
The PrePack Optimization Problem

Maxim Hoskins1,2, Renaud Masson1, Gabrielle Gauthier Melançon1,
Jorge E. Mendoza2, Christophe Meyer3, and Louis-Martin Rousseau1

1CIRRELT, École Polytechnique de Montréal, Montreal, Canada
2Université Catholique de l’Ouest, LARIS (EA 7315), Angers, France

3Université du Québec à Montréal, Montreal, Canada

Abstract. The goal of packing optimization is to provide a foundation
for decisions related to inventory allocation as merchandise is brought to
warehouses and then dispatched. Major retail chains must fulfill requests
from hundreds of stores by dispatching items stored in their warehouses.
The demand for clothing items may vary to a considerable extent from
one store to the next. To take this into account, the warehouse must
pack “boxes” containing different mixes of clothing items. The number
of distinct box types has a major impact on the operating costs. Thus,
the PrePack problem consists in determining the number and contents
of the box types, as well as the allocation of boxes to stores. This paper
introduces the PrePack problem and proposes CP and MIP models and
a metaheuristic approach to address it.

1 Introduction

Major retail chains must fulfill requests from hundreds (or even thousands) of
stores by dispatching items stored in their warehouses. For instance, in the fash-
ion industry, one must dispatch to each store an assortment of clothes of varied
colors and sizes, in such a way that the demand of the store clients is satisfied.
The items are usually shipped in boxes containing several different items.

A box configuration is a possible way to fill a box. The number of different
configurations used has a major impact on the operating costs. If there are many
configurations, it will be possible to satisfy the demand of the stores in a precise
manner but with elevated operating costs. If the number of configurations is
restricted, the operating costs will be low, but some items may be overstocked
or understocked at the stores.

The PrePack problem consists in determining the number and contents of
the box configurations, as well as the configurations to ship to each store, to
minimize overstocking and understocking. In this paper we will consider the
number of configurations to be fixed, but variants where this number is a decision
variable also exist. Moreover, the supplier will usually favor overstocking since
understocking decreases customer satisfaction. However, because overstocking is
costly for the stores they usually impose a hard limit. Furthermore, it is not
permissible to overstock an item in a store where there is no demand for it,
because the item would never be sold. Finally, the box capacities are predefined,
and all boxes must be full.

H. Simonis (Ed.): CPAIOR 2014, LNCS 8451, pp. 136–143, 2014.
c© Springer International Publishing Switzerland 2014

The PrePack Optimization Problem 137

The PrePack problem described above is of significant importance and the
subject of recent patent applications [1,2,3]. However, to our knowledge, there
are no current scientific publications that present an algorithm for it. The most
relevant combinatorial problem, on which [1,2,3] build, is the multi-choice knap-
sack problem described in [4]. We formally introduce the PrePack problem and
present three solution approaches. The preliminary results suggest that despite
its apparent simplicity, the prepacking problem is a challenging combinatorial
optimization problem that deserves to be studied more deeply.

The remainder of the paper is organized as follows. Section 2 formalizes the
problem using constraint programming; Section 3 formulates the problem as a
mixed integer program; and Section 4 presents hybrid metaheuristics. Section
5 discusses the results obtained by each approach, and Section 6 concludes the
paper.

2 Problem Definition

A more precise description of the problem is given through the following con-
straint programming model. The model, which considers a fixed number of boxes
where each box represents a configuration of items, uses the following indices:
i ∈ I for each item, s ∈ S for each store, and b ∈ B for each box configuration.
From now on the sets will be implied; for example, we will write ∀(i, s) instead
of ∀i ∈ I, s ∈ S. We denote by K the set of possible box capacities (if there is
no restriction on the capacities, we simply set K = Z+).

min Obj =
∑

i,s

(α · under(i, s) + β · over(i, s)) (1)

∑

b

fill(b, i)× send(b, s) = dem(i, s) + over(i, s)− under(i, s) ∀(i, s) (2)

over(i, s) ≤ overlimit(i, s) ∀(i, s) (3)
∑

i

fill(b, i) = capa(b) ∀(b) (4)

capa(b) ∈ K ∀(b) (5)

over(i, s), under(i, s), f ill(b, i), send(b, s), capa(b) ∈ Z+ ∀(i, s, b) (6)

The objective (1) is to minimize the cost of understocking (under) and over-
stocking (over), where α and β are the understock and overstock penalties.
Constraint (2) is nonlinear and ensures that the demand (dem) of each item in
each store is met. Here, fill defines the amount of each item to be packed in
each box configuration and send indicates how many boxes of each configura-
tion are to be sent to each store. Constraint (3) ensures that the overstocks are
less than or equal to the predefined overstock allowances. Constraint (4) ensures
that the boxes are full. Finally constraint (5) imposes the restrictions on the box
capacities.

138 M. Hoskins et al.

Although the above constraints fully define the problem, it may be helpful to
add redundant constraints to reduce the solution time. In particular, we consid-
ered the following constraints:

∑

b

send(b, s) ≤

⎡

⎢⎢⎢⎢

∑
i

(
dem(i, s) + overlimit(i, s)

)

[min box capacity]

⎤

⎥⎥⎥⎥
∀(s) (7)

over(i, s) · under(i, s) = 0 ∀(i, s) (8)

capa(b) ≥ capa(b− 1) ∀(b ≥ 1) (9)

∑

i

(under(i, s) + over(i, s)) ≥ modulo

(
∑

i

dem(i, s), 2

)
∀(s) (10)

Constraint (7) is interesting when the box capacities are greater than one
since it limits nontrivially the number of boxes to be sent to each store. Al-
though constraint (8) will be automatically satisfied by any optimal solution,
imposing it can lead to a substantial reduction of the solution space. Note that
the formulation contains several symmetries. Some of them can be removed by
adding constraint (9), which ensures that the box configurations are considered
in increasing order of their capacity. Finally, unlike the previous constraints, con-
straint (10) is valid only when the boxes are required to have an even capacity.
With this constraint, if the total demand of a store is odd, then there must be
some overstock or understock at that store.

3 Mixed Integer Problem Model

For this formulation we need the following variables: ybi = amount of item i in
box configuration b; xbs = number of box configurations b shipped to store s;
zis = total amount of item i shipped to store s; tbk = 1 if box configuration b
corresponds to a box of capacity k and 0 otherwise; ois = overstock of item i at
store s; and uis = understock of item i at store s. The overall nonlinear model
is then:

minObj =
∑

i,s

(αuis + βois) (11)

zis − ois + uis = dem(i, s) ∀(i, s) (12)

zis =
∑

b

xbsybi ∀(i, s) (13)

∑

i

ybi =
∑

k

k · tbk ∀(b) (14)

∑

k

tbk = 1 ∀(b) (15)

ois ≤ overlimit(i, s) ∀(i, s) (16)

tbk ∈ {0, 1}, xbs, ybi, zis ∈ Z+, ois, uis ≥ 0 ∀(b, i, k, s) (17)

The PrePack Optimization Problem 139

Constraints (12) and (13) ensure that the store demands are satisfied, with
possible understock and overstock. Constraints (14) and (15) ensure that each
box is completely filled to one of the predefined capacities. Constraints (16)
restrict the overstocking, while constraint (17) defines each variable’s domain.

The above formulation can be linearized by standard techniques to enable
the use of standard solvers such as CPLEX. We decompose the x variables
by introducing binary variables vbsl such that xbs =

∑
l 2

l · vbsl ∀(b, s). When
multiplying xbs by ybi, we obtain the product wbisl = vbslybi. We replace this
product by wbisl and add the following constraints:

wbisl ≤ Ȳvbsl ∀(b, i, s, l) (18)

wbisl ≤ ybi ∀(b, i, s, l) (19)

wbisl ≥ 0 ∀(b, i, s, l) (20)

wbisl ≥ ybi − Ȳ(1− vbsl) ∀(b, i, s, l) (21)

zis =
∑

b,l

2l · wbisl ∀(i, s) (22)

where Y is an upper bound on the variables ybi. The linearized model is then
obtained by replacing (13) by (22) and removing the x variables.

Of the constraints (7)–(10), the last one proved to be helpful when the capac-
ities of the boxes are even, and it was introduced in the following form:

∑

i

(uis + ois) ≥ modulo

(
∑

i

dem(i, s), 2

)
∀(s) (23)

In contrast, the symmetry-breaking constraints (9) did not help and thus were
not included in the final model.

4 Hybrid Metaheuristic

We developed a two-phase hybrid metaheuristic. In the first phase, the approach
uses a memetic algorithm (MA) to explore the solution space and builds a pool
of interesting box configurations. In the second phase, the approach solves a
box-to-store assignment problem, to i) choose a subset of configurations from
the pool and ii) decide how many boxes of each configuration should be sent to
each store.

In our MA, individuals are represented using a multi-array genotype. Each of
the |B| arrays in the genotype represents a box configuration, i.e., a vector of
integers with |I| positions. The initial population is built using three constructive
heuristics: demand-driven insertion, cost-driven insertion, and random insertion.
The first heuristic fills boxes with items selected based on the demand across
stores. The second heuristic fills boxes based on an estimation of the impact of
the resulting configuration on the objective function. The third heuristic has two

140 M. Hoskins et al.

steps: in the first step it randomly selects a box capacity, and in the second step
it fills the selected box with a random number of items of each type.

The initial population is evolved using two evolutionary operators, namely,
crossover and mutation. The crossover operator, horizontal-vertical crossover,
recombines two parents to form four offspring. The underlying idea is to mix
whole box configurations to generate a new individual and also to build new box
configurations by recombining existing packing patterns. Figure 1 illustrates the
operator for |B| = 3. The mutation operator simply sweeps each configuration
in the mutating individual and swaps some of the item values. Finally, the local-
search operator tries to improve an individual by changing the number of each
type of item in each of the individual’s configurations. During the execution of
the MA, the fitness function of a solution is computed by heuristically solving
the box-to-store assignment problem using a fast procedure. To control the evo-
lutionary process, we borrowed the logic of the generational MA introduced in
[5]. To support our implementation we used the Java Genetic Algorithm frame-
work [6]. The second phase of our approach consists in solving the box-to-store

Fig. 1. Horizontal-vertical crossover example

assignment problem over a set of configurations C found during the MA. The
composition of C may differ depending on the MA’s parameters. To solve the
assignment problem we use the following set covering model:

min
∑

i,s

αuis + βois (24)

s.t.
∑

c

aicxcs = dis + ois − uis ∀(i, s) (25)

∑

s

xcs ≤ X̄yc ∀c (26)

∑

c

yc = |B| (27)

where c ∈ C. The objective (24) is to minimize the understock uis and overstock
ois with the parameters α and β representing the understock and overstock

The PrePack Optimization Problem 141

penalties. Constraint (25) controls the demand; aic is the number of item i
present in configuration c, and xcs is the number of box configurations c sent to
store s. Variable yc is 1 if configuration c is used and 0 otherwise. Constraint (26)
ensures that no unused configuration is sent to a store. Constraint (27) ensures
that the correct number of configurations is used to represent a solution.

To solve (24)–(27) we use either a commercial solver (CPLEX) or a large
neighborhood search (LNS). Starting from a valid solution, the LNS partially
destroys the solution with one operator and reconstructs it with another opera-
tor. The destruction operator selects random box configurations to remove from
the solution. The reconstruction operator is based on a best-insertion algorithm.
The algorithm adds to the solution the box configuration that provides the
smallest increase in the value of the objective function. The objective function
is determined after an assignment heuristic has assigned the box configurations
to the stores. LNS repeats this process until the predetermined number of box
configurations to use has been satisfied.

5 Results

We tested our approaches on variants of a real-world instance with 58 stores
demanding 24 (= 6 × 4) different items: T-shirts available in six different sizes
and four different colors (black, blue, red, and green). Each item has a fixed
overstock limit (0 or 1) for all stores but no understock limits. The available box
capacities are 4, 6, 8, and 10. Finally, the overstock and understock penalties are
β = 1 and α = 10. From this instance we derived smaller instances obtained by
considering only some of the colors and/or only the first ten stores. We set the
maximum execution time to 15 minutes.

The results are presented in the following two tables. The second column
indicates the number of box configurations used to build the solution. Columns
3 and 5 indicate the number of understocked and overstocked items across all
the stores. Columns 4 and 6 indicate the time needed to prove optimality in
the case of the exact models (unless the maximum time is reached, in which
case we indicate the best solution found) or to find the best solution for the
metaheuristic. Columns 7 and 8 indicate respectively the number of nodes in
the branching tree and the resulting gap.

5.1 Exact CP and MIP Models

For the constraint programming model (CP), the results show that the model
is able to quickly prove optimality when no understocking is required. This is
because there exists a feasible solution for which (10) is tight. The mixed integer
problem (MIP) approach performs efficiently on all the mono-color instances.
However, for larger instances, there are two issues, First, it has difficulty finding
good feasible solutions. For example, the LP relaxation value for the instance
BlackBluex10 coincides with the optimal value; what prevents CPLEX from
solving the model is its inability to find the corresponding feasible solution. Sec-
ond, it has difficulty improving the best bound; CPLEX may not be able to

142 M. Hoskins et al.

Instance
No. CP MIP

Boxes Under/over stock CPU (s) Under/over stock CPU (s) No. Nodes Gap

Black x 58 4 (0; 58) 19 (0; 58) 0.09 27 0%
Blue x 58 4 (0; 0) 118 (0; 0) 0.83 580 0%
Red x 58 4 (16; 0) 900 (16; 0) 0.42 523 0%
Green x 58 4 (0; 0) 0.5 (0; 0) 0.04 4 0%

BlackBlue x 10 7 (0; 10) 300 (7; 13) 900 88900 87.95%
BlackBlue x 58 7 (76; 110) 900 (36;106) 900 55198 87.55%

AllColor x 10 14 (33; 3) 900 (47; 19) 900 3700 98.77%
AllColor x 58 14 (401; 93) 900 - 900 0 -

improve the lower bound found at the root node. For the instance AllColorx58,
CPLEX is not even able to process the root node (the time limit was reached
as CPLEX’s heuristics were trying to find a feasible solution). The results are
presented with CPLEX’s default parameters; some other settings have been ex-
plored without any improvement.

5.2 Hybrid Metaheuristic

The metaheuristic was run with two separate configurations: solving (24)–(27)
using CPLEX over the set C made up of all the box configurations found in
the individuals of the MA’s final populations; and solving (24)–(27) using LNS
over the set C made up of all the box configurations explored during the MA’s
execution (that is, a much larger set of columns). The results show that on the

Instance
Nb of CPLEX LNS
boxes under/over stock CPU (s) under/over stock CPU (s)

Black x 58 4 (0; 58) 6 (0; 58) 7
Blue x 58 4 (1; 1) 7 (10; 10) 8
Red x 58 4 (58; 0) 7 (50; 0) 8
Green x 58 4 (0; 0) 7 (0; 0) 8

BlackBlue x 10 7 (4; 26) 7 (1; 11) 16
BlackBlue x 58 7 (35; 175) 43 (0; 174) 74

AllColor x 10 14 (18; 22) 49 (7; 19) 293
AllColor x 58 14 (168; 146) 273 (40; 148) 900

mono-color instances both metaheuristics find two of the four optimal solutions.
On the larger instances, it is clear that the CPLEX-based model is less effective
than the LNS model. This is because the latter approach has a larger solution
space to explore.

6 Conclusion

We have introduced the PrePack optimization problem, a problem that does
not seem to have been studied before. Our preliminary results show that this

The PrePack Optimization Problem 143

problem can be very hard, even for relatively small instances, as illustrated by
the CP and MIP approaches. The hybrid metaheuristic was able to return a
solution for all instances in a relatively short time. However, the results are not
as good as those of the the CP and MIP approaches. This is because the quality
of the results delivered by the second phase depends on the pool of generated
configurations.

This problem certainly deserves further study. More valid inequalities and
cuts will be necessary to improve the performance of the MIP approach. The
performance of the CP model could be improved by adding effective surrogate
constraints. The metaheuristic is promising because it is faster than the exact
models, but the pool-generation phase needs to create more effective configura-
tions to produce better solutions.

Acknowledgement. This paper is based on work that was initiated during the
Fifth Montreal Problem Solving Workshop held at the Université de Montréal in
August 2013. We would like to acknowledge financial support from the CRM and
Mprime, and we thank the CRM for providing a stimulating working environ-
ment during the workshop. We are especially grateful to Eric Prescott Gagnon
from JDA Software for proposing the problem and for being present throughout
the week to help us understand the context.

References

1. Erie, C.W., Lee, J.S., Paske, R.T., Wilson, J.P.: Dynamic bulk packing and casing.
International Business Machines Corporation, US20100049537 A1 (2010)

2. Vakhutinsky, A., Subramanian, S., Popkov, Y., Kushkuley, A.: Retail pre-pack op-
timizer. Oracle International Corporation, US20120284079 A1 (2012)

3. Pratt, R.W.: Computer-implemented systems and methods for pack optimization.
SAS Institute, US20090271241 A1 (2009)

4. Chandra, A.K., Hirschberg, D.S., Wong, C.K.: Approximate algorithms for some
generalized knapsack problems. Theoretical Computer Science 3(3), 293–304 (1976)

5. Mendoza, J.E., Medaglia, A.L., Velasco, N.: An evolutionary-based decision support
system for vehicle routing: The case of a public utility. Decision Support Systems 46,
730–742 (2009)

6. Medaglia, A.L., Gutérrez, E.J.: An object-oriented framework for rapid development
of genetic algorithms. Handbook of Research on Nature Inspired Computing for
Economics and Management. Idea Publishing Group (2006)

	The PrePack Optimization Problem
	1 Introduction
	2 Problem Definition
	3 Mixed Integer Problem Model
	4 Hybrid Metaheuristic
	5 Results
	5.1 Exact CP and MIP Models
	5.2 Hybrid Metaheuristic

	6 Conclusion
	References

