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Abstract. In the stable roommates (SR) problem we have n agents,
where each agent ranks all n − 1 other agents. The problem is then to
match agents into pairs such that no two agents prefer each other to
their matched partners. A remarkably simple constraint encoding is pre-
sented that uses O(n2) binary constraints, and in which arc-consistency
(the phase-1 table) is established in O(n3) time. This leads us to a spe-
cialized n-ary constraint that uses O(n) additional space and establishes
arc-consistency in O(n2) time. This can model stable roommates with
incomplete lists (SRI), consequently it can also model stable marriage
(SM) problems with complete and incomplete lists (SMI). That is, one
model suffices. An empirical study is performed and it is observed that
the n-ary constraint model can read in, model and output all matchings
for instances with n = 1, 000 in about 2 seconds on current hardware plat-
forms. Enumerating all matchings is a crude solution to the egalitarian
SR problem, and the empirical results suggest that although NP-hard,
egalitarian SR is practically easy.

1 Introduction

In the Stable Roommates problem (SR) [8,7] we have an even number of agents
to be matched together as couples, where each agent strictly ranks all other
agents. The problem is then to match pairs of agents together such that the
matching is stable, i.e. there doesn’t exist a pair of agents in the matching such
that agenti prefers agentj to his matched partner and agentj prefers agenti to
his matched partner1.

The Stable Marriage problem (SM) [4,15,5,7,16,11] is a specialized instance
of stable roommates where agents have gender, such that we have two sets of
agents m (men) and w (women). Each man has to be married to a woman and
each woman to a man such that in the matching there does not exist a man mi

and a woman wj where mi prefers wj to his matched partner and wj prefers mi

to her matched partner i.e. there is no incentive for agents to divorce and elope.
Constraint programming has been applied to the stable marriage problem,

probably the first efficient model being reported in 2001 [6], a 4-valued model in
[12], a specialized binary constraint in [18] and an efficient n-ary constraint in
[17]. This raises an obvious question: if there is an efficient constraint model for
stable marriage, is there one for the more general stable roommates problem?

1 For sake of brevity I assume agents are male, and hope this offends no one.
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In this paper I partially answer this question. I present a remarkably simple
constraint model for SR, using O(n2) constraints. This model addresses SR with
incomplete lists and consequently SM with incomplete lists. A more compact
and computationally efficient encoding is then proposed. An empirical study is
presented, comparing models and investigating the problem.

2 The Stable Roommates Problem (SR)

An example of a stable roommates instance is given in Figure 1, for n = 10,
and this instance is taken from [7] (and we will refer to this as sr10). We have
agents 1 to 10 each with a preference list, ranking the other agents. For example,
agent1’s first choice is for agent8, then agent2, followed by agent9 and so on to
last (9th) choice agent10.

1 : 8 2 9 3 6 4 5 7 10
2 : 4 3 8 9 5 1 10 6 7
3 : 5 6 8 2 1 7 10 4 9
4 : 10 7 9 3 1 6 2 5 8
5 : 7 4 10 8 2 6 3 1 9
6 : 2 8 7 3 4 10 1 5 9
7 : 2 1 8 3 5 10 4 6 9
8 : 10 4 2 5 6 7 1 3 9
9 : 6 7 2 5 10 3 4 8 1

10 : 3 1 6 5 2 9 8 4 7

1: 8 2 3 6 4 7
2: 4 3 8 9 5 1 10 6
3: 5 6 2 1 7 10
4: 9 1 6 2
5: 7 10 8 2 6 3
6: 2 8 3 4 10 1 5 9
7: 1 8 3 5
8: 10 2 5 6 7 1
9: 6 2 10 4

10: 3 6 5 2 9 8

(1,7) (2,3) (4,9) (5,10) (6,8)
(1,7) (2,8) (3,5) (4,9) (6,10)
(1,7) (2,8) (3,6) (4,9) (5,10)
(1,4) (2,8) (3,6) (5,7) (9,10)
(1,4) (2,9) (3,6) (5,7) (8,10)
(1,4) (2,3) (5,7) (6,8) (9,10)
(1,3) (2,4) (5,7) (6,8) (9,10)

Fig. 1. Stable roommates instance sr10 with n = 10 (on the left) phase-1 table (middle)
and the 7 stable matchings (on the right). Instance taken from [7].

A quadratic time algorithm, essentially linear in the input size, was proposed in
[8]. The algorithm has two phases. The first phase is a sequence of proposals,
similar to that in the Gale Shapley algorithm [4], that results in the phase-1
table. The phase-1 table for sr10 is shown as the middle table in Figure 1. A
sequence of rotations are then performed for agents with reduced preference
lists that contain more than one agent. On the right hand side of Figure 1 we
show the 7 stable matching that can result from this process.

3 A Simple Constraint Model

We assume that we have two dimensional integer arrays pref and rank. Vector
prefi is the preference list for agenti such that if prefi,k = j then agentj is
agenti’s kth choice and ranki,j = k. It is also assumed that if agenti finds
agentj acceptable then agentj finds agenti acceptable (i.e. j appears in prefi if
and only if i appears in prefj). We also have the length of each agent’s preference
list li, and this allows us to model SRI instances, i.e. Stable Roommates with
Incomplete lists.

Using sr10 as our example pref3,1 = 5 and rank3,5 = 1 (agent5 is agent3’s
first choice) and pref3,2 = 6 and rank3,6 = 2 (agent6 is agent3’s second choice).
Note that in sr10 li = 10 for all i, i.e. sr10 is an SR instance with complete
preference lists.
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3: 5 6 8 2 1 7 10 4 9 

1: 8 2 9 3 6 4 5 7 10 

3: 5 6 8 2 1 7 10 4 9 

1: 8 2 9 3 6 4 5 7 10 

(1) 

(2) 

Fig. 2. A pictorial representation of the two constraints acting between agent1 and
agent3

We have constrained integer variables a1 to an, each with a domain of ranks
{1..li+1}. When ai ← k this means that the corresponding agent is allocated his
kth choice, and that is agentj where j = prefi,k. Furthermore, when ai ← li +1
the corresponding agent is matched to itself and is considered unallocated.

We can now make a declarative statement of the properties that a stable
matching must have and we do this with two constraints. Given two agents,
agenti and agentj who find each other acceptable, if agenti is matched to an
agent he prefers less than agentj then agentj must match up with an agent
that he prefers to agenti otherwise the matching will be unstable. This property
must hold between every pair of agents that find each other acceptable and
is expressed by constraint (2) below. Furthermore, when agenti is matched to
agentj then agentj is matched to agenti, and this is expressed by constraint (3).

∀i∈[1..n] ai ∈ {1..li + 1} (1)

∀i∈[1..n]∀j∈prefi ai > ranki,j =⇒ aj < rankj,i (2)

∀i∈[1..n]∀j∈prefi ai = ranki,j =⇒ aj = rankj,i (3)

This constraint is shown pictorially in Figure 2. The two constraints are shown
for agents 1 and 3 in sr10. The brown box is the agent’s identification number
and the remaining boxes are the preference lists (a list of agents). In the top
picture (1) we have the situation where agent1 is matched to an agent he prefers
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less than agent3, i.e. agent1 is matched to an agent in the green part of his
preference list. Consequently agent3 must be matched in the green region of its
preference list. The bottom picture is for constraint (3) where agent1 is matched
to agent3, both taking the pair of red values.

A similar constraint model was proposed for SM [12,17]. Establishing arc-
consistency [10,19] in that simple SM constraint model has been shown to be
O(n3) although at least three O(n2) encodings have been proposed: one using
boolean variables [6], one using 4-valued variables [12] and one using a specialized
n-ary constraint [17].

When sr10 is made arc-consistent the phase-1 table is produced. As we can see
from Figure 1 the first agent in the phase-1 table for agent1 is agent8 yet none
of the seven solutions have a matching that contains the pair (1, 8). Therefore
our constraint program must backtrack, i.e. after producing the phase-1 table
via propagation, search instantiates a1 ← 1 (assigned 1st preference), attempts
to make the model arc-consistent and fails, forcing a backtrack. To find a first
solution to sr10 (a first matching) the constraint program makes 3 decisions, at
least one of which results in a backtrack. To find all 7 solutions, 12 decisions are
made.

�

1 public c lass StableRoommates {
2
3 public s tat i c void main ( S t r i ng [ ] args ) throws IOException {
4
5 BufferedReader f i n = new BufferedReader (new FileReader ( args [ 0 ] ) ) ;
6 int n = In tege r . par s eIn t ( f i n . readLine ( ) ) ;
7 int [ ] [ ] p r e f = new int [ n ] [ n ] ;
8 int [ ] [ ] rank = new int [ n ] [ n ] ;
9 int [ ] l ength = new int [ n ] ;

10 for ( int i =0; i<n ; i++){
11 St r ingTokeniz er s t = new Str ingTokeni ze r ( f i n . readLine ( ) , ” ” ) ;
12 int k = 0 ;
13 l ength [ i ] = 0;
14 while ( s t . hasMoreTokens ( ) ){
15 int j = In tege r . pa r se In t ( s t . nextToken ( ) ) − 1 ;
16 rank [ i ] [ j ] = k ;
17 pr e f [ i ] [ k ] = j ;
18 l ength [ i ] = length [ i ] + 1 ;
19 k = k + 1;
20 }
21 rank [ i ] [ i ] = k ;
22 p re f [ i ] [ k ] = i ;
23 }
24 f i n . c l o s e ( ) ;
25 Model model = new CPModel ( ) ;
26 In t ege rVar iab l e [ ] a = new I nt eg e rVar i ab l e [ n ] ;
27 for ( int i =0; i<n ; i++) a [ i ] = makeIntVar ( ” a ”+ i ,0 , l ength [ i ] , ”cp : enum” ) ;
28 for ( int i =0; i<n ; i++)
29 for ( int j =0; j<l ength [ i ] ; j++){
30 int k = pre f [ i ] [ j ] ;
31 model . addConstraint ( imp l i e s ( gt ( a [ i ] , rank [ i ] [ k ] ) , l t ( a [ k ] , rank [ k ] [ i ] ) ) ) ;
32 model . addConstraint ( imp l i e s ( eq ( a [ i ] , rank [ i ] [ k ] ) , eq ( a [ k ] , rank [ k ] [ i ] ) ) ) ;
33 }
34 Solver s o l v e r = new CPSolver ( ) ;
35 s o l v e r . read (model ) ;
36 i f ( s o l v e r . so l ve ( ) . booleanValue ( ) )
37 for ( int i =0; i<n ; i++){
38 int j = pre f [ i ] [ s o l v e r . getVar ( a [ i ] ) . getVal ( ) ] ;
39 i f ( i<j ) System . out . pr in t ( ” ( ”+ ( i +1) +” , ”+ ( j+1) +” ) ” ) ;
40 }
41 System . out . p r i n t l n ( ) ;
42 }
43 }

�� �

Listing 1. A simple encoding for SRI, StableRoommates.java

The model was implemented in the choco constraint programming toolkit [1]
using Java and the code is shown in Listing 1. The first thing to note is that
everything is zero-based, such that the first agent is a0 and the last an−1 (lines 26
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1: 8 2 9 3 6 4 5 7
2: 4 3 8 9 5 1 10 6
3: 5 6 8 2 1 7 10
4: 9 3 1 6 2
5: 7 4 10 8 2 6 3
6: 2 8 7 3 4 10 1 5 9
7: 1 8 3 5
8: 10 4 2 5 6 7 1
9: 6 7 2 5 10 3 4

10: 3 1 6 5 2 9 8

Fig. 3. Bound phase-1 table for sr10 using bound integer variables

and 27). Lines 5 to 24 read in the problem instance, building the arrays pref and
rank. To address SR with incomplete lists we add i to the end of ai’s preference
list (lines 21 and 22) such that an unmatched agent is matched to itself. The
constraint model is produced in lines 25 to 35 with constraint (2) posted in line
31 and constraint (3) in line 32. In lines 36 to 41 the choco toolkit searches for
a first solution and prints it out.
The choco toolkit also supports bound integer variables, where only the upper
and lower bounds on domains are maintained and removal of values between
those bounds are performed lazily. In line 27 of Listing 1 adding the option
”cp:bound” to the constructor makeIntV arArray changes the model so that it
uses bound integer variables. When the model is made arc-consistent we then
get the bound phase-1 table shown in Figure 3. Comparing this to Figure 1 we
see that the upper and lower bounds agree with the phase-1 table but there are
values between those bounds that are omitted from the enumerated domains,
in particular we see that agent1 has agent9 in its domain yet agent9 does not
have agent1 in its domain. Nevertheless, the constraint program maintains the
desired stable roommates properties and produces the same 7 solutions as in
Figure 1 and does so in less time.

The constraint model also address SRI instances (SR with incomplete lists).
Figure 4 shows instance sri6, with n = 6. This has one stable matching
{(1, 4), (2, 6)} with agents 3 and 5 unmatched.

1: 2 4 5
2: 6 1 3
3: 2 4
4: 1 6 3
5: 6 1
6: 2 5 4

Fig. 4. SRI instance sri6. This has one solution {(1, 4), (2, 6)}.
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The model also addresses stable marriage problems with complete and incom-
plete lists (i.e. SM and SMI). As an example consider Figure 5, a stable marriage
instance with 6 men and 6 women (taken from [6]). This is shown on the left
of Figure 5 with a stable matching in bold font. On the right we have the same
problem represented as an SRI instance. The men are represented as agents 1
to 6 and women as agents 7 to 12. Agents 1 to 6 (the men) only find agents 7 to
12 acceptable (the women) and agents 7 to 12 (the women) find only agents 1
to 6 (the men) acceptable. To read off the SRI matching we subtract 6 from the
agent matched to agents 1 to 6. Therefore our simple constraint model addresses
SR, SRI, SM and SMI.

1 : 1 3 6 2 4 5 1 : 1 5 6 3 2 4
2 : 4 6 1 2 5 3 2 : 2 4 6 1 3 5
3 : 1 4 5 3 6 2 3 : 4 3 6 2 5 1
4 : 6 5 3 4 2 1 4 : 1 3 5 4 2 6
5 : 2 3 1 4 5 6 5 : 3 2 6 1 4 5
6 : 3 1 2 6 5 4 6 : 5 1 3 6 4 2

1 : 7 9 12 8 10 11
2 : 10 12 7 8 11 9
3 : 7 10 11 9 12 8
4 : 12 11 9 10 8 7
5 : 8 9 7 10 11 12
6 : 9 7 8 12 11 10
7 : 1 5 6 3 2 4
8 : 2 4 6 1 3 5
9 : 4 3 6 2 5 1
10 1 3 5 4 2 6
11 3 2 6 1 4 5
12 5 1 3 6 4 2

Fig. 5. Stable marriage instance sm6. On the left, the familiar SM and on the right
sm6 recast as an SRI instance. Problem is taken from [6].

4 A More Efficient Model

Our constraint model can be made more computationally efficient by adopting
and modifying the models in [6,12]. However, these models are bulky and quickly
exhaust memory on relatively modest sized instances of SM [17]. Therefore we
propose an n-ary SR constraint (SMN), similar to that proposed in [17], that can
establish arc-consistency in O(n2) and takes O(n) additional space (assuming
we are given the arrays pref and rank read in on lines 5 to 24 of Listing 1). The
means of reducing the computational cost is by eliminating the redundancies
brought about by the arc-consistency algorithm: when a variable’s domain is
altered all constraints involving that variable are revised. Therefore, if a value
is removed from the domain of ai, O(n) constraints will be revised. This can
occur n times for an agent, and since there are n agents this results in O(n3)
complexity, assuming it takes O(1) time to revise a constraint as above.

With a specialized n-ary constraint we can improve upon this. We can elim-
inate the above redundancy by revising only the domains of agents that must
be affected by a change in another variable’s domain. There are five possible
changes that can occur to the domain of an agent and these are:
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– the upper bound of a variable decreases (Algorithm 1)
– the lower bound of a variable increases (Algorithm 2)
– a variable looses a value (Algorithm 3)
– a variable is instantiated (Algorithm 4)
– the constraint is initially posted (Algorithm 5)

Presented below are the algorithms that address these five cases and the actual
choco/Java implementation (Listing 2, with imports removed for brevity). The
algorithms again assume that we have constrained integer variables a1 to an,
each with a domain of ranks {1 . . . li + 1}, and that we have the preference and
rank arrays pref and rank. In addition we require reversible variables lwbi and
upbi, where lwbi is used to store the smallest value in the domain of ai and upbi
the largest value. By reversible we mean that on backtracking the values of these
variables are restored. The choco toolkit provides this as class StoredInt (see
lines 19 and 20 of Listing 2). In the complexity arguments we assume that the
toolkit primitives getMin(v) (get the smallest value in domain of variable v),
setMax(v, x) (set the upper bound of variable v’s domain to bemin(max(v), x)),
getMax(v) (get largest value in domain of v), remove(v, x) (remove the value
x from the domain of v if that value exists) and getV alue(v) (get the value v is
instantiated to) each have a cost of O(1).

deltaMin(i) (Algorithm 1). The lower bound of ai has increased (and is now
the value x, line 3). Consequently, the corresponding agent now at the top of
agenti’s preference list (agentj where j = prefi,x, line 4)) can be matched to no
one that he prefers less than agenti (line 5). For the corresponding agents that
have been removed from agenti’s preference list, and that agenti preferred to
his current most preferred partner, those agents can do no worse than match up
with agents that they prefer to agenti (lines 6 to 8). The new lower bound for ai
is saved in the reversible variable lwbi. Complexity: This method can be called
at most n times for an agent (the number of values in an agent’s domain). Each
time it is called the loop bound (line 6) is reduced (via line 9 on previous calls).
Consequently this can reduce the maximum domain value of other agents (line
5 and line 8) at most n times. Therefore over all agents the cost of deltaMin is
O(n2).

deltaMax(i) (Algorithm 2). The upper bound of ai has decreased (and now
has the value x, line 3). For all corresponding agents removed from agenti’s
preference list we remove agenti from that agent’s preference list as they can
no longer be matched together (lines 4 to 6). The new upper bound is then
saved in the reversible variable upbi (line 7). Complexity: For an agent, this
method can be called at most n times, each time with a reduced bound on the
iteration in lines 4 to 6. Therefore lines 3 and 6 can be executed at most n times.
Consequently the cost over all n agents is O(n2).

removeValue(i,x) (Algorithm 3). The value x has been removed from the
domain of ai consequently the corresponding agent (agentj where j = prefi,x)
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Algorithm 1. deltaMin (awakeOnInf in Listing 2).

1 deltaMin(int i)
2 begin
3 x ← getMin(ai)
4 j ← prefi,x
5 setMax(aj, rankj,i)
6 for w ← lwbi to x− 1 do
7 h ← prefi,w
8 setMax(ah, rankh,i − 1)

9 lwbi ← x

Algorithm 2. deltaMax (awakeOnSup in Listing 2).

1 deltaMax(int i)
2 begin
3 x ← getMax(ai)
4 for y ← x+ 1 to upbi do
5 j ← prefi,y
6 remove(aj, rankj,i)

7 upbi ← x

can no longer be matched to agenti (lines 3 and 4). Complexity: An execution
is O(1) cost and this can happen at most O(n2) times, i.e. n times for each of
the n agents.

Algorithm 3. removeValue (awakeOnRem in Listing 2).

1 removeValue(int i, int x)
2 begin
3 j ← prefi,x
4 remove(aj, rankj,i)

instantiate(i) (Algorithm 4). The variable ai has been assigned the value
y (line 3) and corresponds to being matched to agentj where j = prefi,y. All
agents that agenti preferred to agentj can only be matched to agents that they
prefer to agenti (lines 4 to 6). Furthermore, all agents that agenti preferred less
than agentj can no longer consider agenti as a possible partner (lines 7 to 9).
Finally we update the upper and lower bounds for the domain (lines 10 and 11).
Complexity: An execution has a cost of O(n) as we respond to the (at most
n− 1) removals from the domain of the variable (lines 4 to 9). An agent can be
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Algorithm 4. instantiate (awakeOnInst in Listing 2).

1 instantiate(int i)
2 begin
3 y ← getV alue(ai)
4 for x ← lwbi to y − 1 do
5 j ← prefi,x
6 setMin(aj , rankj,i − 1)

7 for z ← y + 1 to upbi do
8 j ← prefi,z
9 remove(aj, rankj,i)

10 lwbi ← y
11 upbi ← y

instantiated with a value at most once during propagation. Consequently, over
all n agents this has a cost of O(n2).

init() (Algorithm 5). This is called at the top of search, when the model is
made arc-consistent by revising all the constraints. First, the upper and lower
bounds for each agent are initialized (lines 2 to 4) and then propagation kicks
off by making all agents consistent with respect to their most preferred partner,
and this is similar to the proposal stage in [8]. Complexity: Line 6 is called n
times and each individual call to deltaMin(i) has cost O(n), consequently we
have an O(n2) cost in total.

Algorithm 5. init (class constructor and awake in Listing 2).

1 init()
2 begin
3 for i ← 1 to n do
4 lwbi ← 1
5 upbi ← lengthi + 1

6 for i ← 1 to n do
7 deltaMin(i)

5 Empirical Study

Experiments were performed over random SR instances with complete preference
lists, on a 2.4GHz Intel Xeon E5645 processor with 97 GBytes of RAM, using
java version 1.6.0 26 and choco-2.1.0. We start by investigating the three models:
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�

1
2 public c lass SRN extends AbstractLargeIntSConstra int {
3
4 private int n ;
5 private int [ ] [ ] rank ;
6 private int [ ] [ ] p r e f ;
7 private int [ ] l ength ;
8 private I S t a t e I n t [ ] upb ;
9 private I S t a t e I n t [ ] lwb ;

10 private IntDomainVar [ ] a ;
11
12 public SRN( So lve r s , IntDomainVar [ ] a , int [ ] [ ] pref , int [ ] [ ] rank , int [ ] l ength ){
13 super ( a ) ;
14 n = a . l ength ;
15 th is . a = a ;
16 th is . p r e f = pre f ;
17 th is . rank = rank ;
18 th is . l ength = length ;
19 upb = new StoredInt [ n ] ;
20 lwb = new StoredInt [ n ] ;
21 for ( int i =0; i<n ; i++){
22 upb [ i ] = s . getEnvironment ( ) . makeInt ( l ength [ i ] ) ;
23 lwb [ i ] = s . getEnvironment ( ) . makeInt ( 0 ) ;
24 }
25 }
26
27 public void awake ( ) throws Contrad i ct i onExcept ion {
28 for ( int i =0; i<n ; i++) awakeOnInf ( i ) ;
29 }
30
31 public void propagate ( ) throws Contrad i ct i onExcept ion {}
32
33 public void awakeOnInf ( int i ) throws Contrad i ct i onExcept ion {
34 int x = a [ i ] . g e t I n f ( ) ; // b e s t ( l o w e s t ) r a n k f o r a i
35 int j = pre f [ i ] [ x ] ;
36 a [ j ] . setSup ( rank [ j ] [ i ] ) ;
37 for ( int w=lwb [ i ] . get ( ) ;w<x ;w++){
38 int h = pre f [ i ] [w ] ;
39 a [ h ] . setSup ( rank [ h ] [ i ] −1);
40 }
41 lwb [ i ] . s e t (x ) ;
42 }
43
44 public void awakeOnSup( int i ) throws Contrad i ct i onExcept ion {
45 int x = a [ i ] . getSup ( ) ; // w o r s t ( l a r g e s t ) p r e f e r e n c e f o r a [ i ]
46 for ( int y=x+1;y<=upb [ i ] . get ( ) ; y++){
47 int j = pre f [ i ] [ y ] ;
48 a [ j ] . remVal ( rank [ j ] [ i ] ) ;
49 }
50 upb [ i ] . s e t (x ) ;
51 }
52
53 public void awakeOnRem ( int i , int x ) throws Contrad i ct i onExcept ion {
54 int j = pre f [ i ] [ x ] ;
55 a [ j ] . remVal ( rank [ j ] [ i ] ) ;
56 }
57
58 public void awakeOnInst ( int i ) throws Contrad i ct i onExcept ion {
59 int y = a [ i ] . getVal ( ) ;
60 for ( int x = lwb [ i ] . get ( ) ; x<y ; x++){
61 int j = pre f [ i ] [ x ] ;
62 a [ j ] . setSup ( rank [ j ] [ i ] −1);
63 }
64 for ( int z=y+1;z<=upb [ i ] . get ( ) ; z++){
65 int j = pre f [ i ] [ z ] ;
66 a [ j ] . remVal ( rank [ j ] [ i ] ) ;
67 }
68 lwb [ i ] . s e t (y ) ;
69 upb [ i ] . s e t (y ) ;
70 }
71 }

�� �

Listing 2. SRN.java
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(a) SR, the simple constraint model, (b) SRB, the simple model using bound
integer variables and (c) SRN , the n-ary constraint model. In all cases a sample
size of 100 is used, unless stated otherwise.

Figure 6 presents two scatter plots of total run time against problem size.
The plot on the left is for 10 ≤ n ≤ 100 and on the right 100 ≤ n ≤ 1, 000
(and for n > 100 we omit SR). The total run time includes time to read in the
problem, build the model and then find all stable matchings for that instance.
Time is measured in milliseconds. The total run times shows that SR does not
scale beyond n = 100 (plot on the left) and at n = 1, 000 (plot on the right)
SRB typically takes 4 minutes whereas SRN takes 2 seconds, i.e. SRN is two
orders of magnitude faster.
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Fig. 6. Performance of the models: scatter of total time in milliseconds to find all
matchings against problem size

We now investigate the problems, i.e. given n what proportion of instances have
matchings? Shown in Table 1 are the proportion of instances with matchings, for
n ∈ {10 . . .90} with a sample size of 1,000. The column on the right are those
reported in [8], with a sample size of 1,000 for n equal to 10 and 20, sample size
500 for n = 30, and sample size 200 for 40 ≤ n ≤ 90.

In Table 2 we give the average total cpu time in seconds (i.e. time to read in
the instance, produce the model, enumerate all solutions and output run time
statistics) for 100 ≤ n ≤ 1, 000 using our best model (SRN). Also tabulated is
the average number of nodes reported by the choco toolkit (and maximum in
brackets) where a node is a decision made, and that decision might be one that
leads to a failure and a backtrack. The second last column is the proportion
of instances that had matchings. The last column is the maximum number of
stable matchings found in an instance of size n. In all cases sample size is 100.

5.1 Discussion

Clearly (Figure 6) the n-ary encoding is orders of magnitude faster than the
toolkit constraints. Although not presented, it is also more space efficient, i.e.
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Table 1. Proportion of instances with solutions. Column on the right from [8].

n Prosser Irving

10 0.889 0.868
20 0.834 0.815
30 0.781 0.766
40 0.736 0.745
50 0.727 0.710
60 0.704 0.725
70 0.706 0.670
80 0.670 0.675
90 0.670 0.690

Table 2. Average total run times in seconds to enumerate all matchings using SRN,
the average number of decisions (nodes) made by choco (maximum in brackets), the
proportion of instances with stable matchings and the maximum number of matchings
in an instance. Sample size is 100.

n cpu time nodes matched max matchings

100 0.423 4 (17) 0.63 9
200 0.511 6 (34) 0.52 16
300 0.645 7 (33) 0.53 16
400 0.768 7 (25) 0.38 10
500 0.950 7 (35) 0.45 16
600 1.094 7 (27) 0.41 14
700 1.290 7 (31) 0.42 12
800 1.555 8 (50) 0.44 24
900 1.786 8 (29) 0.39 12
1,000 2.046 8 (85) 0.40 40

it has a more compact model and this can be quickly constructed. Therefore it
wins on two fronts: space and time.
The proportion of SR instances with matching was first investigated in [8] and
later in [14] and [13]. Empirical evidence has been based on translations of the
Pascal code given in the appendix of Irving’s paper. Unfortunately that code
has a bug and on occasion fails to find a matching when one exists. This has
been observed by Stephan Mertens and independently by Ciaran McCreesh.
Consequently, earlier reported results may be incorrect. The results in Table 1
use a sample size of 1,000 and might be assumed to be more accurate than those
in Rob Irving’s original study.

In Table 2 we have the average (and maximum) number of nodes required to
find all matchings. This number is always low, and always less than 3 times the
number of maximum matchings. More to the point, the model never exhibited
exponential behaviour. As yet I have no explanation of why this is so, i.e. why
the constraint model is so well behaved.
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There are hard variants of SR. One example is egalitarian SR where a match-
ing is to be found that minimizes the sum of the ranks, and this has been shown
to be NP-hard [9]. In our constraint model an egalitarian matching is one that
minimizes

∑
ai. Therefore we can model this problem by adding one more vari-

able (totalCost), one more constraint (totalCost =
∑

ai) and a change from
solving to minimization (line 36 of Listing 1). Naively, to find an egalitarian
matching we could consider all matchings. As we see from Table 2 no instance
had more than 40 matchings, no search took more than 85 nodes and the longest
run time (not tabulated) was 2.6 seconds. Therefore, although NP-hard we would
fail to encounter a hard instance in the problems sampled. So, (as Cheeseman,
Kanefsky and Taylor famously asked [3]) where are the hard problems? As yet
I do not know.

6 Conclusion

It has been demonstrated that there is a simple constraint model for the stable
roommates problem. It was demonstrated that arc-consistency on this model
produces the phase-1 table in O(n3) time. A backtracking search that maintains
arc-consistency on each decision allows us to enumerate all matching. However,
it was shown that the search process can make decisions that lead to failure. The
simple model was enhanced by using bound, rather than enumerated constrained
integer variables and arc-consistency delivers a bound phase-1 table. Neverthe-
less, this results in a substantial improvement in performance but the complexity
of producing the phase-1 table remains O(n3). This lead to a specialized n-ary
constraint with O(n2) cost for arc-consistency. Empirical study showed that this
model can enumerate all matching to problems with 1,000 agents in about 2
seconds, orders of magnitude faster than the simple model.

It has also been shown that since our constraint model addresses incomplete
preference lists it can also model stable marriage problems with complete and
incomplete preference lists. That is, one model suffices.

Our model behaved well, never exhibiting exponential behaviour. Therefore
there is work to do, to prove that the amount of backtracking is in some sense
bounded by a polynomial, and this proof might be similar to that of failure-free
enumeration in SM [6].

One of the first hard variants is egalitarian SR. This can be easily modeled and
explored. However, it appears that it might be uninteresting. For n ≤ 1, 000 the
number of matchings that need to be explored appears to be small. Furthermore,
as n increases we expect that the number of instances with matchings will also
fall [14,13]. Combined, this suggests that although NP-hard, egalitarian SR is
easy.

All the code used in this study is available at [2].
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