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Abstract. A growing number of applications require continuous pro-
cessing of high-throughput data streams, e.g., financial analysis, net-
work traffic monitoring, or big data analytics. Performing these analyses
by using Distributed Stream Processing Systems (DSPSs) in large clus-
ters is emerging as a promising solution to address the scalability chal-
lenges posed by these kind of scenarios. Yet, the high time-variability
of stream characteristics makes it very inefficient to statically allocate
the data-center resources needed to guarantee application Service Level
Agreements (SLAs) and calls for original, dynamic, and adaptive resource
allocation strategies. In this paper we analyze the problem of planning
adaptive replication strategies for DSPS applications under the challeng-
ing assumption of minimal statistical knowledge of input characteristics.
We investigate and evaluate how different CP techniques can be em-
ployed, and quantitatively show how different alternatives offer different
trade-offs between problem solution time and stream processing runtime
cost through experimental results over realistic testbeds.

1 Introduction

We are rapidly moving toward an always-connected world, where technology
is an increasingly present mediator in the interactions between people and the
environment [2]. Ever growing quantities of heterogeneous data are continuously
generated and exchanged by moving or stationary sensors, smartphones, and
wearable devices. This multitude of unbounded data flows must be handled
effectively and efficiently.

Distributed Stream Processing Systems (DSPSs) [22] address the need of pro-
cessing big data streams flexibly and in real-time by leveraging the parallel com-
putational resources hosted inside data centers. A DSPS lets users define their
own stream processing functionalities and encapsulate them in reusable com-
ponents called operators. Stream processing applications (or, hereinafter, simply
applications) are defined by arranging operators as vertices of data-flow graphs,
directed and acyclic graphs that define the input-output relationships between
different operators and between operators and external stream data sources and
data sinks. Stream processing applications are deployed on a set of distributed
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resources, and their components are executed according to an event-based model
that reacts to the arrival of new input data. One major problem in managing
deployments of distributed stream processing applications lies in the proper man-
agement of the load fluctuations that arise due to sudden and possibly temporary
variations in the rates of input data streams. If not handled properly load peaks
can lead to increased processing latency due to data queuing, and to data loss
due to queue overflows. To avoid these effects, it is necessary to allocate the
correct amount of additional resources to overloaded applications either stati-
cally or dynamically when load variations are detected [1,5,12]. Another typical
requirement is the fulfillment of fault-tolerance guarantees because applications
usually run for (indefinitely) long time intervals and failures are unavoidable. A
simple and commonly adopted solution is active replication of operator compo-
nents [10], so that, if any replica fails, another can immediately take over and
quickly mask the failure.

In [3,4] we have introduced LAAR, a Load Adaptive Active Replication tech-
nique that minimizes the cost of running replicated stream processing applica-
tions while guaranteeing that their deployment is never overloaded and, at the
same time, that a user-specified fault-tolerance SLA is satisfied. It does so by
dynamically deactivating and activating operator replicas, and by adapting the
number of active ones to the changing application load according to a replica ac-
tivation strategy precomputed before runtime. In this paper, we describe how we
solve the challenging replica activation problem, i.e., the optimization problem
whose solutions define how the LAAR runtime performs its dynamic activation of
replicas depending on the currently observed configuration of input data rates.
We propose a detailed study of this problem, and we present a quantitative
comparison and evaluation of the effectiveness of different CP-based solution
methods. The final goal is to highlight the trade-offs offered by different CP
techniques considering the quality of their solutions and the associated cost.

2 Problem Definition

An application A consists of a set of components: a set I of data sources, a
set P of operators, and a set O of data sinks, which collectively define the set
X = I ∪P ∪O = {xi}. The components in X are arranged in a directed acyclic
application graph W = (X,E). The set of edges E is described by the function:

pred : X �→ P (X) (1)

which, for each component xi, identifies the set of predecessors {xj} so that
xj ∈ pred (xi) ⇔ (xj , xi) ∈ E.

We assume that the characteristics of the application inputs are known in
terms of a probability mass function that describes the probability of a source
to produce data at different rates. This information could be available thanks
to previous knowledge of the application domain, or inferred through an initial
profiling step [9]. We also assume that the continuous space of possible rates
has been properly discretized through, e.g., binning techniques [8]. In particular,
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every data source xi ∈ I can produce output at one rate among a finite set of
input rates Ri. The Cartesian product C = R1× . . .×Rt, where t is the number
of sources, is the set of all the possible input configurations, and PC : C �→ [0, 1]
is the probability mass function associated to the probability distribution of
different input configurations in time. The output rate of data source xi ∈ I in
a particular input configuration c is indicated as Δ (xi, c).

Every operator receives one or more data streams from sources or from other
operators and produces one data stream as output. For uniformity of notation,
we use the symbol Δ (xi, c) also to indicate the output rate of every operator
xi ∈ P .

Like what has been done previously in the literature (e.g., [10,11,21,20,23,25]),
we summarize the characteristics of operators through a selectivity function δ
and a per-tuple CPU cost function γ. For each couple (xi, xj) so that xi ∈ I ∪P
and xj ∈ P and that (xi, xj) ∈ E, δ (xi, xj) defines the contribution of the stream
generated by xi to the output of operator xj , so that, in absence of failures:

Δ (xj , c) =
∑

xi∈pred(xj)

δ (xi, xj)Δ (xi, c) (2)

In a similar way, γ (xi, xj) represents the per-tuple CPU cost for operator xj to
process tuples from xi, so that the number of CPU cycles used by xj per second
can be expressed as: ∑

xi∈pred(xj)

γ (xi, xj)Δ (xi, c) (3)

Each operator in P is actively replicated and all the replicated components
are deployed on a set of distributed hosts H = {hi}. We indicate the replicated

set of operators as P̃ = {x̃m
i }, where the symbol x̃m

i indicates the m-th replica of
operator xi. The assignment of replicas to hosts is represented by the function:

ϑ : P̃ �→ H (4)

For convenience, we also define ϑ−1 : H �→ P(P̃ ) such that ϑ−1 (h) = {x̃j
i ∈

P̃ : ϑ
(
x̃j
i

)
= h}. We assume that ϑ is given, for example, because computed

beforehand by an operator placement algorithm (e.g., [11,23]). In this paper, we
only consider the case of twofold replication, i.e., two replicas per operator, since
this scenario is the most commonly considered in real world stream applications.
The model, however, can be very easily extended to k-fold replication.

A replica activation strategy is a function:

s : P̃ × C �→ {0, 1} (5)

that associates every operator replica – input configuration pair to one of the two
possible active/inactive states. The goal of the optimization problem discussed
in this paper is to find a replica activation strategy that suitably satisfies the
application fault-tolerance quality requirements.
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2.1 The Internal Completeness (IC) Metric

By activating/deactivating operator replicas according to the current input con-
figuration, LAAR dynamically modifies the resilience of applications to failures.
In order to measure the effect of LAAR on fault-tolerance guarantees, we define
the internal completeness (IC) metric. Intuitively, given a failure model that
describes how hosts and operators are expected to fail and a replica activation
strategy s, the internal completeness measures, with respect to a time period T 1,
the fraction of total tuples expected to be processed in case of failures compared
to the number of tuples that would be processed in absence of failures.

In a no-failure scenario (best-case), the total number of tuples statistically
expected to be processed by the application operators during T is:

BIC = T ·
∑

c∈C,
xi∈P,

xj∈pred(xi)

PC(c) ·Δ(xj , c) (6)

Best-case internal completeness. (BIC) is the summation of the contributions of
all the application operators in different input configurations, weighted by the
probability of each configuration to occur.

Failure internal completeness. (FIC) measures the expected number of tuples
processed with failure model φ and replica activation strategy s. It is defined as:

FIC(s) = T ·
∑

c∈C,
xi∈P,

xj∈pred(xi)

PC(c) · φ(xi, c, s) · Δ̂(xj , c, s) (7)

Δ̂(xi, c, s) =

⎧
⎪⎨

⎪⎩

Δ(xi, c) if xi ∈ I

φ(xi, c, s) ·
∑

xj∈pred(xi)

δ(xj , xi)Δ̂(xj , c, s) if xi ∈ P (8)

The function φ(xi, c, s) depends on the chosen failure model and describes the
probability that at least one replica of operator xi is alive and active when
the input configuration is c and the replica activation strategy is s. Δ̂(xi, c, s),
instead, represents the expected output of operator xi under failure model φ,
when the input configuration is c and the replica activation strategy is s; note
that the definition of Δ̂ is recursive, as the number of tuples produced by a
operator depends not only on its possible failure status (described by φ) but
also on the number of tuples produced by its predecessor (8). Let us rapidly
note that the possible failures of data sources, which are components external
to the application, are assumed to be handled externally.

Internal completeness (IC) is defined as the ratio between FIC and BIC:

IC(s) =
FIC(s)

BIC
(9)

1 We choose T long enough for the statistical characteristics of the sources to apply.
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2.2 The Replica Activation Problem

In this section, we define the optimization problem that, solved off-line and before
deployment time, outputs a replica activation strategy that fits the application
fault tolerance requirements, and that is used at runtime by LAAR to activate
operator replicas.

We call this problem replica activation problem, and we define it as follows:

minimize
s

cost (s) (10a)

subject to:

IC(s) ≥ G (10b)
∑

x̃m
i

∈ϑ−1(h),

xj∈pred(xi)

γ (xj , xi)Δ(xj , c)s(x̃
m
i , c) ≤ Kh

∀h∈H,
∀c∈C (10c)

s
(
x̃0
i , c

)
+ s

(
x̃1
i , c

) ≥ 1 ∀xi∈P,
∀c∈C (10d)

The cost function in the minimization term represents the cost, in terms of
resources, for a service provider to run the application using replica activation
strategy s and the replicated assignment defined by ϑ. In this work, we assume
the bandwidth available for cluster-local communication to be an abundant re-
source (a common assumption in data center contexts), and we model our cost
function as the total number of CPU cycles used in a period T . It is defined as
follows:

cost (s) = T
∑

c∈C,

x̃m
i

∈ ˜P,

xj∈pred(xi)

PC (c) γ (xj , xi)Δ(xj , c)s(x̃
m
i , c) (11)

and is the summation over the CPU consumption of all the operator replicas.
Equation (10b) constrains IC to satisfy a requested fault-tolerance value G,

while (10c) states that each host in the deployment should never be overloaded;
Kh is a constant expressing the number of CPU cycles per second available at
host h. The last constraint, expressed in (10d), requires that there is at least one
active replica of every operator in every input configuration, and it ensures that
the measured IC value is one in absence of failures.

2.3 Failure Model

We consider a simplified failure model φ, based on the following assumptions:

1. In any failure scenario, one replica of every operator fails.
2. Unless both the replicas are active at some point in time, the non-failed

replica is assumed to be the one that was inactive according to the replica
activation strategy.

3. Once failed, replicas never recover.
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or, more formally:

φ(xi, c, s) =

{
0 if s(x̃0

i , c) + s(x̃1
i , c) < 2, x̃i,l ∈ P̃

1 otherwise
(12)

This model will in general overestimate possible failure conditions because,
in the actual stream processing deployment, it is highly unlikely that replicas of
every operator fail at the same time, and because, in our runtime LAAR imple-
mentation, when an operator failure is detected, any corresponding and possibly
deactivated replica returns to its active state, while an automatic recovery pro-
cedure promptly replaces the failed component [4]. For these reasons, we refer
to φ as pessimistic failure model. While, overstating, on the one hand, the ef-
fects and consequences of failures compared to actual runtime conditions, on the
other hand, this choice of φ provides two fundamental benefits: (i) the IC value
computed using this model is a large lower bound to the real IC that will be
observed on actual application deployments because any real failure condition is
highly likely to be much less severe than those predicted by the model; (ii) its
mathematical formulation simplifies the computation of IC values for different
possible replica activation strategies and hence the optimization complexity.

Note that the solution space of this problem is still very large, as for every
application there are 3|P |·|C| possible replica activation strategies. Note also that,
in cost function (11), the IC constraint (10b) and the hosts CPU constraints

(10c) depend on Δ̂ (xi, c, s) (8), which is a recursively defined exponential term.
Hence, to find algorithms that can find optimal or good enough solutions to this
problem is a major technical challenge.

3 Solving the Problem with CP

In this section, we analyze different CP-based approaches to solve the replica
activation problem presented in Section 2.

As a first straightforward solution, we implemented the optimization model
(10) “as-is” on the commercial IBM ILOG CP Optimizer solver [13], and used
it to get a better understanding of the problem structure.

Looking at the problem from a user perspective, cost (11) and IC (9) are the
most important parameters because, together, they determine the cost-quality
trade-off for running stream processing applications with LAAR. Intuitively,
since the basic mechanism to mask the effects of failures is to activate more
replicas, in general, requiring higher IC (and hence better fault-tolerance) will
correspond to higher runtime costs.

Fig. 1a gives some insight about the shape of the problem solution space when
considering together cost and IC: it shows the space of possible feasible solutions of
a problem instance consisting of 24 operator replicas distributed on 6 computing
hosts and IC constraint — G in (10b) — set to 0.1. The continuous black line is a
loess regression [6] of the solution points and confirms that, as a general trend, the
cost of solutions is proportional to their IC value. However, the graph also shows
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(a) (b)

Fig. 1. Cost–IC relationship in the solution space of a problem instance consisting of
12 operators (2 replicas each) deployed on 6 hosts. Full circles represent the Pareto
frontier of the problem space, while the continuous line is a regression of the solution
points. Without (a) and with partial filtering of sub-optimal solutions (b).

that there is a very large number of sub-optimal solutions (empty circles) and that
higher costs do not necessarily imply higher IC. Recall that the IC value does not
only depend on the number of active replicas, but also on the particular choice of
operators to activate and on the topology of the application data flow graph. As a
consequence, a wrong choice of active operator replicas can easily lead to a useless
waste of resources.

However, an important fraction of sub-optimal solutions not belonging to
the Pareto frontier of the solution space can be discarded quickly with simple
considerations. For example, think about a pipeline of operators where a first
operator (O0) feeds a second one (O1). Given the pessimistic failure model in
(12), having, in any input configuration, two active replicas of O1 and, at the
same time, only one active replica for O0 does not contribute to the overall IC
value because, in case of failures, O1 would not receive any sample to process
from O0; that would, however, increase the solution cost. This is not only valid
for pipelines but can be generalized for any graph shape: in particular, any
feasible replica activation strategy sx that, in some input configuration c, has
two active replicas for some operator xi whose predecessors all have only one
active replica is sub-optimal with respect to a corresponding feasible replica
activation strategy sy that differs from sx only for the fact that xi has just
one active replica. This relation can be used to add a new constraint to (10)
that approximates the set of Pareto-optimal points by performing a partial sub-
optimal solution filtering (PSF), which removes obviously sub-optimal solutions.
We formulate this constraint as follows:

∃ xi ∈ P, c ∈ C s.t. ∀xj ∈ pred (x)
∑

l=0,1

s
(
x̃m
j , c

)
= 1 =⇒

∑

l=0,1

s (x̃m
i , c) = 1

(13)
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Fig. 2. Comparison of average time to find an optimal solution with and without the
partial sub-optimal solution filtering

Fig. 1b shows the solution space of the same problem instance in Fig. 1a after
the filtering based on (13). This important reduction in size also has a significant
impact on the time needed to solve the problem. Fig. 2 summarizes the average
search time needed to find the optimum solutions for a batch of small problem
instances in which graphs of 2 to 11 operators are deployed on 4 hosts with
two replicas per operator. As the graph complexity increases, the benefit of the
additional constraint in (13) becomes more and more evident.

Given these characteristics of the solution space, we have developed three
search strategies. The first (called Basic) is the straightforward implementation
of the model in (10) with the additional constraint in (13) on the ILOG CP
Optimizer solver. Since the realization of this first strategy is straightforward,
we do not detail it further in this paper. On the contrary, in the following two
subsections, we introduce the second and third search strategies, respectively a
Large Neighborhood Search (LNS)-based strategy and a decomposition-based one.

3.1 LNS-Based Strategy

The basic idea behind LNS strategies [19] is to start from an initial solution
and then proceed through incremental improvement steps that focus on large
neighborhoods of the current best solution. We developed a strategy to solve our
replica activation problem that is based on these concepts. The algorithm starts
from a solution found either by using the Basic solver presented in the previous
section, or by leveraging a simple greedy initial solution. The algorithm that finds
this last type of initial solution is very simple: it starts with a replica activation
strategy where two replicas of every operator are always active; iteratively, it
deactivates the most resource hungry operator until all the non-overloading con-
dition constraints (10c) are met. The advantage of using this greedy algorithm
to find the initial solution four our LNS approach is its ability to terminate ex-
tremely quickly. These greedy solutions are not necessarily feasible because they
can violate the constraint (10b), but our practical experience has shown that
those infeasibilities can be often rapidly corrected through a few LNS moves.
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Given the initial problem solution, the LNS-based strategy proceeds through
a series of iterative improvement steps. At every round, a new optimization
problem is built by relaxing the current best solution, i.e., by fixing the values of
a subset of the search variables to those of the best solution so far and by focusing
the exploration on the subspace of the remaining relaxed variables. We choose the
variables to relax at each iteration according to one of two alternative methods.
In the first (simple random), they are chosen completely random; in the second
(weighted random), every search variable is assigned a weight that depends on its
corresponding input configuration, so that variables associated to more resource-
hungry input configurations (typically corresponding to load peaks) have higher
chances to be chosen for relaxation. The weighted random strategy aims at
relaxing these variables first because they usually require the highest number
of operator replicas deactivated in order to satisfy (10c) and consequently have
a stronger influence on the satisfiability of the IC requirement (10b). Every
iterative improvement step explores the corresponding relaxed subspace either
until it finds a solution that improves upon the previous one or until a local time
limit expires. Every round dynamically adapts the number of relaxed variables
by reducing it when the last step has produced improvements or by increasing it
in case of deteriorations of the solution quality. The algorithm terminates either
when there is no improvement for a configurable number of consecutive rounds
or when a global time limit expires.

Note that, differently from the Basic search strategy, the LNS-based one does
not recognize when an optimum has been reached, and, when greedy starting
points are used, it cannot conclude whether a problem has any solutions if none
are found.

3.2 Decomposition-Based Strategy

In this section we propose a solution approach that decomposes the problem
in a number of orthogonal subproblems along its |C| different input configura-
tions. The goal of this decomposition-based approach is to provide scalability
especially for instances with a large number of input configurations. This type
of optimization is very important in many common real-world problems, where
stream processing applications process data from tens of sources, each producing
data at different possible data rates.

Let us consider once again the formulation of the replica activation problem
(10). Separating the CPU constraints in (10c) and the minimum replicas con-
straints in (10d) is trivial, because each of them involves only terms relative
to a single input configuration c. The search variables s can be equally easily
separated by considering |C| different replica activation strategies sc such that:

s(x̃m
i , c) = sc(x̃

m
i ), sc : P̃ �→ {0, 1} (14)
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The IC constraint (10b) can be, instead, rewritten as follows:

FIC(s)

T
≥ BIC

T
(G)

︸ ︷︷ ︸
G′

⇔
∑

c∈C

∑

xi∈P,

xj∈pred(xi)

PC(c) · φ(xi, c, s) · Δ̂(xj , c, s)

︸ ︷︷ ︸
μc (sc)

≥ G′

⇔
∑

c∈C

μc (sc) ≥ G′ (15)

Similarly, considering (11), the minimization term (10a) can be written as:

min
∑

c∈C

∑

x̃m
i

∈ ˜P,

xj∈pred(xi)

PC (c) γ (xj , xi)Δ(xj , c)s(x̃
m
i , c)

︸ ︷︷ ︸
λc (sc)

⇔ min
∑

c∈C

λc (sc) (16)

Note that, while the CPU and minimum replicas constraints can be evaluated
and satisfied considering each input configuration c separately, the IC constraint
and the cost minimization expression cannot; nonetheless, they both can be
expressed as a sum of |C| non negative terms, and each of this terms can be
evaluated separately for different values of c.

Our decomposition approach consists in defining |C| subproblems probc, one
per input configuration; the solution of each problem is a partial replica acti-
vation strategy sc that satisfies at least the corresponding CPU and minimum
replication constraints (10c) and (10d). The subproblems’ optimization goal and
possible additional constraints, instead, depend on the particular phase the de-
composition algorithm is in. Algorithm 1 sketches, in pseudo-code, the main
steps of the decomposition-based solver.

The algorithm starts by maximizing the μc(sc) values of each subproblem
(Phase 1, lines 1–9). Note that, after this phase is complete, if a solution is
found for every subproblem, an upper bound on the possible IC for the original
problem can be obtained using (15): through it, it is possible to test immediately
whether the original problem admits solutions (line 7) and, in case it does, to
output an initial and in general sub-optimal solution. During Phase 2 (lines
10–22), this initial solution is improved by working separately and iteratively
on each subproblem. At every iteration, the problem whose contribution to the
overall IC is minimum with respect to its contribution to the cost (line 12) is
chosen as a candidate for improvement, and the algorithm tries to decrease its
cost while ensuring that the obtained μc(sc) value still allows to satisfies the
overall IC requirement (line 13). This iteration is repeated until no improvement
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Algorithm 1. Decomposition-based Search Strategy

input : {probc}: the |C| decomposed subproblems.
output: A replica activation strategy s, or None if no solution found

1 Phase 1: /* μc maximization */

2 foreach probc do
3 smax

c ← maximize μc in probc
4 if smax

c is None then return None μmax
c ← maximum μc for probc

5 λmax
c ← cost value corresponding to smax

c

6 end
7 if

∑
c∈C μmax

c < G′ then /* Feasibility test */

8 return None

9 end
10 Phase 2: /* optimization */

11 foreach probc do μcur
c ← μmax

c ; λcur
c ← λmax

c while exists probc that can be
improved do

12 c′ ← maxc (λ
cur
c /μcur

c ) /* Choose prob. to improve */

13 μlimit
c′ ← G′ −∑

c∈C
c �=c′

μcur
c

14 Post μc′ ≥ μlimit
c′ as constraint on probc′

15 Post λc′ < λcur
c′ as constraint on probc′

16 scurc′ ← findFirst(probc′) /* Solve probc */

17 if sc′ is None then
18 probc′ cannot be improved further
19 else
20 Update μcur

c′ and λcur
c′ according to scurc′

21 end

22 end
23 Phase 3: /* End */

24 s ← Combine all the scurc

25 return s

can be obtained from any subproblem. In Phase 3, finally, the partial replica
activation strategies are combined, and the result returned as output.

Like the LNS-based strategy, this algorithm can decide whether the problem
is feasible, but cannot recognize an optimal solution. In the cases where the
operator graph is particularly complex, it might be necessary to set a time limit
for Phase 1 to avoid blocking the solver for too long; in such cases, the solution
obtained after Phase 1 is no longer an upper bound on the obtainable IC, and so
the algorithm cannot decide anymore about the feasibility of the entire problem.
Let us note, finally, that the various subproblems optimizations (either the initial
IC maximization or the subsequent cost minimizations) can be performed with
any optimization technique.

4 Experimental Evaluation

The primary goals of our evaluation study are i) to compare the quality of the
best solutions that the three strategies can find within a reasonable time limit



204 A. Reale et al.

and ii) to evaluate the scalability of the search strategies (in particular of the
decomposition-based one) as the problem size grows.

For the first part of this evaluation, we consider a batch of 20 different stream
processing applications with data flow graphs of 96 operators each. Every appli-
cation has three data sources, each producing output at two possible data rates
(for a total of 8 input configurations), and is associated with a replicated deploy-
ment (two replicas per operator, 192 replicas in total) on 24 computing hosts.
The IC constraint in the related Replica Activation Problem is set to 0.5. We
choose these applications as we believe their complexity to be well representative
of real world stream processing deployments.

We compare the optimization algorithms in the following variants:

1. Basic solver with partial sub-optimal-filtering (BASIC ).
2. LNS-based strategy using BASIC for the initial solution and simple weighted

random relaxation method (L SRW ).
3. LNS-based strategy using a greedy initial solution and weighted random

relaxation method (L GRW ).
4. LNS-based strategy using a greedy initial solution and simple random relax-

ation method (L GRS ).
5. Decomposition strategy using BASIC for Phase 1 (DEC S ).
6. Decomposition strategy using LNS GRW for Phase 1 (DEC L).

All the experiments are executed on a machine with an AMD Phenom II X6
1055T @2.8 GHz processor and 8 GB of main memory. The ILOG CP Optimizer
is configured to use only one worker (single threaded solution), and its search
time limit is set to 300 seconds wall time. Due to the complexity of the problems,
for no instance it was possible to demonstrate the optimality of the solutions
found; however, feasible solutions were found for all instances except four.

In this experimental campaign, we were primarily interested in two aspects,
i.e., the ability to find good solution in a relatively large time frame, and the
complementary capacity of quickly finding a first feasible solution. Both aspects
are critical in our use-case scenario: the first is more significant during the de-
ployment of new stream processing applications, when a larger time budget is
usually available; the second is more relevant when replica activation strategies
must be quickly adjusted at runtime due to dynamic variations of input charac-
teristics. For reasons of space, in the following, we only report the results about
the first aspect. Experimental data about the second are available in our on-line
appendix [17], together with downloadable descriptions of the problem instances
used in this evaluation.

The bar plot in Fig. 3 compares the various search algorithms to BASIC,
which we choose as the base line solution method; the plot analyzes the best
solution cost (BCOST) and its associated search time (BTIME) and is obtained
by normalizing, separately for each problem instance, the values of BTIME and
BCOST with respect to the results obtained in BASIC. The figure shows the
average of these values along with the associated standard error.
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Fig. 3.Mean time to find the best solution within the time limit and associated solution
cost. All the results are normalized w.r.t. the BASIC variant.

In general, the two decomposition-based variants find solutions that are at
least as good or slightly better than those found by BASIC. In more detail, in
the only six instances where the decomposition variants finds solutions worst
than BASIC, that solution is at most 23% more expensive; at the same time,
they can save considerable amounts of time (43% on average). The results show
also that, on the one hand, DEC L can find good solutions much faster than
DEC S (4% to 70% faster), probably due to the initial speed-up given by the
LNS greedy strategy used to find the starting solutions for Phase 1; on the other
hand, the solutions found by DEC L tend to be a little more expensive than
those found by DEC S (from 1% to 24%): that is explained by considering that
the use of the BASIC solver in Phase 1 usually gives tighter IC upper bounds,
which, in turn, permit to use looser constraints on the μlimit

c values in Phase 2.
The solutions found by the LNS-based variants, finally, are in all but one case
worst than those found by BASIC, with cost inflations up to 57%. Among the
LNS variants, L SRW is the one providing the best results thanks to its better
(although slower) initial solutions, with higher costs (between 1% and 13%), but
solution times that are 75% smaller to 26% bigger than BASIC.

Finally, we evaluate the scalability of the decomposition-based strategy when
the number of input configurations grows. In order to measure it, we started from
an application graph with 32 operators and one data source, with a replicated
deployment (64 operators) on 8 hosts, and we randomly generated 40 different
applications, for each, customizing the number of possible data source rates.
The result is a set of 40 different replica activation problem instances sharing
the same processing graph and deployment, but with a progressively growing
number of input configurations (from 2 to 80 by steps of 2). We solved these
instances through the BASIC and the DEC S search variants. Fig. 4 shows the
time taken by the two strategies to find their best solution as the number of input
configurations grows. The results for the BASIC variants grow very quickly, and,
for instances with more than 18 configurations, we could not find any solution
within the time limit. On the contrary, by using DEC S, the solution time grows
much more slowly, and we easily solved all the problem instances.
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5 Related Work

The problem of managing load variations in DSPSs has been widely investigated
in the related literature, and different solution techniques have been proposed.

Tatbul et al. [20], for example, tries to avoid resources overload in spite of
changing load condition by introducing controlled data drops in the data-flow
graph. In a pre-deployment phase, they solve a set of LP problems to build
load-shedding plans that decide where and how many tuples to drop to maxi-
mize application throughput. Like our replica activation strategies, load-shedding
plans contain decisions for each input configuration. However, these plans do not
take into account the interplay of fault-tolerance and variable input load: with
load shedding, data is dropped even when no failure occurs, while LAAR guar-
antees that no data is lost in that case and it bounds the maximum amount of
loss in case of failures. For these reasons, the problem model in [20] and the one
presented in this paper are very different and difficult to compare.

Another common approach is to move operators between hosts to re-balance
the system and accommodate new load conditions: in [12,24,25] this is done
through continuous greedy improvement steps. Likewise, in [1], the authors de-
velop a resource allocation algorithm that uses a dynamic flow-control algorithm
based on a linear quadratic regulator [7] to maximize the application throughput.
All these approaches assume that the available resources are enough to handle
any input configuration, or that the data sources rate can be paced at will until
there are enough resources to handle the load; in LAAR additional resources are
dynamically provided by temporarily replication adjustments.

Using CP to manage replicas in distributed systems has been previously done
by Michel et al. [16], who propose a CP model that solves the problem of de-
ploying replicas on distributed nodes to minimize the communication cost in
Eventually Serializable Data Service (ESDS) systems. Our replica activation
problem is different because we do not deal with the assignment of replicas to
computing resources, but we decide their dynamic activation strategy.

In [15], the authors solve a combined assignment and scheduling problem for
conditional task graphs (CTG). Similarly to this work, the CP model includes
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stochastic elements, but they are used to describe the probability that branches
in the task graphs are actually used at runtime.

Our problem formulation closely resembles stochastic optimization problems
with value at risk (VaR) guarantees [18], and our decomposition strategy is
based on the notion of separability of optimization problems commonly used in
OR contexts [14].

6 Conclusions and Future Work

In this paper we have introduced an optimization problem whose solution is
at the foundations of LAAR, a technique for dynamic and load-adaptive active
replication in DSPSs. After having investigated the characteristics of the prob-
lem and of its solution space, we have presented three possible solution strate-
gies: a näıve and straightforward model solver, a LNS-based search strategy, and
a Decomposition-based strategy. Our experimental evaluation shows that when
sufficient time budged is available, the decomposition approach can find good so-
lutions and scale particularly well for instances where possibly many data sources
produce input at many possible rates. On the contrary, the LNS-approaches
represent an appropriate solution when finding quickly a good-enough feasible
solution is the main concern [17]. Finally, the näıve solver provides the most
consistent behavior across all the possible scenarios when used in combination
with an ad-hoc sub-optimal solution filtering constraint.

As future work, we will continue our investigation on the problem trying to
correlate specific problem characteristics (e.g., shape of the graph, properties of
the deployment) to the behavior of different search strategies. In addition, we will
continue experimenting with the current approaches on a broader set of problem
instances in order to expand and further validate our findings. Let us finally note
that, although we have introduced the replica activation problem and LAAR in
the context of stream processing, the presented principles are applicable to the
much larger domain of distributed data flow systems that can tolerate weaker
fault-tolerance levels through dynamic active replication.

Acknowledgements. We would like to thank the Smarter Cities Technology
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