3 B&C dyn has the smallest number
of iterations. This mainly comes from the dynamic constraint separation approach,
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Class Approach %opt I N C T

C1 CP 97.1 na. na. na. 80.47
Mod1 B&C lazy 100 441.7 50.43 6.58 0.57
Mod2 B&B 100 2159 1.38 na. 1.06
Mod3 B&C lazy 100 398.8 77.51 81.42 0.35
Mod3 B&C dyn 100 308.2 3.69 158.1 1.94
Mod4 B&B 100 506.2 55.9 na. 0.64

C2 CP 0.08 na. na. na. 9.74
Mod1 B&C lazy 78.6 92804 8507 1110 150.9
Mod2 B&B 60.2 66716 7.05 na. 318.6
Mod3 B&C lazy 94.4 30938 2312 1077 97.6
Mod3 B&C dyn 77.2 8408 54.64 6089 153.0
Mod4 B&B 95.2 50327 6138 na. 92.8

Fig. 1. A summary of computational results for two classes of instances

Fig. 2. Percentage of solved instances in C2 in given times

which produces smaller and thinner branch-and-bound trees. However, the number of
added constraints is much larger.

Although not reported here for reasons of space, the experimental results also showed
that Property (2) of the QRP solutions (Section 2) is very useful in all the models pro-
posed in this paper. For example, this property helps this model to solve 6.2% more
instances of class C2.

4.2 Effect of the Values of q and |S| on the Performance of the Approaches

We analyze the sensitivity of the performance to the value of q and the size of the
multicast node set. We divided the instances of class C2 into two sets of groups. In the
first set, a group contains instances of the same size of multicast node set. The groups
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G20 (resp. G50, G80, G110 and G140) consist of all instances with |S| = 20 (resp.
50, 80, 110 and 140). In the second set, a group contains 500 instances with similar q

|S| .
The groups G1 through G5 split the instances from the smallest to the largest values
of q

|S| .

Fig. 3. Comparing MIP approaches in solving groups of instances with respect to the percentage
of solved instances

The experimental results for each group are given in Figure 3. First, the different
approaches have differing sensitivities to q. The instances in group G5 are more diffi-
cult to solve than those in the other groups, except for Mod2 B&B. When considering
the ratio q

|S| , Mod3 B& lazy and Mod3 B& dyn are better for high value of this ratio,
while the other approaches are worse. These results also confirm that Mod3 B&C lazy
and Mod4 B&B are the two best approaches. However, there is a significant difference
between these two approaches when the number of multicast nodes varies. A portfolio
approach could be used to select Mod4 B&B for low values of |S|, and Mod3 B&C lazy
for high values.

5 Conclusion

This paper solved the quorumcast routing problem to optimality as a mixed integer pro-
gram. In this paper, we proposed four mathematical formulations for QRP. We then
solved QRP to optimality as a mixed integer program, introducing two constraint re-
laxations. The computational results showed that the MIP approaches are much more
efficient than the state of the art approach (which is based on Constraint Programming).
In addition, we showed that two of the approaches, Mod3 B&C lazy and Mod4 B&B,
are the two best ones. Finally, experimental results pointed out that the different ap-
proaches have different sensitivities to the parameters q and the size of the multicast
node set. As future research, new separation constraints could be investigated.
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