
Parallel Combinatorial Optimization

with Decision Diagrams

David Bergman1, Andre A. Cire2, Ashish Sabharwal3,
Horst Samulowitz3, Vijay Saraswat3, and Willem-Jan van Hoeve2

1 School of Business, University of Connecticut, Stamford, CT 06901
david.bergman@business.uconn.edu

2 Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA 15213
{acire,vanhoeve}@andrew.cmu.edu

3 IBM Watson Research Center, Yorktown Heights, NY 10598
{samulowitz,ashish.sabharwal,vsaraswa}@us.ibm.com

Abstract. We propose a new approach for parallelizing search for
combinatorial optimization that is based on a recursive application of
approximate Decision Diagrams. This generic scheme can, in principle,
be applied to any combinatorial optimization problem for which a de-
cision diagram representation is available. We consider the maximum
independent set problem as a specific case study, and show how a re-
cently proposed sequential branch-and-bound scheme based on approx-
imate decision diagrams can be parallelized efficiently using the X10
parallel programming and execution framework. Experimental results
using our parallel solver, DDX10, running on up to 256 compute cores
spread across a cluster of machines indicate that parallel decision dia-
grams scale effectively and consistently. Moreover, on graphs of relatively
high density, parallel decision diagrams often outperform state-of-the-art
parallel integer programming when both use a single 32-core machine.

1 Introduction

In recent years, hardware design has increasingly focused on multi-core systems
and parallelized computing. In order to take advantage of these systems, it is
crucial that solution methods for combinatorial optimization be effectively par-
allelized and built to run not only on one machine but also on a large cluster.

Different combinatorial search methods have been developed for specific prob-
lem classes, including mixed integer programming (MIP), Boolean satisfiability
(SAT), and constraint programming (CP). These methods represent (implic-
itly or explicitly) a complete enumeration of the solution space, usually in the
form of a branching tree where the branches out of each node reflect variable
assignments. The recursive nature of branching trees suggests that combina-
torial search methods are amenable to efficient parallelization, since we may
distribute sub-trees to different compute cores spread across multiple machines
of a compute cluster. Yet, in practice this task has proved to be very challeng-
ing. For example, Gurobi, one of the leading commercial MIP solvers, achieves

H. Simonis (Ed.): CPAIOR 2014, LNCS 8451, pp. 351–367, 2014.
c© Springer International Publishing Switzerland 2014

352 D. Bergman et al.

an average speedup factor of 1.7 on 5 machines (and only 1.8 on 25 machines)
when compared to using only 1 machine [18]. Furthermore, during the 2011 SAT
Competition, the best parallel SAT solvers obtained a average speedup factor
of about 3 on 32 cores, which was achieved by employing an algorithm portfo-
lio rather than a parallelized search [20]. In our experimentation, the winner of
the parallel category of the 2013 SAT Competition also achieved a speedup of
only about 3 on 32 cores. Constraint programming search appears to be more
suitable for parallelization than search for MIP or SAT: different strategies, in-
cluding a recursive application of search goals [24], work stealing [14], problem
decomposition [25], and a dedicated parallel scheme based on limited discrepancy
search [23] all exhibit good speedups (sometimes near-linear) of the CP search in
certain settings, especially those involving infeasible instances or scenarios where
evaluating search tree leaves is costlier than evaluating internal nodes. Yet, re-
cent developments in CP have moved towards more constraint learning during
search, for which efficient parallelization becomes increasingly more difficult.

In general, search schemes relying heavily on learning during search (such as
learning new bounds, activities for search heuristics, cuts for MIP, nogoods for
CP, and clauses for SAT) tend to be more difficult to efficiently parallelize. It
remains a challenge to design a robust parallelization scheme for solving combi-
natorial optimization problems which must necessarily deal with bounds.

Recently, a branch-and-bound scheme based on approximate decision dia-
grams was introduced as a promising alternative to conventional methods (such
as integer programming) for solving combinatorial optimization problems [5, 7].
In this paper, our goal is to study how this branch-and-bound search scheme can
be effectively parallelized. The key observation is that relaxed decision diagrams
can be used to partition the search space, since for a given layer in the diagram
each path from the root to the terminal passes through a node in that layer.
We can therefore branch on nodes in the decision diagram instead of branching
on variable-value pairs, as is done in conventional search methods. Each of the
subproblems induced by a node in the diagram is processed recursively, and the
process continues until all nodes have been solved by an exact decision diagram
or pruned due to reasoning based on bounds on the objective function.

When designing parallel algorithms geared towards dozens or perhaps hun-
dreds of workers operating in parallel, the two major challenges are i) balancing
the workload across the workers, and ii) limiting the communication cost be-
tween workers. In the context of combinatorial search and optimization, most of
the current methods are based on either parallelizing the traditional tree search
or using portfolio techniques that make each worker operate on the entire prob-
lem. The former approach makes load balancing difficult as the computational
cost of solving similarly sized subproblems can be orders of magnitude differ-
ent. The latter approach typically relies on extensive communication in order to
avoid duplication of effort across workers.

In contrast, using decision diagrams as a starting point for parallelization
offers several notable advantages. For instance, the associated branch-and-bound
method applies relaxed and restricted diagrams that are obtained by limiting the

Parallel Combinatorial Optimization with Decision Diagrams 353

size of the diagrams to a certain maximum value. The size can be controlled,
for example, simply by limiting the maximum width of the diagrams. As the
computation time for a (sub)problem is roughly proportional to the size of the
diagram, by controlling the size we are able to control the computation time. In
combination with the recursive nature of the framework, this makes it easier to
obtain a balanced workload. Further, the communication between workers can
be limited in a natural way by using both global and local pools of currently open
subproblems and employing pruning based on shared bounds. Upon processing a
subproblem, each worker generates several new ones. Instead of communicating
all of these back to the global pool, the worker keeps several of them to itself
and continues to process them. In addition, whenever a worker finds a new
feasible solution, the corresponding bound is communicated immediately to the
global pool as well as to other workers, enabling them to prune subproblems that
cannot provide a better solution. This helps avoid unnecessary computational
effort, especially in the presence of local pools.

Our scheme is implemented in X10 [13, 26, 28], which is a modern program-
ming language designed specifically for building applications for multi-core and
clustered systems. For example, Bloom et al. [11] recently introduced SatX10 as
an efficient and generic framework for parallel SAT solving using X10. We refer
to our proposed framework for parallel decision diagrams as DDX10. The use of
X10 allows us to program parallelization and communication constructs using
a high-level, type checked language, leaving the details of an efficient backend
implementation for a variety of systems and communication hardware to the
language compiler and run-time. Furthermore, X10 also provides a convenient
parallel execution framework, allowing a single compiled executable to run as
easily on one core as on a cluster of networked machines.

Our main contributions are as follows. First, we describe, at a conceptual level,
a scheme for parallelization of a sequential branch-and-bound search based on
approximate decision diagrams and discuss how this can be efficiently imple-
mented in the X10 framework. Second, we provide an empirical evaluation on
the maximum independent set problem, showing the potential of the proposed
method. Third, we compare the performance of DDX10 with a state-of-the-art
parallel MIP solver, IBM ILOG CPLEX 12.5.1 . Experimental results indicate
that DDX10 can obtain much better speedups than parallel MIP, especially when
more workers are available. The results also demonstrate that the parallelization
scheme provides near-linear speedups up to 256 cores, even in a distributed set-
ting where the cores are split across multiple machines.

The remainder of the paper is structured as follows. In Section 2 we provide
a brief overview of the sequential branch-and-bound algorithm based on ap-
proximate binary decision diagrams, specifically in the context of the maximum
independent set problem. We then, in Section 3, describe how the algorithm is
well-suited for parallelization, and describe our framework. We report on exper-
imental results in Section 4 and conclude in Section 5.

354 D. Bergman et al.

2 Review: Branch-and-Bound with Decision Diagrams

Binary decision diagrams (BDDs) were originally introduced to represent Boolean
functions in the context of circuit design and formal verification [1, 12, 22]. More
recently, BDDs, and more generally multi-valued decision diagrams (MDDs),
have been successfully applied to represent the solution set to arbitrary discrete
optimization problems, with applications in constraint programming [2, 6, 19],
disjunctive scheduling [15], and general discrete optimization [4, 5, 7–10].

In this section, we briefly summarize the branch-and-bound search scheme
based on decision diagrams proposed by Bergman [5] which was further ex-
tended by Bergman, Cire, van Hoeve, and Hooker [7]. It can be applied to any
combinatorial optimization (and more generally discrete optimization) problem
for which a decision diagram representation is available. For clarity, we discuss
the application to the maximum independent set problem, although the pre-
sented techniques are generally applicable. (Bergman et al. [7] report results for
the maximum independent set, maximum 2-SAT, and maximum cut problems.)

2.1 Maximum Independent Set Problem and BDDs

Given a graph G = (V,E), V = {1, . . . , n}, an independent set I is a subset
I ⊆ V for which no two vertices in I are connected by an edge in E. Given a non-
negative weight wj for each vertex j ∈ V , the maximum independent set problem
(MISP) asks for an independent set of G with maximum total weight. The MISP
is equivalent to the maximum clique problem (in the complement graph) and
finds application in areas ranging from data mining [17] to bioinformatics [16]
and social network analysis [3].

We next describe how we can represent all independent sets of G using a
binary decision diagram. To this end, we let I(G) be the family of independent
sets in G, and v∗(G) the value of a maximum independent set in G. Let the
neighborhood of j ∈ V be N(j) = {j′ : (j, j′) ∈ E}. In addition, for any subset
V ′ ⊆ V, let G[V ′] be the graph induced by V ′.

For our purposes, a binary decision diagram (BDD) B = (U, �, A, d) for a
graph G = (V,E) is a directed graph with nodes U and arcs A. The mapping
� : U → {1, . . . , n+ 1} associates a layer with each node in U and the mapping
d : A → {0, 1} associates an arc-domain with each arc in A. For an arc a = (u, u′)
in A with �(u) = j, we define its weight w(a) as wj if d(a) = 1 and 0 otherwise.
We impose conditions that ∀a = (u, u′) ∈ A, �(u) < �(u′) and that there exist
two special nodes r, t (the root and terminal, respectively) which are the unique
nodes with �(r) = 1, �(t) = n + 1. With these conditions, B is acyclic, and all
maximal paths connect r to t. Let B|u,u′ be the subgraph of B induced by the
nodes that belong on some u, u′ path in B.

Paths in B correspond to subsets of V as follows. Let p = (a1, . . . , ak) be
any path in B with ai = (ui, u

′
i) for i = 1, . . . , k. Denote by V (p) the subset of

vertices of V that are associated with the domains of the arcs in p, i.e. V (p) =
{j : d(ai) = 1, �(ui) = j} ⊆ V . In this way, if P(B) is the set of all r − t paths
in B, then the family of subsets of V represented by B is given by Sol(B) =

Parallel Combinatorial Optimization with Decision Diagrams 355

13

2

4

3

2

4

2

5

7

Fig. 1. Graph with vertex weights for the MISP

x1

x2

x3

x4

x5

r
0 3

04 0

0 2 0 0

0 2
0

t
0

7
0

(a)

r
0 3

0 4 0

0
2 0

0 2
0

t
0

7
0

(b)

r
0 3

0 0

2
0

0

0 2
0

t
0

7
0

(c)

Fig. 2. Representing/approximating independent sets of the graph in Figure 1 with
an exact BDD (a), relaxed BDD (b), and restricted BDD (c). Each layer in a BDD
corresponds to binary decision xi, where a dashed arc represents excluding vertex i,
and a solid arc represents including vertex i.

∪p∈P(B)V (p). B is exact for G if Sol(B) = I(G) and is relaxed (resp. restricted)
if Sol(B) ⊇ I(G)(resp.Sol(B) ⊆ I(G)). The weight w(p) of a path p ∈ P(B)
corresponds to the weight of the subset represented by p: w(p) =

∑
a∈p w(a).

We therefore have that the maximum path weight in B, z∗(B), equals the size
of the maximum weight set in Sol(B). When B is exact, z∗(B) = v∗(G), and
when B is relaxed, resp. restricted, z∗(B) ≥ v∗(G), resp.z∗(B) ≤ v∗(G).

To each r− u path p we associate a path-state Ẽ(p) ⊆ V . Ẽ(p) represents the
set of vertices of V which correspond to the layers below node u that are not
adjacent to any vertex in V (p); i.e., Ẽ(p) := {i ≥ �(u) | ∀ j ∈ V (p) : (j, i) /∈ E}.
Path-states induce a state for each node u defined by the union of all path-
states ending at u: i.e., E(u) := ∪p∈P(B|r,u)Ẽ(p). Note that in an exact BDD,

Ẽ(p1) = Ẽ(p2) for p1, p2 ∈ P(B|r,u).
An example of an exact, relaxed, and restricted BDD for the graph in Figure 1

is given in Figure 2. The longest path length in the exact BDD (left-most dia-
gram) is 11 and corresponds to vertex set {2, 5}. The longest path in the relaxed
BDD (middle diagram) is 13, an upper bound on the optimal value, while the
longest path value in the restricted BDD (right diagram) is 9, a lower bound on
the objective value, and corresponds to vertex set {3, 5}.

356 D. Bergman et al.

2.2 BDD Construction

One technique for building BDDs is by top-down construction, which starts
at the root node r, assigns the root state E(r) = V , and then creates the
BDD layer-by-layer. Having constructed all nodes with �(u) ≤ j, the algorithm
builds layer j + 1 by examining the nodes with �(u) = j. If j /∈ E(u), �(u) is
increased by 1, pushing it to the next layer j + 1. Otherwise, two nodes u0, u1

with �(u0) = �(u1) = j + 1 are created along with arcs ak = (u, uk), d(ak) = k
for k = 0, 1. E(u0) = E(u)\{j} and E(u1) = E(u)\ ({j} ∪N(j)). If two nodes
w1, w2 are created for which E(w1) = E(w2), they are merged by creating node
w and redirected all arcs with tail w1 or w2 to w, deleting w1 and w2.

It has been shown [8] that the algorithm described above generates an exact
BDD for the MISP, and that the states established by running the algorithm are
equivalent to the definition of the state in the previous subsection. If an exact
BDD can be constructed, it will exactly represent the family of independent
sets, and therefore allow us to find the optimal value for the MISP by a single
longest-path calculation. However, for most practically-sized problems, the BDD
will grow exponentially large, requiring a modification of the algorithm that will
create a relaxed/restricted BDD, from which we can extract upper/lower bounds,
respectively, as described in the previous subsection.

To create a relaxed BDD, we forcibly merge nodes after each layer j is created
if the number of nodes with �(u) = j + 1 exceeds a pre-set maximum allotted
width W . We reassign the state of the node as the union of the states of the nodes
that are merged, and continue the construction algorithm as before, merging
nodes whenever the width exceeds W . This process creates a relaxed BDD [10].
To create a restricted BDD, if the number of nodes with �(u) = j + 1 exceeds
W , we choose some nodes and delete them until the number of nodes in the
layer equals W ; see Bergman et al. [9]. This will ensure that a restricted BDD
is created since we are never modifying any states – simply deleting nodes, and
hence paths.

2.3 The Branch-and-Bound Algorithm

The branch-and-bound algorithm proceeds by branching on nodes in relaxed
BDDs. Before describing the algorithm, we first define, recursively, exact versus
relaxed nodes in relaxed BDDs. The root r is exact, and any other node u in a
relaxed BDD B is exact if all nodes u′ with arcs (u′, u) directed to u are exact,
and Ẽ(p) = E(u), for all p ∈ P(B|r,u). A node is relaxed otherwise.

An exact cut C is a set of exact nodes whose removal disconnects r and t.
The following theorem by Bergman [5] provides the basis for the algorithm:

Theorem 1 ([5]). Let B be a relaxed BDD for a graph G and let C be an exact
cut of B. Then,

v∗(G) = max
u∈C

{z∗(B|r,u) + v∗ (G[E(u)])} .

Parallel Combinatorial Optimization with Decision Diagrams 357

Theorem 1 thereby establishes that, having constructed a relaxed BDD for G,
we can branch on any exact cut C, and solve the problem defined by the graphs
G[E(u)] for every u ∈ C, adding the longest path to the nodes u to find the
optimal value. Note that each node in the exact cut can therefore be processed
individually by recording only the state of the node and the longest-path value
up to that node in the relaxed BDD that created the node.

In general there are many choices for an exact cut to branch on. One possi-
ble cut is any layer prior to the first forced node merger during the top-down
construction. Let �̃ be the first layer where we forcibly merged nodes together
during the relaxation construction. For any j < �̃, each node must be exact, and
any such layer (which contains all nodes with �(u) = j) will be an exact cut and
can be used to create subproblems. Another possible cut is the frontier cut [5].

The algorithm branches on a set of partial solutions, as opposed to individual
assignments of values to the problem variables, as is typically seen in algorithms
designed to solve discrete optimization problems. This removes symmetry, and
also allows the subproblems to be solved recursively, and individually. In princi-
ple, each node defines a subproblem which can be solved by any technique, but
for the purpose of this paper, we will build restricted BDDs for primal heuristics,
and relaxed BDDs for relaxation bounds, recursively defining subproblems.

3 Parallelizing BDD-Based Branch-and-Bound

The limited amount of information required for each BDD node makes the
branch-and-bound algorithm naturally suitable for parallel processing. Once an
exact cut C is computed for a relaxed BDD, the nodes u ∈ C are independent
and can be each processed in parallel. The information required to process a
node u ∈ C is its corresponding state, which is bounded by the number of ver-
tices of G, |V |. After processing a node u, only the lower bound v∗(G[E(u)]) is
needed to compute the optimal value, as shown in Theorem 1.

3.1 A Centralized Parallelization Scheme

There are many possible parallel strategies that can exploit this natural charac-
teristic of the branch-and-bound algorithm for approximate decision diagrams.
We propose here a centralized strategy defined as follows. A master process keeps
a pool of BDD nodes to be processed, first initialized with a single node associ-
ated with the root state V . The master distributes the BDD nodes to a set of
workers. Each worker receives a number of nodes, processes them by creating the
corresponding relaxed and restricted BDDs, and either sends back to the master
new nodes to explore (from an exact cut of their relaxed BDD) or sends to the
master as well as all workers an improved lower bound from a restricted BDD.
The workers also send the upper bound obtained from the relaxed BDD from
which the nodes were extracted, which is then used by the master for potentially
pruning the nodes according to the current best lower bound at the time these
nodes are brought out from the global pool to be processed.

358 D. Bergman et al.

Even though conceptually simple, our centralized parallelization strategy in-
volves communication between all workers and many choices that have a signif-
icant impact on performance. After discussing the challenge of effective paral-
lelization, we explore some of these choices in the rest of this section.

3.2 The Challenge of Effective Parallelization

Clearly, a BDD constructed in parallel as described above can be very different
in structure and overall size from a BDD constructed sequentially for the same
problem instance. As a simple example, consider two nodes u1 and u2 in the
exact cut C. By processing u1 first, one could potentially improve the lower
bound so much that u2 can be pruned right away in the sequential case. In the
parallel setting, however, while worker 1 processes u1, worker 2 will be already
wasting search effort on u2, not knowing that u2 could simply be pruned if it
waited for worker 1 to finish processing u1.

In general, the order in which nodes are processed in the approximate BDD
matters — information passed on by nodes processed earlier can substantially
alter the direction of search later. This is very clear in the context of combinato-
rial search for SAT, where dynamic variable activities and clauses learned from
conflicts dramatically alter the behavior of subsequent search. Similarly, bounds
in MIP and impacts in CP influence subsequent search.

Issues of this nature pose a challenge to effective parallelization of anything
but brute force combinatorial search oblivious to the order in which the search
space is explored. Such a search is, of course, trivial to parallelize. For most
search methods of interest, however, a parallelization strategy that delicately
balances independence of workers with timely sharing of information is often
the key to success. As our experiments will demonstrate, our implementation,
DDX10, achieves this balance to a large extent on both random and structured
instances of the independent set problem. In particular, the overall size of parallel
BDDs is not much larger than that of the corresponding sequential BDDs. In
the remainder of this section, we discuss the various aspects of DDX10 that
contribute to this desirable behavior.

3.3 Global and Local Pools

We refer to the pool of nodes kept by the master as the global pool. Each node in
the global pool has two pieces of information: a state, which is necessary to build
the relaxed and restricted BDDs, and the longest path value in the relaxed BDD
that created that node, from the root to the node. All nodes sent to the master
are first stored in the global pool and are then redistributed to the workers.
Nodes with an upper bound that is no more than the best found lower bound at
the time are pruned from the pool, as these can never provide a solution better
than one already found.

In order to select which nodes to send to workers first, the global pool is
implemented here using a data structure that mixes a priority queue and a
stack. Initially, the global pool gives priority to nodes that have a larger upper

Parallel Combinatorial Optimization with Decision Diagrams 359

bound, which intuitively are nodes with higher potential to yield better solutions.
However, this search strategy simulates a best-first search and may result in an
exponential number of nodes in the global queue that still need to be explored.
To remedy this, the global pool switches to a last-in, first-out node selection
strategy when its size reaches a particular value (denoted maxPQueueLength),
adjusted according to the available memory on the machine where the master
runs. This strategy resembles a stack-based depth-first search and limits the
total amount of memory necessary to perform search.

Besides the global pool, workers also keep a local pool of nodes. The subprob-
lems represented by the nodes are usually small, making it advantageous for
workers to keep their own pool so as to reduce the overall communication to the
master. The local pool is represented by a priority queue, selecting nodes with a
larger upper bound first. After a relaxed BDD is created, a certain fraction of the
nodes (with preference to those with a larger upper bound) in the exact cut is
sent to the master, while the remaining fraction (denoted fracToKeep) of nodes
are added to the local pool. The local pool size is also limited; when the pool
reaches this maximum size (denoted maxLocalPoolSize), we stop adding more
nodes to the local queue and start sending any newly created nodes directly to
the master. When a worker’s local pool becomes empty, it notifies the master
that it is ready to receive new nodes.

3.4 Load Balancing

The global queue starts off with a single node corresponding to the root state
V , which is assigned to an arbitrary worker which then applies a cut to produce
more states and sends a fraction of them, as discussed above, back to the global
queue. The size of the global pool thus starts to grow rapidly and one must
choose how many nodes to send subsequently to other workers. Sending one
node (the one with the highest priority) to a worker at a time would mimic the
sequential case most closely. However, it would also result in the most number
of communications between the master and the workers, which often results in
a prohibitively large system overhead. On the other hand, sending too many
nodes at once to a single worker runs the risk of starvation, i.e., the global queue
becoming empty and other workers sitting idle waiting to receive new work.

Based on experimentation with representative instances, we propose the fol-
lowing parameterized scheme to dynamically decide how many nodes the master
should send to a worker at any time. Here, we use the notation [x]u� as a short-
hand for min{u,max{�, x}}, that is, x capped to lie in the interval [�, u].

nNodesToSendc,c̄,c∗(s, q, w) =
[
min

{
c̄s, c∗

q

w

}]∞

c
(1)

where s is a decaying running average of the number of nodes added to the global
pool by workers after processing a node,1 q is the current size of the global pool,
w is the number of workers, and c, c̄, and c∗ are parametrization constants.

1 When a cut C is applied upon processing a node, the value of s is updated as
snew = rsold + (1− r)|C|, with r = 0.5 in the current implementation.

360 D. Bergman et al.

The intuition behind this choice is as follows. c is a flat lower limit (a relatively
small number) on how many nodes are sent at a time irrespective of other factors.
The inner minimum expression upper bounds the number of nodes to send to
be no more than both (a constant times) the number of nodes the worker is
in turn expected to return to the global queue upon processing each node and
(a constant times) an even division of all current nodes in the queue into the
number of workers. The first influences how fast the global queue grows while
the second relates to fairness among workers and the possibility of starvation.
Larger values of c, c̄, and c∗ reduce the number of times communication occurs
between the master and workers, at the expense of moving further away from
mimicking the sequential case.

Load balancing also involves appropriately setting the fracToKeep value dis-
cussed earlier. We use the following scheme, parameterized by d and d∗:

fracToKeepd,d∗(t) = [t/d∗]1d (2)

where t is the number of states received by the worker. In other words, the
fraction of nodes to keep for the local queue is 1/d∗ times the number of states
received by the worker, capped to lie in the range [d, 1].

3.5 DDX10: Implementing Parallelization Using X10

As mentioned earlier, X10 is a high-level parallel programming and execution
framework. It supports parallelism natively and applications built with it can be
compiled to run on various operating systems and communication hardware.

Similar to SatX10 [11], we capitalize on the fact that X10 can incorporate
existing libraries written in C++ or Java. We start off with the sequential version
of the BDD code base for MISP [7] and integrate it in X10, using the C++
backend. The integration involves adding hooks to the BDD class so that (a)
the master can communicate a set of starting nodes to build approximate BDDs
for, (b) each worker can communicate nodes (and corresponding upper bounds)
of an exact cut back to the master, and (c) each worker can send updated lower
bounds immediately to all other workers and the master so as to enable pruning.

The global pool for the master is implemented natively in X10 using a sim-
ple combination of a priority queue and a stack. The DDX10 framework itself
(consisting mainly of the main DDSolver class in DDX10.x10 and the pool in
StatePool.x10) is generic and not tied to MISP in any way. It can, in principle,
work with any maximization or minimization problem for which states for a
BDD (or even an MDD) can be appropriately defined.

4 Experimental Results

The MISP problem can be formulated and solved using several existing general
purpose discrete optimization techniques. A MIP formulation is considered to
be very effective and has been used previously to evaluate the sequential BDD
approach [7]. Given the availability of parallel MIP solvers as a comparison

Parallel Combinatorial Optimization with Decision Diagrams 361

point, we present two sets of experiments on the MISP problem: (1) we compare
DDX10 with a MIP formulation solved using IBM ILOG CPLEX 12.5.1 on
up to 32 cores, and (2) we show how DDX10 scales when going beyond 32
cores and employing up to 256 cores distributed across a cluster. We borrow the
MIP encoding from Bergman et al. [7] and employ the built-in parallel branch-
and-bound MIP search mechanism of CPLEX. The comparison with CPLEX is
limited to 32 cores because this is the largest number of cores we have available
on a single machine (note that CPLEX 12.5.1 does not support distributed
execution). Since the current version of DDX10 is not deterministic, we run
CPLEX also in its non-deterministic (‘opportunistic’) mode.

DDX10 is implemented using X10 2.3.1 [28] and compiled using the C++
backend with g++ 4.4.5.2 For all experiments with DDX10, we used the fol-
lowing values of the parameters of the parallelization scheme as discussed in
Section 3: maxPQueueLength = 5.5 × 109 (determined based on the available
memory on the machine storing the global queue),maxLocalPoolSize = 1000, c =
10, c̄ = 1.0, c∗ = 2.0, d = 0.1 and d∗ = 100. The maximum width W for the BDD
generated at each subproblem was set to be the number of free variables (i.e.,
the number of active vertices) in the state of the BDD node that generated the
subproblem. The type of exact cut used in the branch-and-bound algorithm for
the experiments was the frontier cut [5]. These values and parameters were cho-
sen based on experimentation on our cluster with a few representative instances,
keeping in mind their overall impact on load balancing and pruning as discussed
earlier.

4.1 DDX10 versus Parallel MIP

The comparison between DDX10 and IBM ILOG CPLEX 12.5.1 was conducted
on 2.3 GHz AMD Opteron 6134 machines with 32 cores, 64 GB RAM, 512 KB
L2 cache, and 12 MB L3 cache.

To draw meaningful conclusions about the scaling behavior of CPLEX vs.
DDX10 as the number w of workers is increased, we start by selecting prob-
lem instances where both approaches exhibit comparable performance in the
sequential setting. To this end, we generated random MISP instances as also
used previously by Bergman et al. [7]. We report comparison on instances with
170 vertices and six graph densities ρ = 0.19, 0.21, 0.23, 0.25, 0.27, and 0.29. For
each ρ, we generated five random graphs, obtaining a total of 30 problem in-
stances. For each pair (ρ, w) with w being the number of workers, we aggregate
the runtime over the five random graphs using the geometric mean.

Figure 3 summarizes the result of this comparison for w = 1, 2, 4, 16, and
32. As we see, CPLEX and DDX10 display comparable performance for w = 1
(the left-most data points). While the performance of CPLEX varies relatively
little as a function of the graph density ρ, that of DDX10 varies more widely.
As observed earlier by Bergman et al. [7] for the sequential case, BDD-based

2 The current version of DDX10 may be downloaded from
http://www.andrew.cmu.edu/user/vanhoeve/mdd

http://www.andrew.cmu.edu/user/vanhoeve/mdd

362 D. Bergman et al.

 1

 10

 100

 1000

 1 2 4 8 16 32

T
im

e
(s

ec
on

ds
)

Number of Cores

D19
D21
D23
D25
D27
D29

 1

 10

 100

 1000

 1 2 4 8 16 32

T
im

e
(s

ec
on

ds
)

Number of Cores

D19
D21
D23
D25
D27
D29

Fig. 3. Performance of CPLEX (left) and DDX10 (right), with one curve for each graph
density ρ shown in the legend as a percentage. Both runtime (y-axis) and number of
cores (x-axis) are in log-scale.

 1

 10

 100

 1000

 1 4 16 64 256

T
im

e
(s

ec
on

ds
)

Number of Cores

D19
D21
D23
D25
D27
D29

 1

 10

 100

 1000

 1 4 16 64 256

T
im

e
(s

ec
on

ds
)

Number of Cores

D19
D21
D23
D25
D27
D29

Fig. 4. Scaling behavior of DDX10 on MISP instances with 170 (left) and 190 (right)
vertices, with one curve for each graph density ρ shown in the legend as a percentage.
Both runtime (y-axis) and number of cores (x-axis) are in log-scale.

branch-and-bound performs better on higher density graphs than sparse graphs.
Nevertheless, the performance of the two approaches when w = 1 is in a compa-
rable range for the observation we want to make, which is the following: DDX10
scales more consistently than CPLEX when invoked in parallel and also retains
its advantage on higher density graphs. For ρ > 0.23, DDX10 is clearly exploit-
ing parallelism better than CPLEX. For example, for ρ = 0.29 and w = 1,
DDX10 takes about 80 seconds to solve the instances while CPLEX needs about
100 seconds—a modest performance ratio of 1.25. This same performance ratio
increases to 5.5 when both methods use w = 32 workers.

4.2 Parallel versus Sequential Decision Diagrams

The two experiments reported in this section were conducted on a larger cluster,
with 13 of 3.8 GHz Power7 machines (CHRP IBM 9125-F2C) with 32 cores (4-
way SMT for 128 hardware threads) and 128 GB of RAM. The machines are
connected via a network that supports the PAMI message passing interface [21],

Parallel Combinatorial Optimization with Decision Diagrams 363

Table 1. Runtime (seconds) of DDX10 on DIMACS instances. Timeout = 1800

instance n density 1 core 4 cores 16 cores 64 cores 256 cores

hamming8-4.clq 256 0.36 25.24 7.08 2.33 1.32 0.68
brock200 4.clq 200 0.34 33.43 9.04 2.84 1.45 1.03
san400 0.7 1.clq 400 0.30 33.96 9.43 4.63 1.77 0.80
p hat300-2.clq 300 0.51 34.36 9.17 2.74 1.69 0.79
san1000.clq 1000 0.50 40.02 12.06 7.15 2.15 9.09
p hat1000-1.clq 1000 0.76 43.35 12.10 4.47 2.84 1.66
sanr400 0.5.clq 400 0.50 77.30 18.10 5.61 2.18 2.16
san200 0.9 2.clq 200 0.10 93.40 23.72 7.68 3.64 1.65
sanr200 0.7.clq 200 0.30 117.66 30.21 8.26 2.52 2.08
san400 0.7 2.clq 400 0.30 234.54 59.34 16.03 6.05 4.28
p hat1500-1.clq 1500 0.75 379.63 100.3 29.09 10.62 25.18
brock200 1.clq 200 0.25 586.26 150.3 39.95 12.74 6.55
hamming8-2.clq 256 0.03 663.88 166.49 41.80 23.18 14.38
gen200 p0.9 55.clq 200 0.10 717.64 143.90 43.83 12.30 6.13
C125.9.clq 125 0.10 1100.91 277.07 70.74 19.53 8.07
san400 0.7 3.clq 400 0.30 – 709.03 184.84 54.62 136.47
p hat500-2.clq 500 0.50 – 736.39 193.55 62.06 23.81
p hat300-3.clq 300 0.26 – – 1158.18 349.75 172.34
san400 0.9 1.clq 400 0.10 – – 1386.42 345.66 125.27
san200 0.9 3.clq 200 0.10 – – – 487.11 170.08
gen200 p0.9 44.clq 200 0.10 – – – 1713.76 682.28
sanr400 0.7.clq 400 0.30 – – – – 1366.98
p hat700-2.clq 700 0.50 – – – – 1405.46

although DDX10 can also be easily compiled to run using the usual network
communication with TCP sockets. We used 24 workers on each machine, using
as many machines as necessary to operate w workers in parallel.

Random Instances. The first experiment reuses the random MISP instances
introduced in the previous section, with the addition of similar but harder in-
stances on graphs with 190 vertices, resulting in 60 instances in total.

As Figure 4 shows, DDX10 scales near-linearly up to 64 cores and still very
well up to 256 cores. The slight degradation in performance when going to 256
cores is more apparent for the higher density instances (lower curves in the plots),
which do not have much room left for linear speedups as they need only a couple
of seconds to be solved with 64 cores. For the harder instances (upper curves), the
scaling is still satisfactory even if not linear. As noted earlier, coming anywhere
close to near-linear speedups for complex combinatorial search and optimization
methods has been remarkably hard for SAT and MIP. These results show that
parallelization of BDD based branch-and-bound can be much more effective.

DIMACS Instances. The second experiment is on the DIMACS instances
used by Bergman [5] and Bergman et al. [7], where it was demonstrated that se-
quential BDD-based branch-and-bound has complementary strengths compared

364 D. Bergman et al.

Table 2. Number of nodes in multiples of 1, 000 processed (#No) and pruned (#Pr)
by DDX10 as a function of the number of cores. Same setup as in Table 1.

1 core 4 cores 16 cores 64 cores 256 cores
instance #No #Pr #No #Pr #No #Pr #No #Pr #No #Pr

hamming8-4.clq 43 0 42 0 40 0 32 0 41 0
brock200 4.clq 110 42 112 45 100 37 83 30 71 25
san400 0.7 1.clq 7 1 8 1 6 0 10 1 14 1
p hat300-2.clq 80 31 74 27 45 11 46 7 65 12
san1000.clq 29 16 50 37 18 4 13 6 28 6
p hat1000-1.clq 225 8 209 0 154 1 163 1 206 1
sanr400 0.5.clq 451 153 252 5 354 83 187 7 206 5
san200 0.9 2.clq 22 0 20 0 19 0 18 1 25 0
sanr200 0.7.clq 260 3 259 5 271 17 218 4 193 6
san400 0.7 2.clq 98 2 99 5 112 21 147 67 101 35
p hat1500-1.clq 1586 380 1587 392 1511 402 962 224 1028 13
brock200 1.clq 1378 384 1389 393 1396 403 1321 393 998 249
hamming8-2.clq 45 0 49 0 49 0 47 0 80 0
gen200 p0.9 55.clq 287 88 180 6 286 90 213 58 217 71
C125.9.clq 1066 2 1068 0 1104 38 1052 13 959 19
san400 0.7 3.clq – – 2975 913 2969 916 2789 779 1761 42
p hat500-2.clq – – 2896 710 3011 861 3635 1442 2243 342
p hat300-3.clq – – – – 18032 4190 17638 3867 15852 2881
san400 0.9 1.clq – – – – 2288 238 2218 207 2338 422
san200 0.9 3.clq – – – – – – 9796 390 10302 872
gen200 p0.9 44.clq – – – – – – 43898 5148 45761 7446
sanr400 0.7.clq – – – – – – – – 135029 247
p hat700-2.clq – – – – – – – – 89845 8054

to sequential CPLEX and outperforms the latter on several instances, often the
ones with higher graph density ρ. We consider here the subset of instances that
take at least 10 seconds (on our machines) to solve using sequential BDDs and
omit any that cannot be solved within the time limit of 1800 seconds (even with
256 cores). The performance of DDX10 with w = 1, 4, 16, 64, and 256 is reported
in Table 1, with rows sorted by hardness of instances.

These instances represent a wide range of graph size, density, and structure.
As we see from the table, DDX10 is able to scale very well to 256 cores. Except
for three instances, it is significantly faster on 256 cores than on 64 cores, despite
the substantially larger communication overhead for workload distribution and
bound sharing.

Table 2 reports the total number of nodes processed through the global queue,
as well as the number of nodes pruned due to bounds communicated by the
workers.3 Somewhat surprisingly, the number of nodes processed does not increase
bymuch compared to the sequential case, despite the fact that hundreds of workers

3 Here we do not take into account the number of nodes added to local pools, which is
usually a small fraction of the number of nodes processed by the global pool.

Parallel Combinatorial Optimization with Decision Diagrams 365

start processing nodes in parallel without waiting for potentially improved bounds
which might have been obtained by processing nodes sequentially. Furthermore,
the number of pruned nodes also stays steady as w grows, indicating that bounds
communication isworking effectively.This provides insight into the amiable scaling
behavior of DDX10 and shows that it is able to retain sufficient global knowledge
even when executed in a distributed fashion.

5 Summary and Future Work

We have introduced a parallelization scheme for a branch-and-bound search
based on approximate binary decision diagrams. We implemented our approach
using the X10 parallel programming and execution framework. Our application
of the technique to the maximum independent set problem demonstrates that
approximate BDD-based branch-and-bound can scale significantly better with
increasing number of workers than a state-of-the-art commercial-strength solver.
The results indicate that the solution technique is amenable to effective paral-
lelization on hundreds of compute cores.

Besides extending DDX10 to different problem classes in addition to MISP,
two interesting extensions of the underlying parallel framework would be to sup-
port determinism and decentralized load balancing. Determinism is important
to many industrial users and therefore a desirable feature. Conveniently, X10
comes with native determinacy constructs called clocks that can be employed
in order to ensure that DDX10 can also be executed deterministically. Second,
while the centralized load balancing scheme proposed here scaled well to 256
cores, a central global queue is likely to become a bottleneck when extending
to thousands of cores. Particularly attractive in the current setting is the recent
work by Saraswat et al. [27] which provides a general determinate application
framework, called the Global Load-Balancing (GLB) framework, available as a
library in the latest release of X10. The GLB framework is responsible for au-
tomatically distributing the generated collection of tasks across all nodes, and
detecting global termination. This can be used to design a distributed variant
of DDX10 targeted for much larger compute clusters.

In summary, our work highlights how integrating branch-and-bound based
on approximate decision diagrams into X10 allows one to leverage the features
of a major parallel programming language in order to substantially improve our
ability to solve hard combinatorial optimization problems by exploiting hundreds
of compute cores in parallel.

Acknowledgements. Andre Cire and Willem-Jan van Hoeve were partially
supported by NSF under grant CMMI-1130012 and a Google Research Award.

References

1. Akers, S.B.: Binary decision diagrams. IEEETransactions onComputers 27, 509–516
(1978)

366 D. Bergman et al.

2. Andersen, H.R., Hadzic, T., Hooker, J.N., Tiedemann, P.: A Constraint Store
Based on Multivalued Decision Diagrams. In: Bessière, C. (ed.) CP 2007. LNCS,
vol. 4741, pp. 118–132. Springer, Heidelberg (2007)

3. Balasundaram, B., Butenko, S., Hicks, I.V.: Clique relaxations in social net-
work analysis: The maximum k-plex problem. Operations Research 59(1), 133–142
(2011)

4. Behle, M.: Binary Decision Diagrams and Integer Programming. PhD thesis, Max
Planck Institute for Computer Science (2007)

5. Bergman, D.: New Techniques for Discrete Optimization. PhD thesis, Tepper
School of Business, Carnegie Mellon University (2013)

6. Bergman, D., Cire, A.A., van Hoeve, W.-J.: MDD Propagation for Sequence Con-
straints. JAIR (to appear)

7. Bergman, D., Cire, A.A., van Hoeve, W.-J., Hooker, J.N.: Discrete optimization
with decision diagrams (2013) (under review)

8. Bergman, D., Cire, A.A., van Hoeve, W.-J., Hooker, J.N.: Optimization bounds
from binary decision diagrams. INFORMS Journal on Computing (to appear)

9. Bergman, D., Cire, A.A., van Hoeve, W.-J., Yunes, T.: BDD-based heuristics for
binary optimization. Journal of Heuristics (to appear)

10. Bergman, D., van Hoeve, W.-J., Hooker, J.N.: Manipulating MDD relaxations for
combinatorial optimization. In: Achterberg, T., Beck, J.C. (eds.) CPAIOR 2011.
LNCS, vol. 6697, pp. 20–35. Springer, Heidelberg (2011)

11. Bloom, B., Grove, D., Herta, B., Sabharwal, A., Samulowitz, H., Saraswat, V.:
SatX10: A scalable plug & play parallel SAT framework. In: Cimatti, A., Sebas-
tiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 463–468. Springer, Heidelberg
(2012)

12. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers C-35, 677–691 (1986)

13. Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A., Ebcioglu, K., von
Praun, C., Sarkar, V.: X10: an object-oriented approach to non-uniform cluster
computing. In: OOPSLA 2005, San Diego, CA, USA, pp. 519–538 (2005)

14. Chu, G., Schulte, C., Stuckey, P.J.: Confidence-Based Work Stealing in Paral-
lel Constraint Programming. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732,
pp. 226–241. Springer, Heidelberg (2009)

15. Cire, A.A., van Hoeve, W.-J.: Multivalued decision diagrams for sequencing prob-
lems. Operations Research 61(6), 1411–1428 (2013)

16. Eblen, J.D., Phillips, C.A., Rogers, G.L., Langston, M.A.: The maximum clique
enumeration problem: Algorithms, applications and implementations. In: Chen, J.,
Wang, J., Zelikovsky, A. (eds.) ISBRA 2011. LNCS, vol. 6674, pp. 306–319. Springer,
Heidelberg (2011)

17. Edachery, J., Sen, A., Brandenburg, F.J.: Graph clustering using distance-k cliques.
In: Kratochv́ıl, J. (ed.) GD 1999. LNCS, vol. 1731, pp. 98–106. Springer, Heidelberg
(1999)

18. Gu, Z.: Gurobi Optimization - Gurobi Compute Server, Distributed Tuning Tool
and Distributed Concurrent MIP Solver. In: INFORMS Annual Meeting (2013),
http://www.gurobi.com/products/gurobi-compute-server/

distributed-optimization
19. Hoda, S., van Hoeve, W.-J., Hooker, J.N.: A systematic approach to MDD-

based constraint programming. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308,
pp. 266–280. Springer, Heidelberg (2010)

20. Järvisalo, M., Le Berre, D., Roussel, O., Simon, L.: The international SAT solver
competitions. Artificial Intelligence Magazine (AI Magazine) 1(33), 89–94 (2012)

http://www.gurobi.com/products/gurobi-compute-server/distributed-optimization
http://www.gurobi.com/products/gurobi-compute-server/distributed-optimization

Parallel Combinatorial Optimization with Decision Diagrams 367

21. Kumar, S., Mamidala, A.R., Faraj, D., Smith, B., Blocksome, M., Cernohous, B.,
Miller, D., Parker, J., Ratterman, J., Heidelberger, P., Chen, D., Steinmacher-
Burrow, B.: PAMI: A parallel active message interface for the Blue Gene/Q su-
percomputer. In: IPDPS-2012: 26th IEEE International Parallel & Distributed
Processing Symposium, pp. 763–773 (2012)

22. Lee, C.Y.: Representation of switching circuits by binary-decision programs. Bell
Systems Technical Journal 38, 985–999 (1959)

23. Moisan, T., Gaudreault, J., Quimper, C.-G.: Parallel Discrepancy-Based Search.
In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 30–46. Springer, Heidelberg
(2013)

24. Perron, L.: Search Procedures and Parallelism in Constraint Programming. In:
Jaffar, J. (ed.) CP 1999. LNCS, vol. 1713, pp. 346–361. Springer, Heidelberg (1999)

25. Régin, J.-C., Rezgui, M., Malapert, A.: Embarrassingly Parallel Search. In: Schulte,
C. (ed.) CP 2013. LNCS, vol. 8124, pp. 596–610. Springer, Heidelberg (2013)

26. Saraswat, V., Bloom, B., Peshansky, I., Tardieu, O., Grove, D.: Report on the
experimental language, X10. Technical report, IBM Research (2011)

27. Saraswat, V.A., Kambadur, P., Kodali, S., Grove, D., Krishnamoorthy, S.: Lifeline-
based global load balancing. In: Proceedings of the 16th ACM Symposium on
Principles and Practice of Parallel Programming, PPoPP 2011, pp. 201–212. ACM,
New York (2011), http://doi.acm.org/10.1145/1941553.1941582
ISBN 978-1-4503-0119-0

28. X10. X10 programming language web site, http://x10-lang.org/ (January 2010)

http://doi.acm.org/10.1145/1941553.1941582
http://x10-lang.org/

	Parallel Combinatorial Optimization
with Decision Diagrams

	1 Introduction
	2 Review: Branch-and-Bound with Decision Diagrams
	2.1 Maximum Independent Set Problem and BDDs
	2.2 BDD Construction
	2.3 The Branch-and-Bound Algorithm

	3 Parallelizing BDD-Based Branch-and-Bound
	3.1 A Centralized Parallelization Scheme
	3.2 The Challenge of Effective Parallelization
	3.3 Global and Local Pools
	3.4 Load Balancing
	3.5 DDX10: Implementing Parallelization Using X10

	4 Experimental Results
	4.1 DDX10 versus Parallel MIP
	4.2 Parallel versus Sequential Decision Diagrams

	5 Summary and Future Work
	References

