
Helmut Simonis (Ed.)

 123

LN
CS

 8
45

1

11th International Conference, CPAIOR 2014
Cork, Ireland, May 19–23, 2014
Proceedings

Integration of
AI and OR Techniques
in Constraint Programming

Lecture Notes in Computer Science 8451
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Helmut Simonis (Ed.)

Integration of
AI and OR Techniques
in Constraint Programming

11th International Conference, CPAIOR 2014
Cork, Ireland, May 19-23, 2014
Proceedings

13

Volume Editor

Helmut Simonis
University College Cork, Ireland
E-mail: h.simonis@4c.ucc.ie

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-07045-2 e-ISBN 978-3-319-07046-9
DOI 10.1007/978-3-319-07046-9
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014938029

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume is a compilation of the research program of the 11th International
Conference on the Integration of Artificial Intelligence (AI) and Operations Re-
search (OR) Techniques in Constraint Programming (CPAIOR 2014), held in
Cork, Ireland, during May 19–23, 2014.

After a successful series of five CPAIOR international workshops in Ferrara
(Italy), Paderborn (Germany), Ashford (UK), Le Croisic (France), and Montreal
(Canada), in 2004 CPAIOR evolved into a conference. More than 100 partici-
pants attended the first meeting held in Nice (France). In the subsequent years,
CPAIOR was held in Prague (Czech Republic), Cork (Ireland), Brussels (Bel-
gium), Paris (France), Pittsburgh (USA), Bologna (Italy), Berlin (Germany),
Nantes (France), and Yorktown Heights (USA). In 2014 CPAIOR returned to
Ireland.

The aim of the CPAIOR conference series is to bring together researchers
from constraint programming (CP), artificial intelligence (AI), and operations
research (OR) to present new techniques or applications in the intersection of
these fields, as well as to provide an opportunity for researchers in one area
to learn about techniques in the others. A key objective of the conference is to
demonstrate how the integration of techniques from different fields can lead to
highly novel and effective new methods for large and complex problems. There-
fore, papers that actively combine, integrate, or contrast approaches from more
than one of the areas were especially welcome. Application papers showcasing
CP/AI/OR techniques on innovative and challenging applications or experience
reports on such applications were also strongly encouraged.

In all, 70 long and short papers were submitted to the conference. Out of
these, 33 papers were selected by the international Program Committee. Their
effort to provide detailed reviews and discuss all papers in depth after author
feedback to come up with a strong technical program is greatly appreciated.

The technical program of the conference was preceded by a day of workshops
and a master-class. The workshops this year were selected by the workshop chair,
Lars Kotthoff, and covered the following topics:

– Workshop on Multi-Stage Problems, organized by Marco Laumanns, Steven
Prestwich, and Roberto Rossi.

– 5th International Workshop on Bin Packing and Placement Constraints
(BPPC 2014), organized by Francois Fages and Nicolas Beldiceanu.

– e-policy Workshop, organized by Michela Milano.

The master-class was organized by Siegfried Nijssen and Lars Kotthoff on the
topic of Optimization and Machine Learning, providing an overview of this in-
teresting area for PhD students, academics and practitioners.

Putting together a conference requires help from many sources. I in particular
want to thank the Program Committee and all other reviewers, who worked very

VI Preface

hard in a busy period of the year. My conference co-chair, Barry O’Sullivan, was
instrumental in bringing the conference back to Cork and organizing an interest-
ing event. The help of Yuri Malitsky (publicity), Lars Kotthoff (workshops), and
Barry Hurley (website) was greatly appreciated. Finally, the staff at UCC pro-
vided outstanding administrative support, without which the conference would
not have been possible. Special thanks go to Linda O’Sullivan, Mary Noonan,
and Caitriona Walsh.

A final acknowledgement goes to Easychair and Springer, who allowed us to
put together these proceedings.

February 2014 Helmut Simonis

Organization

Program Committee

Carlos Ansótegui Gil Universitat de Lleida, Spain
Fahiem Bacchus University of Toronto, Canada
J. Christopher Beck University of Toronto, Canada
Nicolas Beldiceanu EMN, France
Hadrien Cambazard G-SCOP, Grenoble INP, CNRS,

Joseph Fourier University, France
Geoffrey Chu Melbourne University, Australia
François Clautiaux University of Bordeaux, France
Pierre Flener Uppsala University, Sweden
Carla Gomes Cornell University, USA
Tias Guns KU Leuven, Belgium
Emmanuel Hebrard LAAS, CNRS, France
Stefan Heinz Zuse Institute Berlin, Germany
John Hooker Carnegie Mellon University, USA
Frank Hutter Freiburg University, Germany
Serdar Kadioglu Oracle, USA
George Katsirelos INRA, Toulouse, France
Thorsten Koch ZIB/Matheon, Germany
Andrea Lodi DEI, University of Bologna, Italy
Yuri Malitsky Cork Constraint Computation Centre, Ireland
Laurent Michel University of Connecticut, USA
Michela Milano DEIS Università di Bologna, Italy
Nina Narodytska University of Toronto, Canada
Yehuda Naveh IBM, Israel
Barry O’Sullivan 4C, University College Cork, Ireland
Laurent Perron Google France
Gilles Pesant Ecole Polytechnique de Montreal, Canada
Thierry Petit Ecole des Mines de Nantes/LINA, France
Claude-Guy Quimper Université Laval, Canada
Ted Ralphs Lehigh University, USA
Louis-Martin Rousseau Ecole Polytechnique de Montreal, Canada
Jean-Charles Régin Université Nice Sophia Antipolis, I3S CNRS,

France
Ashish Sabharwal IBM Research, USA
Domenico Salvagnin University of Padoa, Italy
Pierre Schaus n-side, Belgium
Christian Schulte KTH Royal Institute of Technology, Sweden

VIII Organization

Meinolf Sellmann IBM Research, USA
Helmut Simonis 4C, University College Cork, Ireland
Michael Trick Carnegie Mellon University, USA
Pascal Van Hentenryck NICTA and University of Melbourne, Australia
Willem-Jan Van Hoeve Carnegie Mellon University, USA
Petr Viĺım IBM, Czech Republic
Mark Wallace Monash University, Australia
Tallys Yunes University of Miami, USA

Additional Reviewers

Aharoni, Merav
Ben-Haim, Yael
Bonfietti, Alessio
Boni, Odellia
Borgo, Stefano
Carbonnel, Clément
Carlsson, Mats
Castañeda Lozano, Roberto
David, Philippe
de Cauwer, Milan
De Givry, Simon
De Koninck, Leslie
Derrien, Alban
Fischetti, Matteo
Fitzgerald, Tadhg
Fontaine, Daniel
Gabay, Michaël
Grimes, Diarmuid
Gualandi, Stefano
Hartert, Renaud

Hashemi Doulabi, Seyed Hossein
Ibrahim, Mohamed
Kotthoff, Lars
Legrain, Antoine
Lombardi, Michele
Malapert, Arnaud
Mehta, Deepak
Monaci, Michele
Monette, Jean-Noël
Papadopoulos, Alexandre
Penz, Bernard
Restrepo-Ruiz, Maria-Isabel
Schimpf, Joachim
Scott, Joseph
Siala, Mohamed
Simonin, Gilles
Traversi, Emiliano
Tubertini, Paolo
Xue, Yexiang

Table of Contents

Call-Based Dynamic Programming for the Precedence Constrained
Line Traveling Salesman . 1

Thierry Benoist, Antoine Jeanjean, and Vincent Jost

Stable Roommates and Constraint Programming . 15
Patrick Prosser

Detecting and Exploiting Permutation Structures in MIPs 29
Domenico Salvagnin

Solving the Quorumcast Routing Problem as a Mixed Integer
Program . 45

Quoc Trung Bui, Quang Dung Pham, and Yves Deville

A New MIP Model for Parallel-Batch Scheduling with Non-identical
Job Sizes . 55

Sebastian Kosch and J. Christopher Beck

Mining (Soft-) Skypatterns Using Dynamic CSP . 71
Willy Ugarte Rojas, Patrice Boizumault, Samir Loudni,
Bruno Crémilleux, and Albon Lepailleur

Modelling with Option Types in MiniZinc . 88
Christopher Mears, Andreas Schutt, Peter J. Stuckey, Guido Tack,
Kim Marriott, and Mark Wallace

Interactive Design of Sustainable Cities with a Distributed Local Search
Solver . 104

Bruno Belin, Marc Christie, and Charlotte Truchet

Sliced Table Constraints: Combining Compression and Tabular
Reduction . 120

Nebras Gharbi, Fred Hemery, Christophe Lecoutre, and
Olivier Roussel

The PrePack Optimization Problem . 136
Maxim Hoskins, Renaud Masson, Gabrielle Gauthier Melançon,
Jorge E. Mendoza, Christophe Meyer, and Louis-Martin Rousseau

An Integrated Constraint Programming Approach to Scheduling Sports
Leagues with Divisional and Round-Robin Tournaments 144

Jeffrey Larson, Mikael Johansson, and Mats Carlsson

X Table of Contents

Local Search for a Cargo Assembly Planning Problem 159
Gleb Belov, Natashia Boland, Martin W.P. Savelsbergh, and
Peter J. Stuckey

A Logic Based Benders’ Approach to the Concrete Delivery Problem . . . 176
Joris Kinable and Michael Trick

Evaluating CP Techniques to Plan Dynamic Resource Provisioning
in Distributed Stream Processing . 193

Andrea Reale, Paolo Bellavista, Antonio Corradi, and
Michela Milano

Disregarding Duration Uncertainty in Partial Order Schedules? Yes,
We Can! . 210

Alessio Bonfietti, Michele Lombardi, and Michela Milano

An Exact Branch and Bound Algorithm with Symmetry Breaking
for the Maximum Balanced Induced Biclique Problem 226

Ciaran McCreesh and Patrick Prosser

Domain k-Wise Consistency Made as Simple as Generalized Arc
Consistency . 235

Jean-Baptiste Mairy, Yves Deville, and Christophe Lecoutre

Representative Encodings to Translate Finite CSPs into SAT 251
Pedro Barahona, Steffen Hölldobler, and Van-Hau Nguyen

SAT and Hybrid Models of the Car Sequencing Problem 268
Christian Artigues, Emmanuel Hebrard, Valentin Mayer-Eichberger,
Mohamed Siala, and Toby Walsh

Continuously Degrading Resource and Interval Dependent Activity
Durations in Nuclear Medicine Patient Scheduling . 284

Cyrille Dejemeppe and Yves Deville

Cost Impact Guided LNS . 293
Michele Lombardi and Pierre Schaus

Proteus: A Hierarchical Portfolio of Solvers and Transformations 301
Barry Hurley, Lars Kotthoff, Yuri Malitsky, and Barry O’Sullivan

Buffered Resource Constraint: Algorithms and Complexity 318
Christian Bessiere, Emmanuel Hebrard, Marc-André Ménard,
Claude-Guy Quimper, and Toby Walsh

Combining Discrete Ellipsoid-Based Search and Branch-and-Cut
for Binary Quadratic Programming Problems . 334

Wen-Yang Ku and J. Christopher Beck

Table of Contents XI

Parallel Combinatorial Optimization with Decision Diagrams 351
David Bergman, Andre A. Cire, Ashish Sabharwal,
Horst Samulowitz, Vijay Saraswat, and
Willem-Jan van Hoeve

A Portfolio Approach to Enumerating Minimal Correction Subsets
for Satisfiability Problems . 368

Yuri Malitsky, Barry O’Sullivan, Alessandro Previti, and
Joao Marques-Silva

Parallel Depth-Bounded Discrepancy Search . 377
Thierry Moisan, Claude-Guy Quimper, and Jonathan Gaudreault

Self-splitting of Workload in Parallel Computation 394
Matteo Fischetti, Michele Monaci, and Domenico Salvagnin

The Markov Transition Constraint . 405
Michael Morin and Claude-Guy Quimper

New Lower Bounds on the Number of Vehicles for the Vehicle Routing
Problem with Time Windows . 422

Sohaib Afifi, Rym Nesrine Guibadj, and Aziz Moukrim

Constrained Clustering Using Column Generation . 438
Behrouz Babaki, Tias Guns, and Siegfried Nijssen

A Constraint Programming-Based Column Generation Approach
for Operating Room Planning and Scheduling . 455

Seyed Hossein Hashemi Doulabi, Louis-Martin Rousseau, and
Gilles Pesant

Dynamic Controllability and Dispatchability Relationships 464
Paul Morris

Author Index . 481

Call-Based Dynamic Programming for the

Precedence Constrained Line Traveling Salesman

Thierry Benoist1, Antoine Jeanjean2, and Vincent Jost3

1 Innovation 24 - LocalSolver, Paris, France
tbenoist@localsolver.com

2 Recommerce Solutions, Paris France
antoine.jeanjean@recommerce.com

3 Grenoble-INP / UJF-Grenoble 1 / CNRS, G-SCOP UMR5272 Grenoble, France
Vincent.Jost@grenoble-inp.fr

Abstract. The Precedence Constrained Line Traveling Salesman is a
variant of the Traveling Salesman Problem, where the cities to be visited
lie on a line, the distance between two cities is the absolute difference
between their abscissae and a partial ordering is given on the set of
cities. Such a problem is encountered on linear construction schemes for
instance. Using key dominance properties and lower bounds, we design a
call-based dynamic program able to solve instances with up to 450 cities.

1 Introduction

The Line-TSP is a variant of the Traveling Salesman Problem (TSP) where the
cities to be visited lie on a line, and the distance between two cities is the absolute
difference between their abscissae. Although trivial in this pure formulation, the
problem becomes interesting when side-constraints are added. For instance, [13]
considers the case where each city must be visited within a certain time-window.
The present paper deals with the case where a partial ordering is given on the set
of cities that is to say that some precedence constraintsA must be visited before B
must be satisfied. In practice this problem is encountered on linear construction
schemes when a set of partially ordered tasks (up to several hundreds) must be
performed by a resource whose traveling distance must be minimized, like an
excavation engine on a highway construction site for instance [8]. To the best
of our knowledge, this problem was not studied in the literature before, but its
NP-completeness was established as a special case in [3]. Linear structures also
occur in N-line TSP [4,12] namely an Euclidian TSP with a limited number of
of different abscissae and also in the so-called convex hull and line TSP [5,6].

After a formal definition of the problem we introduce a key dominance prop-
erty.In section 2 we define a lower bound based on the splitting of the line in
sections. Finally, we propose a call-based dynamic programming approach, where
branches are pruned with our lower bound. This algorithm is experimented in
section 4.

H. Simonis (Ed.): CPAIOR 2014, LNCS 8451, pp. 1–14, 2014.
c© Springer International Publishing Switzerland 2014

2 T. Benoist, A. Jeanjean, and V. Jost

1.1 Problem Definition and Notations

Definition 1. The Precedence Constrained Line TSP (PC-Line-TSP) reads as
follows.

Given a set P of n cities, each with an abscissa Xi (i ∈ [1, n]), a partial
order ≺ on P and an integer K; find a permutation V of P such that :∑n

i = 1 | XV (i) − XV (i−1) | ≤ K , with XV (0) = 0
∀ (i , j) ∈ P2 such that i ≺ j , V−1(i) < V−1(j),
with V−1(i) the position of city i in the permuation.

(1)

The above sum of differences of abscissae will be referred to as the length of
the permutation. We will denote by m the size of ≺ that is to say the number
of ordered pairs defining this partial order. Figure 1 represents a instance of
PC-Line-TSP with four cities, the Hasse diagram being represented on the left
side. The dotted arrows represent a feasible solution (visiting order).

2

3 2

1

L

4

0

0 3 1 4

Fig. 1. A Precedence Constrained Line TSP

1.2 Properties

Definition 2. In a solution, a procrastination is a city which is passed through
without being visited whereas all its predecessor have already been visited.

Definition 3. A solution is called dominating (ou non-procrastinating) is it
contains no procrastination. In other words it never passes through an abscissa
without visiting all available cities at this abscissa (namely cities whose prede-
cessors have already been visited).

Lemma 1. There exists a dominating optimal solution for each problem.

Proof. Let V be a non dominating permutation, that is to say that there exists
at least one procrastination city d . By definition there are two consecutive cities
a and b in the permutation such that:

Xd ∈ [Xa ,Xb [or Xd ∈]Xb , Xa] (2)

Dynamic Programming for PC-LineTSP 3

and such that all predecessors of d (possibly including a) are before a in
permutation V (see Figure 2), while city d is visited later, between two cities
c and e. Note that c may equal b and that e may not exist (in which case d is
the last city of the permutation), without affecting the validity of the reasoning
below.

Let V ′ be the permutation obtained from V by moving city d between a and
b. V ′ satisfies the partial order because all predecessors of d are before a in both
permutations. Now we prove that the length or permutation V ′ is smaller or
equal to the length or permutation V .

– the path a → d → b is equal to path a → b (d being between a and b).
– the path c → e is smaller or equal to path c → d → e since distances

on a line satisfy the triangular inequality (and if e does not exists, the path
c → d is merely removed.

Repeating this transformation, all procrastinations can be eliminated, while
preserving or decreasing the length of the permutation, thus building a dominat-
ing permutation of equal or smaller length. Hence any problem has an optimal
dominating solution. �

ba c d e

Fig. 2. Procrastination removal

Corollary 1. A solution can be written as a sequence of t abscissae with t ≤ n.
This sequence (or path) induces a visiting order (unique but for the visiting order
of cities at the same abscissa). Hence the PC-Line-TSP can be reformulated as a
question: is there a sequence of abscissae (or path) whose length is smaller than
K and which visits all cities ?

Corollary 2. The special case where cities can take only two different abscis-
sae (|{Xi, i ∈ [0, n]}| = 2) is polynomial. Its optimal path alternates the two
abscissae. It can be computed in linear time.

1.3 Complexity

We have seen above that the problem is polynomial when limited to 2 abscissae.
In the general case this problem was proven to be NP-hard by [3], by reduction
from the Shortest Common Supersequence problem. It is NP-hard as soon as
the number of number of abscissae if larger or equal to 3 (see [9]).

2 Lower Bounds

In this section we compute lower bounds for the PC-Line-TSP problem.

4 T. Benoist, A. Jeanjean, and V. Jost

Trivial bound LB0. The distance between the maximum and minium abscissae
plus the distance from 0 the closest extremity is a lower bound of the traveled
distance.

R = max
i∈[0,n]

Xi

L = min
i∈[0,n]

Xi

LB0 = R− L+min(|R|, |L|)

Definition 4. A section [Xl; Xr] is a pair of consecutive abscissae. The linear
line is thus made of less than n disjoint sections (see Figure 4). The length of
section [Xl; Xr] is Xr − Xl. In what follows abscissae are indexed (from left
to right) from 0 to p, with p ≤ n . The section between abscissae k − 1 and k
is referred to as the kth section, and its with is denoted wk.

In this section we define a lower bound LB1 based on this decomposition into
sections and on the polynomial 2-abscissae case evoked in corollary 2.

For each section k defined by abscissae [Xl; Xr] we build a problem with
two abscissae, setting to zero all abscissae smaller or equal to Xl and setting to
wk = Xr − Xl all abscissae larger or equal toXr. The algorithm presented below
computes a lower bound to the number of times this section will be crossed.

Algorithm. The Algorithm 1 details the computation of this lower bound. The
initial scan of the graph modifying abscissae is done in O(n). We define opt l(k)
(resp. opt r(k)), the minimum number of times section k will be crossed (see
Figure 3) considering that the terminal city (the last city in the permutation)
lies to the left (resp. to the right) of the section.

L(t)

Left Right

0

Fig. 3. Scanning a section

We denote by B(k) the lower bound of the total length when the last abscissa
is abscissa k (k ∈ [0, p]). It is defined by the following recursive formula:

B(0) =
∑

k∈[1, p] opt l(k)

∀ k ∈ [1, p], B(k) = B(k − 1) − opt l(k − 1) + optr(k − 1)
(3)

Dynamic Programming for PC-LineTSP 5

Let F be the set of abscissae having at least one city without successor in the
partial order. Since the final city of any permutationwill belong to F , the following
expression is a lower bound of the traveled distance of the PC-Line-TSP.

LB1 = min
k ∈ F

B(k) (4)

For each section k ∈ [1, p], opt l(k) is computed in O(n + m) with n the
number of cities and m the size of the partial order. B(0) is computed in O(p)
with p ≤ n and each B(k) is computed in O(1). Finally the complexity of the
computation of this lower bound is O(p (n + m)). Since p is smaller than
n et m is smaller than n2, the complexity is cubic in the worst case.

Algorithm 1. Bound-by-section

input : The set of abscissae, cities and the partial order
output: A lower bound of the total traveled distance

begin
for k ∈ [1, p] do

Define the two-abscissae problem associated to section k, with starting
city at abscissa 0
Distance = 0
CurrentAbscissa = 0
Visit all available cities at CurrentAbscissa
while Some cities remains to be visited do

Change CurrentAbscissa to the other abscissa
Distance + = wk

Visit all available cities at CurrentAbscissa

if CurrentAbscissa = wk then
opt l(t) = Distance + wk optr(t) = Distance

else
opt l(t) = Distance optr(t) = Distance + wk

B(0) =
∑

k∈[1,p] opt l(k)

for k ∈ [1, p] do
B(k) = B(k − 1) − opt l(k − 1) + optr(k − 1)

return mink∈F B(k)

Example. Consider a PC-Line-TSP made of six cities partially ordered as in
Figure 4. Here the set of possible terminal cities (cities without successors) is
{N1 , N4 , N5}. The algorithm 1 considers each of the five sections one by one.
On the left of Figure 4, section 2 (between abscissae 2 and 5) is emphasized,
and the two-abscissae problem associated to this section is illustrated (defined
on abscissae 0 and w3 = 3). The computation of opt l(2) and opt r(2) starts
with the visit of city N0 on the left side. N1 cannot be visited yet due to its two
unvisited predecessors N2 and N3. A first crossing of the section is needed then.

6 T. Benoist, A. Jeanjean, and V. Jost

30

0 4 6 1082

0 4 6 1082

Fig. 4. A simple PC-Line-TSP instance and the two-abscissae problem attached to is
second section

On the right side, N2 and N3 are visited, thus allowing the visit of N4 et N5.
The section need to be crossed a second time in order to visit N1 on the left
side, thus completing the path. Finally B(2) = 2 × 3 = 6.

For each section k ∈ [1, 5], opt l(k) et optr(k) take the following values :

opt l(1) = 2 × 2 = 4 et optr(1) = 1 × 2 = 2
opt l(2) = 2 × 3 = 6 et optr(2) = 3 × 3 = 9
opt l(3) = 2 × 2 = 4 et optr(3) = 3 × 2 = 6
opt l(4) = 2 × 1 = 2 et optr(4) = 1 × 1 = 1
opt l(5) = 2 × 2 = 4 et optr(5) = 1 × 2 = 2

(5)

and we can compute the following B(k) :

B(0) =
∑

k∈[1,p] opt l(k) = 4 + 6 + 4 + 2 + 4 = 20

B(1) = B(0) + opt l(0) + opt l(0) = 20 − 4 + 2 = 18
B(2) = B(1) + opt l(1) + opt l(1) = 18 − 6 + 9 = 21
B(3) = B(2) + opt l(2) + opt l(2) = 21 − 4 + 6 = 23
B(4) = B(3) + opt l(3) + opt l(3) = 23 − 2 + 1 = 22
B(5) = B(4) + opt l(4) + opt l(4) = 22 − 4 + 2 = 20

(6)

Since F = {N1 , N4 , N5}, the final bound is min(B(1), B(4), B(5)) = 18.

Dynamic Programming for PC-LineTSP 7

0 4 62

2

2

2

0
2

0

0

0

Fig. 5. Suboptimal lower bound

Counter-Example. The example on Figure 5 illustrates the non-optimality of
lower bounds LB1. There is only one possible terminal city (N7). On section
[2, 5], we obtain a lower bound equal to 6 and on section [5, 7] we obtain a
lower bound equal to 4, hence LB1 = 10. However, the optimal solution is 20 :
N0 − 2 → N2 −2 → N3 −3 → N1 −3 → N4 −2 → N6 −2 → N7 −3 → N5

−3 → N7 :

3 Exact Algorithm

3.1 Dynamic Programming

Any dominating solution to the PC-Line-TSP problem can be expressed as a
sequence of left/right decisions. That is to say that each time the current abscissa
has no available city, we are facing a binary choice: either go to the closest
abscissa with available cities to the left or to the closest abscissa with available
cities to the right. It means that a brute force enumeration of all dominating
solutions has complexity O(2n), while the number of possible permutations is
n!. We present in this section a dynamic programming approach similar to the
one proposed by [7] for the classical TSP, observing that at any moment in
the search, the remaining distance to be traveled only depends on the current
abscissa and on the set of remaining cities. The worst case complexity of this
algorithm remains O(2n), but thanks to the non-procrastination rule and to the
partial ordering of cities many sets of cities cannot be encountered as a set of
remaining cities, what makes this algorithm very effective in practice.

8 T. Benoist, A. Jeanjean, and V. Jost

In essence, the minimum length Lmin(x, Q) for visiting a set of cities Q ⊆ P
starting from abscissa x and subject to partial order ≺ can be expressed with
the following recursive formula, where A(y) denotes the set of available1 cities
at abscissa y while XR (resp. XL) is the closest abscissa to the right of x (resp.
to the left of x) such that A(XR) �= ∅ (resp. A(XL) �= ∅). Note that XR and
XL are functions of x and Q, but these parameters are omitted in the remaining
of the paper for the sake of readability. Without loss of generality we assume
A(x) = ∅.

Lmin(x, ∅) = 0

Lmin(x, Q) = min(XR − x + Lmin(XR, Q \ A(XR)),

x − XL + Lmin(XL, Q \ A(XL))

This dynamic programming approach yields the optimal solution of the PC-
Line-TSP as Lmin(0, P). Inspired by [1] we design a call-based dynamic program
based on this recursive formula. Following their terminology, call based dynamic
programming consists in implementing a classical tree search where the optimum
for each subtree is stored and re-used each time the same sub-tree is encountered
(same x and same Q in our case). Compared to bottom-up dynamic program-
ming implementation, the call-based approach allows introducing lower-bounds,
upper-bounds and heuristics in order to speed up the search.

As detailed in algorithm 2, the central function becomes Lmin(x, Q, U) where
U is an upper bound, and the optimum of the problem is Lmin(0, P,+∞). As
soon as a first solution is found, it is used to define upper-bounds for other
branches thus excluding solutions leading to a total traveled distance larger or
equal to the best found so far. The trivial lower-bound LB0 defined in section 1
is used to eliminate such sub-optimal solutions as soon as possible. In section 4
we will also give the results obtained when using bound LB1 instead.

The DP-labeled lines are specific to dynamic programming2: storedBest[x,Q]
is the minimum distance for visiting cities of Q when starting from abscissa x,
hence before exploring a subtree (x,Q), the algorithm always check whether its
minimum distance is already known (that is to say if storedBest[x,Q] is de-
fined). Similarly storedLB[x,Q] is the best known lower-bound to this distance.
Indeed once a subtree was vainly explored searching for a solution with a trav-
eled distance strictly smaller than U , this information is worth storing because
later in the search this subtree may be considered again with some upper bound
U ′. Then if U ′ ≤ U the re-exploration of this subtree is avoided. In theory the
number nodes in the search tree can be larger when using lower bounds because
the same sub-problem (x,Q) can be explored several time with increasing upper
bounds. However the pruning effect largely compensates for this in practice. For

1 These cities may be partially ordered by ≺ but they can all be visited if we reach
abscissa y.

2 In other words, removing the DP-labeled lines results in a classical tree search algo-
rithm.

Dynamic Programming for PC-LineTSP 9

Algorithm 2. Lmin(x,Q, U)

input : Current abscissa x, remaining cities Q, an upper bound U
output: The length of the best solution if < U , U otherwise

begin
if Q = ∅ then Return 0

DP if storedBest[x, Q] then Return storedBest[x, Q]
DP if not(storedLB[x, Q]) then storedLB[x, Q] = LB0(x, Q)
DP if storedLB[x, Q] ≥ U then Return U

if LB0(x, Q) ≥ U then Return U
Best = U
if XR �= +∞ then

Dright = XR − x
Best = Dright +

Lmin(XR, Q \ A(XR), Best − Dright)

if XL �= −∞ then
Dleft = x − XL

Best = Dleft +
Lmin(XL, Q \ A(XL), Best − Dleft)

DP if Best < U then storedBest[x, Q] = Best
DP else storedLB[x, Q] = U

Return min(Best, U)

instance once a solution of length 35 has been found, a certain state (x,Q) might
be reached after a traveling distance of 10 (visiting cities in P \ Q) hence with
an upper bound of 25; but later in the search this sate may be reached after a
traveling distance of 9 that is to say with an upper bound of 26, in which case
this subtree must be explored again.

With storedBest[x,Q] and storedLB[x,Q] stored in hashtables, these values
can be accessed and updated in constant time. Provided that A(y) is dynamically
maintained for each abscissa y (in O(m) amortized complexity), XR and XL can
be obtained in O(p) (recall that m is the size of the partial order and p is the
number of different abscissae). Maintaining the leftmost and rightmost abscissae
in Q makes sure that LB0 is computed in constant time. If LB1 is used instead
of LB0, its complexity is O(p (n + m)) as shown in section 1.

3.2 Heuristics

In algorithm 2, the right side is systematically explored before the left side.
However, different strategies can be applied. For instance a NearestNeighbor
heuristic would consist in starting with the left side when x−XL < XR−x (and
starting with the right side otherwise). Recall that for the Euclidian TSP this
simple heuristic averages less than 25% above the Held-Karp lower bound [10]
and is guaranteed to remain within a 1

2 (log2(N)+1) ratio of the optimal solution

10 T. Benoist, A. Jeanjean, and V. Jost

[11]. Alternatively an Inertial heuristic would consist in continuing rightwards
if and only if the current abscissa was reached from the left. Finally, based on
our lower bound LB0 or LB1, an A� heuristic consists in evaluating the lower
bound on each branch and then start with the most promising one, that is to
say the one with the smallest lower bound.

3.3 Dominance Rules

Lemma 2. Let Z be a subset of P which is totally ordered by ≺, and let T be
the subset of all cities of P \ Z necessarily visited by a path visiting Z. If T has
no successor in P ′ (�a ∈ T, b ∈ P ′, a ≺ b), then the problem restricted to cities
in P ′ = P \ T has the same optimal value as the initial problem.

Proof. Clearly any solution of the initial problem is also a solution of the problem
limited to P ′. Inversely any solution path of the problem limited to P ′ is a super-
sequence of the the sequence of abscissae of set Z (ordered by ≺), hence the cities
of T can be inserted in the solution without increasing its length, while respecting
the precedences a ≺ b with b ∈ T . Precedences internal to P ′ are satisfied since
these insertions do not modify the ordering of cities of P ′. By hypothesis no
precedence is defined from T to P ′. Finally the obtained permutation has the
same length as the initial solution and satisfies the partial order on P . �
Corollary 3. In particular, this dominance rule can be applied for any leftmost
or rightmost city of P (any singleton being totally ordered by ≺). It means that
any centrifugal connex part of the Hasse Diagram (that is made of precedences
a ≺ b with b farther from 0 than a) can be removed from P without affecting the
value of the optimal solution.

Corollary 4. PC-Line-TSP is fixed parameter tractable when parameterized by
m.

Proof. At least n −m cities do not appear in the Hasse diagram, and thus can
be removed from P without affecting the value of the optimal solution (provided
that two extreme cities are kept). Consequently this reduced problem has a size
limited to m+ 2. �

3.4 Examples

As mentioned above the worst case complexity of our dynamic programming
algorithm is the same as the one of a complete scan (2n). Before demonstrating
the practical gains of dynamic programming in the next section, we exhibit below
two structures for which the complexity of the dynamic program is much better.

In Figure 6, a complete scan has complexity O(2n) (one binary choice per
layer), whereas dynamic programming has complexity O(4n) (4 states per layer).
In Figure 7 cities are distributed around a central starting city with no prece-
dence between them, then the dynamic program explores n2 states while com-
plete scan remains exponential (2n). In the latter case, the use of the dominance
rule of corollary 3 reduces the number of states to 2 (all cities but two can be
removed).

Dynamic Programming for PC-LineTSP 11

Fig. 6. Special partial orders(1)

4 Computational Results and Conclusion

4.1 Problem Instances

For generating an instance with n cities and k distinct abscissae, we start with
building a partial order on [1,n]. For each pair (i, j) with i < j, a precedence
i ≺ j is generated with probability p. Three remarks can be made on this partial
order:

– It is a partial order because the generated directed graph contains no cycle
(by construction all arcs are oriented toward growing integers).

– Several other Directed Acyclic Graph would represent the same partial order.
We can define the density of the partial order as the number of arcs included
in the transitive closure of this graph divided by the number of arcs in the
total order (n(n− 1)/2). A total order has a density of 100%.

– this simple method does not ensure that the generated partial orders are
uniformly distributed among the set of all possible partial order. However
our goal here is not to extract statistical properties but merely to generate a
set of instances for comparing our algorithms. For references on the uniform
generation of partial orders see [14] and [2].

Once this partial order is generated, k distinct abscissae are randomly drawn in
[0,100]. Cities receive random abscissae from this set.

We generated 44 random instances of the PC-Line-TSP, with a number of
cities (cities) from 100 to 450, a density from 5% to 85% (instances with a
density of 100% were discarded) and a number of distinct abscissae from 23 to
99. We also generated 20 instances with 100 to 450 cities on 3 distinct abscissae,
the first NP-Complete value (see section 1.3): any of our algorithms could solve
any of these 3-abscissae instances in less than one second.

12 T. Benoist, A. Jeanjean, and V. Jost

Fig. 7. Special partial orders (2)

4.2 Results

For each instance we compared 4 algorithms:

1. Our complete algorithm with bound LB1 (bound by section defined in sec-
tion 1), with our reduction algorithm enabled (corollary 3), and using heuris-
tic NearestNeighbor.

2. The same algorithm as 1 using heuristic A�
3. The same algorithm as 1 with bound LB0

4. The same algorithm as 1 without our reduction algorithm

Table 1 summarizes average results obtains with these four algorithms with a
time limit set to 600 seconds. Our reference algorithm found the optimal solution
of 36 of the 44 instances (with both heuristics). Disabling the reduction algorithm
leads to a score of 33/44 while using bound LB0 instead of LB1 we obtain only
27/44. In terms of completion time our second algorithm (with heuristic A�)
obtains the best results, with an average time of 113 seconds vs 129 seconds
with heuristic NearestNeighbor. The impact of this heuristic is more significant
when comparing the time to obtain the best solution (when both completed the
search in the allocated time): with A�, the time to obtain the best solution is
divided by 3 on average: 31 seconds against 100 seconds.

Table 2 reports the results obtained by each algorithm on the 8 instances
that could not be solved within the allocated 600 seconds. Our second algorithm
(with A� heuristic) always obtains the best solution. Consequently all gaps in this
table are given with respect to the results of this best algorithm. The rightmost
column gives the value of our bound by sections LB1 and the corresponding
optimality gap.

As shown in table 3, the density of the partial order plays a important role
in the hardness of an instance. Looking at results of algorithm 3 we see that the
higher the density the easier the instance, with a number of proven optimum

Dynamic Programming for PC-LineTSP 13

Table 1. Average results on the 44 PC-Line-TSP instances (time limited to 600 sec-
onds)

Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4

Pruning LB1 + reduction LB1 + reduction LB0 + reduction LB1

Heuristic NearestNeighbor A� NearestNeighbor NearestNeighbor

Number of proven optimum 36/44 36/44 27/44 33/44
Average time to complete 129s 113s 239s 153s

Average time to obtain best solution* 100s 31s - -
(*)on the 36 instances solved by 1 and 2

Table 2. Results on the 8 unsolved instances

Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4 Lower Bound

Pruning LB1 + reduction LB1 + reduction LB0 + reduction LB1 LB1

Heuristic NearestNeighbor A� NearestNeighbor NearestNeighbor

Pb200 761 761 761 761 619 (-19%)
Pb350 1904 (+3.0%) 1848 2036 (+10.2%) 2130 (+15.3%) 1563 (-15%)
Pb400A 4230 (+1.4%) 4170 4236 (+1.6%) 5118 (+22.2%) 3963 (-5%)
Pb400B 4500 (+0.1%) 4498 4500 (+0.1%) 4548 (+1.1%) 4268 (-5%)
Pb400C 3193 (+1.9%) 3133 3583 (+14.4%) 3889 (+24.1%) 2946 (-6%)
Pb400D 2345 (+5.0%) 2233 2477 (+10.9%) 2739 (+22.7%) 2171 (-3%)
Pb450A 3098 (+3.7%) 2988 3156 (+5.6%) 3688 (+23.4%) 2723 (-9%)
Pb450B 3154 (+20.3%) 2876 3460 (+9.7%) 3386 (+17.7%) 2653 (-8%)

Average gaps +7.9% +3.1% +15.9% -9%

increasing from 5 to 8. Indeed when the partial order is denser, the number of
feasible permutations is smaller. The extreme case is when the density is 100%
and only one permutation is allowed. Comparing algorithm 1 and 3 we see that
using lower bound LB1 pays off on all range of densities. As for the reduction
algorithm its impact is higher on smaller densities, because sparse partial orders
are more likely to contain centrifugal connex parts. Concerning the number of
abscissae, we noticed that the number of distinct abscissae can increase the
hardness of the problem or at least the complexity of our algorithms. The median
number of abscissae is 60 is our benchmark. Our best algorithm (number 2)
solved instances with less than 60 abscissae in 90 seconds on average (proving
21 optimum values out of 22) while instances with more than 60 abscissae are
solved in 246 seconds on average (with 15 proven optimum out of 22).

Table 3. Impact of the density of the partial order (time to complete in seconds and
number of proven optimum in parenthesis)

Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4

Pruning LB1 + reduction LB1 + reduction LB0 + reduction LB1

Heuristic NearestNeighbor A� NearestNeighbor NearestNeighbor

First quartile [5% to 20%] 154s (10/11) 127s (10/11) 368s (5/11) 259s (7/11)
Second quartile [20% to 48%] 245s (7/11) 198s (7/11) 344s (6/11) 277s (7/11)
Third quartile [48% to 73%] 186s (10/11) 180s (10/11) 331s (8/11) 197s (10/11)
Fourth quartile [73% to 85%] 164s (9/11) 162s (9/11) 347s (8/11) 161s (9/11)

14 T. Benoist, A. Jeanjean, and V. Jost

4.3 Conclusion

Our call-based dynamic program, manages to solve to optimality instances with
up to 450 cities. Examining the results we see that our lower bound LB1, based
on the splitting of the line by sections, makes possible the resolution of dense and
large instances. On the other end, our domination rule dramatically improves
performance on sparse instances. Finally, thanks to the call-based implementa-
tion, the algorithm can find good solutions, even for instances whose optimum
could not be found within 600 seconds. In this context founding an A� heuristic
on our lower bound allows finding better solutions faster.

References

1. de la Banda, M.G., Stuckey, P.J.: Dynamic programming to minimize the maximum
number of open stacks. INFORMS Journal on Computing 19(4), 607–617 (2007)

2. Brightwell, G.: Models of random partial orders, pp. 53–84. Cambridge University
Press (1993)

3. Charikar, M., Motwani, R., Raghavan, P., Silverstein, C.: Constrained tsp and low-
power computing. In: Dehne, F., Rau-Chaplin, A., Sack, J.-R., Tamassia, R. (eds.)
WADS 1997. LNCS, vol. 1272, pp. 104–115. Springer, Heidelberg (1997)

4. Cutler, M.: Efficient special case algorithms for the n-line planar traveling salesman
problem. Networks 10(3), 183–195 (1980)

5. Deineko, V.G., van Dal, R., Rote, G.: The convex-hull-and-line traveling salesman
problem: A solvable case. Information Processing Letters 51(3), 141–148 (1994)

6. Deineko, V.G., Woeginger, G.J.: The convex-hull-and-k-line travelling salesman
problem. Inf. Process. Lett. 59(6), 295–301 (1996)

7. Held, M., Karp, R.M.: A dynamic programming approach to sequencing problems.
In: Proceedings of the 1961 16th ACM National Meeting, pp. 71.201–71.204. ACM,
New York (1961)

8. Jeanjean, A.: Resource scheduling optimization in mass transportation problems.
In: 12th International Conference on Project Management and Scheduling, PMS
2010 (2010)

9. Jeanjean, A.: Recherche locale pour l’optimisation en variables mixtes:
Méthodologie et applications industrielles. Ph.D. thesis, Laboratoire
d’informatique de Polytechnique (2011)

10. Johnson, D.S., Mcgeoch, L.A.: The Traveling Salesman Problem: A Case Study in
Local Optimization. John Wiley and Sons, Chichester (1997)

11. Rosenkrantz, D.J., Stearns, R.E., Lewis II, P.M.: An analysis of several heuristics
for the traveling salesman problem. 6(3), 563–581 (1977)

12. Rote, G.: The n-line traveling salesman problem. Networks 22, 91–108 (1991)
13. Tsitsiklis, J.N.: Special cases of traveling salesman and repairman problems with

time windows. Networks 22, 263–282 (1992)
14. Gehrlein, V.W.: On methods for generating random partial orders. Operations

Research Letters 5(6), 285–291 (1986)

Stable Roommates and Constraint Programming

Patrick Prosser

School of Computing Science, University of Glasgow, Glasgow, Scotland
pat@dcs.gla.ac.uk

Abstract. In the stable roommates (SR) problem we have n agents,
where each agent ranks all n − 1 other agents. The problem is then to
match agents into pairs such that no two agents prefer each other to
their matched partners. A remarkably simple constraint encoding is pre-
sented that uses O(n2) binary constraints, and in which arc-consistency
(the phase-1 table) is established in O(n3) time. This leads us to a spe-
cialized n-ary constraint that uses O(n) additional space and establishes
arc-consistency in O(n2) time. This can model stable roommates with
incomplete lists (SRI), consequently it can also model stable marriage
(SM) problems with complete and incomplete lists (SMI). That is, one
model suffices. An empirical study is performed and it is observed that
the n-ary constraint model can read in, model and output all matchings
for instances with n = 1, 000 in about 2 seconds on current hardware plat-
forms. Enumerating all matchings is a crude solution to the egalitarian
SR problem, and the empirical results suggest that although NP-hard,
egalitarian SR is practically easy.

1 Introduction

In the Stable Roommates problem (SR) [8,7] we have an even number of agents
to be matched together as couples, where each agent strictly ranks all other
agents. The problem is then to match pairs of agents together such that the
matching is stable, i.e. there doesn’t exist a pair of agents in the matching such
that agenti prefers agentj to his matched partner and agentj prefers agenti to
his matched partner1.

The Stable Marriage problem (SM) [4,15,5,7,16,11] is a specialized instance
of stable roommates where agents have gender, such that we have two sets of
agents m (men) and w (women). Each man has to be married to a woman and
each woman to a man such that in the matching there does not exist a man mi

and a woman wj where mi prefers wj to his matched partner and wj prefers mi

to her matched partner i.e. there is no incentive for agents to divorce and elope.
Constraint programming has been applied to the stable marriage problem,

probably the first efficient model being reported in 2001 [6], a 4-valued model in
[12], a specialized binary constraint in [18] and an efficient n-ary constraint in
[17]. This raises an obvious question: if there is an efficient constraint model for
stable marriage, is there one for the more general stable roommates problem?

1 For sake of brevity I assume agents are male, and hope this offends no one.

H. Simonis (Ed.): CPAIOR 2014, LNCS 8451, pp. 15–28, 2014.
c© Springer International Publishing Switzerland 2014

16 P. Prosser

In this paper I partially answer this question. I present a remarkably simple
constraint model for SR, using O(n2) constraints. This model addresses SR with
incomplete lists and consequently SM with incomplete lists. A more compact
and computationally efficient encoding is then proposed. An empirical study is
presented, comparing models and investigating the problem.

2 The Stable Roommates Problem (SR)

An example of a stable roommates instance is given in Figure 1, for n = 10,
and this instance is taken from [7] (and we will refer to this as sr10). We have
agents 1 to 10 each with a preference list, ranking the other agents. For example,
agent1’s first choice is for agent8, then agent2, followed by agent9 and so on to
last (9th) choice agent10.

1 : 8 2 9 3 6 4 5 7 10
2 : 4 3 8 9 5 1 10 6 7
3 : 5 6 8 2 1 7 10 4 9
4 : 10 7 9 3 1 6 2 5 8
5 : 7 4 10 8 2 6 3 1 9
6 : 2 8 7 3 4 10 1 5 9
7 : 2 1 8 3 5 10 4 6 9
8 : 10 4 2 5 6 7 1 3 9
9 : 6 7 2 5 10 3 4 8 1

10 : 3 1 6 5 2 9 8 4 7

1: 8 2 3 6 4 7
2: 4 3 8 9 5 1 10 6
3: 5 6 2 1 7 10
4: 9 1 6 2
5: 7 10 8 2 6 3
6: 2 8 3 4 10 1 5 9
7: 1 8 3 5
8: 10 2 5 6 7 1
9: 6 2 10 4

10: 3 6 5 2 9 8

(1,7) (2,3) (4,9) (5,10) (6,8)
(1,7) (2,8) (3,5) (4,9) (6,10)
(1,7) (2,8) (3,6) (4,9) (5,10)
(1,4) (2,8) (3,6) (5,7) (9,10)
(1,4) (2,9) (3,6) (5,7) (8,10)
(1,4) (2,3) (5,7) (6,8) (9,10)
(1,3) (2,4) (5,7) (6,8) (9,10)

Fig. 1. Stable roommates instance sr10 with n = 10 (on the left) phase-1 table (middle)
and the 7 stable matchings (on the right). Instance taken from [7].

A quadratic time algorithm, essentially linear in the input size, was proposed in
[8]. The algorithm has two phases. The first phase is a sequence of proposals,
similar to that in the Gale Shapley algorithm [4], that results in the phase-1
table. The phase-1 table for sr10 is shown as the middle table in Figure 1. A
sequence of rotations are then performed for agents with reduced preference
lists that contain more than one agent. On the right hand side of Figure 1 we
show the 7 stable matching that can result from this process.

3 A Simple Constraint Model

We assume that we have two dimensional integer arrays pref and rank. Vector
prefi is the preference list for agenti such that if prefi,k = j then agentj is
agenti’s kth choice and ranki,j = k. It is also assumed that if agenti finds
agentj acceptable then agentj finds agenti acceptable (i.e. j appears in prefi if
and only if i appears in prefj). We also have the length of each agent’s preference
list li, and this allows us to model SRI instances, i.e. Stable Roommates with
Incomplete lists.

Using sr10 as our example pref3,1 = 5 and rank3,5 = 1 (agent5 is agent3’s
first choice) and pref3,2 = 6 and rank3,6 = 2 (agent6 is agent3’s second choice).
Note that in sr10 li = 10 for all i, i.e. sr10 is an SR instance with complete
preference lists.

Stable Roommates and Constraint Programming 17

3: 5 6 8 2 1 7 10 4 9

1: 8 2 9 3 6 4 5 7 10

3: 5 6 8 2 1 7 10 4 9

1: 8 2 9 3 6 4 5 7 10

(1)

(2)

Fig. 2. A pictorial representation of the two constraints acting between agent1 and
agent3

We have constrained integer variables a1 to an, each with a domain of ranks
{1..li+1}. When ai ← k this means that the corresponding agent is allocated his
kth choice, and that is agentj where j = prefi,k. Furthermore, when ai ← li +1
the corresponding agent is matched to itself and is considered unallocated.

We can now make a declarative statement of the properties that a stable
matching must have and we do this with two constraints. Given two agents,
agenti and agentj who find each other acceptable, if agenti is matched to an
agent he prefers less than agentj then agentj must match up with an agent
that he prefers to agenti otherwise the matching will be unstable. This property
must hold between every pair of agents that find each other acceptable and
is expressed by constraint (2) below. Furthermore, when agenti is matched to
agentj then agentj is matched to agenti, and this is expressed by constraint (3).

∀i∈[1..n] ai ∈ {1..li + 1} (1)

∀i∈[1..n]∀j∈prefi ai > ranki,j =⇒ aj < rankj,i (2)

∀i∈[1..n]∀j∈prefi ai = ranki,j =⇒ aj = rankj,i (3)

This constraint is shown pictorially in Figure 2. The two constraints are shown
for agents 1 and 3 in sr10. The brown box is the agent’s identification number
and the remaining boxes are the preference lists (a list of agents). In the top
picture (1) we have the situation where agent1 is matched to an agent he prefers

18 P. Prosser

less than agent3, i.e. agent1 is matched to an agent in the green part of his
preference list. Consequently agent3 must be matched in the green region of its
preference list. The bottom picture is for constraint (3) where agent1 is matched
to agent3, both taking the pair of red values.

A similar constraint model was proposed for SM [12,17]. Establishing arc-
consistency [10,19] in that simple SM constraint model has been shown to be
O(n3) although at least three O(n2) encodings have been proposed: one using
boolean variables [6], one using 4-valued variables [12] and one using a specialized
n-ary constraint [17].

When sr10 is made arc-consistent the phase-1 table is produced. As we can see
from Figure 1 the first agent in the phase-1 table for agent1 is agent8 yet none
of the seven solutions have a matching that contains the pair (1, 8). Therefore
our constraint program must backtrack, i.e. after producing the phase-1 table
via propagation, search instantiates a1 ← 1 (assigned 1st preference), attempts
to make the model arc-consistent and fails, forcing a backtrack. To find a first
solution to sr10 (a first matching) the constraint program makes 3 decisions, at
least one of which results in a backtrack. To find all 7 solutions, 12 decisions are
made.

�

1 public c lass StableRoommates {
2
3 public s tat i c void main (S t r i ng [] args) throws IOException {
4
5 BufferedReader f i n = new BufferedReader (new FileReader (args [0])) ;
6 int n = In tege r . par s eIn t (f i n . readLine ()) ;
7 int [] [] p r e f = new int [n] [n] ;
8 int [] [] rank = new int [n] [n] ;
9 int [] l ength = new int [n] ;

10 for (int i =0; i<n ; i++){
11 St r ingTokeniz er s t = new Str ingTokeni ze r (f i n . readLine () , ” ”) ;
12 int k = 0 ;
13 l ength [i] = 0;
14 while (s t . hasMoreTokens ()){
15 int j = In tege r . pa r se In t (s t . nextToken ()) − 1 ;
16 rank [i] [j] = k ;
17 pr e f [i] [k] = j ;
18 l ength [i] = length [i] + 1 ;
19 k = k + 1;
20 }
21 rank [i] [i] = k ;
22 p re f [i] [k] = i ;
23 }
24 f i n . c l o s e () ;
25 Model model = new CPModel () ;
26 In t ege rVar iab l e [] a = new I nt eg e rVar i ab l e [n] ;
27 for (int i =0; i<n ; i++) a [i] = makeIntVar (” a ”+ i ,0 , l ength [i] , ”cp : enum”) ;
28 for (int i =0; i<n ; i++)
29 for (int j =0; j<l ength [i] ; j++){
30 int k = pre f [i] [j] ;
31 model . addConstraint (imp l i e s (gt (a [i] , rank [i] [k]) , l t (a [k] , rank [k] [i]))) ;
32 model . addConstraint (imp l i e s (eq (a [i] , rank [i] [k]) , eq (a [k] , rank [k] [i]))) ;
33 }
34 Solver s o l v e r = new CPSolver () ;
35 s o l v e r . read (model) ;
36 i f (s o l v e r . so l ve () . booleanValue ())
37 for (int i =0; i<n ; i++){
38 int j = pre f [i] [s o l v e r . getVar (a [i]) . getVal ()] ;
39 i f (i<j) System . out . pr in t (” (”+ (i +1) +” , ”+ (j+1) +”) ”) ;
40 }
41 System . out . p r i n t l n () ;
42 }
43 }

�� �

Listing 1. A simple encoding for SRI, StableRoommates.java

The model was implemented in the choco constraint programming toolkit [1]
using Java and the code is shown in Listing 1. The first thing to note is that
everything is zero-based, such that the first agent is a0 and the last an−1 (lines 26

Stable Roommates and Constraint Programming 19

1: 8 2 9 3 6 4 5 7
2: 4 3 8 9 5 1 10 6
3: 5 6 8 2 1 7 10
4: 9 3 1 6 2
5: 7 4 10 8 2 6 3
6: 2 8 7 3 4 10 1 5 9
7: 1 8 3 5
8: 10 4 2 5 6 7 1
9: 6 7 2 5 10 3 4

10: 3 1 6 5 2 9 8

Fig. 3. Bound phase-1 table for sr10 using bound integer variables

and 27). Lines 5 to 24 read in the problem instance, building the arrays pref and
rank. To address SR with incomplete lists we add i to the end of ai’s preference
list (lines 21 and 22) such that an unmatched agent is matched to itself. The
constraint model is produced in lines 25 to 35 with constraint (2) posted in line
31 and constraint (3) in line 32. In lines 36 to 41 the choco toolkit searches for
a first solution and prints it out.
The choco toolkit also supports bound integer variables, where only the upper
and lower bounds on domains are maintained and removal of values between
those bounds are performed lazily. In line 27 of Listing 1 adding the option
”cp:bound” to the constructor makeIntV arArray changes the model so that it
uses bound integer variables. When the model is made arc-consistent we then
get the bound phase-1 table shown in Figure 3. Comparing this to Figure 1 we
see that the upper and lower bounds agree with the phase-1 table but there are
values between those bounds that are omitted from the enumerated domains,
in particular we see that agent1 has agent9 in its domain yet agent9 does not
have agent1 in its domain. Nevertheless, the constraint program maintains the
desired stable roommates properties and produces the same 7 solutions as in
Figure 1 and does so in less time.

The constraint model also address SRI instances (SR with incomplete lists).
Figure 4 shows instance sri6, with n = 6. This has one stable matching
{(1, 4), (2, 6)} with agents 3 and 5 unmatched.

1: 2 4 5
2: 6 1 3
3: 2 4
4: 1 6 3
5: 6 1
6: 2 5 4

Fig. 4. SRI instance sri6. This has one solution {(1, 4), (2, 6)}.

20 P. Prosser

The model also addresses stable marriage problems with complete and incom-
plete lists (i.e. SM and SMI). As an example consider Figure 5, a stable marriage
instance with 6 men and 6 women (taken from [6]). This is shown on the left
of Figure 5 with a stable matching in bold font. On the right we have the same
problem represented as an SRI instance. The men are represented as agents 1
to 6 and women as agents 7 to 12. Agents 1 to 6 (the men) only find agents 7 to
12 acceptable (the women) and agents 7 to 12 (the women) find only agents 1
to 6 (the men) acceptable. To read off the SRI matching we subtract 6 from the
agent matched to agents 1 to 6. Therefore our simple constraint model addresses
SR, SRI, SM and SMI.

1 : 1 3 6 2 4 5 1 : 1 5 6 3 2 4
2 : 4 6 1 2 5 3 2 : 2 4 6 1 3 5
3 : 1 4 5 3 6 2 3 : 4 3 6 2 5 1
4 : 6 5 3 4 2 1 4 : 1 3 5 4 2 6
5 : 2 3 1 4 5 6 5 : 3 2 6 1 4 5
6 : 3 1 2 6 5 4 6 : 5 1 3 6 4 2

1 : 7 9 12 8 10 11
2 : 10 12 7 8 11 9
3 : 7 10 11 9 12 8
4 : 12 11 9 10 8 7
5 : 8 9 7 10 11 12
6 : 9 7 8 12 11 10
7 : 1 5 6 3 2 4
8 : 2 4 6 1 3 5
9 : 4 3 6 2 5 1
10 1 3 5 4 2 6
11 3 2 6 1 4 5
12 5 1 3 6 4 2

Fig. 5. Stable marriage instance sm6. On the left, the familiar SM and on the right
sm6 recast as an SRI instance. Problem is taken from [6].

4 A More Efficient Model

Our constraint model can be made more computationally efficient by adopting
and modifying the models in [6,12]. However, these models are bulky and quickly
exhaust memory on relatively modest sized instances of SM [17]. Therefore we
propose an n-ary SR constraint (SMN), similar to that proposed in [17], that can
establish arc-consistency in O(n2) and takes O(n) additional space (assuming
we are given the arrays pref and rank read in on lines 5 to 24 of Listing 1). The
means of reducing the computational cost is by eliminating the redundancies
brought about by the arc-consistency algorithm: when a variable’s domain is
altered all constraints involving that variable are revised. Therefore, if a value
is removed from the domain of ai, O(n) constraints will be revised. This can
occur n times for an agent, and since there are n agents this results in O(n3)
complexity, assuming it takes O(1) time to revise a constraint as above.

With a specialized n-ary constraint we can improve upon this. We can elim-
inate the above redundancy by revising only the domains of agents that must
be affected by a change in another variable’s domain. There are five possible
changes that can occur to the domain of an agent and these are:

Stable Roommates and Constraint Programming 21

– the upper bound of a variable decreases (Algorithm 1)
– the lower bound of a variable increases (Algorithm 2)
– a variable looses a value (Algorithm 3)
– a variable is instantiated (Algorithm 4)
– the constraint is initially posted (Algorithm 5)

Presented below are the algorithms that address these five cases and the actual
choco/Java implementation (Listing 2, with imports removed for brevity). The
algorithms again assume that we have constrained integer variables a1 to an,
each with a domain of ranks {1 . . . li + 1}, and that we have the preference and
rank arrays pref and rank. In addition we require reversible variables lwbi and
upbi, where lwbi is used to store the smallest value in the domain of ai and upbi
the largest value. By reversible we mean that on backtracking the values of these
variables are restored. The choco toolkit provides this as class StoredInt (see
lines 19 and 20 of Listing 2). In the complexity arguments we assume that the
toolkit primitives getMin(v) (get the smallest value in domain of variable v),
setMax(v, x) (set the upper bound of variable v’s domain to bemin(max(v), x)),
getMax(v) (get largest value in domain of v), remove(v, x) (remove the value
x from the domain of v if that value exists) and getV alue(v) (get the value v is
instantiated to) each have a cost of O(1).

deltaMin(i) (Algorithm 1). The lower bound of ai has increased (and is now
the value x, line 3). Consequently, the corresponding agent now at the top of
agenti’s preference list (agentj where j = prefi,x, line 4)) can be matched to no
one that he prefers less than agenti (line 5). For the corresponding agents that
have been removed from agenti’s preference list, and that agenti preferred to
his current most preferred partner, those agents can do no worse than match up
with agents that they prefer to agenti (lines 6 to 8). The new lower bound for ai
is saved in the reversible variable lwbi. Complexity: This method can be called
at most n times for an agent (the number of values in an agent’s domain). Each
time it is called the loop bound (line 6) is reduced (via line 9 on previous calls).
Consequently this can reduce the maximum domain value of other agents (line
5 and line 8) at most n times. Therefore over all agents the cost of deltaMin is
O(n2).

deltaMax(i) (Algorithm 2). The upper bound of ai has decreased (and now
has the value x, line 3). For all corresponding agents removed from agenti’s
preference list we remove agenti from that agent’s preference list as they can
no longer be matched together (lines 4 to 6). The new upper bound is then
saved in the reversible variable upbi (line 7). Complexity: For an agent, this
method can be called at most n times, each time with a reduced bound on the
iteration in lines 4 to 6. Therefore lines 3 and 6 can be executed at most n times.
Consequently the cost over all n agents is O(n2).

removeValue(i,x) (Algorithm 3). The value x has been removed from the
domain of ai consequently the corresponding agent (agentj where j = prefi,x)

22 P. Prosser

Algorithm 1. deltaMin (awakeOnInf in Listing 2).

1 deltaMin(int i)
2 begin
3 x ← getMin(ai)
4 j ← prefi,x
5 setMax(aj, rankj,i)
6 for w ← lwbi to x− 1 do
7 h ← prefi,w
8 setMax(ah, rankh,i − 1)

9 lwbi ← x

Algorithm 2. deltaMax (awakeOnSup in Listing 2).

1 deltaMax(int i)
2 begin
3 x ← getMax(ai)
4 for y ← x+ 1 to upbi do
5 j ← prefi,y
6 remove(aj, rankj,i)

7 upbi ← x

can no longer be matched to agenti (lines 3 and 4). Complexity: An execution
is O(1) cost and this can happen at most O(n2) times, i.e. n times for each of
the n agents.

Algorithm 3. removeValue (awakeOnRem in Listing 2).

1 removeValue(int i, int x)
2 begin
3 j ← prefi,x
4 remove(aj, rankj,i)

instantiate(i) (Algorithm 4). The variable ai has been assigned the value
y (line 3) and corresponds to being matched to agentj where j = prefi,y. All
agents that agenti preferred to agentj can only be matched to agents that they
prefer to agenti (lines 4 to 6). Furthermore, all agents that agenti preferred less
than agentj can no longer consider agenti as a possible partner (lines 7 to 9).
Finally we update the upper and lower bounds for the domain (lines 10 and 11).
Complexity: An execution has a cost of O(n) as we respond to the (at most
n− 1) removals from the domain of the variable (lines 4 to 9). An agent can be

Stable Roommates and Constraint Programming 23

Algorithm 4. instantiate (awakeOnInst in Listing 2).

1 instantiate(int i)
2 begin
3 y ← getV alue(ai)
4 for x ← lwbi to y − 1 do
5 j ← prefi,x
6 setMin(aj , rankj,i − 1)

7 for z ← y + 1 to upbi do
8 j ← prefi,z
9 remove(aj, rankj,i)

10 lwbi ← y
11 upbi ← y

instantiated with a value at most once during propagation. Consequently, over
all n agents this has a cost of O(n2).

init() (Algorithm 5). This is called at the top of search, when the model is
made arc-consistent by revising all the constraints. First, the upper and lower
bounds for each agent are initialized (lines 2 to 4) and then propagation kicks
off by making all agents consistent with respect to their most preferred partner,
and this is similar to the proposal stage in [8]. Complexity: Line 6 is called n
times and each individual call to deltaMin(i) has cost O(n), consequently we
have an O(n2) cost in total.

Algorithm 5. init (class constructor and awake in Listing 2).

1 init()
2 begin
3 for i ← 1 to n do
4 lwbi ← 1
5 upbi ← lengthi + 1

6 for i ← 1 to n do
7 deltaMin(i)

5 Empirical Study

Experiments were performed over random SR instances with complete preference
lists, on a 2.4GHz Intel Xeon E5645 processor with 97 GBytes of RAM, using
java version 1.6.0 26 and choco-2.1.0. We start by investigating the three models:

24 P. Prosser

�

1
2 public c lass SRN extends AbstractLargeIntSConstra int {
3
4 private int n ;
5 private int [] [] rank ;
6 private int [] [] p r e f ;
7 private int [] l ength ;
8 private I S t a t e I n t [] upb ;
9 private I S t a t e I n t [] lwb ;

10 private IntDomainVar [] a ;
11
12 public SRN(So lve r s , IntDomainVar [] a , int [] [] pref , int [] [] rank , int [] l ength){
13 super (a) ;
14 n = a . l ength ;
15 th is . a = a ;
16 th is . p r e f = pre f ;
17 th is . rank = rank ;
18 th is . l ength = length ;
19 upb = new StoredInt [n] ;
20 lwb = new StoredInt [n] ;
21 for (int i =0; i<n ; i++){
22 upb [i] = s . getEnvironment () . makeInt (l ength [i]) ;
23 lwb [i] = s . getEnvironment () . makeInt (0) ;
24 }
25 }
26
27 public void awake () throws Contrad i ct i onExcept ion {
28 for (int i =0; i<n ; i++) awakeOnInf (i) ;
29 }
30
31 public void propagate () throws Contrad i ct i onExcept ion {}
32
33 public void awakeOnInf (int i) throws Contrad i ct i onExcept ion {
34 int x = a [i] . g e t I n f () ; // b e s t (l o w e s t) r a n k f o r a i
35 int j = pre f [i] [x] ;
36 a [j] . setSup (rank [j] [i]) ;
37 for (int w=lwb [i] . get () ;w<x ;w++){
38 int h = pre f [i] [w] ;
39 a [h] . setSup (rank [h] [i] −1);
40 }
41 lwb [i] . s e t (x) ;
42 }
43
44 public void awakeOnSup(int i) throws Contrad i ct i onExcept ion {
45 int x = a [i] . getSup () ; // w o r s t (l a r g e s t) p r e f e r e n c e f o r a [i]
46 for (int y=x+1;y<=upb [i] . get () ; y++){
47 int j = pre f [i] [y] ;
48 a [j] . remVal (rank [j] [i]) ;
49 }
50 upb [i] . s e t (x) ;
51 }
52
53 public void awakeOnRem (int i , int x) throws Contrad i ct i onExcept ion {
54 int j = pre f [i] [x] ;
55 a [j] . remVal (rank [j] [i]) ;
56 }
57
58 public void awakeOnInst (int i) throws Contrad i ct i onExcept ion {
59 int y = a [i] . getVal () ;
60 for (int x = lwb [i] . get () ; x<y ; x++){
61 int j = pre f [i] [x] ;
62 a [j] . setSup (rank [j] [i] −1);
63 }
64 for (int z=y+1;z<=upb [i] . get () ; z++){
65 int j = pre f [i] [z] ;
66 a [j] . remVal (rank [j] [i]) ;
67 }
68 lwb [i] . s e t (y) ;
69 upb [i] . s e t (y) ;
70 }
71 }

�� �

Listing 2. SRN.java

Stable Roommates and Constraint Programming 25

(a) SR, the simple constraint model, (b) SRB, the simple model using bound
integer variables and (c) SRN , the n-ary constraint model. In all cases a sample
size of 100 is used, unless stated otherwise.

Figure 6 presents two scatter plots of total run time against problem size.
The plot on the left is for 10 ≤ n ≤ 100 and on the right 100 ≤ n ≤ 1, 000
(and for n > 100 we omit SR). The total run time includes time to read in the
problem, build the model and then find all stable matchings for that instance.
Time is measured in milliseconds. The total run times shows that SR does not
scale beyond n = 100 (plot on the left) and at n = 1, 000 (plot on the right)
SRB typically takes 4 minutes whereas SRN takes 2 seconds, i.e. SRN is two
orders of magnitude faster.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 10 20 30 40 50 60 70 80 90 100

m
il

li
s
e
c
o

n
d

s

n

Total Time

SR

SRB

SRN

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 100 200 300 400 500 600 700 800 900 1000

m
il

li
s
e
c
o

n
d

s

n

Total Time

SRB

SRN

Fig. 6. Performance of the models: scatter of total time in milliseconds to find all
matchings against problem size

We now investigate the problems, i.e. given n what proportion of instances have
matchings? Shown in Table 1 are the proportion of instances with matchings, for
n ∈ {10 . . .90} with a sample size of 1,000. The column on the right are those
reported in [8], with a sample size of 1,000 for n equal to 10 and 20, sample size
500 for n = 30, and sample size 200 for 40 ≤ n ≤ 90.

In Table 2 we give the average total cpu time in seconds (i.e. time to read in
the instance, produce the model, enumerate all solutions and output run time
statistics) for 100 ≤ n ≤ 1, 000 using our best model (SRN). Also tabulated is
the average number of nodes reported by the choco toolkit (and maximum in
brackets) where a node is a decision made, and that decision might be one that
leads to a failure and a backtrack. The second last column is the proportion
of instances that had matchings. The last column is the maximum number of
stable matchings found in an instance of size n. In all cases sample size is 100.

5.1 Discussion

Clearly (Figure 6) the n-ary encoding is orders of magnitude faster than the
toolkit constraints. Although not presented, it is also more space efficient, i.e.

26 P. Prosser

Table 1. Proportion of instances with solutions. Column on the right from [8].

n Prosser Irving

10 0.889 0.868
20 0.834 0.815
30 0.781 0.766
40 0.736 0.745
50 0.727 0.710
60 0.704 0.725
70 0.706 0.670
80 0.670 0.675
90 0.670 0.690

Table 2. Average total run times in seconds to enumerate all matchings using SRN,
the average number of decisions (nodes) made by choco (maximum in brackets), the
proportion of instances with stable matchings and the maximum number of matchings
in an instance. Sample size is 100.

n cpu time nodes matched max matchings

100 0.423 4 (17) 0.63 9
200 0.511 6 (34) 0.52 16
300 0.645 7 (33) 0.53 16
400 0.768 7 (25) 0.38 10
500 0.950 7 (35) 0.45 16
600 1.094 7 (27) 0.41 14
700 1.290 7 (31) 0.42 12
800 1.555 8 (50) 0.44 24
900 1.786 8 (29) 0.39 12
1,000 2.046 8 (85) 0.40 40

it has a more compact model and this can be quickly constructed. Therefore it
wins on two fronts: space and time.
The proportion of SR instances with matching was first investigated in [8] and
later in [14] and [13]. Empirical evidence has been based on translations of the
Pascal code given in the appendix of Irving’s paper. Unfortunately that code
has a bug and on occasion fails to find a matching when one exists. This has
been observed by Stephan Mertens and independently by Ciaran McCreesh.
Consequently, earlier reported results may be incorrect. The results in Table 1
use a sample size of 1,000 and might be assumed to be more accurate than those
in Rob Irving’s original study.

In Table 2 we have the average (and maximum) number of nodes required to
find all matchings. This number is always low, and always less than 3 times the
number of maximum matchings. More to the point, the model never exhibited
exponential behaviour. As yet I have no explanation of why this is so, i.e. why
the constraint model is so well behaved.

Stable Roommates and Constraint Programming 27

There are hard variants of SR. One example is egalitarian SR where a match-
ing is to be found that minimizes the sum of the ranks, and this has been shown
to be NP-hard [9]. In our constraint model an egalitarian matching is one that
minimizes

∑
ai. Therefore we can model this problem by adding one more vari-

able (totalCost), one more constraint (totalCost =
∑

ai) and a change from
solving to minimization (line 36 of Listing 1). Naively, to find an egalitarian
matching we could consider all matchings. As we see from Table 2 no instance
had more than 40 matchings, no search took more than 85 nodes and the longest
run time (not tabulated) was 2.6 seconds. Therefore, although NP-hard we would
fail to encounter a hard instance in the problems sampled. So, (as Cheeseman,
Kanefsky and Taylor famously asked [3]) where are the hard problems? As yet
I do not know.

6 Conclusion

It has been demonstrated that there is a simple constraint model for the stable
roommates problem. It was demonstrated that arc-consistency on this model
produces the phase-1 table in O(n3) time. A backtracking search that maintains
arc-consistency on each decision allows us to enumerate all matching. However,
it was shown that the search process can make decisions that lead to failure. The
simple model was enhanced by using bound, rather than enumerated constrained
integer variables and arc-consistency delivers a bound phase-1 table. Neverthe-
less, this results in a substantial improvement in performance but the complexity
of producing the phase-1 table remains O(n3). This lead to a specialized n-ary
constraint with O(n2) cost for arc-consistency. Empirical study showed that this
model can enumerate all matching to problems with 1,000 agents in about 2
seconds, orders of magnitude faster than the simple model.

It has also been shown that since our constraint model addresses incomplete
preference lists it can also model stable marriage problems with complete and
incomplete preference lists. That is, one model suffices.

Our model behaved well, never exhibiting exponential behaviour. Therefore
there is work to do, to prove that the amount of backtracking is in some sense
bounded by a polynomial, and this proof might be similar to that of failure-free
enumeration in SM [6].

One of the first hard variants is egalitarian SR. This can be easily modeled and
explored. However, it appears that it might be uninteresting. For n ≤ 1, 000 the
number of matchings that need to be explored appears to be small. Furthermore,
as n increases we expect that the number of instances with matchings will also
fall [14,13]. Combined, this suggests that although NP-hard, egalitarian SR is
easy.

All the code used in this study is available at [2].

Acknowledgements. I would like to thank Augustine Kwanashie, Ciaran Mc-
Creesh, David Manlove, Rob Irving and Ian Gent.

28 P. Prosser

References

1. choco constraint programming system, http://choco.sourceforge.net/
2. Stable Roommates, http://www.dcs.gla.ac.uk/~pat/roommates/distribution
3. Cheeseman, P., Kanefsky, B., Taylor, W.M.: Where the really hard problems are,

pp. 331–337. Morgan Kaufmann (1991)
4. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. American

Mathematical Monthly 69, 9–15 (1962)
5. Gale, D., Sotomayor, M.: Some remarks on the stable matching problem. Discrete

Applied Mathematics 11, 223–232 (1985)
6. Gent, I.P., Irving, R.W., Manlove, D.F., Prosser, P., Smith, B.M.: A constraint pro-

gramming approach to the stable marriage problem. In: Walsh, T. (ed.) CP 2001.
LNCS, vol. 2239, pp. 225–239. Springer, Heidelberg (2001)

7. Gusfield, D., Irving, R.W.: The Stable Marriage Problem: Structure and Algo-
rithms. The MIT Press (1989)

8. Irving, R.W.: An efficient algorithm for the “stable roommates” problem. J. Algo-
rithms 6(4), 577–595 (1985)

9. Irving, R.W.: Optimal Stable Marriage. In: Encyclopedia of Algorithms. Springer
(2008)

10. Mackworth, A.K.: Consistency in networks of relations. Artificial Intelligence 8,
99–118 (1977)

11. Manlove, D.: Algorithmics of Matching under Preferences. Theoretical Computer
Science, vol. 2. World Scientific (2013)

12. Manlove, D.F., O’Malley, G.: Modelling and solving the stable marriage problem
using constraint programming. In: Proceedings of the Fifth Workshop on Mod-
elling and Solving Problems with Constraints, held at the 19th International Joint
Conference on Artificial Intelligence (IJCAI 2005), pp. 10–17 (2005)

13. Mertens, S.: Random stable matchings. In: Journal of Statistical Mechanics: Theory
and Experiments (2005)

14. Pittel, B., Irving, R.W.: An upper bound for the solvability of a random stable
roommates instance. Random Struct. Algorithms 5(3), 465–487 (1994)

15. Roth, A.E.: The evolution of the labor market for medical interns and residents: a
case study in game theory. Journal of Political Economy 92(6), 991–1016 (1984)

16. Roth, A.E., Sotomayor, M.A.O.: Two-sided matching: a study in game-theoretic
modeling and analysis. Econometric Society Monographs, vol. 18. Cambridge
University Press (1990)

17. Unsworth, C., Prosser, P.: An n-ary constraint for the stable marriage problem. In:
Proceedings of the Fifth Workshop on Modelling and Solving Problems with Con-
straints, held at the 19th International Joint Conference on Artificial Intelligence
(IJCAI 2005) (2005)

18. Unsworth, C., Prosser, P.: A specialised binary constraint for the stable marriage
problem. In: Zucker, J.-D., Saitta, L. (eds.) SARA 2005. LNCS (LNAI), vol. 3607,
pp. 218–233. Springer, Heidelberg (2005)

19. van Hentenryck, P., Deville, Y., Teng, C.-M.: A generic arc-consistency algorithm
and its specializations. Artificial Intelligence 57, 291–321 (1992)

http://choco.sourceforge.net/
http://www.dcs.gla.ac.uk/~pat/roommates/distribution

Detecting and Exploiting

Permutation Structures in MIPs

Domenico Salvagnin

DEI, University of Padova, Via Gradenigo 6b, 35131 Padova, Italy
salvagni@dei.unipd.it

Abstract. Many combinatorial optimization problems can be formu-
lated as the search for the best possible permutation of a given set of
objects, according to a given objective function. The corresponding MIP
formulation is thus typically made of an assignment substructure, plus
additional constraints and variables (as needed) to express the objec-
tive function. Unfortunately, the permutation structure is generally lost
when the model is flattened as a mixed integer program, and state-of-
the-art MIP solvers do not take full advantage of it. In the present paper
we propose a heuristic procedure to detect permutation problems from
their MIP formulation, and show how we can take advantage of this
knowledge to speed up the solution process. Computational results on
quadratic assignment and single machine scheduling problems show that
the technique, when embedded in a state-of-the-art MIP solver, can in-
deed improve performance.

1 Introduction

Many combinatorial optimization problems can be formulated as the search for
the best possible permutation of a given set of objects, according to a given
objective function. Without loss of generality, in this paper we will consider
problems of the form:

min f(π) (1)

π ∈ Πn (2)

where Πn is the set of all permutations π of the ground set N = {1, . . . , n}.
A natural way to formulate this class of problems within a mixed-integer linear
programming (MIP) paradigm is to encode the permutation π by introducing n2

binary variables xij and 2n linear constraints, obtaining the so-called assignment
polytope. Finally, additional artificial variables y, together with the correspond-
ing linking constraints, are usually introduced in the model in order to properly
formulate the objective function f . Note that if the objective function is linear
in x, we have the so-called linear assignment polytope, which is polynomially
solvable. The problem is thus reformulated as

H. Simonis (Ed.): CPAIOR 2014, LNCS 8451, pp. 29–44, 2014.
c© Springer International Publishing Switzerland 2014

30 D. Salvagnin

min g(x, y) (3)
n∑

i=1

xij = 1 ∀j ∈ N (4)

n∑
j=1

xij = 1 ∀i ∈ N (5)

Ax+By ≥ b (6)

xij ∈ {0, 1} ∀(i, j) ∈ N2 (7)

y ≥ 0 (8)

It is important to note that, being a permutation problem, the structure of the
formulation above is such that if all variables x are fixed, then it is always possible
to compute in closed form the values of the artificial variables y, and thus to
obtain a complete solution. In other words, once the permutation is known, there
is no need to solve an optimization problem to compute its objective value. In
particular, if it always possible to express y as a function Γ of x, such that
f(x) = g(x, Γ (x)).

Many combinatorial optimization problems, as for example the quadratic as-
signment problem (QAP), the traveling salesman problem (TSP), and single
machine scheduling, belong to the above class, although not all are always mod-
eled in this way. For example, while the TSP is clearly a permutation problem, it
is usually not formulated as such, so there is no explicit assignment substructure
in the model.

Unfortunately, the permutation structure is generally lost when the model
is flattened as a mixed integer program, and state-of-the-art MIP solvers do
not take full advantage of it. For example, while it is always trivial to compute
a feasible solution of a permutation problem, state-of-the-art MIP solvers oc-
casionally find it very challenging to find one, even with their rich arsenal of
primal heuristics. Even worse, while it is well-known that permutation problems
are usually well-suited for local-search based metaheuristics, that are capable of
finding near-optimal solutions with very modest computing times, MIP solvers
have a very hard time in improving their first poor-quality solutions.

Themain issue here is that current state-of-the-artMIP technology lacks a pow-
erful modeling language based on global constraints, a tool which has long been
standard in constraint programming [1]. As such, it is almost impossible for the
modeler to pass high-level information to the solver, such as, for example, com-
binatorial substructures. Given the current state of things, it has become stan-
dard practice in MIP implementations to devise algorithms that basically try to
reverse-engineer combinatorial substructures from a flat list of linear inequalities.
For example, in [2] a procedure for detecting network structures was presented;
such structure, when present, is then used to improve cutting plane separation.
Unfortunately, while these procedures are usually cheap and effective, they are
still heuristic in nature and can be fooled by the many transformations that are
applied to a given MIP formulation in the preprocessing phase. Extending them

Detecting and Exploiting Permutation Structures in MIPs 31

to be completely preprocessing-invariant is often not done in practice for perfor-
mance reasons (the resulting algorithms would be too slow), with the consequence
that on some instances the substructure is not detected even if it is present.

While we cannot but share the lament for the current state of things, and
encourage MIP vendors to invest into more powerful modeling interfaces to the
solvers, as (partially) done, e.g., in the open solver SCIP [3], in the meantime
we can still try to improve the situation for specific substructures, as is done
for permutation problems in the present paper. Note that while permutation
problems are usually solved with specialized codes, some challenging instances
have indeed been solved with MIP technology, as for example in [4], so improving
the performance of MIP solvers on this class of problems is of practical interest
and can broaden the applicability of the MIP paradigm.

The outline of the paper is as follows. In Section 2 we describe a heuristic pro-
cedure to automatically detected permutation problems, while in Section 3 we
show how to exploit the permutation structure to implement an efficient and gen-
eral purpose primal heuristic based on local search. Two classes of permutation
problems, that we used as benchmark, as described in Section 4. Computational
results are given in Section 5, showing that the technique, when embedded in
a of state-of-the-art MIP solver, can indeed improve performance, according to
several performance measures. Conclusions and future directions of research are
finally addressed in Section 6.

2 Detecting Permutation Structures

Detection of permutation problems is done in two steps:

1. in the first step we look for assignment polytopes, thus identifying the binary
variables x that encode the permutation, and the corresponding assignment
constraints;

2. in the second step we check that, once the variables x are fixed, the remaining
variables y can indeed be computed in a straightforward way. In particular,
this implies finding a topological order among variables y, such that we can
compute them in one pass from left to right.

The first step is organized as a clustering algorithm. First, all constraints
involving at least one non binary variable, that are not equalities and whose
right-hand-size is different from 1 are removed, as they cannot be part of the as-
signment structure. The remaining constraints are then partitioned into clusters:
each cluster can contain only constraints with the same number of variables and
with pairwise disjoint support. Constraints are assigned to the first compatible
cluster in a first-fit fashion; if no cluster is compatible, a new cluster is created
with the current constraint in it. After the set of clusters Q has been initial-
ized, we look for pairs (q1, q2) of matching clusters. Two clusters are matching
if they cover exactly the same set of variables and each constraint in cluster q1
intersects each constraint in cluster q2 in exactly one variable. Intuitively, vari-
ables x are naturally double-index variables and can be arranged into a matrix,

32 D. Salvagnin

Fig. 1. Assignment structure

and the constraints in a pair of matching clusters (q1, q2) corresponds to the
rows and columns, respectively, of this matrix, see Figure 1. Once a matching
pair of cluster is found, it is removed from Q and the process continues until all
pairs have been considered. Details are depicted in Algorithm 1. Note that the
described detection algorithm is slightly more general than needed, since it can
detect more than one assignment substructures.

The second step constructs a weighted dependency graph G = (V,E,w) be-
tween the variables of the formulation, along with a topological order O on the
nodes of G, and is based on row counts. At the beginning, all assignment vari-
ables x are added (in arbitrary order) as nodes to G, and to the ordered list O.
All assignment constraints are removed from the model. Each constraint ci left in
the model, is assigned a count ri, which counts all the variables in the constraint
not yet in O. If some constraint ends up having a row count of zero at this step,
then it means that this is not a pure permutation problem, but a constrained
one, i.e., not all permutations are feasible since there are additional constraints
on the assignment variables x: in this case we just abort the procedure. Then an
iterative procedure begins, that loops over all constraints looking for those with
ri = 1. As soon as one is found, say ci, the following steps are executed:

– let yj be the variable left in ci. All constraints involving yj are considered
and the singleton ones are collected in a set Y . Note that Y includes ci.

– If |Y | = 1, then yj can be computed directly from constraint ci (plus its
own bounds): yj is added as a new node in G and to list O. In addition,
edges are added to G, connecting yj to all the other variables in ci. Edges
are weighted with the coefficients of the constraint, so that it is possible to
compute the correct value of yj given the values of the variables on which it
depends. Node yj is marked as being of type LINEAR.

– If |Y | > 1, then yj depends on more than one affine expression involving other
variables. If those expressions are all consistent, then yj can be computed

Detecting and Exploiting Permutation Structures in MIPs 33

Algorithm 1. Assignment subproblems detection.

Input: a list of constraints C = {c1, . . . , cm}
Output: a list of assignment substructures A = {A1, . . . , Ak}
/* clustering */

1 Q = ∅;
2 foreach c ∈ C do
3 foreach q ∈ Q do
4 if c is compatible with c then
5 q = q ∪ {c};
6 if c still not in a cluster then
7 Q = Q ∪ {{c}};

/* matching clusters */

8 A = ∅;
9 for q1 ∈ Q do

10 for q2 ∈ Q do
11 if q1 and q2 are matching then
12 A = A ∪ {(q1, q2)};
13 Q = Q \ {q1, q2};
14 return A

as either a min or a max of them (plus its own bounds). If this is the case,
dummy nodes are added to G and to list O, together with the corresponding
edges, in order to encode those affine expressions, similarly to the previous
case. Then a new node yj is added to G and O, with edges connecting it to
the dummy nodes. Node yj is marked as being of type MIN or MAX, depending
on the direction of the inequalities. If the constraints are not consistent, then
it is not possible to trivially compute yj from the preceding variables in the
topological order, meaning that this is not a permutation problem. In this
case we abort the procedure.

– Variable yj is marked as done and all row counts of constraints in which yj
appears are decreased by 1. Constraints in Y , which by definition have now
a row count of 0, are removed from the model.

At each iteration at least one constraint is removed from the model, so this
phase terminates in O(m) iterations, where m is the number of constraints in the
formulation. The procedure can be implemented quite efficiently if the constraint
matrix is stored both row and column-wise.

Note that if cutting planes are added to the original formulation by the mod-
eler, then those will end up in the dependency graph and propagate; however,
since they are not needed to get a correct model, they are redundant in the
graph and contribute only as a slowdown factor. For these reason, it is conve-
nient to exploit the facilities provided by the underlying solver, if any, to mark
a subset of constraints as cuts, so that they can be ignored by the graph con-
struction algorithm (for example, the MPS and LP file formats used by CPLEX

34 D. Salvagnin

allow this extension). A similar reasoning applies to indicator constraints: if ex-
plicitly marked as such, they can be handled more efficiently by the algorithm.
For example, the linear expression need not be updated if the indicator variable
is false.

Example 1. Let us consider the following artificial tiny permutation problem

min t

x11 + x12 = 1

x21 + x22 = 1

x11 + x21 = 1

x12 + x22 = 1

y1 ≥ 4x11 + 5x12

y2 ≥ 3x21 + 2x22 + y1

t ≥ y1 + 2y2

t ≥ 3y1 + y2

x ∈ {0, 1}4

y, w ≥ 0

The corresponding dependency graph is depicted in Figure 2, and the ordered
list is

O = [x11, x12, x21, x22, y1, y2, z1, z2, t]

�

3 Exploiting Permutation Structures

Once the permutation structure, if any, is identified, we can exploit its knowl-
edge to improve the performance of the underlying MIP solver. A natural op-
tion, pursued in this paper, is to use the permutation structure to implement
a general purpose primal heuristic, based on local-search. Alternative options,
such as using the permutation structure for preprocessing and cut strengthen-
ing/separation, are possible as well, and left as future work.

The basic idea is to implement a local-search based metaheuristic, namely
iterated local search (ILS) [5], using the dependency graph to explore neighbor-
hoods and evaluate solutions. Given a permutation π, the neighborhood N (π)
is defined as all permutations that can be obtained by swapping two elements
of the permutation. Clearly, the neighborhood has polynomial size, containing
exactly n(n − 1)/2 permutations for each center π. The idea behind ILS is to
perturb the current locally optimal solution s∗ to get a new center t and call
again the local search procedure from there, obtaining a new local optimum t∗.
If the new solution t meets an acceptance criterion, then t is chosen as the next
starting point, otherwise it is rejected and the procedure is repeated from s∗.
Intuitively, ILS implements a heuristic random walk on the set of locally optimal

Detecting and Exploiting Permutation Structures in MIPs 35

Fig. 2. Dependency graph of example problem

Algorithm 2. Basic ILS procedure

1 s0 = GenerateRandomSolution ();
2 s∗ = LocalSearch (s0);
3 repeat
4 s′ = Perturb (s∗, history);
5 t = LocalSearch (s′);
6 s∗ = AcceptanceCriterion (s∗, t, history);
7 until termination condition;

solutions of a given optimization problem. A high level pseudocode for ILS is
given in Algorithm 2.

Note that the perturbation mechanism and the acceptance criterion are in gen-
eral dependent on the history of the system: this allows for more effective and
elaborate strategies. The simplest, yet very common, acceptance criterion is to
accept the new solution t if and only if its objective value is better than that of s.
Other strategies include a pure random walk option, in which the new solution t
is always accepted, regardless of its cost, and a simulated annealing [6,7] like ac-
ceptance criterion based on temperature, in which t is always accepted if it is an
improving solution, but is also accepted with a given probability even if its objec-
tive value is worse (the probability is usually dependent on the “temperature” T of

36 D. Salvagnin

the system and on the difference between the two objective values, with slightly
worsening steps being more likely). The first two strategies do not make use of
the history of the system, while the third does. In our implementation, we chose
the annealing criterion. As far as the perturbation step is concerned, a perturbed
permutation π′ is obtain from π by performing k swaps, where k is adjusted dy-
namically during the execution of the algorithm, and is always contained in the
interval {k1, . . . , k2}. Finally, as far as local search is concerned, we implemented a
first-improving pivoting rule. The choice of ILS as a general purpose metaheuris-
tic is motivated by the fact that it is relatively easy to implement and proved to
be quite successful in many permutation problems, such as TSP [8], QAP [9], and
scheduling problems [10].

Implementing local search on top of the dependency graph is quite straight-
forward. A first solution is evaluated by assigning a value to all variables x,
and then computing the values of the variables y (and the intermediate expres-
sions needed to evaluate max and min, if any) following the order in O. Then,
whenever a swap is performed, the change in value of the 4 affected variables is
propagated following the graph (much like in constraint propagation systems),
thus achieving incremental evaluation.

4 Testbed

We considered two classes of problem that exhibit a permutation structure,
namely quadratic assignment and single machine scheduling problems, as de-
scribed in the next subsections.

4.1 Quadratic Assignment Problems

The NP-hard (and notoriously very difficult in practice) Quadratic Assignment
Problem (QAP), in its Koopmans and Beckmann form [11], can be sketched
as follows; see, e.g., [12] for details. We are given a complete directed graph
G = (V,A) with n nodes n2 arcs, and a set of n facilities to be assigned to its
nodes. In what follows, indices i, j correspond to nodes, indices u, v to facilities,
bij ≥ 0 is a given (directed) distance from node i to node j, and auv ≥ 0 is a
given required flow from facility u to facility v. By using binary variables xiu = 1
iff facility u is assigned to node i, QAP can be stated as the following quadratic
binary problem:

min
∑n

i=1

∑n
u=1

∑n
j=1

∑n
v=1 auv bij xiuxjv (9)∑n

i=1 xiu = 1 ∀u ∈ N (10)∑n
u=1 xiu = 1 ∀i ∈ N (11)

xiu ∈ {0, 1} ∀(i, u) ∈ N2 (12)

Detecting and Exploiting Permutation Structures in MIPs 37

Most MIP models for QAP work with additional 0-1 variables yiujv = xiuxjv

that are used to linearize the quadratic objective function—the Adams-Johnson
model [13] being perhaps the best-known such formulation. These kinds of mod-
els require Θ(n4) variables and Θ(n3) constraints, so they become huge even for
medium-size instances, with unacceptable slowdowns in solving the LP relax-
ations during the branch-and-cut tree.

A different approach is to look for MILP models requiring just O(n2) variables
and constraints. An obvious model is the MILP one credited to Kaufman and
Broeckx [14] that requires the introduction of just n2 additional (continuous)
variables

wiu =

⎛⎝ n∑
j=1

n∑
v=1

auvbijxjv

⎞⎠ xiu (13)

which can be easily linearized with big-M coefficients. The corresponding MIP
model reads

min

n∑
i=1

n∑
u=1

wiu (14)

n∑
i=1

xiu = 1 ∀u ∈ N (15)

n∑
u=1

xiu = 1 ∀i ∈ N (16)

wiu ≥
n∑

j=1

n∑
v=1

auvbijxjv −M(1− xiu) ∀(i, u) ∈ N2 (17)

xiu ∈ {0, 1} ∀(i, u) ∈ N2 (18)

wiu ≥ 0 (19)

This model is known to be of little use in practice as is because of the big-M
constraints (17). In particular, it can be proved [15] that the root-node bound is
always zero. However, a much stronger formulation can be obtained by adding
to (14)−(19) the (polynomial) family of cutting planes

wiu ≥ Liuxiu (20)

where each Liu is defined as the optimal value of the linear (and polynomially
solvable) assignment problem:

38 D. Salvagnin

min

n∑
j=1

n∑
v=1

auvbijxjv (21)

n∑
j=1

xjv = 1 ∀v ∈ N (22)

n∑
v=1

xjv = 1 ∀j ∈ N (23)

xiu = 1 (24)

xjv ∈ {0, 1} ∀(j, v) ∈ N2 (25)

It can be shown that adding constraints (20) to the model, the resulting root
relaxation bound is at least as strong as the so-called Gilmore-Lawler [16,17]
bound. This lightweight model, together with the family of cutting planes (20),
was used recently in [4] to solve highly symmetric QAP instances, proving to be
a reasonable tradeoff between bound strength and enumeration speed.

In this paper, we considered all the instances in the standard QAPLIB [18]
testbed with n < 20, and excluding the instances of the esc class, which are
well-known to be massively symmetric. Overall, we are left with 31 instances.

As far as the structure of the problem is concerned, the quadratic assignment
problem is clearly a permutation problem. Once all variables xiu are assigned a
value, then the value of variables wiu is automatically derived by our algorithm as

wiu = max

⎧⎨⎩
n∑

j=1

n∑
v=1

auvbijxjv −M(1− xiu), Liuxiu, 0

⎫⎬⎭ (26)

As far as our ILS metaheuristic is concerned, evaluating a neighboring solution
has cost O(n2), assuming that the constraints defining wiu are dense (as is
usually the case). While linear in the size of the model, this is suboptimal with
respect to an ad-hoc and QAP-specific implementation, where a neighboring
solution can be evaluated O(n) arithmetic operations: this is the price to pay
for a general purpose (and relatively simple) implementation, directly based on
a linear formulation of the model. Note that in this particular case the issue
could be solved by expressing constraints (17) as indicator constraints, as hinted
at the end of Section 2. Indeed, whenever a variable xiu flips value, we do not
need to update O(n2) expressions, but only O(n), since only n wiu variables
are nonzero in any solution, thus implementing a form of partial incremental
propagation. When a non up-to-date variable wiu needs to be evaluated, it is
computed from scratch, which again can be done in O(n) because only n xiu

variables are nonzero in any solution. Unfortunately, properly handling these
cases complicates the implementation significantly, so we do not support it yet.
Finally, we can obtain a small performance improvement by marking (20) as
cuts, so that they are ignored by the algorithm.

Detecting and Exploiting Permutation Structures in MIPs 39

4.2 (Weighted) Total Tardiness Minimization in Single Machine
Scheduling

In single machine scheduling problems [19], we are given a set of n jobs, to be
processed on a single machine, without preemption. Each job j is characterized
by its processing time pj, a due date dj , and a nonnegative weight wj . Different
objective functions are of interest when solving single machine scheduling prob-
lems. In the present paper we will restrict to (weighted) total tardiness of the
schedule.

Given a job j, its tardiness Tj is defined as

Tj = max{Cj − dj , 0} (27)

where Cj is the completion time of job j. In the scheduling notation of [20], the
variants considered in this paper are denoted as 1||

∑
Tj and 1||

∑
wjTj, for the

simple and weighted total tardiness, respectively.
For the unweighted case [19], a simple MIP model reads

min

n∑
k=1

Tk (28)

n∑
j=1

xjk = 1 ∀k ∈ N (29)

n∑
k=1

xjk = 1 ∀j ∈ N (30)

Tk ≥
n∑

j=1

pj

(
k∑

u=1

xju

)
−

n∑
j=1

djxjk ∀k ∈ N (31)

xjk ∈ {0, 1} ∀(j, k) ∈ N2 (32)

Tj ≥ 0 ∀j ∈ N (33)

where variable xjk = 1 iff job j is assigned position k in the processing, while Tk

is the tardiness of the job in position k. In constraints (31), the first term is the
cumulative processing time of the first k jobs in the sequence, while the second
term is the due date of the job in position k. Note that in the model we do not
explicitly keep track of the tardiness of each job by index, but only by position.

A MIP formulation for the weighted case is considerably more involved, be-
cause, differently from the unweighted case, we need to know the tardiness of
each job by its index j and not just by its position k. Indeed, at least four
formulations can be implemented, as surveyed in [21], with different tradeoffs
between size and strength. In the present paper, we considered the one based on
the assignment polytope, much in the spirit of the unweighted case. The MIP
model reads

40 D. Salvagnin

min

n∑
j=1

wjTj (34)

n∑
j=1

xjk = 1 ∀k ∈ N (35)

n∑
k=1

xjk = 1 ∀j ∈ N (36)

γ1 ≥
n∑

j=1

pjxj1 (37)

γk ≥ γk−1

n∑
j=1

pjxjk ∀k ∈ N \ {1} (38)

Cj ≥ γk −M(1− xjk) ∀(j, k) ∈ N2 (39)

Tj ≥ Cj − dj ∀j ∈ N (40)

xjk ∈ {0, 1} ∀(j, k) ∈ N2 (41)

γk ≥ 0 ∀k ∈ N (42)

Cj , Tj ≥ 0 ∀j ∈ N (43)

As in the previous model, variable xjk = 1 iff job j is assigned position k in
the processing. In addition, γk is the completion time of the job in position
k, Cj is the completion time of job j, and Tj is the tardiness of job j. As in
the QAP case, the presence of big-M coefficients in constraints (39) makes the
formulation quite weak in practice. However, by sorting the jobs by processing
time before generating the model, it is possible to strengthen the model by adding
a polynomial family of inequalities, which can be easily computed, see [21] for
the details: we implemented this strengthened variant.

In this paper, we considered all the instances in the standard ORLIB [22]
testbed with n = 40. Overall, there are 125 instances, and we consider both the
unweighted and weighted variants (in the first case, by just ignoring the weights).

As far as the structure of the problem is concerned, with the chosen formula-
tions the single machine scheduling problem is clearly a permutation problem.
Once all variables xjk are assigned a value, then we can automatically compute
the value of variables Tk in the unweighted case, and of variables γk, Cj and Tj

(in this order) in the weighted case.
As far as our ILS metaheuristic is concerned, evaluating a neighboring solution

has cost O(n) in the unweighted case, and O(n2) in the weighted case. Again,
while linear in the size of the model, this is suboptimal in the weighted case,
where an ad-hoc implementation can evaluate a neighboring solution in O(n)
arithmetic operations.

It is important to note that this slowdown is caused not by inefficiencies in
the algorithm, but rather by the MIP formulation itself, because O(n2) linear

Detecting and Exploiting Permutation Structures in MIPs 41

constraints are needed to link variables γk and Cj . For example, if we were
allowed to use nonlinear expressions, only O(n) constraints of the form

Cj =

n∑
k=1

γkxjk

would suffice. Note that the above constraints are essentially element [23] global
constraints, so in the ideal case we should be able to formulate the problem using
those, exploiting their presence to obtain a more efficient ILS implementation,
and then let the solver automatically linearize them in order to get a standard
MIP model. Thus, this is yet one more argument for implementing global con-
straint technology within MIP solvers.

5 Computational Experiments

We implemented our codes in C++, using IBM ILOG CPLEX 12.5.1 [24] as
black box MIP solver. All tests have been performed on a cluster of identical
PC, each with an Intel Xeon E3-1220 V2 CPU running at 3.10GHz and 16GB
of RAM (only one CPU was used by each process). Each method was given a
time limit of 10,000 seconds per instance.

We compare two variants of our state-of-the-art MIP solver on the instances
described in the previous section. We denote with detect the full version of
our code, which detects the permutation structure of the problems and applies
the ILS heuristic throughout the branch-and-cut tree (implemented through the
callback mechanism of CPLEX), and with cpx the same code with our detection
algorithm disabled, in order to have a fair comparison between the two. As far as
the parameters of detect are concerned, the detection algorithm is triggered at
the end of the root node processing, and only if the integrality gap left is greater
than 2%, in order to avoid wasting time in case of very easy instances. The default
parameters of the ILS metaheuristic are iterLim = 1000 and noImprovLim =
100, while the perturbation interval [k1, k2] is set to [3, 7]. If the integrality gap
is less than 10%, then the ILS metaheuristic is run with stricter limits, namely
iterLim = 100 and noImprovLim = 20. Finally, the heuristic is called every
10, 000 nodes and, if not effective for 5 times in a row, it is completely switched
off for the rest of the search.

We use 4 performance measures to compare cpx and detect:

– #solved: number of instances solved within the time limit.
– time: shifted geometric mean, with a shift of 1 second, of the running time

on the subset of instances solved by both methods.
– pint: shifted geometric mean, with a shift of 0.01, of the primal integral on

the subset of instances solved by both methods (the lower the better). The
primal integral [25] measures the overall behavior of the solver as far as the
primal bound is concerned, and overcomes many shortcomings of traditional
figures when measuring the effect of primal heuristics. Given the primal gap
function γ(x) of a feasible solution x, defined as

42 D. Salvagnin

γ(x) =

⎧⎪⎨⎪⎩
0 if cx = z = 0

1 if cx · z < 0
|cx−z|

max(|cx|,|z|) otherwise.

where z is the value of the optimal (or best known) solution, we define the
primal gap pgap as a function of the running time t as

pgap(t) =

{
1 if no feasible solution is known at time t

γ(x̃) if x̃ is the incumbent at time t.

Note that γ(x), and thus also pgap(t), is always between 0 and 1. The primal
integral is defined as the integral over t of pgap(t).

– gap: average final integrality gap on the subset of instances unsolved by at
least one method. The integrality gap is computed as

gap(z, z) =

⎧⎪⎨⎪⎩
0 if z = z = 0

1 if z · z < 0
|z−z|

max(|z|,|z|) otherwise.

where z is the value of the global primal bound and z is the value of the global
dual bound. This is the integrality gap as reported by many commercial
solvers, and has the advantage of always being a number between 0 and 1.

Aggregated results of the comparison between the two methods are reported
in Table 1. According to the table, the two methods are approximately equiva-
lent as far as the number of solved instances is concerned: this is not surprising,
as it is well-known that in general our ability in solving MIPs is largely dom-
inated by the dual bound, which is not affected by our method. According to
many computational studies [26,27], the effect of primal heuristics on the overall
solution process is approximately in the order of 10-15% on average. Still, in
our testbeds, where finding good quality solutions is challenging for CPLEX,
the effect of our method is a significant reduction of the overall running time,
up to almost 40% on the weighted total tardiness testbed. In addition, the pri-
mal integral is also significantly reduced, dropping by a factor of 4 in the QAP

Table 1. Comparison of the two methods

testbed method #solved time (s) pint gap

QAP cpx 19 60.5 0.569 8.8%
detect 20 55.5 0.113 8.3%

1||∑Tj cpx 90 6.4 0.198 18.0%
detect 88 5.3 0.128 17.6%

1||∑wjTj cpx 40 12.8 2.140 31.8%
detect 41 8.0 0.857 29.7%

Detecting and Exploiting Permutation Structures in MIPs 43

testbed and by a factor of approximately 2 on the single scheduling instances.
Finally, on the unsolved instances, the final integrality gap was also consistently
reduced—although by a little amount.

6 Conclusions

We described a heuristic procedure to automatically detected permutation prob-
lems, and exploited the permutation structure to implement an efficient and
general purpose primal heuristic based on local search. Computational experi-
ments on two classes of permutation problems, namely QAP and single machine
scheduling, showed that the technique, when embedded in a of state-of-the-art
MIP solver, can indeed significantly improve performance.

Future research includes efficiently implementing the extensions needed to
support indicator constraints, as well as devising heuristic procedures to de-
tect other common substructures, such as, for example, linear encodings of the
element global constraint. This would bring the general purpose ILS procedure
inline with the problem specific implementations. Extensions to more general
classes of permutation problem, such as rectangular or higher-dimensional as-
signments, could also broaden the applicability of the method.

References

1. Gent, I.P., Petrie, K.E., Puget, J.F.: Symmetry in constraint programming. In:
Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming,
pp. 329–376. Elsevier (2006)

2. Achterberg, T., Raack, C.: The MCF-separator: detecting and exploiting multi-
commodity flow structures inMIPs.Mathematical Programming Computation 2(2),
125–165 (2010)

3. Achterberg, T.: SCIP: solving constraint integer programs. Mathematical Program-
ming Computation 1(1), 1–41 (2009)

4. Fischetti, M., Monaci, M., Salvagnin, D.: Three ideas for the quadratic assignment
problem. Operations Research 60(4), 954–964 (2012)

5. Lourenço, H.R., Martin, O.C., Stützle, T.: Iterated local search: Framework and
applications. In: Glover, F., Kochenberger, G. (eds.) Handbook of Metaheuristics,
vol. 57, pp. 321–353. Kluwer Academic Publishers (2002)

6. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.
Science 220, 671–680 (1983)

7. Černý, V.: Thermodynamical approach to the traveling salesman problem: An effi-
cient simulation algorithm. Journal of Optimization Theory and Applications 45(1),
41–51 (1985)

8. Johnson, D.S., McGeoch, L.A.: Experimental analysis of heuristics for the STSP.
In: Gutin, G., Punnen, A. (eds.) The Traveling Salesman Problem and its Varia-
tions, pp. 369–443 (2002)

9. Stützle, T.: Iterated local search for the quadratic assignment problem. European
Journal of Operational Research 174(3), 1519–1539 (2006)

10. Congram, R.K., Potts, C.N., van de Velde, S.L.: An iterated dynasearch algorithm
for the single-machine total weighted tardiness scheduling problem. INFORMS
Journal on Computing 14(1), 52–67 (2002)

44 D. Salvagnin

11. Koopmans, T., Beckmann, M.: Assignment problems and the location of economic
activities. Econometrica 25, 53–76 (1957)

12. Burkard, R., Dell’Amico, M., Martello, S.: Assignment Problems. SIAM (2009)
13. Adams, W., Johnson, T.: Improved linear programming-based lower bounds for

the quadratic assignment problem. In: Proceedings of the DIMACS Workshop on
Quadratic Assignment Problems. DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, vol. 16, pp. 43–75. American Mathematical Society
(1994)

14. Kaufman, L., Broeckx, F.: An algorithm for the quadratic assignment problem us-
ing Benders’ decomposition. European Journal of Operational Research 2, 204–211
(1978)

15. Xia, Y., Yuan, Y.: A new linearization method for quadratic assignment problem.
Optimization Methods and Software 21, 803–816 (2006)

16. Gilmore, P.: Optimal and suboptimal algorithms for the quadratic assignment
problem. SIAM Journal on Applied Mathematics 14, 305–313 (1962)

17. Lawler, E.: The quadratic assignment problem. Management Science 9, 586–599
(1963)

18. Burkard, R., Karisch, S., Rendl, F.: QAPLIB – A quadratic assignment problem
library. European Journal of Operational Research 55, 115–119 (1991)

19. Baker, K.R., Trietsch, D.: Principles of Sequencing and Scheduling. Wiley (2009)
20. Graham, R., Lawler, E., Lenstra, J., Kan, A.R.: Optimization and approximation

in deterministic sequencing and scheduling: A survey. Annals of Discrete Mathe-
matics 5, 287–326 (1979)

21. Keha, A.B., Khowala, K., Fowler, J.W.: Mixed integer programming formulations
for single machine scheduling problems. Computers & Industrial Engineering 56(1),
357–367 (2009)

22. Beasley, J.E.: OR-library: distributing test problems by electronic mail (1990)
23. Hentenryck, P.V., Carillon, J.P.: Generality versus specificity: an experience with

AI and OR techniques. In: AAAI 1988 (1988)
24. IBM ILOG: CPLEX 12.5.1 User’s Manual (2013)
25. Berthold, T.: Measuring the impact of primal heuristics. Operations Research Let-

ters 41, 611–614 (2013)
26. Achterberg, T.: Constraint Integer Programming. PhD thesis, Technische

Universität Berlin (2007)
27. Achterberg, T., Wunderling, R.: Mixed integer programming: Analyzing 12 years

of progress. In: Facets of Combinatorial Optimization, pp. 449–481 (2013)

Solving the Quorumcast Routing Problem as a Mixed
Integer Program

Quoc Trung Bui1, Quang Dung Pham2, and Yves Deville1

1 ICTEAM, Université catholique de Louvain, Belgium
{quoc.bui,Yves.Deville}@uclouvain.be

2 SoICT, Hanoi University of Science and Technology, Vietnam
dungpq@soict.hust.edu.vn

Abstract. The quorumcast routing problem is a generalization of multicasting
which arises in many distributed applications. It consists of finding a minimum
cost tree that spans the source node and at least q out of m specified nodes on
a given undirected weighted graph. In this paper, we solve this problem as a
mixed integer program. The experimental results show that our four approaches
outperform the state of the art. A sensitivity analysis is also performed on values
of q and m.

1 Introduction

Multicasting is the problem of delivering a message from a source to a given subset
of nodes, called the multicast nodes, in a network. Suppose given an undirected graph
G = (V,E, c), i.e., V,E are, respectively, the set of nodes and the set of edges. Suppose
further that each edge (i, j) ∈ E is associated with a positive cost cij ∈ R+. Now, given
a set of multicast nodes S ⊆ V , an integral value q ≤ |S|, and a root node r (without
loss the generality, we may assume that r ∈ S), the objective of the quorumcast routing
problem (QRP) is to find a minimum cost tree T that spans r and at least q nodes
of S [5,24,12,32,29]. QRP is NP-hard, as it reduces to the Steiner tree problem [14]
when q = |S|. QRP appears in many distributed applications, for example, distributed
synchronization and updating a replicated resource (see [5] for more details).

For solving QRP, various incomplete approaches to computing an approximation of
the optimal solution have been proposed in [5,12,32,29], in which the constraint-based
local search algorithm in [29] is currently the state of the art incomplete algorithm. In
addition, two exact algorithms in [24,29] have been proposed for solving this problem
to optimality. In [24], a partial solution is defined to be a set of sub-trees that spans
the root and some multicast nodes; a partial solution is extended by adding one edge at
each step until a feasible solution is constructed; a Confined Area Pruning scheme was
introduced that allows reducing that search space. The Constraint Programming (CP)
approach in [29] is currently th state of the art exact algorithm.

Contributions. In this paper, we propose four mathematical formulations for QRP and
use them to solve QRP as a mixed integer program. These approaches outperform the
state of the art approach based on CP. In addition, through the experimental results, we
show the effect of the values q and |S| on the performance of the proposed approaches.

H. Simonis (Ed.): CPAIOR 2014, LNCS 8451, pp. 45–54, 2014.
c© Springer International Publishing Switzerland 2014

46 Q.T. Bui, Q.D. Pham, and Y. Deville

2 Mathematical Models

In this section, we propose four mathematical models for QRP. One is proposed directly
on the undirected graph G, and the others are proposed on the corresponding directed
graph of G that is formed by replacing each edge of G by two opposite arcs with the
same cost as the original edge.

These models can exploit the properties of QRP solutions. Let T be a solution of
QRP (q,m) on a graph G. One can easily show that (1) all leaf nodes of T are multicast
nodes [24], and (2) T spans exactly q multicast nodes.

All the models use the binary variables xij stating whether edge (i, j) is in the solu-
tion tree T . (In the undirected graph, we use the convention that i < j). All the models
aim at minimizing

∑
(i,j)∈E cijxij .

2.1 Natural Formulation: Model 1

In this section, we propose a formulation on the undirected graph G = (V,E), called
“the natural formulation.” Many problems have been modeled by similar formulations
[3,27,16,13,26,1]. This model introduces binary variables yi stating whether node i is
in T .

∑
i,j∈C:(i,j)∈E

xij ≤ |C| − 1, ∀C ⊂ V, 2 ≤ |C| ≤ |V | − 1 (1a)

∑
(i,j)∈E

xij +
∑

(j,i)∈E

xji ≥ yi, ∀i ∈ V (1b)

∑
(i,j)∈E

xij +
∑

(j,i)∈E

xji ≤ (|V | − 1)yi, ∀i ∈ V (1c)

1 +
∑

(i,j)∈E

xij =
∑
v∈V

yv (1d)

yr = 1 (1e)∑
v∈S

yv = q (1f)

xij ∈ {0, 1}, ∀(i, j) ∈ E (1g)

yi ∈ {0, 1}, ∀i ∈ V (1h)

In this model, the constraints (1a) are connectivity constraints (or subtour elimination
constraints). The constraints (1b) and (1c) ensure that if v ∈ T , then yv = 1, and if
v /∈ T , then yv = 0. The constraint (1d) presents a basic property of a tree that requires
the relation between the number of nodes and the number of edges. The constraints (1f)
ensure that T includes exactly q multicast nodes (Property (2)). Finally, the constraint
(1e) ensures that the root r is always in T . Notice that Property (1), stating that all leaf
nodes are multicast nodes, could also be included, but experimental results have shown
that it is useless here as well as in all subsequent models. It is therefore not considered.

In this model, there are |E|+ |V | variables and an exponential number of constraints.

Solving the Quorumcast Routing Problem as a Mixed Integer Program 47

2.2 Formulation Based on Multi-commodity Flows: Model 2

In this section, we propose a multi-commodity flow formulation on the corresponding
directed graph G′ = (V,A). In the literature, many problems have been modeled using
multi-commodity flows [16,10,7,17]. However, this problem is slightly more complex,
as we do not know which multicast nodes are spanned.

This model introduces variables ykij ∈ R+ measuring the flow, through arc (i, j) ∈
A, from the root node r to a node k ∈ V \ {r}.

∑
(r,i)∈A

(ykri − ykir) ≤ 1, ∀k ∈ V (2a)

∑
k∈S,k �=r,(r,i)∈A

(ykri − ykir) = q − 1 (2b)

∑
(k,i)∈A

(ykki − ykik) ≥ −1, ∀k ∈ V (2c)

∑
k∈S,k �=r,(k,i)∈A

(ykki − ykik) = −(q − 1) (2d)

∑
(j,i)∈A

(ykij − ykji) = 0, ∀k ∈ V, i ∈ V \ {k, r} (2e)

ykij ≤ xij , ∀(i, j) ∈ A, ∀k ∈ V ∪ {r} (2f)

ykij ≥ 0, ∀(i, j) ∈ A, ∀k ∈ V ∪ {r} (2g)

xij ∈ {0, 1}, ∀(i, j) ∈ V (2h)

In this model, the constraints (2f) ensure that a flow is sent along an arc only if the arc
is traversed. The constraints (2b), (2d) and (2e) ensure that there exists a flow from the
root r to q nodes in S (note that we assumed that r is a multicast node). The constraints
(2a), (2c) and (2e) are flow conserving constraints.

In this model, there are |A| × |S| variables and a polynomial number of constraints.

2.3 Classical Formulation: Model 3

In this model, we propose a formulation, called “the classical formulation,” on the cor-
responding directed graph G′ = (V,A). In the literature, many similar formulations
have been proposed for problems related to finding a spanning tree [15,22,26,29].

xir = 0, ∀(i, r) ∈ A (3a)∑
(r,i)∈A

xri ≥ 1 (3b)

∑
u/∈C,v∈C,(u,v)∈A

xuv ≥
∑

(j,i)∈A

xji, ∀C ⊂ V, 2 ≤ |C| ≤ |V | − 1, ∀i ∈ C, r /∈ C (3c)

48 Q.T. Bui, Q.D. Pham, and Y. Deville∑
(i,j)∈A

xij ≤ 1, ∀j ∈ V (3d)

∑
i∈S,i�=r,(j,i)∈A

xji = q − 1 (3e)

xij ∈ {0, 1}, ∀(i, j) ∈ A (3f)

In this model, the constraints (3a) indicate that there are no arcs arriving at r. The
constraint (3b) ensures that there exists at least one arc leaving r. The constraints (3c)
are connectivity constraints (see [11,6,19,22] for more details about the connectivity
constraints). The constraint (3e) ensures that the optimal tree T ′ includes exactly q
multicast nodes.

In this model, there are |A| variables corresponding to the number of arcs in the
corresponding directed graph G′, and an exponential number of constraints in (3c).

2.4 Miller–Tucker–Zemlin Formulation: Model 4

In this model, we propose a formulation using Miller–Tucker–Zemlin constraints as
connectivity constraints on the corresponding directed graph G′ = (V,A) [28,21].

This model introduces variables ti constrained by ti ≤ tj if arc (i, j) ∈ T . These
constraints prevent subtours in the solution. The variables pi state whether or not node
i is in T ′.

pr = 1 (4a)

xir = 0, ∀(i, r) ∈ A (4b)∑
(r,i)∈A

xri ≥ 1 (4c)

∑
(i,j)∈A

xij = pj , ∀j ∈ V \ {r} (4d)

xij ≤ pi, ∀(i, j) ∈ A (4e)

|V |xij + ti + 1 ≤ tj + |V |, ∀(i, j) ∈ A (4f)

1 +
∑

(i,j)∈A

xij =
∑
v∈V

pv (4g)

∑
i∈S

pi = q (4h)

xij ∈ {0, 1}, ∀(i, j) ∈ A (4i)

pi ∈ {0, 1}, ∀i ∈ V (4j)

ti ∈ {1 . . . |V |}, ∀i ∈ V (4k)

In this model, the constraints (4f) present the relative position of the nodes in the
tree. They state that if xij = 1, then ti < tj . This prevents the solution from containing
subtours. The constraints (4c) ensure that the root node r must connect to other nodes
in the arborescence tree.

In this model, there are (|A| + 2 × |V |) variables and a polynomial number of con-
straints.

Solving the Quorumcast Routing Problem as a Mixed Integer Program 49

3 Solving QRP as a Mixed Integer Program

In this section, we propose four different approaches, based on the above models, to
solve QRP. Model 2 and Model 4 have a polynomial numbers of variables and con-
straints. They can be directly used in a MIP solver (CPLEX). These approaches will
be denoted Mod2 B&B and Mod4 B&B. Model 1 and Model 3 have an exponential
number of constraints. The constraints are relaxed, and Branch & Cut approaches are
employed.

3.1 Lazy Constraint Approach

This approach is applicable to Model 1 and Model 3, where connectivity constraints
(1a) and (3c) are considered as lazy constraints. The linear programming relaxation of
the initial model without lazy constraints is solved. All isolated components are identi-
fied for every feasible integral solution that is not yet feasible. If a solution to a linear
programming relaxation is feasible, then there is no isolated component. To check for
isolated components, we use the union-find data structure [9,18]. If there is only one
component, then the solution is feasible. Otherwise, there is a cycle in some compo-
nents, a lazy constraint is then added for each component as follows. For Model 3, C is
the set of all nodes of the component and i is a random node in C; for Model 1, C is the
set of all nodes of the component. All these lazy constraints are then added directly to
the model, and the linear programming relaxation of the current model is reoptimized.
This procedure is repeatedly executed until an optimal solution has been found. The
two corresponding approaches will be denoted Mod1 B&C lazy and Mod3 B&C lazy.

3.2 Dynamic Constraint Separation Approach

This approach can be applied to Model 3, where connectivity constraints (3c) are dy-
namically separated [11]. This approach, denoted by Mod3 B&C dyn, finds violated
connectivity constraints on the support graph. Given a solution x∗ to a linear program-
ming relaxation (containing all connectivity constraints separated so far), the support
graph G∗ of x∗ has all nodes V and edges {(i, j) ∈ E : x∗

ij > 0}[4].
This approach consists of two stages. First, the support graph is checked for iso-

lated components not connected to the root node. For each isolated component, only
constraint (3c) is added to the current model, where C is the set of all nodes in the
isolated component and i is a random node in C. Second, if the support graph has
only one component that includes the root node r, a maximum r − v−flow/minimum
r−v−cut problem is solved for each node v �= r in the component. To solve maximum-
flow/minimum-cut problems, we use code written by Skorobohatyj [30]. A maximum
flow that is less than the absolute inflow to v indicates a violated connectivity constraint
(3c), in which C are all nodes on the same side of the r − v cut as v (of course node i
in the constraint is the node v).

3.3 Preprocessing

Different reduction checks have been proposed for the minimum Steiner tree problem
and others [22,19,25,31,23,2]. In the preprocessing of QRP, the following check for

50 Q.T. Bui, Q.D. Pham, and Y. Deville

useless nodes is useful. It is performed on the undirected graph G. If a node is not a
multicast node and its degree is only one, then this node (and its edge) can be removed
from the graph G. If a node v is not a multicast node with exactly two neighbors u and
w, then the node v and the edges (u, v) and (v, w) can be removed. If there exists an
edge (u,w) with cost cuw, this cost is updated to min(cuw, cuv + cvw). Otherwise, an
edge (u,w) is added with cost cuv + cvw. These checks can be applied iteratively until
the graph remains unchanged. In practice, we limit ourselves to three iterations. Other
reductions were considered, but they had only very marginal impact.

4 Computational Experiments

In [29], our approach based on CP was tested on 960 random instances, with the largest
graph having 60 nodes. It was shown that the CP approach was better than the exist-
ing state of the art complete approaches. We reuse these instances. We collect these
instances into a class called C1.

We also collect 2500 instances in a class C2, generated from 100 undirected graphs
of 160 nodes and 25 couples 〈q, |S|〉, ranging from {〈3, 20〉 to 〈119, 140〉 }. These 100
undirected graphs were extracted from 100 minimum Steiner tree instances of test set
I160 in the library SteinLib [20]. The multicast nodes were randomly chosen.

All MIP approaches were implemented in C++, using IBM Ilog Cplex Concert Tech-
nology, version 12.4. The standard Cplex cuts were automatically added. The CP ap-
proach in [29] was implemented in Comet [8]. Finally, all experiments were performed
on XEN virtual machines with 1 core of a CPU Intel Core2 Quad Q6600 @2.40GHz
and 1GB of RAM. The time limit for each execution of an algorithm was 30 minutes.

4.1 Comparing the Approaches

We first compare the MIP approaches as well as the CP approach from [29]. Figure 1
gives a summary of the experimental results. The columns have the following meanings:
%opt is the percentage of instances solved to optimality within the time limit of 30
minutes; I is the average number of iterations; N is the average of the number of nodes
in the branch-and-bound tree; C is the average of the number of separated constraints; T
is the average computational time in seconds (on the solved instances). Figure 2 shows
the evolution of the percentage of solved instances in C2 with respect to the time limit.

It is clear that all the MIP approaches significantly outperform the CP approach. In
the class C1, the MIP approaches are two orders of magnitude faster than CP. In the
class C2, CP only solved two instances out of 2500, while Mod4 B&B solved 95.2% of
the instances. In Figures 1 and 2, there is no major difference between Mod3 B&C lazy
and Mod4 B&B, nor between Mod1 B&C lazy and Mod3 B&C dyn. It is clear that
Mod3 B&C lazy and Mod4 B&B are the best two approaches, both in the percentage
of solved instances and in the execution time. The approach Mod2 B&B is the worst
among the MIP approaches, although it develops few nodes. The low number of nodes
results from the fact that the integer relaxation version of this model is quite close to the
optimal solution [17]. It is worth noting that Mod3 B&C dyn has the smallest number
of iterations. This mainly comes from the dynamic constraint separation approach,

Solving the Quorumcast Routing Problem as a Mixed Integer Program 51

Class Approach %opt I N C T

C1 CP 97.1 na. na. na. 80.47
Mod1 B&C lazy 100 441.7 50.43 6.58 0.57
Mod2 B&B 100 2159 1.38 na. 1.06
Mod3 B&C lazy 100 398.8 77.51 81.42 0.35
Mod3 B&C dyn 100 308.2 3.69 158.1 1.94
Mod4 B&B 100 506.2 55.9 na. 0.64

C2 CP 0.08 na. na. na. 9.74
Mod1 B&C lazy 78.6 92804 8507 1110 150.9
Mod2 B&B 60.2 66716 7.05 na. 318.6
Mod3 B&C lazy 94.4 30938 2312 1077 97.6
Mod3 B&C dyn 77.2 8408 54.64 6089 153.0
Mod4 B&B 95.2 50327 6138 na. 92.8

Fig. 1. A summary of computational results for two classes of instances

Fig. 2. Percentage of solved instances in C2 in given times

which produces smaller and thinner branch-and-bound trees. However, the number of
added constraints is much larger.

Although not reported here for reasons of space, the experimental results also showed
that Property (2) of the QRP solutions (Section 2) is very useful in all the models pro-
posed in this paper. For example, this property helps this model to solve 6.2% more
instances of class C2.

4.2 Effect of the Values of q and |S| on the Performance of the Approaches

We analyze the sensitivity of the performance to the value of q and the size of the
multicast node set. We divided the instances of class C2 into two sets of groups. In the
first set, a group contains instances of the same size of multicast node set. The groups

52 Q.T. Bui, Q.D. Pham, and Y. Deville

G20 (resp. G50, G80, G110 and G140) consist of all instances with |S| = 20 (resp.
50, 80, 110 and 140). In the second set, a group contains 500 instances with similar q

|S| .
The groups G1 through G5 split the instances from the smallest to the largest values
of q

|S| .

Fig. 3. Comparing MIP approaches in solving groups of instances with respect to the percentage
of solved instances

The experimental results for each group are given in Figure 3. First, the different
approaches have differing sensitivities to q. The instances in group G5 are more diffi-
cult to solve than those in the other groups, except for Mod2 B&B. When considering
the ratio q

|S| , Mod3 B& lazy and Mod3 B& dyn are better for high value of this ratio,
while the other approaches are worse. These results also confirm that Mod3 B&C lazy
and Mod4 B&B are the two best approaches. However, there is a significant difference
between these two approaches when the number of multicast nodes varies. A portfolio
approach could be used to select Mod4 B&B for low values of |S|, and Mod3 B&C lazy
for high values.

5 Conclusion

This paper solved the quorumcast routing problem to optimality as a mixed integer pro-
gram. In this paper, we proposed four mathematical formulations for QRP. We then
solved QRP to optimality as a mixed integer program, introducing two constraint re-
laxations. The computational results showed that the MIP approaches are much more
efficient than the state of the art approach (which is based on Constraint Programming).
In addition, we showed that two of the approaches, Mod3 B&C lazy and Mod4 B&B,
are the two best ones. Finally, experimental results pointed out that the different ap-
proaches have different sensitivities to the parameters q and the size of the multicast
node set. As future research, new separation constraints could be investigated.

Acknowledgments. The authors want to thank the anonymous reviewers for their help-
ful comments. This research is partially supported by the FRFC project 2.4504.10 of the
Belgian FNRS and the UCLouvain Action de Recherche Concertée ICTM22C1.

Solving the Quorumcast Routing Problem as a Mixed Integer Program 53

References

1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network flows: theory, algorithms, and applications.
Prentice-Hall, Inc., Upper Saddle River (1993)

2. Cordeau, J.-F., Costa, A.M., Laporte, G.: Steiner tree problems with profits. INFOR 44,
99–115 (2006)

3. Andersen, K.A., Jørnsten, K., Lind, M.: On bicriterion minimal spanning trees: An approxi-
mation. Computers and Operations Research 23(12), 1171–1182 (1996)

4. Applegate, D.L., Bixby, R.E., Chvatal, V., Cook, W.J.: The Traveling Salesman Problem: A
Computational Study. Princeton Series in Applied Mathematics. Princeton University Press,
Princeton (2007)

5. Cheung, S.Y., Kumar, A.: Efficient quorumcast routing algorithms. In: Proceedings IEEE
INFOCOM 1994, Networking For Global Communications, vol. 2, pp. 840–847 (June 1994)

6. Chimani, M., Kandyba, M., Ljubić, I., Mutzel, P.: Obtaining optimal k-cardinality trees fast.
J. Exp. Algorithmics 14, 5:2.5–5:2.23(2010)

7. Chopra, S., Tsai, C.Y.: Polyhedral approaches for the steiner tree problem on graphs. In:
Du, D.-Z., Cheng, X. (eds.) Steiner Trees in Industries, vol. 11, pp. 175–202. Kluwer
Academic Publishers (2001)

8. Comet. Comet user manual, dynadec (2011), http://dynadec.com/
9. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn.

The MIT Press (2009)
10. Requejo, A.C.C., Agra, A., Santos, E.: Formulations for the weightconstrained minimum

spanning tree problem. In: AIP Conf. Proc. vol. 1281, pp. 2166–2169 (2010)
11. Drexl, M., Irnich, S.: Solving elementary shortest-path problems as mixed-integer programs.

OR Spectrum, pp. 1–16 (2012)
12. Du, B., Gu, J., Tsang, D.H.K., Wang, W.: Quorumcast routing by multispace search. In:

Global Telecommunications Conference on Communications: The Key to Global Prosperity,
GLOBECOM 1996, vol. 2, pp. 1069–1073 (November 1996)

13. Fujie, T.: The maximum-leaf spanning tree problem: Formulations and facets. Networks
43(4), 212–223 (2004)

14. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory of NP-
Completeness. W. H. Freeman & Co., New York (1990)

15. Goemans, M.X., Myung, Y.-S.: A catalog of steiner tree formulations. Networks 23(1),
19–28 (1993)

16. S.T. Henn.: Weight-Constrained Minimum Spanning Tree Problem. PhD thesis, University
of Kaiserslautern (2007)

17. Ibrahim, M.S., Maculan, N., Minoux, M.: A strong flow-based formulation for the short-
est path problem in digraphs with negative cycles. International Transactions in Operational
Research 16(3), 361–369 (2009)

18. Wayne, K.: Union-find algorithms. (2008),
http://www.cs.princeton.edu/r˜{}s/AlgsDS07/01UnionFind.pdf

19. Koch, T., Martin, A.: Solving steiner tree problems in graphs to optimality. Networks 32,
207–232 (1998)

20. Koch, T., Martin, A., Voß, S.: SteinLib: An updated library on steiner tree problems in graphs.
Technical Report ZIB-Report 00-37, Konrad-Zuse-Zentrum für Informationstechnik Berlin,
Takustr. 7, Berlin (2000)

21. Kulkarni, R.V., Bhave, P.R.: Integer programming formulations of vehicle routing problems.
European Journal of Operational Research 20(1), 58–67 (1985)

22. Ljubi, I., Weiskircher, R., Pferschy, U., Klau, G.W., Mutzel, P., Fischetti, M.: An algorithmic
framework for the exact solution of the prize-collecting steiner tree problem. Mathematical
Programming 105, 427–449 (2006)

http://dynadec.com/
http://www.cs.princeton.edu/r~{ }s/AlgsDS07/01UnionFind.pdf

54 Q.T. Bui, Q.D. Pham, and Y. Deville

23. Ljubi, I., Weiskircher, R., Pferschy, U., Klau, G.W., Mutzel, P., Fischetti, M.: An algorithmic
framework for the exact solution of the prize-collecting steiner tree problem. In: Mathemati-
cal Progamming. Series B (2006)

24. Low, C.P.: A fast search algorithm for the quorumcast routing problem. Inf. Process.
Lett. 66(2), 87–92 (1998)

25. Lucena, A., Beasley, J.E.: A branch and cut algorithm for the steiner problem in graphs.
Networks 31, 39–59 (1998)

26. Lucena, A., Maculan, N., Simonetti, L.: Reformulations and solution algorithms for the max-
imum leaf spanning tree problem. Computational Management Science 7, 289–311 (2010)

27. Magnanti, T.L., Wolsey, L.A.: Optimal trees. In: Monma, C.L., Ball, M.O., Magnanti, T.L.,
Nemhauser, G.L. (eds.) Network Models. Handbooks in Operations Research and Manage-
ment Science, vol. 7, ch. 9, pp. 503–615. Elsevier (1995)

28. Miller, C.E., Tucker, A.W., Zemlin, R.A.: Integer programming formulation of traveling
salesman problems. J. ACM 7(4), 326–329 (1960)

29. Pham, Q., Deville, Y.: Solving the quorumcast routing problem by constraint programming.
Constraints 17, 409–431 (2012)

30. G. Skorobohatyj.: Finding a minimum cut between all pairs of nodes in an undirected graph
(2008),
http://elib.zib.de/pub/Packages/mathprog/mincut/
all-pairs/index.html

31. Uchoa, E.: Reduction tests for the prize-collecting steiner problem. Operations Research
Letters 34(4), 437–444 (2006)

32. Wang, B., Hou, J.C.: An efficient QoS routing algorithm for quorumcast communication.
Computer Networks Journal 44(1), 43–61 (2004)

http://elib.zib.de/pub/Packages/mathprog/mincut/all-pairs/index.html
http://elib.zib.de/pub/Packages/mathprog/mincut/all-pairs/index.html

A New MIP Model for Parallel-Batch

Scheduling with Non-identical Job Sizes

Sebastian Kosch and J. Christopher Beck

Department of Mechanical & Industrial Engineering
University of Toronto, Toronto, Ontario M5S 3G8, Canada

{skosch,jcb}@mie.utoronto.ca

Abstract. Parallel-batch machine problems arise in numerous manu-
facturing settings from semiconductor manufacturing to printing. They
have recently been addressed in constraint programming (CP) via the
combination of the novel sequenceEDD global constraint with the exist-
ing pack constraint to form the current state-of-the-art approach. In this
paper, we present a detailed analysis of the problem and derivation of a
number of properties that are exploited in a novel mixed integer program-
ming (MIP) model for the problem. Our empirical results demonstrate
that the new model is able to outperform the CP model across a range of
standard benchmark problems. Further investigation shows that the new
MIP formulation improves on the existing formulation primarily by pro-
ducing a much smaller model and enabling high quality primal solutions
to be found very quickly.

1 Introduction

Despite the widespread application of mixed integer programming (MIP) tech-
nology to optimization problems in general and scheduling problems specifi-
cally,1 there is a significant body of work that demonstrates the superiority of
constraint programming (CP) and hybrid approaches for a number of classes
of scheduling problems [1–5]. While the superiority is often a result of strong
inference techniques embedded in global constraints [6–8], it is sometimes due to
problem-specific implementation in the form of specialized global constraints [4]
or instantiations of decomposition techniques [1–3]. The flexibility of CP and de-
composition approaches which facilitates such implementations is undoubtedly
positive from the perspective of solving specific problems better. However, the
ability to create problem-specific approaches is in some ways in opposition to
the compositionality and model-and-solve “holy grail” of CP [9]: to enable users
to model and solve problems without implementing anything new at all.

Our overarching thesis is that, in fact, MIP technology is closer to this goal
than CP, at least in the context of combinatorial optimization problems. In
our investigation of this thesis, we are developing MIP models for scheduling

1 For example, of the 58 papers published in the Journal of Scheduling in 2012, 19 use
MIP, more than any other single approach.

H. Simonis (Ed.): CPAIOR 2014, LNCS 8451, pp. 55–70, 2014.
c© Springer International Publishing Switzerland 2014

56 S. Kosch and J.C. Beck

problems where the current state of the art is customized CP or hybrid ap-
proaches. Heinz et al. [10] showed that on a class of resource allocation and
scheduling problems, a MIP model could be designed that was competitive with
the state-of-the-art logic-based Benders decomposition. This paper represents a
similar contribution in different scheduling problem: a parallel-batch processing
problem which has previously been attacked by MIP, branch-and-price [11], and
CP [4] with the latter representing the state of the art.

We propose a MIP model inspired by the idea of modifying a canonical fea-
sible solution. The definition of our objective function in this novel context is
not intuitive until we reason algorithmically about how constraints and assign-
ments interact – a strategy often used in designing metaheuristics. Indeed, we
suggest that the analogy between branching on independent decision variables
and making moves between neighbouring schedules should be explored in more
detail for a range of combinatorial problems.

In the next section we present the formal problem definition and discuss ex-
isting approaches. In Section 3 we prove a number of propositions that allow us
to formally propose a novel MIP model for the problem in Section 4. Section 5
presents our empirical results, demonstrating that the performance of the new
model is superior to the existing CP model, both in terms of mean time to find
optimal solutions and in terms of solution quality when optimal solutions could
not be found within the time limit.

2 Background

Batch machines with limited capacity exist in many manufacturing settings in
forms such as ovens [12], autoclaves [4], and tanks [13]. In this paper, we tackle
the problem of minimizing the maximum lateness, Lmax, in a single machine
parallel batching problem where each job has an individual due date and size.

We use the following notation: a set J of n jobs is to be assigned to a set of
n batches B = {B1, . . . , Bn}. Batches can hold multiple jobs or remain empty.
Each job j has a processing time, pj , a size, sj , and a due date, dj . Jobs can
be assigned to arbitrary batches, as long as the sum of the sizes of the jobs in a
batch does not exceed the machine capacity, b.

The single machine processes one batch at a time. Each batch Bk has a batch
start date Sk, a batch processing time, defined as the longest processing time of
all jobs assigned to the batch, Pk = maxj∈Bk

(pj), and a batch completion date,
which must fall before the start time of the next batch, Ck = Sk + Pk ≤ Sk+1.

The lateness of a job j, Lj , is the completion time of its batch Ck less its
due date dj . The objective function is to minimize the maximum lateness over
all jobs, Lmax = maxj∈J (Lj). Since we are interested in the maximum lateness,
only the earliest-due job in each batch matters and we define it as the batch due
date Dk = minj∈Bk

(dj).
The problem can be summarized as 1|p-batch; b < n; non-identical|Lmax [4,11],

where p-batch; b < n represents the resource’s parallel-batch nature and its finite
capacity. A version with identical job sizes was shown to be strongly NP-hard
by Brucker et al. [14]; this problem, therefore, is no less difficult.

A New MIP Model for Parallel-Batch Scheduling 57

Fig. 1. An optimal solution to an example problem with eight jobs (values for sj and
pj are not shown for the two small jobs in batches 1 and 3, respectively)

Figure 1 shows a solution to a sample problem with eight jobs and resource
capacity b = 20. The last batch has the maximum lateness L5 = C5 − D5 =
70− 39 = 31.

2.1 Reference MIP Model

The problem is formally defined by MIP Model 2.1, used by Malapert et al. [4]
for comparison with their CP model (see below).

Min. Lmax (1)

s.t.
∑
k∈B

xjk = 1 ∀j ∈ J (2)

∑
j∈J

sjxjk ≤ b ∀k ∈ B (3)

pjxjk ≤ Pk ∀j ∈ J ,∀k ∈ K (4)

Ck−1 + Pk = Ck ∀k ∈ B (5)

(dmax − dj)(1− xjk) + dj ≥ Dk ∀j ∈ J ,∀k ∈ B (6)

Ck −Dk ≤ Lmax ∀k ∈ B (7)

Dk−1 ≤ Dk ∀k ∈ B (8)

xjk ∈ {0, 1}, Ck ≥ 0, Pk ≥ 0, Dk ≥ 0 ∀j ∈ J ,∀k ∈ B (9)

Model 2.1. Reference MIP model

The decision variables, xjk, are binary variables where xjk = 1 iff job j is
assigned to batch k. Constraints (2) ensure that each job j is assigned to exactly
one batch k. Constraints (3) ensure that no batch exceeds the machine capacity,
b. Constraints (4) define each batch’s processing time, Pk, as the maximum pro-
cessing time of the jobs j assigned to it. Constraints (6) implement the definition
ofDk while ensuring that for empty batches k, Dk = dmax. Constraints (5) define
each batch’s completion time, Ck, as that of the previous batch, plus the batch’s

58 S. Kosch and J.C. Beck

processing time. Constraints (7) define the objective value Lmax. Constraints
(8) sort the batches by due date, based on a well-known dominance rule: there
exists an optimal solution with batches scheduled in earliest-due-date-first order
(EDD). This stems from the fact that if all jobs are already assigned, the problem
reduces to a polynomial-time solvable single machine problem (1|Dk|Lmax) [15].

2.2 Previous Work

Malapert et al. [4] present a CP formulation of the problem (see Model 2.2)
which relies on two global constraints: pack [16], which constrains the job-to-
batch assignments such that no capacity limits are violated, and sequenceEDD,
which enforces the EDD order over the batches. The implementation of the latter
constraint is the main contribution of the paper and is primarily responsible for
the strong performance. sequenceEDD includes a set of pruning rules that update
the lower and upper bounds on Lmax and on the number of batches. Based on
these bounds, other assignments are then eliminated from the set of feasible
assignments.

Min. Lmax (10)

s.t. maxOfASet(Pk, Bk, [pj]k, 0) ∀k ∈ B (11)

minOfASet(Dk, Bk, [dj]k, dmax) ∀k ∈ B (12)

pack(Bk, Aj , Sk,M, sj) (13)

sequenceEDD(Bk, Dk, Pk,M,Lmax) (14)

Model 2.2. CP model proposed by Malapert et al.

Constraints (11) define Pk as the maximum of the set of processing times [pj]k
belonging to the jobs assigned to batch Bk, with a minimum value of 0 (note
that the notation is adapted from Malapert et al. to match that in this paper).
Constraints (12) define Dk as the minimum of the due dates [dj]k associated with
the set of jobs assigned to the batch Bk, with a maximum of dmax, the largest
due date among all given jobs. Constraint (13) implements the limited batch
capacity b. It uses propagation rules incorporating knapsack-based reasoning, as
well as a dynamic lower bound on the number of non-empty batches M [4, 16].
Note that this constraint handles the channeling between the set of jobs assigned
to batch Bk, and the assigned batch index Aj for each job j. The limited capacity
is enforced by setting the domain of the batch loads, Sk, to [0, b]. Constraint (14)
ensures that the objective value Lmax is equal to the maximum lateness of the
batches scheduled according to the EDD rule.

The problem has also been addressed with a detailed branch-and-price algo-
rithm [11], which is described in [4] as follows: each batch is a column in the
column generation master problem. A solution of the master problem is a fea-
sible sequence of batches. The objective of the subproblem is to find a batch

A New MIP Model for Parallel-Batch Scheduling 59

which improves the current solution of the master problem. Malapert et al. [4]
showed that their CP model was significantly faster than the branch-and-price
algorithm which itself was more efficient than the reference MIP model.

Other authors have examined similar problems: Azizoglu & Webster [17]
provide an exact method and a heuristic for the same problem, but minimize
makespan (Cmax) instead of Lmax, similar to the work by Dupont and Dhaenens-
Flipo [18]. Exact methods have been proposed for multi-agent variants with dif-
ferent objective functions by Sabouni and Jolai [19], for makespan minimization
on single batch machines by Kashan et al. [20], and for makespan minimization
on parallel batch machines with different release dates [21]. An extensive review
of MIP models in batch processing is given by Grossmann [13].

3 Exploiting the Problem Structure

In this section, we make a series of observations about the parallel-batch schedul-
ing problem that allow us to develop a novel MIP formulation.

3.1 The Single-EDD Schedule and Assigning Jobs to Earlier
Batches

We can exploit the EDD rule to eliminate 1
2 (n

2−n) of the n2 potential job-batch
assignments a priori.

We first re-index all jobs in non-decreasing due date (and in non-decreasing
processing time in case of a tie). For the remainder of this paper, consider all jobs
to be indexed in this way. We then define the single-EDD schedule, in which each
batch Bk contains the single job j matching its index (i.e., xjk = 1 iff j = k),
such that EDD is always satisfied. We refer to j as the host job of batch Bk,
while other jobs assigned to Bk, if any, are guest jobs.

Lemma 1. Consider a schedule S in which Bk is the earliest-scheduled batch
such that its host job j is assigned to a later-scheduled batch Bk+m. In this
schedule, Bk is either empty or Dk = dj (even though j /∈ Bk).

Proof. If Bk is non-empty, Dk ≥ dj : since Bk is defined as the earliest scheduled
batch whose host job is scheduled later, Bk cannot host jobs due before dj . But
if Dk > dj then EDD is violated, as Dk+m = dj . Thus, Bk is empty, or Dk = dj
(due to other jobs with due date equal to dj assigned to Bk). �
Proposition 1. There exists an optimal solution in which job j is assigned to
batch Bk, j ≤ k.

Proof. Consider again schedule S. SinceDk+m = dj , EDD requires that no batch
Bq, k ≤ q < k +m, is due after dj . By Lemma 1, we only need to consider the
following two cases:

1. Bk is empty, so Pk = 0. Since EDD is not violated, we know that Dq =
dj ∀ Bq, k ≤ q ≤ k + m. We can assign all jobs from Bk+m to Bk, such
that Pk+m = 0. Lmax will stay constant, as the completion time of the last-
scheduled of all batches due at dj does not change.

60 S. Kosch and J.C. Beck

2. Bk is non-empty and due at Dk = dj (although j /∈ Bk), due to at least
one job g from a later-scheduled batch for which dg = dj , which is assigned
to Bk. In this case, since Dk = dj = Dk+m and since EDD is not violated,
all batches Bq where k ≤ q ≤ k + m must be due at dj . But then we can
re-order these batches such that their respective earliest-due jobs are once
again assigned to their single-EDD indices. The jobs in Bk+m (including j)
will be assigned to Bk as a result. Lmax is not affected by this re-assignment,
as the completion time of the last-scheduled batch due at dj does not change.

�

We thus introduce the following constraint to exclude solutions in which jobs
are assigned to later batches than their single-EDD batches.

xjk = 0 ∀{j ∈ J , k ∈ B|j < k} (15)

We can also show that in every non-empty batch Bk, the earliest-due job j
must be the host job. This means that when batch Bk’s host job is assigned to
an earlier batch, no other jobs can be assigned to Bk; a batch that is hostless
must be empty. This requirement rests on the following proposition.

Proposition 2. There exists an optimal solution that has no hostless, non-
empty batches.

Proof. Consider an EDD-ordered schedule in which batch Bj is the last-scheduled
batch which is hostless but non-empty: instead of its host job, only a set G of
later-due guest jobs is assigned to Bj (j /∈ G).

The earliest-due job g ∈ G must have the same due date as batch Bj+1: if it
is due later, EDD is violated; if it is due earlier, G is not a set of later-due guest
jobs. Job g’s own host batch Bg (which is hostless) cannot itself be due later
than dg = Dj+1 – this would require Bg to have guest jobs from later batches,
but we defined Bk as the last batch with this property – therefore, Dq = Dj+1

for all batches Bq, j ≤ q ≤ g.
Then we can re-assign the guest jobs G from Bj into Bg, such that g is again

host job in its own single-EDD batch. This re-assignment has no impact on Lmax

since it makes Pj = 0, resulting in the same completion time of the set of all
batches with batch due date D = Dj+1. �

The above proposition translates to the following constraint:

xkk ≥ xjk ∀{j ∈ J , k ∈ B|j > k} (16)

This observation allows us to define the due date of all batches to be the due
date of their respective host jobs: Dk = dj , ∀{j ∈ J , k ∈ B|j = k}. This rule
holds even for empty batches Bk: Pk = 0, so Ck = Ck−1; but Dk−1 ≤ Dk due to
this rule, so Lk−1 ≥ Lk and thus Lk has no impact on Lmax.

A New MIP Model for Parallel-Batch Scheduling 61

3.2 Reformulating the Objective Function

We can formulate each batch’s lateness, Lk, as its lateness in the single-EDD
schedule, modified by the assignment of jobs into and out of batches Bh, h ≤ k.

We first define B� ⊆ B as the set of batchesBk which, given any EDD schedule,
are the last-scheduled among all batches with due date Dk, since we can make
the following observation.

Proposition 3. Given a set of batches with equal due date in a schedule, we
only need to consider the lateness of the one scheduled last.

Proof. In an EDD ordering, the lateness of the batch scheduled last is greater
than (or equal to, in the case of an empty batch) the lateness values of all other
batches sharing its due date as it has the latest completion date. �

This fact allows us to reduce the number of constraints defining Lmax, as we
only need to consider batches B� as potential candidates for Lmax.

To simplify the following exposition, we define the term move as the re-
assignment of a job j from its single-EDD batch Bk to an earlier batch Bh, h < k,
such that xjk = 0 and xjh = 1 and j is a guest job in Bh. Any schedule can
thus be understood as a set of such moves, executed in arbitrary order starting
from the single-EDD schedule. To define the objective function, we consider the
change in Lmax associated with individual moves.

Consider any EDD schedule, such as the one in Figure 2(a). Moving a job j
from its single-EDD batch Bk=j into an earlier batch Be has the following effect:

– the lateness of all batches Bi, i ≥ k is reduced by pj (Figure 2(b)),

– the lateness of all batches Bh, h ≥ e is increased by max(0, pj − Pe), where
Pe is the processing time of batch Be before j is moved into it (Figure 2(c)).

In any batch, only the host job’s lateness is relevant to Lmax. In other words,
the lateness of batch Bk equals the lateness of job j = k, unless the job was
moved into an earlier batch (in which case Pk = 0 due to Proposition 2 and
Lk = Lk−1). Therefore, we can understand the lateness of batchBk as its lateness
in the single-EDD schedule, written as Lk,single, modified by the summed effect
that all moves of other jobs into and out of batches h ≤ k have on the completion
time of Bk:

Lk = Lk,single +
∑
h≤k

P ′
h − ph(2− xhh)︸ ︷︷ ︸

Th

∀k ∈ B� (17)

P ′
k ≥ pjxjk ∀{j ∈ J , k ∈ B|j ≥ k} (18)

P ′
k ≥ pj ∀{j ∈ J , k ∈ B|j = k} (19)

where P ′
k = max(Pk, pk)∀k ∈ B as defined in constraints (18) and (19).

For every batch Bk ∈ B�, consider the possible scenarios for all batches
Bh, h ≤ k:

62 S. Kosch and J.C. Beck

Fig. 2. Moving a job in a single-EDD schedule. Job 5 (marked “p5 = 10”) is moved
from its single-EDD batch 5 into the earlier batch 3. This changes the lateness of job
7 (marked �) from L7,single to L7,single − 10 + 6 = L7,single − 4.

– Batch Bh holds its host job. Then xhh = 1 and the summand Th evaluates
to P ′

h − ph. If Bh has guest jobs, then P ′
h − ph > 0 if any of them are longer

than the host job; if all guests are shorter, P ′
h = ph and Th = 0.

– Batch Bh is hostless and thus empty. We require Th = −ph in accordance
with Figure 2(b). To achieve this, we state in constraints (19) that P ′

h never
drops below the length of its host job, even when Ph = 0. With this in effect,
the minimization objective enforces P ′

h = ph and Th = P ′
h − 2ph = −ph.

Thus, we add to Lk the increase in processing time due to guests, max(0, P ′
h−ph),

for every non-empty batch Bh. We subtract from Lk the host job processing time
ph for every empty batch Bh. This is congruent with Figure 2 above.

The net sum of these additions and subtractions to and from Lk,single adjusts
the lateness of batch k to its correct value given the values of xjk.

Proposition 4. Constraints (17)–(19) correctly define Lk for each batch Bk.

Proof. By induction on k, our base case is the lateness of the first batch (k = 1).
It is clear that the lateness of Bk is equal to its single-EDD lateness, plus max
(P1 − p1, 0) since guest jobs may cause P1 > p1:

L1 = L1,single + P ′
1 − p1(2 − x11)︸ ︷︷ ︸
=max(P1−p1,0)

. (20)

Our induction hypothesis is that the proposition holds for any batch Bk:

Lk = Lk,single +
∑
h≤k

P ′
h − ph(2− xhh) (21)

A New MIP Model for Parallel-Batch Scheduling 63

To show how an expression for Lk+1 then follows, we relate Lk+1 to Lk:

Lk+1 = Lk + Pk+1︸ ︷︷ ︸
Ck+1−Ck

− (dk+1 − dk)︸ ︷︷ ︸
Dk+1−Dk

(22)

The difference Lk+1 − Lk can also be written in terms of single-EDD lateness
values and processing time adjustments due to guests or hostlessness, all of which
are expressed in known terms:

Pk+1−(dk+1−dk)=Lk+1,single−Lk,single+

{
max(Pk+1 − pk+1, 0) xk+1,k+1 = 1

−pk+1 xk+1,k+1 = 0
.

(23)
The conditional expression is equivalent to P ′

k+1 − pk+1(2 − xk+1,k+1). We can
now rewrite (22) for Lk+1 and arrive at

Lk+1 =

⎡⎣Lk,single +
∑
h≤k

P ′
h − ph(2− xhh)

⎤⎦
+ Lk+1,single − Lk,single + P ′

k+1 − pk+1(2 − xk+1,k+1), (24)

which, after cancelling out Lk,single terms, becomes

Lk+1 = Lk+1,single +
∑

h≤k+1

P ′
h − ph(2 − xhh) (25)

and agrees with (21). Since (25) follows from (21), and the latter is true for the
base case of k = 1, (17) is true for all k. �

Note also that in the case of an empty batch Bk ∈ B�, if Bk−1 /∈ B�, dk = dk−1

and xkk = 0, so Lk = Lk−1 as evident from (24); if Bk−1 ∈ B�, dk > dk−1, and
thus Lk < Lk−1. as dk = dk−1 and xkk = 0 if Bk is empty.

3.3 Additional Lazy Constraints

Lazy constraints [22] are also used in the model. Lazy constraints are constraints
based on the specific problem instance. Large numbers of them are generated
prior to solving, but they are not immediately used in the model. Instead, they
are checked against whenever an integral solution is found, and only those that
are violated are added to the LP model. In practice, only few of the lazy con-
straints are used in the solution process. Nevertheless, they can noticeably im-
prove solving time in some cases.

Symmetry-Breaking Rule. This rule creates an explicit, arbitrary prefer-
ence for certain solutions. Consider two schedules S1 and S2. Both schedules
contain batches Bh and Bk, both of which are holding their respective host
jobs only. Two jobs j and i are now assigned as the only guests to the two
batches; furthermore max(pi, pj) ≤ min(ph, pk), max(sh, sk) + max(sj , si) ≤ b
and min(dj , di) ≥ max(dh, dk). If j ∈ Bh and i ∈ Bk in schedule S1 and vice
versa in S2, then the constraint renders S2 infeasible.

64 S. Kosch and J.C. Beck

2(4− xhh − xkk − xjh − xjk − xih − xik

+
∑
g

g �=j
g �=i

(xgh + xgk)) ≥ xjk + xih

∀{j, i ∈ J ,

h, k ∈ B
| h < k < j < i∧

[pq ≤ pr ∧ b− sr ≥ sq

∀q ∈ {j, i},
∀r ∈ {h, k}]}

(26)

The left-hand side of the equation evaluates to zero exactly when the above
conditions are met, which in turn disallows the assignment given on the right.
For all other job/batch pairings, the left side evaluates to at least two, which
places no constraint on the right hand side.

This kind of symmetry-breaking rule can be extended to m > 2 batches,
with the number of constraints growing combinatorially with m. Since it takes
a constant but appreciable time to generate these constraints prior to solving,
we have in our trials kept to the simplest variant shown here, and limited their
use to problem instances with n ≥ 50 jobs.

Dominance Rule on Required Assignments. A schedule is not uniquely
optimal if a job j is left in its single-EDD batch although there is capacity for it
in an earlier batch. This constraint can be expressed logically as: if a job j can
be safely assigned to Bk without violating the capacity constraint, then j must
be assigned to any earlier batch, or Bk must be empty (or both).

The left side of the above if-then statement is written as (1.0 + b − sj −∑nj

i=k
i�=j

sixik)/b, which evaluates to 1.0 or greater iff sk plus the sizes of guest jobs

in k sum to less than b− sj . The constraint is written as follows:

2− xjj − xkk ≥

⎛⎜⎝1.0 + b− sj −
nj∑
i=k
i�=j

sixik

⎞⎟⎠ /b

∀{j ∈ J , k ∈ B
|j > k ∧ pk ≥ pj

∧sk + sj ≤ b}
(27)

As with the rule above, we have found that only more difficult problems with
n ≥ 50 benefit from these constraints.

4 A New MIP Model

The full novel MIP model we are proposing is defined in Model 4.1.
Constraints (29) and (30) are uniqueness and capacity constraints: batches

have to remain within capacity b, and every job can only occupy one batch.
Constraints (31) and (32) define the value of P ′

k for every batch k as the longest
p of all jobs in k, but at least pk. This is required in (34), which follows the
explanation above. Constraints (33) ensure that no job is moved into a hostless

A New MIP Model for Parallel-Batch Scheduling 65

Min. Lmax (28)

s.t.
∑
k

xjk = 1 ∀j ∈ J (29)

∑
j

sjxjk ≤ b ∀k ∈ B (30)

P ′
k ≥ pjxjk ∀{j ∈ J , k ∈ B|j ≥ k} (31)

P ′
k ≥ pj ∀{j ∈ J , k ∈ B|j = k} (32)

xkk ≥ xjk ∀{j ∈ J , k ∈ B|j > k} (33)

Lmax ≥ Lk,single +
∑
h≤k

P ′
h − ph(2− xhh) ∀k ∈ B� (34)

xjk = 0 ∀{j ∈ J , k ∈ B|j < k} (35)

(∗)
2(4− xhh − xkk − xjh − xjk − xih − xik

+
∑
g

g �=j
g �=i

(xgh + xgk)) ≥ xjk + xih

∀{j, i ∈ J ,

h, k ∈ B
| h < k < j < i∧

[pq ≤ pr ∧ b− sr ≥ sq

∀q ∈ {j, i},
∀r ∈ {h, k}]}

(36)

(∗) 2− xjj − xkk ≥

⎛
⎜⎝1.0 + b− sj −

nj∑
i=k
i�=j

sixik

⎞
⎟⎠ /b

∀{j ∈ J , k ∈ B
|j > k ∧ pk ≥ pj

∧sk + sj ≤ b}
(37)

Model 4.1. The new MIP model. Constraints marked (∗) are lazy constraints.

batch, i.e. in order to move job j into batch k (xjk = 1), job k must still be
in batch k (xkk = 1). Constraints (35) implement the requirement that jobs
are only moved into earlier batches. Constraints (36) and (37) implement the
additional lazy constraints described above.

5 Empirical Comparison

We empirically compared the performance of the CP model by Malapert et
al. and Model 4.1. Both models were run on 120 benchmark instances as in
Malapert et al. (i.e. 40 instances of each nj = {20, 50, 75}). The benchmarks
are generated as specified by Daste [11], with a capacity of b = 10 and values
for pj, sj and dj distributed as follows: pj = U [1, 99], sj = U [1, 10], and dj =

U [0, 0.1] · C̃max + U [1, 3] · pj . U [a, b] is a uniform distribution between a and b,

and C̃max = 1
bn ·

(∑nj

j=1 sj ·
∑nj

j=1 pj
)
is an approximation of the time required

to process all jobs.

66 S. Kosch and J.C. Beck

Table 1. Summary of empirical results. Values are geometric means for solving time
and arithmetic means for absolute gaps. No relative gaps are given due to negative
lower bounds.

nj optimal soln. found by instances
solving time [s] absolute gap
CP MIP CP MIP

20 both models 40/40 0.42 0.04 0 0

50 both models 40/40 5.67 4.16 0 0

75

both models 22/40 49.30 52.88 0 0
CP model only 0/40 — — — —
MIP model only 13/40 > 3600 139.86 323.46 0
neither model 5/40 > 3600 > 3600 310.40 25.00

Table 2. Average numbers of variables and constraints in reference and improved MIP
models before and after processing by cplex’s presolve routines

Mean (120 instances)
Reference MIP Improved MIP Reduction
Rows Cols Rows Cols Rows Cols

Before presolve 7415.14 3033.81 4291.48 2882.76 −42.1% −5.0%
After presolve 2209.34 1513.06 754.57 687.13 −65.8% −54.6%

Reduction −70.2% −50.1% −82.4% −76.1% — —

The MIP benchmarks were run using cplex 12.5 [23] on an Intel i7 Q740
CPU (1.73 GHz) and 8 GB RAM in single-thread mode, with cplex parameters
Probe = Aggressive and MIPEmphasis = Optimality (the latter for n = 20
only). The CP was implemented using the Choco solver library [24] and run on
the same machine using the same problem instances.2 Solving was aborted after
a time of 3600 seconds (1 hour).

The reference MIP model solves fewer than a third of the instances within the
time limit. The branch-and-price model [11] is reported to perform considerably
worse than CP [4]. Therefore, neither of the two is included here.

5.1 Results

The overview in Table 1 shows aggregated results that demonstrate the perfor-
mance and robustness of our new model. As shown in Figure 3, our MIP model
performs better overall on instances with nj = 20 and nj = 75, while MIP and
CP perform similarly well on intermediate problems (nj = 50).

Wherever an optimal solutionwas not found, the improvedMIPmodel achieved
a significantly better solution quality: out of the 40 instances with nj = 75, 22 were
solved to optimality by both CP andMIP, 13 were solved to optimality by theMIP

2 The authors would like to extend a warm thank-you to Arnaud Malapert for both
providing his code and helping us run it.

A New MIP Model for Parallel-Batch Scheduling 67

Fig. 3. Performance comparison over
120 instances, each represented by one
data point. Horizontal/vertical coordi-
nates correspond to solving time by CP
model and improved MIP model, respec-
tively. Note that 18 instances were not
solved to optimality within an hour by
either the CP model or both models.

Fig. 4. Comparison of solution quality
for the 18 instances that were not solved
to optimality within an hour by either
the CP model or both models. White
bars represent the LB-UB gap achieved
by the CP model, black bars the LB-UB
gap achieved by the improved MIP model
(straight line where solved to optimality).

only, and 5 were solved by neither model within an hour. A comparison of solu-
tion quality where no optimal schedule was found confirms the robustness of the
improved MIP model: as Figure 4 illustrates, the gap (UB(Lmax)−LB(Lmax)) is
consistently larger in the CPmodel. This means that even with very difficult prob-
lems, our model will often give near-optimal solutions more quickly thanMalapert
et al.’s CP model.

We further found that the lazy constraints introduced in Section 3.3 did not
yield consistent benefits across problems; in fact, they doubled and tripled solv-
ing times for some instances. On average, however, adding the lazy constraints
resulted in a speed gain on the order of about 10%, especially for larger problems
(n ≥ 50).

6 Discussion

One likely contribution to the new model’s performance is its reduced size com-
pared to the reference MIP model: while the reference model required 3n2 + 8n
constraints over n2 + 3n variables, our model uses fewer than 2.5n2 + 2.5n con-
straints over n2 + n variables.3 In addition, cplex’s presolve methods are more
effective on our model (see Table 2), reducing its size further.

Figure 5 shows the evolution of bounds (i.e. best feasible solutions and tightest
LP solutions at the nodes) for the three models over the first few seconds. It is

3 The word “fewer” here arises from the problem-specific cardinality of B�.

68 S. Kosch and J.C. Beck

Fig. 5. Evolution of upper and lower bounds. Left cutoffs indicate the approximate
mean time at which the respective bound was first found

based on the logs for the 40 instances with n = 75, which contain only irregular
timestamps. While the new MIP model is better than the reference model on
both the lower and upper bounds, the largest gain appears to derive from the
latter, indicating that unlike what is commonly observed, the improved MIP
model benefits not from a tighter relaxation but from being more amenable to
the solver’s primal heuristics.

The upper bound for the improved MIP model matches that of the CP model.
CP is often able to find high quality solutions faster than MIP. However, the
improved model removes that advantage on our test problems.

Making Moves in MIP Modeling. One of the novelties of the new MIP
model, as well as much of its inspiration, is the consideration of moves from the
canonical single-EDD solution. The effects of the assignment variables on the
objective function can be considered discretely, allowing us to reason about them
algorithmically even though they constitute a declarative model. The concept
of moves is common in local search techniques including Large Neighbourhood
Search (LNS) [25] where moves correspond to the removal and re-insertion of
jobs from and into the schedule, similar to our reasoning in Section 3.2.

This line of reasoning presents several interesting directions for future work
including (i) using the idea of moves from a canonical solution to develop MIP
and CP models for other optimization problems and (ii) the derivation of dom-
inance rules to restrict LNS moves on large problems and thereby expand the
size of the neighbourhoods that can be explored.

Models vs. Global Constraints. Our results show that the novel MIP model
is an improvement over previous approaches, demonstrating that at least in
this case, the performance of a specialized global constraint implementation
can indeed be matched and exceeded by a comparatively simple mathematical

A New MIP Model for Parallel-Batch Scheduling 69

formulation. Mathematical models have the general benefit of being more readily
understandable, straightforward to implement and reasonably easy to adapt to
new, similar problems.

A global constraint is most valuable when it is the encapsulation of a problem
structure that occurs across a number of interesting problem types. It can then
be used far beyond its original context. However, with the flexibility to define
arbitrary inference operations comes the temptation to develop problem-specific
global constraints and to trade the ideal of re-usability for problem solving power.
We believe that the collection of global constraints in CP is mature enough that
most problem-specific efforts are now best placed on exploring novel ways to
exploit problem structure using existing global constraints. To this end, one of
our current research efforts is the development of a CP model exploiting the
propositions proved in this paper without needing novel global constraints.

7 Conclusion

In this paper, we addressed an existing parallel-batch scheduling problem for
which CP is the current state-of-the-art approach. Inspired by the idea of moves
from a canonical solution, we proved a number of propositions allowing us to
create a novel MIP model that, after presolving, is less than half the size of the
previous MIP model. Empirical results demonstrated that, primarily due to the
ability to find good feasible solutions quickly, the new MIP model was able to
out-perform the existing CP approach over a broad range of problem instances
both in terms of finding and proving optimality and in terms of finding high
quality solutions when the optimal solution could not be proved.

References

[1] Hooker, J.: A hybrid method for planning and scheduling. Constraints 10, 385–401
(2005)

[2] Beck, J.C., Feng, T.K., Watson, J.P.: Combining constraint programming and lo-
cal search for job-shop scheduling. INFORMS Journal on Computing 23(1), 1–14
(2011)

[3] Tran, T.T., Beck, J.C.: Logic-based benders decomposition for alternative resource
scheduling with sequence-dependent setups. In: Proceedings of the Twentieth
European Conference on Artificial Intelligence (ECAI 2012), pp. 774–779 (2012)

[4] Malapert, A., Guéret, C., Rousseau, L.M.: A constraint programming approach
for a batch processing problem with non-identical job sizes. European Journal of
Operational Research 221, 533–545 (2012)

[5] Schutt, A., Feydy, T., Stuckey, P.J., Wallace, M.: Solving RCPSP/max by lazy
clause generation. Journal of Scheduling 16(3), 273–289 (2013)

[6] Baptiste, P., Le Pape, C.: Constraint propagation and decomposition techniques
for highly disjunctive and highly cumulative project scheduling problems. Con-
straints 5(1-2), 119–139 (2000)

[7] Baptiste, P., Le Pape, C., Nuijten, W.: Constraint-based Scheduling. Kluwer
Academic Publishers (2001)

70 S. Kosch and J.C. Beck

[8] Viĺım, P.: Edge finding filtering algorithm for discrete cumulative resources in
O(kn log n). In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 802–816. Springer,
Heidelberg (2009)

[9] Freuder, E.C.: In pursuit of the holy grail. Constraints 2, 57–61 (1997)
[10] Heinz, S., Ku, W.-Y., Beck, J.C.: Recent improvements using constraint integer

programming for resource allocation and scheduling. In: Gomes, C., Sellmann, M.
(eds.) CPAIOR 2013. LNCS, vol. 7874, pp. 12–27. Springer, Heidelberg (2013)

[11] Daste, D., Gueret, C., Lahlou, C.: A branch-and-price algorithm to minimize the
maximum lateness on a batch processing machine. In: Proceedings of the 11th
International Workshop on Project Management and Scheduling (PMS), Istanbul,
Turkey, pp. 64–69 (2008)

[12] Lee, C.Y., Uzsoy, R., Martin-Vega, L.A.: Efficient algorithms for scheduling semi-
conductor burn-in operations. Oper. Res. 40(4), 764–775 (1992)

[13] Grossmann, I.E.: Mixed-integer optimization techniques for the design and schedul-
ing of batch processes. Technical Report Paper 203, Carnegie Mellon University En-
gineering Design Research Center and Department of Chemical Engineering (1992)

[14] Brucker, P., Gladky, A., Hoogeveen, H., Kovalyov, M.Y., Potts, C.N., Tautenhahn,
T., van de Velde, S.L.: Scheduling a batching machine. Journal of Scheduling 1(1),
31–54 (1998)

[15] Pinedo, M.L.: Scheduling: Theory, Algorithms, and Systems, 2nd edn. Prentice-
Hall (2003)

[16] Shaw, P.: A constraint for bin packing. In: Wallace, M. (ed.) CP 2004. LNCS,
vol. 3258, pp. 648–662. Springer, Heidelberg (2004)

[17] Azizoglu, M., Webster, S.: Scheduling a batch processing machine with non-
identical job sizes. International Journal of Production Research 38(10), 2173–2184
(2000)

[18] Dupont, L., Dhaenens-Flipo, C.: Minimizing the makespan on a batch machine
with non-identical job sizes: An exact procedure. Computers & Operations Re-
search 29(7), 807–819 (2002)

[19] Sabouni, M.Y., Jolai, F.: Optimal methods for batch processing problem
with makespan and maximum lateness objectives. Applied Mathematical Mod-
elling 34(2), 314–324 (2010)

[20] Kashan, A.H., Karimi, B., Ghomi, S.M.T.F.: A note on minimizing makespan on a
single batch processing machine with nonidentical job sizes. Theoretical Computer
Science 410(27-29), 2754–2758 (2009)

[21] Ozturk, O., Espinouse, M.L., Mascolo, M.D., Gouin, A.: Makespan minimisation
on parallel batch processing machines with non-identical job sizes and release
dates. International Journal of Production Research 50(20), 6022–6035 (2012)

[22] IBM ILOG: User’s manual for cplex (2013)
[23] Ilog, I.: Cplex optimization suite 12.5 (2013)
[24] Choco Team: Choco: An open source java constraint programming library. version

2.1.5 (2013)
[25] Shaw, P.: Using constraint programming and local search methods to solve vehicle

routing problems. In: Maher, M.J., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520,
pp. 417–431. Springer, Heidelberg (1998)

Mining (Soft-) Skypatterns Using Dynamic CSP

Willy Ugarte Rojas1, Patrice Boizumault1, Samir Loudni1,
Bruno Crémilleux1, and Alban Lepailleur2

1 GREYC (CNRS UMR 6072) – University of Caen
Campus II Côte de Nacre, 14000 Caen - France

2 CERMN (UPRES EA 4258 - FR CNRS 3038 INC3M) – University of Caen
Boulevard Becquerel, 14032 Caen Cedex - France

Abstract. Within the pattern mining area, skypatterns enable to express a user-
preference point of view according to a dominance relation. In this paper, we
deal with the introduction of softness in the skypattern mining problem. First, we
show how softness can provide convenient patterns that would be missed other-
wise. Then, thanks to Dynamic CSP, we propose a generic and efficient method
to mine skypatterns as well as soft ones. Finally, we show the relevance and the
effectiveness of our approach through a case study in chemoinformatics and ex-
periments on UCI benchmarks.

1 Introduction

Discovering useful patterns from data is an important field in data mining for data anal-
ysis and is used in a wide range of applications. Many approaches have promoted the
use of constraints to focus on the most promising knowledge according to a poten-
tial interest given by the final user. As the process usually produces a large number of
patterns, a large effort is made to a better understanding of the fragmented information
conveyed by the patterns and to produce pattern sets i.e. sets of patterns satisfying prop-
erties on the whole set of patterns [5]. Using the dominance relation is a recent trend in
constraint-based data mining to produce useful pattern sets [19].

Skyline queries [3] enable to express a user-preference point of view according to
a dominance relation. In a multidimensional space where a preference is defined for
each dimension, a point pi dominates another point p j if pi is better (i.e., more pre-
ferred) than p j in at least one dimension, and pi is not worse than p j on every other
dimension. However, while this notion of skylines has been extensively developed and
researched for database applications, it has remained unused until recently for data min-
ing purposes. Computing skylines of patterns from a database is clearly much harder
than computing skylines in database applications due to the huge difference between
the size of search spaces (we explain this issue in Section 5). The inherent complexity
on computing skylines of patterns may explain the very few attempts in this direction.

A pioneering work [17] proposed a technique to extract skyline graphs maximiz-
ing two measures. Recently, the notion of skyline queries has been integrated into
the constraint-based pattern discovery paradigm to mine skyline patterns (henceforth
called skypatterns) [19]. As an example, a user may prefer a pattern with a high fre-
quency, large length and a high confidence. In this case, we say that a pattern xi dom-
inates another pattern x j if f req(xi) ≥ f req(x j), size(xi) ≥ size(x j), con f idence(xi) ≥

H. Simonis (Ed.): CPAIOR 2014, LNCS 8451, pp. 71–87, 2014.
c© Springer International Publishing Switzerland 2014

72 W. Ugarte Rojas et al.

con f idence(x j) where at least one strict inequality holds. Given a set of patterns, the
skypattern set contains the patterns that are not dominated by any other pattern (we for-
mally introduce the notions in the following sections). Skypatterns are interesting for
a twofold reason: they do not require any threshold on the measures and the notion of
dominance provides a global interest with semantics easily understood by the user.

Nevertheless, skypatterns queries, like other kinds of queries, suffer from the strin-
gent aspect of the constraint-based framework. Indeed, a pattern satisfies or does not
satisfy the constraints. But, what about patterns that slightly miss a constraint? A pat-
tern, close to the frontier of the dominance area, could be interesting although it is not
a skypattern. In the paper, we formally introduce soft skypatterns. Note that there are
very few works such as [2,21] dealing with softness into the mining process.

The contributions of this paper are the following. First, we introduce the notion of
soft skypattern. Second, we propose a flexible and efficient approach to mine skypat-
terns as well as soft ones thanks to the Dynamic CSP (Constraint Satisfaction Problems)
framework [22]. Our proposition benefits from the recent progress on cross-fertilization
between data mining and Constraint Programming (CP) [4,9,7]. The common point of
all these methods is to model in a declarative way pattern mining as CSP, whose res-
olution provides the complete set of solutions satisfying all the constraints. We show
how the (soft-) skypatterns mining problem can be modeled and solved using dynamic
CSPs. A major advantage of the method is to improve the mining step during the process
thanks to constraints dynamically posted and stemming from the current set of candi-
date skypatterns. Moreover, the declarative side of the CP framework leads to a unified
framework handling softness in the skypattern problem. Finally, the relevance and the
effectiveness of our approach is highlighted through a case study in chemoinformatics
for discovering toxicophores and experiments on UCI benchmarks.

This paper is organized as follows. Section 2 presents the context and defines skypat-
terns. Section 3 introduces soft skypatterns. Section 4 presents our flexible and efficient
CP approach to mine skypatterns as well as soft ones. We review some related work
in Section 5. Finally, Section 6 reports in depth a case study in chemoinformatics and
describes experiments on UCI benchmarks.

2 The Skypattern Mining Problem

2.1 Context and Definitions

Let I be a set of distinct literals called items. An itemset (or pattern) is a non-null
subset of I . The language of itemsets corresponds to LI = 2I \ /0. A transactional
dataset T is a multiset of patterns of LI . Each pattern (or transaction) is a database
entry. Table 1 (left side) presents a transactional dataset T where each transaction ti is
described by items denoted A,. . . ,F . The traditional example is a supermarket database
in which each transaction corresponds to a customer and every item in the transaction
to a product bought by the customer. An attribute (price) is associated to each product
(see Table 1, right side).

Constraint-based pattern mining aims at extracting all patterns x of LI satisfying
a query q(x) (conjunction of constraints) which is usually called theory [12]: T h(q) =
{x ∈LI | q(x) is true}. A common example is the frequency measure leading to the

Mining (Soft-) Skypatterns Using Dynamic CSP 73

Table 1. Transactional dataset T

Trans. Items
t1 B E F
t2 B C D
t3 A E F
t4 A B C D E
t5 B C D E
t6 B C D E F
t7 A B C D E F

Item A B C D E F
Price 30 40 10 40 70 55

minimal frequency constraint (f req(x) ≥ θ). The latter provides patterns x having a
number of occurrences in the dataset exceeding a given minimal threshold θ . There are
other usual measures for a pattern x:

– size(x) is the number of items that pattern x contains.
– area(x) = f req(x)× size(x).
– min(x.att) (resp. max(x.att)) is the smallest (resp. highest) value of the item values

of x for attribute att.
– average(x.att) is the average value of the item values of x for attribute att.
– mean(x) = (min(x.att)+max(x.att))/2.

Considering the dataset described in Table 1, we have: freq(BC)=5, size(BC)=2 and
area(BC)=10. Moreover, average(BCD.price)=30 and mean(BCD.price)=25.

In many applications, it is highly appropriated to look for contrasts between subsets
of transactions, such as toxic and non toxic molecules in chemoinformatics (see Sec-
tion 6.1). The growth-rate is a well-used contrast measure highlighting patterns whose
frequency increases significantly from one subset to another [14]:

Definition 1 (Growth rate). Let T be a database partitioned into two subsets D1 and
D2. The growth rate of a pattern x from D2 to D1 is:

mgr(x) =
|D2|× f req(x,D1)

|D1|× f req(x,D2)

The collection of patterns contains redundancy w.r.t. measures. Given a measure m,
two patterns xi and x j are said to be equivalent if m(xi) =m(x j). A set of equivalent pat-
terns forms an equivalent class w.r.t. m. The largest element (i.e. the one with the highest
number of items) of an equivalence class is called a closed pattern. More formally, a
pattern xi is closed w.r.t. m iff ∀x j � xi,m(x j) �= m(xi). The set of closed patterns is a
compact representation of the patterns (i.e we can derive all the patterns with their exact
value for m from the closed ones). This definition is straightforwardly extended to a set
of measures M.

2.2 Skypatterns

Skypatterns have been recently introduced by [19]. Such patterns enable to express a
user-preference point of view according to a dominance relation. Given a set of patterns,
the skypattern set contains the patterns that are not dominated by any other pattern.

74 W. Ugarte Rojas et al.

Definition 2 (Dominance). Given a set of measures M, a pattern xi dominates another
pattern x j with respect to M (denoted by xi �M x j), iff ∀m ∈ M,m(xi) ≥ m(x j) and
∃m ∈ M,m(xi)> m(x j).

Consider the example in Table 1 with M={ f req,area}. Pattern BCD dominates pattern
BC because f req(BCD)= f req(BC)=5 and area(BCD)>area(BC). For M={ f req,size,
average}, pattern BDE dominates pattern BCE because f req(BDE)= f req(BCE)=4,
size(BDE)=size(BCE)=3 and average(BDE.price)>average(BCE.price).

Definition 3 (Skypattern operator). Given a pattern set P ⊆ LI and a set of mea-
sures M, a skypattern of P with respect to M is a pattern not dominated in P with respect
to M. The skypattern operator Sky(P,M) returns all the skypatterns of P with respect to
M: Sky(P,M) = {xi ∈ P | � ∃x j ∈ P,x j �M xi}.

The skypattern mining problem is thus to evaluate the query Sky(LI ,M). For in-
stance, from the data set in Table 1 and with M={ f req,size}, Sky(LI ,M) = {ABCDEF,
BCDEF,ABCDE,BCDE,BCD,B,E} (see Fig. 1a). The shaded area is called the forbid-
den area, as it cannot contain any skypattern. The other part is called the dominance
area. The edge of the dominance area (bold line) marks the boundary between them.

3 The Soft Skypattern Mining Problem

This section introduces the notion of softness in the skypattern mining problem. As the
skypatterns suffer from the stringent aspect of the constraint-based pattern framework,
we propose to capture valuable patterns occurring in the forbidden area (that we call
soft skypatterns). We define two kinds of soft skypatterns: the edge-skypatterns that
belongs to the edge of the dominance area (see Section 3.1) and the δ -skypatterns that
are close to this edge (see Section 3.2). The key idea is to strengthen the dominance
relation in order to soften the notion of non dominated patterns.

3.1 Edge-Skypatterns

Edge-skypatterns are defined according to a dominance relation and a Sky operator.

Definition 4 (Strict Dominance). Given a set of measures M, a pattern xi strictly dom-
inates a pattern x j with respect to M (denoted by xi �M x j), iff ∀m ∈ M, m(xi)> m(x j).

Definition 5 (Edge-skypattern operator). Given a pattern set P ⊆ LI and a set
of measures M, an edge-skypattern of P, with respect to M, is a pattern not strictly
dominated in P, with respect to M. The operator Edge-Sky(P,M) returns all the edge-
skypatterns of P with respect to M: Edge-Sky(P,M) = {xi ∈ P | � ∃x j ∈ P,x j �M xi}

Given a set of measures M, the edge-skypattern mining problem is thus to evaluate the
query Edge-Sky(P,M). Fig. 1a depicts the 28=7+(4+8+3+4+2) edge-skypatterns ex-
tracted from the example in Table 1 for M={ f req,size}. Obviously, all edge-skypatterns
belong to the edge of the dominance area, and seven of them are skypatterns.

Proposition 1. For two patterns xi and x j, xi �M x j =⇒ xi �M x j. So, for a pattern
set P and a set of measures M, Sky(P,M) ⊆ Edge-Sky(P,M).

Mining (Soft-) Skypatterns Using Dynamic CSP 75

3.2 δ -Skypatterns

In many cases the user is interested in patterns close to the border of the dominance
area because they express a trade-off between the measures. The δ -skypatterns address
this issue where δ means a percentage of relaxation allowed by the user. Let 0 < δ ≤ 1.

Definition 6 (δ -Dominance). Given a set of measures M, a pattern xi δ -dominates
another pattern x j w.r.t. M (denoted by xi �δ

M x j), iff ∀m ∈ M, (1−δ)×m(xi)> m(x j).

Definition 7 (δ -Skypattern operator). Given a pattern set P ⊆LI and a set of mea-
sures M, a δ -skypattern of P with respect to M is a pattern not δ -dominated in P with
respect to M. The δ -skypattern operator δ -Sky(P,M) returns all the δ -skypatterns of P
with respect to M: δ -Sky(P,M) = {xi ∈ P | � ∃x j ∈ P : x j �δ

M xi}.

The δ -skypattern mining problem is thus to evaluate the query δ -Sky(P,M). There
are 38 (28+10) δ -skypatterns extracted from the example in Table 1 for M={ f req,size}
and δ=0.25. Fig. 1b only depicts the 10 δ -skypatterns that are not edge-skypatterns.
Intuitively, the δ -skypatterns are close to the edge of the dominance relation, the value
of δ is the maximal relative distance between a skypattern and this border.

Proposition 2. For two patterns xi and x j, xi �δ
M x j =⇒ xi �M x j. So, for a pattern

set P and a set of measures M, Edge-Sky(P,M)⊆ δ -Sky(P,M).

To conclude, given a pattern set P ⊆ LI and a set of measures M, the following
inclusions hold: Sky(P,M)⊆ Edge-Sky(P,M)⊆ δ -Sky(P,M).

4 Mining (Soft-) Skypatterns Using Dynamic CSP

This section describes how the skypattern and the soft skypattern mining problems can
be modeled and solved using Dynamic CSP [22]. The implementation was carried out
in Gecode by extending the CP-based pattern extractor developed by [9]. The main
idea of our of approach is to improve the mining step during the process thanks to
constraints dynamically posted and stemming from the current set of the candidate sky-
patterns. This process stops when the forbidden area cannot be enlarged. Finally, the
completeness of our approach is ensured by the completeness of the CP solver.

(a) Edge-skypatterns. (b) δ -skypatterns (that are not edge ones).

Fig. 1. Soft-skypatterns extracted from the example in Table 1

76 W. Ugarte Rojas et al.

4.1 Dynamic CSP

A Dynamic CSP [22] is a sequence P1,P2, ...,Pn of CSP, each one resulting from some
changes in the definition of the previous one. These changes may affect every compo-
nent in the problem definition: variables, domains and constraints. For our approach,
changes are only performed by adding new constraints. Solving such dynamic CSP
involves solving a single CSP with additional constraints posted during search. Each
time a new solution is found, new constraints are imposed. Such constraints will sur-
vive backtracking and state that next solutions should verify both the current set of
constraints and the added ones.

4.2 Mining Skypatterns

Constraints on the dominance relation are dynamically posted during the mining pro-
cess and softness is easily introduced using such constraints. Variable x will denote
the (unknown) skypattern we are looking for. Changes are only performed by adding
new constraints. So, we consider the sequence P1,P2, ...,Pn of CSP where M is a set of
measures, each Pi = ({x},L ,qi(x)) and:

- q1(x) = closedM(x)
- qi+1(x) = qi(x)∧φi(x) where si is the first solution to query qi(x)

First, the constraint closedM(x) states that x must be a closed pattern w.r.t M, it allows to
reduce the number of redundant patterns (see Section 2.1). Then, the constraint φi(x)≡
¬(si �M x) states that the next solution (which is searched) will not be dominated by si.
Using a short induction proof, we can easily argue that query qi+1(x) looks for a pattern
x that will not be dominated by any of the patterns s1, s2, . . ., si.

Each time the first solution si to query qi(x) is found, we dynamically post a new
constraint φi(x) leading to reduce the search space. This process stops when we cannot
enlarge the forbidden area (i.e. there exits n s.t. query qn+1(x) has no solution). For
skypatterns, φi(x) states that ¬(si �M x) (see Definition 2):

φi(x)≡
(∨

m∈M

m(si)< m(x)

)
∨
(∧

m∈M

m(si) = m(x)

)
But, the n extracted patterns s1, s2, . . ., sn are not necessarily all skypatterns. Some of
them can only be ”intermediate” patterns simply used to enlarge the forbidden area. A
post processing step must be performed to filter all candidate patterns si that are not
skypatterns, i.e. for which there exists s j (1 ≤ i < j ≤ n) s.t. s j dominates si. So mining
skypatterns is achieved in a two-steps approach:

1. Compute the set S = {s1,s2, . . . ,sn} of candidates using Dynamic CSP.
2. Remove all patterns si ∈ S that are not skypatterns.

While the number of candidates (n) could be very large (the skypattern mining prob-
lem is NP-complete), it remains reasonably-sized in practice for the experiments we
conducted (see Table 2 for the case study in chemoinformatics).

4.3 Mining Soft Skypatterns

Soft skypatterns are processed exactly the same way as skypatterns. Each kind of soft
skypatterns has its own constraint φi(x) according to its relation of dominance.

Mining (Soft-) Skypatterns Using Dynamic CSP 77

For edge-skypatterns, φi(x) states that ¬(si �M x) (see Definition 4):

φi(x)≡
∨

m∈M

m(si)≤ m(x)

For δ -skypatterns, φi(x) states that ¬(si �δ
M x) (see Definition 6):

φi(x)≡
∨

m∈M

(1− δ)×m(si)< m(x)

As previously, the n extracted patterns are not necessarily all soft skypatterns. So, a post
processing is also required as for skypatterns. Once again, the number of candidates (n)
remains reasonably-sized in practice for the experiments we conducted (see Table 2 for
the case study in chemoinformatics and Figure 5 for UCI benchmarks).

4.4 Pattern Encoding

Let d be the 0/1 matrix where ∀t ∈T ,∀i ∈I , (dt,i = 1)⇔ (i ∈ t). Pattern variables are
set variables represented by their characteristic function with boolean variables. [4,7]
model an unknown pattern x and its associated dataset T by introducing two sets of
boolean variables: {Xi | i ∈ I } where (Xi = 1) ⇔ (i ∈ x), and {Tt | t ∈ T } where
(Tt = 1)⇔ (x ⊆ t). Each set of boolean variables aims at representing the characteristic
function of the unknown pattern.

The relationship between x and T is modeled by posting reified constraints stating
that, for each transaction t,(Tt = 1) iff t is covered by x:

∀t ∈ T ,(Tt = 1)⇔ ∑
i∈I

Xi × (1− dt,i) = 0 (1)

4.5 Closedness Constraints

Section 2.1 recalls the definition of closed patterns satisfying closedness constraints.
Let M={min} and val(j) a function that associates an attribute value to each item j. If
item i belongs to x, then its value must be greater than or equal to the min. Conversely,
if this value is greater than or equal to the min, i must belong to x (if not, x would not
be maximal for inclusion). So, x is a closed pattern for the measure min iff:

∀i ∈I ,(Xi = 1)⇔ val(i)≥ min{val(j) | j ∈ x} (2)

Let M={ f req}, the closedness constraint ensures that a pattern has no superset with
the same frequency. So closedM(x) is modeled using Equation 1 and Equation 3.

∀i ∈I ,(Xi = 1)⇔ ∑
t∈T

Tt × (1− dt,i) = 0 (3)

There are equivalences between closed patterns according to measures: the closed
patterns w.r.t mean and min are the same and the closed patterns w.r.t area, growth-
rate and frequency are the same [19]. The constraint closedM(x) states that x must be a
closed pattern w.r.t M (the closed patterns w.r.t M gather the closed patterns w.r.t each
measure of M i.e. x is closed w.r.t M iff x is closed for at least one measure m ∈ M).

78 W. Ugarte Rojas et al.

5 Related Work

Computing skylines is a derivation from the maximal vector problem in computational
geometry [13], the Pareto frontier [10] and multi-objective optimization. Since its redis-
covery within the database community by [3], several methods have been developed for
answering skyline queries [15,16,20]. These methods assume that tuples are stored in
efficient tree data structures. Alternative approaches have also been proposed to help the
user in selecting most significant skylines. For example, [11] measures this significance
by means of the number of points dominated by a skyline.
Introducing softness for skylines. [8] have proposed thick skylines to extend the con-
cept of skyline. A thick skyline is either a skyline point pi, or a point p j dominated by
a skyline point pi and such that p j is close to pi. In this work, the idea of softness is
limited to metric semi-balls of radius ε>0 centered at points pi, where pi are skylines.
Computing skypatterns is different from computing skylines. Skyline queries focus
on the extraction of tuples of the dataset and assume that all the elements are in the
dataset, while the skypattern mining task consists in extracting patterns which are ele-
ments of the frontier defined by the given measures. The skypattern problem is clearly
harder because the search space for skypatterns is much larger than the search space for
skylines: O(2|I |) instead of O(|T |) for skylines.
Computing skypatterns. [19] have proposed Aetheris, an approach taking benefit
of theoretical relationships between pattern condensed representations and skypatterns.
Aetheris proceeds in two steps. First, condensed representations of the whole set of
patterns (i.e. closed patterns according to the considered set of measures) are extracted.
Then, the operator Sky (see Definition 3) is applied. Nevertheless, this method can only
use a crisp dominance relation. [17] deals with skyline graphs but their technique only
maximizes two measures (number of vertices and edge connectivity).
CP for computing the Pareto frontier. [6] has proposed an algorithm that provides the
Pareto frontier in a CSP. This algorithm is based on the concept of nogoods and uses
spatial data structures (quadtrees) to arrange the set of nogoods. This approach deals
for computing skylines and cannot be directly applied to skypatterns. The application is
not immediate since several different patterns may correspond to a same point (they all
have the same values for the considered measures). As experiments show the practical
efficiency of our approach, we have considered that adding [6] to a constraint solver
would require an important development time compared to the expected benefits.

6 Experimental Study

First, we report in depth a case study in chemoinformatics by performing a CPU time
analysis as well as a qualitative analysis that demonstrates the usefulness and the interest
of soft skypatterns (see Section 6.1). Then, using experiments on UCI benchmarks, we
show and discuss the practical issues of our approach (see Section 6.2).

Aetheris and CP+SKY (hard version of the skypatterns) produce exactly the same
set of skypatterns. So, the same outputs are compared Section 6.1.2 (Table 2, sky-
patterns part) and Section 6.2.1 (Fig 4 and Fig 5). Up to now, there is a single work
(Aetheris [19]) to extract skypatterns, no other comparison is possible on skypatterns.
Finally, soft skypatterns are completely new and there is no other competitor.

Mining (Soft-) Skypatterns Using Dynamic CSP 79

All experiments were conducted on a computer running Linux operating system with
a core i3 processor at 2.13 GHz and a RAM of 4 GB. Aetheriswas kindly provided by
A. Soulet and used in [19]. The implementation of CP+SKY was carried out in Gecode

by extending the CP-based patterns extractor developed by [9].

6.1 Case Study: Discovering Toxicophores

A major issue in chemoinformatics is to establish relationships between chemicals and
their activity in (eco)toxicity. Chemical fragments1 which cause toxicity are called tox-
icophores and their discovery is at the core of prediction models in (eco)toxicity [1,18].
The aim of this study, which is part of a larger research collaboration with the CERMN
Lab, is to investigate the use of softness for discovering toxicophores.

6.1.1 Experimental Protocol. The dataset is collected from the ECB web site2. For
each chemical, the chemists associate it with hazard statement codes (HSC) in 3 cate-
gories: H400 (very toxic, CL50 ≤ 1 mg/L), H401 (toxic, 1 mg/L < CL50 ≤ 10 mg/L),
and H402 (harmful, 10 mg/L < CL50 ≤ 100 mg/L). We focus on the H400 and H402
classes. The dataset T consists of 567 chemicals (transactions), 372 from the H400
class and 195 from the H402 class. The chemicals are encoded using 1450 frequent
closed subgraphs (items) previously extracted3 with a 1% relative frequency threshold.

In order to discover patterns as candidate toxicophores, we use both measures typi-
cally used in contrast mining [14] such as the growth rate (see Definition 1) since toxi-
cophores are linked to a classification problem and measures expressing the background
knowledge such as the aromaticity because chemists consider that this information may
yield promising candidate toxicophores. Now, we describe these three measures.
- Growth rate. When a pattern has a frequency which significantly increases from the
H402 class to the H400 class, then it stands a potential structural alert related to an
excess of the toxicity: if a chemical has, in its structure, fragments that are related to an
effect, then it is more likely to be toxic. Emerging patterns embody this natural idea by
using the growth-rate measure.
- Frequency. Real-world datasets are often noisy and patterns with low frequency may
be artefacts. The minimal frequency constraint ensures that a pattern is representative
enough (i.e., the higher the frequency, the better is).
- Aromaticity. Chemists know that the aromaticity is a chemical property that favors
toxicity since their metabolites can lead to very reactive species which can interact with
biomacromolecules in a harmful way. We compute the aromaticity of a pattern as the
mean of the aromaticity of its chemical fragments.

We consider four sets of measures: M1={growth-rate, f req}, M2={growth-rate,
aromaticity}, M3={ f req,aromaticity} and M4={growth-rate, f req, aromaticity}. Re-
dundancy is reduced by using closed skypatterns (see Section 4.2). For δ -skypatterns,
we consider two values: δ = 0.1 and δ = 0.2. The extracted skypatterns and soft sky-
patterns are made of molecular fragments. To evaluate the presence of toxicophores, an
expert analysis leads to the identification of well-known toxicophores.

1 A fragment denotes a connected part of a chemical structure having at least one chemical bond.
2 European Chemicals Bureau: http://echa.europa.eu/
3 A chemical Ch contains an item A if Ch supports A, and A is a frequent subgraph of T .

http://echa.europa.eu/

80 W. Ugarte Rojas et al.

Table 2. Skypattern mining on ECB dataset

Skypatterns Edge-Skypatterns δ -Skypatterns
#

of
S

ky
pa

tt
er

ns

CP+SKY Aetheris CP+Edge-SKY
CP+δ-SKY

δ = 0.1 δ = 0.2

#
of

C
an

di
da

te
s

C
PU

-T
im

e

#
of

cl
os

ed
pa

tt
er

ns

C
PU

-T
im

e

#
of

E
dg

e-
sk

yp
at

te
rn

s

#
of

C
an

di
da

te
s

C
PU

-T
im

e

#
of

δ-
sk

yp
at

te
rn

s

#
of

C
an

di
da

te
s

C
PU

-T
im

e

#
of

δ-
sk

yp
at

te
rn

s

#
of

C
an

di
da

te
s

C
PU

-T
im

e

M1 8 613 18m:34s 41,887 19m:20s 24 1,746 19m:02s 25 4,204 20m:48s 87 6,253 22m:36s
M2 5 140 15m:32s 53,201 21m:33s 76 688 17m:51s 354 1,678 18m:14s 1,670 2,816 23m:44s
M3 2 456 16m:45s 157,911 21m:16s 72 1,726 16m:50s 352 4,070 19m:43s 1,654 6,699 22m:25s
M4 21 869 17m:49s 12,126 21m:40s 144 3,021 20m:27s 385 6,048 23m:36s 1,724 8,986 30m:14s

6.1.2 Performance Analysis. Table 2 reports, for each set of measures Mi: (i) the
number of skypatterns that is the same for both approaches, (ii) for CP+SKY, the number
of candidates (see Section 4.2) and the associated CPU-time and (iii) for Aetheris,
the number of closed patterns and the associated CPU-time, (iv) the number of edge-
skypatterns that are not skypatterns, the number of candidates and the required CPU-
time, and (v) the number of δ -skypatterns that are not edge-skypatterns, the number of
candidates and the required CPU-time. For each method, reported CPU-times include
the two steps.

CP+SKY outperforms Aetheris in terms of CPU-times (see Table 2, skypatterns
part). Moreover, the number of candidates generated by our approach remains small
compared to the number of closed patterns computed by Aetheris. Aetheris applies
the skypattern operator on the whole set of closed patterns (column 4) whereas CP+SKY
applies the skypattern operator on a subset of the closed patterns (column 2). That
explains why the numbers in column 2 are lower than the numbers in column 4. It
shows the interest of the CP approach: thanks to the filtering of dynamically posted
constraints, the search space is drastically reduced.

Finally, the number of soft skypatterns remains reasonably small. For edge skypat-
terns, there is a maximum of 144 patterns, while for δ -skypatterns, there is a maximum
of 1,724 patterns (δ = 0.2).

6.1.3 Qualitative Analysis. In this subsection, we show that soft skypatterns enable
(i) to efficiently detect well-known toxicophores emphasized by skypatterns, and (ii) to
discover new and interesting toxicophores that would be missed by skypatterns.
- Growth rate and frequency measures (M1). Only 8 skypatterns are found, and 3
well-known toxicophores are emphasized (see Figure 2). Two of them are aromatic
compounds, namely the chlorobenzene (p1) and the phenol rings (p2). The third one,
the organophosphorus moiety (p3) is a component occurring in numerous pesticides.
Soft skypatterns confirm the trends given by skypatterns: the chloro-substituted aro-
matic rings (e.g. p4), and the organophosphorus moiety (e.g. p5) are detected by both
the edge-skypatterns and by the δ -skypatterns.
- Growth rate and aromaticity measures (M2). As results for M2 and M3 are similar,
we only report the qualitative analysis for M2. Edge-skypatterns leads to the extraction

Mining (Soft-) Skypatterns Using Dynamic CSP 81

Fig. 2. Analysing the (soft-) skypatterns for M1

of four new toxicophores: (i) nitrogen aromatic compounds: indole and benzoimidazole,
(ii) S-containing aromatic compounds: benzothiophene, (iii) aromatic oxygen com-
pounds: benzofurane, and (iv) polycyclic aromatic hydrocarbons: naphthalene.
δ -skypatterns complete the list of the aromatic rings, which were not found with the
skypatterns, namely biphenyl.
- Growth rate, frequency and aromaticity measures (M4). The most interesting results
are provided using M4. Table 3 shows the ratios analysis for the (soft-) skypatterns.
Col. 1 provides the name of toxicophores. Col. 2-5 give the number of (soft-) sky-
patterns containing one complete4 representative fragment of each toxicophore and,
between parentheses, their ratios (# of (soft-) skypatterns containing this toxicophore
divided by the total # of (soft-) skypatterns, in bold at the 2nd row). Col. 6 (resp. Col. 7)
gives the number of chemicals classified H400 i.e. high toxicity (resp. H402 i.e. harm-
ful) containing at least one representative fragment of the toxicophore. Col. 8-10 show
the gains provided by using soft skypatterns for discovering toxicophores (ratio soft
skypatterns divided by ratio skypatterns). Bold numbers denote a gain greater than 1
and ∞ means that the toxicophore is only found by soft skypatterns.

21 skypatterns are mined (see Figure 3), and several well-known toxicophores are
emphasized: the phenol ring (e4), the chloro-substituted aromatic ring (e3), the alkyl-
substituted benzene (e2), and the organophosphorus moiety (P1). Besides, information
dealing with nitrogen aromatic compounds are also extracted (e1). Table 3 details the
repartition of the skypatterns containing only one complete toxicophore compound,
according to the toxicophores discussed above. We can observe that very few patterns
are extracted.

4 Patterns with only sub-fragments of a toxicophore are not taken into account.

82 W. Ugarte Rojas et al.

Fig. 3. Analysing the (soft-) skypatterns for M4

Table 3. Ratio analysis of (soft-)skypattern mining

Gain
Chemical (2) (3) (4) (5) (6) (7) (3) (4) (5)

21 165 550 1889
Benzene 4 (0.19) 68 (0.41) 322 (0.59) 1373 (0.73) 63.7 18.9 2.16 3.11 3.84

Chlorobenzene 1 (0.05) 2 (0.01) 51 (0.09) 311 (0.16) 22.5 2.5 0.20 1.80 3.20
Phenol 1 (0.05) 11 (0.07) 32 (0.06) 302 (0.16) 25.2 3.5 1.40 1.20 3.20

Organophosphate
Basic 2 (0.10) 18 (0.11) 30 (0.05) 40 (0.02) 18.0 2.5 1.10 0.50 0.20
Exotic 38 (0.23) 66 (0.12) 112 (0.06) 18.0 2.5 ∞ ∞ ∞

Nitrogen aromatic rings 15 (0.09) 74 (0.13) 175 (0.09) 8.6 2.0 ∞ ∞ ∞
Polycyclic aromatic rings 12 (0.07) 178 (0.32) 302 (0.16) 7.2 3.5 ∞ ∞ ∞
Alkyl-substituted benzene 4 (0.02) 64 (0.12) 649 (0.34) 30.9 11.7 ∞ ∞ ∞

Aniline 15 (0.03) 259 (0.14) 24.7 11.3 ∞ ∞
Alkyl-substituted aniline 157 (0.08) 12.0 7.1 ∞

Chlorophenol 168 (0.09) 9.6 1.5 ∞
Alkyl phenyl ether 106 (0.06) 9.9 3.0 ∞

Alkyl-substituted phenol 61 (0.03) 9.6 1.5 ∞
Dichlorobenzene 59 (0.03) 9.9 1.5 ∞

(2) Skypatterns (3) Edge-Skypatterns
(4) δ -Skypatterns (δ = 0.1) (5) δ -Skypatterns (δ = 0.2)
(6) coverage rate on H400 (%) (7) coverage rate on H402 (%)

Mining (Soft-) Skypatterns Using Dynamic CSP 83

Soft skypatterns enable to detect more precisely the first four toxicophores (see Ta-
ble 3). For instance, 41% of edge-skypatterns extracted contain the benzene ring, against
19% for hard skypatterns (gain of 2.16: egde-skypatterns detect 2.16 times more pat-
terns containing this fragment compared to hard ones). This gain reaches about 3.11
(resp. 3.84) for δ = 0.1 (resp. 0.2). The same trends hold for chlorobenzene and phenol
rings, where 16% of extracted δ -skypatterns (δ = 0.2) include such fragments, against
5% in the hard case (gain of 3.20). From a chemical point of view, these fragments cover
well the H400 molecules (from 18% to 63.7%), as is shown in Col. 6, thus demonstrat-
ing the toxic nature of the extracted patterns, particularly in the soft case.

Regarding the aromatic rings previously discussed (gray lines of Table 3), several
new patterns containing these toxicophores are only mined by soft skypatterns. δ -
skypatterns (with δ=0.1) allow to better discover these toxicophores compared to edge-
skypatterns (average gain of about 4). Moreover, several patterns with novel fragments
of a great interest are solely detected by δ -skypatterns (yellow lines in Table 3), par-
ticularly with δ=0.2. It is important to note that 22% of these patterns include aro-
matic amines (12% for aniline and 8% for substituted anilines). These two toxicophores,
which cover respectively 24.7% and 12% of molecules classified H400, are very harm-
ful to aquatic organisms. The other toxicophores are extracted by δ -skypatterns with
ratios ranging from 3% to 9%.

To conclude, soft skypatterns enable to efficiently detect well-known toxicophores
emphasized by skypatterns, and to discover new and interesting toxicophores that would
be missed by skypatterns.

6.2 Experiments on UCI Benchmarks

Our experiments on UCI5 benchmarks thoroughly investigate the behavior on CP+SKY

and Aetheriswith sets of 4 or 5 measures. We made this choice because the user often
handles a limited number of measures when dealing with applications on real-world
datasets (see for instance our case study in chemoinformatics in Section 6.1).

Experiments were carried out on 23 various (in terms of dimensions and density)
datasets (see Col 1 of Table 4). We considered 5 measures M6={ f req, max, area, mean,
growth-rate} and 6 sets of measures: M6 and all the combinations of 4 measures from
M6 (noted M1, M2, M3, M4 and M5). Measures using numeric values, like mean, were
applied on attribute values that were randomly generated within the range [0..1]. For
each method, reported CPU-times include the two steps.

6.2.1 Mining Skypatterns. Figure 4 shows a scatter plot of CPU-times for CP+SKY
and Aetheris. Each point represents a skypattern query for a dataset: its x-value is the
CPU-time the CP+SKYmethod took to mine it, its y-value is the CPU-time of Aetheris.
We associate to each dataset a color. Moreover, we only report CPU-times for the 6
datasets requiring more than 30 seconds, either for CP+SKY or Aetheris. For both
approaches, CPU times are very small and quite similar on the remaining 17 datasets.

CP+SKY outperforms Aetheris on many datasets (e.g. almost all of the points are in
the left part of the plot field of Figure 4). The only exception is the dataset mushroom.
This dataset, which is the largest one (both in terms of transactions and items) and with

5 http://www.ics.uci.edu/ mlearn/MLRepository.html

84 W. Ugarte Rojas et al.

Fig. 4. Comparing CPU times on 6 UCI datasets for M1, . . . ,M6

the lowest density (around 18%), leads to the extraction of a relatively small number of
closed patterns. This greatly promotes Aetheris.

Figure 5 compares, for each set of measures Mi (1≤i≤6), the number of closed pat-
terns for Aetheris with the number of candidates for CP+SKY. We also report the

Fig. 5. Comparing # of closed patterns, candidates and skypatterns on 6 datasets

Mining (Soft-) Skypatterns Using Dynamic CSP 85

Table 4. Analysis of soft skypattern mining on UCI benchmarks for M6

CP+Edge-Sky
CP+δ-Sky
(δ = 5%)

CP+δ-Sky
(δ = 10%)

CP+δ-Sky
(δ = 15%)

CP+δ-Sky
(δ = 20%)

Dataset #
it

em
s

#
tr

an
sa

ct
io

ns

de
ns

it
y

#
of

E
dg

e-
sk

yp
at

te
rn

s

T
im

e
(s

ec
)

#
of

δ-
sk

yp
at

te
rn

s

T
im

e
(s

ec
)

#
of

δ-
sk

yp
at

te
rn

s

T
im

e
(s

ec
)

#
of

δ-
sk

yp
at

te
rn

s

T
im

e
(s

ec
)

#
of

δ-
sk

yp
at

te
rn

s

T
im

e
(s

ec
)

abalone 28 4,178 0.321 2,634 36 1,373 38 1,432 38 6,303 38 7,256 42
anneal 68 798 0.195 3,162 28 8,184 34 20,242 35 24,029 37 27,214 36
austral 55 690 0.272 11,714 69 34,205 70 68,855 99 69,487 102 70,652 113
breast 43 286 0.231 1,409 1 17 1 1,651 1 2,429 1 2,443 1
cleve 43 303 0.325 14,636 19 4,466 19 30,605 22 30,952 22 50,275 23
cmc 28 1,474 0.357 14,406 31 3,297 32 3,351 32 11,848 33 14,020 33
crx 59 690 0.269 29,068 134 73,627 151 73,707 159 105,344 166 165,782 167
german 76 1,000 0.276 93,087 1,157 170,169 2,614 230,457 2,995 270,435 3,439 290,654 3,483
glass 34 216 0.295 2,296 1 109 1 1,531 1 2,491 1 4,035 1
heart 38 270 0.368 15,563 15 644 16 34,136 16 42,685 18 44,114 18
hepatic 45 155 0.421 15,002 24 6,122 24 45,572 25 50,686 25 60,857 26
horse 75 300 0.235 13,068 54 39,149 60 43,073 66 55,175 68 74,275 71
hypo 47 3,163 0.389 278,625 1,343 104,147 1,387 115,126 1,402 116,654 1,463 117,089 1,487
iris 15 151 0.333 55 1 20 1 27 1 49 1 67 1
lymph 59 142 0.322 8,286 19 49,846 19 59,753 20 62,143 20 65,946 21
mushroom 119 8,124 0.193 21,639 3,241 33,757 3,328 99,852 3,336 129,383 3,407 150,965 3,614
new-thyroid 21 216 0.287 119 1 41 1 137 1 154 1 173 1
page 35 941 0.314 2,675 18 7,136 19 9,714 19 17,387 21 19,094 22
pima 26 768 0.346 1,778 5 518 5 3,439 5 4,308 5 4,358 6
tic-tac-toe 29 259 0.344 6,800 16 4,078 18 18,584 19 20,130 20 22,576 21
vehicle 58 846 0.327 76,732 687 716 689 2,457 751 3,789 782 4,369 787
wine 45 179 0.311 3,155 5 2,490 5 4,422 5 7,507 5 13,407 6
zoo 43 102 0.394 2,254 2 3,361 2 4,829 2 7,724 2 8,986 2

number of skypatterns. The number of candidates generated by our approach remains
very small (some thousands) compared to the huge number of closed patterns computed
by Aetheris (about millions). Finally, the number of skypatterns remains small.

6.2.2 Mining Soft Skypatterns. This section shows the feasibility of mining soft sky-
patterns on UCI Benchmarks (for these experiments, parameter δ has been set to {0.05,
0.1, 0.15, 0.2}). As our proposal is the only approach able to mine soft skypatterns, it
is no longer compared with Aetheris. Table 4 reports, for each dataset (i) the number
of edge-skypatterns that are not (hard) skypatterns, the number of candidates and the
required CPU-time, (ii) for δ in {0.05, 0.1, 0.15, 0.2} the number for δ -skypatterns that
are not edge-skypatterns, the number of candidates and the required CPU-time. Even if
the number of soft patterns increases with δ , our approach remains efficient: there are
only 8 experiments out of 115 requiring more than 3,000 seconds.

7 Conclusion

We have introduced soft skypatterns and proposed a flexible and efficient approach
to mine skypatterns as well as soft ones thanks to Dynamic CSP. The relevance and

86 W. Ugarte Rojas et al.

the effectiveness of our approach have been highlighted through experiments on UCI
datasets and a case study in chemoinformatics.

In the future, we would like to continue to investigate where the CP approach leads
to new insights into the underlying data mining problems. Thanks to CP, we would
particularly like to introduce softness within other tasks such as clustering, and study
the contribution of soft skypatterns for recommendation.

Acknowledgments. We would like to thank Arnaud Soulet for providing the Aetheris
program and his highly valuable comments. This work is partly supported by the ANR
(French Research National Agency) funded project FiCoLoFo ANR-10-BLA-0214.

References

1. Bajorath, J., Auer, J.: Emerging chemical patterns: A new methodology for molecular classi-
fication and compound selection. J. of Chemical Information and Modeling 46, 2502–2514
(2006)

2. Bistarelli, S., Bonchi, F.: Soft constraint based pattern mining. Data Knowl. Eng. 62(1),
118–137 (2007)

3. Börzönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: 17th Int. Conf. on Data
Engineering, pp. 421–430. Springer (2001)

4. De Raedt, L., Guns, T., Nijssen, S.: Constraint programming for itemset mining. In: KDD
2008, pp. 204–212. ACM (2008)

5. De Raedt, L., Zimmermann, A.: Constraint-based pattern set mining. In: 7th SIAM Interna-
tional Conference on Data Mining. SIAM (2007)

6. Gavanelli, M.: An algorithm for multi-criteria optimization in csps. In: van Harmelen, F. (ed.)
ECAI, pp. 136–140. IOS Press (2002)

7. Guns, T., Nijssen, S., De Raedt, L.: Itemset mining: A constraint programming perspective.
Artif. Intell. 175(12-13), 1951–1983 (2011)

8. Jin, W., Han, J., Ester, M.: Mining thick skylines over large databases. In: Boulicaut, J.-F.,
Esposito, F., Giannotti, F., Pedreschi, D. (eds.) PKDD 2004. LNCS (LNAI), vol. 3202,
pp. 255–266. Springer, Heidelberg (2004)

9. Khiari, M., Boizumault, P., Crémilleux, B.: Constraint programming for mining n-ary pat-
terns. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp. 552–567. Springer, Heidelberg
(2010)

10. Kung, H.T., Luccio, F., Preparata, F.P.: On finding the maxima of a set of vectors. Journal of
ACM 22(4), 469–476 (1975)

11. Lin, X., Yuan, Y., Zhang, Q., Zhang, Y.: Selecting stars: The k most representative skyline
operator. In: ICDE 2007, pp. 86–95 (2007)

12. Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowledge discovery.
Data Mining and K. Discovery 1(3), 241–258 (1997)

13. Matousek, J.: Computing dominances in En. Inf. Process. Lett. 38(5), 277–278 (1991)
14. Kralj Novak, P., Lavrac, N., Webb, G.I.: Supervised descriptive rule discovery: A unifying

survey of contrast set, emerging pattern and subgroup mining. Journal of Machine Learning
Research 10, 377–403 (2009)

15. Papadias, D., Tao, Y., Fu, G., Seeger, B.: Progressive skyline computation in database sys-
tems. ACM Trans. Database Syst. 30(1), 41–82 (2005)

16. Papadias, D., Yiu, M., Mamoulis, N., Tao, Y.: Nearest neighbor queries in network databases.
In: Encyclopedia of GIS, pp. 772–776 (2008)

Mining (Soft-) Skypatterns Using Dynamic CSP 87

17. Papadopoulos, A.N., Lyritsis, A., Manolopoulos, Y.: Skygraph: an algorithm for important
subgraph discovery in relational graphs. Data Min. Knowl. Discov. 17(1), 57–76 (2008)

18. Poezevara, G., Cuissart, B., Crémilleux, B.: Extracting and summarizing the frequent emerg-
ing graph patterns from a dataset of graphs. J. Intell. Inf. Syst. 37(3), 333–353 (2011)

19. Soulet, A., Raı̈ssi, C., Plantevit, M., Crémilleux, B.: Mining dominant patterns in the sky. In:
ICDM, pp. 655–664 (2011)

20. Tan, K.-L., Eng, P.-K., Ooi, B.C.: Efficient progressive skyline computation. In: VLDB,
pp. 301–310 (2001)

21. Ugarte, W., Boizumault, P., Loudni, S., Crémilleux, B.: Soft threshold constraints for pattern
mining. In: Discovery Science, pp. 313–327 (2012)

22. Verfaillie, G., Jussien, N.: Constraint solving in uncertain and dynamic environments: A
survey. Constraints 10(3), 253–281 (2005)

Modelling with Option Types in MiniZinc�

Christopher Mears3, Andreas Schutt1,2, Peter J. Stuckey1,2, Guido Tack1,3,
Kim Marriott1,3, and Mark Wallace1,3

1 National ICT Australia (NICTA)
2 University of Melbourne, Victoria, Australia
3 Faculty of IT, Monash University, Australia

Abstract. Option types are a powerful abstraction that allows the concise mod-
elling of combinatorial problems where some decisions are relevant only if other
decisions are made. They have a wide variety of uses: for example in modelling
optional tasks in scheduling, or exceptions to a usual rule. Option types represent
objects which may or may not exist in the constraint problem being modelled,
and can take an ordinary value or a special value � indicating they are absent.
The key property of variables of option types is that if they take the value � then
the constraints they appear in should act as if the variable was not in the origi-
nal definition. In this paper, we explore the different ways that basic constraints
can be extended to handle option types, and we show that extensions of global
constraints to option types cover existing and common variants of these global
constraints. We demonstrate how we have added option types to the constraint
modelling language MINIZINC. Constraints over variables of option types can
either be handled by transformation into regular variables without extending the
requirements on underlying solvers, or they can be passed directly to solvers that
support them natively.

1 Introduction

A common feature of complex combinatorial models is that some decisions are only
relevant if other decisions are made. Hence some part of the model may be irrelevant
dependent on decisions in another part. This is typically modelled by requiring that
the “irrelevant decisions” are fixed to some default value, and none of the constraints
about the irrelevant decisions are enforced. While it is certainly possible to express such
models in traditional modelling languages, it is neither concise nor straightforward.

Many programming languages, including ML, Haskell and Scala, provide an option
type, to wrap an arbitrary type with an additional “None” value to indicate that the re-
turned value is not meaningful. This paper introduces an extension to the MINIZINC

modelling language [14] that uses a similar approach to indicate that a value is irrel-
evant. We add support for option types in MINIZINC, that is types extended with an
additional value � indicating that a decision was irrelevant. The meaning of constraints
and functions on normal types is lifted to option types to create the desired behaviour
that variables taking the value � do not constrain the rest of the model.

� NICTA is funded by the Australian Government as represented by the Department of Broad-
band, Communications and the Digital Economy and the Australian Research Council. The
first author was sponsored by the Australian Research Council grant DP110102258.

H. Simonis (Ed.): CPAIOR 2014, LNCS 8451, pp. 88–103, 2014.
© Springer International Publishing Switzerland 2014

Modelling with Option Types in MiniZinc 89

Variables of option type, or optional variables, are used to model objects (or rela-
tionships) that may or may not exist in the problem being modelled. Such a variable
may take a value like an ordinary variable, or have an absent value. The most common
use of optional variables in constraint programming is in modelling the start times of
optional tasks, tasks in a scheduling problem that may or may not occur.

Example 1. In a flexible job shop scheduling problem a task t can be performed on one
of k machines, with a duration dtl if it runs on machine l. A common model for this is to
model a single task t with start time St and (variable) duration Dt , as well as k optional
tasks with optional start times Otl and (fixed) duration dtl . If task t runs on machine l
then Otl = St , Dt = dtl and Ot j =�,1 ≤ j �= l ≤ k.

Optional variables are also used to model “exceptional circumstances”.

Example 2. Consider an assignment problem where each of m workers should be as-
signed to one of n tasks, where there are too many workers for the tasks (m > n). A
common way of modelling this in constraint programming is using the global constraint
alldifferent_except_0([w1, . . . ,wm]) where worker assignments wi,1 ≤ i ≤ m
take values in the range 0..n, where 0 represents that the worker is not assigned to any
task. With optional variables this is modelled differently: each variable wi is an op-
tional variable with domain 1..n and �. The � plays exactly the same role as 0 in the
traditional approach, but the constraint is now simply alldifferent([w1, . . . ,wm])
applied to optional variables wi. Lifting this constraint to work on optional variables
will automatically provide the desired behaviour.

Some of the global constraints in the global constraint catalogue [1] in fact arise from
the common occurrence of modelling with optional variables. We believe the global
constraint catalogue could be simplified by the addition of optional variables and auto-
matic lifting of constraints to optional variables. Optional variables can also make some
forms of modelling easier even if they are not required.

Example 3. Consider an assignment problem with m workers and n tasks, but this time
n > m. If we require that workers who work on tasks adjacent in the list are compatible,
we can model this by

∀1 ≤ j ≤ n− 1. ∀1 ≤ i, i′ ≤ m. wi = j∧wi′ = j+ 1 → compatible[i, i′] ,

but this creates a very large and complex set of constraints. Instead we can model this
using an inverse global constraint, using optional variables. Let t j = i be the optional
variable representing that task j is worked on by worker i, but if no one does the task
then t j =�. We can then model the above constraint using

inverse(w, t)∧∀1 ≤ j ≤ n− 1. compatible[t j, t j+1] .

If t j =� or t j+1 =� then the constraint compatible[t j, t j+1] will automatically hold.

In the remainder of this paper we formally define option types, and how we can
automatically lift the meaning of constraints and functions on ordinary types to their
option type extension. We show how with option types we can concisely model com-
mon modelling idioms, and extend the expressiveness of the modelling language. The
contributions of this paper are:

90 C. Mears et al.

– A theory for extending a constraint definition over standard types to option types
(Section 2.1).

– A standard approach to extending functions from standard types to option types
(Section 2.2).

– An extension to MINIZINC to support option types (Section 3).
– An extension of the comprehension syntax of MINIZINC to allow iteration over

variable sets and variable conditions (where clauses) using option types (Sec-
tion 3.2).

– An approach to automatically translating models with option types into models
without option types (Section 4). This has the advantage of providing support for
the new modelling features for all solvers supporting FLATZINC without changes.

– The ability for solvers to specify their support for constraints with option types,
so that models using them can make use of efficient variable implementations and
propagation algorithms, where the solvers support them (Section 4.4).

2 The Logic of Option Types

Option types are defined using the type constructor opt which maps a type to an option
type. If T is the set of possible values (excluding �) then opt T = T ∪{�}.

Modelling for constraint programming (CP) consists of defining relations over de-
cision variables and functionally defined terms on these decision variables. To extend
modelling to include option types, we must define how to interpret relations and func-
tions on option types. To be useful for modelling, these definitions should have mean-
ings that are natural to the modeller.

2.1 Lifting Constraints to Option Types

The key requirement for easy use of option types is for the modeller to clearly under-
stand the meaning of constraints involving option types. Here we show how to automat-
ically lift an existing constraint definition that uses standard types to be one defined on
option types. The lifting is meant to reflect the implicit understanding that “if an option
type variable x takes the value � each constraint involving x should act as if x was not
part of its definition.”

Projection Interpretation. Converting the implicit understanding into a formal defi-
nition, which we denote the projection interpretation, leads to the following:

Let c(x1, . . . ,xn) be a constraint requiring a non-option variable of type T in the ith

position, then if xi is of type opt T , the extended version of the constraint, ce:{xi} for
the ith argument is

ce:{xi}(x1, . . . ,xn)⇔ (xi �=�∧ c(x1, . . . ,xn))∨ (xi =�∧∃xi.c(x1, . . . ,xn)) .

Thus either the variable xi takes a non-� value and the constraint acts as usual, or the
variable takes the � value and the constraint acts as if xi was projected out.

Modelling with Option Types in MiniZinc 91

We can extend this to lift arbitrary numbers of variables as follows. Define ce:S where
S ⊆ vars(c) as c when S = /0 and (ce:S′)e:{x} when S = S′ ∪{x} otherwise. The meaning
of the lifting is independent of order; e.g.:

ce:{x}e:{y}
(x,y,z) = ce:{y}e:{x}

(x,y,z)

Note that while the lifting operation does distribute over disjunction, it does not
distribute over conjunction.

Example 4. When y = � the constraint ce:{y}(x,y,z) where c(x,y,z) = x ≤ y∧ y ≤ z, is
equivalent to x ≤ z, whereas x ≤e:{y} y∧ y ≤e:{y} z is equivalent to true.

Note that pushing negations into relations is not a valid transformation with option
types.

Example 5. When y = � the expression ¬(x =e:{y} y) is equivalent to false, while

ce:{y}
2 (x,y) where c2(x,y)≡ x �= y, is equivalent to true.

However, this does not further restrict MiniZinc: pushing negations is already invalid
for MiniZinc given the relational semantics [6] treatment of partial functions.

Since we will usually lift all arguments of a constraint to option types, we define
cp(x1, . . . ,xn) = ce:{x1,...,xn}(x1, . . . ,xn). The lifted version of equality x =p y defines a
weak equality, denoted x =w y, which holds if x equals y or either x or y is �. In order
to give names to expressions of option type and support substitutivity we also need the
strong equality, x =s y (or just x = y), which holds if x and y are identical, e.g. it is false
if x takes value � and y takes a value different from �.

Example 6. Given a constraint Oi j + di j ≤ S j between an optional variable Oi j and
standard variable S j, then if Oi j =� the constraint is automatically satisfied. Note that
it is important to disregard the possible values of the optional variable which are not
� when determining the meaning. If Oi j had a domain of 0..10∪ {�} and duration
di j = 4 then we do not want to have this constraint force S j ≥ 4 even when Oi j = �.
The projection interpretation does not constrain S j since Oi j can take value −∞ (or any
value not larger than l − 4 where l is the lowest value in the domain of S j).

Compression Interpretation. An alternate intuition for extending constraints to option
types exists for constraints with an n-ary array argument. In this alternate interpretation,
the compression interpretation, we treat the constraint as if � values had been removed
from the array argument.

Example 7. Given a constraint alldifferent on array of optional variables W =
{wi | 1≤ i≤m}, then under the assumption that w1 =w2 = · · ·=wk =�,k <m then the
compression interpretation of alldifferentc([�, . . . ,�,wk+1. . . . ,wm]) is the con-
straint alldifferent([wk+1, . . . ,wm]). Note that for alldifferent the compres-
sion interpretation and the projection interpretation agree, sincealldifferente:W (w)
is equivalent toalldifferent([wk+1, . . . ,wm])when w1 =w2 = · · ·=wk =�,k<m.

92 C. Mears et al.

While the projection and compression interpretation often agree, there are constraints
where they do not.

Example 8. Consider the constraint sliding_sum(l,u,k,v) which requires that l ≤
v[i]+ . . .+ v[i+ k− 1]≤ u,∀1 ≤ i ≤ n− k+ 1 where n is the length of the array v. The
projection interpretation allows a � value for v[j] if there is some value that keeps all
the sliding sums in the right range. For example sliding_sump(1,2,3, [1,1,�,1,1])
holds since it is satisfied for v[3] = 0, but sliding_sump(1,2,3, [1,1,�,0,�,1,1])
does not hold (the only solution would replace each � by 0 but this fails on the middle
3). Compression eliminates the � values from the array, changing the values being
summed, hence sliding_sumc(1,2,3, [1,1,�,1,1]) equals sliding_sum(1,2,3,
[1,1,1,1]) and does not hold, while sliding_sumc(1,2,3, [1,1,�,0,�,1,1]) equals
sliding_sum(1,2,3, [1,1,0,1,1]), and does hold.

The compression interpretation must be modified when we have a tuple of arrays
used to represent an array of tuples.

Example 9. Given a constraint cumulative(s,d,r,L) where s are optional variables,
and assuming that s1 = s2 = · · ·= sk =�,k < n, then the constraint under the projection
interpretation is equivalent to cumulative([sk+1, . . . ,sn], [dk+1, . . . ,dn], [rk+1, . . . ,rn],
L); that is, we treat the constraint as if the tasks whose start time is optional did not ex-
ist in the constraint. Note that this is equivalent to a compression interpretation which
removes the “corresponding” values of other arrays. Under the assumption that the du-
rations d and resources r are also optional, and assuming that r1 = �,d2 = �,s3 =
�,r4 =�,d5 =�,s6 =� then the projection interpretation of the constraint is equiva-
lent to cumulative([s7, . . . ,sn], [d7, . . . ,dn], [r7, . . . ,rn],L).

Given that the projection interpretation is clear for any constraint and usually agrees
with the compression interpretation when that makes sense, for MINIZINC we define
the projection interpretation as the meaning for lifting a constraint to option types.

2.2 Lifting Functions to Option Types

MINIZINC includes many built-in functions (and operators) and also allows users to
define their own functions. Lifting existing functions from standard types to option
types is also important, so that the modeller can concisely make use of functions in
their models with option types. Again we want to have a clear policy so the modeller
understands how functions interact with option types.

First note that mapping functions to relations and using the projection-based lifting
does not give us what we want. Consider the constraint plus(x,y,z) defined as x+y = z.
Then plusp(i,�, j) holds for all i and j (the � takes the value j− i), hence we have lost
the functional nature of the expression x+ y!

Absorption Lifting. A straightforward extension of functions to option types is to treat
the absent value as an absorbing element:

Modelling with Option Types in MiniZinc 93

x⊕a y
def
=

⎧⎨⎩
� if x =�
� if y =�
x⊕ y otherwise

The absent value can be viewed as “contagious”. This definition can transform any
function ⊕ : A×B →C to ⊕a : opt A×opt B → optC.

Identity Lifting. The intended meaning of the absent value is that it should be ignored
wherever possible. With this in mind, binary operations of the form ⊕ : S× S → S can
be lifted to ⊕i : opt S×opt S → opt S by the definition:

x⊕i y
def
=

⎧⎨⎩
y if x =�
x if y =�
x⊕ y otherwise

For these operations the absent value acts as the identity: for + it is zero, for ∧
it is true, and so on. When both values are absent, the result of the operation is ab-
sent. This definition is the natural conversion from the semigroup (S,⊕) to the monoid
(S ∪ {�},⊕i). Note we can still use identity lifting for operations like min even though
its identity element (+∞) is not in the usual domain of integer variables.

Arithmetic subtraction and division are not associative, and therefore do not form
semigroups. The above definition does not make sense for these operators since they
do not have left-identities. However these operators do have right-identities, and so
identity-lifting can be extended to this case by defining:

x⊕r y
def
=

⎧⎨⎩
� if x =�
x if y =�
x⊕ y otherwise

Effectively when we lift a function then an absent value in a position where it has no
identity element gives an absent result. For example 3−� = 3 since � acts as 0, but
�−3=� since there is no identity in this position. Note that the result is absent if and
only if x is absent.

Unary Operators and Functions. Unary operators and functions ⊕ : S → S can be
lifted naturally to ⊕a : opt S → opt S. Absorption lifting is the only thing that makes
sense for a unary function.

Boolean Operations. Objects of type opt bool, optional Booleans, are not common
when modelling with optional variables, since usually optionality is captured within
lifted constraints (which only take two-valued truth values). But we can directly create
objects of type opt bool. For the Boolean operations ∧ and ∨ we use identity lifting,
and negation (¬) uses absorption lifting like any other unary operator. This defines a
three-valued logic where an absent value has the effect that it neither contributes to
satisfying a proposition nor hinders it. For example, both A∧i � and A∨i � are simply
equivalent to A.

94 C. Mears et al.

This is not a standard three-valued logic, for example while De Morgan’s laws still
hold, distribution of ∧ over ∨, and vice versa do not. Essentially the � value acts as a
context sensitive default value.

Absorption lifting of logical operators corresponds to Kleene’s weak (or Bochvar’s
internal) three-valued logic [10,2]. Unfortunately, absorption lifting does not accord
with our intuition as it makes �∧a C equal to � rather than C. Note that both of the
standard three-valued logics—Łukasiewicz’s [18] and Kleene’s (strong) three-valued
logics—also conflict with our intuition, as they make �∧ true equal to � rather than
true.

N-ary Functions. The identity-lifted functions permit the easy definition of many use-
ful n-ary functions over optional variables. For example:

Σ jx j = 0+ x1+ x2 + · · ·+ xn Σ i
jx j = 0+i x1 +

i x2 +
i · · ·+i xn

∀ j.b j = true∧b1 ∧b2 ∧·· ·∧bn ∀i j.b j = true∧ib1 ∧i b2 ∧i · · · ∧i bn

∃ j.b j = false∨b1 ∨b2 ∨·· ·∨bn ∃i j.b j = false∨ib1 ∨i b2 ∨i · · · ∨i bn

In these cases, if all variables x j or b j are absent then the result is the default zero,
true or false value. That is, these functions have the type array of opt T → T .

The meaning of an n-ary function where some of the arguments are � is the function
with those arguments omitted, as in the compression interpretation for relations. For
example, an absent value in a forall will not cause it to be false.

In some cases we may wish for an n-ary function of type array of opt T →
opt T , where if all argument values are absent the result is also absent. This is the
only choice for functions where there is no default value, such as minimum.

minimum(X) = min(x1,min(x2, . . .min(xn−1,xn) . . .))
becomes

minimumi(X) = mini(x1,mini(x2, . . .mini(xn−1,xn) . . .))
Thankfully most builtin functions in MINIZINC are either unary, binary, or n-ary

functions resulting from folding binary functions. It is not necessarily obvious how to
extend other functions to option types, and hence we do not propose any lifted meaning
for these, although we could suggest absorption lifting as the default.

For some models it is convenient to make use of the absorption-lifted form of a func-
tion even if it has an identity-lifted form. This can make defining complex interactions
of optional variables more natural.

Example 10. Consider the span constraint [11] on optional tasks: span(s0,d0,
[s1, . . . ,sn], [d1, . . . ,dn]) where si are optional start times and di are durations. The span
constraint ensures that task 0 starts at the earliest start time of any task 1 ≤ i ≤ n
and ends at the last end time, and if none occurs then s0 = �. The start time con-
straint is captured by s0 =s minimum([s1, . . . ,sn]). If each of s1, . . . ,sn are � then
the minimum function forces s0 = �. In contrast the end time constraint is not cap-
tured by s0 +

i d0 =s maximum([s1 +
i d1, . . . ,sn +

i dn]) since even absent start times
can contribute to the max if the corresponding duration is large. Instead we need
s0 +

a d0 =s maximum([s1 +
a d1, . . . ,sn +

a dn]) where +a is the absorption lifted version
of the + function. Only the tasks that occur will contribute to the maximum.

Modelling with Option Types in MiniZinc 95

3 Using Option Types in MiniZinc

Option types are included in MINIZINC with the addition of a new type constructor
opt, which maps a type to an option version of the type. An ordinary constraint lifted
to option types uses the projection interpretation, and a function lifted to option types
uses absorption lifting, except for the binary operators where identity lifting applies
(and folds over these operators).

3.1 Basic Modelling with Option Types

Two versions of equality are provided for option types: a strong equality =s, denoted =,
which ensures that both sides are identical, and a weak equality =w, denoted ~=, which
also holds if either side is �. The actual value � is represented in models using _ and
has polymorphic type opt $T. But we suggest avoiding using it directly, and instead
provide two (polymorphic) primitive constraints defined on option types:

predicate occurs(var opt $T: x) = not absent(x);
predicate absent(var opt $T: x) = (x = _);

where occurs(x) iff x �= � and absent(x) iff x = �. Clearly occurs is the negation of
absent. Both are provided for clarity of modelling.

Example 11. A MINIZINC model for flexible job shop scheduling as discussed in Ex-
ample 1 is shown below. Note that the optional variables are used to give start times
for the version of the tasks starting on each machine. The disjunctive constraint is
the version lifted for option types. The alternative constraints are directly defined
on option types; they enforce the span constraint (see Example 10) as well as ensur-
ing at most one optional task actually occurs. The redundant cumulative constraint
ensures no more than k tasks run at one time. The aim is to minimize the latest end time.

int: horizon; % time horizon
set of int: Time = 0..horizon;
int: n; % number of tasks
set of int: Task = 1..n;
int: k; % number of machines
set of int: Machine = 1..k;
array[Task,Machine] of int: d;
int: maxd = max([d[t,m] | t in Task, m in Machine]);
int: mind = min([d[t,m] | t in Task, m in Machine]);
array[Task] of var Time: S;
array[Task] of var mind..maxd: D;
array[Task,Machine] of var opt Time: O;
constraint forall(m in Machine)

(disjunctive([O[t,m]|t in Task],[d[t,m]|t in Task]);
constraint forall(t in Task)(alternative(S[t],D[t],

[O[t,m]|m in Machine],[d[t,m]|m in Machine]));
constraint cumulative(S,D,[1|i in Task],k);
solve minimize max(t in Task)(S[t] + D[t]);

96 C. Mears et al.

Example 12. A MINIZINC model for the problem of assigning m workers to n tasks
discussed in Example 2 is shown below. The constraint is simply an alldifferent
over optional variables.

int: n; % number of tasks
int: m; % number of workers
array[1..m] of var opt 1..n: w; % task for each worker
constraint alldifferent(w);
solve satisfy;

Example 13. Similarly a MINIZINC model for the compatible worker assignment prob-
lem discussed in Example 3 is shown below.

int: n; % number of tasks
int: m; % number of workers
array[1..m,1..m] of bool: compatible;
array[1..m] of var 1..n: w; % task for each worker
array[1..n] of var opt 1..m: t; % worker for each task
constraint inverse(w,t);
constraint forall(j in 1..n-1)(compatible[t[j],t[j+1]]);
solve satisfy;

Example 14. The span constraint of Example 10 can be expressed as shown below,
where ~+ is a new operator added to MINIZINC to encode absorption lifted addition.

predicate span(var opt Time:s0, var int: d0,
array[int] of var opt Time:s, array[int] of int:d) =

s0 = min(s) /\
(absent(s0) -> d0 = 0) /\
s0 ~+ d0 = max([s[i] ~+ d[i] | i in index_set(s)]);

The first line makes use of strong equality to ensure that s0 is absent if each of the
tasks in s is absent. The second line of the definition ensures that if the spanning task is
absent, then its duration is fixed (to zero). The third line use absorption lifted + (written
~+) to constrain the end time. We can define alternative using span.

3.2 Extending Comprehension Syntax Using Option Types

A significant advantage of the addition of option types for MINIZINC is that it allows
us to increase the expressiveness of comprehensions in the language. At present an
array comprehension expression of the form [f (i) | i in S where c(i)] requires that
S is a fixed set and c(i) is a condition that does not depend on decision variables (has
type/mode par bool). Once we include option types this can be relaxed.

Suppose f (i) is of type T . We allow c(i) to be dependent on decisions (type/mode
var bool) by modifying the array comprehension to output an array of opt T rather
than an array of T , with the interpretation that if c(i) = false then f (i) is replaced by �.

Modelling with Option Types in MiniZinc 97

Hence we rewrite [f (i) | i in S where c(i)] as1

[if c(i) then f (i) else � endif | i in S]

Once we have extended the where clause to be decision dependent it is straightfor-
ward to also support comprehensions where the set S is itself a decision variable. The
comprehension [f (i) | i in S where c(i)] where S is a set decision variable is equiva-
lent to [f (i) | i in ub(S) where i ∈ S∧ c(i)] where ub(S) returns an upper bound on
the set S. Note that all set variables in MINIZINC are guaranteed to have a known finite
upper bound. Generating comprehensions over variable sets can be highly convenient
for modelling. The constraint language ESSENCE [7] has a similar feature but only for
specific functions like sum. In MINIZINC since comprehensions generate arrays that
can be then used as arguments to any predicate or function, this is impossible without
option types.

Example 15. Consider the Balanced Academic Curriculum problem [4] (problem 30 in
CSPlib (www.csplib.org)). The computation of the total load T [s] of a student s,
taking courses C[s] where course c has load L[c], is usually defined in MINIZINC as

array[Student] of var set of Course: C;
constraint forall(s in Student)

(T[s] = sum(c in Course)(bool2int(c in C[s])*L[c]));

but a more natural formulation is simply

array[Student] of var set of Course: C;
constraint forall(s in Student)(T[s] = sum(c in C[s])(L[c]));

which can be transformed automatically to

array[Student] of var set of Course: C;
constraint forall(s in Student)

(T[s] = sum(c in Course)
(if c in C[s] then L[c] else _ endif));

The sum is now over optional integers. We can use the same syntax even for a user
defined function, e.g. if we are interested in calculating average course load A[s]

constraint forall(s in Student)(A[s] = average(c in C[s])(L[c]))
;

function var float: average(array[int] of var opt int:x) =
int2float(sum(x)) /
sum([1.0 | i in index_set(x) where occurs(x[i])]);

This also allows us to use option types to express open global constraints in a closed
world [9], that is global constraints that act on a set of variables which is part of the
decisions made, but is bounded. For example if the set decision variable S holds the set
of indices of variables x to be made all different, we can express this as

1 To support this we need to extend if-then-else-endif in MINIZINC to allow non-
parametric tests, or use the alternate translation [�, f (i)][bool2int(c(i)) + 1] (that is, an
array lookup returning � if c(i) is false and f (i) otherwise).

www.csplib.org

98 C. Mears et al.

constraint alldifferent([x[i] | i in S]);

which becomes

constraint alldifferent([if i in S then x[i] else _ endif |
i in ub(S)]);

creating a call to lifted alldifferent with exactly the right behaviour (variables
whose index is not in S are ignored).

4 Implementing Option Types in MiniZinc

Changes to MINIZINC to support option types are surprisingly small. The major change
is the addition of the opt type constructor to the language and an additional automatic
coercion from type T to opt T , and the extension of type inference to handle the new
type constructor and coercion.

The remainder of the changes are simply adding a library of lifted definitions of
predicates and functions to the system. In this library a decomposition is defined for
each of the FLATZINC predicates lifted to option types. Similarly the global constraints
of MINIZINC are defined in a library lifted to option types.

4.1 Rewriting Option Type Variables

Critically the option type library translates away option types so that underlying solvers
do not need to support (and indeed never see) option types. The key to translation is
replacing a variable x of type opt T by two variables: a Boolean ox encoding occurs(x),
and vx of type T encoding the value of x if it is not �. If the optional variable x does not
occur then ox = false and the value vx is left unconstrained.

These are encoded using special functions vx = deopt(x) and ox = occurs(x). These
two functions are the “primitive” operations on option variables. They are used as terms
to represent the encoding, and rely on common subexpression elimination to ensure
that there is a unique representation for each optional variable x. These functions are
extended to arrays of variables in the natural way. Only in the last stage of transla-
tion to FLATZINC are these expressions replaced by new FLATZINC variables. Finally,
variables on option types are removed if they do not appear in any constraints in the
resulting FLATZINC model.

4.2 Lifting Constraints

Given this encoding we can lift constraints automatically according to the projection
interpretation. Existential quantification corresponds to introducing fresh variables in a
let expression. For example, given a predicate p(array[int] of var int: x,

var int: y), the MINIZINC compiler could automatically generate the lifted version

predicate p(array[int] of var opt int: x, var opt int: y) =
let { array[index_set(x)] of var int: xx; constraint xx ~= x;

var int: yy; constraint yy ~= y; } in p(xx,yy);

Modelling with Option Types in MiniZinc 99

Although this automatic lifting would be correct, we can often define better versions
of lifted constraints that avoid introducing all those temporary variables.

Example 16. The lifted version on integer disequality int_ne can be defined without
introducing additional variables as

predicate int_ne(var opt int: x, var opt int: y) =
(occurs(x) /\ occurs(y)) -> (deopt(x) != deopt(y));

It simply enforces the disequality if both optional variables occur. Similar definitions
exist for all primitive constraints.

4.3 Global Constraints over Option Types

Using the usual MINIZINC rewriting capabilities we can define default decompositions
for global constraints over option types. In many cases these can be the same as the
regular decomposition.

Example 17. The standard decomposition for alldifferent is given below rewrit-
ten for option types by adding opt to the type.

predicate alldifferent(array[int] of var opt int: x) =
forall(i,j in index_set(x) where i < j)(x[i] != x[j]);

This gives a correct implementation since the calls to != will be replaced by int_ne
over option types, as defined above in Example 16.

For certain global constraints we may be able to do better than simply reusing a
standard decomposition.

Example 18. If the underlying solver supports alldifferent_except_0 we can
use that to translate alldifferent on optional variables. In the new array ox, we
shift the values of the original array x to be above 0 and map � for x variables to 0.

predicate alldifferent(array[int] of var opt int: x) =
let { int: l = lb_array(x); int: u = ub_array(x);

array[index_set(x)] of var 0..u-l+1: ox; } in
alldifferent_except_0(ox) /\
forall(i in index_set(x))

((absent(x[i]) -> ox[i] = 0) /\
(occurs(x[i]) -> ox[i] = deopt(x[i])-l+1));

Example 19. A solver supporting the cumulative constraint could implement the
disjunctive constraint by modelling absent tasks as using zero resources:

predicate disjunctive(array[int] of var opt int: s,
array[int] of int: d) =

cumulative(deopt(s),d,
[bool2int(occurs(s[i])) | i in index_set(s)],1);

100 C. Mears et al.

4.4 Native Support for Option Types

To achieve better performance, solvers that natively support some option types can de-
fine predicates directly (without decomposition) and they will be passed directly to the
FLATZINC model used by the solver. In order to mix the usage of option types where
some functions and predicates are natively supported and some are not, we require
solvers that natively support option types to natively support the primitive functions
deopt(x) and occurs(x).

Example 20. For a solver that natively supports optional tasks we can add this declara-
tion to its globals library to pass the disjunctive constraint directly to the solver:

predicate disjunctive(array[int] of var opt int: s,
array[int] of int: d);

4.5 Different Encodings

An alternative encoding of option integer type variables (see [17] for details) is to re-
place each optional integer variable x ranging over b..e by a Boolean ox = occurs(x)
(as before) and two integer variables lx = lower(x) ranging over b..e + 1 encoding
the lower bound on x if it occurs, and ux = upper(x) ranging over b− 1..e encoding
the upper bound if it occurs. These are related by ox ↔ lx = ux, ¬ox → lx = e+ 1,
¬ox → ux = b− 1. Propagators are extended to enforce lower bounds on x as lower
bounds on lx, and never enforce a lower bound greater than e. Similarly upper bounds
on x are enforced as upper bounds on ux and never less than b− 1. The advantage of
this representation is that in a CP solver with explanation [15] there are literals encoding
optional lower bounds [lx ≥ d] and optional upper bounds [ux ≤ d].

Example 21. Using this alternate encoding we can define the disjunctive constraint to
make use of a builtin disjunctive on these variables opt3_disjunctive

predicate disjunctive(array[int] of var opt int: s,
array[int] of int: d) =

opt3_disjunctive([occurs(s[i]) | i in index_set(s)],
[lower(s[i]) | i in index_set(s)],
[upper(s[i]) | i in index_set(s)], d);

5 Experiments

In this section, we show that models involving optional variables yield efficient solver-
level models, comparable in performance to a manual encoding of optionality. We have
extended our MINIZINC compiler to handle option types as described in Sect. 4.

As an experiment, we model the flexible job shop scheduling problem as in Exam-
ple 11 and solve it using a lazy clause generation solver, which is the state of the art for
flexible job shop problems as described in [17]. The alternative constraints are im-
plemented using a decomposition into element constraints. For the disjunctive
constraints, we use the three-variable encoding from Sect. 4.5 and compare it with the
following simple decomposition:

Modelling with Option Types in MiniZinc 101

Table 1. Experimental results

Instance decomposition global hand-written [17]
objective runtime #CP objective runtime #CP objective runtime #CP

fattahi/mfjs1 468* 1.60s 8250 468* 1.01s 387 468* 0.97s 388
fattahi/mfjs2 446* 1.53s 10133 446* 1.00s 327 446* 1.01s 330
fattahi/mfjs3 466* 4.49s 24506 466* 3.10s 681 466* 3.37s 697
fattahi/mfjs4 554* 8.84s 24546 554* 7.24s 1024 554* 6.98s 964
fattahi/mfjs5 514* 8.67s 23399 514* 7.30s 881 514* 7.20s 900
fattahi/mfjs6 634* 41.85s 37025 634* 33.70s 3666 634* 32.30s 3474
fattahi/mfjs7 959 — — 909 — — 909 — —
fattahi/mfjs8 1095 — — 889 — — 889 — —
fattahi/mfjs9 1466 — — 1123 — — 1123 — —
fattahi/mfjs10 1609 — — 1395 — — 1395 — —

predicate disjunctive(array[int] of var opt int: s,
array[int] of int: d) =

forall (i,j in index_set(s) where i<j)
(s[i] ~+ d[i] <= s[j] \/ s[j] ~+ d[j] <= s[i]);

Table 1 compares the results of running the lazyfd G12 solver [5] on the same
MINIZINC model using option types with two alternate definitions for disjunctive:
the decomposition and a global using opt3_disjunctive from Section 4.5. The
mapping to FLATZINC without option types is managed completely automatically. We
compare against the hand-written MiniZinc model (hand-written) used in [17], which
uses the same global constraint but with a manual encoding of the option types. Un-
like [17], we use a fixed search in order to test the difference between the models. We
compare the best objective value found (a * indicates the optimal value was proven),
the runtime (or — for > 600s), and the number of choice points (#CP). Comparing the
results shows that the automatic three-variabledisjunctive decomposition matches
the performance of the hand-written models from [17], the only difference being a slight
variation in the explored search tree. The models using the simple decomposition, which
can be used with any solver even if it does not support the global disjunctive constraint
with optional tasks, scale quite well at least for the smaller examples.

6 Related Work and Conclusion

Modelling dependent decisions by hand is common in constraint programming, and
arguably accounts for many models using implication to control whether constraints are
active or not. Optional tasks [11,12] were explicitly added to the modelling language
OPL to handle the common case of scheduling with optional variables. They correspond
to option tuple types (start, duration, end) rather than optional start times we use here.
When MINIZINC is extended to handle tuple types, we will be able to model optional
tasks in exactly the same manner.

Conditional constraint satisfaction problems (CCSPs) [13,8] are strongly related to
option types. A CCSP is a CSP with control on which variables are active; i.e., participate

102 C. Mears et al.

in a solution. It splits the variables V into an initial always active set VI , and a possibly
active set VP, and splits constraints into regular compatibility constraints and activity
constraints, which control which variables need to take a value. Activity constraints can

be of the form c
incl−→ v meaning if c holds v is active, and c

excl−→ v meaning if c holds v
is inactive. A compatibility constraint is relevant if all of its variables are active; irrele-
vant constraints are not imposed. We can straightforwardly model CCSPs using option
types. Variables in VP are lifted to option types. A compatibility constraint c is relevant
if rel(c) ≡ ∧v∈vars(c)∩VP

occurs(v), and is modelled as rel(c) → c. Activity constraints
are modelled directly as rel(c)∧c → occurs(v) for inclusion and rel(c)∧c → absent(v)
for exclusion. Since conditional CSPs build on a traditional CSP framework they don’t
consider global constraints and complex Boolean and integer expressions and hence they
in effect use a very simple form of constraint lifting, relevance, which is analogous to
absorption lifting. This lifting does not give the behaviour we want for optional tasks
for example.

Previous work [16] has attempted to reformulate CCSPs into ordinary CSPs by
adding a “null” value to the domains of possibly active variables. This approach was
necessary because the constraint solvers used in that work only supported extensional
table constraints. Our approach generates implications involving arbitrary constraints,
which builds on the support for reification in MINIZINC.

Recently Caballero et al [3] built a transformation that allows the user to extend base
types of MINIZINC (float, int and bool) with additional values and map them
to MINIZINC. This could be used to implement option base types, but the meaning of
extended constraints and functions is left to the user to define. The work is very similar
in flavor; there the type extension is more general, and the meaning defined by the user,
while the translation to base MINIZINC is fixed. Here the extension is fixed—and a
strong contribution is to define the meaning of the extension—while the translation to
MINIZINC can be redefined.

Option types share some similarities to the treatment of partial functions in the rela-
tional semantics [6] adopted by MINIZINC. Partial functions introduce an undefined
element ⊥ which in the relational semantics percolates up to the nearest enclosing
Boolean context, where it is treated as false. Option types are more complex, the ex-
tra value � percolates up to where there is an identity element, then acts like identity.
A four-valued treatment of the semantics of MINIZINC would be ideal, but would not
match the reality of the underlying two-valued solving technology.

Option types are a simple yet powerful addition to a modelling language. They allow
concise and natural expression of circumstances where some decisions are irrelevant if
other decisions are not made. Adding option types to MINIZINC turns out to be surpris-
ingly easy, and also allows us to extend the comprehension syntax. We can use option
types to recreate the state-of-the-art solution to flexible job shop scheduling problems.

References
1. Beldiceanu, N., Carlsson, M., Demassey, S., Petit, T.: Global constraint catalogue: Past,

present and future. Constraints 12(1), 21–62 (2007)
2. Bochvar, D., Bergmann, M.: On a three-valued logical calculus and its application to the anal-

ysis of the paradoxes of the classical extended functional calculus. History and Philosophy
of Logic 2, 87–112 (1981)

Modelling with Option Types in MiniZinc 103

3. Caballero, R., Stuckey, P.J., Tenoria-Fornes, A.: Finite type extensions in constraint program-
ming. In: Schrijvers, T. (ed.) PPDP 2013, pp. 217–228. ACM Press (2013)

4. Castro, C., Manzano, S.: Variable and value ordering when solving balanced academic cur-
riculum problems (2001), http://arxiv.org/abs/cs/0110007

5. Feydy, T., Stuckey, P.J.: Lazy clause generation reengineered. In: Gent, I.P. (ed.) CP 2009.
LNCS, vol. 5732, pp. 352–366. Springer, Heidelberg (2009)

6. Frisch, A.M., Stuckey, P.J.: The proper treatment of undefinedness in constraint languages.
In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 367–382. Springer, Heidelberg (2009)

7. Frisch, A.M., Harvey, W., Jefferson, C., Hernández, B.M., Miguel, I.: Essence: A constraint
language for specifying combinatorial problems. Constraints 13(3), 268–306 (2008)

8. Geller, F., Veksler, M.: Assumption-based pruning in conditional CSP. In: van Beek, P. (ed.)
CP 2005. LNCS, vol. 3709, pp. 241–255. Springer, Heidelberg (2005)

9. van Hoeve, W.J., Régin, J.C.: Open constraints in a closed world. In: Beck, J.C., Smith, B.M.
(eds.) CPAIOR 2006. LNCS, vol. 3990, pp. 244–257. Springer, Heidelberg (2006)

10. Kleene, S.C.: Introduction to Metamathematics. North Holland (1952)
11. Laborie, P., Rogerie, J.: Reasoning with conditional time-intervals. In: Wilson, D.C., Lane,

H.C. (eds.) FLAIRS 2008, pp. 555–560. AAAI Press (2008)
12. Laborie, P., Rogerie, J., Shaw, P., Vilím, P.: Reasoning with conditional time-intervals part

II: An algebraical model for resources. In: Lane, H.C., Guesgen, H.W. (eds.) FLAIRS 2009,
pp. 201–206. AAAI Press (2009)

13. Mittal, S., Falkenhainer, B.: Dynamic constraint satisfaction problems. In: Proceedings of
the National Conference on Artificial Intelligence (AAAI), pp. 25–32 (1990)

14. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc: Towards
a standard CP modelling language. In: Bessiere, C. (ed.) CP 2007. LNCS, vol. 4741, pp.
529–543. Springer, Heidelberg (2007)

15. Ohrimenko, O., Stuckey, P.J., Codish, M.: Propagation via lazy clause generation. Con-
straints 14(3), 357–391 (2009)

16. Sabin, M., Freuder, E.C., Wallace, R.J.: Greater efficiency for conditional constraint satis-
faction. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 649–663. Springer, Heidelberg
(2003)

17. Schutt, A., Feydy, T., Stuckey, P.J.: Scheduling optional tasks with explanation. In: Schulte,
C. (ed.) CP 2013. LNCS, vol. 8124, pp. 628–644. Springer, Heidelberg (2013)

18. Łukasiewicz, J.: On three-valued logic. In: Borkowski, L. (ed.) Selected works by Jan
Łukasiewicz, pp. 87–88. North Holland (1970)

http://arxiv.org/abs/cs/0110007

Interactive Design of Sustainable Cities

with a Distributed Local Search Solver

Bruno Belin1, Marc Christie2, and Charlotte Truchet1

1 University of Nantes, Laboratoire d’Informatique de Nantes Atlantique,
Nantes, France

2 University of Rennes 1, IRISA/INRIA Rennes Bretagne Atlantique,
Campus de Beaulieu, Rennes, France

Abstract. Within the last decades, the design of more sustainable cities
has emerged as a central society issue. A city, in the early stage of its
design process, is modeled as a balanced set of urban shapes (residential,
commercial, or industrial units, together with infrastructures, schools,
parks) that need to be spatially organized following complex rules. To
assist urban planners and decision makers in this largely manual and
iterative endeavor, we propose the design of a computer-aided decision
tool which first automatically organizes urban shapes over a given empty
territory, and then offer interactive manipulators that allow the experts
to modify the spatial organization, while maintaining relations between
shapes and informing experts of the impact of their choices. We cast
the problem as a Local Search optimization in which we perform a se-
quence of swaps between urban shapes, starting from a random initial
assignment. We extend the algorithm with novel heuristics to improve
computational costs and propose an efficient distributed version. The
same algorithm is used for the automated and interactive stages of the
design process. The benefits of our approach are highlighted by examples
and feedbacks from experts in the domain.

1 Introduction

In a world where more than 50% of the population lives in urban areas and where
United Nations’ projections mention a global urbanization rate of around 70%
for 2050 [1], crucial questions arise on how to develop conditions for a balance
between people, environment and cities. China for example, plans to annually
create twenty whole new cities from now to 2020, around one million inhabitants
each, to accommodate farmers in urban environments [2].

The process of designing whole new cities is by nature a collaborative endeavor
gathering urban planners and decision makers around a coarse-grain map of a
territory on which to place urban shapes such as centers, industries, housings,
commercial units, public equipments, etc. The number of elements as well as
their spatial layout needs to be strongly guided by a collection of rules related
to social, economic, energy, mobility and sustainability issues.

H. Simonis (Ed.): CPAIOR 2014, LNCS 8451, pp. 104–119, 2014.
c© Springer International Publishing Switzerland 2014

Interactive Design of Sustainable Cities 105

Fig. 1. A 4-stage design process of a urban environment (1) Setting contours, proper-
ties, central areas and intensity footprints (2) Computing the number of urban shapes
by level of intensity (3) Automatically positioning urban shapes while enforcing con-
straints and favouring preferences (4) Interactively manipulating urban shapes while
maintaining constraints and preferences. The last two stages are at the core of this
contribution.

The urban planning community actually lacks tools to assist this initial de-
sign process, and the literature is focused on addressing the problem of pre-
dicting the evolution of urban environments. Given a current state, and a set
of evolution rules (land price, employment rate, extension,...), tools such as the
UrbanSim framework compute the evolution of the city using agent-based repre-
sentations [3], or focus on more narrow issues [4]. In computer graphics, multiple
contributions target the creation of new cities [5, 6], however primarily focusing
on computational models capable of encoding the stylistic appearance of the
city (eg. mimicking existing ones), rather than its functional dimensions (some
aspects such as land-use are however addressed, see [7]).

In contrast, the recent work of Vanegas etal. [8], integrate a functional de-
scription of the city by relying of UrbanSim’s evolution models, yet do not offer
any interactive editing tools, and are not designed in mind for urban planners or
decision makers. Finally, some design tools are available to urban planners (such
as CommunityViz [9]1), which offer automated and interactive design tools but
address the problem at a very detailed level. The early stage design process of
urban environments essentially remains a manual editing process.

1 http://placeways.com/communityviz/

http://placeways.com/communityviz/

106 B. Belin, M. Christie, and C. Truchet

In this context, we propose a computer-aided decision tool to assist designers
in their task following a 4-stage process described in Figure 1: (1) the designer
sets city contours, properties, central areas and intensity footprints over a reg-
ular grid (intensity footprints are areas with a given population density); (2) a
knowledge-driven process computes the number of urban shapes of each kind
(housing, industry,...) per level of intensity given an expected employment rate
together with country-specific values; (3) urban shapes are then automatically
positioned on the regular grid while enforcing constraints and favouring prefer-
ences between urban shapes in relation to social, economic and sustainability
issues; (4) the designer then manipulates the urban environment while main-
taining constraints and preferences. Our tool is part of the SUSTAINS project,
a national-funded French research project gathering urban planners and com-
puter scientists. The goal of the project is to deploy a software suite for designing
new cities, taking into account the city footprints, and the automated compu-
tation of energetic impacts. The suite is made for urban planners and decision
makers. It will include an interactive communication tool on large tactile surfaces
for public engagement. This paper focuses on stages 3 and 4.

More specifically, we address the problem of automatically positioning urban
shapes on a territory, and propose a local search method in order to automatically
compute realistic coarse-grain maps, which can then be interactively modified
while respecting some urban constraints. Compared to the state-of-the-art, our
method reduces the amount of information that the user must provide, and
optimizes the land use taking into account multiple constraints and preferences.
One of its key feature is the solver interactive mode, where a user can modify the
solution by hand while the system maintains the constraints in interactive time.
To practically address the issue of scalability, we devised a distributed version of
the solving process. A video detailing results and displaying interactive modes
is available here http://vimeo.com/80211470.

The paper is organized as follows. Section 2 introduces the key concepts ex-
pressed by urban planners, focusing on sustainable land-use. Section 3 describes
our representation of constraints and preferences. Section 4 details our solving
method, based on a distributed Local Search (LS), for generating a good initial
solution and handling interaction. Section 5 presents experimental results, with
a redesign of the Marne-la-Vallée city (east of Paris) which is spread over an
area of 8728 hectares (87.28 km2) with 234 644 inhabitants.

2 A Model for Early Stage Design of Sustainable Cities

The early stage design of a city consists in first selecting the number and the na-
ture of all urban shapes composing the city and then spatially organizing them,
by taking into account environmental, social, mobility and energy aspects. Sev-
eral parameters have to be controlled: population density, landscape constraints,
employment rate. The employment rate is calculated by dividing the number of
jobs by the working-age population living in a specific area. An employment rate
close to 1 corresponds to an ideal situation where each resident can access a job

http://vimeo.com/80211470

Interactive Design of Sustainable Cities 107

Fig. 2. Urban shapes automatically spread over the experimental area of Marne-la-
Vallée city, taking into account the constraints of sustainable urban development ex-
pressed by urban planners

and housing in the area, minimizing commuting. An employment rate far from 1
has severe consequences, inducing incoming or outgoing congestions. This early
stage enables decision-makers and stakeholders to agree on the broad guidelines
of a preliminary project before initating a costly quantity survey.

2.1 Urban Model

In urban planning, modeling consists in simplifying the reality of the world in
order to better understand how decisions and events interact. It allows to test
solutions that may affect political decisions and strategies which may lead to a
desirable future [10]. In this paper, the urban model proposed by urban planners
is based on the core concepts that are blocks, central areas, intensities and urban
shapes incorporating, in a systemic approach, major urban constraints linked to
urban sustainable development.

Block. The city block whose outlines are defined by the roads is the finest level of
granularity selected by urban planners. Blocks are represented in grid patterns
with a mesh size of 80 meters long. It is assumed that each city block hosts one
single urban shape (housing, industry, shop, school, etc).

Central Area. A very important notion for urban planners is that of central
area, a structuring place which gives its name to the neighbourhood. The feeling
of belonging to a neighbourhood coincides with the influence area of the place,
estimated at a 300 meters radius.

Urban Shape. In our context, a urban shape represents a dominant type of land
use and buildings for a single block. However, the specification of a dominant

108 B. Belin, M. Christie, and C. Truchet

urban shape can integrate a degree of mixed use (a portion of housing, com-
merce, etc.). Twenty eight urban shapes have been proposed and organized in
four groups: residential (detached house, town house, intermediary housing, col-
lective housing), economic activity (industrial, craft, commercial, tertiary), in-
frastructure (elementary school, primary school, secondary school, high school,
sports equipment), and fixed elements (roads, unbuildable zones, rivers, rough
terrains, natural areas, railroads, etc).

Intensity. Intensity is a scale metric related to the density of the population in
an area. It also translates the notion of activity or liveness of an area. High urban
intensity represents a lively neighbourhood, dense, mixed and for which walking
is the simplest way to travel for accessing all the essential urban functions. This
intensity level is located in the city center, while low urban intensity is related
to essentially housing areas. Six intensity levels are defined from 1 for the lowest
intensity to 6 for the highest.

3 A Constraint Model of the Urban Location Problem

For a given territory, the urban model provides the number of urban shapes
of each type, for each level of intensity. The objective is then to arrange the
placement of shapes on the territory. We will refer to this problem as the ur-
ban location problem. The first task is therefore to provide a formalization of
constraints and preferences related to the properties of a sustainable city. Ur-
ban planners naturally express the interactions between different urban shapes
as location preferences, instead of hard constraints (for instance, manufacturing
industries prefer to be next to a river and not far from a highway). We thus
express these preferences into cost-functions and express the problem as an opti-
mization problem. Yet, there also are hard constraints which strictly restricts the
positions of some urban shapes (one does not place an individual house within
an industrial area, for instance).

In the end, the urban location problem encompasses a lot of constraints, some
of them very specific. We distinguish in our presentation the most important,
core constraints, which apply to all of the variables, and specific constraints that
apply only on some areas or on some urban shapes. In the following, only a
limited set of cost functions and constraints are detailed, as many of them are
similar.

3.1 Grid Representation of the City

We represent the city with a regular grid where each cell corresponds to a city
block. The goal is therefore to assign each cell a urban shape among the possible
shapes. Some specific cells are associated with fixed elements (roads, unbuildable
zones, etc), and are therefore considered as not free and left out of the problem
- yet, they are kept on the map since they might interfere with the other urban

Interactive Design of Sustainable Cities 109

forms. Furthermore, each cell is given an intensity level manually specified by the
urban planners (in the early design stage). This allows for instance to represent
centralities on the map (commercial areas, lively squares, etc).

For the sake of simplicity, the grid is viewed as a rectangular array of cells of
size (x×y), but this representation is more symbolic than geometric in that what
is important is the neighborhood and relative placement of the urban shapes, not
the rectangular geometry. Each cell is a variable which value is selected among
all urban shapes: we note Vl,c the variable corresponding to the cell in line l,
column c. The urban shapes are encoded into integer values: (1) Detached house,
(2) Town house, (3) Intermediary housing,..., (19) Breathing space.

3.2 Core Constraints

These constraints cover the whole territory and express fundamental aspects of
sustainable development.

Urban Shape Cardinality. Depending on some features of the final city (num-
ber of inhabitants, size, employment rate, etc), the urban planners are able to
determine how many instances of each urban shape must appear in the city: for
instance, a big city must have a certain surface of parks, a certain surface of in-
dustries, etc. In the constraint problem, this gives a hard cardinality constraint
for each urban shape.

Intensity Requirement. The urban model provides a given intensity level
for each urban shape, and an intensity level for each cell of the grid. Based on
these elements, every assignment of urban shape to a cell must comply with
the intensity correlation between urban shapes and cells. The different levels of
intensity are set by the user on the map. It is a hard unary constraint.

Interaction between Urban Shapes. Each urban shape has placement pref-
erences depending on its nature. For instance, shool units are attracted to res-
idential units, and residential units are repelled by industrial units. We model
these preferences as a function specifying the attraction (or conversely repul-
sion) of each urban shape for another urban shape. Between two urban shapes,
possible interaction values are 0 (double attraction), 10 (single attraction), 20
(neutral), 50 (single repulsion) and 100 (double repulsion). The value of interac-
tion decreases with the increasing distance between two cells.

The interaction preferences are expressed as a cost function. We note I the
interaction matrix, which is an input of the system. Ip,q is the interaction value
between urban shape p and urban shape q. This matrix is asymmetrical, so it may
happen that Ip,q �= Iq,p. For a urban shape located at cell Vl,c, the interaction
cost only depends on its neighbouring cells 2, namely with a set noted Vd

l,c. The
neighbouring cells are defined as:

2 In a geometric neighbouring sense, not the neighbourhood of a LS algorithm.

110 B. Belin, M. Christie, and C. Truchet

Vd
l,c = {Vi,j , i ∈ [l − d, l + d] , j ∈ [c− d, c+ d]} \{Vl,c} (1)

where: d is a parameter controlling the size. Note that this corresponds to a
Moore neighborhood without its center, that is, a set of points at a bounded,
non-null Chebyshev distance from the cell Vl,c. To take the distance influence
into account, we consider the border of Vd

l,c noted V̄d
l,c such that:

V̄d
l,c = {Vi,j , (|i− l| = d) ∨ (|j − c| = d)} (2)

Finally, for a cell Vl,c, the cost function related to our constraint is:

Cost1 (Vl,c) =

D∑
d=1

⎛⎜⎜⎝
∑

v∈V̄d
l,c

(
I(Vl,c,v)

)
|V̄d

l,c| ∗ d2

⎞⎟⎟⎠ (3)

where: D is the maximum interaction distance (in the following, D is set to 3) to
consider between two urban shapes. The cost of a cell Vl,c includes contributions
by all the rings at distance d from Vl,c, but these contributions are decreasing
as d increases. Within a ring, the average contributions of the cells are divided
by a correction factor of d2, in order to obtain a similar effect as the attraction
in physics.

3.3 High Level Constraints

In order to improve the sustainable aspects of our model, we add more specific
constraints to improve the social equity, the preservation of environment and the
economic viability.

Distance. This constraint specifies that some urban shapes must be located
with a minimum distance between them. This distance is expressed as a number
of cells. For example, between an individual house and a high tertiary building
(R+7), we want a minimum separation distance of 4 cells. For this constraint, we
use Euclidean distances that measure the distance of a straight line between two
cells. We note D the distance matrix, with Dp,q the minimum distance permitted
between urban shape p and urban shape q. This matrix is symmetrical. By
convention, Dp,q = 0 when there is no particular distance constraint between p
and q. For a urban shape Vl,c located at (l, c), if DEuc

p,q is the Euclidean distance in
number of cells separating cells p et q, the cost function related to our constraint
is:

Cost2 (Vl,c) =
∑

v∈V4
l,c

(
max

(
DVl,c,v −DEuc

Vl,c,v
, 0
))

(4)

Critical Size Area. Industrial or artisanal areas must have at least a critical
size, otherwise, the area will not be created in practice because it will not be cost-
effective. The critical size is determined by urban designers for each urban shape

Interactive Design of Sustainable Cities 111

that needs grouping (craft activity, industrial activity). There is no maximum
size for a grouping. On the other hand, although it is not explicitly expressed by
designers, the area must have a sufficient compact structure (a notion used by
the urban designers, and intuitively meaning that circles are better than lines or
flat rectangles). For these urban shapes, we thus penalize the cells which belong
to too small groups, or for which the groups are not compact enough.

Accessibility. This constraint concerns only one urban shape: the breathing
spaces. It specifies that, from any inhabited point of the city, a breathing space
should be reacheable by walking less than fifteen minutes, which corresponds
to distance of about 1.25 km (or a distance of fifteen cells). We propose two
complementary versions of this constraint. First, a global version which penalizes
uncovered inhabited cells in proportion to their distance to any breathing space.
And second, a local version which penalizes uniformly uncovered inhabited cells.
The global version is more appropriate than the second one if the number of
breathing spaces to spread over the city is insufficient to cover the entire grid,
but its computation time then depends on the size of the grid. In contrast, the
local version can be computed locally and is relevant if the urban model provides
enough breathing spaces to cover the whole area to develop.

Interspace. This is a constraint inherent to buffer spaces or public equipments.
For specific urban shapes positioned near each other, it is required that they
must not be contiguous (not directly touching), and be separated by a buffer
space or a built equipment. The following urban shapes are considered as buffer
spaces: sport equipment, breathing space and green way while urban shapes like
nursery school, primary school, secondary school, high school, administrative and
technical equipment are considered as built equipments. For example: between
an individual house and a high collective housing (R+7), we have to position a
buffer space.

Footprint. The principle is: when there is, in immediate vicinity of a secondary
or high school, some particular urban shapes (individual houses or town houses,
intermediary or collective housing, tertiary buildings), we must provide a place
around the school, by placing, close to the building, a given number of green
ways. For example, if there is around a secondary school only individual houses,
town houses or intermediary housing, then we must allocate at least one green
way near the school. However, if there is collective housing or tertiary buildings
near the school, we have to build a bigger place around the school with at least
two green ways.

Filtering. This constraint is related to central areas. Central areas are special
cells marked by the user to identify the center of an urban neighbourhood (see
subsection 2.1) and they can combine one, two or four cells in the same area.
This constraint is used to filter the urban shapes that may occupy a central area

112 B. Belin, M. Christie, and C. Truchet

and aid the diversity of urban shapes located on a same group. For this special
cells, we favor a mix of the following urban shapes: schools, sports equipments,
shops, services downtown and green ways.

4 A Solver for the Interactive Design of Sustainable
Cities

The problem addressed in this paper can be viewed as a facility location prob-
lem [11], but in which all the urban elements need to be placed simultaneously.
This urban location problem, is highly combinatorial, hence difficult to solve for
a large number of cells. In addition, we need to deal with two specific require-
ments of the applicative context. First, the algorithm needs to scale up to the
size of real-life cities, with a typical number of cells around 10000 (for a 64km2

city). Second, the users (urban designers and decision makers) also require to
keep their hands on the system, by interactively modifying the assignment of
urban elements to meet their own representations and expectations of locations.

To address both requirements, we designed a system based on two distinct
solving stages. In the first step, the system computes and proposes one or several
good solutions satisfying the urban constraints. And to address the issue of
complexity, we developed a specific solving technique to efficiently handle the
computation on multiple processors. The second step is interactive: the user
modifies the map by moving single or multiple urban elements simultaneously,
and the system adapts the solution by re-solving the constraints in the modified
area, at a close-to-interactive frame rate, keeping the constraints satisfied as
much as possible.

4.1 Initial Resolution with Adaptive Search

Our first attempt to solve this problem relied on complete CP techniques. A pro-
totype designed in the Choco solver [12], with only some of the core constraints,
failed to scale with a computation time of around half an hour for a small 16×16
map, whilst the typical size of our problems reaches 10000 variables.

Sequential Algorithm. We therefore relied on the Adaptive Search (AS)
method which has proven its efficiency on large and various instances [13]. This
meta-heuristic takes advantage of the structure of the problem in terms of con-
straints and variables to guide the search. Our algorithm starts from a random
configuration. At this stage, we make sure that the initial assignment respects
the intensity level of each cell and the given number of cells for each urban shape
(this is analogous to filtering the unary constraint on the intensities and filtering
the urban shapes cardinalities).

The algorithm then performs a variant of iterative repair, based on variable
and constraint error information, seeking to reduce the error on the worst vari-
able so far. The basic idea is to compute the error function for each constraint,

Interactive Design of Sustainable Cities 113

Algorithm 1. Base algorithm - initial resolution

1 /* Parameter: MaxRestart the number of partial resets of the algorithm
f is the global cost function, fi is the cost function for variable Vi

s is the current configuration
T is the adaptive tabu list
j is the index of the variable with the worst cost */

2 s ← random configuration ;
3 T ← ∅ ;
4 while MaxRestart not reached do
5 while T is not full do
6 For all i such that Vi /∈ T , compute fi(s) ;
7 Select Vj a variable for which fj(s) is maximum ;
8 Compute the cost f of the configurations obtained from s by swapping

Vj with another variable ;
9 Select s′ the configuration for which f(s′) is minimum;

10 Update T by removing its oldest variable ;
11 if s′ can improve current solution s then
12 s ← s′;

else
13 T ← T ∪ Vj ;

14 return s

then combine for each variable the errors of all the constraints in which it ap-
pears, thereby projecting constraint errors onto the relevant variables. This com-
bination of errors is problem-dependent [13]. In our case, it is a weighted sum
so that the constraints can be given different priorities.

Finally, the variable with the highest error is designated as the “culprit” and
chosen for a move. In this second step, we consider the swaps involving the
culprit variable and choose the best one according to f . However, there is a
restriction to the set of considered swaps: we only swap two cells assigned to
the same intensity level in order to satisfy the intensity constraint at any time.
This swap policy ensures that the intensity constraint is kept satisfied at every
iteration, as is the urban shape cardinality constraint. The algorithm also uses
a short-term adaptive memory in the spirit of Tabu Search in order to prevent
stagnation in local minima. Note that only the variables which do not improve f
are marked tabu. When the algorithm is stuck, with all variables marked tabu, it
restarts by resetting a given percentage of the variables, randomly chosen. The
AS metaheuristic is described on Algorithm 1. In order to improve the speed of
computations, we use a data cache for all information that require very frequent
access: cost for each variable, groups, etc. We also compute all the costs incre-
mentally, calculating only the delta induced by a swap. To efficiently distribute
the AS algorithm, we also introduced two new features: a multi-candidate mode,
and a multi-swap mode.

114 B. Belin, M. Christie, and C. Truchet

Table 1. Decomposition of the city map into four uniforms parts and distribution to
the different slave processes

① ②

③ ④

Slave 1 2 3 4 5 6 7 8 9 10

Subarea ① ② ③ ④ ①;② ①;③ ①;④ ②;③ ②;④ ③;④

Multi-candidate Mode. In the AS algorithm, only one culprit variable can be can-
didate for a move. We introduce a multi-candidate mode, where all the variables
with a significant cost are considered. For all of them, we consider the possible
swaps as defined above. There are two reasons for this: first, the worst variable
may not be the one which will achieve the best swap. Second, in a distributed
mode, several candidates can be explored in parallel.

Multi-swap Mode. In addition to the multi-candidate management, we add a
pool of best swaps. Instead of dealing with a single best swap for the current
candidate, we store a small number of best swaps (configurable) related to each
considered candidate. There is no significant time overhead because swaps must
anyway be computed. This mechanism simply induces an extra memory foot-
print. Once the pool is filled with the best swap identified for each best candidate,
we apply all the swaps of the pool in sequence, under some conditions. Typically,
performing a swap may strongly change the impact of a further swap in the list.
For a swap to remain valid, it must still produce a profit of a least a ratio (config-
urable) of its previous profit (before the first swap). In the distributed version of
the algorithm, these two mechanisms (multi-candidate, multi-swap) are intended
to take benefit from the work made by the different cores: each core performs an
important amount of calculations, which are lost in the single-candidate, single-
swap version of the algorithm. Although the moves performed in the multi modes
may not be the best to apply sequentially, they still improve the cost. Applying
them comes at no computational cost in the distributed version of the algorithm.

4.2 Distributed Mode

To tackle the complexity of large-scale problems, we propose to distribute the
algorithm on a grid. A multi-walk parallel scheme has already been proposed
for AS [14, 15], with good speed-ups on classical problems. Instead, we choose a
master-slave scheme to distribute the computations. At each iteration, we paral-
lelize the search for the best swaps [16]. We also take benefit of the geographical
/ geometrical layout of our problem, to assign different parts of the map to dif-
ferent cores in a coherent way. We detail here how the algorithm works on 10
cores, in which case the map is divided into 4 equal parts (the process is similar
for a higher number of cores).

The slaves are in charge of examining the possible swaps (cost evaluation and
comparison). Each slave is assigned a couple of subareas, as shown on figure 1: for
instance, slave 1 investigates the swaps of cells located in subarea 1, with other

Interactive Design of Sustainable Cities 115

cells of subarea 1. Slave 5 investigates swaps of cells in subarea 1 with cells in
subarea 2. Note that the overall map is shared between each process, so that they
can compute the global cost. However, each slave searches for the best possible
swaps only on the subareas assigned to it. Given that the search of the best swaps
does not change the state of the map, computing processes can operate in parallel
without any difficulty and without changing procedures.

The slaves are synchronized with a master process that collects all the best
swaps and decides which to apply. In the multi-candidate, multi-swap mode, the
master process deals with the multi-candidate variables. It also collects the pool
of best swaps. Finally, the master process sends the swaps that were applied to
each slave.Once synchronized, the slaves can search again new swaps in parallel.

4.3 Interactive Mode

The second stage of our solving process is interactive. The purpose is to let the
users have a control on the solution through interactive manipulations. In a way
to smartly integrate user interactions, the idea here is to maintain the solving
process active (i.e. continue swapping urban shapes) while the user is performing
changes to the solution. Our interaction process is founded on the idea of having
a pool of cells (POC). A POC represents a sub-region of the map in which urban
shape assignments have already been made, and on which the solving technique
presented in the previous section is applied to locally recompute a good solution.
We then rely on this pool of cells to propose multiple interaction modalities, two
of which are detailed in the following.

Defining Fixed vs. Free Cells. At any moment, the user is able to select a set
of cells which he considers temporarily fixed (in the sense that the associated
urban shapes are constrained to those cells). The POC is built by computing
the difference between all cells of the map and the fixed cells. The solver only
performs its optimization on the cells in the POC. In a similar way, the user
may define a set of free cells, that will then form the POC to which the solver
is applied.

Manually Moving a Urban Shape or a Set of Urban Shapes. To avoid a local
change performed by the user from impacting the whole map (i.e. changing the
entire solution), the direct manipulation of a set of urban shapes has been defined
in a way it only locally impacts the map. To this end, a disc size is first specified
by the user (see Figure 3) that defines the region in which the computations will
be performed around the user’s changes. Then, the users selects one or multiple
urban shapes and interactively moves them around the map. The POC is then
defined by all the cells within the disc, except the cells manipulated by the
users (which values are fixed). Two modes of interaction are proposed. Either
the computation is continuously performed as the user moves the urban shapes.
In such case, the POC is reconstructed and optimized at each move. Or the
computation is performed as the user drops the selected urban shapes at a new
location, in which case, the POC is composed of the union between the disc area

116 B. Belin, M. Christie, and C. Truchet

Fig. 3. Interactive mode: on the top left, a radius around the user’s selected cell defines
the region in which swaps will be performed to best satisfy constraints. On the top
right, a heat map displays the regions in which the costs are the highest (red areas)
and provides feedback on the impact of the changes w.r.t. sustainability constraints.

around the initial location of the selected urban shapes and the disc area around
the final location of the dropped urban shapes. At the initial location, some cells
are no more assigned, while at the final location some urban shapes need to be
reassigned to cells.

These manipulation modes are furthermore supported by a visual feedback
that assists the users in understanding the impact of their decisions. First, a
dynamically recomputed heat map presents the regions in which the costs are
the most important (see top right part of Figure 3). And second, a dynami-
cally recomputed graphical representation displays the global change in score,
together with the change in score for each constraint that is considered (distance,
accessibility, critical size...). Some options of the interactive solving process are
detailed in the accompanying video (see here http://vimeo.com/80211470). In
particular, in situations where the user intentionally moves part of an industrial
zone (on which the critical size area is specified), the solving process automati-
cally repositions all the industrial urban shapes to reform an industrial zone of
specified critical size.

Interestingly, the process is extensible to multiple users performing changes
simultaneously on the same map (e.g. multiple collaborators around a large
tactile device). Each user is assigned his own pool, and solvers for each pool are
distributed on multiple processors. The case of intersecting pools (i.e. two users

http://vimeo.com/80211470

Interactive Design of Sustainable Cities 117

Fig. 4. Tests for different multi-candidate and multi-swap options

manipulating close regions) is easily handled by creating a unique pool being
the union of the two pools.

5 Experiments

Two different experiments were performed to evaluate our system. The first
evaluates the computational costs related to the initial resolution. The second,
less formal, evaluates the benefits of the interactive process through an open
discussion with three senior urban designers.

The application was developed in C++ and is based on the EasyLocal++
framework [17]. About the accessibility constraint (section 3.3), we activated the
local version that offers much better processing times on our real-life benchmark
(e.g. reduced the time to find a best swap from 4 minutes to a few milliseconds
on a 64x64 map). Synchronization between processes is performed by exchang-
ing messages using the message-oriented middleware Apache Active MQ and
the C++ library ActiveMQ-CPP.Experiments were conducted on Grid’5000, a
french cluster available for research (in practice we used granduc in Luxembourg,
with 22 nodes, each one having 2 CPU Intel 2.0GHz, 4cores/CPU, 15GB RAM).
Each experiment was performed and averaged on 10 runs.

Computationnal Costs. Results presented on Fig. 4 for the city of Marne-la-
Vallée (see Fig. 2) address a problem with 9038 variables (i.e. free cells), in
multi-candidate and multi-swap modes. Each run was terminated either when it
reached a specified timeout, or when a good solution was computed We define a
good solution as a solution with a score lower or equal to the score of the best

118 B. Belin, M. Christie, and C. Truchet

solution found during the distributed search with 36 slaves (that is, 1260717).
The results show that the sequential process is slightly improved by activating
the multi-swap mode, but the best improvements are found in the distribution
scheme, which takes full benefit of the multi-candidate and multi-swap mode. In
the end, considering the target score of 1260717, the speed-up between the base
algorithm (multi-candidate mode disabled, multi-swap mode disabled) and its
distributed version (36 slaves, multi-candidate activated with 1 candidate per
slave, multi-swap activated with 10 swaps per slave) is ×11.51. This makes it
possible to run our algorithm on a real-life city in less than one hour, which
appears sufficient for the requirements of urban planners.

Assessment of the Interactive Mode. In the interactive mode, the user can se-
lect and change parts of the solution map, and during theses interactions, the
solver is continuously running. A video accompanying this paper (available at
http://vimeo.com/80211470) shows both the initial resolution and the inter-
active mode on a small example. As can be seen on the video, the recomputation
is performed on a restricted number of cells. The computationnal cost is obvi-
ously cheaper than the initial problem and can nearly be performed in real-time.
Three senior urban designers who assessed the interactive mode were very inter-
ested by the possibility to rearrange and recompute the map, while maintaining
the high-level constraints such as the critical size constraint. Another important
feature for the urban designers is the maintaining of intensities and centralities
while rearranging the map. In practice, the user manipulations are likely to lower
the score of the interaction constraint, but it is convenient not to manually deal
with those structural constraints.

6 Conclusion

In this article, we have first presented means to model the urban location prob-
lem, an important stage of the urban planning process when designing new cities
that consists in laying out urban shapes while ensuring the statisfaction of local
constraints. We then have presented a solver based on a local search algorithm,
the Adaptive Search, which we extended to a parallel version. The proposed
system is able to deal with large-scale problems in a two-stage solving process
well adapted to the need of urban designers: first, an initial resolution provides
the designer with one or several good solutions. The designer can then interact
with the proposed solutions, while the solver maintains the constraints active.
Further research includes refining the model by considering more evolved con-
straints required by the designers, and intregrating it within a complete urban
planning, spanning from early design to full 3D model.

Acknowledgements. Experiments presented in this paper were carried out us-
ing the Grid’5000 experimental testbed, being developed under the INRIA AL-
ADDIN development action with support from CNRS, RENATER and several
Universities as well as other funding bodies (see https://www.grid5000.fr)

http://vimeo.com/80211470
https://www.grid5000.fr

Interactive Design of Sustainable Cities 119

References

[1] United-Nations: Urban and rural areas, world urbanization prospects: The, revision
(2007)

[2] Mars, N., Hornsby, A., Foundation, D.C.: The Chinese Dream: A Society Under
Construction. 010 Publishers (2008)

[3] Waddell, P.: Urbansim: Modeling urban development for land use, transportation,
and environmental planning. Journal of the American Planning Association 68(3),
297–314 (2002)

[4] Dury, A., Le Ber, F., Chevrier, V.: A reactive approach for solving constraint
satisfaction problems. In: Papadimitriou, C., Singh, M.P., Müller, J.P. (eds.) ATAL
1998. LNCS (LNAI), vol. 1555, pp. 397–411. Springer, Heidelberg (1999)

[5] Parish, Y.I., Müller, P.: Procedural modeling of cities. In: Proceedings of the 28th
AnnualConference on ComputerGraphics and InteractiveTechniques, pp. 301–308.
ACM (2001)

[6] Watson, B., Muller, P., Wonka, P., Sexton, C., Veryovka, O., Fuller, A.: Procedural
urbanmodeling in practice. IEEEComputerGraphics andApplications 28(3), 18–26
(2008)

[7] Lechner, T., Ren, P., Watson, B., Brozefski, C., Wilenski, U.: Procedural modeling
of urban land use. In: ACM SIGGRAPH 2006 Research posters, SIGGRAPH 2006.
ACM, New York (2006)

[8] Vanegas, C.A., Aliaga, D.G., Wonka, P., Müller, P., Waddell, P., Watson, B.:
Modelling the appearance and behaviour of urban spaces. In: Computer Graphics
Forum, vol. 29, pp. 25–42. Wiley Online Library (2010)

[9] Kwartler, M., Bernard, R.: Communityviz: an integrated planning support system.
In: Planning Support Systems (November 2001)

[10] Antoni, J.: Modéliser la ville: Formes urbaines et politiques de transport, Collec-
tion “Méthodes et approches”. Economica (2010)

[11] Moujahed, S., Simonin, O., Koukam, A.: Location problems optimization by a
self-organizing multiagent approach. Multiagent and Grid Systems 5(1), 59–74
(2009)

[12] Jussien, N., Rochart, G., Lorca, X.: Choco: An Open Source Java Constraint
Programming Library. In: CPAIOR 2008 Workshop on Open-Source Software for
Integer and Contraint Programming (CPAIOR 2008), pp. 1–10 (2008)

[13] Codognet, P., Dı́az, D.: Yet another local search method for constraint solving. In:
Steinhöfel, K. (ed.) SAGA 2001. LNCS, vol. 2264, pp. 73–89. Springer, Heidelberg
(2001)

[14] Caniou, Y., Codognet, P., Diaz, D., Abreu, S.: Experiments in parallel constraint-
based local search. In: Merz, P., Hao, J.-K. (eds.) EvoCOP 2011. LNCS, vol. 6622,
pp. 96–107. Springer, Heidelberg (2011)

[15] Diaz, D., Abreu, S., Codognet, P.: Targeting the cell/be for constraint-based local
search. Concurrency and Computation: Practice and Experience 24(6), 647–660
(2012)

[16] Talbi, E.: Metaheuristics: From Design to Implementation. Wiley Series on Parallel
and Distributed Computing. Wiley (2009)

[17] Gaspero, L.D., Schaerf, A.: Easylocal++: An object-oriented framework for the
flexible design of local-search algorithms. Softw. Pract. Exper. 33(8), 733–765
(2003)

Sliced Table Constraints:

Combining Compression and Tabular Reduction

Nebras Gharbi, Fred Hemery, Christophe Lecoutre, and Olivier Roussel

CRIL - CNRS UMR 8188,
Université Lille Nord de France, Artois,

rue de l’université, 62307 Lens cedex, France
{gharbi,hemery,lecoutre,roussel}@cril.fr

Abstract. Many industrial applications require the use of table con-
straints (e.g., in configuration problems), sometimes of significant size.
During the recent years, researchers have focused on reducing space and
time complexities of this type of constraint. Static and dynamic reduc-
tion based approaches have been proposed giving new compact repre-
sentations of table constraints and effective filtering algorithms. In this
paper, we study the possibility of combining both static and dynamic
reduction techniques by proposing a new compressed form of table con-
straints based on frequent pattern detection, and exploiting it in STR
(Simple Tabular Reduction).

Introduction

Table constraints, i.e., constraints given in extension by listing the tuples of
values allowed or forbidden for a set of variables, are widely studied in constraint
programming (CP). This is because such constraints are present in many real-
world applications from areas such as design and configuration, databases, and
preferences modeling. Sometimes, table constraints provide the unique natural
or practical way for a non-expert user to express her constraints. So far, research
on table constraints has mainly focused on the development of fast algorithms to
enforce generalized arc consistency (GAC), which is a property that corresponds
to the maximum level of filtering when constraints are treated independently.
GAC algorithms for table constraints have attracted considerable interest, dating
back to GAC4 [21] and GAC-Schema [2]. Classical algorithms iterate over lists
of tuples in different ways ; e.g., see [2,19,18]. A recent AC5-based algorithm
has been proposed in [20], and has been shown efficient on table constraints of
small arity. For tables constraint of large arity, it is recognized that maintaining
dynamically the list of supports in constraint tables does pay off: these are the
variants of simple tabular reduction (STR) [23,15,16].

Table constraints are important for modeling parts of many problems, but
they admit practical boundaries because the memory space required to repre-
sent them may grow exponentially with their arity. To reduce space complexity,
researchers have focused on various forms of compression. Tries [6], Multi-valued
Decision Diagrams (MDDs) [3] and Deterministic Finite Automata (DFA) [22]

H. Simonis (Ed.): CPAIOR 2014, LNCS 8451, pp. 120–135, 2014.
c© Springer International Publishing Switzerland 2014

Sliced Table Constraints: Combining Compression and Tabular Reduction 121

are general structures used to represent table constraints in a compact way, so
as to facilitate the filtering process. Cartesian product is another classical mech-
anism to represent compactly large sets of tuples. For instance, it has been ap-
plied successfully for handling sets of solutions [10], symmetry breaking [5,4], and
learning [13,17]. So far, this form of compression has been used in two distinct
GAC algorithms for table constraints: by revisiting the general GAC-schema [14]
and by combining compressed tuples with STR [24]. The latter work shows how
variants STR2 and STR3 can advantageously benefit from compressed tuples
when the compression ratio is high.

Recently, we have proposed an original compression approach based on data-
mining algorithms [7], where all occurrences of the most frequent patterns in
a table are replaced by their indices in a so-called patterns table. Using data-
mining techniques for compressing table constraints has also been studied in [11],
but in a very different manner since additional variables and values are needed,
and constraints are reformulated. The same authors also studied compression of
SAT instances in [12]. In [7], a pattern was defined as a sequence of consecutive
values, which prevented us from benefiting of optimized STR variants. In this
paper, we propose to relax this condition (of consecutive values), considering any
sub-tuple as a possible frequent pattern, and identifying the most frequent ones
by means of data-mining techniques. Consequently, every table can be “sliced”,
where each slice associates a pattern μ with a sub-table containing all extensions
of μ that can be found in the original table. We propose an algorithm to deal
with sliced table constraints: we build it on the basis of the optimized algorithm
STR2.

The paper is organized as follows. After recalling some technical background
in Section 1, we present, in Section 2, a compression process for table constraints,
detailing the algorithm used to obtain the new form of sliced table constraints.
Next, we describe, in Section 3, an optimized algorithm to enforce GAC on sliced
table constraints. Finally, after giving some experimental results in Section 4,
we conclude.

1 Technical Background

A (discrete) constraint network (CN) N is a finite set of n variables ”intercon-
nected” by a finite set of e constraints. Each variable x has a domain which is the
finite set of values that can be assigned to x. The initial domain of a variable x
is denoted by dominit(x) whereas the current domain of x is denoted by dom(x);
we always have dom(x) ⊆ dominit(x). Each constraint c involves an ordered set
of variables, called the scope of c and denoted by scp(c), and is semantically
defined by a relation, denoted by rel(c), which contains the set of tuples allowed
for the variables involved in c. A (positive) table constraint c is a constraint such
that rel(c) is defined explicitly by listing the tuples that are allowed by c ; an
example is given below. The arity of a constraint c is the size of scp(c), and will
usually be denoted by r.

122 N. Gharbi et al.

Table 1. Table constraint c on x1, x2, x3, x4, x5

x1 x2 x3 x4 x5

τ1 (c, b, c, a, c)
τ2 (a, a, b, c, a)
τ3 (a, c, b, c, a)
τ4 (b, a, c, b, c)
τ5 (b, a, a, b, b)
τ6 (c, c, b, c, a)
τ7 (a, c, a, c, a)

Example 1. Let c be a positive table constraint on variables x1, x2, x3, x4, x5

with dom(x1) = dom(x2) = dom(x3) = dom(x4) = dom(x5) = {a, b, c}. Table 1
represents the constraint c with 7 allowed tuples.

Let X = {x1, . . . , xr} be an ordered set of variables. An instantiation I of
X is a set {(x1, a1), . . . , (xr, ar)} also denoted by {x1 = a1, . . . , xr = ar} such
that ∀i ∈ 1..r, ai ∈ dominit(xi); X is denoted by vars(I) and each ai is denoted
by I[xi]. An instantiation I is valid iff ∀(x, a) ∈ I, a ∈ dom(x). An r-tuple τ on
X is a sequence of values (a1, . . . , ar) such that ∀i ∈ 1..r, ai ∈ dominit(xi) ; the
individual value ai will be denoted by τ [xi]. For simplicity, we shall use both
concepts of instantiation and tuple interchangeably. For example, an r-tuple τ
on scp(c) is valid iff the underlying instantiation is valid. An r-tuple τ on scp(c)
is a support on the r-ary constraint c iff τ is a valid tuple which is allowed by c.
If τ is a support on a constraint c involving a variable x and such that τ [x] = a,
we say that τ is a support for (x, a) on c. Generalized Arc Consistency (GAC)
is a well-known domain-filtering consistency defined as follows:

Definition 1. A constraint c is generalized arc consistent (GAC) iff ∀x ∈
scp(c), ∀a ∈ dom(x), there exists at least one support for (x, a) on c. A CN
N is GAC iff every constraint of N is GAC.

Enforcing GAC is the task of removing from domains all values that have
no support on a constraint. Many algorithms have been devised for establishing
GAC according to the nature of the constraints. For table constraints, STR [23]
is such an algorithm: it removes invalid tuples during search of supports using
a sparse set data structure which separates valid tuples from invalid ones. This
method of seeking supports improves search time by avoiding redundant tests on
invalid tuples that have already been detected as invalid during previous GAC
enforcements. STR2 [15], an optimization of STR, limits some basic operations
concerning the validity of tuples and the identification of supports, through the
introduction of two important sets called Ssup and Sval (described later). In the
extreme best case, STR2 can be r times faster than STR.

We now introduce the concepts of pattern and sub-table that will be useful
for compression.

Definition 2. A pattern μ of a constraint c is an instantiation I of some
variables of c. We note scp(μ) its scope, which is equal to vars(I), |μ| its length,

Sliced Table Constraints: Combining Compression and Tabular Reduction 123

which is equal to |scp(μ)|, and nbOcc(μ) its number of occurrences in rel(c),
which is |{τ ∈ rel(c) | μ ⊆ τ}|.

Example 2. In Table 1, μ1={x1 = a, x4 = c, x5 = a} and μ2={x3 = c, x5 =
c} are patterns of respective lengths 3 and 2, with scp(μ1)={x1, x4, x5} and
scp(μ2)={x3, x5}.

Definition 3. The sub-table T associated with a pattern μ of a constraint c is
obtained by removing μ from tuples of c that contain μ and ignoring other tuples.

T = {τ \ μ | τ ∈ rel(c) ∧ μ ⊆ τ}

The scope of T is scp(T) = scp(c)− scp(μ)

Example 3. Table 2 represents the sub-table associated with the pattern μ1=
(x1 = a, x4 = c, x5 = a) of c, described in Table 1.

Table 2. The sub-table T1 associated with the pattern μ1 of c

x2 x3

a b
c b
c a

Definition 4. An entry for a constraint c is a pair (μ, T) such that μ is a
pattern of c and T is the sub-table associated with μ.

Since the set of tuples represented by an entry (μ, T) represents in fact the
Cartesian product of μ by T , we shall also use the notation μ ⊗ T to denote a
constraint entry. Notice that after the slicing process of a constraint into a set
of entries, the set of tuples which are not associated with any pattern can be
stored in a so called default entry denoted by (∅, T).

Example 4. The pattern μ=(x1 = a, x4 = c, x5 = a) of the constraint c, depicted
in Figure 2(a), appears in tuples τ2, τ3 and τ7. Thus, μ and the resulting sub-table
form an entry for c, as shown in Figure 2(b).

Testing the validity of classical or compressed tuples is an important oper-
ation in filtering algorithms of (compressed) table constraints. For sliced table
constraints, we extend the notion of validity to constraint entries.

Definition 5. An entry (μ, T) is valid iff at least one tuple of the Cartesian
product μ⊗ T is valid. Equivalently, an entry is valid iff its pattern is valid and
its sub-table contains at least one valid sub-tuple.

124 N. Gharbi et al.

Fig. 1. Example of a constraint entry

x1 x2 x3 x4 x5

τ1 (c, b, c, a, c)
τ2 (a, a, b, c, a)
τ3 (a, c, b, c, a)
τ4 (b, a, c, b, c)
τ5 (b, a, a, b, b)
τ6 (c, c, b, c, a)
τ7 (a, c, a, c, a)
(a) A constraint c

x1 x4 x5

a c a

⊗ x2 x3

a b τ2
c b τ3
c a τ7

(b) An entry (μ, T) of c

2 Compression Method

Several data mining algorithms, such as Apriori [1] and FP-Growth [8] among
others, can be used to identify frequent patterns. Since our objective is com-
pression, we do not have to identify each possible frequent pattern but only the
ones that are useful for compression, and specifically at most one pattern per
tuple. The construction of an FP-Tree (Frequent-Pattern Tree) which is the first
step in the FP-Growth algorithm is especially well suited to this goal since it
identifies each long and frequent pattern. This construction requires only three
scans of the table.

We briefly explain the construction of the FP-Tree in the context of table
compression, using the constraint given in Table 1 as an example. Details of
the general method can be found in [8,9]. The algorithm takes one parameter
minSupport (minimum support) which is the minimal number of occurrences of
a pattern that we require to consider it as frequent. In our example, we shall use
minSupport=2 to identify patterns which occur at least twice.

In a first step, we collect the number of occurrences of each value. By abuse
of terminology, we shall call frequency the number of occurrences of a value.
This step requires one scan of the table. The result on our example is given in
Figure 2(c). Then, in a second scan, we sort each tuple in decreasing order of
frequency of values. The result is given in Figure 2(d) where the frequency of a
value is given in parentheses. Values which have a frequency below the threshold
minSupport are removed from the tuple (they are identified in bold face) because
they cannot appear in a frequent pattern. Once a tuple is sorted and possibly
reduced, it is inserted in the FP-Tree which is essentially a trie where each branch
represents the frequent part of a tuple and each node contains the number of
branches which share that node. Each edge from a parent to its child is labeled
with a value. The root node does not have any label.

Figure 3(a) represents the FP-tree obtained on our running example. The first
tuple inserted in the tree is the beginning of τ1, that is (x1 = c, x3 = c, x5 = c).
This creates the leftmost branch of the tree. Each node of this branch is given a
frequency of 1. The second tuple inserted is (x4 = c, x5 = a, x1 = a, x2 = a, x3 =
b)which creates the third leftmost branch in the tree (each node having a frequency
of 1 at this step).When τ3 is inserted, the new branch (x4 = c, x5 = a, x1 = a, x2 =
c, x3 = b) shares its first three edges with the last branch, hence the frequency

Sliced Table Constraints: Combining Compression and Tabular Reduction 125

x1 x2 x3 x4 x5

a 3 3 2 1 4
b 2 1 3 2 1
c 2 3 2 4 2

(c) frequencies

τ1 (2)x1 = c (2)x3 = c (2) x5 = c (1)x2 = b (1)x4 = a
τ2 (4)x4 = c (4)x5 = a (3)x1 = a (3)x2 = a (3)x3 = b
τ3 (4)x4 = c (4)x5 = a (3)x1 = a (3)x2 = c (3)x3 = b
τ4 (3) x2 = a (2)x1 = b (2) x3 = c (2)x4 = b (2) x5 = c
τ5 (3) x2 = a (2)x1 = b (2)x3 = a (2)x4 = b (1)x5 = b
τ6 (4)x4 = c (4)x5 = a (3) x2 = c (3)x3 = b (2) x1 = c
τ7 (4)x4 = c (4)x5 = a (3)x1 = a (3)x2 = c (2)x3 = a

(d) tuples sorted according to decreasing frequencies

Fig. 2. First two steps of the compression

(a) FP-tree

x1 x4 x5

a c a

⊗ x2 x3

a b τ2
c b τ3
c a τ7

x1 x2

b a

⊗ x3 x4 x5

c b c τ4
a b b τ5

∅
⊗ x1 x2 x3 x4 x5

c b c a c τ1
c c b c a τ6

(b) Compressed table

Fig. 3. FP-tree and compressed table

of the corresponding nodes is incremented and becomes 2. The other tuples are
inserted in the same way. In the end, nodes with a frequency below the threshold
minSupport are pruned. The remaining tree is depicted with thick lines and circled
by a dashed line in Figure 3(a).

We now have to identify patterns in the FP-tree which are relevant for com-
pression. Each node of the tree corresponds to a frequent pattern μ which can
be read on the path from the root to the node. The frequency f of this pattern
is given by the node itself. The savings that can be obtained by factoring this
frequent pattern is |μ| × (f − 1) values (we can save each occurrence of the pat-
tern but one). In our example, we can see that the pattern (x4 = c, x5 = a) can
save 6 values, the pattern (x4 = c, x5 = a, x1 = a) can also save 6 values but
the pattern (x4 = c, x5 = a, x1 = a, x2 = c) can save only 4 values. Therefore,
we further prune the tree by removing nodes that save less values than their
parent. The leaves of the tree we obtain represent the frequent pattern used in
the compression: (x4 = c, x5 = a, x1 = a) and (x2 = a, x1 = b).

126 N. Gharbi et al.

Algorithm 1. compress(T: table, minSupport: integer)

1 compute the frequency of each value of T
2 for i ∈ 1..|T | do
3 τ ← T [i]
4 sort τ by decreasing order of value frequency and remove values less

frequent than minSupport
5 add τ to the FP-Tree (will update the nodes frequency)
6 tmp[i] ← τ

7 prune the tree by removing nodes which are less frequent than minSupport or
such that |μ| × (f − 1) is smaller than for their parent

8 for i ∈ 1..|T | do
9 τ ← tmp[i]

10 lookup in the tree if τ starts with a frequent pattern μ. If it does not, μ ← ∅
11 add T [i] \ μ to the sub-table corresponding to μ

To complete the compression, we create an entry for each frequent pattern we
have identified and fill them in a last scan of the table. For each tuple, we use
the FP-tree to identify if the (sorted) tuple starts with a frequent pattern, in
which case we add the rest of the tuple to the corresponding sub-table. Tuples
which do not start with a frequent pattern are added to the default entry.

Algorithm 1 summarizes the different steps of the compression process.

3 Filtering Sliced Table Constraints

In order to enforce GAC on sliced table constraints, our idea is to adapt Simple
Tabular Reduction (STR), and more specifically the optimized variant STR2,
on the compressed form of this kind of constraint. As a sliced table constraint
is composed of several entries, each one composed of both a pattern and a sub-
table, the filtering process we propose acts at two distinct levels. At a high
level, the validity of each entry is checked, and at a low-level, the validity of
each pattern and each sub-tuple is checked. Remember that an entry is valid iff
both its pattern is valid and at least one tuple from its sub-table is valid (See
Definition 5). In this section, we first describe the employed data structures,
then we introduce our GAC algorithm, and finally we give an illustration.

3.1 Data Structures

A sliced table constraint c is represented by an array entries[c] of p entries.
Managing the set of valid entries, called current1 entries, is performed as follows:

– entriesLimit[c] is the index of the last current entry in entries[c]. The
elements in entries[c] at indices ranging from 1 to entriesLimit[c] are the
current entries of c.

1 Current entries correspond to valid entries at the end of the previous evocation of
the algorithm.

Sliced Table Constraints: Combining Compression and Tabular Reduction 127

– removing an entry (that has become invalid) at index i is performed by a
call of the form removeEntry(c, i). Such a call swaps the entries at indices i
and entriesLimit[c], and then decrements entriesLimit[c]. Note that the
initial order of entries is not preserved.

– restoring a set of entries can be performed by simply changing the value of
entriesLimit[c].

Each entry in entries can be represented as a record composed of a field
pattern and a field subtable. More precisely:

– the field pattern stores a partial instantiation μ, and can be represented
in practice as a record of two arrays: one for the variables, the scope of the
pattern, and the other for the values.

– the field subtable stores a sub-table T , and can be represented in practice
as a record of two arrays: one for the variables, i.e., the scope of the sub-table
T , and the other, a two-dimensional array, for the sub-tuples.

In our presentation, we shall directly handle μ and T without considering all
implementation details ; for example, T will be viewed as a two-dimensional
array. Managing the set of valid sub-tuples, called current sub-tuples, of T , is
performed as follows:

– limit[T] is the index of the last current sub-tuple in T . The elements in T
at indices ranging from 1 to limit[T] are the current sub-tuples of T .

– removing a sub-tuple (that has become invalid) at index i is performed by
a call of the form removeSubtuple(T, i). Such a call swaps the sub-tuples at
indices i and limit[T], and then decrements limit[T]. Note that the initial
order of sub-tuples is not preserved.

– restoring a set of sub-tuples can be performed by simply changing the value
of limit[T].

Note that the management of both current entries and current sub-tuples is
in the spirit of STR. Also, as in [15], we introduce two sets of variables, called
Sval and Ssup. The set Sval contains uninstantiated variables (and possibly,
the last assigned variable) whose domains have been reduced since the previous
invocation of the filtering algorithm on c. To set up Sval, we need to record the
domain size of each modified variable x right after the execution of STR-slice on
c: this value is recorded in lastSize[x]. The set Ssup contains uninstantiated
variables (from the scope of the constraint c) whose domains contain each at least
one value for which a support must be found. These two sets allow us to restrict
loops on variables to relevant ones. We also use an array gacValues[x] for each
variable x. At any time, gacValues[x] contains all values in dom(x) for which
a support has already been found: hence, values for a variable x without any
proved support are exactly those in dom(x) \ gacValues[x]. Note that the sets
Sval and Ssup are initially defined with respect to the full scope of c. However,
for each sub-table we also shall use local sets Slval and Slsup of Sval and Ssup

as explained later.

128 N. Gharbi et al.

3.2 Algorithm

Algorithm 2 is a filtering procedure, called STR-slice, that establishes GAC on
a specified sliced table constraint c belonging to a CN N . Lines 1–10, which
are exactly the same as those in Algorithm 5 of [15], allow us to initialize the
sets Sval, Ssup and gacValues. Recall that Sval must contain the last assigned
variable, denoted by lastPast(P), if it belongs to the scope of c. Lines 11–22
iterate over all current entries of c. To test the validity of an entry, we check first
the validity of the pattern μ (Algorithm 3), and then, only when the pattern is
valid, we check the validity of the sub-table T by scanning it (Algorithm 4). If
an entry is no more valid, it is removed at line 22. Otherwise, considering the
values that are present in the pattern, we have to update gacValues as well as
Ssup when a first support for a variable is found. Lines 23–30, which are exactly
the same as those in Algorithm 5 of [15], manage the reduction of domains:
unsupported values are removed at line 25 and if the domain of a variable x
becomes empty, an exception is thrown at line 27. Also, the set of variables Xevt

reduced by STR-slice is computed and returned so that these “events” can be
propagated to other constraints.

Algorithm 4 is an important function, called scanSubtable, of STR-slice. Its
role is to iterate over all current (sub)tuples of a given sub-table, in order to col-
lect supported values and to remove invalid tuples. Note that when this function
is called, we have the guarantee that the pattern associated with the sub-table
is valid (note the “and then” short-circuit operator at line 14 of Algorithm 2).
The first part of the function, lines 1–10, allow us to build the local sets Slval

and Slsup from Sval and Ssup. Such sets are obtained by intersecting Sval with
scp(T) and Ssup with scp(T), respectively. Once the sets Slval and Slsup are
initialized, we benefit from optimized operations concerning validity checking
and support seeking, as in STR2. The second part of the function, lines 9–21,
consists in iterating over all current sub-tuples of T . This is a classical STR2-like
traversal of a set of tuples. Finally, line 22 returns true when there still exists at
least one valid sub-tuple.

It is interesting to note the lazy synchronization performed between the global
unique set Ssup and the specific local sets Slsup (one such set per sub-table).
When a variable x is identified as “fully supported”, it is immediately removed
from Ssup (see line 19 of Algorithm 2 and line 18 of Algorithm 4). Consequently,
that means that the next sub-tables (entries) will benefit from such a reduction,
but the information is only transmitted at initialization (lines 6–8 of Algorithm
4). On the other hand, once initialized, the global set Sval is never modified
during the execution of STR-slice.

Backtracking Issues: In our implementation, entries and tuples can be restored
by modifying the value of the limit pointers (entriesLimit[c] and limit[T]
for each sub-table T of c), recorded at each search depth. Restoration is then
achieved in O(1 + p) (for each constraint) where p is the number of entries.

Sliced Table Constraints: Combining Compression and Tabular Reduction 129

Algorithm 2. STR-slice(c: constraint)

Input : c is a sliced table constraint of the CN N to be solved
Output : the set of variables in scp(c) with reduced domain

// Initialization of sets Sval and Ssup, as in STR2

1 Sval ← ∅
2 Ssup ← ∅
3 if lastPast(P) ∈ scp(c) then

4 Sval ← Sval ∪ {lastPast(P)}
5 foreach variable x ∈ scp(c) | x /∈ past(P) do
6 gacValues[x] ← ∅
7 Ssup ← Ssup ∪ {x}
8 if |dom(x)| �= lastSize[c][x] then

9 Sval ← Sval ∪ {x}
10 lastSize[c][x] ← |dom(x)|

// Iteration over all entries of c
11 i ← 1
12 while i ≤ entriesLimit[c] do
13 (μ, T) ← entries[c][i] // ith current entry of c
14 if isValidPattern(μ) and then scanSubtable(T) then
15 foreach variable x ∈ scp(μ) | x ∈ Ssup do
16 if μ[x] �∈ gacValues[x] then
17 gacValues[x] ← gacValues[x] ∪ {μ[x]}
18 if |dom(x)| = |gacValues[x]| then
19 Ssup ← Ssup \ {x}

20 i ← i+ 1

21 else
22 removeEntry(c, i) // entriesLimit[c] decremented

// domains are now updated and Xevt computed, as in STR2

23 Xevt ← ∅
24 foreach variable x ∈ Ssup do
25 dom(x) ← gacV alues[x]
26 if dom(x) = ∅ then
27 throw INCONSISTENCY

28 Xevt ← Xevt ∪ {x}
29 lastSize[c][x] ← |dom(x)|
30 return Xevt

Algorithm 3. isValidPattern(μ: pattern): Boolean

1 foreach variable x ∈ scp(μ) do
2 if μ[x] /∈ dom(x) then
3 return false

4 return true

130 N. Gharbi et al.

Algorithm 4. scanSubtable(T : sub-table): Boolean

Input : T is a sub-table coming from an entry of the constraint c
Output : true iff there is at least one valid tuple in the sub-table T

// Initialization of local sets Slval and Slsup from Sval and Ssup

1 Slval ← ∅
2 foreach variable x ∈ Sval do
3 if x ∈ scp(T) then
4 Slval ← Slval ∪ {x}
5 Slsup ← ∅
6 foreach variable x ∈ Ssup do
7 if x ∈ scp(T) then
8 Slsup ← Slsup ∪ {x}

// Iteration over all (sub)tuples of T
9 i ← 1

10 while i ≤ limit[T] do
11 τ ← T [i] // ith current sub-tuple of T

12 if isValidSubtuple(Slval, τ) then

13 foreach variable x ∈ Slsup do
14 if τ [x] �∈ gacValues[x] then
15 gacValues[x] ← gacValues[x] ∪ {τ [x]}
16 if |dom(x)| = |gacValues[x]| then
17 Slsup ← Slsup \ {x}
18 Ssup ← Ssup \ {x}

19 i ← i+ 1

20 else
21 removeSubtuple(T, i)) // limit[T] decremented

22 return limit[T] > 0

Algorithm 5. isValidSubtuple(Slval: variables, τ : tuple): Boolean

1 foreach variable x ∈ Slval do
2 if τ [x] /∈ dom(x) then
3 return false

4 return true

However, by introducing a simple data structure, it is possible to only call the
restoration procedure when necessary, limiting restoration complexity to O(1)
in certain cases: it suffices to register the limit pointers that need to be up-
dated when backtracking, and this for each level. When the search algorithm
backtracks, we also have to deal with the array lastSize. As mentioned in [15],

Sliced Table Constraints: Combining Compression and Tabular Reduction 131

we can record the content of such an array at each depth of search, so that the
original state of the array can be restored upon backtracking.

As GAC-slice is a direct extension of STR2, it enforces GAC.

3.3 Illustration

Figures 4 and 5 illustrate the different steps for filtering a sliced table constraint,
when STR-slice is called after an event. In Figure 4, considering that the new
event is simply x3 �= a (i.e., the removal of the value a from dom(x3)), STR-slice
starts checking the validity of the current entries (from 1 to entriesLimit). So,
for the first entry, the validity of the pattern μ={x1 = a, x4 = c, x5 = a} is
first checked. Since μ remains valid (our hypothesis is that the event was only
x3 �= a), the sub-table of the first entry is scanned. Here, only the sub-tuple
{x2 = c, x3 = a} is found invalid, which modifies the value of limit for the
sub-table of this first entry. After the call to STR-slice, the constraint is as in
Figure 4(b).

In Figure 5, considering now that the new event is x3 �= b, we start again
with the first current entry. Figuring out that the pattern is still valid, we check
the validity of the associated sub-tuples. Since the sub-tuple {x2 = a, x3 = b}
is no more valid, it is swapped with {x2 = c, x3 = b}. This latter sub-tuple is
then also found invalid, which sets the value of limit to 0. This is illustrated in
Figure 5(a). As the sub-table of the first entry is empty, the entry is removed by
swapping its position with that of last current entry. After the call to STR-slice,
the constraint is as in Figure 5(b) (note that a second swap of constraint entries
has been performed).

x1 x4 x5
a c a

x2 x3
a b
c b
c a

x1 x2
b a

x3 x4 x5
c b c
a b b

x1 x2 x3 x4 x5
c b c a c
c c b c a

lim
it

en
tr
ie
sL
im

it

∅

lim
it

lim
it

τ1

τ1

τ1

τ2

τ2

τ2

τ3

(a) Before the call

x1 x4 x5
a c a

x2 x3
a b
c b
c a

x1 x2
b a

x3 x4 x5
c b c
a b b

x1 x2 x3 x4 x5
c b b a c
c c b c a

lim
it

en
tr
ie
sL
im

it

∅

lim
it

lim
it

τ1

τ1

τ1

τ2

τ2

τ2

τ3

(b) After the call

Fig. 4. STR-slice called on a slice table constraint after the event x3 �= a

132 N. Gharbi et al.

x1 x4 x5
a c a

x2 x3
c b
a b
c a

x1 x2
b a

x3 x4 x5
c b c
a b b

x1 x2 x3 x4 x5
c b b a c
c c b c a

lim
it

en
tr
ie
sL
im

it

∅
lim

it
lim

it

τ1

τ1

τ1

τ2

τ2

τ2

τ3

(a) After the scan of the first entry

x1 x4 x5
a c a

x2 x3
c b
a b
c a

x1 x2
b a

x3 x4 x5
c b c
a b b

x1 x2 x3 x4 x5
c c b c a
c b b a c

lim
it

en
tr
ie
sL
im

it

∅

lim
it

lim
it

τ1

τ1

τ1

τ2

τ2

τ2

τ3

(b) After the call

Fig. 5. From Figure 4(b), STR-slice called after the event x3 �= b

4 Experimental Results

In order to show the practical interest of our approach to represent and filter
sliced table constraints, we have conducted an experimentation (with our solver
AbsCon) using a cluster of bi-quad cores Xeon processors at 2.66 GHz node with
16GiB of RAM under Linux. Because STR2 and STR3 belong to the state-of-the-
art GAC algorithms for table constraints, we compare the respective behaviors
of STR2, STR3 and STR-slice on different series of instances2 involving positive
table constraints with arity greater than 2. STR1 is also included as a baseline.

For STR-slice, we select exclusively frequent patterns with a number of occur-
rences at least equal to 10% of the number of tuples in the table. This value was
obtained after several experiments, similarly we chose 10 for the minimum size of
sub-tables. Automatically tuning, on a specific instance, the frequency threshold
for patterns and the minimum sub-table size is part of our future work.

We use MAC with the dom/ddeg variable ordering and lexico as value ordering
heuristic, to solve all these instances. A time-out of 1, 200 seconds was set per
instance. The two chosen heuristics guarantee that we explore the very same
search tree regardless of the filtering algorithm used.

Table 3 shows mean results (CPU time in seconds) per series. For each series,
the number of tested instances is given by #ins ; it corresponds to the number of
instances solved by all three variants within 1, 200 seconds. Note that the mean
compression ratios and CPU times (in seconds) are also given for STR-slice be-
tween parentheses. We define the compression ratio as the size of the sliced tables
over the size of the initial tables, where the size of a (sliced) table is the num-
ber of values over all patterns and (sub-)tables. The results in Table 3 show that

2 Available at http://www.cril.univ-artois.fr/CSC09

Sliced Table Constraints: Combining Compression and Tabular Reduction 133

Table 3. Mean CPU time (in seconds) to solve instances from different series (a time-
out of 1,200 seconds was set per instance) with MAC. Mean compression ratio and
CPU time are given for STR-slice between parentheses.

Instance #ins STR1 STR2 STR3 STR-slice

a7-v24-d5-ps05 11 298.05 147.73 189.14 115.30 (66% – 5.74)

bdd 70 44.53 13.44 99.21 20.35 (86% – 0.59)

crossword-ogd 43 90.05 39.35 25.69 29.59 (75.51% – 0.36)

crossword-uk 43 95.20 45.88 44.33 47.21 (88.69% – 0.18)

renault 46 19.66 14.39 13.37 17.20 (47.15% – 0.67)

Table 4. CPU time (in seconds) on some selected instances solved by MAC

Instance STR1 STR2 STR3 MDD STR-slice

a7-v24-d5-ps0.5-psh0.7-9 879 334 367 25.5 200 (69% – 5.41)

a7-v24-d5-ps0.5-psh0.9-6 353 195 324 16.6 174 (62% – 5.82)

bdd-21-2713-15-79-11 78.5 23.5 48.5 82.6 31.7 (88.05% – 0.28)

crossword-ogd-vg12-13 799 342 208 > 1, 200 242 (73.46% – 0.74)

crossword-uk-vg10-13 1,173 576 589 > 1, 200 598 (89.63% – 0.48)

STR-slice is competitive with both STR2 and STR3. Surprisingly, although the
compression ratio obtained for the instances of the series renault is rather encour-
aging, the CPU time obtained for STR-slice is disappointing. We suspect that the
presence of many constraints with small tables in the renault instances is penal-
izing for STR-slice because, in that case, the overhead of managing constraint
entries is not counterbalanced by the small absolute spatial reduction. Table 4
presents the results obtained on some instances.

In term of space, STR3 is the variant that uses the most amount of mem-
ory (sometimes by a very large factor). STR-slice, although requiring a few
additional data structures is the cheapest STR variant in term of memory (ap-
proximately as indicated by the compression ratio in Tables 3 and 4). Note that
other compression approaches of the literature such as those based on MDDs [3]
may outperform STR variants when the compression ratio is (very) high. This
is the case, for example, on the instances of series a7-v24-d5-ps05. However, on
other series such as crossword, the MDD approach can be outperformed by a
large factor by the STR variants (on hard crossword instances, STR2, STR3 and
STR-slice are usually about 5 times faster than MDD).

A general observation from this rather preliminary experimentation is that
STR-slice is a competitor to STR2 and STR3, but a not a competitor that takes
a real advantage. Several perspectives to improve this situation are developed in
the conclusion.

134 N. Gharbi et al.

5 Conclusion

In this paper, we have presented an original approach for filtering table con-
straints: it combines a new compression technique using the concept of sliced
table constraints and an optimized adaptation of the tabular reduction (as in
STR2). Our preliminary experimentation shows that STR-slice is a competitor
to the state-of-the-art STR2 and STR3 algorithms. To make STR-slice indis-
pensable, many further developments are necessary. First, we think that the
tuning of the parameters used for guiding compression should be automatized
(possibly, employing some machine learning techniques). STR-slice could then
benefit from a better compression. Second, we believe that, in the rising context
of big data, new constraint problems should emerge rapidly where constraints
could be of (very) large arity and involve very large tables. STR-slice could
advantageously handle such “huge” constraints, especially if we consider that
slicing could be conducted recursively on the sub-tables (another perspective
of this work). Finally, we think that the concept of sliced table constraints is
interesting on its own for modeling, as certain forms of conditionality can be
represented in a simple and natural way, directly with sliced table constraints.

Acknowledgments. This work has been supported by both CNRS and OSEO
within the ISI project ’Pajero’.

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: Proceedings of the 20th International Conference on Very Large
Data Bases, pp. 487–499 (1994)

2. Bessiere, C., Régin, J.: Arc consistency for general constraint networks: preliminary
results. In: Proceedings of IJCAI 1997, pp. 398–404 (1997)

3. Cheng, K., Yap, R.: An MDD-based generalized arc consistency algorithm for pos-
itive and negative table constraints and some global constraints. Constraints 15(2),
265–304 (2010)

4. Fahle, T., Schamberger, S., Sellmann, M.: Symmetry breaking. In: Walsh, T. (ed.)
CP 2001. LNCS, vol. 2239, pp. 93–107. Springer, Heidelberg (2001)

5. Focacci, F., Milano, M.: Global cut framework for removing symmetries. In:
Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 77–92. Springer, Heidelberg (2001)

6. Gent, I.P., Jefferson, C., Miguel, I., Nightingale, P.: Data structures for gener-
alised arc consistency for extensional constraints. In: Proceedings of AAAI 2007,
pp. 191–197 (2007)

7. Gharbi, N., Hemery, F., Lecoutre, C., Roussel, O.: STR et compression de con-
traintes tables. In: Proceedings of JFPC 2013, pp. 143–146 (2013)

8. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation.
In: Proceedings of SIGMOD 2000, pp. 1–12 (2000)

9. Han, J., Pei, J., Yin, Y., Mao, R.: Mining frequent patterns without candidate
generation: A frequent-pattern tree approach. Data Mining and Knowledge Dis-
covery 8(1), 53–87 (2004)

Sliced Table Constraints: Combining Compression and Tabular Reduction 135

10. Hubbe, P.D., Freuder, E.C.: An efficient cross product representation of the
constraint satisfaction problem search space. In: Proceedings of AAAI 1992,
pp. 421–427 (1992)

11. Jabbour, S., Sais, L., Salhi, Y.: A mining-based compression approach for constraint
satisfaction problems. CoRR, abs/1305.3321 (2013)

12. Jabbour, S., Sais, L., Salhi, Y., Uno, T.: Mining-based compression approach of
propositional formulae. In: Proceedings of CIKM 2013, pp. 289–298 (2013)

13. Katsirelos, G., Bacchus, F.: Generalized nogoods in CSPs. In: Proceedings of AAAI
2005, pp. 390–396 (2005)

14. Katsirelos, G., Walsh, T.: A compression algorithm for large arity extensional con-
straints. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 379–393. Springer,
Heidelberg (2007)

15. Lecoutre, C.: STR2: Optimized simple tabular reduction for table constraints. Con-
straints 16(4), 341–371 (2011)

16. Lecoutre, C., Likitvivatanavong, C., Yap, R.: A path-optimal GAC algorithm for
table constraints. In: Proceedings of ECAI 2012, pp. 510–515 (2012)

17. Lecoutre, C., Sais, L., Tabary, S., Vidal, V.: Transposition Tables for Constraint
Satisfaction. In: Proceedings of AAAI 2007, pp. 243–248 (2007)

18. Lecoutre, C., Szymanek, R.: Generalized arc consistency for positive table con-
straints. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 284–298. Springer,
Heidelberg (2006)

19. Lhomme, O., Régin, J.C.: A fast arc consistency algorithm for n-ary constraints.
In: Proceedings of AAAI 2005, pp. 405–410 (2005)

20. Mairy, J.-B., Van Hentenryck, P., Deville, Y.: An optimal filtering algorithm for
table constraints. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 496–511.
Springer, Heidelberg (2012)

21. Mohr, R., Masini, G.: Good old discrete relaxation. In: Proceedings of ECAI 1988,
pp. 651–656 (1988)

22. Pesant, G.: A regular language membership constraint for finite sequences of vari-
ables. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 482–495. Springer,
Heidelberg (2004)

23. Ullmann, J.R.: Partition search for non-binary constraint satisfaction. Information
Science 177, 3639–3678 (2007)

24. Xia, W., Yap, R.H.C.: Optimizing STR algorithms with tuple compression. In:
Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 724–732. Springer, Heidelberg
(2013)

The PrePack Optimization Problem

Maxim Hoskins1,2, Renaud Masson1, Gabrielle Gauthier Melançon1,
Jorge E. Mendoza2, Christophe Meyer3, and Louis-Martin Rousseau1

1CIRRELT, École Polytechnique de Montréal, Montreal, Canada
2Université Catholique de l’Ouest, LARIS (EA 7315), Angers, France

3Université du Québec à Montréal, Montreal, Canada

Abstract. The goal of packing optimization is to provide a foundation
for decisions related to inventory allocation as merchandise is brought to
warehouses and then dispatched. Major retail chains must fulfill requests
from hundreds of stores by dispatching items stored in their warehouses.
The demand for clothing items may vary to a considerable extent from
one store to the next. To take this into account, the warehouse must
pack “boxes” containing different mixes of clothing items. The number
of distinct box types has a major impact on the operating costs. Thus,
the PrePack problem consists in determining the number and contents
of the box types, as well as the allocation of boxes to stores. This paper
introduces the PrePack problem and proposes CP and MIP models and
a metaheuristic approach to address it.

1 Introduction

Major retail chains must fulfill requests from hundreds (or even thousands) of
stores by dispatching items stored in their warehouses. For instance, in the fash-
ion industry, one must dispatch to each store an assortment of clothes of varied
colors and sizes, in such a way that the demand of the store clients is satisfied.
The items are usually shipped in boxes containing several different items.

A box configuration is a possible way to fill a box. The number of different
configurations used has a major impact on the operating costs. If there are many
configurations, it will be possible to satisfy the demand of the stores in a precise
manner but with elevated operating costs. If the number of configurations is
restricted, the operating costs will be low, but some items may be overstocked
or understocked at the stores.

The PrePack problem consists in determining the number and contents of
the box configurations, as well as the configurations to ship to each store, to
minimize overstocking and understocking. In this paper we will consider the
number of configurations to be fixed, but variants where this number is a decision
variable also exist. Moreover, the supplier will usually favor overstocking since
understocking decreases customer satisfaction. However, because overstocking is
costly for the stores they usually impose a hard limit. Furthermore, it is not
permissible to overstock an item in a store where there is no demand for it,
because the item would never be sold. Finally, the box capacities are predefined,
and all boxes must be full.

H. Simonis (Ed.): CPAIOR 2014, LNCS 8451, pp. 136–143, 2014.
c© Springer International Publishing Switzerland 2014

The PrePack Optimization Problem 137

The PrePack problem described above is of significant importance and the
subject of recent patent applications [1,2,3]. However, to our knowledge, there
are no current scientific publications that present an algorithm for it. The most
relevant combinatorial problem, on which [1,2,3] build, is the multi-choice knap-
sack problem described in [4]. We formally introduce the PrePack problem and
present three solution approaches. The preliminary results suggest that despite
its apparent simplicity, the prepacking problem is a challenging combinatorial
optimization problem that deserves to be studied more deeply.

The remainder of the paper is organized as follows. Section 2 formalizes the
problem using constraint programming; Section 3 formulates the problem as a
mixed integer program; and Section 4 presents hybrid metaheuristics. Section
5 discusses the results obtained by each approach, and Section 6 concludes the
paper.

2 Problem Definition

A more precise description of the problem is given through the following con-
straint programming model. The model, which considers a fixed number of boxes
where each box represents a configuration of items, uses the following indices:
i ∈ I for each item, s ∈ S for each store, and b ∈ B for each box configuration.
From now on the sets will be implied; for example, we will write ∀(i, s) instead
of ∀i ∈ I, s ∈ S. We denote by K the set of possible box capacities (if there is
no restriction on the capacities, we simply set K = Z+).

min Obj =
∑
i,s

(α · under(i, s) + β · over(i, s)) (1)

∑
b

fill(b, i)× send(b, s) = dem(i, s) + over(i, s)− under(i, s) ∀(i, s) (2)

over(i, s) ≤ overlimit(i, s) ∀(i, s) (3)∑
i

fill(b, i) = capa(b) ∀(b) (4)

capa(b) ∈ K ∀(b) (5)

over(i, s), under(i, s), f ill(b, i), send(b, s), capa(b) ∈ Z+ ∀(i, s, b) (6)

The objective (1) is to minimize the cost of understocking (under) and over-
stocking (over), where α and β are the understock and overstock penalties.
Constraint (2) is nonlinear and ensures that the demand (dem) of each item in
each store is met. Here, fill defines the amount of each item to be packed in
each box configuration and send indicates how many boxes of each configura-
tion are to be sent to each store. Constraint (3) ensures that the overstocks are
less than or equal to the predefined overstock allowances. Constraint (4) ensures
that the boxes are full. Finally constraint (5) imposes the restrictions on the box
capacities.

138 M. Hoskins et al.

Although the above constraints fully define the problem, it may be helpful to
add redundant constraints to reduce the solution time. In particular, we consid-
ered the following constraints:

∑
b

send(b, s) ≤

⎡⎢⎢⎢⎢
∑
i

(
dem(i, s) + overlimit(i, s)

)
[min box capacity]

⎤⎥⎥⎥⎥ ∀(s) (7)

over(i, s) · under(i, s) = 0 ∀(i, s) (8)

capa(b) ≥ capa(b− 1) ∀(b ≥ 1) (9)∑
i

(under(i, s) + over(i, s)) ≥ modulo

(∑
i

dem(i, s), 2

)
∀(s) (10)

Constraint (7) is interesting when the box capacities are greater than one
since it limits nontrivially the number of boxes to be sent to each store. Al-
though constraint (8) will be automatically satisfied by any optimal solution,
imposing it can lead to a substantial reduction of the solution space. Note that
the formulation contains several symmetries. Some of them can be removed by
adding constraint (9), which ensures that the box configurations are considered
in increasing order of their capacity. Finally, unlike the previous constraints, con-
straint (10) is valid only when the boxes are required to have an even capacity.
With this constraint, if the total demand of a store is odd, then there must be
some overstock or understock at that store.

3 Mixed Integer Problem Model

For this formulation we need the following variables: ybi = amount of item i in
box configuration b; xbs = number of box configurations b shipped to store s;
zis = total amount of item i shipped to store s; tbk = 1 if box configuration b
corresponds to a box of capacity k and 0 otherwise; ois = overstock of item i at
store s; and uis = understock of item i at store s. The overall nonlinear model
is then:

minObj =
∑
i,s

(αuis + βois) (11)

zis − ois + uis = dem(i, s) ∀(i, s) (12)

zis =
∑
b

xbsybi ∀(i, s) (13)∑
i

ybi =
∑
k

k · tbk ∀(b) (14)∑
k

tbk = 1 ∀(b) (15)

ois ≤ overlimit(i, s) ∀(i, s) (16)

tbk ∈ {0, 1}, xbs, ybi, zis ∈ Z+, ois, uis ≥ 0 ∀(b, i, k, s) (17)

The PrePack Optimization Problem 139

Constraints (12) and (13) ensure that the store demands are satisfied, with
possible understock and overstock. Constraints (14) and (15) ensure that each
box is completely filled to one of the predefined capacities. Constraints (16)
restrict the overstocking, while constraint (17) defines each variable’s domain.

The above formulation can be linearized by standard techniques to enable
the use of standard solvers such as CPLEX. We decompose the x variables
by introducing binary variables vbsl such that xbs =

∑
l 2

l · vbsl ∀(b, s). When
multiplying xbs by ybi, we obtain the product wbisl = vbslybi. We replace this
product by wbisl and add the following constraints:

wbisl ≤ Ȳvbsl ∀(b, i, s, l) (18)

wbisl ≤ ybi ∀(b, i, s, l) (19)

wbisl ≥ 0 ∀(b, i, s, l) (20)

wbisl ≥ ybi − Ȳ(1− vbsl) ∀(b, i, s, l) (21)

zis =
∑
b,l

2l · wbisl ∀(i, s) (22)

where Y is an upper bound on the variables ybi. The linearized model is then
obtained by replacing (13) by (22) and removing the x variables.

Of the constraints (7)–(10), the last one proved to be helpful when the capac-
ities of the boxes are even, and it was introduced in the following form:

∑
i

(uis + ois) ≥ modulo

(∑
i

dem(i, s), 2

)
∀(s) (23)

In contrast, the symmetry-breaking constraints (9) did not help and thus were
not included in the final model.

4 Hybrid Metaheuristic

We developed a two-phase hybrid metaheuristic. In the first phase, the approach
uses a memetic algorithm (MA) to explore the solution space and builds a pool
of interesting box configurations. In the second phase, the approach solves a
box-to-store assignment problem, to i) choose a subset of configurations from
the pool and ii) decide how many boxes of each configuration should be sent to
each store.

In our MA, individuals are represented using a multi-array genotype. Each of
the |B| arrays in the genotype represents a box configuration, i.e., a vector of
integers with |I| positions. The initial population is built using three constructive
heuristics: demand-driven insertion, cost-driven insertion, and random insertion.
The first heuristic fills boxes with items selected based on the demand across
stores. The second heuristic fills boxes based on an estimation of the impact of
the resulting configuration on the objective function. The third heuristic has two

140 M. Hoskins et al.

steps: in the first step it randomly selects a box capacity, and in the second step
it fills the selected box with a random number of items of each type.

The initial population is evolved using two evolutionary operators, namely,
crossover and mutation. The crossover operator, horizontal-vertical crossover,
recombines two parents to form four offspring. The underlying idea is to mix
whole box configurations to generate a new individual and also to build new box
configurations by recombining existing packing patterns. Figure 1 illustrates the
operator for |B| = 3. The mutation operator simply sweeps each configuration
in the mutating individual and swaps some of the item values. Finally, the local-
search operator tries to improve an individual by changing the number of each
type of item in each of the individual’s configurations. During the execution of
the MA, the fitness function of a solution is computed by heuristically solving
the box-to-store assignment problem using a fast procedure. To control the evo-
lutionary process, we borrowed the logic of the generational MA introduced in
[5]. To support our implementation we used the Java Genetic Algorithm frame-
work [6]. The second phase of our approach consists in solving the box-to-store

Fig. 1. Horizontal-vertical crossover example

assignment problem over a set of configurations C found during the MA. The
composition of C may differ depending on the MA’s parameters. To solve the
assignment problem we use the following set covering model:

min
∑
i,s

αuis + βois (24)

s.t.
∑
c

aicxcs = dis + ois − uis ∀(i, s) (25)∑
s

xcs ≤ X̄yc ∀c (26)∑
c

yc = |B| (27)

where c ∈ C. The objective (24) is to minimize the understock uis and overstock
ois with the parameters α and β representing the understock and overstock

The PrePack Optimization Problem 141

penalties. Constraint (25) controls the demand; aic is the number of item i
present in configuration c, and xcs is the number of box configurations c sent to
store s. Variable yc is 1 if configuration c is used and 0 otherwise. Constraint (26)
ensures that no unused configuration is sent to a store. Constraint (27) ensures
that the correct number of configurations is used to represent a solution.

To solve (24)–(27) we use either a commercial solver (CPLEX) or a large
neighborhood search (LNS). Starting from a valid solution, the LNS partially
destroys the solution with one operator and reconstructs it with another opera-
tor. The destruction operator selects random box configurations to remove from
the solution. The reconstruction operator is based on a best-insertion algorithm.
The algorithm adds to the solution the box configuration that provides the
smallest increase in the value of the objective function. The objective function
is determined after an assignment heuristic has assigned the box configurations
to the stores. LNS repeats this process until the predetermined number of box
configurations to use has been satisfied.

5 Results

We tested our approaches on variants of a real-world instance with 58 stores
demanding 24 (= 6 × 4) different items: T-shirts available in six different sizes
and four different colors (black, blue, red, and green). Each item has a fixed
overstock limit (0 or 1) for all stores but no understock limits. The available box
capacities are 4, 6, 8, and 10. Finally, the overstock and understock penalties are
β = 1 and α = 10. From this instance we derived smaller instances obtained by
considering only some of the colors and/or only the first ten stores. We set the
maximum execution time to 15 minutes.

The results are presented in the following two tables. The second column
indicates the number of box configurations used to build the solution. Columns
3 and 5 indicate the number of understocked and overstocked items across all
the stores. Columns 4 and 6 indicate the time needed to prove optimality in
the case of the exact models (unless the maximum time is reached, in which
case we indicate the best solution found) or to find the best solution for the
metaheuristic. Columns 7 and 8 indicate respectively the number of nodes in
the branching tree and the resulting gap.

5.1 Exact CP and MIP Models

For the constraint programming model (CP), the results show that the model
is able to quickly prove optimality when no understocking is required. This is
because there exists a feasible solution for which (10) is tight. The mixed integer
problem (MIP) approach performs efficiently on all the mono-color instances.
However, for larger instances, there are two issues, First, it has difficulty finding
good feasible solutions. For example, the LP relaxation value for the instance
BlackBluex10 coincides with the optimal value; what prevents CPLEX from
solving the model is its inability to find the corresponding feasible solution. Sec-
ond, it has difficulty improving the best bound; CPLEX may not be able to

142 M. Hoskins et al.

Instance
No. CP MIP

Boxes Under/over stock CPU (s) Under/over stock CPU (s) No. Nodes Gap

Black x 58 4 (0; 58) 19 (0; 58) 0.09 27 0%
Blue x 58 4 (0; 0) 118 (0; 0) 0.83 580 0%
Red x 58 4 (16; 0) 900 (16; 0) 0.42 523 0%
Green x 58 4 (0; 0) 0.5 (0; 0) 0.04 4 0%

BlackBlue x 10 7 (0; 10) 300 (7; 13) 900 88900 87.95%
BlackBlue x 58 7 (76; 110) 900 (36;106) 900 55198 87.55%

AllColor x 10 14 (33; 3) 900 (47; 19) 900 3700 98.77%
AllColor x 58 14 (401; 93) 900 - 900 0 -

improve the lower bound found at the root node. For the instance AllColorx58,
CPLEX is not even able to process the root node (the time limit was reached
as CPLEX’s heuristics were trying to find a feasible solution). The results are
presented with CPLEX’s default parameters; some other settings have been ex-
plored without any improvement.

5.2 Hybrid Metaheuristic

The metaheuristic was run with two separate configurations: solving (24)–(27)
using CPLEX over the set C made up of all the box configurations found in
the individuals of the MA’s final populations; and solving (24)–(27) using LNS
over the set C made up of all the box configurations explored during the MA’s
execution (that is, a much larger set of columns). The results show that on the

Instance
Nb of CPLEX LNS
boxes under/over stock CPU (s) under/over stock CPU (s)

Black x 58 4 (0; 58) 6 (0; 58) 7
Blue x 58 4 (1; 1) 7 (10; 10) 8
Red x 58 4 (58; 0) 7 (50; 0) 8
Green x 58 4 (0; 0) 7 (0; 0) 8

BlackBlue x 10 7 (4; 26) 7 (1; 11) 16
BlackBlue x 58 7 (35; 175) 43 (0; 174) 74

AllColor x 10 14 (18; 22) 49 (7; 19) 293
AllColor x 58 14 (168; 146) 273 (40; 148) 900

mono-color instances both metaheuristics find two of the four optimal solutions.
On the larger instances, it is clear that the CPLEX-based model is less effective
than the LNS model. This is because the latter approach has a larger solution
space to explore.

6 Conclusion

We have introduced the PrePack optimization problem, a problem that does
not seem to have been studied before. Our preliminary results show that this

The PrePack Optimization Problem 143

problem can be very hard, even for relatively small instances, as illustrated by
the CP and MIP approaches. The hybrid metaheuristic was able to return a
solution for all instances in a relatively short time. However, the results are not
as good as those of the the CP and MIP approaches. This is because the quality
of the results delivered by the second phase depends on the pool of generated
configurations.

This problem certainly deserves further study. More valid inequalities and
cuts will be necessary to improve the performance of the MIP approach. The
performance of the CP model could be improved by adding effective surrogate
constraints. The metaheuristic is promising because it is faster than the exact
models, but the pool-generation phase needs to create more effective configura-
tions to produce better solutions.

Acknowledgement. This paper is based on work that was initiated during the
Fifth Montreal Problem Solving Workshop held at the Université de Montréal in
August 2013. We would like to acknowledge financial support from the CRM and
Mprime, and we thank the CRM for providing a stimulating working environ-
ment during the workshop. We are especially grateful to Eric Prescott Gagnon
from JDA Software for proposing the problem and for being present throughout
the week to help us understand the context.

References

1. Erie, C.W., Lee, J.S., Paske, R.T., Wilson, J.P.: Dynamic bulk packing and casing.
International Business Machines Corporation, US20100049537 A1 (2010)

2. Vakhutinsky, A., Subramanian, S., Popkov, Y., Kushkuley, A.: Retail pre-pack op-
timizer. Oracle International Corporation, US20120284079 A1 (2012)

3. Pratt, R.W.: Computer-implemented systems and methods for pack optimization.
SAS Institute, US20090271241 A1 (2009)

4. Chandra, A.K., Hirschberg, D.S., Wong, C.K.: Approximate algorithms for some
generalized knapsack problems. Theoretical Computer Science 3(3), 293–304 (1976)

5. Mendoza, J.E., Medaglia, A.L., Velasco, N.: An evolutionary-based decision support
system for vehicle routing: The case of a public utility. Decision Support Systems 46,
730–742 (2009)

6. Medaglia, A.L., Gutérrez, E.J.: An object-oriented framework for rapid development
of genetic algorithms. Handbook of Research on Nature Inspired Computing for
Economics and Management. Idea Publishing Group (2006)

An Integrated Constraint Programming Approach
to Scheduling Sports Leagues with Divisional

and Round-Robin Tournaments

Jeffrey Larson1,2, Mikael Johansson1, and Mats Carlsson3

1 Automatic Control Lab, KTH, Osquldas väg 10, SE-100 44 Stockholm, Sweden
{jeffreyl,mikaelj}@kth.se

2 Mathematics and Computer Science Division, Argonne National Laboratory,
Argonne, IL 60439, USA
jmlarson@anl.gov

3 SICS, P.O. Box 1263, SE-164 29 Kista, Sweden
matsc@sics.se

Abstract. Previous approaches for scheduling a league with round-robin and di-
visional tournaments involved decomposing the problem into easier subproblems.
This approach, used to schedule the top Swedish handball league Elitserien, re-
duces the problem complexity but can result in suboptimal schedules. This paper
presents an integrated constraint programming model that allows to perform the
scheduling in a single step. Particular attention is given to identifying implied and
symmetry-breaking constraints that reduce the computational complexity signifi-
cantly. The experimental evaluation of the integrated approach takes considerably
less computational effort than the previous approach.

1 Introduction

A double round-robin tournament (DRRT), where every team plays every other team
once home and once away, is one of the most common formats for a broad range of
sporting events. Football leagues around the world (EPL, Serie A, La Liga, Bundesliga,
Eredivisie, Allsvenskan, CONCACAF, and many others) base their season schedules
on DRRTs; the format has also been used by Super Rugby, Indian Premier League
(cricket), and even the Chess World Championship (where each player played every
other player once as black and once as white). As the format is ubiquitous, considerable
research into scheduling DRRTs efficiently and fairly has been conducted [20,21]. A
comprehensive literature survey and an introduction to sports scheduling terminology
can be found in [11].

There are, of course, many reasons why any league may wish to transition away
from a DRRT. For example, the top Danish football league contains only 12 teams,
and consists of a triple round-robin tournament to offer a sufficient number of games
over the season [12]. The Swedish handball league, Elitserien, augments its traditional
double round-robin format by dividing teams into two divisions, each of which hold a
single round-robin tournament before a league-wide DRRT. Compared to the amount
of research that has been devoted to DRRTs, these more “exotic” league formats have

H. Simonis (Ed.): CPAIOR 2014, LNCS 8451, pp. 144–158, 2014.
c© Springer International Publishing Switzerland 2014

An Integrated Constraint Programming Approach to Scheduling Sports Leagues 145

received limited attention in the literature (see, e.g., [21, Section 5.2] for a notable
exception). This paper develops a constraint programming (CP) approach to league
scheduling for the combination of divisional and round-robin play employed by Elitse-
rien.

Since DRRT scheduling is already difficult (cf. [2] for NP-completeness results), one
might be led to believe that augmentations of DRRT are even harder to address. While
it is true that their complexity can make them hard to schedule, they can also allow for
extra degrees of freedom or impose new constraints which make it easier to construct a
schedule. For example, Elitserien requires that teams meeting three times (those in the
same division) must not play at the same venue in consecutive meetings. We denote this
requirement the Alternative Venue Requirement, or AVR for short. As we will see, this
requirement ultimately makes constructing a season schedule easier.

When scheduling sport leagues, it is often common to break the problem into sub-
problems that can be addressed more easily. For example, the schedule-then-break
approach of Trick [20] is widely used in the scheduling of DRRTs. We adopted this
approach in an earlier paper [7], where we developed a schedule for Elitserien by first
constructing and enumerating a set of home-away patterns sets (HAP sets), not all of
which were schedulable with respect to the AVR. A series of increasingly restrictive
necessary conditions removed unschedulable HAP sets. Next, for each HAP set, tourna-
ment templates (a tournament containing generic numbers and not actual team names)
were generated and ranked according to a number of factors, including carry-over ef-
fects [18], that are not easy to optimize for directly. The construction of a template was
an essential step in scheduling the league, because any change in the schedule required
approval from the team owners who are accustomed to working with templates. After a
template was agreed upon, we used an integer programming approach to assign actual
teams to the numbers in the template in a manner satisfying various constraints (e.g.,
venue availability or desired derby matches).

Of course, such a decomposed approach (first building a HAP set, then fixing a single
template, and finally constructing a schedule) can result in a suboptimal league sched-
ule depending on which template was chosen and the particular venue availabilities and
desires that occur in a given year. Even if the league owners agree to adjust the tem-
plate when the availabilities and desires become known, exploring all possibilities to
find the optimal solution would result in a computationally expensive generate-and-test
scheme. In contrast, this paper proposes a constraint programming approach for inte-
grated scheduling of Elitserien that completely eliminates the intermediate steps and
quickly generates a provably optimal schedule. A particular effort is made to identify
and break symmetries in the problem, and substantial speed-ups are obtained over the
previous approaches.

For example, for the specific requirements imposed by Elitserien for the 2013-2014
season, the CP approach implemented on a standard desktop was able to find an optimal
schedule and prove its optimality in less than half a minute. Although not all leagues
will allow for identical symmetry breaking tricks, we believe the approach presented in
this paper is general enough to be applicable to many league formats.

Constraint programming has certainly been used for sports scheduling before. Ex-
amples of decomposed CP approaches to finding DRRT schedules include [5,19,18].

146 J. Larson, M. Johansson, and M. Carlsson

Hybridized with other methods, CP has been used to minimize travel distance in sports
tournaments [1,3,10]. In [16], Régin uses a CP approach to minimizing the number of
breaks (consecutive home or away games) in sports schedules. Alternative CP models
of sports scheduling were discussed in [8]. However, case studies solved by integrated
CP approaches are scarce in the literature; perhaps the problems have been assumed to
be intractable without decomposition into simpler subproblems.

The outline of the paper is as follows. In Section 2, we state the requirements on
the schedule to be computed. In Section 3, we present a global constraint model of the
problem, and discuss the additional seasonal constraints and preferences that arise every
year. In Section 4, we report the results from our computational experiments. Section 5
concludes the paper.

2 Problem Statement and Basic Tournament Properties

The requirements on Elitserien’s schedule can be broadly classified into two categories:
the first category (which we call structural constraints) addresses the schedule format
and fairness in terms of breaks (consecutive home or away games), periods without
games (called byes), the alternating venue requirement, and the sequence of home and
away games; the second category (which we refer to as seasonal constraints) concerns
stadium and referee availabilities, the desire to support various match-ups (such as rival-
ries), wishes from the media, etc. Historically, Elitserien has determined their schedule
by first proposing a tournament template which addresses the structural constraints.
This tournament template has numbers in place of actual teams in the schedule. Every
year, the league collects information about unavailabilities and particular wishes from
the clubs and assigns teams to numbers in the tournament template to form the season
schedule.

Although we will develop an integrated scheduling approach which accounts for
all the above concerns, it is still useful to keep the distinction between the structural
and seasonal constraints. In this way, we can examine the combinatorial properties and
symmetries of the tournament template generation process itself and make a direct com-
putational comparison with the approach used in [7]. We can also clearly expose the
different symmetry-breaking techniques that apply to the tournament template design
and the integrated scheduling respectively.

Elitserien poses the following structural constraints on its tournament template:

C1. Both 7-team divisions must hold an SRRT to start the season.
C2. This must be followed by a DRRT between the entire league. The DRRT is orga-

nized into two SRRTs, where the second SRRT is the mirrored complement of the
first: the order is reversed, home games become away games and vice versa.

C3. There must be a minimum number of breaks in the schedule.
C4. Each team has one bye during the season to occur during the divisional RRT.
C5. At no point during the season can the number of home and away games played by

any team differ by more than 1.
C6. Any pair of teams must have consecutive meetings occur at different venues (AVR).
C7. Each division must have 3 pairs of complementary schedules.

An Integrated Constraint Programming Approach to Scheduling Sports Leagues 147

Elitserien considers any consecutive home or away matches to be breaks. Therefore,
a team playing away-bye-away or home-bye-home constitutes a break, as does a team
ending the SRRT with the same type of game (home or away) as they start the DRRT
with.

The structural constraints C1-C7 are hard constraints that do not change from year to
year. However, the teams themselves might change, and every year sees different con-
straints on venue availabilities, match-ups, and derbies. Thus, in addition to the struc-
tural constraints, the integrated scheduling approach also accounts for the following
seasonal constraints.

C8. Each division must contain a prescribed set of teams.
C9. Specific pairs of teams in each division have to be assigned complementary sched-

ules (typically teams that come from the same city, or even share the same arena).
C10. To increase the visibility of handball, the league arranges derbies in specific peri-

ods. Elitserien derby constraints consist of a single period and a set of teams, out
of which as many matches as possible should be formed. Alternatively, a single
team, a single period, and a set of possible opponents are given.

C11. Venue unavailabilities have to be respected to the highest extent possible.

The league considers constraints C8-C10 hard, but allow some flexibility with con-
straint C11. This flexibility arises because, although a venue might be available for the
target dates of a specific game round, the league allows the teams flexibility to move
a game date a few days forward or backward in time. For example, a game scheduled
for Saturday can be played on Friday or Sunday, depending on venue, referee, and team
availabilities.

The problem that we address in this paper is how to generate a schedule that sat-
isfies requirements C1-C10 and violates a minimum number of venue unavailabilities
(requirement C11).

2.1 Basic Tournament Properties

To motivate our approach to tournament template and schedule design, we recall a basic
property of Elitserien’s tournament format established in [7]. The first proposition [7,
Proposition 2.1] gives a lower bound on the minimum number of breaks required to
schedule a league combining divisional and round-robin play.

Proposition 1. In an n-team league (n even) with a schedule consisting of two concur-
rent divisional RRTs followed by two consecutive full-league RRTs, if only one bye is
allowed and it must occur during the divisional RRT, any schedule must have at least
2n− 4 breaks.

In [7], it was also shown that it is possible to construct schedules that achieve this
lower bound. This is accomplished by combining the unique divisional RRT from [4]
with the fact that HAP sets must break in odd periods if they ensure that C5 is satisfied:
the cumulative number of home and away games played never differs by more than 1
at any point in the season [17]. The home-away pattern for a tournament combining
divisional and round-robin play can thus be constructed by combining the divisional

148 J. Larson, M. Johansson, and M. Carlsson

RRT home-away patterns in Fig. 1(a) with two copies of a full-season RRT home-away
pattern in Fig. 1(b) without introducing additional breaks. To construct a given team
HAP, Part I consists of one pattern from Fig. 1(a). This is followed by Part II, which
consists of one pattern from Fig. 1(b). Part III is the reflected complement of the Part II
pattern; i.e., if Part II ends AHH then Part III starts AAH. The schedule will also mirror
this pattern. If Part II of the schedule ends with team 1 playing at team 2, Part III will
start with team 2 hosting team 1.

BAHAHAH AHAHAHAHAHAHA
HBAHAHA AHAHAHAHAHAHH
AHBAHAH AHAHAHAHAHHAH
HAHBAHA AHAHAHAHHAHAH
AHAHBAH AHAHAHHAHAHAH
HAHAHBA AHAHHAHAHAHAH
AHAHAHB AHHAHAHAHAHAH

or HAAHAHAHAHAHA
BHAHAHA HAHAAHAHAHAHA
ABHAHAH HAHAHAAHAHAHA
HABHAHA HAHAHAHAAHAHA
AHABHAH HAHAHAHAHAAHA
HAHABHA HAHAHAHAHAHAA
AHAHABH HAHAHAHAHAHAH
HAHAHAB

(a) (b)

Fig. 1. Left: Two HAP sets for a 7-team, no-break RRT. Right: HAP set satisfying Elitserien’s
requirements for a 14-team, 12-break RRT. These HAP sets are unique up to permutation of the
rows.

HAP sets created as the patterns in Fig. 1 have many attractive properties. Taking
the unique (up to permutation of the rows) no-break, 7-team tournament HAP set and
its complement ensures that 7 teams play at home and 7 teams play away in period 8
without introducing a break. If we did not take the complement, we would have 8 teams
needing to play at home without introducing a break in period 8, an impossibility. Since
we are reflecting and taking the complement of Part II to schedule Part III, and breaks
only occur during odd periods (to ensure the number of home and away games never
differ by more than 1 at any point in the season), there are no breaks in period 9. This
implies no team has a break to end the season; in other words, every team plays at home
one of the last two periods of the season.

At first glance, the reflecting and taking the complement of Part II to form Part III
forces teams to play the same team in periods 20 as they do in period 21 (at the oppo-
site venue). This could be undesirable, depending on the league, but it is a non-issue
for Elitserien. Period II ends before Christmas, allowing for a month-long break for
Champions League competitions before Period III starts at the beginning of February.

An Integrated Constraint Programming Approach to Scheduling Sports Leagues 149

2.2 Tournament Specific Properties

We now recall a number of properties of the unique HAP set satisfying Elitserien’s
requirements shown in Fig. 1. These properties will be instrumental for the development
of efficient implied and symmetry-breaking constraints:

P1. In each division, one bye occurs in each period.
P2. It follows from C5 that breaks can only occur on odd periods.
P3. The three pairs of complementary schedules per division required by C7 must have

breaks that are pairwise aligned, e.g.:

HBAHAHA|HAHAHAHAHAAHA
AHBAHAH|AHAHAHAHAHHAH

HAHBAHA|HAHAAHAHAHAHA
AHAHBAH|AHAHHAHAHAHAH

HAHAHBA|HAAHAHAHAHAHA
AHAHAHB|AHHAHAHAHAHAH

P4. Two HAPs can only be complementary if the byes occur in adjacent periods [7,
Proposition 3.3]. It is apparent by visual inspection of Fig. 1 that two non-adjacent
sequences are non-complementary in at least one of the periods 1 through 8.

P5. If the byes are placed as in Fig. 1, the required three pairs of complementary sched-
ules must include teams 2, 4 and 6 of the given division.

P6. If the byes are placed as in Fig. 1, the first row of Part I is complementary to the
first column for each division.

3 Constraint Model

We now describe the integrated constraint programming model in detail. We first de-
fine the variables to be used in the CP, and then the essential constraints to ensure the
resultant schedule will satisfy Elitserien’s structural requirements C1-C7. We next high-
light some implied constraints and symmetry breaking properties that we find greatly
reduce the search effort. Lastly, we model the league’s seasonal constraints so we can
construct the entire schedule in an integrated approach. The constraint model was en-
coded in MiniZinc 1.6 and executed with Gecode 3.7.0 as back-end. Full details of our
experiments are given in Section 4.

3.1 Problem Variables

We first note that it is sufficient to consider only the first part of the DRRT because
its second half is the mirrored complement of the first half. According to C1-C2, let
t ∈ 1..14 denote a team and p ∈ 1..20 denote a period. The tournament template
corresponds to the array of variables T [t, p] ∈ −14..14, where T [t, p] < 0 stands for
team t playing away in period p, T [t, p] > 0 if it plays at home, and T [t, p] = 0 if it

150 J. Larson, M. Johansson, and M. Carlsson

has a bye. The HAP set corresponds to the array of variables H [t, p] ∈ {A, B, H}. We
also need an array O[t, p] ∈ 1..14 where O[t, p] stands for the opponent of team t in
period p. O[t, p] = t if and only if it has a bye in that period. Finally, we need an array
B[t] ∈ 0..20 which stands for the period in which the break for team t occurs, or 0 if
team t has no break in its schedule.

In [6], the authors show that, if the constraint model uses opponent variables, like
ours does, then an SRRT can be codified by two types of constraints, the filtering algo-
rithms of which are crucial to performance. First, every period consists of a matching
(or one-factor) of the teams. This is captured by the symmetric alldifferent [15] (a.k.a.
one-factor) constraint; see (5) below. Second, the complete set of opponents for a given
team i is the entire set of teams without team i. This is captured by the alldifferent
constraint [13]; see (6) below. Alternatives to opponent variables are discussed in [8].

3.2 Structural Constraints

The T array is channeled to the O and H arrays straightforwardly:

T [t, p] =

⎧⎨⎩
−O[t, p], if H [t, p] = A

O[t, p], if H [t, p] = H

0, if H [t, p] = B

, ∀t, ∀p. (1)

The definition of a break and the channeling between the B and H arrays are cap-
tured by the following constraint:

B[t] =
∑

p∈8..19

p× (H [t, p] = H [t, p+ 1]), ∀t. (2)

As mentioned above, the channeling between the O and H arrays is captured by the
following constraint:

O[t, p] = t ⇔ H [t, p] = B, ∀t, ∀p. (3)

The possible HAP for any team is constrained by C3-C5 and by the fact that we know
the set of sequences that must make up a HAP set satisfying Elitserien’s requirements;
see Fig. 1. This is easily captured by a regular expression e. The corresponding finite
automaton is shown in Fig. 2, and the corresponding regular constraint [9] is posted on
every row of H :

regular([H [t, p] | p ∈ 1..20], e), ∀t. (4)

As mentioned above, it is a fundamental RRT constraint, usually encoded with sym-
metric alldifferent, that every period consist of a matching of the teams. Unfortunately,
symmetric alldifferent is not among the standard MiniZinc global constraints, and has
no native support in Gecode. Fortunately, is is easily emulated by MiniZinc’s inverse
global constraint, which is supported by Gecode:

O[O[t, p], p] = t, ∀t, ∀p, (5)

i.e.,

An Integrated Constraint Programming Approach to Scheduling Sports Leagues 151

H

A

A

A

B

H

B

H

A

H

B

A

H

A

A

B

B

H

H

A

B

B

H

A H

A

B

B

H

A H

A

B

B

H

A
H

B

B

A H

A A

H

H A

H

Fig. 2. The finite automaton for valid HAP. As usual, accepting states are indicated by double
circles. When restricted to sequences of length 20, it accepts the combinations of rows in Fig. 1.

inverse([O[t, p] | t ∈ 1..14], [O[t, p] | t ∈ 1..14]), ∀p.

Each team must meet every other team during Part I and Part II. As mentioned above,
this is another fundamental RRT constraint, easily expressed with alldifferent:

alldifferent([O[t, p] | p ∈ 1..7]) ∧ alldifferent([O[t, p] | p ∈ 8..20]), ∀t. (6)

Home and away must match for every team and its opponent, everywhere. This is
yet another fundamental RRT constraint:⎛⎝ (H [t, p] = A ∧H [O[t, p], p] = H) ∨

(H [t, p] = B ∧H [O[t, p], p] = B) ∨
(H [t, p] = H ∧H [O[t, p], p] = A)

⎞⎠ , ∀t, ∀p. (7)

To encode C6, we note that it is satisfied if and only if every row of the tournament
template contains distinct nonzero values. And since every team has exactly one bye,
we can use alldifferent:

alldifferent ([T [t, p] | p ∈ 1..20]), ∀t (8)

Finally, to model C7, let i⊕ j denote the fact that teams i and j have complementary
schedules:

i⊕ j ⇔ B[i] = B[j] ∧ (H [i, p] �= H [j, p], ∀p ∈ 1..20).

Then we have:

∃{i, j, k, l,m, n} ⊂ 1..7 such that (i⊕ j) ∧ (k ⊕ l) ∧ (m⊕ n) and
∃{i, j, k, l,m, n} ⊂ 8..14 such that (i⊕ j) ∧ (k ⊕ l) ∧ (m⊕ n).

(9)

152 J. Larson, M. Johansson, and M. Carlsson

3.3 Implied Constraints

Property P3 implies that each division must have six breaks. It was determined experi-
mentally that posting this implied constraint improves propagation (see Section 4).∑

t∈1..7

(B[t] > 0) = 6 and
∑

t∈8..14

(B[t] > 0) = 6. (10)

The fact that the breaks must be pairwise aligned could also be posted as a constraint.
This implied constraint, however, was experimentally determined to be useless:∑

t∈1..7

(B[t] = p) is even and
∑

t∈8..14

(B[t] = p) is even, ∀p.

It’s a structural property that the numbers of home and away matches must always
match. Contrary to Trick’s observation [21, Section 6], this implied constraint was also
experimentally found to be useless:∑

t∈1..14

(H [t, p] = A) =
∑

t∈1..14

(H [t, p] = H), ∀p.

We have Property P1, which is useful in itself, but which is subsumed by (15), as we
shall see later:

alldifferent([p | H [t, p] = B, t ∈ 1..7, p ∈ 1..7])∧
alldifferent([p | H [t, p] = B, t ∈ 8..14, p ∈ 1..7]).

(11)

Finally, we know from P2-P3 that out of the 14 teams, two teams must have a break
each in periods 9, 11, 13, 15, 17 and 19, and two teams must have no break. This is ef-
ficiently encoded by an global cardinality constraint [14], and was also experimentally
found to be useful:∑

t∈1..14

(B[t] = i) = 2, ∀i ∈ {0, 9, 11, 13, 15, 17, 19}. (12)

3.4 Breaking Symmetries

The following constraints help remove many of the symmetries in the scheduling of
Elitserien. There is an obvious home/away symmetry: given a solution, we can construct
another solution by swapping home and away everywhere. This symmetry is easily
broken:

H [1, 2] = H ∧H [2, 1] = A. (13)

A second source of symmetry is the fact that the two divisions can be swapped in
the template. This symmetry can be broken by lexicographically ordering the break
sequences:

[B[t] | t ∈ 1..7] ≤lex [B[t] | t ∈ 8..14]. (14)

An Integrated Constraint Programming Approach to Scheduling Sports Leagues 153

There is third source of symmetry in the model: given a solution, we can construct
another solution by swapping rows (teams) i and j of the same division in the arrays
as well as values i and j (positive or negative) in O and T . To break this symmetry, we
can fix the bye period for all teams like in Fig. 1, subsuming (11):⎛⎜⎜⎜⎜⎜⎜⎝

H [t, t] = B ∧
O[t, t] = t ∧
O[t, p] ∈ (1..7) \ {t} ∀p �= t ∧
H [t+ 7, t] = B ∧
O[t+ 7, t] = t+ 7 ∧
O[t+ 7, p] ∈ (8..14) \ {t+ 7} ∀p �= t

⎞⎟⎟⎟⎟⎟⎟⎠ , ∀t ∈ 1..7. (15)

Having fixed the bye periods in such a manner, we can use Properties P4-P5 to con-
struct a slightly stronger version of (9) that restricts the possible pairing of complemen-
tary schedules:

(1⊕ 2 ∨ 2⊕ 3) ∧
(3⊕ 4 ∨ 4⊕ 5) ∧
(5⊕ 6 ∨ 6⊕ 7) ∧
(8⊕ 9 ∨ 9⊕ 10) ∧
(10⊕ 11 ∨ 11⊕ 12) ∧
(12⊕ 13 ∨ 13⊕ 14)

(16)

B[t] > 0, ∀t ∈ {2, 4, 6, 9, 11, 13}. (17)

Property P6 can be posted as an implied constraint, which was determined experi-
mentally to improve propagation, but only marginally:

H [t, 1] �= H [1, t] ∧H [t+ 7, 1] �= H [8, t], ∀t ∈ 2..7. (18)

Finally, alternative symmetry breaking constraints are discussed in [20].

3.5 Seasonal Constraints

The constraints described in the previous section capture the generic Elitserien struc-
tural constraints i.e., a 14-team league with a schedule consisting of (Part I) two concur-
rent divisional SRRTs, followed by (Part II) an RRT between all teams, and (Part III)
the reverse complement of Part II. Also, for every season there are a number of extra
requirements and preferences:

Team Mapping (C8). Team names must be substituted for team numbers. This re-
quires a level of indirection in the form of another array:

M [t] ∈
{
1..7 , for teams constituting Div 1
8..14 , for teams constituting Div 2

where M [t] is the team number (template row) assigned to team t. The M array
can be treated in two different ways, both of which are evaluated in Section 4:

154 J. Larson, M. Johansson, and M. Carlsson

1. One can let M be an array of problem variables, which allows us to keep the
symmetry breaking constraint (15, 16, 17, 18).

2. One can fix M before search, but replace the same symmetry breaking con-
straints by (9) and (11), which make no assumptions on the placement of byes.

Complementary Schedules (C9). For reasons of e.g., venue availability, certain pairs
(i, j) of teams are required to have complementary schedules:

M [i]⊕M [j]

Derbies (C10). A derby constraint is given as a period p and a set Q of four teams, out
of which two pairs of playing teams must be formed. Alternatively, a set T of three
teams is given, two of which must play each other:⎛⎝ (O[M [i], p] = j ∧O[M [j], p] = i) ∨

(O[M [i], p] = k ∧O[M [k], p] = i) ∨
(O[M [j], p] = k ∧O[M [k], p] = j)

⎞⎠ , where T = {i, j, k}.

O[M [i], p] ∈ {M [j] | j ∈ Q}, ∀i ∈ Q.

Venue Unavailabilities (C11). These are soft constraints, turning the scheduling prob-
lem into an optimization problem. If the preferences are stated as an array:

N [t, p] =

{
1 , if team t prefers not to play at home during period p
0 , otherwise,

then the cost function for all three parts of the schedule is:∑
t∈1..14,
p∈1..20

N [t, p]× (H [M [t], p] = H) +
∑

t∈1..14,
p∈21..33

N [t, p]× (H [M [t], 41− p] = A)

4 Experiments

The constraint model was encoded in MiniZinc 1.6 and executed with Gecode 3.7.0 as
back-end on a quad core 2.8 GHz Intel Core i7-860 machine with 8MB cache per core,
running Ubuntu Linux. In the parallel runs, Gecode was given 8 threads in the usual
way with the command line option -p 8:

mzn-gecode -p 8 ...

The MiniZinc models and instances can be found here:

http://www.sics.se/~matsc/Elitserien

In a first experiment, we solved the generic scheduling problem, involving the struc-
tural constraints encoded by constraints (1–18) except (9) and (11), which are implied
by constraints (16) and (15), respectively, but no seasonal constraints. Searching on the
H variables in row-major order, followed by the O variables in row-major order, the
first solution was found using one thread in 70ms and 81 failures. With the symmetry

http://www.sics.se/~matsc/Elitserien

An Integrated Constraint Programming Approach to Scheduling Sports Leagues 155

Table 1. HAP sets distribution according to how many templates satisfying C1-C7 they admit

Range No. HAP sets
[101, 102) 3
[102, 103) 13
[103, 104) 39
[104, 105) 41
[105, 106) 7
[106, 107) 1

Total 104

breaking described in Section 3.4, it was already known that there exist 104 distinct,
feasible HAP sets. We enumerated these sets, and counted the number of solutions per
set. As shown in Table 1, the solution counts vary a lot, from 34 to 2249812. This
would suggest that some HAP sets can accommodate seasonal constraints much better
than others.

In a second experiment, we considered the optimization problem subject to struc-
tural as well as seasonal constraints, treating the mapping M as an array of problem
variables. This allowed us to keep the symmetry breaking constraints (15–18), which
are very effective. Constraints (13) and (14) are however not valid in this context and
were disabled.

In this experiment, we generated 20 random instances because (a) our model has only
been used for one year and we wished to verify that this instance was not an especially
easy case to solve, and (b) the league requested that we not divulge the true team desires
for privacy reasons. The structure of the random seasonal constraints were very similar
to the real ones, though:

– The partitioning of teams into divisions (C8).
– One specific pair of teams in each division to be assigned complementary sched-

ules (C9).
– One 3-team intra-division derby set, one 3-team inter-division derby set, and one

4-team inter-division derby set (C10).
– For each team t and period p, t prefers to not play at home during period p with

probability 0.054, yielding on average 25 unavailabilities (C11), which is the num-
ber of unavailabilities requested by Elitserien teams for the season that we sched-
uled.

We searched on the H variables in column-major order, followed by the M vari-
ables, followed by the O variables in row-major order. Fig. 3 shows the results in terms
of number of instances solved to optimality as a function of elapsed time, with one
curve for 1 thread and one curve for 8 threads. For 8 threads, the median solve time to
optimality was 15s, the average 42s, and the standard deviation 54s. These numbers are
reasonable, and show that there are no extreme outliers among our random instances.
We also observe a rather uniform speed-up of 3x-4x from parallelism.

This is an improvement over the approach in [7], which first generated 80640 HAP
sets satisfying C3-C5 but not necessarily schedulable, then applied necessary conditions

156 J. Larson, M. Johansson, and M. Carlsson

100 101 102 103

0

5

10

15

20

timeout limit (s)

#
so

lv
ed

8 threads
1 thread

Fig. 3. Number of instances solved to optimality as function of timeout limit in seconds

101 102 103

101

102

103

ko-10

w
ild

101 102 103

101

102

103

ko-12

w
ild

101 102 103

101

102

103

ko-16

w
ild

101 102 103

101

102

103

ko-17

w
ild

Fig. 4. Effect of knocking out a single implied constraint. Solve time to optimality in seconds,
running on a single thread. The model variants are: wild – all constraints; ko-10 – (10) knocked
out; ko-12 – (12) knocked out; ko-16 – (16) knocked out and replaced by (9); ko-17 – (17)
knocked out.

An Integrated Constraint Programming Approach to Scheduling Sports Leagues 157

for schedulability to rule out some 87% of the unschedulable HAP sets. An attempt was
then made to convert the remaining HAP sets to templates by solving an integer pro-
gram. The resultant templates were ranked in their carry-over effect to produce a tem-
plate for the league. This template was then assigned teams with respect to the seasonal
constraints C8-C11. Testing all HAP sets against the necessary conditions took nearly
a day. Since the template was fixed before the seasonal constraints were available, it is
likely that a suboptimal schedule was produced. Furthermore, a straightforward appli-
cation of the approach in [7] to scheduling where a template does not need to be fixed
a priori would clearly be inefficient: the 104 schedulable HAP sets admit 5,961,704
templates if constraints (13) and (14) are used, or 23,846,816 templates if they are not.
Assuming that it takes 0.1 seconds per template to assign teams to numbers optimally,
an optimistic estimate, finding the best schedule would take almost one month.

In order to gauge the effectiveness of implied and symmetry-breaking constraints
(10, 12, 16, 17), we ran the same instances with the same model, except in each run, a
given constraint was disabled. The results are shown as scatter plots in Fig. 4, running
on a single thread for maximal runtime stability. We find that only constraints (10) and
(17) had any significant impact, shortening the solve time by up to three times. An
unexpected observation is that the speed-up gained from these extra constraints seems
to decrease as the difficulty of the instance increases. Constraint (12) gave a marginal
speedup, whereas replacing constraints (9) by (16) had a slightly detrimental effect.

In a third experiment, we considered the same optimization problem, but fixed the
mapping M before search. So we had to disable constraints (15–18) and instead enable
constraints (9) and (11), which make no assumptions on the placement of byes. This
gave much worse results than the second experiment: on an instance that was solved
with proof of optimality in 20 seconds on 8 threads in the second experiment, an op-
timal solution was found in about 3.5 minutes in the third experiment, with a proof of
optimality obtained after 10 hours.

5 Conclusion

In this paper, we analyzed the situation where a league augments a traditional DRRT
schedule by forming two divisions of teams, each of which hold an SRRT to start the
season. This asymmetry (pairs of teams play three times if they are in the same divi-
sion, twice otherwise) makes constructing feasible schedules an interesting problem.
We highlighted the concerns of Elitserien, which we consider to be general enough
to apply to many other leagues. We presented a constraint programming model for
the problem, integrating the different phases that sports scheduling traditionally de-
composes to, and showed a dramatic improvement over a previous approach using de-
composition and integer programming. Non-decomposition approaches are rare in the
sports scheduling literature. In our work, we made heavy use of implied and symmetry-
breaking constraints, some of which turned out to be crucial to performance.

Acknowledgments. Jeffrey Larson and Mikael Johansson were funded in part by the
Swedish Foundation for Strategic Research and the Swedish Science Council.

158 J. Larson, M. Johansson, and M. Carlsson

References

1. Benoist, T., Laburthe, F., Rottembourg, B.: Lagrange relaxation and constraint programming
collaborative schemes for travelling tournament problems. In: Proceedings CPAIOR, vol. 1,
pp. 15–26 (2001)

2. Briskorn, D.: Sports Leagues Scheduling. Lecture Notes in Economics and Mathematical
Systems, vol. 603. Springer (2008)

3. Easton, K., Nemhauser, G.L., Trick, M.A.: The traveling tournament problem description
and benchmarks. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 580–584. Springer,
Heidelberg (2001)

4. Fronček, D., Meszka, A.: Round robin tournaments with one bye and no breaks in home-away
patterns are unique. In: Multidisciplary Scheduling: Theory and Applications, pp. 331–340.
MISTA, New York (July 2005) ISSN 2305-249X

5. Henz, M.: Scheduling a major college basketball conference—revisited. Operations Re-
search 49(1), 163–168 (2001)

6. Henz, M., Müller, T., Thiel, S.: Global constraints for round robin tournament scheduling.
European Journal of Operational Research 153(1), 92–101 (2004)

7. Larson, J., Johansson, M.: Constructing schedules for sports leagues with divisional and
round-robin tournaments. Journal of Quantitative Analysis in Sports (to appear, 2014)
doi:10.1515/jqas-2013-0090

8. Perron, L.: Alternate modeling in sport scheduling. In: van Beek, P. (ed.) CP 2005. LNCS,
vol. 3709, pp. 797–801. Springer, Heidelberg (2005)

9. Pesant, G.: A regular language membership constraint for finite sequences of variables. In:
Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 482–495. Springer, Heidelberg (2004)

10. Rasmussen, R.V., Trick, M.A.: The timetable constrained distance minimization problem.
In: Beck, J.C., Smith, B.M. (eds.) CPAIOR 2006. LNCS, vol. 3990, pp. 167–181. Springer,
Heidelberg (2006)

11. Rasmussen, R.V., Trick, M.A.: Round robin scheduling - a survey. European Journal of Op-
erational Research 188(3), 617–636 (2008)

12. Rasmussen, R.: Scheduling a triple round robin tournament for the best Danish soccer league.
European Journal of Operational Research 185, 795–810 (2008)

13. Régin, J.C.: A filtering algorithm for constraints of difference in CSPs. In: 12th National
Conference on Artificial Intelligence (AAAI-1994), pp. 362–367 (1994)

14. Régin, J.-C.: Generalized arc consistency for global cardinality constraint. In: Clancey, W.J.,
Weld, D.S. (eds.) AAAI/IAAI, vol. 1, pp. 209–215. AAAI Press / The MIT Press (1996)

15. Régin, J.-C.: The symmetric alldiff constraint. In: Dean, T. (ed.) IJCAI, pp. 420–425. Morgan
Kaufmann (1999)

16. Régin, J.-C.: Minimization of the number of breaks in sports scheduling problems using con-
straint programming. DIMACS Series in Discrete Mathematics and Theoretical Computer
Science 57, 115–130 (2001)

17. Ribeiro, C., Urrutia, S.: Scheduling the Brazilian soccer tournament with fairness and
broadcast objectives. In: Burke, E.K., Rudová, H. (eds.) PATAT 2007. LNCS, vol. 3867,
pp. 147–157. Springer, Heidelberg (2007)

18. Russell, R.A., Urban, T.L.: A constraint programming approach to the multiple-venue, sport-
scheduling problem. Computers & Operations Research 33(7), 1895–1906 (2006)

19. Schaerf, A.: Scheduling sport tournaments using constraint logic programming. Con-
straints 4(1), 43–65 (1999)

20. Trick, M.A.: A schedule-then-break approach to sports timetabling. In: Burke, E., Erben, W.
(eds.) PATAT 2000. LNCS, vol. 2079, pp. 242–253. Springer, Heidelberg (2001)

21. Trick, M.A.: Integer and constraint programming approaches for round-robin tournament
scheduling. In: Burke, E.K., De Causmaecker, P. (eds.) PATAT 2002. LNCS, vol. 2740,
pp. 63–77. Springer, Heidelberg (2003)

Local Search for a Cargo Assembly Planning

Problem

Gleb Belov1, Natashia Boland2, Martin W.P. Savelsbergh2,
and Peter J. Stuckey1

1 Department of Computing and Information Systems
University of Melbourne, 3010 Australia

pstuckey@unimelb.edu.au
2 School of Mathematical and Physical Sciences

University of Newcastle, Callaghan 2308, Australia

Abstract. We consider a real-world cargo assembly planning problem
arising in a coal supply chain. The cargoes are built on the stockyard
at a port terminal from coal delivered by trains. Then the cargoes are
loaded onto vessels. Only a limited number of arriving vessels is known in
advance. The goal is to minimize the average delay time of the vessels over
a long planning period. We model the problem in the MiniZinc constraint
programming language and design a large neighbourhood search scheme.
We compare against (an extended version of) a greedy heuristic for the
same problem.

Keywords: packing, scheduling, resource constraint, large neighbour-
hood search, constraint programming, adaptive greedy, visibility horizon.

1 Introduction

The Hunter Valley Coal Chain (HVCC) refers to the inland portion of the coal
export supply chain in the Hunter Valley, New South Wales, Australia. Coal
from different mines with different characteristics is ‘mixed’ in a stockpile at a
terminal at the port to form a coal blend that meets the specifications of a cus-
tomer. Once a vessel arrives at a berth at the terminal, the stockpiles with coal
for the vessel are reclaimed and loaded onto the vessel. The vessel then trans-
ports the coal to its destination. The coordination of the logistics in the Hunter
Valley is challenging as it is a complex system involving 14 producers operating
35 coal mines, 27 coal load points, 2 rail track owners, 4 above rail operators, 3
coal loading terminals with a total of 8 berths, and 9 vessel operators. Approx-
imately 1700 vessels are loaded at the terminals in the Port of Newcastle each
year. For more information on the HVCC see the overview presentation of the
Hunter Valley Coal Chain Coordinator (HVCCC), the organization responsible
for planning the coal logistics in the Hunter Valley [2].

We focus on the management of a stockyard at one of the coal loading termi-
nals. It acts as a cargo assembly terminal where the coal blends assembled and
stockpiled are based on the demands of the arriving ships. Our cargo assembly
planning approach aims to minimize the delay of vessels, where the delay of a

H. Simonis (Ed.): CPAIOR 2014, LNCS 8451, pp. 159–175, 2014.
c© Springer International Publishing Switzerland 2014

160 G. Belov et al.

vessel is defined as the difference between the vessel’s departure time and its ear-
liest possible departure time, that is, the departure time in a system with infinite
capacity. Minimizing the delay of vessels is used as a proxy for maximizing the
throughput, i.e., the maximum number of tons of coal that can be handled per
year, which is of crucial importance as the demand for coal is expected to grow
substantially over the next few years. We investigate the value of information
given by the visibility horizon — the number of future vessels whose arrival time
and stockpile demands are known in advance.

The solving technology we apply is Constraint Programming (CP) using lazy
clause generation (LCG) [6]. Constraint programming has been highly successful
in tackling complex packing and scheduling problems [11,12]. Cargo assembly
is a combined scheduling and packing problem. The specific problem is first de-
scribed by Savelsbergh and Smith [9]. They propose a greedy heuristic for solving
the problem and investigate some options concerning various characteristics of
the problem. We present a Constraint Programming model implemented in the
MiniZinc language [4]. To solve the model efficiently, we develop iterative solv-
ing methods: greedy methods to obtain initial solutions and large neighbourhood
search methods [8] to improve them.

2 Cargo Assembly Planning

The starting point for this work is the model developed in [9] for stockyard
planning.

The stockyard studied has four pads, A, B, C, and D, on which cargoes are
assembled. Coal arrives at the terminal by train. Upon arrival at the terminal,
a train dumps its contents at one of three dump stations. The coal is then
transported on a conveyor to one of the pads where it is added to a stockpile by
a stacker. There are six stackers, two that serve pad A, two that serve both pads
B and C, and two that serve pad D. A single stockpile is built from several train
loads over several days. After a stockpile is completely built, it dwells on its pad
for some time (perhaps several days) until the vessel onto which it is to be loaded
is available at one of the berths. A stockpile is reclaimed using a bucket-wheel
reclaimer and the coal is transferred to the berth on a conveyor. The coal is then
loaded onto the vessel by a shiploader. There are four reclaimers, two that serve
both pads A and B, and two that serve both pads C and D. Both stackers and
reclaimers travel on rails at the side of a pad. Stackers and reclaimers that serve
the same pads cannot pass each other. A scheme of the stockyard is given in
Figure 1.

The cargo assembly planning process involves the following steps. An incoming
vessel defines a set of cargoes (different blends of coal) to be assembled and an
estimated time of arrival (ETA). The cargoes are assembled in the stockyard
as different stockpiles. The vessel cannot arrive at berth earlier than its ETA.
Once at a berth, and once all its cargoes have been assembled, the reclaiming
of the stockpiles (the loading of the vessel) begins. The stockpiles are reclaimed
onto the vessel in a specified order to maintain physical balancing constraints.

Local Search for a Cargo Assembly Planning Problem 161

Pad A

Pad B

Pad C

Pad D

S1 S2

R1 R2

S3 S4

R3 R4

S5 S6

Fig. 1. A scheme of the stockyard with 4 pads, 6 stackers, and 4 reclaimers

The goal of the planning process is to maximize the throughput without causing
unacceptable delays for the vessels.

When assigning each cargo of a vessel to a location in the stockyard we need to
schedule the stacking and reclaiming of the stockpile taking into account limited
stockyard space, stacking rates, reclaiming rates, and reclaimer movements. We
model stacking and reclaiming at different levels of granularity. All reclaimer
activities, e.g., the reclaimer movements along its rail track and the reclaiming
of a stockpile, are modelled in time units of one minute. Stacking is modelled
only at a coarse level of detail in 12 hour periods.

We assume that the time to build a stockpile is derived from the locations of
the mines that contribute coal to the blend (the distance of the mines from the
port). We allocate 3, 5, or 7 days to stacking of different stockpiles depending
on the blend. We assume that the tonnage of the stockpile is stacked evenly over
the stacking period. Since the trains that transport coal from the mines to the
terminal are scheduled closer to the day of operations, this is not unreasonable.
We assume that all stockpiles for a vessel are assembled on the same pad, since
that leads to better results (already observed in [9]). In practice, however, there
is no such restriction.

For each stockpile we need to decide a location, a stacking start time, a re-
claiming start time, and which reclaimer will be used. Note that reclaiming does
not have to start as soon as stacking has finished; the time between the comple-
tion of stacking and the start of reclaiming is known as dwell time. Stockpiles
cannot overlap in time and space, reclaimers can only be used on pads they
serve, and reclaimers cannot cross each other on the shared track. The waiting
time between the reclaiming of two consecutive stockpiles of one vessel is limited
by the continuous reclaim time limit. The reclaiming of a stockpile, a so-called
reclaim job, cannot be interrupted.

A cargo assembly plan can conveniently be represented using space-time
diagrams ; one space-time diagram for each of the pads in the stockyard. A
space-time diagram for a pad shows for any point in time which parts of the pad
are occupied by stockpiles (and thus also which parts of the pad are not occupied
by stockpiles and are available for the placement of additional stockpiles) and
the locations of the reclaimers serving that pad. Every pad is rectangular; how-
ever its width is much smaller than its length and each stockpile is spread across
the entire width. Thus, we model pads as one-dimensional entities. The loca-
tion of a stockpile can be characterized by the position of its lowest end called its

162 G. Belov et al.

 0

 500

 1000

 1500

 2000

 0 50 100
 150

 200
 250

 300
 350

 400
 450

H
ei

gh
t

Time (hours)

Machine Schedule On Pad A

1000389-340(3)

465726-10(6)

463112-10(8)

466254-10(9)

465038-10(16)

1000339-290(19)

1000339-291(19)

467002-10(26)

1000181-180(28)

1000181-181(28)
1000181-182(28)
467706-10(32)

1000389-130(36)

1000332-140(42)

1000108-130(44)

1000108-131(44)

1000389-100(47)

463112-30(51)

1000108-260(54)

1000108-261(54)
464250-20(56)

462364-10(63)

462364-11(63)

462364-12(63)

1000389-540(66)

1000108-80(69)

1000108-81(69)

1000339-130(78)

1000339-131(78)

462608-10(79)
464406-10(81)

462052-10(88)

462020-30(92)

462020-31(92)

1000062-80(94)
1000062-81(94)

1000146-230(95)

1000146-231(95)

1000389-330(99)

R459 R460

Fig. 2. A space-time diagram of pad A showing also reclaimer movements. Reclaimer
R459 has to be after R460 on the pad. Both reclaimers also have jobs on pad B.

height. A stockpile occupies space on the pad for a certain amount of time. This
time can be divided into three distinct parts: the stacking part, i.e., the time
during which the stockpile is being built; the dwell part, i.e., the time between
the end of stacking and the start of reclaiming; and a reclaiming part, i.e., the
time during which the stockpile is reclaimed and loaded on a waiting vessel at
a berth. Thus, each stockpile can be represented in a space-time diagram by a
three-part rectangle as shown in Figure 2.

2.1 The Basic Constraint Programming Model

We present the model of the cargo assembly problem below; the structure cor-
responds directly to the implementation in MiniZinc [5]. The unit for time pa-
rameters is minutes, and for space parameters is meters. In addition, stacking
start times are restricted to be multiples of 12 hours.

Parameter sets
S — set of stockpiles of all vessels, ordered by vessels’ ETAs

and reclaim sequence of each vessel’s stockpiles
V — set of vessels, ordered by ETAs

Parameters
vs — vessel for stockpile s ∈ S
etav — estimated time of arrival of vessel v ∈ V , minutes
dSs ∈ {4320, 7200, 10080} — stacking duration of stockpile s ∈ S, minutes
dRs — reclaiming duration of stockpile s ∈ S, minutes
ls — length of stockpile s ∈ S, meters

Local Search for a Cargo Assembly Planning Problem 163

(H1, . . . , H4) = (2142, 1905, 2174, 2156) — pad lengths, meters
speedR = 30 — travel speed of a reclaimer, meters / minute
tonndailys — daily stacking tonnage of stockpile s ∈ S, tonnes
tonnDIT = 537,600 — daily inbound throughput (total daily stacking capac-

ity), tonnes
tonnSSk = 288,000 — daily capacity of stacker stream k ∈ {1, 2, 3}, tonnes

Decisions
pv ∈ {1, . . . , 4} — pad on which the stockpiles of vessel v ∈ V are

assembled
hs ∈ {0, . . . , Hpvs

− ls} — position of stockpile s ∈ S (of its ‘closest to pad
start’ boundary) on the pad

tSs ∈ {0, 720, . . .} — stacking start time of stockpile s ∈ S
rs ∈ {1, . . . , 4} — reclaimer used to reclaim stockpile s ∈ S
tRs ∈ {etavs , etavs +1, . . .}— reclaiming start time of stockpile s ∈ S

Constraints. Reclaiming of a stockpile cannot start before its vessel’s ETA:

tRs ≥ etavs , ∀s ∈ S

Stacking of a stockpile starts no more than 10 days before its vessel’s ETA:

tSs ≥ etavs −14400, ∀s ∈ S

Stacking of a stockpile has to complete before reclaiming can start:

tSs + dSs ≤ tRs , ∀s ∈ S

The reclaim order of the stockpiles of a vessel has to be respected:

tRs + dRs ≤ tRs+1, ∀s ∈ S where vs = vs+1

The continuous reclaim time limit of 5 hours has to be respected:

tRs+1 − 300 ≤ tRs + dRs , ∀s ∈ S where vs = vs+1

A stockpile has to fit on the pad it is assigned to:

0 ≤ hs ≤ Hpvs
− ls, ∀s ∈ S

Stockpiles cannot overlap in space and time:

pvs �= pvt ∨ hs + ls ≤ ht ∨ ht + lt ≤ hs ∨ tRs + dRs ≤ tSt ∨ tRt + dRt ≤ tSs ,

∀s < t ∈ S

Reclaimers can only reclaim stockpiles from the pads they serve:

pvs ≤ 2 ⇔ rs ≤ 2, ∀s ∈ S

164 G. Belov et al.

Reclaim jobs

��
��
��
��
��

Reclaimer 1 � �1 �
�
�
�
� �

�
�
�
�
��� �2

Reclaimer 2 � �

3
�
�
�
��
� �

4 �
�� �

5
�
�
�
�
� �

6 �
�
�
�
�
�
�� � �

7

Fig. 3. A schematic example of space (vertical)-time (horizontal) location of Reclaimers
1 and 2 with some reclaim jobs. Reclaimer 2 has to stay spatially before Reclaimer 1.

If two stockpiles s < t are reclaimed by the same reclaimer, then the time
between the end of reclaiming the first and the start of reclaiming the second
should be enough for the reclaimer to move from the middle of the first to the
middle of the second:

rs �= rt ∨max
{
(tRt − tRs − dRs), (t

R
s − tRt − dRt)

}
speedR ≥

∣∣∣hs +
ls
2
− ht −

lt
2

∣∣∣
To avoid clashing, at any point in time, the position of Reclaimer 2 should be
before the position of Reclaimer 1 and the position of Reclaimer 4 should be
before the position of Reclaimer 3. An example of the position of Reclaimers
1 and 2 in space and time is given in Figure 3 (see also Figure 2). Because
Job 3 is spatially before Job 1, there is no concern for a clash. However, since
Job 6 is spatially after Job 2, we have to ensure that there is enough time for the
reclaimers to get out of each other’s way. The slope of the dashed line corresponds
to the reclaimer’s travel speed (speedR), so we see that the time between the
end of Job 6 and the start of Job 2 has to be at least (h6 + l6 − h2)/ speed

R.
We model clash avoidance by a disjunction: for any two stockpiles s �= t, one

of the following conditions must be met: either (rs ≥ 3 ∧ rt ≤ 2), in which case
rs and rt serve different pads; or rs < rt, in which case rs does not have to
be before rt; or hs + ls ≤ ht, in which case stockpile s is before stockpile t; or,
finally, enough time between the reclaim jobs exists for the reclaimers to get out
of each other’s way:

max
{
(tRt − tRs − dRs), (t

R
s − tRt − dRt)

}
speedR ≥ hs + ls − ht

∨ rs < rt ∨ (rs ≥ 3 ∧ rt ≤ 2) ∨ hs + ls ≤ ht, ∀s �= t ∈ S

Redundant cumulatives on pad space usage improved efficiency. They require
derived variables lps giving the ‘pad length of stockpile s on pad p’:

lps =

{
ls, if pvs = p,

0, otherwise,
∀s ∈ S, p ∈ {1, . . . , 4}

cumulative(tS , tR + dR − tS , lp, Hp), p ∈ {1, . . . , 4}

Local Search for a Cargo Assembly Planning Problem 165

The stacking capacity is constrained day-wise. If a stockpile is stacked on day
d and the stacking is not finished before the end of d, the full daily tonnage of
that stockpile is accounted for using derived variables

tS1 = #tS/1440$, dS1 = #dS/1440$

The daily stacking capacity cannot be exceeded:

cumulative(tS1, dS1, tonndaily, tonnDIT)

The capacity of stacker stream k (a set of two stackers serving the same pads)
is constrained similar to pad space usage:

tonndailyks =

{
tonndailys , if (pvs , k) ∈ {(1, 1), (2, 2), (3, 2), (4, 3)}
0, otherwise,

∀s, k

cumulative(tS1, dS1, tonndailyk , tonnSSk), k ∈ {1, 2, 3}

The maximum number of simultaneously berthed ships is 4. We introduce de-
rived variables for vessels’ berth arrivals and use a decomposed cumulative:

tBerth
v = tRsfirst(v), sfirst(v) = min{s|vs = v}, ∀v ∈ V

card({u ∈ V | u �= v, tBerth
u ≤ tBerth

v ∧ tBerth
v < tDepart

u }) ≤ 3, ∀v ∈ V

Objective Function. The objective is to minimize the sum of vessel delays.
To define vessel delays, we introduce the derived variables tDepart

v for vessel
departure times:

depEarliestv = etav +
∑

s|vs=v

dRs , ∀v ∈ V

tDepart
v = tRslast(v) + dRslast(v), slast(v) = max{s|vs = v}, ∀v ∈ V

delayv = tDepart
v − depEarliestv, ∀v ∈ V

objective =
∑
v

delayv (1)

2.2 Solver Search Strategy

Many Constraint Programming models benefit from a custom search strategy for
the solver. Similar to packing problems [1], we found it advantageous to separate
branching decisions by groups of variables. We start with the most important
variables — departure times of the ships (equivalently, delays). Then we fix
reclaim starts, pads, reclaimers, stack starts, and pad positions. For most of the
variables, we use the dichotomous strategy indomain split for value selection,
which divides the current domain of a variable in half and tries first to find a
solution in the lower half. However, pads are assigned randomly, and reclaimers

166 G. Belov et al.

are assigned preferring lower numbers for odd vessels and higher numbers for
even vessels. Pad positions are preferred so as to be closer to the native side of
the chosen reclaimer, which corresponds to the idea of opportunity costs in [9].

In the greedy and LNS heuristics described next, some of the variables are
fixed and the model optimizes only the remaining variables. For those free vari-
ables, we apply the search strategy described above.

2.3 A Greedy Search Heuristic with Constraint Programming

It is difficult to obtain even feasible solutions for large instances in a reasonable
amount of time. Moreover, even for smaller instances, if a feasible solution is
found, it is usually bad. Therefore, we apply a divide-and-conquer strategy which
schedules vessels by groups (e.g., solve vessels 1–5, then vessels 6–10, then vessels
11–15, etc.). For each group, we allow the solver to run for a limited amount of
time, and, if feasible solutions are found, take the best of these, or, if no feasible
solution is found, we reduce the number of vessels in the group and retry. We
refer to this scheme as the extending horizon (EH) heuristic. This heuristic is
generalized in Section 2.5.

2.4 Large Neighbourhood Search

After obtaining a feasible solution, we try to improve it by re-optimizing subsets
of variables while others are fixed to their current values, a large neighbourhood
search approach [8]. We can apply this improvement approach to both complete
solutions (global LNS) or only for the current visibility horizon (see Section 2.5).
The free variables used in the large neighbourhood search are the decision vari-
ables associated with certain stockpiles.

Neighbourhood Construction Methods. We consider a number of methods
for choosing which stockpile groups to re-optimize (the neighbourhoods):

Spatial. Groups of stockpiles located close to each other on one pad, mea-
sured in terms of their space-time location.

Time-based (finish). Groups of stockpiles on at most two pads with similar
reclaim end times.

Time-based (ETA). Groups of stockpiles on at most two pads belonging
to vessels with similar estimated arrival times.

Examples of a spatial and a time-based neighbourhood are given in Figure 4.
First, we randomly decide which of the three types of neighbourhood to use.

Next, we construct all neighbourhoods of the selected type. Finally, we randomly
select one neighbourhood for resolving.

Spatial neighbourhoods are constructed as follows. In order to obtain many
different neighbourhoods, every stockpile seeds a neighbourhood containing only
that stockpile. Then all neighbourhoods are expanded. Iteratively, for each neigh-
bourhood, and for each direction right, up, left, and down, independently, we add

Local Search for a Cargo Assembly Planning Problem 167

 0

 500

 1000

 1500

 2000

 2500

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000

H
ei

gh
t

Time (Tunits)

LNS iteration 278, NBH kind=0, pad 4 schedule, group value 396, N piles=15

3,0

4,0

8,0

8,0

18,0

35,3
35,3

37,0

43,0

45,0

49,0

54,0

58,0

59,0

59,0

73,4

73,4

76,0

79,0

82,4

82,4

84,4
84,4

88,0

88,0

92,2

92,2

95,3
95,3

98,598,5

**9,0:1;0;1

**17,0:2;12;6

**19,0:2;12;5

**19,0:2;0;7

**22,4:2;12;4
**22,4:2;12;3

**27,128:2;0;2

**32,0:-1;-1;0

**38,0:1;11;9

**40,0:1;11;12

**40,0:1;11;10

**42,0:1;11;14

**48,0:1;11;11

**49,0:1;11;13

**54,0:1;0;8

 0

 500

 1000

 1500

 2000

 2500

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000

H
ei

gh
t

Time (Tunits)

LNS iteration 2758 N, H Binkd 28 =ak 3 sphekuce8 grou= l acue 128 N =icesd 15

1280

14825
14825

1v80

23893
23893

2v8341

2v8341

2680

2680

3184
3184

6v856
6v856

9183
9183

9780

9980

9980

**5380:;5-3-0

**5380:;5-3-1

**5580:;5-3-2

**5780:;5-1-3

**v080:;5-1-4

**v280:;5-1-5

**v380:;5-3-v

**v480:;5-1-7

**v480:;5-1-6

**v580:;5-1-9

**v780:;5-3-10

**v684:;5-3-11
**v684:;5-3-12

**7080:;5-3-13

**7080:;5-3-14

Fig. 4. Examples of LNS neighbourhoods: spatial (left) and time-based (right)

the stockpile on the same pad that is first met by the sweep line going in that di-
rection, after the sweep line has touched the smallest enclosing rectangle of the
stockpiles currently in the neighbourhood. We then add all stockpiles contained
in the new smallest enclosing rectangle. We continue as long as there are neigh-
bourhoods containing fewer than the target number of stockpiles.

Time-based neighbourhoods are constructed as follows. Stockpiles are sorted
by their reclaim end time or by the ETA of the vessels they belong to. For each
pair of pads, we collect all maximal stockpile subsequences of the sorted sequence
of up to a target length, with stockpiles allocated to these pads.

Having constructed all neighbourhoods of the chosen type, we randomly select
one neighborhood of the set. The probability of selecting a given neighborhood
is proportional to its neighborhood value: if the last, but not all stockpiles of a
vessel is in the neighborhood, then add the vessel’s delay; instead, if all stockpiles
of a vessel are in the neighborhood, then add 3 times the vessel’s delay.

We denote the iterative large neighbourhood search method by LNS(kmax,
nmax, δ), where for at most kmax iterations, we re-optimize neighborhoods of up
to nmax stockpiles chosen using the principles outlined above, requiring that the
total delay decreases at least by δ minutes in each iteration. The objective is again
to minimize the total delay (1).

2.5 Limited Visibility Horizon

In the real world, only a limited number of vessels is known in advance. We model
this as follows: the current visibility horizon is N vessels. We obtain a schedule
for the N vessels and fix the decisions for the first F vessels. Then we schedule
vessels F + 1, . . . , F +N (making the next F vessels visible) and so on. Let us
denote this approach by VH N/F . Our default visibility horizon setting is VH
15/5, with the schedule for each visibility horizon of 15 vessels obtained using EH
from Section 2.3 and then (possibly) improved by LNS(30, 15, 12), i.e., 30 LNS
iterations with up to 15 stockpiles in a neighbourhood, requiring a total delay
improvement of at least 12 minutes. We used only time-based neighbourhoods
in this case, because for small horizons, spatial neighbourhoods on one pad are
too small. (Note that the special case VH 5/5 without LNS is equivalent to the
heuristic EH.)

168 G. Belov et al.

3 An Adaptive Scheme for a Heuristic from the
Literature

The truncated tree search (TTS) greedy heuristic [9] processes vessels according
to a given sequence. It schedules a vessel’s stockpiles taking the vessel’s delay
into account. It performs a partial lookahead by considering opportunity costs
of a stockpile’s placement, which are related to the remaining flexibility of a
reclaimer. However, it does not explicitly take later vessels into account; thus,
the visibility horizon of the heuristic is one vessel. The heuristic may perform
backtracking of its choices if the continuous reclaim time limit cannot be satisfied.

The default version of TTS processes vessels in their ETA order. We propose
an adaptive framework for this greedy algorithm. This framework might well
be used with the Constraint Programming heuristic from Section 2.3, but the
latter is slower. Below we present the adaptive framework, then highlight some
modelling differences between CP and TTS.

3.1 Two-Phase Adaptive Greedy Heuristic (AG)

The TTS greedy heuristic processes vessels in a given order. We propose an adap-
tive scheme consisting of two phases. In the first phase, we iteratively adapt the
vessel order, based on vessels’ delays in the generated solutions. In the second
phase, earlier generated orders are randomized. Our motivation to add the ran-
domization phase was to compare the adaptation principle to pure randomization.

For the first phase, the idea is to prioritize vessels with large delays. We intro-
duce vessels’ “weights” which are initialized to the ETAs. In each iteration, the
vessels are fed to TTS in order of non-decreasing weights. Based on the gener-
ated solution, the weights are updated to an average of previous values and ETA
minus a randomized delay; etc. We tried several variants of this principle and the
one that seemed best is shown in Figure 5, Phase 1. The variable “oldWFactor”
is the factor of old weights when averaging them with new values, starting from
iteration 1 of Phase 1.

In the second phase, we randomize the orderings obtained in Phase 1. Each it-
eration in Phase 1 generated a vessel order % = (v1, . . . , v|V |). Let O = (%1, . . . , %k)
be the list of orders generated in Phase 1 in non-decreasing order of TTS solution
value. We select an order with index k0 from O using a truncated geometric dis-
tribution with parameter p = p1, TGD(p), which has the following probabilities
for indexes {1, . . . , k}:

P [1] = p+(1−p)k, P [2] = p(p−1), P [3] = p(p−1)2, . . . , P [k] = p(p−1)k−1

The rationale behind this distribution is to respect the ranking of obtained so-
lutions. A similar order randomization principle was used, e.g., in [3]. Then we
modify the selected order %k0 : vessels are extracted from it, again using the trun-
cated geometric distribution with parameter p = p2, and are added to the end
of the new order %̃. Then TTS is executed with %̃ and %̃ is inserted into O in
the position corresponding to its objective value. We denote the algorithm by

Local Search for a Cargo Assembly Planning Problem 169

Algorithm AG(k1, k2)
INPUT: Instance with V set of vessels; k1, k2 parameters
FUNCTION rnd(a, b) returns a pseudo-random number uniformly distributed in [a, b)
Initialize weights: Wv = etav, v ∈ V

for k = 0, k1 [PHASE 1]
Sort vessels by non-decreasing values of Wv,

giving vessels’ permutation � = (v1, . . . , v|V |)
Run TTS Greedy on �
Add � to the sorted list O
Set oldWFactor = rnd(0.125, 1) // “Value of history”
Set Dv to be the delay of vessel v ∈ V
Let Wv = oldWFactor · (Wv + (etav − rnd(0, 1) · Dv)

)
, v ∈ V

end for

for k = 1, k2 [PHASE 2]
Select an ordering � from O according to TGD(0.5)

Create new ordering �̃ from �,
extracting each new vessel according to TGD(0.85)

Run TTS Greedy with the vessel order �̃
Add the new ordering �̃ to the sorted list O

end for

Fig. 5. The adaptive scheme for the greedy heuristic

AG(k1, k2), where k1, k2 are the number of iterations in Phases 1 and 2, respec-
tively. Note that AG(k1, 0) is a pure Phase 1 method, while AG(0, k2) is a pure
randomization method starting from the ETA order.

3.2 Differences between the Approaches

The model used by both methods is essentially identical, but there are small
technical differences: the CP model uses discrete time and space and tonnages
(minutes, meters, and tons), and discretizes possible stacking start times to be
12 hours apart. The discretized stacking start times reduce the search space, and
may diminish solution quality, but seem reasonable given the coarse granularity
of the stacking constraints imposed. The greedy method does not implement the
berth constraints. If we remove them from the CP model it is solved slower, but
the delay is hardly affected, so we always include them.

4 Experiments

After describing the experimental set-up, we illustrate the test data. We present
numerical results starting with the value of information represented by the visi-
bility horizon. Using the model from Section 2.1 we compare the Constraint Pro-
gramming approach to the TTS heuristic and the adaptive scheme from Section 3.

The Constraint Programming models in the MiniZinc language were created
by a master program written in C++, which was compiled in GNU C++.

170 G. Belov et al.

The adaptive framework for the TTS heuristic and the TTS heuristic itself
were implemented in C++ too. The MiniZinc models were processed by the
finite-domain solver Opturion CPX 1.0.2 [7] which worked single-threaded on an

Intel R© Core
TM

i7-2600 CPU @ 3.40GHz under Kubuntu 13.04 Linux.
The Lazy Clause Generation [6] technology seems to be essential for our ap-

proach because our efforts to use another CP solver, Gecode 4.2.0 [10], failed even
for 5-vessel subproblems. Packing problems are highly combinatorial, and this
is where learning is the most advantageous. Moreover, some other LCG solvers
than CPX did not work well, since this problem relies on lazy literal creation.

The solution of a MiniZinc model works in 2 phases. At first, it is flattened,
i.e., translated into a simpler language FlatZinc. Then the actual solver is called
on the flattened model. Time limits were imposed only on the second phase; in
particular, we allowed at most 60 seconds in the EH heuristic and 30 seconds in
an LNS iteration, see Section 2 for their details. However, reported times contain
also the flattening which took a few seconds per model on average.

In EH and LNS, when writing the models with fixed subsets of the variables,
we tried to omit as many irrelevant constraints as possible. In particular, this
helped reduce the flattening time. For that, we imposed an upper bound of 200
hours on the maximal delay of any vessel (in the solutions, this bound was never
achieved, see Figure 6 for example).

The default visibility horizon setting for our experiment, see Section 2.5, is
VH 15/5: 15 vessels visible, they are approximately solved by EH and (possibly)
improved by LNS(30, 15, 12); then the first 5 vessels are fixed, etc. Given the
above time limits on an EH or LNS iteration, this takes less than 20 minutes to
process each current visibility horizon and has shown to be usually much less
because many LNS subproblems are proved infeasible rather quickly.

Our test data is the same as in [9]. It is historical data with compressed time
to put extra pressure on the system. It has the following key properties:

– 358 vessels in the data file, sorted by their ETAs.
– One to three stockpiles per vessel, on average 1.4.
– The average interarrival time is 292 minutes.
– All ETAs are moved so that the first ETA = 10080 (7 days, to accommodate

the longest build time).
– Optimizing vessel subsequences of 100 or up to 200 vessels, starting from

vessels 1, 21, 41, . . . , 181.

Figure 6 illustrates the test data giving the delay profile in a solution for all
358 vessels. The solution is obtained with the default visibility horizon setting
VH 15/5. The most difficult subsequences seem to be the vessel groups 1..100
and 200..270.

4.1 Initial Solutions

First we look at basic methods to obtain schedules for longer sequences of vessels.
This is the EH heuristic from Section 2.3 and the TTS Greedy described in

Local Search for a Cargo Assembly Planning Problem 171

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100
 150

 200
 250

 300
 350

D
ur

at
io

n
(h

ou
rs

)

Vessels

Vessel Delays and Minimum Total Reclaim Times. Average Delay: 2.97h, rst 100 vessels: 6.17h

Minimum reclaim time
Actual departure - ETA

Fig. 6. Vessel delay profile in a solution of the instance 1..358

Table 1. Solutions for the 100- and up to 200-vessel instances, obtained with EH, TTS,
ALL, and VH 15/5

100 vessels Up to 200 vessels

EH TTS ALL VH 15/5 EH TTS ALL VH 15/5

1st obj t obj t obj t obj t obj t obj t obj t obj t

1 11.77 71 9.87 73 13.31 275 6.17 1509 6.15 170 5.09 90 7.06 356 3.19 1934
21 7.01 69 6.11 33 9.46 275 4.19 1758 3.75 142 3.25 68 5.08 352 2.23 2101
41 2.54 46 1.68 12 2.93 271 1.31 702 2.02 175 1.60 62 2.62 348 1.26 1465
61 0.64 42 0.61 18 0.98 273 0.51 214 3.59 252 3.25 60 5.39 351 2.63 1719
81 0.46 35 0.39 18 0.54 272 0.32 236 3.81 139 3.40 310 5.73 352 2.71 2084

101 0.33 29 0.23 7 0.52 272 0.19 202 3.39 140 3.21 62 5.14 352 1.91 2444
121 0.40 27 0.38 8 0.54 272 0.26 169 4.79 108 4.23 46 4.45 360 2.33 1815
141 2.82 154 1.44 20 2.59 273 1.35 612 4.72 220 3.26 47 4.45 353 2.45 2184
161 5.13 43 5.26 11 7.68 273 3.67 2031 3.53 101 3.26 42 5.15 352 2.25 2350
181 5.45 35 5.16 10 8.23 273 3.84 1438 3.13 70 2.93 33 4.72 328 2.17 1519

Mean 3.65 55 3.11 21 4.68 273 2.18 887 3.89 152 3.35 82 4.98 350 2.31 1961

Section 3, which fit into the visibility horizon schemes VH 5/5 and VH 1/1,
respectively. We compare them to an approach to construct schedules in a single
MiniZinc model (method “ALL”) and to the standard visibility horizon setting
VH 15/5, Section 2.5. The results are given in Table 1 for the 100-vessel and
200-vessel instances.

Method “ALL”, obtaining feasible solutions for the whole 100-vessel and 200-
vessel instances in a single run of the solver, became possible after a modification
of the default search strategy from Section 2.2. This did not produce better re-
sults however, so we present its results only as a motivation for iterative methods
for initial construction and improvement.

The default solver search strategy proved best for the iterative methods EH
and LNS. But feasible solutions of complete instances in a single model only
appeared possible with a modification. Let us call the strategy from Section 2.2
LayerSearch(1,. . . ,|V |) because we start with all vessels’ departure times, con-
tinue with reclaim times, pads, etc. The alternative strategy can be expressed as

172 G. Belov et al.

LayerSearch(1,. . . ,5);LayerSearch(6,. . . ,10); . . .

which means: search for departure times of vessels 1, . . . , 5; then for the reclaim
times of their stockpiles; then for their pad numbers; . . . departure times of vessels
6, . . . , 10; etc. It is similar to the iterative heuristic EH with the difference that
the solver has the complete model and (presumably) takes the first found feasible
solution for every 5 vessels.

We had to increase the time limit per solver call: 4 minutes. But the flattening
phase took longer than finding a first solution (there are a quadratic number of
constraints). Feasible solutions were found in about 1–2 minutes after flattening.
We also tried running the solver for longer but this did not lead to better results:
the solver enumerates near the leaves of the search tree, which is not efficient
in this case. Switching to the solver’s default strategy after 300 seconds (search
annotation cpx warm start [7]) gave better solutions, comparable with the EH
heuristic.

In Table 1 we see that the solutions obtained by the “ALL” method are infe-
rior to EH. Thus, for all further tests we used strategy LayerSearch(1,. . . ,|V |)
from Section 2.2. Further, EH is inferior to TTS, both in quality and running
time. This proves the efficiency of the opportunity costs in TTS and suggests us-
ing TTS for initial solutions. However, TTS runs on original real-valued data and
we could not use its solutions in LNS because the latter works on rounded data
which usually has small constraint violations for TTS solutions. A workaround
would be to use the rounded data in TTS but given the majority of running time
spent in LNS, and for simplicity we stayed with EH to obtain starting solutions.
The results for VH 15/5 where LNS worked on every visibility horizon, support
this choice.

4.2 Visibility Horizons

In this subsection, we look at the impact of varying the visibility horizon settings
(Section 2.5), including the complete horizon (all vessels visible). More specifi-
cally, we compare N = 1, 4, 6, 10, 15, 25, or∞ visible vessels and various numbers
F of vessels to be fixed after the current horizon is scheduled. For N = ∞, we
can apply a global solution method. Using Constraint Programming, we obtain
an initial solution and try to improve it by LNS, denoted by global LNS, because
it operates on the whole instance. Using Adaptive Greedy (Section 3), we also
operate on complete schedules.

To illustrate the behaviour of global methods, we pick the difficult instance
with vessels 1..100, cf. Figure 6. A graphical illustration of the progress over time
of the global methods AG(130,0) and VH 15/5 + LNS(500, 15, 12) is given in
Figure 7.

To investigate the value of various visibility horizons, for limited horizons, we
applied the same settings as the standard one (Section 2.5): an initial schedule for
the current horizon is obtained with EH and then improved with LNS(30, 15, 12).

Local Search for a Cargo Assembly Planning Problem 173

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 0 1000
 2000

 3000
 4000

 5000
 6000

 7000
 8000

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15
O

bj
ec

tiv
e

va
lu

e

Time, sec.

All Best

 0

 1

 2

 3

 4

 5

 6

 7

 0 2000
 4000

 6000
 8000

 10000

 12000

 0

 1

 2

 3

 4

 5

 6

 7

O
bj

ec
tiv

e
va

lu
e

Time, sec.

VisHrz

5

10

1520

25303540
45
50

55

60
65
7075

80
85

9095100 Global

Fig. 7. Progress of the objective value in AG(130,0) (left) and VH 15/5 + LNS(500,
15, 12) (right), vessels 1..100

Table 2. Visibility horizon trade-off: all 100-vessel instances

N/F 1/1 4/2 6/3 10/5 15/7 15/1 25/12 25/5 15/5+GLNS

Delay, h 5.36 3.51 3.16 2.55 2.28 2.16 2.29 1.96 1.73
%Δ 210% 103% 83% 48% 32% 25% 33% 13%

Time, s 114 188 202 267 916 2896 1823 3354 4236
%Δ -97% -96% -95% -94% -78% -32% -57% -21%

Table 2 gives the average results for all 100-vessel instances.On average, the global
Constraint Programming approach (500 LNS iterations) gives the best results, but
VH 25/5 is close. Moreover, the setting VH 15/1 which invests significant effort by
fixing only one vessel in a horizon, is slightly better than VH 25/12, which shows
that with a smaller horizon, more computational effort can be fruitful.

The visibility horizon setting 1/1 produces the worst solutions. The TTS
heuristic of Section 3 also uses this visibility horizon, but produces better results,
see Table 3. The reason is probably the more sophisticated search strategy in
TTS, which minimizes ‘opportunity costs’ related to reclaimer flexibility. At
present, it is impossible to implement this complex search strategy in MiniZinc,
the search sublanguage would need significant extension to do so.

4.3 Comparison of Constraint Programming and Adaptive Greedy

To compare the Constraint Programming and the AG approaches, we select the
following methods: VH 15/5 Visibility horizon 15/5; VH 15/5+G Visibility
horizon 15/5, followed by global LNS 500;VH 25/5Visibility horizon 25/5;AG1

TTS Greedy, one iteration on the ETA order; AG500/500 Adaptive greedy, 500
iterations in both phases; AG1000/0 Adaptive greedy, 1000 iterations in Phase I
only. The results for the 100-vessel instances are in Table 3. The pure-random
configuration of the Adaptive Greedy, AG0/1000, showed inferior performance,
and its results are not given.

174 G. Belov et al.

Table 3. 100 vessels: VH and LNS vs. (adaptive) greedy

Constraint Programming TTS Greedy and Adaptive Greedy

VH 15/5 VH 15/5∗+G VH 25/5 AG1 AG500/500 AG1000/0

1st obj t obj t iter obj t obj t obj t iter obj t iter

1 6.17 1509 4.72 10204 338 5.44 7507 9.87 73 5.67 9992 130 5.67 7500 130
21 4.19 1758 3.17 10529 494 3.30 6626 6.11 33 3.63 10433 333 3.25 23051 991
41 1.31 702 1.24 922 0 1.24 3256 1.68 12 1.00 11253 667 1.02 12660 903
61 0.51 214 0.50 279 0 0.51 912 0.61 18 0.54 2713 126 0.54 2769 126
81 0.32 236 0.32 299 0 0.32 1266 0.39 18 0.34 11972 696 0.36 5794 344

101 0.19 202 0.19 285 2 0.18 943 0.23 7 0.21 7764 771 0.22 15 1
121 0.26 169 0.26 258 3 0.26 971 0.38 8 0.28 3589 525 0.29 201 28
141 1.35 612 0.73 4883 469 0.90 1364 1.44 20 0.80 4895 255 0.76 12969 652
161 3.67 2031 2.50 8172 369 3.51 4241 5.26 11 3.24 12574 845 3.78 4166 284
181 3.84 1438 3.64 6525 311 3.89 6450 5.16 10 3.83 6818 422 3.65 13843 809

Mean 2.18 887 1.73 4236 199 1.96 3354 3.11 21 1.95 8200 477 1.95 8297 427

∗ For limited visibility horizons, LNS(20,12,12) was applied

5 Conclusions

We consider a complex problem involving scheduling and allocation of cargo
assembly in a stockyard, loading of cargoes onto vessels, and vessel scheduling.
We designed a Constraint Programming (CP) approach to construct feasible
solutions and improve them by Large Neighbourhood Search (LNS).

Investigation of various visibility horizon settings has shown that larger num-
bers of known arriving vessels lead to better results. In particular, the visibility
horizon of 25 vessels provides solutions close to the best found. The new ap-
proach was compared to an existing greedy heuristic. The latter works with a
visibility horizon of one vessel and, under this setting, produces better feasible
solutions in less time. The reason is probably the sophisticated search strategy
which cannot be implemented in the chosen CP approach at the moment. To
make the comparison fairer, an adaptive iterative scheme was proposed for this
greedy heuristic, which resulted in a similar performance to LNS.

Overall the CP approach using visibility horizons and LNS generated the best
overall solutions in less time than the adaptive greedy approach. A significant
advantage of the CP approach is that it is easy to include additional constraints,
which we have done in work not reported here for space reasons.

Acknowledgments. The research presented here is supported by ARC linkage
grant LP110200524. We would like to thank the strategic planning team at
HVCCC for many insightful and helpful suggestions, Andreas Schutt for hints
on efficient modelling in MiniZinc, as well as to Opturion for providing their
version of the CPX solver under an academic license.

Local Search for a Cargo Assembly Planning Problem 175

References

1. Clautiaux, F., Jouglet, A., Carlier, J., Moukrim, A.: A new constraint program-
ming approach for the orthogonal packing problem. Computers & Operations Re-
search 35(3), 944–959 (2008)

2. HVCCC: Hunter valley coal chain — overview presentation (2013),
http://www.hvccc.com.au/

3. Lesh, N., Mitzenmacher, M.: BubbleSearch: A simple heuristic for improving
priority-based greedy algorithms. Information Processing Letters 97(4), 161–169
(2006)

4. Marriott, K., Stuckey, P.J.: A MiniZinc tutorial (2012),
http://www.minizinc.org/

5. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc:
Towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS,
vol. 4741, pp. 529–543. Springer, Heidelberg (2007)

6. Ohrimenko, O., Stuckey, P., Codish, M.: Propagation via lazy clause generation.
Constraints 14(3), 357–391 (2009)

7. Opturion Pty Ltd: Opturion CPX user’s guide: version 1.0.2 (2013),
http://www.opturion.com

8. Pisinger, D., Ropke, S.: Large neighborhood search. In: Gendreau, M., Potvin, J.-Y.
(eds.) Handbook of Metaheuristics. International Series in Operations Research &
Management Science, vol. 146, pp. 399–419. Springer, US (2010)

9. Savelsbergh, M., Smith, O.: Cargo assembly planning. Tech. rep. University of
Newcastle (2013) (accepted)

10. Schulte, C., Tack, G., Lagerkvist, M.Z.: Modeling and programming with Gecode
(2013), http://www.gecode.org

11. Schutt, A., Feydy, T., Stuckey, P.J., Wallace, M.G.: Solving RCPSP/max by lazy
clause generation. Journal of Scheduling 16(3), 273–289 (2013)

12. Schutt, A., Stuckey, P.J., Verden, A.R.: Optimal carpet cutting. In: Lee, J. (ed.)
CP 2011. LNCS, vol. 6876, pp. 69–84. Springer, Heidelberg (2011)

http://www.hvccc.com.au/
http://www.minizinc.org/
http://www.opturion.com
http://www.gecode.org

A Logic Based Benders’ Approach

to the Concrete Delivery Problem

Joris Kinable1,2,3 and Michael Trick1

1 Tepper School of Business, Carnegie Mellon University,
5000 Forbes Ave Pittsburgh, PA 15213, USA
jkinable@andrew.cmu.edu, trick@cmu.edu

2 ORSTAT - KU Leuven, Naamsestraat 69, 3000 Leuven, Belgium
3 KU Leuven, Department of Computer Science, CODeS & iMinds-ITEC,

Gebr. De Smetstraat 1, 9000 Gent, Belgium

Abstract. This work presents an exact Logic Based Benders’ decompo-
sition for the Concrete Delivery Problem (CDP). The CDP is a complex,
real world optimization problem involving the allocation and distribution
of concrete to construction sites. The key scheduling issue for the CDP is
the need for successive deliveries to a site to be sufficiently close in time.
We decompose the CDP into a master problem and a subproblem. Based
on a number of problem characteristics such as the availability of vehicles,
geographical orientation of the customers and production centers, as well
as the customers’ demand for concrete, the master problem allocates con-
crete to customers. Next, the subproblem attempts to construct a feasible
schedule, meeting all the routing and scheduling constraints. Infeasibili-
ties in the schedule are communicated back to the master problem via a
number of combinatorial inequalities (Benders’ cuts). The master prob-
lem is solved through a Mixed Integer Programming approach, whereas
the subproblem is solved via a Constraint Programming model and a
dedicated scheduling heuristic. Experiments are conducted on a large
number of problem instances, and compared against other exact meth-
ods presented in related literature. This algorithm is capable of solving
a number of previously unsolved benchmark instances to optimality and
can improve the bounds for many other instances.

Keywords: Vehicle Routing, Scheduling, Logic Based Benders’ Decom-
position, Integer and Constraint Programming.

1 Introduction

Many of today’s real world optimization challenges do not involve just a single
problem, but often comprise a multitude of interconnected problems. Although
many of these optimization problems can be formulated in a single Mixed Integer
(MIP) or Constraint Programming (CP) model, solving them to optimality is
only possible for moderately small problem instances. The dependencies between
the subproblems produce an excessive number of conditional constraints (big-
M constraints), which have a significant impact on the quality of the model.

H. Simonis (Ed.): CPAIOR 2014, LNCS 8451, pp. 176–192, 2014.
c© Springer International Publishing Switzerland 2014

A Logic Based Benders’ Approach to the Concrete Delivery Problem 177

Furthermore, MIP and CP solvers often make poor branching decisions, simply
because the solvers are unaware of the underlying problem structure. Therefore,
a major challenge lies in the design of efficient decomposition procedures for
these problems.

In this work, a logic based Benders’ decomposition for the Concrete Delivery
Problem (CDP) is presented.TheCDP, recently presentedbyKinable et al. (2013),
comprises the allocation and distribution of concrete to customers, under a num-
ber of routing and scheduling constraints, while maximizing the amount of con-
crete delivered. Concrete is transported from production centers to the customer’s
construction sites by a set of heterogeneous vehicles. Often, multiple deliveries for
the same customer are required as the customer’s demand exceeds the capacity
of a single truck. Consequently, delivery schedules for different trucks need to be
synchronized as deliveries for the same customer may not overlap in time. Further-
more, successive deliveriesmust not differ in time toomuch since the concrete from
an early delivery must still be liquid when a second arrives.

The logic based Benders’ procedure presented in this paper decomposes the
CDP into a master problem and a subproblem. The master problem (MP) allo-
cates concrete to customers, while taking a number of resource restrictions into
consideration. The subproblem (SP) attempts to find a feasible delivery schedule
for the concrete trucks. Whenever such a schedule does not exist, a feasibility
cut is generated and added to the master problem. The master problem and sub-
problem are solved iteratively, until a provable optimal (and feasible) schedule
is obtained.

In Kinable et al. (2013) several solution approaches for the CDP were inves-
tigated, including two exact approaches based on Mixed Integer and Constraint
Programming, as well as a number of heuristic approaches. The best performance
was obtained with a hybrid approach, using a dedicated scheduling heuristic, and
a CP model to improve the heuristic solutions. Although good results were re-
ported, the approach provided little insight as to the quality of the solutions.
Moreover, alternative approaches to compute bounds on the optimal solution,
including a Linear Programming approach could not close the optimality gap
for most instances. The approach presented in this paper addresses these issues,
as bounds on the optimal solution are available through the master problem.

The CDP bears strong resemblance to a number of routing and scheduling
problems, including the Pickup-and-Delivery problem with Time-Windows and
Split Deliveries and the Parallel Machine Scheduling Problem with Time Lags.
Although the Benders’ decomposition in this work is discussed in the context of
CDP, we must note that the techniques presented are not uniquely confined to
this application.

The remainder of this paper is structured as follows. First in Section 2, the
CDP is defined in detail. Section 3 provides a literature review. Next, Section
4 presents the Benders’ decomposition, defining the master and subproblem in
more detail, as well as their interaction. Experiments are conducted in Section
5, thereby comparing the Benders’ decomposition against other exact methods
previously appeared in literature. Finally, Section 6 offers the conclusions.

178 J. Kinable and M. Trick

Table 1. Parameters defining the CDP

Parameter Description

P Set of concrete production sites
C Set of construction sites, also denoted as customers. |C| = n
V V = C ∪ {0} ∪ {n+ 1}
0, n+ 1 resp. the start and end depots of the trucks.
K Set of trucks
qi Requested amount of concrete by customer i ∈ C
lk Capacity of truck k ∈ K
pk Time required to empty truck k ∈ K
ai, bi Time window during which the concrete for customer i may be delivered.
tij Time to travel from i to j, i, j ∈ V ∪ P
γ Maximum time lag between consecutive deliveries.

2 Problem Outline

In the CDP as defined by Kinable et al. (2013), concrete has to be transported
from production sites P to a set of construction sites C. The transport is con-
ducted by a fleet of vehiclesK. Each vehicle k ∈ K has a capacity lk (measured in
tons of concrete) and each customer i ∈ C has a demand qi which usually exceeds
the capacity of a single truck. Concrete for a given customer i ∈ C may only be
delivered within a time window [ai, bi], and deliveries from multiple trucks to a
customer may not overlap in time. To ensure proper bonding of the concrete, the
time between two consecutive deliveries for the same customer may not exceed
γ. The time pk, k ∈ K, required to perform a single delivery is truck dependent.
Deliveries may not be preempted and trucks are always filled to their maximum
capacity. Furthermore, the payload of a single truck may not be shared amongst
multiple customers; whenever the capacity of a truck exceeds the customer’s re-
maining demand, the excess amount is considered waste. A customer i ∈ C is
satisfied if at least qi tons of concrete have been delivered. The objective of the
problem is to maximize the total demand of the satisfied customers.

The routing part of the CDP problem is similar to many other pickup and
delivery problems. Initially, the trucks are all stationed at a starting depot.
Trucks first have to drive from the starting depot to some production site to
load concrete. After loading concrete, a truck travels from the production site
to a customer to unload. Once the delivery is completed, the truck can either
return to a production station to reload and service another customer, or the
truck can return to the starting depot. Traveling between any location requires
tij time, i, j ∈ {0}∪C ∪P ∪ {n+1}, where 0 is the starting depot, and n+1 is
the ending depot (0 and n+1 can have the same physical location). Finally, note
that a single truck may also perform multiple deliveries for the same customer.

The routing problem can be formalized on a directed, weighted graph. Let
the sets P , C be defined as in Table 1. In addition, for each customer i ∈ C,
an ordered set consisting of deliveries, Ci = {1, . . . ,m(i), . . . , n(i)}, is defined,

A Logic Based Benders’ Approach to the Concrete Delivery Problem 179

where m(i) = & qi
max
k∈K

(lk)
' and n(i) = & qi

min
k∈K

(lk)
' are respectively lower and up-

per bounds on the number of deliveries required for customer i. As shorthand
notation, cij will be used to denote delivery j for customer i. A time window

[au, bu] is associated with each delivery u ∈ Ci, i ∈ C, which is initialized to the
time window of the corresponding customer i ∈ C, i.e. [au, bu] = [ai, bi] for all
i ∈ C, u ∈ Ci. Finally, D =

⋃
i∈C Ci is the union of all deliveries.

Let G(V,A) be the directed, weighted graph consisting of vertex set V =
{0} ∪D ∪ {n+ 1}. The arc set A is defined as follows:

– the source, sink depots have outgoing resp. incoming edges to/from all other
vertices.

– a delivery node cih has a directed edge to a delivery node cij if h < j, i ∈ C,
h, j ∈ Ci.

– There is a directed edge from ciu to cjv, i �= j, except if cjv needs to be
scheduled earlier than ciu.

The arc costs are as follows:

– c0,cij = minp∈P t0,p + tp,i for all c
i
j ∈ D

– cciu,c
j
v
= minp∈P ti,p + tp,j for all ciu, c

j
v ∈ D, ciu �= cjv

– ccij ,n+1 = ti,n+1

– c0,n+1 = 0

A solution to CDP consists of a selection of |K| s − t paths, which collectively
satisfy the routing and scheduling constraints as outlined above. A summary of
the notation used throughout this paper is provided in Table 1.

3 Related Research

This Section provides a brief overview on related works in the area of concrete
production and distribution. An extensive overview and classification of these
works has recently been published in Kinable et al. (2013).

A generalization of the CDP problem discussed in this paper is treated in
Asbach et al. (2009). Next to the constraints discussed in Section 2, Asbach et al.
(2009) consider vehicle synchronization at the loading depots, vehicles with
specialized equipment, and additional time lags between deliveries for a single
customer. In addition, Asbach et al. (2009) add constraints ensuring that some
customers only receive concrete from a subset of production stations, and con-
straints limiting the time that concrete may reside in the vehicle’s drum. Here we
do not explicitly consider these constraints, as they can simply be incorporated
in our model by modifying the arcs or costs in the underlying routing graph
(Section 2). Asbach et al. (2009) present a MIP model to their problem, but
solving it through Branch-and-Bound turned out intractable; instead, a heuris-
tic procedure is used. The aforementioned MIP model served as the basis for the
MIP approach in Kinable et al. (2013).

180 J. Kinable and M. Trick

Schmid et al. (2009) and Schmid et al. (2010) consider a concrete delivery
problem with soft time windows. In contrast to our work, their objective is to
satisfy all customers, while minimizing total tardiness. Similar to Asbach et al.
(2009), Schmid et al. (2009) and Schmid et al. (2010) also consider orders re-
quiring vehicles with special equipment to be present during the entire delivery
process, e.g. a pump or conveyor. Both works employ hybridized solution ap-
proaches combining MIP models and Variable Neighborhood Search heuristics.

Naso et al. (2007) propose a heuristic solution to a problem which involves
the assignment of orders to concrete production centers, and the distribution
of the concrete produced. Contrary to this work, deliveries are performed by a
fleet of homogeneous vehicles. Furthermore, customers require an uninterrupted
flow of concrete, meaning that the next truck must be available as soon as the
previous truck finishes unloading. All orders must be fulfilled; unfulfilled orders
are covered by external companies at a hire cost.

While in this work we consider both the routing and scheduling aspects of the
concrete production and distribution, Yan and Lai (2007), Silva et al. (2005)
focus primarily on the scheduling problems at the concrete production sites.
In Yan and Lai (2007), only a single production center is considered, and in
Silva et al. (2005) a single delivery takes a fixed amount of time which does
not depend on the vehicle’s location. Moreover, both works consider a homoge-
neous fleet of vehicles, as opposed to a heterogeneous fleet. This simplifies their
scheduling problem considerably because the exact number of deliveries required
to meet the customer’s demand is known beforehand. This is not the case in our
problem.

Similarly to this work, Hertz et al. (2012) present a decomposition approach
for a concrete delivery problem. Their approach first assigns deliveries to vehicles,
and then solves an independent routing problem for each vehicle. The latter is
possible because the aforementioned work does not consider synchronization of
the deliveries at the construction sites. Furthermore, no time windows on the
deliveries are imposed.

Finally, in Durbin and Hoffman (2008), a decision support system is presented
which assists in the dispatching of trucks, creating delivery schedules, and deter-
mining whether new orders should be accepted. The system is designed in such
a way that it can coop with uncertainty and changes in the schedule caused by
order cancellations, equipment failures, traffic congestions. The scheduling and
routing problems handled by the system are represented by time-space networks,
and are solved through MIP.

The LogicBasedBenders’ decomposition frameworkutilized in this work has re-
cently been applied in a number of related related assignment, scheduling and rout-
ing problems. Applications include Round Robin Tournament Scheduling
(Rasmussen and Trick, 2007), Tollbooth Allocation (Bai and Rubin, 2009), Paral-
lel Machine Scheduling (Tran and Beck, 2012), Lock Scheduling (Verstichel et al.,
2013) and Strip Packing (Côté et al., 2013).

A Logic Based Benders’ Approach to the Concrete Delivery Problem 181

4 A Logic-Based Benders’ Decomposition

To solve the problem defined in the previous section, a logic-based Benders’ de-
composition is developed. The problem is decomposed in a master problem and a
subproblem. The master problem, guided by the objective function, decides which
customers are being serviced. To aid in this decision, a number of high-level prob-
lem characteristics are captured in the master problem, such as the availability
of vehicles, their capacities, processing times and travel times between the cus-
tomers and production centers. For a given subset of customers C ⊆ C selected
by the master problem, the subproblem attempts to find a feasible delivery sched-
ule in which the demand of all customers in C is satisfied, and all scheduling and
routing constraints are met. Whenever such a schedule does not exist, a feasibility
cut is generated and added to the master problem, effectively forcing the master
problem to change the set C. When, on the other hand, a feasible solution to the
subproblem exist, a provable optimal solution to the CDP problem is obtained.
An overview of the solution procedure is presented in Algorithm 1.

When compared to theMIPorCPapproaches presented inKinable et al. (2013),
this decomposition approach decouples the allocation of concrete to customers
from the actual routing and scheduling problem. As a consequence, many of the
conditional constraints (big-M constraints) can be omitted or strengthened.

Algorithm 1. Combinatorial Benders Decomposition of CDP

Output: An optimal Concrete Delivery Schedule

1 repeat ← true ;
2 while repeat do
3 Solve [MP];
4 get solution (yi), i ∈ C;
5 repeat ← false ;
6 Solve [SP] for yi, i ∈ C;
7 if [SP] is infeasible then
8 repeat ← true ;
9 add feasibility cut(s) to [MP] ;

10 else
11 get solution (y, x, C);

12 return Optimal schedule (y, x, C)

4.1 Master Problem

The master problem is defined through the following MIP model.

MP : max
∑
i∈C

qiyi (1)∑
k∈K

lkzki ≥ qiyi ∀i ∈ C (2)

182 J. Kinable and M. Trick∑
i∈C

zki ≤ Δk ∀k ∈ K (3)∑
i∈S

yi ≤ |S| − 1 ∀S ∈ S, S ⊆ C (4)

yi ∈ {0, 1} ∀i ∈ C (5)

0 ≤ zki ≤ Δki ∀i ∈ C (6)

Here, boolean variables yi, i ∈ C, denote whether customer i is serviced and
integer variables zki record the number of deliveries from vehicle k ∈ K to cus-
tomer i ∈ C. The auxiliary zki variables are used to produce stronger limits on
the yi variables; they are not used in the subproblem described in Section 4.2.

The first constraint, (2), links the variables yi and zki, i ∈ C, k ∈ K: a
customer is satisfied if sufficient concrete is delivered. Constraints (3), (6) restrict
the number of deliveries made by a single vehicle through the boundsΔki,Δk, for
all k ∈ K, i ∈ C.Δki,Δk, are resp. bounds on the maximum number of deliveries
vehicle k can make for customer i, and bounds on the total number of deliveries
a vehicle k can make. Finally, Constraints (4) are the feasibility cuts obtained
through the subproblem, prohibiting certain combinations of customers.

Δki is calculated via Algorithm 2, whereas Δk is calculated via the recursive
Algorithm 3. The latter algorithm utilizes a sorted array of customers; a customer
i ∈ C precedes a customer j ∈ C in the array if bi < bj ∨ (bi = bj ∧ ai ≤ aj).
Computing a bound on the maximum number of deliveries a vehicle can make,
is achieved by calculating a route from the starting depot 0 to the ending depot
n + 1 through a number of customers. At each customer, the vehicle makes as
many deliveries as possible. The exact number of deliveries it can make for a
given customer is limited by: (1) the demand of the customer, (2) the available
time to make the deliveries. In turn, the available time to perform the deliveries
is limited by the time window of the customer, the processing time of the vehicle,
and the time required to reload the vehicle. Furthermore, whenever the vehicle
completes its last delivery for a customer i at time ticompl, deliveries for the

Algorithm 2. Calculating an upper bound on the number of deliveries
vehicle k ∈ K can make for customer i ∈ C
Input: Vehicle k ∈ K, Customer i ∈ C

1 concreteDelivered ← 0 ;
2 timeConsumed ← 0 ;
3 Δki ← 0 ;
4 while ai + timeConsumed+ pk ≤ bi ∧ concreteDelivered < qi do
5 Δki ← Δki + 1 ;
6 concreteDelivered ← concreteDelivered + lk ;
7 timeConsumed ← timeConsumed+ pk + ci,i ;

8 return Δki

A Logic Based Benders’ Approach to the Concrete Delivery Problem 183

Algorithm 3. Calculating an upper bound on the number of deliveries
vehicle k ∈ K can make
Input: Vehicle k ∈ K, Array of customers sortedCustomers[], sorted.
Output: Δk

1 return maxDeliveries(k, 0, 0, 0, 0) ;

2 Function int maxDeliveries(k ∈ K, Δk, index, i ∈ V , complTime)
3 if index = |C| then
4 return Δk;

5 j ← sortedCustomers[index] ;
/* Determine how many deliveries vehicle k can make for customer

j */

6 concreteDelivered ← 0 ;
7 startTime ← max(aj ,complTime +cij) ; /* Start time 1st delivery for

j ∈ C */

8 timeConsumed ← 0 ;
9 deliveries ← 0 ;

10 while startTime + timeConsumed + pk ≤ bj ∧ concreteDelivered < qj do
11 deliveries ← deliveries + 1 ;
12 concreteDelivered ← concreteDelivered + lk ;
13 timeConsumed ← timeConsumed+ pk + cjj ;

14 complTimeNew ← startTime + timeConsumed − cjj ;
15 if deliveries > 0 then
16 returnmax(maxDeliveries(k,Δk+deliveries,index +1,j,complTimeNew),
17 maxDeliveries(k, Δk, index +1, i, complTime));

18 else
19 return maxDeliveries(k, Δk, index +1, i, complTime);

next customer j cannot commence before ticompl + cij . The recursive algorithm
outlined in procedure 3 iterates over all possible subsets of customers in an
efficient manner. At each iteration, the algorithm tracks the total number of
deliveries made, the last location i ∈ V visited, an index to the customer it will
visit next, and the time it departed from location i ∈ V .

4.2 Subproblem

Let yi, i ∈ C, be the optimal selection of customers obtained from problem MP ,
i.e. C = {i ∈ C : yi = 1}. To assess the feasibility of this selection, a satisfiability
subproblem (SP) is solved.Whenever no feasible solution to the subproblem exists,
a cut is added to the Master problem:∑

i∈Ĉ

yi ≤ |Ĉ| − 1

184 J. Kinable and M. Trick

,where Ĉ ⊆ C. The weakest cuts are obtained for Ĉ = C. By reducing the size
of Ĉ, stronger cuts may be obtained. The strongest cuts are based on Minimum
Infeasible Subsets. In this context, a MIS is a subset of customers that cannot
be accommodated in the same schedule; removing any of these customers from
the set would however result in a subset of compatible customers. Note however
that calculating a complete set of MIS is a difficult problem on its own.

The next paragraph outlines an exact procedure to establish the feasibility
of a set C. As this procedure is computationally expensive, we first try to solve
the subproblem through the SD-heuristic proposed in Kinable et al. (2013). Fur-
thermore, instead of solving the subproblem for the entire set C at once, we first
solve the problem for a smaller set Ĉ ⊂ C. If this smaller subproblem turns
out to be feasible, we repeatedly add customers from C to Ĉ and resolve the
resulting subproblem.

A modified version of the CP model presented in Kinable et al. (2013) may
be used to establish the feasibility of a set C of customers:

Algorithm 4. CP subproblem

Variable definitions:

1 s = {0, 0, 0, oblig.}
2 t = {0,∞, 0, oblig.}
3 dij = {ri, di, 0, oblig.} ∀i ∈ C, j ∈ {1, . . . ,m(i)}
4 dij = {ri, di, 0, opt.} ∀i ∈ C, j ∈ {m(i) + 1, . . . , n(i)}
5 dij,k = {ri, di, pk, opt.} ∀i ∈ C, j ∈ {1, . . . , n(i)}, k ∈ K

Constraints:

6 forall i ∈ C
7 forall j ∈ {1, . . . , n(i)}
8 alternative(dij,

⋃
k∈K dijk)

9
∑

k∈K

∑
j∈{1,...,n(i)} lk· presenceOf(dijk)≥ qi

10 forall j ∈ {1, . . . , n(i)− 1}
11 endBeforeStart(dij, d

i
j+1)

12 startBeforeEnd(dij+1, d
i
j , −γ)

13 forall j ∈ {m(i), . . . , n(i)− 1}
14 (

∑
l∈{1..j},k∈K lk·presenceOf(dilk)< qi) → presenceOf(dij+1,k)

15 presenceOf(dij+1)→presenceOf(dij)

16 forall k ∈ K
17 noOverlapSequence(

⋃
i∈C,j∈{1,...,n(i)} d

i
jk ∪ s ∪ t)

18 first(s,
⋃

i∈C,j∈{1,...,n(i)} d
i
jk ∪ t)

19 last(t,
⋃

i∈C,j∈{1,...,n(i)} d
i
jk ∪ s)

The CPmodel utilizes a number of interval variables. For each interval variable,
four parameters {a, b, d, o} are specified, where a,b indicate resp. the earliest start

A Logic Based Benders’ Approach to the Concrete Delivery Problem 185

time and latest completion time of the interval, and d is the minimum length of
the interval. The last parameter o dictates whether an interval must (obligatory)
or may (optional) be scheduled. The definitions of the constraints (Table 2) are
taken from Kinable et al. (2013).

Variables dij , i ∈ C, j ∈ {1, . . . , n(i)}, represent deliveries made for customer

i. A delivery j for customer i is made if the corresponding interval variable dij
is present; otherwise it is absent. Variables dij,k, i ∈ C, j ∈ {1, . . . , n(i)}, k ∈ K,
link deliveries and the vehicles performing these deliveries. Clearly, each delivery
j ∈ {1, . . . , n(i)} for a customer i ∈ C can only be made by a single vehicle
(Line (8)), and the amount of concrete delivered for a customer should cover its
demand (Line (9)). Deliveries for the same customer may not overlap (Line (11))
and must respect a maximum time lag γ (Line (12)). Similarly, deliveries made
by a single vehicle cannot overlap in time and must comply with travel times
(Line (17)). Trucks must start their trip at the starting depot, represented by
variable s, and must return to some ending depot identified by variable t after
the deliveries are completed (Lines (18), (19)). Finally, Line (15) ensures that
deliveries are made in order, and Line (14) tightens the link between the dij and

dijk variables.

Table 2. Description of CP constraints

Constraint Description

presenceOf(α) States that interval α must be present.
alternative(α,B) If interval α is present, then exactly one of the intervals in

set B is present. The start and end of interval α coincides
with the start and end of the selected interval from set
B.

endBeforeStart(α, β) endOf(α) ≤ startOf(β). Automatically satisfied if ei-
ther of the intervals is absent.

startBeforeEnd(α, β, z) startOf(α) + z ≤ endOf(β). Automatically satisfied if
either of the intervals is absent.

noOverlapSequence(B, dist) Sequences the intervals in set B. Ensures that the in-
tervals in B do not overlap. Furthermore, the two-
dimensional distance matrix dist specifies a sequence de-
pendent setup time for each pair of activities. Absent
intervals are ignored.

first(α,B) If interval α is present, it must be scheduled before any
of the intervals in B.

last(α,B) If interval α is present, it must scheduled after any of the
intervals in B.

4.3 Generating an Initial Set of Cuts

Before invoking the Benders’ procedure, first a number of initial cuts are com-
puted and added to thet set S in the master problem. These custs are generated
by enumerating all Minimum Infeasible Subsets consisting of up to three cus-
tomers. In addition, the constructive heuristic presented in Kinable et al. (2013)

186 J. Kinable and M. Trick

(Algorithm 2) may be used to compute an additional set of cuts. The constructive
heuristic is initialized with an ordered set of customers. The heuristic schedules
deliveries for these customers in an iterative fashion, where the time of a delivery
and the vehicle performing the delivery are determined via a number of heuristic
criteria. If at some point, the heuristic fails to schedule the next delivery for a
customer due to the lack of an available vehicle, the heuristic would normally
remove this customer from the schedule and continue with the next customer.
Instead of simply removing the customer from the schedule, an additional check
is performed. Given the subset of customers Ĉ which have received concrete in
the partially completed heuristic schedule, an exact algorithm, e.g. the CP model
from Section 4.2, is used to determine whether there exists a feasible solution
where each of the customers in Ĉ is satisfied. If no such schedule exist, a cut
is generated for the customers in Ĉ and the heuristic removes the customer it
could not satisfy from the schedule. If, on the other hand, the exact approach is
capable of finding a feasible schedule satisfying all customers in Ĉ, the heuristic
continues from the schedule generated by the exact method.

Naturally, the approach outlined in the previous paragraph may be repeated
for several orderings of the customers.

5 Experimental Results

5.1 Data Sets

Experiments are conducted on the data set published by Kinable et al. (2013)
(available online at (Kinable and Wauters, 2013)). A summary of the instances
is provided in Table 3 of Kinable et al. (2013). The instances are subdivided into
two sets, resp. A and B. The instances in set A range from 10 − 20 customers,
and 2− 5 vehicles. Larger instances, having up to 50 customers and 20 vehicles,
can be found in data set B. Customer demands are within the range of 10− 75
for both sets. Each instance defines a number of different vehicle classes, where
vehicles belonging to the same class have the same capacity and processing time.
The location of the starting and ending depot, as well as the locations of the
customers and up to 4 production depots are defined per instance. The travel
time between two locations equals the euclidean distance, rounded upwards.
The instances are constructed in such a way that for each customer, there is a
production station within 1 − 25 time units. The width of the delivery interval
for a customer is set proportional to the demand of the customer.

5.2 Experiments

A number of experiments are conducted to assess the performance of the Ben-
ders’ procedure outlined in this paper. The results of these experiments are
reported in Tables 4, 5. In these tables, the first column provides the instance
name, following a ”W x y z” naming convention, where W identifies the data
set, x is the number of vehicles, y is the number of customers and z is the num-
ber of concrete production stations. For each instance, we computed an initial

A Logic Based Benders’ Approach to the Concrete Delivery Problem 187

Table 3. Data sets Kinable et al. (2013)

Set A Set B

Instances 64 128

Customers 10-20 20-50
Demands 10-75 10-75
Time Windows qi × [1.1, 2.1] qi × [1.1, 2.1]
Time lags 5 5

Vehicles 2-5 6-20
Capacity 10-25 10-25
Vehicle classes 2-3 3
Processing time pk = lk pk = lk

Stations 1-4 1-4
Cust.-Station 1-30 1-30
Depot-Station 1-25 1-25

feasible solution using the CP procedure outlined in Kinable et al. (2013). These
solutions, reported in the second column, are used to warm-start the Benders’
procedure. The next 5 columns provide data on our Benders’ procedure:

- obj: The objective of the best(feasible) solution obtained through the Ben-
ders’ procedure.

- iCuts: The number of cuts added initially (Section 4.3)
- cuts: The number of cuts added during the Bender’s procedure (Section 4.2)
- c-time: The time required to obtain the initial master problem, in seconds. This

time is limited to 5 minutes, excluding the generation of the Minimum
Infeasible subsets.

- s-time: The time required to solve the Benders’ problem. For data set A, this
time is limited to 10 minutes, and for data set B 15 minutes.

In Kinable et al. (2013) bounds on the optimal solutions are published. These
bounds are computed through four different procedures, but for each instance
only the strongest bound is reported in Kinable et al. (2013). The different pro-
cedures from Kinable et al. (2013) are:

– Optimal MIP solution (when available)

– Optimal CP solution (when available)

– LP relaxation, strengthened with cuts from all Minimum Infeasible Subsets
(MIS) of size 2.

– Solution to the MIP problem consisting of the objective function (1) and all
cuts generated from MIS of size k (Constraint (4)), where k = 3 for data
set A. This bound has only been calculated for data set A in Kinable et al.
(2013).

188 J. Kinable and M. Trick

In columns ’bound*’, and ’LP’, resp. the bounds reported in Kinable et al. (2013)
as well as the bounds obtained through the LP relaxation of the MIP model in
Section 3.1.2 of Kinable et al. (2013) are shown. The gaps are computed with
respect to the objective in column obj. Finally, the last two columns in the table
provide the bounds obtained through the Benders’ procedure.

When comparing the bounds attained through our Benders’ procedure with
the LP-bounds, we can observe that the LP based bounds are significantly
weaker. The average gap between the LP bounds and the best primal solu-
tions amounts to 9.26%, whereas the Benders’ procedure produces an average
gap of 1.81%. This gap is also smaller than the average gap (3.62%) obtained
from the bounds reported in Kinable et al. (2013). In fact, none of the bounds
computed through the Benders’ procedure are weaker than the bounds reported
in Kinable et al. (2013).

Table 4. Computational results Data Set A

Benders’ decomposition LP Bound* Benders’
Instance iObj obj iCuts cuts c-time s-time bound gap bound gap bound gap

A 2 5 1 85 85 28 0 1 0 85 0% 85 0% 85 0%
A 2 5 2 160 160 13 0 0 0 160 0% 160 0% 160 0%
A 2 5 3 105 105 26 0 0 0 105 0% 105 0% 105 0%
A 2 5 4 105 105 3 0 300 0 105 0% 105 0% 105 0%
A 2 10 1 50 50 142 0 3 0 50 0% 50 0% 50 0%
A 2 10 2 150 150 215 0 9 0 150 0% 150 0% 150 0%
A 2 10 3 220 220 154 0 3 0 230 4% 220 0% 220 0%
A 2 10 4 150 150 179 0 9 0 165 9% 150 0% 150 0%
A 2 15 1 215 215 567 0 10 0 225 4% 215 0% 215 0%
A 2 15 2 290 290 373 2 25 2 320 9% 320 9% 290 0%
A 2 15 3 205 205 502 0 77 0 215 5% 205 0% 205 0%
A 2 15 4 255 255 348 0 11 0 300 15% 255 0% 255 0%
A 2 20 1 255 255 549 0 38 0 260 2% 255 0% 255 0%
A 2 20 2 270 270 575 2 33 0 285 5% 270 0% 270 0%
A 2 20 3 260 260 651 0 15 0 280 7% 260 0% 260 0%
A 2 20 4 355 355 36 5 360 1 490 28% 380 7% 355 0%
A 3 5 1 205 205 0 0 3 0 205 0% 205 0% 205 0%
A 3 5 2 115 115 9 0 1 0 115 0% 115 0% 115 0%
A 3 5 3 125 125 0 0 0 0 125 0% 125 0% 125 0%
A 3 5 4 190 190 0 0 0 0 190 0% 190 0% 190 0%
A 3 10 1 205 205 100 0 5 0 205 0% 205 0% 205 0%
A 3 10 2 230 230 80 0 14 0 230 0% 230 0% 230 0%
A 3 10 3 305 305 114 0 23 0 305 0% 305 0% 305 0%
A 3 10 4 300 300 115 0 5 0 300 0% 300 0% 300 0%
A 3 15 1 330 330 485 0 35 0 330 0% 330 0% 330 0%
A 3 15 2 395 395 268 3 18 1 530 25% 425 7% 395 0%
A 3 15 3 290 290 378 23 49 7 430 33% 330 12% 290 0%
A 3 15 4 440 440 10 15 306 49 550 20% 475 7% 440 0%
A 3 20 1 340 340 667 1 350 157 410 17% 345 1% 340 0%
A 3 20 2 415 415 28 0 516 0 510 19% 415 0% 415 0%

A Logic Based Benders’ Approach to the Concrete Delivery Problem 189

Table 4. Computational results Data Set A

Benders’ decomposition LP Bound* Benders’
Instance iObj obj iCuts cuts c-time s-time bound gap bound gap bound gap

A 3 20 3 355 360 48 0 324 0 425 15% 360 0% 360 0%
A 3 20 4 480 480 31 0 319 0 590 19% 480 0% 480 0%
A 4 5 1 140 140 0 0 0 0 140 0% 140 0% 140 0%
A 4 5 2 150 150 0 0 0 0 150 0% 150 0% 150 0%
A 4 5 3 165 165 0 0 0 0 165 0% 165 0% 165 0%
A 4 5 4 230 230 0 0 0 0 230 0% 230 0% 230 0%
A 4 10 1 310 310 114 0 46 0 310 0% 310 0% 310 0%
A 4 10 2 370 370 48 0 4 0 390 5% 370 0% 370 0%
A 4 10 3 375 375 85 1 42 2 470 20% 445 16% 375 0%
A 4 10 4 285 285 23 0 1 0 285 0% 285 0% 285 0%
A 4 15 1 415 415 7 2 307 600 570 27% 545 24% 545 24%
A 4 15 2 475 475 4 18 312 600 650 27% 610 22% 520 9%
A 4 15 3 430 430 368 0 99 0 495 13% 450 4% 430 0%
A 4 15 4 490 490 5 0 304 600 515 5% 515 5% 515 5%
A 4 20 1 525 525 3 8 302 600 660 20% 585 10% 575 9%
A 4 20 2 425 425 497 4 38 1 490 13% 440 3% 425 0%
A 4 20 3 375 375 40 12 828 600 530 29% 425 12% 405 7%
A 4 20 4 465 465 18 17 1801 3 590 21% 500 7% 465 0%
A 5 5 1 200 200 0 0 0 0 200 0% 200 0% 200 0%
A 5 5 2 200 200 0 0 0 0 200 0% 200 0% 200 0%
A 5 5 3 220 220 0 0 0 0 220 0% 220 0% 220 0%
A 5 5 4 175 175 9 0 2 0 175 0% 175 0% 175 0%
A 5 10 1 350 350 0 0 0 0 350 0% 350 0% 350 0%
A 5 10 2 345 345 0 0 0 0 345 0% 345 0% 345 0%
A 5 10 3 285 285 25 0 5 0 300 5% 285 0% 285 0%
A 5 10 4 380 380 0 0 0 0 380 0% 380 0% 380 0%
A 5 15 1 455 455 2 4 308 600 590 23% 590 23% 510 11%
A 5 15 2 580 580 0 0 301 600 695 17% 695 17% 695 17%
A 5 15 3 350 350 2 3 576 600 435 20% 395 11% 385 9%
A 5 15 4 500 500 3 0 1218 600 600 17% 520 4% 520 4%
A 5 20 1 700 705 252 61 245 536 900 22% 760 7% 705 0%
A 5 20 2 555 555 15 4 388 600 810 31% 645 14% 630 12%
A 5 20 3 595 595 8 16 302 600 695 14% 645 8% 615 3%
A 5 20 4 520 520 13 2 355 600 705 26% 560 7% 557.5 7%

AVG 9.26% 3.72% 1.81%
Optimal 28 41 52

In summary, we reduced the average gap for the instances in data set A from
3.72% to 1.81%, 19 instances had their bounds improved, and 11 new optimal
solutions were found. For almost 65% of the instances, the optimal solutions were
already obtained at the first iteration of the master problem, i.e. no additional
cuts had to be generated.

190 J. Kinable and M. Trick

Table 5. Computational results Data Set B

Benders’ decomposition LP Bound* Benders’
Instance iObj obj iCuts cuts c-time s-time bound gap bound gap bound gap

B 6 20 1 725 725 0 102 301 356 805 10% 805 10% 725 0%
B 6 20 2 700 700 0 31 300 900 855 18% 855 18% 830 16%
B 6 20 3 675 675 0 0 300 900 760 11% 760 11% 760 11%
B 6 20 4 615 615 0 29 300 900 705 13% 705 13% 680 10%
B 6 30 1 860 860 0 1 300 900 1300 34% 1300 34% 1290 33%
B 6 30 2 850 850 0 34 300 900 1140 25% 1140 25% 1105 23%
B 6 30 3 725 725 0 120 301 900 1060 32% 1060 32% 1035 30%
B 6 30 4 625 625 2 1 302 900 1000 38% 1000 38% 913.33 32%
B 6 40 1 835 835 0 23 302 900 1545 46% 1545 46% 1431.11 42%
B 6 40 2 1045 1045 0 33 301 900 1635 36% 1635 36% 1473.75 29%
B 6 40 3 735 735 11 79 315 900 1570 53% 1570 53% 1191.67 38%
B 6 40 4 750 750 2 9 305 900 1450 48% 1450 48% 1095 32%
B 6 50 1 1010 1010 0 22 305 900 1890 47% 1890 47% 1490 32%
B 6 50 2 955 955 2 25 307 900 2250 58% 2250 58% 1495 36%
B 6 50 3 920 920 1 16 311 900 1740 47% 1740 47% 1295 29%
B 6 50 4 1000 1000 1 0 385 900 2080 52% 2080 52% 1395 28%
B 8 20 1 920 920 0 1 300 897 935 2% 935 2% 920 0%
B 8 20 2 850 850 0 0 300 900 865 2% 865 2% 865 2%
B 8 20 3 655 655 0 0 293 0 655 0% 655 0% 655 0%
B 8 20 4 820 820 0 0 69 0 820 0% 820 0% 820 0%
B 8 30 1 920 920 0 0 300 900 1085 15% 1085 15% 1085 15%
B 8 30 2 1005 1005 0 0 300 900 1115 10% 1115 10% 1115 10%
B 8 30 3 975 975 0 4 300 900 1155 16% 1155 16% 1140 14%
B 8 30 4 1110 1110 0 0 300 900 1320 16% 1320 16% 1320 16%
B 8 40 1 1180 1180 0 1 301 900 1665 29% 1665 29% 1655 29%
B 8 40 2 1190 1190 0 6 300 900 1415 16% 1415 16% 1415 16%
B 8 40 3 995 995 0 0 300 900 1495 33% 1495 33% 1495 33%
B 8 40 4 1105 1105 0 0 301 900 1730 36% 1730 36% 1730 36%
B 8 50 1 1130 1130 0 11 323 901 1980 43% 1980 43% 1925 41%
B 8 50 2 1150 1150 0 0 304 900 1935 41% 1935 41% 1935 41%
B 8 50 3 1210 1210 0 0 302 900 1960 38% 1960 38% 1960 38%
B 8 50 4 1105 1105 0 0 303 900 1835 40% 1835 40% 1740 36%
B 10 20 1 805 805 0 0 116 0 805 0% 805 0% 805 0%
B 10 20 2 825 825 0 0 237 0 825 0% 825 0% 825 0%
B 10 20 3 730 730 0 0 4 0 730 0% 730 0% 730 0%
B 10 20 4 765 765 0 0 1 0 765 0% 765 0% 765 0%
B 10 30 1 910 910 0 0 300 900 1215 25% 1215 25% 1215 25%
B 10 30 2 1170 1170 0 0 300 900 1355 14% 1355 14% 1355 14%
B 10 30 3 1135 1135 0 0 300 900 1210 6% 1210 6% 1210 6%
B 10 30 4 1165 1165 0 0 300 900 1235 6% 1235 6% 1235 6%
B 10 40 1 1210 1210 0 0 301 900 1475 18% 1475 18% 1475 18%
B 10 40 2 1485 1485 0 0 301 900 1580 6% 1580 6% 1580 6%
B 10 40 3 1375 1375 0 0 302 900 1605 14% 1605 14% 1605 14%
B 10 40 4 1365 1365 0 0 301 900 1455 6% 1455 6% 1455 6%
B 10 50 1 1425 1425 0 0 308 900 2265 37% 2265 37% 2265 37%
B 10 50 2 1010 1010 0 0 302 900 1900 47% 1900 47% 1745 42%
B 10 50 3 1260 1260 0 0 302 900 2005 37% 2005 37% 2005 37%
B 10 50 4 1455 1455 0 0 303 901 1925 24% 1925 24% 1925 24%

AVG 23.83% 23.83% 20.51%
Optimal 6 6 8

A Logic Based Benders’ Approach to the Concrete Delivery Problem 191

The instances in data set B are significantly harder to solver than the in-
stances in data set A. Table 5 shows the results obtained for the instances up
to 10 vehicles; no improvements could be made to the remaining instances. For
the instances in Table 5, the average gap induced by the Benders’ bounds is
10.08%, opposed to 11.32% from the bounds published in Kinable et al. (2013).
Furthermore, optimality was attained for two additional instances; 21 instances
had their bounds improved.

Future attempts to improve the Benders’ decomposition approach should be
targeted at improving the the runtime of the subproblem, as this procedure
takes the largest amount of time. Especially for the larger instances, solving the
subproblem is challenging.

6 Conclusion

In this work, we presented a Logic Based Benders’ decomposition which de-
couples the CDP into a master problem and a subproblem. The master problem
allocates concrete to customers, whereas the subproblem handles the routing and
scheduling of the concrete delivery trucks. By decomposing the problem, part of
the complexity is shifted to the subproblem. Furthermore, dedicated procedures
may be used to solve these problems. Here, we solve the master problem through
MIP, whereas the subproblem is solved through a dedicated scheduling heuris-
tic and a CP model from (Kinable et al., 2013). Because the subproblem does
not have to deal with the allocation of concrete as this is being handled by the
master problem, we simplified and strengthened the latter CP model, thereby
significantly improving its performance.

Computing bounds for CDP is a non-trivial task. Linear Programming-based
bounds are generally very weak (see Section 5), as the problem has a large num-
ber of conditional constraints. Furthermore, exact approaches based on CP often
provide little insight as to the quality of the solution. Our Benders’ decompo-
sition may however provide a viable alternative. Extensive computational tests
show that the bounds computed through the Benders’ decomposition are consis-
tently stronger than the bounds in Kinable et al. (2013), which where obtained
by aggregating the bounds of four different procedures.

By improving the bounds for a large number of instances, and simultane-
ously improving several primal solutions, we were able to solve a number of
previously unsolved benchmark instances to optimality. To further enhance the
performance of this Benders’ procedure, one would have to find a way to speed
up the subproblem. One possible direction would be to decouple the subprob-
lem even further, for example by fixing more variables in the master problem.
Alternatively, one could try to replace the current subproblem by a relaxation
of the exact subproblem, which is easier to solve. Using this relaxation, it could
still be possible to add a number of cuts to the master problem, thereby refining
the master problem, with significantly less computational effort.

192 J. Kinable and M. Trick

References

Asbach, L., Dorndorf, U., Pesch, E.: Analysis, modeling and solution of the concrete
delivery problem. European Journal of Operational Research 193(3), 820–835 (2009)

Bai, L., Rubin, P.A.: Combinatorial benders cuts for the minimum tollbooth problem.
Operations Research 57(6), 1510–1522 (2009)

Côté, J.-F., Dell’Amico, M., Iori, M.: Combinatorial benders’ cuts for the strip pack-
ing problem. Interuniversity Research Centre on Enterprise Networks, Logistics and
Transportation and Department of Computer Science and Operations Research, Uni-
versité de Mon (CIRELT), Tech. Rep. CIRRELT-2013-27 (April 2013)

Durbin, M., Hoffman, K.: OR Practice - The Dance of the Thirty-Ton Trucks: Dis-
patching and Scheduling in a Dynamic Environment. Operations Research 56(1),
3–19 (2008)

Hertz, A., Uldry, M., Widmer, M.: Integer linear programming models for a cement
delivery problem. European Journal of Operational Research 222(3), 623–631 (2012)

Kinable, J., Wauters, T.: CDPLib (2013), https://sites.google.com/site/cdplib/
Kinable, J., Wauters, T., Vanden Berghe, G.: The Concrete Delivery Problem. Com-

puters & Operations Research (2014) (in press)
Naso, D., Surico, M., Turchiano, B., Kaymak, U.: Genetic algorithms for supply-chain

scheduling: A case study in the distribution of ready-mixed concrete. European Jour-
nal of Operational Research 177(3), 2069–2099 (2007)

Rasmussen, R., Trick, M.: A benders approach for the constrained minimum break
problem. European Journal of Operational Research 177(1), 198–213 (2007)

Schmid, V., Doerner, K.F., Hartl, R.F., Savelsbergh, M.W.P., Stoecher, W.: A hybrid
solution approach for ready-mixed concrete delivery. Transportation Science 43(1),
70–85 (2009)

Schmid, V., Doerner, K.F., Hartl, R.F., Salazar-González, J.-J.: Hybridization of very
large neighborhood search for ready-mixed concrete delivery problems. Computers
and Operations Research 37(3), 559–574 (2010)

Silva, C., Faria, J.M., Abrantes, P., Sousa, J.M.C., Surico, M., Naso, D.: Concrete
Delivery using a combination of GA and ACO. In: 44th IEEE Conference on De-
cision and Control, 2005 and 2005 European Control Conference, CDC-ECC 2005,
pp. 7633–7638 (2005)

Tran, T.T., Beck, J.C.: Logic-based benders decomposition for alternative resource
scheduling with sequence dependent setups. In: ECAI. Frontiers in Artificial Intelli-
gence and Applications, vol. 242, pp. 774–779. IOS Press (2012)

Verstichel, J., Kinable, J., Vanden Berghe, G., De Causmaecker, P.: A combinatorial
benders decomposition for the lock scheduling problem. KU Leuven, Tech. Rep.,
http://allserv.kahosl.be/ jannes/lockscheduling/

combinatorialBenders 19112013.pdf (September 2013)
Yan, S., Lai, W.: An optimal scheduling model for ready mixed concrete supply with

overtime considerations. Automation in Construction 16(6), 734–744 (2007)

https://sites.google.com/site/cdplib/
http://allserv.kahosl.be/~jannes/lockscheduling/combinatorialBenders_19112013.pdf
http://allserv.kahosl.be/~jannes/lockscheduling/combinatorialBenders_19112013.pdf

Evaluating CP Techniques to Plan Dynamic

Resource Provisioning in Distributed Stream
Processing

Andrea Reale, Paolo Bellavista, Antonio Corradi, and Michela Milano

Department of Computer Science and Engineering – DISI
Università di Bologna, Italy

{andrea.reale,paolo.bellavista,antonio.corradi,michela.milano}@unibo.it

Abstract. A growing number of applications require continuous pro-
cessing of high-throughput data streams, e.g., financial analysis, net-
work traffic monitoring, or big data analytics. Performing these analyses
by using Distributed Stream Processing Systems (DSPSs) in large clus-
ters is emerging as a promising solution to address the scalability chal-
lenges posed by these kind of scenarios. Yet, the high time-variability
of stream characteristics makes it very inefficient to statically allocate
the data-center resources needed to guarantee application Service Level
Agreements (SLAs) and calls for original, dynamic, and adaptive resource
allocation strategies. In this paper we analyze the problem of planning
adaptive replication strategies for DSPS applications under the challeng-
ing assumption of minimal statistical knowledge of input characteristics.
We investigate and evaluate how different CP techniques can be em-
ployed, and quantitatively show how different alternatives offer different
trade-offs between problem solution time and stream processing runtime
cost through experimental results over realistic testbeds.

1 Introduction

We are rapidly moving toward an always-connected world, where technology
is an increasingly present mediator in the interactions between people and the
environment [2]. Ever growing quantities of heterogeneous data are continuously
generated and exchanged by moving or stationary sensors, smartphones, and
wearable devices. This multitude of unbounded data flows must be handled
effectively and efficiently.

Distributed Stream Processing Systems (DSPSs) [22] address the need of pro-
cessing big data streams flexibly and in real-time by leveraging the parallel com-
putational resources hosted inside data centers. A DSPS lets users define their
own stream processing functionalities and encapsulate them in reusable com-
ponents called operators. Stream processing applications (or, hereinafter, simply
applications) are defined by arranging operators as vertices of data-flow graphs,
directed and acyclic graphs that define the input-output relationships between
different operators and between operators and external stream data sources and
data sinks. Stream processing applications are deployed on a set of distributed

H. Simonis (Ed.): CPAIOR 2014, LNCS 8451, pp. 193–209, 2014.
c© Springer International Publishing Switzerland 2014

194 A. Reale et al.

resources, and their components are executed according to an event-based model
that reacts to the arrival of new input data. One major problem in managing
deployments of distributed stream processing applications lies in the proper man-
agement of the load fluctuations that arise due to sudden and possibly temporary
variations in the rates of input data streams. If not handled properly load peaks
can lead to increased processing latency due to data queuing, and to data loss
due to queue overflows. To avoid these effects, it is necessary to allocate the
correct amount of additional resources to overloaded applications either stati-
cally or dynamically when load variations are detected [1,5,12]. Another typical
requirement is the fulfillment of fault-tolerance guarantees because applications
usually run for (indefinitely) long time intervals and failures are unavoidable. A
simple and commonly adopted solution is active replication of operator compo-
nents [10], so that, if any replica fails, another can immediately take over and
quickly mask the failure.

In [3,4] we have introduced LAAR, a Load Adaptive Active Replication tech-
nique that minimizes the cost of running replicated stream processing applica-
tions while guaranteeing that their deployment is never overloaded and, at the
same time, that a user-specified fault-tolerance SLA is satisfied. It does so by
dynamically deactivating and activating operator replicas, and by adapting the
number of active ones to the changing application load according to a replica ac-
tivation strategy precomputed before runtime. In this paper, we describe how we
solve the challenging replica activation problem, i.e., the optimization problem
whose solutions define how the LAAR runtime performs its dynamic activation of
replicas depending on the currently observed configuration of input data rates.
We propose a detailed study of this problem, and we present a quantitative
comparison and evaluation of the effectiveness of different CP-based solution
methods. The final goal is to highlight the trade-offs offered by different CP
techniques considering the quality of their solutions and the associated cost.

2 Problem Definition

An application A consists of a set of components: a set I of data sources, a
set P of operators, and a set O of data sinks, which collectively define the set
X = I ∪P ∪O = {xi}. The components in X are arranged in a directed acyclic
application graph W = (X,E). The set of edges E is described by the function:

pred : X (→ P (X) (1)

which, for each component xi, identifies the set of predecessors {xj} so that
xj ∈ pred (xi) ⇔ (xj , xi) ∈ E.

We assume that the characteristics of the application inputs are known in
terms of a probability mass function that describes the probability of a source
to produce data at different rates. This information could be available thanks
to previous knowledge of the application domain, or inferred through an initial
profiling step [9]. We also assume that the continuous space of possible rates
has been properly discretized through, e.g., binning techniques [8]. In particular,

Evaluating CP Techniques to Plan Dynamic Resource Provisioning 195

every data source xi ∈ I can produce output at one rate among a finite set of
input rates Ri. The Cartesian product C = R1× . . .×Rt, where t is the number
of sources, is the set of all the possible input configurations, and PC : C (→ [0, 1]
is the probability mass function associated to the probability distribution of
different input configurations in time. The output rate of data source xi ∈ I in
a particular input configuration c is indicated as Δ (xi, c).

Every operator receives one or more data streams from sources or from other
operators and produces one data stream as output. For uniformity of notation,
we use the symbol Δ (xi, c) also to indicate the output rate of every operator
xi ∈ P .

Like what has been done previously in the literature (e.g., [10,11,21,20,23,25]),
we summarize the characteristics of operators through a selectivity function δ
and a per-tuple CPU cost function γ. For each couple (xi, xj) so that xi ∈ I ∪P
and xj ∈ P and that (xi, xj) ∈ E, δ (xi, xj) defines the contribution of the stream
generated by xi to the output of operator xj , so that, in absence of failures:

Δ (xj , c) =
∑

xi∈pred(xj)

δ (xi, xj)Δ (xi, c) (2)

In a similar way, γ (xi, xj) represents the per-tuple CPU cost for operator xj to
process tuples from xi, so that the number of CPU cycles used by xj per second
can be expressed as: ∑

xi∈pred(xj)

γ (xi, xj)Δ (xi, c) (3)

Each operator in P is actively replicated and all the replicated components
are deployed on a set of distributed hosts H = {hi}. We indicate the replicated

set of operators as P̃ = {x̃m
i }, where the symbol x̃m

i indicates the m-th replica of
operator xi. The assignment of replicas to hosts is represented by the function:

ϑ : P̃ (→ H (4)

For convenience, we also define ϑ−1 : H (→ P(P̃) such that ϑ−1 (h) = {x̃j
i ∈

P̃ : ϑ
(
x̃j
i

)
= h}. We assume that ϑ is given, for example, because computed

beforehand by an operator placement algorithm (e.g., [11,23]). In this paper, we
only consider the case of twofold replication, i.e., two replicas per operator, since
this scenario is the most commonly considered in real world stream applications.
The model, however, can be very easily extended to k-fold replication.

A replica activation strategy is a function:

s : P̃ × C (→ {0, 1} (5)

that associates every operator replica – input configuration pair to one of the two
possible active/inactive states. The goal of the optimization problem discussed
in this paper is to find a replica activation strategy that suitably satisfies the
application fault-tolerance quality requirements.

196 A. Reale et al.

2.1 The Internal Completeness (IC) Metric

By activating/deactivating operator replicas according to the current input con-
figuration, LAAR dynamically modifies the resilience of applications to failures.
In order to measure the effect of LAAR on fault-tolerance guarantees, we define
the internal completeness (IC) metric. Intuitively, given a failure model that
describes how hosts and operators are expected to fail and a replica activation
strategy s, the internal completeness measures, with respect to a time period T 1,
the fraction of total tuples expected to be processed in case of failures compared
to the number of tuples that would be processed in absence of failures.

In a no-failure scenario (best-case), the total number of tuples statistically
expected to be processed by the application operators during T is:

BIC = T ·
∑
c∈C,
xi∈P,

xj∈pred(xi)

PC(c) ·Δ(xj , c) (6)

Best-case internal completeness. (BIC) is the summation of the contributions of
all the application operators in different input configurations, weighted by the
probability of each configuration to occur.

Failure internal completeness. (FIC) measures the expected number of tuples
processed with failure model φ and replica activation strategy s. It is defined as:

FIC(s) = T ·
∑
c∈C,
xi∈P,

xj∈pred(xi)

PC(c) · φ(xi, c, s) · Δ̂(xj , c, s) (7)

Δ̂(xi, c, s) =

⎧⎪⎨⎪⎩
Δ(xi, c) if xi ∈ I

φ(xi, c, s) ·
∑

xj∈pred(xi)

δ(xj , xi)Δ̂(xj , c, s) if xi ∈ P (8)

The function φ(xi, c, s) depends on the chosen failure model and describes the
probability that at least one replica of operator xi is alive and active when
the input configuration is c and the replica activation strategy is s. Δ̂(xi, c, s),
instead, represents the expected output of operator xi under failure model φ,
when the input configuration is c and the replica activation strategy is s; note
that the definition of Δ̂ is recursive, as the number of tuples produced by a
operator depends not only on its possible failure status (described by φ) but
also on the number of tuples produced by its predecessor (8). Let us rapidly
note that the possible failures of data sources, which are components external
to the application, are assumed to be handled externally.

Internal completeness (IC) is defined as the ratio between FIC and BIC:

IC(s) =
FIC(s)

BIC
(9)

1 We choose T long enough for the statistical characteristics of the sources to apply.

Evaluating CP Techniques to Plan Dynamic Resource Provisioning 197

2.2 The Replica Activation Problem

In this section, we define the optimization problem that, solved off-line and before
deployment time, outputs a replica activation strategy that fits the application
fault tolerance requirements, and that is used at runtime by LAAR to activate
operator replicas.

We call this problem replica activation problem, and we define it as follows:

minimize
s

cost (s) (10a)

subject to:

IC(s) ≥ G (10b)∑
x̃m
i

∈ϑ−1(h),

xj∈pred(xi)

γ (xj , xi)Δ(xj , c)s(x̃
m
i , c) ≤ Kh

∀h∈H,
∀c∈C (10c)

s
(
x̃0
i , c

)
+ s

(
x̃1
i , c

)
≥ 1 ∀xi∈P,

∀c∈C (10d)

The cost function in the minimization term represents the cost, in terms of
resources, for a service provider to run the application using replica activation
strategy s and the replicated assignment defined by ϑ. In this work, we assume
the bandwidth available for cluster-local communication to be an abundant re-
source (a common assumption in data center contexts), and we model our cost
function as the total number of CPU cycles used in a period T . It is defined as
follows:

cost (s) = T
∑
c∈C,

x̃m
i

∈P̃ ,

xj∈pred(xi)

PC (c) γ (xj , xi)Δ(xj , c)s(x̃
m
i , c) (11)

and is the summation over the CPU consumption of all the operator replicas.
Equation (10b) constrains IC to satisfy a requested fault-tolerance value G,

while (10c) states that each host in the deployment should never be overloaded;
Kh is a constant expressing the number of CPU cycles per second available at
host h. The last constraint, expressed in (10d), requires that there is at least one
active replica of every operator in every input configuration, and it ensures that
the measured IC value is one in absence of failures.

2.3 Failure Model

We consider a simplified failure model φ, based on the following assumptions:

1. In any failure scenario, one replica of every operator fails.
2. Unless both the replicas are active at some point in time, the non-failed

replica is assumed to be the one that was inactive according to the replica
activation strategy.

3. Once failed, replicas never recover.

198 A. Reale et al.

or, more formally:

φ(xi, c, s) =

{
0 if s(x̃0

i , c) + s(x̃1
i , c) < 2, x̃i,l ∈ P̃

1 otherwise
(12)

This model will in general overestimate possible failure conditions because,
in the actual stream processing deployment, it is highly unlikely that replicas of
every operator fail at the same time, and because, in our runtime LAAR imple-
mentation, when an operator failure is detected, any corresponding and possibly
deactivated replica returns to its active state, while an automatic recovery pro-
cedure promptly replaces the failed component [4]. For these reasons, we refer
to φ as pessimistic failure model. While, overstating, on the one hand, the ef-
fects and consequences of failures compared to actual runtime conditions, on the
other hand, this choice of φ provides two fundamental benefits: (i) the IC value
computed using this model is a large lower bound to the real IC that will be
observed on actual application deployments because any real failure condition is
highly likely to be much less severe than those predicted by the model; (ii) its
mathematical formulation simplifies the computation of IC values for different
possible replica activation strategies and hence the optimization complexity.

Note that the solution space of this problem is still very large, as for every
application there are 3|P |·|C| possible replica activation strategies. Note also that,
in cost function (11), the IC constraint (10b) and the hosts CPU constraints

(10c) depend on Δ̂ (xi, c, s) (8), which is a recursively defined exponential term.
Hence, to find algorithms that can find optimal or good enough solutions to this
problem is a major technical challenge.

3 Solving the Problem with CP

In this section, we analyze different CP-based approaches to solve the replica
activation problem presented in Section 2.

As a first straightforward solution, we implemented the optimization model
(10) “as-is” on the commercial IBM ILOG CP Optimizer solver [13], and used
it to get a better understanding of the problem structure.

Looking at the problem from a user perspective, cost (11) and IC (9) are the
most important parameters because, together, they determine the cost-quality
trade-off for running stream processing applications with LAAR. Intuitively,
since the basic mechanism to mask the effects of failures is to activate more
replicas, in general, requiring higher IC (and hence better fault-tolerance) will
correspond to higher runtime costs.

Fig. 1a gives some insight about the shape of the problem solution space when
considering together cost and IC: it shows the space of possible feasible solutions of
a problem instance consisting of 24 operator replicas distributed on 6 computing
hosts and IC constraint — G in (10b) — set to 0.1. The continuous black line is a
loess regression [6] of the solution points and confirms that, as a general trend, the
cost of solutions is proportional to their IC value. However, the graph also shows

Evaluating CP Techniques to Plan Dynamic Resource Provisioning 199

(a) (b)

Fig. 1. Cost–IC relationship in the solution space of a problem instance consisting of
12 operators (2 replicas each) deployed on 6 hosts. Full circles represent the Pareto
frontier of the problem space, while the continuous line is a regression of the solution
points. Without (a) and with partial filtering of sub-optimal solutions (b).

that there is a very large number of sub-optimal solutions (empty circles) and that
higher costs do not necessarily imply higher IC. Recall that the IC value does not
only depend on the number of active replicas, but also on the particular choice of
operators to activate and on the topology of the application data flow graph. As a
consequence, a wrong choice of active operator replicas can easily lead to a useless
waste of resources.

However, an important fraction of sub-optimal solutions not belonging to
the Pareto frontier of the solution space can be discarded quickly with simple
considerations. For example, think about a pipeline of operators where a first
operator (O0) feeds a second one (O1). Given the pessimistic failure model in
(12), having, in any input configuration, two active replicas of O1 and, at the
same time, only one active replica for O0 does not contribute to the overall IC
value because, in case of failures, O1 would not receive any sample to process
from O0; that would, however, increase the solution cost. This is not only valid
for pipelines but can be generalized for any graph shape: in particular, any
feasible replica activation strategy sx that, in some input configuration c, has
two active replicas for some operator xi whose predecessors all have only one
active replica is sub-optimal with respect to a corresponding feasible replica
activation strategy sy that differs from sx only for the fact that xi has just
one active replica. This relation can be used to add a new constraint to (10)
that approximates the set of Pareto-optimal points by performing a partial sub-
optimal solution filtering (PSF), which removes obviously sub-optimal solutions.
We formulate this constraint as follows:

∃ xi ∈ P, c ∈ C s.t. ∀xj ∈ pred (x)
∑
l=0,1

s
(
x̃m
j , c

)
= 1 =⇒

∑
l=0,1

s (x̃m
i , c) = 1

(13)

200 A. Reale et al.

0

10

20

3 6 9

No. of operators per host

T
im

e
fo

r
th

e
o
p
t.

 (
s)

Search Variant

No−PSF

PSF

Fig. 2. Comparison of average time to find an optimal solution with and without the
partial sub-optimal solution filtering

Fig. 1b shows the solution space of the same problem instance in Fig. 1a after
the filtering based on (13). This important reduction in size also has a significant
impact on the time needed to solve the problem. Fig. 2 summarizes the average
search time needed to find the optimum solutions for a batch of small problem
instances in which graphs of 2 to 11 operators are deployed on 4 hosts with
two replicas per operator. As the graph complexity increases, the benefit of the
additional constraint in (13) becomes more and more evident.

Given these characteristics of the solution space, we have developed three
search strategies. The first (called Basic) is the straightforward implementation
of the model in (10) with the additional constraint in (13) on the ILOG CP
Optimizer solver. Since the realization of this first strategy is straightforward,
we do not detail it further in this paper. On the contrary, in the following two
subsections, we introduce the second and third search strategies, respectively a
Large Neighborhood Search (LNS)-based strategy and a decomposition-based one.

3.1 LNS-Based Strategy

The basic idea behind LNS strategies [19] is to start from an initial solution
and then proceed through incremental improvement steps that focus on large
neighborhoods of the current best solution. We developed a strategy to solve our
replica activation problem that is based on these concepts. The algorithm starts
from a solution found either by using the Basic solver presented in the previous
section, or by leveraging a simple greedy initial solution. The algorithm that finds
this last type of initial solution is very simple: it starts with a replica activation
strategy where two replicas of every operator are always active; iteratively, it
deactivates the most resource hungry operator until all the non-overloading con-
dition constraints (10c) are met. The advantage of using this greedy algorithm
to find the initial solution four our LNS approach is its ability to terminate ex-
tremely quickly. These greedy solutions are not necessarily feasible because they
can violate the constraint (10b), but our practical experience has shown that
those infeasibilities can be often rapidly corrected through a few LNS moves.

Evaluating CP Techniques to Plan Dynamic Resource Provisioning 201

Given the initial problem solution, the LNS-based strategy proceeds through
a series of iterative improvement steps. At every round, a new optimization
problem is built by relaxing the current best solution, i.e., by fixing the values of
a subset of the search variables to those of the best solution so far and by focusing
the exploration on the subspace of the remaining relaxed variables. We choose the
variables to relax at each iteration according to one of two alternative methods.
In the first (simple random), they are chosen completely random; in the second
(weighted random), every search variable is assigned a weight that depends on its
corresponding input configuration, so that variables associated to more resource-
hungry input configurations (typically corresponding to load peaks) have higher
chances to be chosen for relaxation. The weighted random strategy aims at
relaxing these variables first because they usually require the highest number
of operator replicas deactivated in order to satisfy (10c) and consequently have
a stronger influence on the satisfiability of the IC requirement (10b). Every
iterative improvement step explores the corresponding relaxed subspace either
until it finds a solution that improves upon the previous one or until a local time
limit expires. Every round dynamically adapts the number of relaxed variables
by reducing it when the last step has produced improvements or by increasing it
in case of deteriorations of the solution quality. The algorithm terminates either
when there is no improvement for a configurable number of consecutive rounds
or when a global time limit expires.

Note that, differently from the Basic search strategy, the LNS-based one does
not recognize when an optimum has been reached, and, when greedy starting
points are used, it cannot conclude whether a problem has any solutions if none
are found.

3.2 Decomposition-Based Strategy

In this section we propose a solution approach that decomposes the problem
in a number of orthogonal subproblems along its |C| different input configura-
tions. The goal of this decomposition-based approach is to provide scalability
especially for instances with a large number of input configurations. This type
of optimization is very important in many common real-world problems, where
stream processing applications process data from tens of sources, each producing
data at different possible data rates.

Let us consider once again the formulation of the replica activation problem
(10). Separating the CPU constraints in (10c) and the minimum replicas con-
straints in (10d) is trivial, because each of them involves only terms relative
to a single input configuration c. The search variables s can be equally easily
separated by considering |C| different replica activation strategies sc such that:

s(x̃m
i , c) = sc(x̃

m
i), sc : P̃ (→ {0, 1} (14)

202 A. Reale et al.

The IC constraint (10b) can be, instead, rewritten as follows:

FIC(s)

T
≥ BIC

T
(G)︸ ︷︷ ︸

G′

⇔
∑
c∈C

∑
xi∈P,

xj∈pred(xi)

PC(c) · φ(xi, c, s) · Δ̂(xj , c, s)

︸ ︷︷ ︸
μc (sc)

≥ G′

⇔
∑
c∈C

μc (sc) ≥ G′ (15)

Similarly, considering (11), the minimization term (10a) can be written as:

min
∑
c∈C

∑
x̃m
i

∈P̃ ,

xj∈pred(xi)

PC (c) γ (xj , xi)Δ(xj , c)s(x̃
m
i , c)

︸ ︷︷ ︸
λc (sc)

⇔ min
∑
c∈C

λc (sc) (16)

Note that, while the CPU and minimum replicas constraints can be evaluated
and satisfied considering each input configuration c separately, the IC constraint
and the cost minimization expression cannot; nonetheless, they both can be
expressed as a sum of |C| non negative terms, and each of this terms can be
evaluated separately for different values of c.

Our decomposition approach consists in defining |C| subproblems probc, one
per input configuration; the solution of each problem is a partial replica acti-
vation strategy sc that satisfies at least the corresponding CPU and minimum
replication constraints (10c) and (10d). The subproblems’ optimization goal and
possible additional constraints, instead, depend on the particular phase the de-
composition algorithm is in. Algorithm 1 sketches, in pseudo-code, the main
steps of the decomposition-based solver.

The algorithm starts by maximizing the μc(sc) values of each subproblem
(Phase 1, lines 1–9). Note that, after this phase is complete, if a solution is
found for every subproblem, an upper bound on the possible IC for the original
problem can be obtained using (15): through it, it is possible to test immediately
whether the original problem admits solutions (line 7) and, in case it does, to
output an initial and in general sub-optimal solution. During Phase 2 (lines
10–22), this initial solution is improved by working separately and iteratively
on each subproblem. At every iteration, the problem whose contribution to the
overall IC is minimum with respect to its contribution to the cost (line 12) is
chosen as a candidate for improvement, and the algorithm tries to decrease its
cost while ensuring that the obtained μc(sc) value still allows to satisfies the
overall IC requirement (line 13). This iteration is repeated until no improvement

Evaluating CP Techniques to Plan Dynamic Resource Provisioning 203

Algorithm 1. Decomposition-based Search Strategy

input : {probc}: the |C| decomposed subproblems.
output: A replica activation strategy s, or None if no solution found

1 Phase 1: /* μc maximization */

2 foreach probc do
3 smax

c ← maximize μc in probc
4 if smax

c is None then return None μmax
c ← maximum μc for probc

5 λmax
c ← cost value corresponding to smax

c

6 end
7 if

∑
c∈C μmax

c < G′ then /* Feasibility test */

8 return None

9 end
10 Phase 2: /* optimization */

11 foreach probc do μcur
c ← μmax

c ; λcur
c ← λmax

c while exists probc that can be
improved do

12 c′ ← maxc (λ
cur
c /μcur

c) /* Choose prob. to improve */

13 μlimit
c′ ← G′ −∑

c∈C
c �=c′

μcur
c

14 Post μc′ ≥ μlimit
c′ as constraint on probc′

15 Post λc′ < λcur
c′ as constraint on probc′

16 scurc′ ← findFirst(probc′) /* Solve probc */

17 if sc′ is None then
18 probc′ cannot be improved further
19 else
20 Update μcur

c′ and λcur
c′ according to scurc′

21 end

22 end
23 Phase 3: /* End */

24 s ← Combine all the scurc

25 return s

can be obtained from any subproblem. In Phase 3, finally, the partial replica
activation strategies are combined, and the result returned as output.

Like the LNS-based strategy, this algorithm can decide whether the problem
is feasible, but cannot recognize an optimal solution. In the cases where the
operator graph is particularly complex, it might be necessary to set a time limit
for Phase 1 to avoid blocking the solver for too long; in such cases, the solution
obtained after Phase 1 is no longer an upper bound on the obtainable IC, and so
the algorithm cannot decide anymore about the feasibility of the entire problem.
Let us note, finally, that the various subproblems optimizations (either the initial
IC maximization or the subsequent cost minimizations) can be performed with
any optimization technique.

4 Experimental Evaluation

The primary goals of our evaluation study are i) to compare the quality of the
best solutions that the three strategies can find within a reasonable time limit

204 A. Reale et al.

and ii) to evaluate the scalability of the search strategies (in particular of the
decomposition-based one) as the problem size grows.

For the first part of this evaluation, we consider a batch of 20 different stream
processing applications with data flow graphs of 96 operators each. Every appli-
cation has three data sources, each producing output at two possible data rates
(for a total of 8 input configurations), and is associated with a replicated deploy-
ment (two replicas per operator, 192 replicas in total) on 24 computing hosts.
The IC constraint in the related Replica Activation Problem is set to 0.5. We
choose these applications as we believe their complexity to be well representative
of real world stream processing deployments.

We compare the optimization algorithms in the following variants:

1. Basic solver with partial sub-optimal-filtering (BASIC).
2. LNS-based strategy using BASIC for the initial solution and simple weighted

random relaxation method (L SRW).
3. LNS-based strategy using a greedy initial solution and weighted random

relaxation method (L GRW).
4. LNS-based strategy using a greedy initial solution and simple random relax-

ation method (L GRS).
5. Decomposition strategy using BASIC for Phase 1 (DEC S).
6. Decomposition strategy using LNS GRW for Phase 1 (DEC L).

All the experiments are executed on a machine with an AMD Phenom II X6
1055T @2.8 GHz processor and 8 GB of main memory. The ILOG CP Optimizer
is configured to use only one worker (single threaded solution), and its search
time limit is set to 300 seconds wall time. Due to the complexity of the problems,
for no instance it was possible to demonstrate the optimality of the solutions
found; however, feasible solutions were found for all instances except four.

In this experimental campaign, we were primarily interested in two aspects,
i.e., the ability to find good solution in a relatively large time frame, and the
complementary capacity of quickly finding a first feasible solution. Both aspects
are critical in our use-case scenario: the first is more significant during the de-
ployment of new stream processing applications, when a larger time budget is
usually available; the second is more relevant when replica activation strategies
must be quickly adjusted at runtime due to dynamic variations of input charac-
teristics. For reasons of space, in the following, we only report the results about
the first aspect. Experimental data about the second are available in our on-line
appendix [17], together with downloadable descriptions of the problem instances
used in this evaluation.

The bar plot in Fig. 3 compares the various search algorithms to BASIC,
which we choose as the base line solution method; the plot analyzes the best
solution cost (BCOST) and its associated search time (BTIME) and is obtained
by normalizing, separately for each problem instance, the values of BTIME and
BCOST with respect to the results obtained in BASIC. The figure shows the
average of these values along with the associated standard error.

Evaluating CP Techniques to Plan Dynamic Resource Provisioning 205

0.00

0.25

0.50

0.75

1.00

1.25

BASIC L_SRW L_GRW L_GRS DEC_S DEC_L

Search Variant

M
ea

n
Variable

BCOST

BTIME

Fig. 3.Mean time to find the best solution within the time limit and associated solution
cost. All the results are normalized w.r.t. the BASIC variant.

In general, the two decomposition-based variants find solutions that are at
least as good or slightly better than those found by BASIC. In more detail, in
the only six instances where the decomposition variants finds solutions worst
than BASIC, that solution is at most 23% more expensive; at the same time,
they can save considerable amounts of time (43% on average). The results show
also that, on the one hand, DEC L can find good solutions much faster than
DEC S (4% to 70% faster), probably due to the initial speed-up given by the
LNS greedy strategy used to find the starting solutions for Phase 1; on the other
hand, the solutions found by DEC L tend to be a little more expensive than
those found by DEC S (from 1% to 24%): that is explained by considering that
the use of the BASIC solver in Phase 1 usually gives tighter IC upper bounds,
which, in turn, permit to use looser constraints on the μlimit

c values in Phase 2.
The solutions found by the LNS-based variants, finally, are in all but one case
worst than those found by BASIC, with cost inflations up to 57%. Among the
LNS variants, L SRW is the one providing the best results thanks to its better
(although slower) initial solutions, with higher costs (between 1% and 13%), but
solution times that are 75% smaller to 26% bigger than BASIC.

Finally, we evaluate the scalability of the decomposition-based strategy when
the number of input configurations grows. In order to measure it, we started from
an application graph with 32 operators and one data source, with a replicated
deployment (64 operators) on 8 hosts, and we randomly generated 40 different
applications, for each, customizing the number of possible data source rates.
The result is a set of 40 different replica activation problem instances sharing
the same processing graph and deployment, but with a progressively growing
number of input configurations (from 2 to 80 by steps of 2). We solved these
instances through the BASIC and the DEC S search variants. Fig. 4 shows the
time taken by the two strategies to find their best solution as the number of input
configurations grows. The results for the BASIC variants grow very quickly, and,
for instances with more than 18 configurations, we could not find any solution
within the time limit. On the contrary, by using DEC S, the solution time grows
much more slowly, and we easily solved all the problem instances.

206 A. Reale et al.

0

100

200

300

20 40 60 80

Num. of input configurations

T
im

e
(s

)
Search Variant

BASIC

DEC_S

Fig. 4. Scalability of the BASIC and DEC S solution strategies

5 Related Work

The problem of managing load variations in DSPSs has been widely investigated
in the related literature, and different solution techniques have been proposed.

Tatbul et al. [20], for example, tries to avoid resources overload in spite of
changing load condition by introducing controlled data drops in the data-flow
graph. In a pre-deployment phase, they solve a set of LP problems to build
load-shedding plans that decide where and how many tuples to drop to maxi-
mize application throughput. Like our replica activation strategies, load-shedding
plans contain decisions for each input configuration. However, these plans do not
take into account the interplay of fault-tolerance and variable input load: with
load shedding, data is dropped even when no failure occurs, while LAAR guar-
antees that no data is lost in that case and it bounds the maximum amount of
loss in case of failures. For these reasons, the problem model in [20] and the one
presented in this paper are very different and difficult to compare.

Another common approach is to move operators between hosts to re-balance
the system and accommodate new load conditions: in [12,24,25] this is done
through continuous greedy improvement steps. Likewise, in [1], the authors de-
velop a resource allocation algorithm that uses a dynamic flow-control algorithm
based on a linear quadratic regulator [7] to maximize the application throughput.
All these approaches assume that the available resources are enough to handle
any input configuration, or that the data sources rate can be paced at will until
there are enough resources to handle the load; in LAAR additional resources are
dynamically provided by temporarily replication adjustments.

Using CP to manage replicas in distributed systems has been previously done
by Michel et al. [16], who propose a CP model that solves the problem of de-
ploying replicas on distributed nodes to minimize the communication cost in
Eventually Serializable Data Service (ESDS) systems. Our replica activation
problem is different because we do not deal with the assignment of replicas to
computing resources, but we decide their dynamic activation strategy.

In [15], the authors solve a combined assignment and scheduling problem for
conditional task graphs (CTG). Similarly to this work, the CP model includes

Evaluating CP Techniques to Plan Dynamic Resource Provisioning 207

stochastic elements, but they are used to describe the probability that branches
in the task graphs are actually used at runtime.

Our problem formulation closely resembles stochastic optimization problems
with value at risk (VaR) guarantees [18], and our decomposition strategy is
based on the notion of separability of optimization problems commonly used in
OR contexts [14].

6 Conclusions and Future Work

In this paper we have introduced an optimization problem whose solution is
at the foundations of LAAR, a technique for dynamic and load-adaptive active
replication in DSPSs. After having investigated the characteristics of the prob-
lem and of its solution space, we have presented three possible solution strate-
gies: a näıve and straightforward model solver, a LNS-based search strategy, and
a Decomposition-based strategy. Our experimental evaluation shows that when
sufficient time budged is available, the decomposition approach can find good so-
lutions and scale particularly well for instances where possibly many data sources
produce input at many possible rates. On the contrary, the LNS-approaches
represent an appropriate solution when finding quickly a good-enough feasible
solution is the main concern [17]. Finally, the näıve solver provides the most
consistent behavior across all the possible scenarios when used in combination
with an ad-hoc sub-optimal solution filtering constraint.

As future work, we will continue our investigation on the problem trying to
correlate specific problem characteristics (e.g., shape of the graph, properties of
the deployment) to the behavior of different search strategies. In addition, we will
continue experimenting with the current approaches on a broader set of problem
instances in order to expand and further validate our findings. Let us finally note
that, although we have introduced the replica activation problem and LAAR in
the context of stream processing, the presented principles are applicable to the
much larger domain of distributed data flow systems that can tolerate weaker
fault-tolerance levels through dynamic active replication.

Acknowledgements. We would like to thank the Smarter Cities Technology
Centre, IBM Dublin Research Laboratory and, in particular, Spyros Kotoulas
for the precious contribution in the development of the original ideas behind
LAAR.

References

1. Amini, L., Jain, N., Sehgal, A., Silber, J., Verscheure, O.: Adaptive control of
extreme-scale stream processing systems. In: Proc. of the 26th IEEE ICDS Con-
ference, pp. 71–78. IEEE (2006)

2. Atzori, L., Iera, A., Morabito, G.: The internet of things: A survey. Computer
Networks 54(15), 2787–2805 (2010)

208 A. Reale et al.

3. Bellavista, P., Corradi, A., Kotoulas, S., Reale, A.: Dynamic datacenter resource
provisioning for high-performance distributed stream processing with adaptive
fault-tolerance. In: Proc. of the 2013 ACM/IFIP/USENIX International Middle-
ware Conference. Posters and Demos Track (2013)

4. Bellavista, P., Corradi, A., Kotoulas, S., Reale, A.: Adaptive fault-tolerance for
dynamic resource provisioning in distributed stream processing systems. In: Proc.
of the of 17th International EDBT Conference. ACM (2014)

5. Boutsis, I., Kalogeraki, V.: Radar: adaptive rate allocation in distributed stream
processing systems under bursty workloads. In: Proc. of the 31st SRDS Symposium,
pp. 285–290. IEEE (2012)

6. Cleveland, W.S., Devlin, S.J.: Locally weighted regression: an approach to regres-
sion analysis by local fitting. J. Amer. Statist. Assoc. 83(403), 596–610 (1988)

7. Cobb, D.: Descriptor variable systems and optimal state regulation. IEEE Trans-
actions on Automatic Control 28(5), 601–611 (1983)

8. Dougherty, J., Kohavi, R., Sahami, M.: Supervised and unsupervised discretization
of continuous features. In: Proc. of the 12th ICML Conference, pp. 194–202. Morgan
Kaufmann (1995)

9. Gedik, B., Andrade, H., Wu, K.-L.: A code generation approach to optimizing
high-performance distributed data stream processing. In: Proc. of the 18th CIKM
Conference, pp. 847–856. ACM (2009)

10. Hwang, J.-H., Balazinska, M., Rasin, A., Çetintemel, U., Stonebraker, M., Zdonik,
S.: High-availability algorithms for distributed stream processing. In: Proc. of the
21st ICDE Conference, pp. 779–790. IEEE (2005)

11. Khandekar, R., Hildrum, K., Parekh, S., Rajan, D., Wolf, J., Wu, K.-L., Andrade,
H., Gedik, B.: Cola: Optimizing stream processing applications via graph parti-
tioning. In: Bacon, J.M., Cooper, B.F. (eds.) Middleware 2009. LNCS, vol. 5896,
pp. 308–327. Springer, Heidelberg (2009)

12. Kumar, V., Cooper, B., Schwan, K.: Distributed stream management using utility-
driven self-adaptive middleware. In: Proc. of the 2nd ICAC Conference, pp. 3–14.
IEEE (2005)

13. Laborie, P.: Ibm ilog cp optimizer for detailed scheduling illustrated on three prob-
lems. In: van Hoeve, W.-J., Hooker, J.N. (eds.) CPAIOR 2009. LNCS, vol. 5547,
pp. 148–162. Springer, Heidelberg (2009)

14. Li, D., Sun, X.: Separable integer programming. In: Nonlinear Integer Program-
ming, ch. 7, pp. 209–239. Springer (2006)

15. Lombardi, M., Milano, M.: Allocation and scheduling of conditional task graphs.
Artificial Intelligence 174(78), 500–529 (2010)

16. Michel, L., Shvartsman, A.A., Sonderegger, E., Van Hentenryck, P.: Optimal de-
ployment of eventually-serializable data services. In: Perron, L., Trick, M.A. (eds.)
CPAIOR 2008. LNCS, vol. 5015, pp. 188–202. Springer, Heidelberg (2008)

17. Reale, A., Bellavista, P., Corradi, A., Milano, M.: Evaluationg cp techniques
to plan dynamic resource provisioning in distributed stream processing: On-line
appendix, http://middleware.unibo.it/people/ar/laar-rap/ (web page, last
visited in February 2014)

18. Rockafellar, R.T., Uryasev, S.: Optimization of conditional value-at-risk. Journal
of Risk 2, 21–42 (2000)

19. Shaw, P.: Using constraint programming and local search methods to solve vehicle
routing problems. In: Maher, M.J., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520,
pp. 417–431. Springer, Heidelberg (1998)

http://middleware.unibo.it/people/ar/laar-rap/

Evaluating CP Techniques to Plan Dynamic Resource Provisioning 209

20. Tatbul, N., Çetintemel, U., Zdonik, S.: Staying fit: efficient load shedding tech-
niques for distributed stream processing. In: Proc. of the 33rd VLDB Conference.
The VLDB Endowment (2007)

21. Tatbul, N., Çetintemel, U., Zdonik, S., Cherniacak, M., Stonebraker, M.: Load
shedding in a data stream manager. In: Proc. of the 29th VLDB Conference,
pp. 309–320. The VLDB Endowment (2003)

22. Turaga, D., Andrade, H., Gedik, B., Venkatramani, C., Verscheure, O., Harris, J.,
Cox, J., Szewczyk, W., Jones, P.: Design principles for developing stream processing
applications. Soft. Pract. Exper. 40(12), 1073–1104 (2010)

23. Xing, Y., Hwang, J.-H., Çetintemel, U., Zdonik, S.: Providing resiliency to load
variations in distributed stream processing. In: Proc. of the 32nd VLDB Confer-
ence. The VLDB Endowment (2006)

24. Xing, Y., Zdonik, S., Hwang, J.H.: Dynamic load distribution in the borealis stream
processor. In: Proc. of the 21st ICDE Conference, pp. 791–802. IEEE (2005)

25. Zhou, Y., Ooi, B.C., Tan, K.-L., Wu, J.: Efficient dynamic operator placement in
a locally distributed continuous query system. In: Meersman, R., Tari, Z. (eds.)
OTM 2006. LNCS, vol. 4275, pp. 54–71. Springer, Heidelberg (2006)

Disregarding Duration Uncertainty

in Partial Order Schedules? Yes, We Can!

Alessio Bonfietti, Michele Lombardi, and Michela Milano

DISI, University of Bologna
{alessio.bonfietti,michele.lombardi2,michela.milano}@unibo.it

Abstract. In the context of Scheduling under uncertainty, Partial Order
Schedules (POS) provide a convenient way to build flexible solutions. A
POS is obtained from a Project Graph by adding precedence constraints
so that no resource conflict can arise, for any possible assignment of the
activity durations. In this paper, we use a simulation approach to eval-
uate the expected makespan of a number of POSs, obtained by solving
scheduling benchmarks via multiple approaches. Our evaluation leads us
to the discovery of a striking correlation between the expected makespan
and the makespan obtained by simply fixing all durations to their aver-
age. The strength of the correlation is such that it is possible to disregard
completely the uncertainty during the schedule construction and yet ob-
tain a very accurate estimation of the expected makespan. We provide
a thorough empirical and theoretical analysis of this result, showing the
existence of solid ground for finding a similarly strong relation on a broad
class of scheduling problems of practical importance.

1 Introduction

Combinatorial Optimization approaches have a tremendous potential to improve
decision making activities. Most optimization techniques, however, require com-
plete problem knowledge to be available, and with good reason. Indeed, the dy-
namic and uncertain nature of real world problems is a true curse to deal with.
With the exception of specific settings, the scalability of stochastic optimization
approaches is orders of magnitude worse than their deterministic counterparts.

Scheduling problems make no exception to this rule and their stochastic vari-
ants tend to be even harder to solve than the (already hard) classical formula-
tions. In the literature, the case of uncertain activity durations [2] has received
the greatest attention. This is because it provides a convenient framework to
model a number of unexpected events (delays, failure of unary resources, un-
known input. . .) and because there is hardly any practical scheduling problem
where the durations are really deterministic. Many have tackled this class of
problems by shifting the activity start times [18], or by doing that and re-
adjusting the schedule when a variation occurs [17].

A somehow orthogonal family of approaches has focused instead in providing
flexible solutions as Partial Order Schedules (POSs). A POS is an augmentation
of the original Project Graph, where a number of precedence constraints has

H. Simonis (Ed.): CPAIOR 2014, LNCS 8451, pp. 210–225, 2014.
c© Springer International Publishing Switzerland 2014

Disregarding Duration Uncertainty in POS? Yes, We Can! 211

been added to prevent the occurrence of resource conflicts, whatever the activity
durations are. A POS can be obtained through a variety of methods (the reader
may refer for details to [8, 5, 6, 11–14]). A POS can be designed to optimize some
probabilistic performance metric, such as the expected makespan (a frequent
pick) or the n-th quantile (see [3]). Unfortunately, even simply computing such
metrics is by itself a difficult problem. Hence, a more convenient approach is
to optimize a deterministic scenario (e.g. worst case durations) and rely on the
flexibility of the POS for a good performance once the uncertain comes into play.

In this paper, we tackle the rather unusual problem of characterizing the run-
time behavior of a POS. Other authors have evaluated the quality of a POS via
intuition-based metrics [13, 14, 1], or even via simulation [15]. However, those
efforts have been focused in comparing solution approaches. Conversely, we fo-
cus on inferring general properties of the expected makespan of a POS. The raw
data for our investigation is obtained by simulating a large number of POSs,
obtained by solving classical scheduling benchmarks via multiple methods. Our
main, rather disconcerting, outcome is that in a large variety of situations there
is a very strong correlation between the expected makespan and the makespan
obtained when all the activities take their expected duration. In particular, their
difference appears very resilient to scheduling decisions. In such a situation it
is possible to disregard the uncertainty altogether, solve a deterministic prob-
lem, and end up with a close-to-optimal solution for a (much harder!) stochastic
problem. We provide a reasonable explanation for the observed behavior, sup-
ported by a mathematical model that we check against the empirical data. We
deduce that the behavior we observed, although not universally guaranteed, can
be reasonably expected on a broad class of practical problems.

2 Experimental Setup

Origin of our POSs: The POSs for our analysis represent solutions of classical
scheduling benchmarks. They have been obtained via two methods: 1) the con-
structive approach from [12] and 2) the application of a chaining step inspired by
[13] to solutions obtained via ILOG CP Optimizer. For each considered instance,
we kept all the solutions found by both solvers in the optimization process. In
the following, whenever non-explicitly mentioned, the presented data refers to
the chaining approach. As target benchmarks we have employed all the RCPSP
instances in the PSPLIB [10] from the j30, j60, and j90 sets (named after the
number of activities), plus most of the job shop scheduling instances by Tail-
lard [16] (up to 30 jobs and 20 machines). The PSPLIB instances cover a wide
range of resource usage patterns, while the job shop instances provide data for
a radically different scheduling problem.

The Simulation Approach: In the simplest terms, our simulator is just a com-
position of Monte-Carlo sampling and critical path computation. Formally, we
model the duration of each activity ai as an independent random variable δi
ranging in the interval [di, Di]. The value Di is the maximum duration and it is

212 A. Bonfietti, M. Lombardi, and M. Milano

always equal to the (fixed) duration value from the benchmark instances. The
minimum duration di is computed as α · Di, where α ∈]0, 1[. The value of α
and the probability distribution for the δi variables are simulation parameters.
The makespan is formally defined as a function τ(δ) of the duration variables.
We use the special notation T to refer to the value τ(D), i.e. the makespan for
the worst case durations.

The makespan function has unknown probability distribution, and therefore
unknown expected value E[τ]. Our simulator builds an approximation for E[τ]
by sampling the duration variables to obtain a set of scenarios Δ. Each scenario
δ(k) ∈ Δ is an assignment of values to the δi variables. Then for each δ(k) we
compute the makespan by running a simple critical path algorithm: since the
POS are resource-feasible, there is no need to take into account the capacity
limits. By doing so, we obtain the sample average:

τ =
1

|Δ|
∑

δ(k)∈Δ

τ(δ(k)) (1)

which is an approximation for the expected value E[τ]. We simulated each of
our POSs 10,000 times (i.e. |Δ| = 10, 000). We have considered two types of
distribution for the δi variables, namely 1) a uniform distribution and 2) a dis-
crete distribution where the duration can be either αDi with probability p or
Di with probability 1 − p. We have run tests with p = 0.5 and p = 0.9 and
α = 0.1, 0.25, 0.5 and 0.75. In the following, whenever non explicitly mentioned,
the presented data refers to α = 0.5 and uniformly distributed durations.

3 Our Main Result

As mentioned in Section 1, it is common to build a POS to minimize the worst
case makespan, so as to provide worst case guarantees. Even in this setting,
however, having a good expected performance is a highly desirable property. We
therefore decided to start our investigation by comparing the expected makespan
of a POS (or rather the approximation τ), with its worst case value T .

This comparison can be done effectively by plotting the two quantities one
against each other (say, T on the x- and τ on the y-axis). It is clear that τ ≤ T .
That said, given how complex the structure of a POS can be and the amount
of variability involved, one could expected the plot to contain a cloud of points
distributed almost uniformly below the main bisector. A significant discrepancy
between different benchmarks and simulation settings could also be expected.

Surprisingly, we observe instead that in all the considered cases there exists
a strong, seemingly linear, correlation between the average makespan and the
worst case one. Figure 1 shows the described plots for 4 different configurations,
chosen as examples: (a) the POSs for the j30 instances from the PSPLIB, solved
with the chaining approach and uniform distributions; (b) the j30 set with the
constructive approach and uniform distributions; (c) the j60 set with the con-
structive approach, discrete distribution and p = 0.9. Finally, (d) the POSs from
the Taillard instances with the chaining approach and uniform distributions.

Disregarding Duration Uncertainty in POS? Yes, We Can! 213

Fig. 1. Expected makespan (y-axis) over worst case makespan (x-axes) for various
experimental settings

The Real Correlation: A necessary first step to understand the observed corre-
lation is to identify exactly its terms. In our experimentation, we are assuming
all activities to have uniformly distributed durations in the range [di, Di], so
that their expected value is E[δi] = 0.5 · (di +Di). Moreover, since we are also
assuming that di = αDi, we have that E[δi] =

1
2 (1 + α)Di, i.e. the expected

durations are proportional to the worst case ones. This means that by fixing all
the activities to E[δi] rather than to Di, the critical path stays unchanged and
the makespan becomes:

τ(E[δ]) =
1

2

∑
i∈π

(αDi +Di) =
1 + α

2

∑
i∈π

Di =
1+ α

2
T (2)

Hence, the observed correlation between τ and T could be just a side effect of a
actual correlation between τ and τ(E[δ]), because T and τ(E[δ]) are proportional.
To test if this is the case, we have designed a second set of simulations where,

214 A. Bonfietti, M. Lombardi, and M. Milano

Fig. 2. Correlation of the simulated makespan with α varying on a per-task basis

for each task, we choose at random between α = 0.1 or α = 0.75. By doing so,
Equation (2) does no longer hold. As a consequence, we expect the correlation
between τ and T to become more blurry. Figure 2A and 2B report, for the
j60 benchmarks, scatter plots having τ on the y-axis. On the x-axis the plots
respectively have the worst case makespan and the makespan with expected
durations. The data points are much more neatly distributed for Figure 2B. In
summary, there is evidence for the existence of a very strong correlation
between the expected makespan E[τ] and the makespan τ(E[δ]).

In the (very uncommon) case that the POS consists of a single path, this is a
trivial result. In such a situation the makespan function τ can be expressed as:

τ(δ) = l(π) =
∑
ai∈π

δi (3)

where π is the path (a sequence of activity indices π(0), π(1), . . . π(k − 1)) and
l(π) is the path length. For the linear properties of the expected value, it follows
that E[τ] =

∑
i∈π E[δi], i.e. the expected makespan is exactly τ(E[δ]). On the

other hand, a general POS has a much more complex structure, with multiple
paths competing to be critical in a stochastic setting. In such case, the presence
of the observed correlation is therefore far from an obvious conclusion.

Makespan Deviation: What is even more interesting, however, is that τ and
τ(E[δ]) remain remarkably close one to each other, rather than diverging as their
values grow. It is therefore worth investigating in deeper detail the behavior of
the difference τ − τ(E[δ]), as an approximation for E[τ] − τ(E[δ]). We refer to
this quantity as Δ and we call it makespan deviation.

Figure 3A shows the deviation for j60, over the makespan with expected dura-
tions. The plot (and every plot from now on) is obtained using a unique α value
for a whole benchmark, because this allows to conveniently compute τ(E[δ]) as

Disregarding Duration Uncertainty in POS? Yes, We Can! 215

Fig. 3. Deviation and normalized deviation over τ (E[δ])

1+α
2 T . The deviation appears to grow slowly as the makespan (with expected

durations) increases.
It is possible to determine the rate of growth more precisely via a test that

involves the normalized makespan deviation, i.e. the quantity Δ/τ(E[δ]). Specif-
ically, let us assume that a linear dependence exists, then we should have:

E[τ] = a · τ(E[δ]) + b (4)

Now, note that τ(E[δ]) = 0 can hold iff all the activities have zero expected
duration. This is only possible if they have zero maximum duration, too. Hence,
if τ(E[δ]) = 0, then E[τ] = 0. This implies that b = 0, i.e. there is no offset.
Hence, we can deduce that E[τ] and τ(E[δ]) are linearly dependent iff:

Δ

τ(E[δ])
= a− 1 (5)

i.e. if the normalized makespan deviation is constant. Figure 3B shows for j60
the normalized Δ over τ(E[δ]). We have added to the plot a line that shows what
the data trend would be in case of a constant normalized deviation. As one can
see, the normalized Δ tends instead to get lower as τ(E[δ]) grows.

Therefore, the makespan deviation E[τ]− τ(E[δ]) appears to grow sub-
linearly with the makespan obtained when all activities take their
expected duration, i.e. τ(E[δ]). From another perspective, this means that
the deviation has sub-linear sensitivity to scheduling decisions. In such a situ-
ation, it becomes possible to disregard the duration uncertainty and
optimize under the assumption that each activity ai has duration E[δi],
being reasonably sure that the resulting POS will be close to optimal
also in the stochastic setting. This makes for a tremendous reduction in the
complexity of scheduling under duration uncertainty, with far reaching conse-
quences both on the theoretical and the practical side.

216 A. Bonfietti, M. Lombardi, and M. Milano

Given the importance of such a result, it is crucial to reach an understanding of
the underlying mechanism, so as to assess to which extent this behavior depends
on our experimental setting and to which extent it is characteristic of scheduling
problems in general. In the next section, we develop mathematical tools for this
analysis.

4 Our Analysis Framework

Independent Path Equivalent Model: We already know from Section 3 that for
a single path π the expected makespan is equal to the sum of the expected
durations and hence Δ = 0. This is however a rather specific case. In general, it
is possible to see a POS as a collection Π of paths π. From this perspective, the
makespan can be formulated as:

τ(δ) = max
π∈Π

lπ(δ) (6)

i.e. for a given instantiation of the activity durations, the makespan is given by
the longest path. The worst case makespan T will correspond to the worst case
length of one or more particular paths: we refer to them as critical paths.

In general, many paths will not be critical. Moreover, several paths will likely
share some activities. Finally, the number of paths |Π | may be exponential in
the Project Graph size. For those reasons, computing E[τ] for the model from
Equation (6) is not viable in practice. Hence, to understand the impact of multi-
ple paths on E[τ] we resort to a simplified model. Specifically, we assume that a
POS consists of n identically distributed, independent, critical paths. Formally:

τ(δ) = max
i=0..n−1

λi(δ) (7)

where each λi is a random variable representing the length of a path i and ranging
in [αT, T]. The notation is (on purpose) analogous to that of our simulation. We
refer to Equation (7) as the Independent Path Equivalent Model (IPE Model).

Effect of Multiple Paths: Now, let Fλ denote the (identical) Cumulative Distri-
bution Function (CDF) for all λi, i.e. Fλ(x) is the probability that a λi variable
is less than or equal to x. Then for the CDF of τ we have:

Fτ (x) =
n−1∏
i=0

Fλ(x) = Fλ(x)
n (8)

in other words, for τ to be lower than a value x, all the path lengths must
be lower than x. Therefore, increasing the number of critical paths n
reduces the likelihood to have small makespan values and leads to a
larger E[τ]. Figure 4A shows this behavior, under the assumption that all λi

are uniformly distributed with T = 1 and α = 0 and hence have an average
length of 0.5. The drawing reports the Probability Density Function (PDF), i.e.

Disregarding Duration Uncertainty in POS? Yes, We Can! 217

Fig. 4. Effect of multiple paths

the probability that τ = x, with n = 1, 2, 3, 4. As n grows, the PDF is skewed to
the right and the corresponding expected value (marked by a vertical red line)
moves accordingly. Note that moving from a single path to multiple ones causes
a relevant shift of E[τ] from the average critical path length (i.e. 0.5). This means
that the POS structure may in theory have a strong impact on the makespan
deviation. However, this is not observed in Figure 1 and Figure 2, raising even
more interest in the reasons for this behavior.

4.1 Worst Case Assumptions

The IPE Model differs from the exact formulation in Equation (6) by three main
simplifications: 1) all paths are critical, 2) all paths are identically distributed,
and 3) all paths are independent. Due to those simplifications, the IPE Model
actually corresponds to a worst case situation and is therefore well
suited to obtain conservative estimates.

Non-critical Paths: An actual POS may contain a number of non-critical paths.
In the IPE Model, a non-critical path is modeled by introducing a random vari-
able λi with a maximum value strictly lower than T . Any such variable can be
replaced by one with the same (scaled) distribution and maximum T , for an
increased expected makespan.

Non-identical Distributions: In general, each critical path λi will have a different
probability distribution Fλi . However, it can be proved1 that it is possible to
obtain a worst case estimate by assuming all Fλi to be equal to the one having
the lowest value for the integral

∫∞
0

Fλi(x)dx.

1 The proof can be found in a technical report associated to this paper, see [4].

218 A. Bonfietti, M. Lombardi, and M. Milano

Path Dependences: Path dependences arise in Equation (6) due to the presence of
shared variables. Consider the case of a graph with two paths πi and πj sharing
a subpath. For each assignment of durations δ(k), the length of the common
subpath will add to that of both πi and πj , making them more similar. This can
be observed in Figure 4B that reports the empirical distributions of two POSs,
both consisting of two paths with two activities each. In the POS corresponding
to the grey distribution, the two paths are independent, hence l(πi) = δh + δk
and l(πj) = δl+δm. In the POS corresponding to the black distribution, the two
paths share a variable, i.e. l(πi) = δh+ δk and l(πj) = δh+ δm. All the durations
are uniformly distributed, δh and δl range in [0, 0.8], while δj , δm range in [0, 0.2].
The distribution for the dependent setting is much closer to that of a single path
(see Figure 4A) and has a lower average then the independent case.

4.2 Asymptotic Behavior of the Expected Makespan

We are now in a position to use the IPE Model to obtain a conservative estimate
of E[τ]. In particular, we will show that the makespan deviation Δ for the
IPE Model is bounded above by a quantity that depends 1) on the
variability of the activities on the paths and 2) on the number of
paths. For proving this, we will consider each critical path to be a sequence
of m activities. This can be captured by assuming that λ =

∑m−1
j=0 ρj , where

each ρj is an independent random variable with expected value μρj and relative
variability βρj . From this definition, it follows:

m−1∑
j=0

μρj = E[λ] and

m−1∑
j=0

βρj = (1 − α)T (9)

Note that with m = 1 we obtain the original IPE Model. Now, let Z be a random
variable equal to τ −μλ, where μλ = E[λ]. The Z variable is designed so that in
the model E[Z] corresponds to the makespan deviation Δ. Now, from Jensen’s
inequality [9], we know that:

eE[tZ] ≤ E[etZ] (10)

because the exponential function etx is convex in x. The term t is a real valued
parameter that will allow some simplifications later on. From the definition of Z
and since the exponential is order preserving, we obtain:

E[etZ] = E
[
etmaxi(λ−μλ)

]
= E

[
max

i=0..n−1
et(λ−μλ)

]
(11)

By simple arithmetic properties and by linearity of the expectation E[]:

E

[
max

i=0..n−1
et(λ−μλ)

]
≤

n−1∑
i=0

E
[
et(λ−μλ)

]
= nE

[
et(λ−μλ)

]
(12)

Disregarding Duration Uncertainty in POS? Yes, We Can! 219

Note that using a sum to over-approximate a maximum is likely to lead to a
loose bound. This is however mitigated by the use of a fast-growing function like
the exponential. Now, since λi =

∑
j ρj , we can write:

nE
[
et(λ−μλ)

]
=nE

[
et

∑
j(ρj−μρj)

]
=nE

⎡⎣m−1∏
j=0

et(ρj−μρj)

⎤⎦=n
m−1∏
j=0

E
[
et(ρj−μρj)

]
because the ρj variables are independent. Now, each term ρj−μρj has zero mean
and spans by definition in a finite range with size βρj . Therefore we can apply
Hoeffding’s lemma [7] to obtain:

n

m−1∏
j=0

E
[
et(ρj−μρ)

]
≤ n

m−1∏
j=0

e
1
8 t

2β2
ρj = ne

1
8 t

2 ∑
j β2

ρj (13)

By merging Equation (10) and Equation (13) we get:

E[tZ] = tE[Z] ≤ log
(
ne

1
8 t

2 ∑
j β2

ρj

)
= logn+

1

8
t2
∑
j

β2
ρj

(14)

which holds for every t ∈ R. By choosing t =
√
8 logn√∑

j β2
ρj

, we finally obtain:

E[Z] = E[τ]− μλ = Δ ≤ 1√
2

√√√√m−1∑
j=0

β2
ρj

√
logn (15)

where the two main terms in the product at the right-hand side depend respec-
tively on the variability of the paths and on their number, thus proving our
result. Note that Equation (15) identifies the terms that have an impact on Δ,
and it also bounds the degree of such impact. Since the IPE Model represents a
worst case, the provided bound is applicable to general POSs, too.

5 Empirical Analysis of the Asymptotic Behavior

We now start to employ the mathematical framework from Section 4 for an
empirical evaluation, to get a better grasp of the behavior of the makespan
deviation. Our main tool will be the bound from Equation (15). As a preliminary,
when moving to real POSs some of the parameters of the IPE Model cannot
be exactly measured and must be approximated. As a guideline, we use the
parameters of the critical path in the POS as representative for those of the
paths in the IPE model. Hence:

– the value μλ corresponds to τ(E[δ]), i.e. to 1+α
2 T .

– each βρi is equal to (1 − α)Di.

220 A. Bonfietti, M. Lombardi, and M. Milano

Fig. 5. A) Normalized Deviations with α = 0.5 and α = 0.25. B) Dependence of the
deviation on the number of paths.

– for m, we take the number of activities on the critical path.
– for n, we take the total number of paths in the POS.

We expect the largest approximation error to come from considering all paths
(regardless the degree of their dependence) and from assuming that all of them
are critical. Now, we proceed by investigating how the makespan deviation Δ
depends on the two main terms from Equation (15).

Dependence on the Variability: For our experimentation we have that:√√√√m−1∑
j=0

β2
ρj

=

√√√√m−1∑
j=0

((1 − α)Di)
2
= (1− α)

√√√√m−1∑
j=0

D2
i (16)

Hence, the variability term in Equation (15) grows linearly with (1−α). There-
fore, in order to check if the bound reflects correctly the dependence of Δ on the
variability, we can repeat our simulation with different α values and see if we
observe a linear change of the makespan deviation. We have experimented with
α = 0.1, 0.25, 0.5, and 0.75.

Figure 5A shows a scatter plot for j60 where the makespan deviation for
α = 0.25 and α = 0.5 are compared. The presence of a linear correlation is
apparent. Equation (16) allows one to predict the slope of the line for two values

α′′ and α′, which should be 1−α′′
1−α′ . For α′′ = 0.25 and α′ = 0.5, we get 1.5. By

fitting a trend line it is possible to measure the actual slope, which in this case is
1.46, remarkably close to the predicted one. This all points to the fact that
the asymptotic dependence identified by our bound is in fact tight.

Dependence on the Number of Paths: The path related term in the bound pre-
dicts that the makespan deviation will grow (in the worst case) with

√
logn.

Disregarding Duration Uncertainty in POS? Yes, We Can! 221

Fig. 6. The path-dependent term in the bound vs. the path cardinality

In this section, we investigate how accurate this estimate is in practice. In a first
attempt to assess the correlation between Δ and the number of paths, we simply
plot the deviation values against

√
logn, using (we recall) the total number of

paths in the graph as a proxy for the number of critical paths. If the bound
reflects a tight asymptotic dependence, we should observe a linear correlation.

Figure 5B shows such a plot for j60 and the correlation does not appear to
be linear. This may hint to an overestimation in our bound, but it could also
be due to our approximations, or to the presence of correlations between the
variability- and the path-related term in Equation (15). Now, we have recalled
that the number of paths in a graph may be exponential in the graph size. The
number of independent paths, however, is polynomially bounded by |A|, i.e. the
size of the graph. In fact, every activity can be part of at most one independent
path. For the number of paths to be exponential, the activities must
have multiple predecessors and successors.

Layered Graph Approximation: Next, we will investigate the relation between
the number of paths and their structure. This can be conveniently done on a
layered graph, i.e. a graph where the nodes are arranged in m layers, such that
layer k − 1 is totally connected with layer k. The number of paths in a layered
graph is estimated by the quantity (q/m)

m
, where q = |A| is the graph size.

There are two consequences: 1) to increase the number of paths exponentially,
we must increase their cardinality; 2) since m appears also at the denominator,
at some point the number of paths will start to decrease with growing m values.

This can be observed in Figure 6A, reporting the value of
√
log (q/m)

m
for

q = 62 and m ranging in {1 . . . 62}. Figure 6B reports instead the value of√
log(n) over the cardinality of the critical path for the j60 benchmark, which

also features 62 activities per graph (60 + 2 fake nodes). The two red bars in
Figure 6A mark the minimum and the maximum for the critical path cardinality

222 A. Bonfietti, M. Lombardi, and M. Milano

Fig. 7. The makespan deviation decreases with the cardinality of the critical path

in j60. The shape (and the range!) of the empirical plot matches closely enough
that of the highlighted segment of the theoretical curve. At a careful examina-
tion, this makes a lot of sense. When resolving resource conflicts, a scheduling
solver operates by arranging the activities into a sequence of parallel groups.
Tighter resource restrictions lead to longer sequences and fewer par-
allel activities in each group. In a POS, each of those groups translates
to a layer, making a layered graph a fairly good approximate model.

Path Cardinality and Variability: Now, we will show that the variability of a
path π gets smaller if π contains a large number of activities with uncertain
duration. If most of the activities in the graph have uncertain duration, this
means that the variability of a path π will decrease with its cardinality. For our
proof, we will assume for sake of simplicity that all ρi variables in the IPE Model
are identical. Hence, in our experimental setting, their variability will be equal
to 1

m (1−α)T . If we also assume to have a layered graph, Equation (15) becomes:

Δ ≤ 1√
2

√
mβ2

ρj

√
log

(q

m

)m

(17)

i.e. Δ ≤ 1√
2

1√
m
(1− α)T

√
m log

(q

m

)
(18)

In Equation (18), the role of path cardinalities in the deviation bound becomes
explicit. In particular, paths with a lot of variables are less likely to have very
long extreme lengths, reducing the deviation by a

√
m factor. The degree of the

dependence is such to completely counter the exponential growth of the path
number, so that the product 1√

m

√
m log (q/m) behaves like

√
log (q/m).

Hopefully Equation (18) provides a reasonable approximation even when its
simplifying assumptions are not strictly true. For testing this, in Figure 7A and

Disregarding Duration Uncertainty in POS? Yes, We Can! 223

7B we report, next to each other, the value of
√
log (q/m) for m ranging in

{1 . . .62} (which is strictly decreasing) and the value of 1√
m

√
log (n) over the

critical path length for j60. As in Figure 6A we use red lines to mark on the
theoretical plot the minimum/maximum of the critical path cardinality for j60.
Again, the figures are similar enough in terms of both shape and range. Hence,
if most of the activities have uncertain duration, an increase of the
path cardinality tends to have a beneficial effect on the deviation Δ.

Back to our Main Result: In Equation (18) the deviation bound is proportional
to T . However, under the simplifying assumption that all activities are identical,
increasing T requires to increase m as well, causing a reduction of the term
1√
m

√
m log (q/m). It follows that the deviation should grow sub-linearly with

the makespan. We conjecture that this same mechanism is at the base of the
sub-linear dependence we have observed in Figure 3A and checked by analyzing
the normalized deviation Δ/τ [E[δ]].

Now, we already know that the ratio 1√
m

√
m log (q/m) does decrease with

m for our benchmarks. Hence, if we observe a linear correlation between m and
τ(E[δ]), we should expect our bound to grow sub-linearly. In Figure 8A we re-
port, for the j60 benchmark, the length of the critical path over the makespan
with average duration, i.e. τ(E[δ]). The plot confirms the existence of a linear
correlation. At this point, repeating our experiment from Figure 3B with the
(normalized) bound values instead of the deviation would be enough to confirm
our conjecture. However, we have an even more interesting result. Figure 8B
reports a scatter plot having on the x-axis the normalized bound and on the
y-axis the normalized deviation. The plot shows the existence of a clear linear

Fig. 8. A) Linear correlation between the makespan and the critical path cardinality.
B) Normalized bound from Equation (15) over the normalize deviation Δ/τ (E[δ])

224 A. Bonfietti, M. Lombardi, and M. Milano

correlation between the two. This has two important consequences: 1) the hy-
pothesis that the sub-linear growth is due to a correlation between the
number of paths and their variability is consistent with the observed
data. Moreover, 2) the bound based on the IPE Model provides a tight
prediction of the rate of growth of the normalized deviation.

6 Concluding Remarks

Our results: In this paper we provide a detailed empirical and theoretical analysis
of general run time properties of POSs. We observe, in a variety of settings, the
existence of a very strong correlation between the expected makespan and the
makespan obtained by assuming that all activities have their expected duration.
Specifically, their difference (makespan deviation) appears to exhibit sub-linear
variations against makespan changes. As a likely cause for this behavior, we
suggest a strong link existing between the number of paths in a POS (that tends
to increase the deviation) and the number of activities with uncertain durations
in the paths (that makes the deviation smaller). We provide support for our
hypothesis by means of a mathematical framework (the IPE Model) and of an
extensive empirical evaluation. In the process, we end up identifying a number
of important mechanisms that determine the behavior of a POS.

It is important to observe that the strong resilience of the deviation tomakespan
variations represents a resilience to scheduling decisions. As an immediately ap-
plicable consequence, this makes it possible to disregard the duration uncertainty
and build a POS so as to optimize the makespan of the scenario where all the
activities take their expected value. The solution of such deterministic problem
will have a good chance to be close to optimal for its stochastic counterpart as
well. These result can be profitably applied to dramatically lower the complexity
of many real world scheduling problems.

Limitations and Open Problems: The applicability conditions of our result re-
quire a deeper investigation. The single most important assumption for the va-
lidity of our analysis is the independence of the activity durations. Strongly
dependent durations (e.g. simultaneous failures) may undermine our results and
will certainly deserve a dedicated analysis. Moreover, we will need to adjust the
approximations from Section 5, to tackle problems where only a handful of activ-
ities have uncertain duration (as opposed to all of them like in our experiments).

We are also interested in the identification of extreme cases: the IPE Model
predicts that POSs with a lot of short and independent paths (e.g. Open Shop
Scheduling solutions with many resources) should have the largest (normalized)
makespan deviations. It is worth investigating what the rate of growth of the
deviation would be in that case.

Finally, while we have a good understanding of why in our experimentation
the makespan deviation varies little, we still don’t know exactly why it is also
very small. This open question, which is also tightly connected with the problem
of predicting the value of the deviation, rather than its rate of growth. We plan
to address both topics in future research.

Disregarding Duration Uncertainty in POS? Yes, We Can! 225

References

1. Aloulou, M.A., Portmann, M.C.: An efficient proactive reactive scheduling ap-
proach to hedge against shop floor disturbances. In: Proc. of MISTA, pp. 223–246
(2005)

2. Beck, J.C., Davenport, A.J.: A survey of techniques for scheduling with uncertainty
(2002),
http://www.eil.utoronto.ca/profiles/chris/gz/uncertainty-survey.ps

3. Beck, J.C., Wilson, N.: Proactive Algorithms for Job Shop Scheduling with Prob-
abilistic Durations. Journal on Artificial Intelligence Research (JAIR) 28, 183–232
(2007)

4. Bonfietti, A., Lombardi, M., Milano, M.: Disregarding Duration Uncertainty in
Partial Order Schedules? Yes, we can! Technical Report LIA-001-14, LIA Series
no. 101. University of Bologna, Italy (February 2014),
http://www.lia.deis.unibo.it/Research/TechReport/LIA-001-14.pdf

5. Cesta, A., Oddi, A., Smith, S.F.: Scheduling Multi-Capacitated Resources under
Complex Temporal Constraints. In: Maher, M.J., Puget, J.-F. (eds.) CP 1998.
LNCS, vol. 1520, pp. 465–465. Springer, Heidelberg (1998)

6. Godard, D., Laborie, P., Nuijten, W.: Randomized Large Neighborhood Search for
Cumulative Scheduling. In: Proc. of ICAPS, pp. 81–89 (2005)

7. Hoeffding, W.: Probability inequalities for sums of bounded random variables.
Journal of the American statistical association 58(301), 13–30 (1963)

8. Igelmund, G., Radermacher, F.J.: Preselective strategies for the optimization
of stochastic project networks under resource constraints. Networks 13(1), 1–28
(1983)

9. Jensen, J.L.W.V.: Sur les fonctions convexes et les inégalités entre les valeurs
moyennes. Acta Mathematica 30(1), 175–193 (1906)

10. Kolisch, R.: PSPLIB - A project scheduling problem library. European Journal of
Operational Research 96(1), 205–216 (1997)

11. Laborie, P.: Complete MCS-Based Search: Application to Resource Constrained
Project Scheduling. In: Proc. of IJCAI, pp. 181–186. Professional Book Center
(2005)

12. Lombardi, M., Milano, M., Benini, L.: Robust Scheduling of Task Graphs un-
der Execution Time Uncertainty. IEEE Transactions on Computers 62(1), 98–111
(2013)

13. Policella, N., Cesta, A., Oddi, A., Smith, S.F.: From precedence constraint posting
to partial order schedules: A CSP approach to Robust Scheduling. AI Communi-
cations 20(3), 163–180 (2007)

14. Policella, N., Smith, S.F., Cesta, A., Oddi, A.: Generating Robust Schedules
through Temporal Flexibility. In: Proc. of ICAPS, pp. 209–218 (2004)

15. Rasconi, R., Policella, N., Cesta, A.: SEaM: Analyzing schedule executability
through simulation. In: Ali, M., Dapoigny, R. (eds.) IEA/AIE 2006. LNCS (LNAI),
vol. 4031, pp. 410–420. Springer, Heidelberg (2006)

16. Taillard, E.: Benchmarks for basic scheduling problems. European Journal of Op-
erational Research 64(2), 278–285 (1993)

17. Van de Vonder, S.: A classification of predictive-reactive project scheduling proce-
dures. Journal of Scheduling 10(3), 195–207 (2007)

18. Van de Vonder, S.: Proactive heuristic procedures for robust project scheduling: An
experimental analysis. European Journal of Operational Research 189(3), 723–733
(2008)

http://www.eil.utoronto.ca/profiles/chris/gz/uncertainty-survey.ps
http://www.lia.deis.unibo.it/Research/TechReport/LIA-001-14.pdf

An Exact Branch and Bound Algorithm

with Symmetry Breaking for the Maximum
Balanced Induced Biclique Problem

Ciaran McCreesh and Patrick Prosser

University of Glasgow, Glasgow, Scotland
c.mccreesh.1@research.gla.ac.uk,
patrick.prosser@glasgow.ac.uk

Abstract. We show how techniques from state-of-the-art branch and
bound algorithms for the maximum clique problem can be adapted to
solve the maximum balanced induced biclique problem. We introduce a
simple and effective symmetry breaking technique. Finally, we discuss
one particular class of graphs where the algorithm’s bound is ineffective,
and show how to detect this situation and fall back to a simpler but
faster algorithm. Computational results on a series of standard bench-
mark problems are included.

1 Introduction

1
2

3

4

56

7

8

9

Fig. 1. A graph, with its
unique maximum balanced in-
duced biclique of size six,
{{1, 2, 3}, {6, 7, 8}}, shown in
light and dark blue

Let G = (V,E) be a graph (by which we always
mean finite, undirected and with no loops) with
vertex set V and edge set E. A biclique, or com-
plete bipartite subgraph, is a pair of (possibly
empty) disjoint subsets of vertices {A,B} such
that {a, b} ∈ E for every a ∈ A and b ∈ B. A
biclique is balanced if |A| = |B|, and induced if
no two vertices in A are adjacent and no two ver-
tices in B are adjacent. The maximum balanced
induced biclique problem is to find a balanced in-
duced biclique of maximum size in an arbitrary
graph. We illustrate an example in Fig. 1.

Finding such a maximum is NP-hard [1, Prob-
lem GT24], both in bipartite and arbitrary graphs.
A näıve exponential algorithm could simply enu-
merate every possible solution to find a maximum.
Here we develop a branch and bound algorithm
with symmetry breaking that substantially reduces the search space. We believe
that this is the first attempt at tackling this problem. We are not yet aware of
any practical applications, but the problem is interesting from an algorithmic
perspective.

H. Simonis (Ed.): CPAIOR 2014, LNCS 8451, pp. 226–234, 2014.
c© Springer International Publishing Switzerland 2014

An Exact Branch and Bound Algorithm with Symmetry Breaking 227

If G = (V,E) is a graph, we write V(G) for the vertex set V . The neighbour-
hood of a vertex v in a graph G is the set of vertices adjacent to v; we denote
this NG(v). The degree of a vertex is the cardinality of its neighbourhood.

A graph G′ = (V ′, E′) is a subgraph of G = (V,E) if V ′ ⊆ V and E′ ⊆ E;
the subgraph induced by V ′ is the subgraph with vertex set V ′ and all possible
edges. A set of vertices, no two of which are adjacent, is called an independent
set. A set of vertices, all of which are adjacent, is called a clique; the size of a
maximum clique is denoted ω. A clique cover is a partition of the vertices in a
graph into sets, each of which is a clique. We introduce the symbol ω̈ for the
size (i.e. |A| + |B|) of a maximum balanced induced biclique, which is always
even (this simplifies comparisons with unbalanced biclique variants). A graph is
bipartite if its vertices may be partitioned into two disjoint independent sets.

2 A Branch and Bound Algorithm

A very simple branch and bound algorithm for the maximum induced biclique
problem is given in Algorithm 1. The algorithm works by recursively building up
two sets A and B such that {A,B} is a biclique. At each stage, Pa contains those
vertices which may be added to A whilst keeping a feasible solution (i.e. each v ∈
Pa is individually adjacent to every b ∈ Pb and nonadjacent to every a ∈ A), and
similarly Pb contains vertices which may be added to B. Initially, A and B are
both empty, and Pa and Pb both contain every vertex in the graph (line 4).

At each recursive call to expand, a vertex v is chosen from Pa (line 8) and
moved to be in A instead (lines 10 and 11). The algorithm then considers the
implications of v ∈ A (lines 12 to 17). A new P ′

a is constructed on line 12 by
filtering from Pa those vertices adjacent to v (since A must be an independent
set), and a new P ′

b is constructed on line 13 by filtering from Pb those vertices
not adjacent to v (everything in B must be adjacent to everything in A).

Now if P ′
b is not empty, we may grow B further. Thus we repeat the process

with a recursive call on line 17, swapping the roles of A and B—we are adding
vertices to the two sides of the growing biclique in alternating order.

Having considered the possibility of v ∈ A, we then consider v /∈ A (line 18).
The algorithm loops back to line 8, selecting a new v from Pa, until Pa is empty.
Finally, we backtrack by returning from the recursive call.

We keep track of the largest feasible solution {Amax, Bmax} that we have
found so far; this is called the incumbent. Initially it is empty (line 3). Whenever
we find a potential solution, we compare it to the incumbent (line 14), and if our
new solution is larger then the incumbent is unseated (line 15). Note that at this
point, the balance condition must be checked explicitly, since either |A| = |B|,
or |A| = |B|+ 1 could be true.

Knowing the size of the incumbent allows us to avoid exploring some of the
search space—this is the bound part of branch and bound. The condition on
line 9 checks how much further we can grow A and B: if there are not enough
vertices available to potentially unseat the incumbent, search at the current
position can be abandoned. (This is not a very good bound, and is only for
illustrative purposes. We discuss a more sophisticated bound below.)

228 C. McCreesh and P. Prosser

Algorithm 1. A simple, alternating branch and bound algorithm for the
maximum balanced induced biclique problem.

1 simpleBiclique :: (Graph G) → (Set of Integer, Set of Integer)
2 begin
3 (Amax, Bmax) ← (∅, ∅) // Initially our best solution is empty

4 expand(G, ∅, ∅,V(G),V(G), Amax, Bmax)
5 return (Amax, Bmax)

6 expand :: (Graph G, Set A, Set B, Set Pa, Set Pb, Set Amax, Set Bmax)
7 begin
8 for v ∈ Pa do
9 if |Pa|+ |A| > |Amax| and |Pb|+ |B| > |Bmax| then

10 A ← A ∪ {v} // Consider v ∈ A
11 Pa ← Pa \ {v}
12 P ′

a ← Pa ∩NG(v) // Remove vertices adjacent to v
13 P ′

b ← Pb ∩NG(v) // Remove vertices not adjacent to v
14 if |A| = |B| and |A| > |Amax| then
15 (Amax, Bmax) ← (A,B) // We’ve found a better solution

16 if P ′
b �= ∅ then

17 expand(G,B,A, P ′
b, P

′
a, Bmax, Amax) // Swap and recurse

18 A ← A \ {v} // Now consider v /∈ A

Improving the Algorithm. We now adapt Algorithm 1 to incorporate symmetry
breaking, an improved bound based upon clique covers, and an initial sort or-
der. The end result is Algorithm 2. We have explicitly designed the algorithm
to permit a bitset encoding for the data structures. For the maximum clique
problem, this technique has allowed an increase in performance of between two
and twenty times, without altering the steps taken by the algorithm. We refer
to work by San Segundo et al. [2,3] for implementation details.

Symmetry Breaking. The search space for Algorithm 1 is larger than it should
be: it explores legal ordered pairs (A,B) of vertex sets rather than unordered
pairs {A,B}. Having explored every possible solution with v ∈ A, the search
then considers v /∈ A. But there is nothing to stop it from then considering a
new v′ ∈ A, and later placing v ∈ B. This is wasted effort, since if such a solution
existed we would already have considered an equivalent with A and B reversed.

We may break this symmetry as follows: if, at the top of search, we have
considered every possibility with v ∈ A then we may eliminate v from Pb to
avoid considering v ∈ B. The modified expand function in Algorithm 2 includes
this rule: lines 38 to 39 remove symmetric solutions.

This technique may be seen as a special case of the standard lex symmetry
breaking technique used in constraint programming [4,5]. A constraint program-
mer would view A and B as binary strings, and impose the constraint B ≤ A

An Exact Branch and Bound Algorithm with Symmetry Breaking 229

Algorithm 2. An improved alternating branch and bound algorithm for
the maximum balanced induced biclique problem.

1 improvedBiclique :: (Graph G) → (Set of Integer, Set of Integer)
2 begin
3 (Amax, Bmax) ← (∅, ∅) // Initially our best solution is empty

4 permute G so that the vertices are in non-increasing degree order
5 expand(G, ∅, ∅,V(G),V(G), Amax, Bmax)
6 return (Amax, Bmax) (unpermuted)

7 cliqueSort :: (Graph G, Set P) → (Array of Integer, Array of Integer)
8 begin
9 bounds ← an Array of Integer

10 order ← an Array of Integer
11 P ′ ← P // vertices yet to be allocated

12 k ← 1 // current clique number

13 while P ′ �= ∅ do
14 Q ← P ′ // vertices to consider for the current clique

15 while Q �= ∅ do
16 v ← the first element of Q // get next vertex to allocate

17 P ′ ← P ′ \ {v}
18 Q ← Q ∩N(G, v) // remove non-adjacent vertices

19 append k to bounds
20 append v to order

21 k ← k + 1 // start a new clique

22 return (bounds, order)

23 expand :: (Graph G, Set A, Set B, Set Pa, Set Pb, Set Amax, Set Bmax)
24 begin
25 (bounds, order) ← cliqueSort(G,Pa)
26 for i ← |Pa| downto 1 do
27 if bounds[i] + |A| > |Amax| and |Pb|+ |B| > |Bmax| then
28 v ← order[i]
29 A ← A ∪ {v} // Consider v ∈ A
30 Pa ← Pa \ {v}
31 P ′

a ← Pa ∩NG(v) // Remove vertices adjacent to v
32 P ′

b ← Pb ∩NG(v) // Remove vertices not adjacent to v
33 if |A| = |B| and |A| > |Amax| then
34 (Amax, Bmax) ← (A,B) // We’ve found a better solution

35 if P ′
b �= ∅ then

36 expand(G,B,A, P ′
b, P

′
a, Bmax, Amax) // Swap and recurse

37 A ← A \ {v} // Now consider v /∈ A
38 if B = ∅ then
39 Pb ← Pb \ {v} // Avoid symmetric solutions

230 C. McCreesh and P. Prosser

(or the other way around—after all, the order of A and B is arbitrary). We are
doing the same thing, by saying that if the first n bits of A are 0 then the first
n bits of B must also be 0. Unlike adding a lex constraint, this approach does
not interfere with the search order and does not introduce the risk of disrupting
ordering heuristics [6]. Additionally, this constraint always removes symmetric
solutions from the search tree as early as possible [7].

Bounding. We know that A and B must be independent sets. Finding a maxi-
mum independent set is a well studied NP-hard problem (although the literature
usually discusses finding a maximum clique, which is a maximum independent
set in the complement graph), and the main inspiration for our algorithm comes
from a series of maximum clique algorithms due to Tomita [8,9,10]. These are
branch and bound algorithms which use graph colouring (i.e. a clique cover in
the complement graph) both as a bound and an ordering heuristic.

If we can cover a graph G using k cliques, we know that G cannot contain
an independent set of size greater than k (each element in an independent set
must be in a different clique). Finding an optimal clique cover is NP-hard, but
a greedy clique cover may be found in polynomial time. This gives us a bound
on Pa which can be much better than simply considering |Pa|: we construct a
greedy clique cover of the subgraph induced by Pa, and consider its size instead.

Constructing a clique cover gives us more information than just a bound on
the size of an independent set in all of Pa. This is the main benefit of Tomita’s
approach: a constructive greedy clique cover gives us an ordering heuristic and
a way of reducing the number of clique covers which must be computed.

Tomita has considered ways of producing and using greedy colourings; we
refer to a computational study by Prosser [11] for a detailed comparison. Our
greedy clique cover bound and ordering routine is presented in Algorithm 2. The
approach we have taken is a variation by San Segundo [2,3] which allows a bitset
encoding to be used.

The cliqueSort function in Algorithm 2 produces two arrays. The bounds
array contains bounds on the size of a maximum independent set: the subgraph
induced by vertices 1 to n of order cannot have a maximum independent set
of size greater than bounds[n]. The order array contains the vertices of P in
some order, and is to be traversed from right to left, repeatedly removing the
rightmost value for the choice branching vertex v.

These arrays are constructed in the cliqueSort function as follows: the vari-
able P ′ tracks which vertices have yet to be allocated to a clique, and initially
(line 11) it contains every vertex in the parameter P . While there are unallocated
vertices (line 13), we greedily construct a new clique. The variable Q (line 14)
tracks which vertices may legally be added to this growing clique. On line 16 we
select a vertex v from Q, add it to the clique, and on line 18 we remove from
Q any vertices which are not adjacent to v (so every vertex remaining in Q is
adjacent to every vertex in the growing clique). We continue adding vertices to
the growing clique until Q is empty (line 15), indicating we can go no further.
We then start a new clique (line 21, looping back to line 13) if some vertices
remain unallocated.

An Exact Branch and Bound Algorithm with Symmetry Breaking 231

To integrate this bound, we make the following changes: we begin by using
cliqueSort to obtain the bounds and order variables (line 25). We explicitly
iterate over order from right to left (lines 26 and 28), rather than drawing v
from Pa arbitrarily. And we make use of the bound on Pa, rather than using |Pa|
(line 27).

Search Order. We use a static ordering for constructing clique covers, so the
initial order of vertices must also be considered—experiments show that, as for
the maximum clique problem, a static non-increasing degree order fixed at the
top of search is a good choice. We achieve this ordering by permuting the graph
(again, to allow the possibility of a bitset encoding).

Detecting when the Bound is Useless. Our bound considers how far A can grow,
based upon what is in Pa, and how far B can grow based upon what is in Pb. If
both Pa and Pb are independent sets, this does not help, and constructing the
clique cover ordering is a substantial overhead. This situation occurs in particular
if the input is a bipartite graph, or close to one. We can at least detect when Pa

is an independent set: this happens precisely if bounds[i] = i (assuming bounds
is 1-indexed), since if the graph contains at least two non-adjacent vertices then
at least one such pair will be placed in the same clique [12, Proposition 2].

Ideally we would be able to switch to a better bound in the case that both
Pa and Pb are (potentially overlapping) independent sets. However the authors
have been unable to find a better bound which is sufficiently cheap to compute
to provide a benefit—approaches which reduce the search space but increase
runtime include the use of degrees, indirect colouring, or the fact that finding an
(unbalanced) induced biclique in a bipartite graph can be done in polynomial
time via a matching algorithm. However, we may still decay to a version of the
algorithm which includes symmetry breaking and uses cardinality bounds as in
Algorithm 1. We do not demonstrate this technique in Algorithm 2, but it is
simple to incorporate.

3 Computational Experiments

We now present experimental results on a range of standard benchmark prob-
lems. The algorithm was implemented using C++, with a bitset encoding. The
experiments were run on a machine with four AMD Opteron 6366 HE proces-
sors, and single-threaded runtimes are given. The implementation does include
detection for independent sets, and falls back to a simple algorithm when this
happens. Timing results include pre-processing and the initial sorting step, but
do not include the time taken to read a graph in from a file. For the maximum
clique problem, a sequential implementation previously described by the authors
[13] was used.

In Table 1 we present results from four datasets. First is all the graphs from the
Second DIMACS Implementation Challenge1. Many of these graphs are dense,

1 http://dimacs.rutgers.edu/Challenges/

http://dimacs.rutgers.edu/Challenges/

232 C. McCreesh and P. Prosser

and designed to be computationally challenging for maximum clique algorithms.
The second dataset is the smallest family of graphs for BHOSLIB2. These graphs
contain a hidden clique of known size; again, these are challenging for maximum
clique algorithms. Thirdly, we look at some large sparse graphs from BioGRID
[14]. Finally, we include some large sparse graphs from a collection by Mark
Newman3. For each instance we show results for both maximum clique and
maximum balanced induced biclique: we show the size of the result, the time
taken, and the number of search nodes (recursive calls made). Longer-running
problems were aborted after one day; such results are shown in parentheses.

Sometimes ω̈ = ω, sometimes it is larger, and sometimes it is smaller. Often
finding ω̈ was easier than finding ω (and there are no problems where the biclique
search was aborted after a day but where the clique succeeeded), but not always.

Further experiments show that the symmetry breaking technique is successful
in reducing both runtimes and the size of the search space. In many instances the
gain approaches 50% (this is expected: halving the number of solutions will not
halve the size of the search space). In other cases the interaction of the bound
and symmetry breaking reduces the benefit (sometimes to zero, when the bound
can already eliminate symmetric solutions), but it is never a penalty.

Detecting when the bound is useless and decaying to a simpler algorithm
provides a measurable benefit for several of the “p hat” family of graphs and
for “san1000”, but does not generally make a substantial difference. On the
other hand, for random bipartite graphs, this technique avoids a factor of five
slowdown from the overhead of calculating a useless bound.

4 Conclusion and Future Work

We have shown that max clique techniques generalise to other graph-related
problems, although not always in the most obvious way—despite the name,
finding a biclique involves finding independent sets, not cliques. Unlike the max-
imum clique problem, symmetry is an issue, but we provided a very simple and
effective way of avoiding this problem. We do not have a good bound for the
case where both sides are already independent sets, although we can detect this
and fall back to a faster algorithm; this limitation is this work’s main weakness.

More detailed computational experiments would be beneficial, particularly
with random and (once the weakness is addressed) random bipartite graphs.
We intend to look in more detail at “where the hard problems are” for this
problem [15]: there is a conflict between wanting to create two independent sets,
and requiring those independent sets be interconnected, which means it is not
obvious how the density of a random graph would affect the difficulty.

Finally, this approach can likely be extended to exploit multi-core parallelism—
the sequential algorithms upon which this work is based have been threaded
successfully [13,16].

2 http://www.nlsde.buaa.edu.cn/~kexu/benchmarks/graph-benchmarks.htm
3 http://www-personal.umich.edu/~mejn/netdata/

http://www.nlsde.buaa.edu.cn/~kexu/benchmarks/graph-benchmarks.htm
http://www-personal.umich.edu/~mejn/netdata/

An Exact Branch and Bound Algorithm with Symmetry Breaking 233

T
a
b
le

1
.
R
es
u
lt
s
fo
r
th
e
b
a
la
n
ce
d
b
ic
li
q
u
e
p
ro
b
le
m

in
D
IM

A
C
S
,
B
H
O
S
L
IB

a
n
d
la
rg
e
sp
a
rs
e
g
ra
p
h
s
fr
o
m

B
io
G
R
ID

a
n
d
M
a
rk

N
ew

m
a
n
.

F
o
r
ea
ch

w
e
sh
ow

th
e
si
ze

o
f
a
m
a
x
im

u
m

cl
iq
u
e,

th
e
ti
m
e
ta
k
en

to
o
b
ta
in

th
is

re
su
lt
,
a
n
d
th
e
n
u
m
b
er

o
f
se
a
rc
h
n
o
d
es

(r
ec
u
rs
iv
e
ca
ll
s

m
a
d
e)
.
W
e
th
en

g
iv
e
th
e
sa
m
e
in
fo
rm

a
ti
o
n
fo
r
m
a
x
im

u
m

b
a
la
n
ce
d
in
d
u
ce
d
b
ic
li
q
u
es
.
R
es
u
lt
s
in

p
a
re
n
th
es
es

w
er
e
a
b
o
rt
ed

a
ft
er

o
n
e
d
ay
.

P
r
o
b
le

m
ω

ω̈
P

r
o
b
le

m
ω

ω̈
P

r
o
b
le

m
ω

ω̈

S
iz

e
T
im

e
N
o
d
e
s

S
iz

e
T
im

e
N
o
d
e
s

S
iz

e
T
im

e
N
o
d
e
s

S
iz

e
T
im

e
N
o
d
e
s

S
iz

e
T
im

e
N
o
d
e
s

S
iz

e
T
im

e
N
o
d
e
s

C
1
2
5
.9

3
4

9
1
m

s
5
0
2
4
0

8
1
m

s
9
2
0

g
e
n
4
0
0

p
0
.9

7
5

(
5
3
)

1
d
a
y

2
.0

×
1
0
1
0

1
2

3
5
m

s
1
6
3
8
8

s
a
n
4
0
0

0
.7

2
3
0

4
.0

s
8
.9

×
1
0
5

2
8

3
3
m

s
7
9
7
3

C
2
5
0
.9

4
4

3
0
4
3
s

1
.1

×
1
0
9

8
1
2
m

s
1
2
4
4
8

h
a
m

m
in

g
6
-2

3
2

0
m

s
3
2

4
0
m

s
4

s
a
n
4
0
0

0
.7

3
2
2

2
.3

s
5
.2

×
1
0
5

3
8

3
8
m

s
1
0
3
6
1

C
5
0
0
.9

(
5
3
)

1
d
a
y

2
.0

×
1
0
1
0

1
0

1
7
4
m

s
1
.1

×
1
0
5

h
a
m

m
in

g
6
-4

4
0
m

s
8
2

1
4

1
m

s
1
8
9
6

s
a
n
4
0
0

0
.9

1
1
0
0

5
2
.3

s
4
.5

×
1
0
6

1
0

3
8
m

s
1
9
0
5
4

C
1
0
0
0
.9

(
5
8
)

1
d
a
y

1
.3

×
1
0
1
0

1
0

1
3
.9

s
7
.4

×
1
0
6

h
a
m

m
in

g
8
-2

1
2
8

2
m

s
1
2
8

4
1
m

s
4

s
a
n
1
0
0
0

1
5

3
.5

s
1
.5

×
1
0
5

1
3
4

1
6
7
m

s
1
0
7
7
8

C
2
0
0
0
.5

(
1
6
)

1
d
a
y

1
.4

×
1
0
1
0

(
1
6
)

1
d
a
y

2
.9

×
1
0
1
0

h
a
m

m
in

g
8
-4

1
6

8
0
m

s
3
6
4
5
2

3
2

2
m

s
3
0
3

s
a
n
r
2
0
0

0
.7

1
8

2
3
5
m

s
1
.5

×
1
0
5

1
0

9
6
m

s
1
.3

×
1
0
5

C
2
0
0
0
.9

(
6
2
)

1
d
a
y

5
.5

×
1
0
9

1
2

1
4
7
8
s

3
.2

×
1
0
8

h
a
m

m
in

g
1
0
-2

5
1
2

5
6
m

s
5
1
2

4
2
1
m

s
4

s
a
n
r
2
0
0

0
.9

4
2

4
5
.2

s
1
.5

×
1
0
7

8
4
m

s
4
0
9
5

C
4
0
0
0
.5

(
1
7
)

1
d
a
y

7
.7

×
1
0
9

(
1
8
)

1
d
a
y

1
.4

×
1
0
1
0

h
a
m

m
in

g
1
0
-4

(
3
8
)

1
d
a
y

1
.0

×
1
0
1
0

4
0

3
9
0
s

4
.5

×
1
0
7

s
a
n
r
4
0
0

0
.5

1
3

5
4
3
m

s
3
.2

×
1
0
5

1
4

1
4
.1

s
1
.4

×
1
0
7

D
S
J
C
5
0
0

5
1
3

1
.8

s
1
.2

×
1
0
6

1
4

6
3
.4

s
6
.8

×
1
0
7

jo
h
n
s
o
n
8
-2

-4
4

0
m

s
2
4

6
0
m

s
4
6
0

s
a
n
r
4
0
0

0
.7

2
1

1
5
9
s

6
.4

×
1
0
7

1
4

4
.3

s
3
.4

×
1
0
6

D
S
J
C
1
0
0
0

5
1
5

2
2
2
s

7
.7

×
1
0
7

1
6

1
2
9
9
6
s

8
.9

×
1
0
9

jo
h
n
s
o
n
8
-4

-4
1
4

0
m

s
1
2
6

1
0

0
m

s
2
1
1

M
A
N
N

a
9

1
6

0
m

s
7
1

6
0
m

s
3
2

jo
h
n
s
o
n
1
6
-2

-4
8

9
7
m

s
2
.6

×
1
0
5

1
4

4
0
2
m

s
2
.2

×
1
0
6

fr
b
3
0
-1

5
-1

3
0

1
1
6
5
s

2
.9

×
1
0
8

3
0

5
8
m

s
1
5
3
6
1

M
A
N
N

a
2
7

1
2
6

5
3
3
m

s
3
8
0
1
9

6
4
m

s
1
4
0
7

jo
h
n
s
o
n
3
2
-2

-4
(
1
6
)

1
d
a
y

1
.4

×
1
0
1
1

(
3
0
)

1
d
a
y

4
.2

×
1
0
1
1

fr
b
3
0
-1

5
-2

3
0

2
1
8
7
s

5
.6

×
1
0
8

3
0

6
3
m

s
1
7
0
9
1

M
A
N
N

a
4
5

3
4
5

3
8
3
s

2
.9

×
1
0
6

6
5
6
m

s
9
8
5
2

k
e
ll
e
r
4

1
1

1
7
m

s
1
3
7
2
5

1
8

6
9
m

s
8
2
6
4
6

fr
b
3
0
-1

5
-3

3
0

6
5
5
s

1
.7

×
1
0
8

3
0

5
9
m

s
1
6
1
2
0

M
A
N
N

a
8
1

(
1
1
0
0
)

1
d
a
y

8
.7

×
1
0
7

6
9
7
4
m

s
5
3
9
0
2

k
e
ll
e
r
5

(
2
7
)

1
d
a
y

1
.8

×
1
0
1
0

3
2

7
2
9
4
s

3
.6

×
1
0
9

fr
b
3
0
-1

5
-4

3
0

3
5
7
5
s

9
.9

×
1
0
8

3
0

6
1
m

s
1
6
6
9
4

b
r
o
c
k
2
0
0

1
2
1

8
6
8
m

s
5
.2

×
1
0
5

1
0

4
5
m

s
5
7
9
3
1

k
e
ll
e
r
6

(
5
3
)

1
d
a
y

2
.6

×
1
0
9

(
6
2
)

1
d
a
y

6
.0

×
1
0
9

fr
b
3
0
-1

5
-5

3
0

1
0
5
6
s

2
.8

×
1
0
8

3
0

5
5
m

s
1
4
8
5
0

b
r
o
c
k
2
0
0

2
1
2

5
m

s
3
8
2
6

1
2

1
1
1
m

s
1
.7

×
1
0
5

p
h
a
t
3
0
0
-1

8
4
m

s
1
4
8
0

1
2

1
9
5
m

s
2
.8

×
1
0
5

b
r
o
c
k
2
0
0

3
1
5

2
3
m

s
1
4
5
6
5

1
2

9
2
m

s
1
.2

×
1
0
5

p
h
a
t
3
0
0
-2

2
5

1
8
m

s
4
2
5
6

1
2

2
6
8
m

s
2
.8

×
1
0
5

fi
s
s
io

n
-y

e
a
s
t

1
2

5
0
m

s
2
0
8

1
2

1
1
0
m

s
3
3
2
5
3

b
r
o
c
k
2
0
0

4
1
7

8
5
m

s
5
8
7
3
0

1
2

7
6
m

s
1
.0

×
1
0
5

p
h
a
t
3
0
0
-3

3
6

2
.0

s
6
.2

×
1
0
5

1
2

2
6
5
m

s
2
.3

×
1
0
5

fr
u
it
fl
y

7
5
1
8
m

s
4
7

1
6

5
8
4
m

s
1
1
5
3
8

b
r
o
c
k
4
0
0

1
2
7

5
0
8
s

2
.0

×
1
0
8

1
2

2
.3

s
1
.8

×
1
0
6

p
h
a
t
5
0
0
-1

9
1
8
m

s
9
7
7
7

1
2

3
.3

s
3
.9

×
1
0
6

h
u
m

a
n

1
3

8
9
7
m

s
1
3

1
8

1
.0

s
1
0
3
0
0

b
r
o
c
k
4
0
0

2
2
9

3
6
2
s

1
.5

×
1
0
8

1
2

2
.0

s
1
.8

×
1
0
6

p
h
a
t
5
0
0
-2

3
6

4
6
1
m

s
1
.1

×
1
0
5

1
4

6
.4

s
5
.9

×
1
0
6

m
o
u
s
e

7
2
1
m

s
7

1
0

2
2
m

s
1
2
6
7

b
r
o
c
k
4
0
0

3
3
1

2
8
7
s

1
.2

×
1
0
8

1
2

2
.1

s
1
.8

×
1
0
6

p
h
a
t
5
0
0
-3

5
0

2
0
1
s

3
.9

×
1
0
7

1
2

9
.0

s
6
.4

×
1
0
6

p
la

n
t

9
2
9
m

s
9

1
0

3
1
m

s
1
5
7
8

b
r
o
c
k
4
0
0

4
3
3

1
4
0
s

5
.4

×
1
0
7

1
2

2
.0

s
1
.8

×
1
0
6

p
h
a
t
7
0
0
-1

1
1

6
5
m

s
2
6
6
4
9

1
2

3
6
.8

s
4
.3

×
1
0
7

w
o
r
m

7
1
2
2
m

s
7

1
2

1
3
0
m

s
3
7
7
8

b
r
o
c
k
8
0
0

1
2
3

7
7
2
5
s

2
.2

×
1
0
9

1
4

1
4
2
4
s

9
.5

×
1
0
8

p
h
a
t
7
0
0
-2

4
4

5
.0

s
7
.5

×
1
0
5

1
4

5
6
.3

s
3
.5

×
1
0
7

y
e
a
s
t

3
3

3
7
5
m

s
6
8

1
4

1
3
.4

s
2
.5

×
1
0
6

b
r
o
c
k
8
0
0

2
2
4

7
7
1
1
s

2
.2

×
1
0
9

1
4

1
3
6
7
s

9
.1

×
1
0
8

p
h
a
t
7
0
0
-3

6
2

2
6
6
5
s

2
.8

×
1
0
8

1
4

6
7
.9

s
3
.1

×
1
0
7

b
r
o
c
k
8
0
0

3
2
5

7
1
3
8
s

2
.1

×
1
0
9

1
4

1
4
4
8
s

9
.6

×
1
0
8

p
h
a
t
1
0
0
0
-1

1
0

4
5
4
m

s
1
.8

×
1
0
5

1
4

2
9
5
s

2
.5

×
1
0
8

a
d
jn

o
u
n

5
0
m

s
1
7

6
0
m

s
2
0
7

b
r
o
c
k
8
0
0

4
2
6

2
7
0
5
s

6
.4

×
1
0
8

1
4

1
4
0
1
s

9
.4

×
1
0
8

p
h
a
t
1
0
0
0
-2

4
6

2
5
1
s

3
.4

×
1
0
7

1
6

5
4
6
s

3
.6

×
1
0
8

a
s
t
r
o

5
7

2
.7

s
5
7

6
3
.5

s
2
8
1
4
3

c
-f
a
t
2
0
0
-1

1
2

0
m

s
2
4

2
0
m

s
2
1
4

p
h
a
t
1
0
0
0
-3

(
6
3
)

1
d
a
y

8
.9

×
1
0
9

1
4

1
3
0
0
s

5
.6

×
1
0
8

c
e
le

g
e
n
s

8
1
m

s
3
2

8
2
m

s
1
8
5
3

c
-f
a
t
2
0
0
-2

2
4

0
m

s
2
4

2
1
m

s
3
5
3

p
h
a
t
1
5
0
0
-1

1
2

6
.9

s
1
.2

×
1
0
6

1
6

1
1
8
5
9
s

5
.2

×
1
0
9

c
o
n
d
m

a
t

3
0

1
7
.2

s
3
0

6
2
0
.2

s
6
3
9
8
0

c
-f
a
t
2
0
0
-5

5
8

1
m

s
1
3
9

2
3
m

s
9
2
7

p
h
a
t
1
5
0
0
-2

6
5

4
3
1
6
6
s

2
.0

×
1
0
9

1
6

2
3
6
7
7
s

6
.8

×
1
0
9

d
o
lp

h
in

s
5

0
m

s
1
0

4
0
m

s
6
6

c
-f
a
t
5
0
0
-1

1
4

3
m

s
1
4

2
3
m

s
5
2
3

p
h
a
t
1
5
0
0
-3

(
7
9
)

1
d
a
y

3
.2

×
1
0
9

1
6

2
5
7
4
5
s

5
.5

×
1
0
9

fo
o
t
b
a
ll

9
0
m

s
9

4
0
m

s
4
2
2

c
-f
a
t
5
0
0
-2

2
6

3
m

s
2
6

2
4
m

s
6
1
9

s
a
n
2
0
0

0
.7

1
3
0

3
1
m

s
1
3
3
9
9

1
4

6
m

s
4
3
3
0

in
t
e
r
n
e
t

1
7

5
.1

s
5
0

1
0

5
.5

s
2
4
4
7
7

c
-f
a
t
5
0
0
-5

6
4

4
m

s
6
4

2
7
m

s
1
3
9
8

s
a
n
2
0
0

0
.7

2
1
8

3
m

s
4
6
4

2
4

3
m

s
1
9
3
9

k
a
r
a
t
e

5
0
m

s
5

4
0
m

s
3
1

c
-f
a
t
5
0
0
-1

0
1
2
6

4
m

s
1
2
6

2
4
1
m

s
4
2
1
9

s
a
n
2
0
0

0
.9

1
7
0

2
0
6
m

s
8
7
3
2
9

8
3
m

s
1
8
5
0

le
s
m

is
1
0

0
m

s
1
0

4
0
m

s
7
7

g
e
n
2
0
0

p
0
.9

4
4

4
4

4
.8

s
1
.8

×
1
0
6

1
0

3
m

s
2
6
2
8

s
a
n
2
0
0

0
.9

2
6
0

7
6
9
m

s
2
.3

×
1
0
5

8
4
m

s
3
5
4
0

n
e
t
s
c
ie

n
c
e

2
0

2
4
m

s
2
0

4
2
6
m

s
1
1
8
4

g
e
n
2
0
0

p
0
.9

5
5

5
5

4
6
1
m

s
1
.7

×
1
0
5

8
4
m

s
4
2
0
1

s
a
n
2
0
0

0
.9

3
4
4

1
9
.3

s
6
.8

×
1
0
6

1
0

3
m

s
2
0
8
5

p
o
lb

lo
g
s

2
0

2
3
m

s
6
0

1
2

8
3
m

s
3
6
6
9
3

g
e
n
4
0
0

p
0
.9

5
5

(
5
0
)

1
d
a
y

2
.2

×
1
0
1
0

1
6

2
1
m

s
8
5
6
2

s
a
n
4
0
0

0
.5

1
1
3

1
5
m

s
2
4
5
3

6
2

9
m

s
1
3
1
5

p
o
lb

o
o
k
s

6
0
m

s
1
1

4
0
m

s
1
6
8

g
e
n
4
0
0

p
0
.9

6
5

(
4
9
)

1
d
a
y

2
.3

×
1
0
1
0

1
4

2
6
m

s
1
1
7
0
9

s
a
n
4
0
0

0
.7

1
4
0

4
5
9
m

s
1
.2

×
1
0
5

2
0

5
4
m

s
1
6
2
2
9

p
o
w
e
r

6
2
3
5
m

s
6

4
2
5
2
m

s
4
6
2
3

234 C. McCreesh and P. Prosser

References

1. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1979)

2. San Segundo, P., Rodŕıguez-Losada, D., Jiménez, A.: An exact bit-parallel algo-
rithm for the maximum clique problem. Comput. Oper. Res. 38(2), 571–581 (2011)

3. San Segundo, P., Matia, F., Rodŕıguez-Losada, D., Hernando, M.: An improved
bit parallel exact maximum clique algorithm. Optimization Letters (2011)

4. Crawford, J., Ginsberg, M., Luks, E., Roy, A.: Symmetry-breaking predicates for
search problems. In: KR 1996: Principles of Knowledge Representation and Rea-
soning, pp. 148–159. Morgan Kaufmann (1996)

5. Gent, I.P., Petrie, K.E., François Puget, J.: Symmetry in constraint programming.
In: Handbook of Constraint Programming, pp. 329–376. Elsevier (2006)

6. Gent, I.P., Harvey,W., Kelsey, T.: Groups and constraints: Symmetry breaking dur-
ing search. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 415–430.
Springer, Heidelberg (2002)

7. Backofen, R., Will, S.: Excluding symmetries in constraint-based search. Con-
straints 7(3-4), 333–349 (2002)

8. Tomita, E., Seki, T.: An efficient branch-and-bound algorithm for finding
a maximum clique. In: Calude, C.S., Dinneen, M.J., Vajnovszki, V. (eds.)
DMTCS 2003. LNCS, vol. 2731, pp. 278–289. Springer, Heidelberg (2003),
http://dx.doi.org/10.1007/3-540-45066-1_22

9. Tomita, E., Kameda, T.: An efficient branch-and-bound algorithm for finding a
maximum clique with computational experiments. Journal of Global Optimiza-
tion 37(1), 95–111 (2007)

10. Tomita, E., Sutani, Y., Higashi, T., Takahashi, S., Wakatsuki, M.: A simple and
faster branch-and-bound algorithm for finding a maximum clique. In: Rahman,
M. S., Fujita, S. (eds.) WALCOM 2010. LNCS, vol. 5942, pp. 191–203. Springer,
Heidelberg (2010)

11. Prosser, P.: Exact Algorithms for Maximum Clique: A Computational Study. Al-
gorithms 5(4), 545–587 (2012)

12. Batsyn, M., Goldengorin, B., Maslov, E., Pardalos, P.M.: Improvements to MCS al-
gorithm for the maximum clique problem. Journal of Combinatorial Optimization,
1–20 (2013)

13. McCreesh, C., Prosser, P.: Multi-threading a state-of-the-art maximum clique al-
gorithm. Algorithms 6(4), 618–635 (2013)

14. Stark, C., Breitkreutz, B.J., Reguly, T., Boucher, L., Breitkreutz, A., Tyers,
M.: Biogrid: A general repository for interaction datasets. Nucleic Acids Re-
search 34(suppl. 1), D535–D539 (2006)

15. Cheeseman, P., Kanefsky, B., Taylor, W.M.: Where the really hard problems are.
In: Proceedings of the 12th International Joint Conference on Artificial Intelligence,
IJCAI 1991, vol. 1, pp. 331–337. Morgan Kaufmann Publishers Inc., San Francisco
(1991)

16. Depolli, M., Konc, J., Rozman, K., Trobec, R., Janežič, D.: Exact parallel maxi-
mum clique algorithm for general and protein graphs. Journal of Chemical Infor-
mation and Modeling 53(9), 2217–2228 (2013)

http://dx.doi.org/10.1007/3-540-45066-1_22

Domain k-Wise Consistency
Made as Simple as Generalized Arc Consistency

Jean-Baptiste Mairy1, Yves Deville1, and Christophe Lecoutre2

1 ICTEAM, Université catholique de Louvain, Belgium
{jean-baptiste.mairy,yves.deville}@uclouvain.be
2 CRIL-CNRS UMR 8188, Université d’Artois, F-62307 Lens, France

lecoutre@cril.fr

Abstract. In Constraint Programming (CP), Generalized Arc Consistency (GAC)
is the central property used for making inferences when solving Constraint Sat-
isfaction Problems (CSPs). Developing simple and practical filtering algorithms
based on consistencies stronger than GAC is a challenge for the CP community. In
this paper, we propose to combine k-Wise Consistency (kWC) with GAC, where
kWC states that every tuple in a constraint can be extended to every set of k − 1
additional constraints. Our contribution is as follows. First, we derive a domain-
filtering consistency, called Domain k-Wise Consistency (DkWC), from the com-
bination of kWC and GAC. Roughly speaking, this property corresponds to the
pruning of values of GAC, when enforced on a CSP previously made kWC. Sec-
ond, we propose a procedure to enforce DkWC, relying on an encoding of kWC to
generate a modified CSP called k-interleaved CSP. Formally, we prove that enforc-
ing GAC on the k-interleaved CSP corresponds to enforcing DkWC on the initial
CSP. Consequently, we show that the strong DkWC can be enforced very easily
in constraint solvers since the k-interleaved CSP is rather immediate to generate
and only existing GAC propagators are required: in a nutshell, DkWC is made as
simple and practical as GAC. Our experimental results show the benefits of our
approach on a variety of benchmarks.

1 Introduction

Constraint Propagation is a key concept to Constraint Programming (CP). Interleaved
with (backtrack) search decisions such as classical variable assignments, it typically
discards many useless substantial parts of the search space of Constraint Satisfaction
Problems (CSPs) by filtering out inconsistent values and/or tuples. Different levels of
filtering exist, and usually they can be characterized by properties, called consistencies,
of constraints or constraint networks. The central consistency in CP is Generalized Arc
Consistency (GAC) [13], also called Domain Consistency (DC): it is the highest filter-
ing level of variable domains when constraints are considered one at a time. Consisten-
cies weaker than GAC are cheaper to enforce but they lose ground progressively, at least
for binary and table constraints1, as they reduce (far) less the search space of CSPs. On
the other hand, consistencies stronger than GAC are more and more studied, and often
tested on difficult problem instances, where the cost of enforcing them can be coun-
terbalanced by their large inference capabilities. However, such strong consistencies

1 For example, this is the case of the partial form of GAC maintained in Forward Checking.

H. Simonis (Ed.): CPAIOR 2014, LNCS 8451, pp. 235–250, 2014.
c© Springer International Publishing Switzerland 2014

236 J.-B. Mairy, Y. Deville, and C. Lecoutre

need to reason with several constraints simultaneously, which makes the development
of filtering algorithms complex, especially for integration into existing CP solvers.

Most of the consistencies can also be classified in two categories: domain-based
(or domain-filtering) consistencies and constraint-based ones. Domain-based consis-
tencies identify inconsistent values that can be removed from the domains of variables
whereas constraint-based ones identify inconsistent tuples in the constraints, for which
the removal is not always a possible option in constraint solvers. Different examples of
such consistencies can be found in [1,4,3,8,10,17]. Interestingly enough, combining a
constraint-based consistency with a domain-based one such as GAC allows the pruning
achieved in term of tuples to further prune variable domains. This is what we propose in
this paper by combining k-Wise Consistency (kWC) with GAC. The constraint-based
kWC states that every tuple in the scope of a constraint can be extended to every set of
k − 1 other constraints. Note that kWC and GAC have already been theoretically com-
bined in [7,6]. They have also been practically combined under weaker forms in [3,17]
and a practical sophisticated algorithm for the full combination has been proposed
in [8].

Our contribution in this paper is two-fold. First, we derive a domain-filtering consis-
tency, called Domain k-Wise Consistency (DkWC), from the combination of kWC and
GAC. Roughly speaking, this property corresponds to kWC and GAC combined, but
where only the outcome in term of pruned values is considered. Second, we propose a
simple and practical filtering procedure to enforce DkWC on a given initial CSP con-
taining table constraints, relying on an encoding of kWC to generate a modified CSP,
called k-interleaved CSP. This encoding allows invalidating k-wise inconsistent tuples
by means of dual variables, without effectively removing them from constraint scopes,
as pure k-wise consistency would do. Formally, we prove that enforcing GAC on the
k-interleaved CSP corresponds to enforcing DkWC on the initial CSP. Consequently,
we show that the strong DkWC can be enforced very easily in constraint solvers since
the k-interleaved CSP is rather immediate to generate (and only once) and only existing
GAC propagators are required: in a nutshell, DkWC is made as simple and practical as
GAC. We also define two weaker variants of our filtering procedure, that can be used
when the problems are too large for the full filtering. Our experimental results show the
benefits of our approach on a variety of benchmarks including table constraints.

2 Background

A Constraint Satisfaction Problem (CSP) P = (X ,D,C) is composed of an ordered set
of n variables X = {x1, . . . ,xn}, a set of domains D = {D(x1), . . . ,D(xn)} where
D(xi) is the finite set of possible values for variable xi, and a set of e constraints C =
{c1, . . . , ce}, where each constraint cj restricts the possible combinations of values,
called allowed tuples, on a subset of variables of X ; this subset is called the scope of
cj and denoted by scp(cj). Because variable domains may evolve (be reduced), D(x)
is referred to as the current domain of x, which is a subset of the initial domain of x
denoted by Dinit(x). If Y ⊆ X then D[Y] is the restriction of D to variables in Y . For
any value refutation x �= a, P |x �=a denotes the CSP P where the value a is removed
from D(x), and for any set of value refutations Δ, P |Δ is defined similarly. The arity

Domain k-Wise Consistency 237

of a constraint c is |scp(c)|, i.e., the number of variables involved in c. In this paper,
we shall refer to (positive) table constraints where a table constraint c is a constraint
given in extension by its explicit list rel(c) of allowed tuples. A table constraint c holds
iff (x1, . . . ,xr) ∈ rel(c), where scp(c) = {x1, . . . ,xr}. The size of a constraint c
corresponds to its number of allowed tuples and will be denoted by |rel(c)|. If τ is a
r-tuple (a1, . . . , ar) then τ * b denotes the r + 1 tuple (a1, . . . , ar, b).

We assume an implicit total ordering on X , and given Y = {y1, . . . , yk} ⊆ X , the
set of tuples in D(y1) × . . . × D(yk) will be denoted by D(Y), and the set of tuples
in Dinit(y1)× . . .×Dinit(yk) will be denoted by Dinit(Y). A constraint c is satisfied
by a tuple τ ∈ Dinit(scp(c)) iff τ is allowed by c ; the test evaluating to true iff τ
is allowed by c is denoted by c(τ), or equivalently by τ ∈ c. We shall use the term
literal to refer to a variable value pair ; a literal of a constraint c is a pair (x, a) where
x ∈ scp(c) and a ∈ D(x). An assignment of a set of variables Y = {y1, . . . , yk}
is a set of literals {(y1, v1), . . . , (yk, vk)} with (v1, . . . , vk) ∈ Dinit(Y) ; it is a valid
assignment if (v1, . . . , vk) ∈ D(Y). Note that any tuple τ in Dinit(Y) can be seen as an
assignment of Y . Actually, for simplicity, we shall use both concepts (assignments and
tuples) interchangeably, with the same notations τ , τ ′, . . . For any tuple or assignment
τ , the ith value in τ , associated with the variable yi, will be denoted by τ [yi]. A solution
of P is a valid assignment of X that satisfies all constraints of P . Two CSPs P and P ′

are equivalent iff they have the same set of solutions.
Now, let us turn to consistencies. On the one hand, Generalized Arc Consistency

(GAC), also called Domain Consistency (DC) in the literature, is a well-known domain-
filtering consistency. To define it, we need first to introduce the notion of support as
follows: a support on a constraint c is a tuple τ ∈ D(scp(c)) such that c(τ), and a
support (on c) for a literal (x, a) of c is a support τ on c such that τ [x] = a. Note that
supports are valid tuples, meaning that involved values are necessarily present in the
current domains.

Definition 1. (GAC) A constraint c is generalized arc consistent (GAC) iff there exists
at least one support for each literal of c. A CSP P is GAC iff every constraint of P is
GAC.

Enforcing GAC is the task of removing from domains all values that have no support
on a constraint. Many algorithms have been devised for establishing GAC according to
the nature of the constraints.

On the other hand, k-Wise Consistency (kWC) [7,1] can be classified as a constraint-
based consistency because it allows us to identify inconsistent tuples (initially accepted
by constraints) instead of inconsistent values. It is based on the idea of extending (valid)
assignments.

Definition 2. (Extension) Let Y and Z be two sets of variables. An assignment τ ′ of
Y ∪ Z is an extension on Y ∪ Z of an assignment τ of Y iff τ ′[y] = τ [y], ∀y ∈ Y .

Of course, a valid extension is simply an extension that corresponds to a valid as-
signment. We can now define k-wise consistency, which basically guarantees that every
support on a constraint can be extended to any set of k − 1 additional constraints. This
kind of property allows us to reason about connections between constraints through
shared variables.

238 J.-B. Mairy, Y. Deville, and C. Lecoutre

Definition 3. (kWC) A CSP P = (X ,D,C) is k-wise consistent (kWC) iff ∀c1 ∈ C,
∀τ ∈ c1 : τ ∈ D(scp(c1)), ∀c2, . . . , ck ∈ C, ∃τ ′ valid extension of τ on

⋃k
i=1 scp(ck)

satisfying c2, . . . , ck.

Note that k-wise consistency is called pairwise consistency for k=2 and three-wise
consistency for k=3. It is immediate that k-wise consistency implies (k-1)-wise consis-
tency. Enforcing kWC on a CSP involves removing from the constraints (i.e., consider-
ing as no more allowed) the tuples that cannot be extended. It thus modifies constraints,
not domains. As a result, kWC is incomparable with GAC : a CSP can be kWC but not
GAC and reciprocally [6]. However, combining both consistencies allows us to make
more pruning of the domains than domain consistency alone. In this paper, we consider
such a combination.

Definition 4. (GAC+kWC) A CSP P is GAC+kWC iff P is both GAC and kWC.

At this stage, although already suggested earlier, we can observe that GAC, kWC
and GAC+kWC are well-behaved consistencies. We recall that a consistency ψ is well-
behaved [10] when for any CSP P , the ψ-closure of P exists, where the ψ-closure of
P is the greatest CSP, denoted by ψ(P), which is both ψ-consistent and equivalent to
P . The underlying partial order on CSPs is: P ′ = (X ,D′,C′) + P = (X ,D,C)
iff ∀x ∈ X ,D′(x) ⊆ D(x) and there exists a bijection μ from C to C′ such that
∀c ∈ C,μ(c) ⊆ c. Enforcing ψ on P means computing ψ(P), and an algorithm that
enforces ψ is called a ψ-algorithm.

Interestingly, from GAC+kWC, we can derive a domain-filtering consistency, called
domain k-wise consistency, or DkWC in short. When a CSP P is domain k-wise con-
sistent, it means that all variable domains of P cannot be reduced when enforcing
GAC+kWC.

Definition 5. (DkWC) A CSP P = (X ,D,C) is domain k-wise consistent (DkWC) iff
GAC+kWC(P) is a CSP Q = (X ,DQ,CQ) such that D = DQ.

GAC+kWC is both domain-filtering and constraint-filtering, which may render un-
easy its implementation in constraint solvers, whereas DkWC is only domain-filtering.
In this paper, we propose to enforce DkWC indirectly by considering a reformulation
of the CSP to be solved.

3 Enforcing kWC Using k-dual CSPs

This section presents a filtering process for achieving kWC. The filtering procedure is a
generalization to the k-wise case of the filtering process presented in [6], and different
from the one presented in [7]. It will be useful for our DkWC algorithm, presented in
the next section. Due to explicit access to the list of allowed tuples, table constraints are
particularly adapted for strong constraint-based consistencies. The filtering procedures
proposed in this paper are thus designed for such table constraints. From now on, all
constraints will be assumed to be table constraints.

As kWC is a constraint-based consistency, the idea is to define and use a special
dual form of the given CSP in order to obtain kWC by simply enforcing GAC on the
dual representation. Because this dual form depends on the value of k, we call it k-
dual CSP. This is a generalization of the dual used in [6] that is equivalent to the order

Domain k-Wise Consistency 239

k constraint graph defined in [7]. Specifically, the k-dual of a CSP contains one dual
variablex′

i per constraint ci in the original CSP and one k-dual constraint c′j per group of
k original distinct constraints. Each variable x′

i has a domain which is the set of indexes
of the tuples in the original constraint ci, and each constraint c′j is a table constraint
representing the join of k original constraints. Note that the tuples in those new tables
are represented with the indexes of the tuples in the original constraints, which allows
the new constraints to have arity k only.

Definition 6. (k-dual CSP) Let P = (X ,D,C) be a CSP. The k-dual of P is the CSP
P kd = (Xkd,Dkd,Ckd) where:

– for each constraint ci ∈ C, Xkd contains a variable x′
i with its domain defined as

Dkd(x′
i) = {1, 2, . . . , |rel(ci)|},

– for each subset S of k constraints of C, Ckd contains a constraint c′ such that
scp(c′) = {x′

i | ci ∈ S} and c′ is a k-ary table constraint containing the join of all
constraints in S (represented with the indexes of the original tuples).

If P kd is the k-dual of P , then variables and constraints of P are said to be original
whereas variables and constraints of P kd are said to be dual. An example of a k-dual
CSP for k = 3 can be found in Example 1.

Example 1. Let P = (X ,D,C) be a CSP such that X = {u, v,w,x, y, z}, D =
{1, 2, 3, 4}6 and C = {c1, c2, c3} where:
- scp(c1) = {u, v,w} and rel(c1) = {(1, 2, 3), (1, 2, 4)},
- scp(c2) = {u,x, y} and rel(c2) = {(1, 3, 4), (2, 3, 4)},
- scp(c3) = {v,x, z} and rel(c3) = {(2, 3, 1), (3, 3, 2)}.
The 3-dual of P is a CSP P kd = (Xkd,Dkd,Ckd) such that Xkd = {x′

1,x
′
2,x

′
3},

Dkd = {1, 2}3, and Ckd = {c′} with scp(c′) = {x′
1,x

′
2,x

′
3} and rel(c′) = {(1, 1, 1),

(2, 1, 1)}. It represents the full join of the original constraints on {u, v,w,x, y, z},
which is composed of the tuples (1, 2, 3, 3, 4, 1) and (1, 2, 4, 3, 4, 1). For example, the
first tuple is obtained by joining the first tuple of c1, the first tuple of c2 and the first one
of c3.

Property 1. A CSP is kWC iff its k-dual CSP is GAC. [6,7].

Property 1 is introduced in [6] for k = 2 and the general result is established in [7] for
a similar k-dual CSP. A filtering procedure to enforce GAC+2WC (i.e., both pairwise
consistency and generalized arc consistency) on a CSP P consists in (1) enforcing GAC
on the 2-dual of P , then (2) restraining the constraints of P in order to only contain
tuples corresponding to valid dual values, and finally (3) establishing GAC on P [7,3].
The generalization of this procedure to the k-wise case uses the k-dual instead of the
2-dual.

4 Enforcing DkWC Using k-interleaved CSPs

In this section, we propose to reformulate the CSP P to be solved in order to be able
to enforce DkWC in a single step, just by applying classical GAC. Basically, to enforce
DkWC with GAC propagators only, we first add to P all variables and all constraints

240 J.-B. Mairy, Y. Deville, and C. Lecoutre

from the k-dual CSP of P . Then, we link dual variables and original constraints be-
cause, otherwise, the removal of a value from a dual variable would not leverage its
corresponding original constraint (and reciprocally). In the definition of GAC+kWC
(on which DkWC is based), only valid tuples can serve as supports either for values
(generalized arc consistency part) or for other tuples (k-wise consistency part). The link
we make guarantees that original tuples corresponding to invalid dual values are inval-
idated, and reciprocally, ensuring that original constraints and dual variables keep the
same pace during filtering. The link we propose involves transforming each original
constraint ci into a new hybrid constraint φ(ci) involving the original variables in the
scope of ci as well as the dual variable x′

i that is associated with ci. For each tuple τ
in rel(ci), we generate a tuple in rel(φ(ci)) by simply appending to τ its position in
rel(ci).

Definition 7. (Hybrid Constraints) Let P = (X ,D,C) be a CSP. The set of hybrid
constraints φ(C) of P is the set {φ(ci) | ci ∈ C} where:

– scp(φ(ci)) = scp(ci) ∪ {x′
i}

– rel(φ(ci)) = {τj * j | τj is the jth tuple of rel(ci)}
with x′

i denoting the dual variable associated with ci.

In this way, the removal of a value j from D(x′
i) will be reflected in φ(ci), as the

tuple τj * j will be invalidated. Also, when the tuple τj * j becomes invalid due to a
value removed from the domain of an original variable, j will be removed from D(x′

i).
We can now introduce k-interleaved CSPs .

Definition 8. (k-Interleaved CSP) Let P = (X ,D,C) be a CSP. The k-interleaved of
P is the CSP P ki = (Xki,Dki,Cki) = (X ∪ Xkd,D ∪ Dkd,φ(C) ∪ Ckd) where
(Xkd,Dkd,Ckd) is the k-dual of P and φ(C) the hybrid constraints of P .

The following property shows an interesting connection: enforcing GAC on the k-
interleaved CSP of a CSP P is equivalent to enforcing GAC+kWC on P , when the
focus is only on the domains of the variables of P .

Property 2. Let P = (X ,D,C) be a CSP and P ki = (Xki,Dki,Cki) be the k-
interleaved CSP of P . If Q = (X ,DQ,CQ) is the GAC+kWC-closure of P and
R = (Xki,DR,Cki) is the GAC-closure of P ki, then we have DQ = DR[X] (i.e.,
DQ(x) = DR(x), ∀x ∈ X).

The intuition of the proof is as follows. On the one hand, each literal (x, a) of DQ

is supported on each constraint cQ involving x by a valid tuple in Q. This tuple is k-
wise consistent in Q. By Property 1, the dual variables in Xki precisely encode this
k-wise consistency. On the other hand, each literal (y, b) of DR[X] is supported on
each constraint cki involving y by a valid tuple in R. As all supports on constraints of
Cki include a valid dual variable, we have that DQ = DR[X].

Then, we can deduce the following corollary.

Corollary 1. If the k-interleaved CSP of a CSP P is GAC then P is DkWC.

It is important to note that “k-interleavedness” is preserved after refuting any value.
This is stated by the following property (whose proof is omitted).

Property 3. Let P = (X ,D,C) be a CSP and P ki be the k-interleaved CSP of P .
∀x ∈ X , ∀a ∈ D(x), P ki|x �=a is the k-interleaved CSP of P |x �=a.

Domain k-Wise Consistency 241

From Properties 2 and 3, we can derive the following important corollary.

Corollary 2. Let P = (X ,D,C) be a CSP and P ki = (Xki,Dki,Cki) be the k-
interleaved CSP of P . Let Δ be a set of value refutations on variables of X . If Q =
(X ,DQ,CQ) is the GAC+kWC-closure of P |Δ and R = (Xki,DR,Cki) is the GAC-
closure of P ki|Δ, then we have DQ = DR[X].

Corollary 2 is central to our approach. It allows us to achieve DkWC indirectly using
GAC, and at any stage of a backtrack search. So, it is important to note that the gener-
ation of the k-interleaved CSP is only performed once since it can be used during the
whole search.

The complexity of enforcing DkWC is the complexity of enforcing GAC on the
k-interleaved CSP. As the k-interleaved CSP only contains table constraints, the com-
plexity analysis will use the optimal time complexity for a table constraint given in
[14]. Let P be a CSP with n variables, a maximum domain size d, e constraints, a
maximum number t of tuples allowed by a constraint, and a maximum constraint arity
r. The k-interleaved CSP of P is a CSP with n′ = n + e variables, a maximum do-
main size d′ = max(d, t), e′ = e +

(
e
k

)
constraints2, an upper bound t′ = tk of the

maximum number of allowed tuples by a constraint, and a maximum constraint arity
r′ = max(r + 1, k) Enforcing GAC on the k-interleaved CSP with optimal table con-
straint propagators has a complexity ofO(e′·(r′·t′+r′·d′)) = O((

(
e
k

)
+e)·(r′·t′+r′·d′)).

Necessity of Hybrid Constraints. It is important to note that the filtering procedure for
DkWC presented in this paper is stronger than the propagation that would be obtained
by simply replacing the original constraints by their joins. The reason is that, in the
second setting, the invalidation of a tuple in a join is not reflected in the other joins,
whereas with the k-interleaved CSP, the supports for the tuples on a join must them-
selves be supported. This is illustrated by Example 2.

Example 2. Let P = (X ,D,C) be a CSP such that X = {x, y,u, v}, D = {0, 1}4 and
C = {c1, c2, c3} with scp(c1) = {x, y,u, v}, scp(c2) = {x, y} and scp(c3) = {u, v},
and rel(c1), rel(c2) and rel(c3) defined as in Figure 2(a). Let us compare domain pair-
wise consistency (D2WC) with the joins of any two pairs of constraints: in this CSP,
the two possible joins and the 2-interleaved CSP are depicted in Figure 1. On the one
hand, enforcing GAC on the two join constraints J12 and J13 has no effect (observe that
values 0 and 1 are present in each column of both tables). On the other hand, enforcing
GAC on the 2-interleaved CSP reduces D(y) to {1} and D(v) to {0}. The reduction of
D(y) comes from the tuple (0, 0) in rel(c2) which is the only support for y = 0 on c2.
This tuple is only supported in J ′

12 by the second tuple of c1: (0, 0, 0, 1). As (0, 0, 0, 1)
has no support on J ′

13, we can safely remove 0 from D(y).

5 Practical Use of k-interleaved CSPs

Enforcing GAC on the k-interleaved CSP may be expensive. One possible cause is the
number of constraints from the k-dual CSP that are added to the k-interleaved CSP:

2
(
e
k

)
is the binomial coefficient corresponding to the number of subsets of size k that can be

formed using elements from a set of size e.

242 J.-B. Mairy, Y. Deville, and C. Lecoutre

(a) Original CSP (b) Classical Joins

(c) 2-interleaved CSP

Fig. 1. Illustration of (a) the CSP, (b) the classical joins and (c) the 2-interleaved CSP from
Example 2

(
e
k

)
for an original CSP with e constraints. Some of those constraints can safely be

ignored. For instance, this is trivially the case for k-dual constraints that are based on
original constraints sharing no variables. Of course, a trade-off can be made between
propagation strength and time complexity by integrating only a subset of all possible(
e
k

)
constraints. In that case, we shall not achieve DkWC completely. Suppose that

we limit the integration to the p most promising constraints from the k-dual CSP. The
complexity, following our analysis performed above, becomesO((e+p)·(r′ ·t′+r′ ·d′))
: the term

(
e
k

)
has been replaced by p. The most promising constraints can be selected,

for example, according to the size of the joins. Indeed, small joins will induce more
pruning whereas using large joins is another cause of inefficiency, as it is related to t′.

Following this discussion, we propose two weak variants of DkWC, and refer to them
as weak DkWC: they only consider a subset of all possible k-dual constraints. The first
one, called DkWCcy only considers constraints from the k-dual CSP corresponding to
cycles of original constraints (i.e., sequences of constraints at least sharing variables
with previous and next constraints in a circular manner). There are typically far less cy-
cles of k constraints than combinations of k constraints and besides they usually form
smaller joins. The consistency level attained by DkWCcy is weaker than DkWC but
in practice, as we shall see, it shows good performances. Since all the original con-
straints are included in DkWCcy , the consistency level attained is stronger than GAC.
Unsurprisingly, for some problems, the size of the joins of some cycle constraints may
be too large to be treated efficiently. For instance, in the modifiedRenault benchmark,
some joins computed from cycles of length 3 exceed 106 tuples. This is why the second
variant of DkWC, called DkWCcy−, only considers constraints from the k-dual CSP

Domain k-Wise Consistency 243

corresponding to cycles of original constraints and admitting a join size smaller than a
specified parameter (e.g., a percentage of the size of the largest table). In other words,
a maximum size is imposed on the size of the joins. The consistency level attained by
DkWCcy− is weaker than DkWC and DkWCcy , but its practical interest will be shown
on some problems. DkWCcy− attains a level of consistency stronger than GAC.

6 Related Work

GAC has already been combined with 2WC, 3WC and kWC [7,6,3,17,8,16]. A first
approach consists in weakening the combination, to obtain a pure domain-based con-
sistency. We obtain then max-restricted pairwise consistency (maxRPWC) [16,17,15].

Definition 9. (maxRPWC) A CSP P = (X ,D,C) is max-restricted pairwise consis-
tent (maxRPWC) iff ∀x ∈ X , ∀a ∈ D(x), ∀c ∈ C | x ∈ scp(c), ∃τ ∈ D(scp(c)) such
that τ [x] = a, τ ∈ c and ∀c′ ∈ C there exists a valid extension of τ on scp(c)∪ scp(c′)
satisfying c′.

MaxRPWC is a domain-filtering consistency, close to the idea of DkWC and GAC+
2WC but weaker than GAC+2WC [3]. In [11], the authors propose a specialized filter-
ing procedure, called eSTR, for enforcing GAC+2WC (called full pairwise consistency
in their work) on table constraints. Two techniques are combined: simple tabular reduc-
tion (STR) and tuple counting. This allows eSTR to keep and update a counter, for each
tuple of each table, of the number of supports it has in the other tables. This counter
can be used to detect and remove unsupported tuples. This approach is orthogonal to
the one presented in this paper. Indeed, in [11], the authors lift up an existing GAC
propagator, STR, to eSTR. Our approach is to propose a filtering procedure, relying on
a modified CSP, only using existing pure GAC propagators and we are not restricted to
GAC+2WC.

Other approaches compute the kWC-closure of a CSP in a first step and then apply
GAC in a second step, as proposed in [7,6,3] for 2WC and [8] for kWC. The approach
in [8] relies on a specialized propagator, inspecting each constraint with respect to each
relevant group of k constraints. Inspecting a constraint means searching, for each tuple
of the constraint, a support in each group. This search for support is performed using a
backtracking search (Forward Checking), on the dual encoding of the CSP. This whole
process is sped up by memorizing, for each constraint and each group, the last en-
countered support. A similar approach is developed in [20] for relational neighborhood
inverse consistency. In [8], the authors also propose a slightly weaker consistency, con-
sidering only groups of constraints forming connected components in the minimal dual
graph. Although attractive, these original forms of propagators can be hard to include
in existing constraint solvers. For instance, in Comet, the context management system
makes the start of an independent search inside a propagator impossible.

Other related approaches exist, although not trying to enforce directly GAC+kWC.
In [12], the authors propose a consistent reformulation for the conjunction of two tables
sharing more than one variable, keeping the space complexity low. In [2], the authors
propose an algorithm to achieve GAC on global constraints. In this work, the global
constraints are perceived as groups of constraints and the CSPs they define are solved

244 J.-B. Mairy, Y. Deville, and C. Lecoutre

on the fly to achieve GAC on them. GAC+kWC on a group of k constraints can be seen
as solving the subproblem they define, but in our approach, the subproblems are not
solved on the fly.

The easy integration of strong levels of consistency into existing solvers has been
studied in [19]. The integration is performed within a generic scheme, incorporating
the subset of the constraints involved in the local consistency into a global constraint.

7 Experimental Results

This section presents some experimental results concerning DkWC. For each test, we
propose to maintain this property on k-interleaved CSPs at each node of the search trees
developed by a backtrack search. However, as discussed in Section 5, including all k-
dual constraints is unpractical for many problems, because of the number of additional
constraints and/or because of their size. So, in our experiments, we have only used the
weaker versions defined in Section 5, namely, DkWCcy and DkWCcy−, and we have
focused our attention to weak D3WC and weak D4WC. Those values of k allow a
significant search space reduction with respect to GAC while keeping the number and
size of k-dual constraints tractable. Notice that labeling is only performed for original
variables during search, and that all solutions are searched for. The GAC propagator
used for the original constraints as well as the k-dual ones is the optimal state-of-the-art
propagator from [14].

Our filtering procedure is compared with the GAC propagator from [14], the max-
RPWC3 procedure from [3] and the state-of-the-art eSTRw propagator from [11]. The
eSTRw propagator is weaker than eSTR but easier to incorporate into an existing solver,
and is at least as good as eSTR on the benchmarks used in [11]. All the algorithms are
(re-)implemented on top of Comet, but as mentioned in Section 6, it is unfortunately im-
possible to implement the filtering algorithm from [8] in Comet. Eight different bench-
marks have been used. Two of them contain only binary table constraints, five of them
contain binary and ternary table constraints and the last benchmark contains table con-
straints up to arity 10. The tests are executed on an Intel Xeon 2.53GHz using Comet
2.1.1. A timeout of 20 minutes on the total execution time is used for each instance.
When comparing different techniques in terms of CPU time and search space sizes, we
can only use the subset of instances for which none of the techniques timed out. In the
results, we thus do not report measurements for some of the techniques on some bench-
marks because including them would cause the common instance set to be empty or too
small for a meaningful comparison. In the tables, a ’-’ thus represents a technique that
timed out on the set of instances considered. The percentage of the instance set that is
solved is however given for each technique on each benchmark.

The results are presented in Table 1. For each instance set and each technique, we
report means of different quantities (times are in seconds): the execution time (T), the
"posting" time (pT), the join selection time (jST) that corresponds to the amount of time
used to select the joins for the k-interleaved CSPs, the join computation time (jT), the
number of propagator calls (nP), the number of fails (nF) and the number of choice
points (nC). Table 1 also reports the percentage to the best with respect to execution
time (%b), the mean of the percentage to the best instance by instance (μ%b) and the

Domain k-Wise Consistency 245

percentage of instances from the sets that are solved (%sol). The total time (T) includes
all precomputations the algorithms have to perform before search. This means that both
times of join selection (jST) and join computation (jT) for our DkWC algorithm are
included in T. The posting time (pT) is the time taken between the loading of the in-
stance file and the start of search without the time for jT. It thus includes time for all
precomputations except for join computation. The difference between %b and μ%b
is the following. For %b, all execution times are averaged before computing it: there
is thus one identified best algorithm. For μ%b, the percentages are first computed in-
stance by instance, and then aggregated with a geometrical mean (as suggested in [5]):
this measure takes into account the fact that different instances may have different best
algorithms.

Binary Random Instances. This instance set contains 50 instances involving binary
table constraints. These instances have 50 variables, a uniform domain size of 10 and 166
constraints whose proportion of allowed tuples is 0.5. They have been generated using the
model RD [21], in or close to the phase transition. The search strategy used to solve them
(for all techniques) is a lexicographic variable and value ordering. On this benchmark,
D3WCcy includes on average 48.4 3-dual constraints, and their tables contain on average
111.5 tuples. We can see that the pruning obtained by D3WCcy on this benchmark al-
lows it to reduce drastically the search space. Moreover, since the mean number of added
constraints from the 3-dual CSP and their size is small, D3WCcy has the lowest overall
computation time. Propagators maxRPWC3 and eSTRw also reduce the search space
with respect to GAC (partly due to the presence of constraints with identical scopes), but
this reduction comes at the price of a greater total computation time.

Ternary Random Instances. This instance set contains 50 instances involving ternary
table constraints. These instances have 50 variables, a uniform domain size of 5 and 75
constraints whose proportion of allowed tuples is 0.66. They have been generated using
the model RD [21], in or close to the phase transition. The search strategy used to solve
them is a lexicographic variable and value ordering. On this benchmark, D3WCcy in-
cludes, on average 112.3 3-dual constraints, and their tables contain on average 529.5
tuples. As for the binary case, the search space reduction obtained by D3WCcy is im-
portant. On this benchmark, the size and number of added constraints is small enough
to allow D3WCcy to be the fastest technique. Note that the search space reduction ob-
tained by maxRPWC3 doesn’t repay its cost, contrary to eSTRw.

AIM Instances. This instance set contains 24 instances from the AIM series used in
the CSP solver competition [18] (100 variables, a majority of ternary constraints and
binary ones). The search strategy used is a lexicographic variable and value ordering.
D3WCcy includes 3000 constraints from the 3-dual, on average, and the added con-
straints contain on average 30.3 tuples. On this benchmark, the filtering obtained by
maxRPWC3, eSTRW and D3WCcy allows each of them to be significantly faster than
GAC. Although D3WCcy achieves the best search space reduction, eSTRw remains
the fastest technique. The greater computation time for D3WCcy is due to the number
of 3-dual constraints included in the 3-interleaved CSPs: 3000 on average while the
number of original constraints lies between 150 and 570. Even if the 3-dual constraints
have small tables, they still have to be propagated during search. Interestingly, D3WCcy

solves significantly more instances than the other techniques.

246 J.-B. Mairy, Y. Deville, and C. Lecoutre

Table 1. Results of the experiments on the different benchmarks. T is the mean time in seconds,
pT is the mean posting time in seconds, jST is the mean join selection time, jT is the mean join
time, nP is the number of calls to the propagators, nF is the number of fails during the search,
nC is the number of choice points during the search, %b is the percentage to the best, μ%b is the
mean percentage to the best and %sol is the percentage of instances solved.

propagator T pT jST jT nP nF nC %b μ%b %sol

Binary Random
GAC 9.9 0.0 0.0 0.0 3 M 7.7 k 1 213.2 337 218 100
maxRPWC3 72 0.7 0.0 0.0 148 k 2.2 k 340.1 2448 1833 98
eSTRw 11.4 0.1 0.0 0.0 293 k 2.2 k 340.1 389 283 100
D3WCcy 2.9 0.1 0.0 0.1 963 k 0.5 k 68.4 100 113 100

Ternary Random
GAC 23.1 0.0 0.0 0.0 4 M 42.4 k 11.8 k 183 223 100
maxRPWC3 124 0.2 0.0 0.0 237 k 8.2 k 2.2 k 982 1455 90
eSTRw 16.6 0.0 0.0 0.0 409 k 7.7 k 2.1 k 131 189 100
D3WCcy 12.6 0.5 0.1 0.4 2 M 0.6 k 0.1 k 100 143 100

AIM
GAC 82 0.1 0.0 0.0 35 M 941.6 k 522 k 6745 460 46
maxRPWC3 14.7 1.0 0.0 0.0 46 k 1.2 k 0.7 k 1204 1481 46
eSTRw 1.2 0.3 0.0 0.0 35 k 0.7 k 0.4 k 100 208 50
D3WCcy 3.4 2.4 1.2 0.5 139 k 0.1 k 0.1 k 279 497 88

Pret
GAC 160 0.0 0.0 0.0 58 M 7 M 5 M 121 121 50
maxRPWC3 977 0.0 0.0 0.0 26 M 7 M 5 M 741 741 50
eSTRw 504 0.0 0.0 0.0 30 M 7 M 5 M 382 382 50
D3WCcy 132 0.0 0.0 0.0 57 M 4 M 3 M 100 100 50

Langford-2
GAC 0.5 0.0 0.0 0.0 171 k 1.4 k 1 k 100 100 58
maxRPWC3 44.6 2.2 0.0 0.0 43 k 1.4 k 1 k 9637 3863 46
eSTRw 1.5 0.1 0.0 0.0 65 k 1.4 k 1 k 326 233 54
D3WCcy 10.5 0.9 0.1 3.2 2 M 0.7 k 0.7 k 2270 1782 50

Dubois
GAC 793 0.0 0.0 0.0 158 M 42 M 37 M 394 390 15
maxRPWC3 - - - - - - - - - 8
eSTRw 598 0.0 0.0 0.0 37 M 5 M 3 M 297 294 15
D4WCcy 201 0.1 0.0 0.0 68 M 2 M 1 M 100 100 30

TSP-20
GAC 52 0.5 0.0 0.0 14 M 17 k 7 k 100 100 93
maxRPWC3 - - - - - - - - - 33
eSTRw 233 1.5 0.1 0.0 5 M 17 k 7 k 447 438 80
D3WCcy - - - - - - - - - 40
D3WCcy− 94 4.3 0.6 0.1 40 M 17 k 7 k 180 270 93

Modified Renault
GAC - - - - - - - - - 6
eSTRw - - - - - - - - - 0
maxRPWC3 743 0.0 0.0 0.0 23.7 0.0 0.0 148 417 26
D3WCcy - - - - - - - - - 0
D3WCcy− 502 497 3.9 5.1 33 k 0.0 0.0 100 111 34

Domain k-Wise Consistency 247

Pret Instances. This instance set also comes from the CSP solver competition [18]
and counts 8 instances (only ternary table constraints). The search strategy used is a
lexicographic variable and value ordering. D3WCcy includes on average 13 constraints
that have a mean size of 8 tuples. On this benchmark, neither maxRPWC3 nor eSTRw
is able to reduce the search space with respect to GAC. Their additional computations
make them slower than GAC. The small number of small constraints from the 3-dual
CSP included by D3WCcy allows it to significantly reduce the search space and to be
the fastest on this series. The mean percentage to the best (μ%b) of D3WCcy means that
it is the best technique on average but also on each instance. Note that the join selection,
join computation and posting times are negligible on this problem.

Langford Problem. Langford number problem is Problem 24 of CSPLIB3, here
modeled with binary table constraints only. We used the set Langford-2 containing 24
instances that can be found in [9]. The search strategy used is dom/deg combined with
a lexicographic value ordering. On this set, D3WCcy includes, on average, 328 3-dual
constraints whose tables contain 274.7 tuples on average. On this benchmark, GAC is
the fastest technique on average (actually, it is the fastest technique on each instance).
Neither maxRPWC3 nor eSTRw are able to reduce the search space with respect to
GAC. However, they have a lower propagator call count. This is due to their ability
to reach the fixed point faster. The number of constraints added from the 3-dual by
D3WCcy is large comparatively to the number of original constraints (the non-timeout
instances are the smallest ones). The small search space reduction obtained by D3WCcy

does not compensate the cost to propagate all the added constraints. The number of
propagator calls is significantly larger for D3WCcy . We can also see that, on this bench-
mark, the time required to compute the joins is larger than the time required by GAC to
solve the instances.

Dubois Instances. Those 13 instances also comes from the CSP solver competition
[18] (ternary table constraints). These instances do not contain any cycle of original con-
straints of length 3. We thus present the results of D4WCcy . On this series, D4WCcy

adds on average 156 4-dual constraints and their tables contain, on average, 15.2 tuples.
Clearly, D4WCcy is the fastest approach here and solves more instances than the other
techniques. D4WCcy is also the fastest on each instance, as shown by the mean percent-
age to the best (μ%b). The search space reduction obtained by eSTRw is less than that
obtained by D4WCcy but it allows it to be faster than GAC.

Travelling Salesman Problem. We used the set of 15 Travelling Salesman satisfac-
tion instances tsp-20 from [9] (table constraints of arity 2 and 3). The search strategy
used here is dom/deg combined with a lexicographic value ordering. On this instance
set, there is, on average, 1000 cycles of length 3 in the 3-dual CSP and they contain
up to 2000 tuples. In that context, D3WCcy only solves 40% of the instances. We thus
present the results for D3WCcy− where the limit on the size of the joins is set to one
percent of the maximal original constraint size (200). D3WCcy− includes 59.8 con-
straints from the 3-dual CSP on average, and their tables contain, on average, 26 tuples.
As we can see, on those instances, neither eSTRw nor D3WCcy− is able to reduce the
search space. The extra computations of eSTRw and the extra propagation effort of
D3WCcy− make them slower than GAC (which is also the fastest approach on each

3 www.csplib.org

www.csplib.org

248 J.-B. Mairy, Y. Deville, and C. Lecoutre

Table 2. Summary of the results of the experimental section. T is the total solving time in seconds
and %sol is the percentage of the instances solved.

Benchmark GAC maxRPWC3 eSTRw wDkWC
T %sol T %sol T %sol T %sol

Binary Random 9.9 100 72 98 11.4 100 2.9 100
Ternary Random 23.1 100 124 90 16.6 100 12.6 100
AIM 82 46 14.7 46 1.2 50 3.4 88
Pret 160 50 977 50 504 50 132 50
Langford2 0.5 58 44.6 46 1.5 54 10.5 50
Dubois 793 15 - 8 598 15 201 30
TSP-20 52 93 - 33 233 80 94 93
ModRenault - 6 743 0 - 26 502 34

instance). However, D3WCcy− is faster than eSTRw and it is the only one able to solve
the same number of instances as GAC.

Modified Renault Problem. The modified Renault problem instances originate from
a real Renault Megane configuration problem, modified to generate 50 instances[9]
(large tables and arities up to 10). The search strategy used is dom/deg variable ordering
combined with a lexicographic value ordering. Since the tables of the original problem
can count up to 50K tuples, D3WCcy is unpractical because of the size of the joins.
We thus present the results for D3WCcy− where the limit on the size of the joins has
been set to one percent of the largest original constraint size (500), as in the TSP bench-
mark. On those instances, D3WCcy− includes 481.6 3-dual constraints on average, and
their tables contain on average 253.9 tuples. As we can see, both maxRPWC3 and
D3WCcy− detect the inconsistencies of all instances without performing any search.
However, despite the fact that D3WCcy− has a larger propagator call count, it is faster
than maxRPWC3. D3WCcy− is also able to solve more instances than maxRPWC3.

Summary of the Experimental Results. A summary of the experimental results can
be found in Table 2. This table contains the total execution time (T) and the percentage
of instances solved (% sol) for each technique. The column wDkWC represents our
weak DkWC approach: it is D3WCcy for binary random, ternary random, AIM, Pret
and Langford-2 instances, D4WCcy for Dubois instances and D3WCcy− for TSP-20
and modified Renault instances. Weak DkWC is faster than maxRPWC3 and eSTRw,
except for two benchmarks. It is also faster than GAC on all but two benchmarks, where
GAC is faster than all strong consistencies. Weak DkWC is also the strong consistency
leading to the largest reductions of search space. Except on Langford-2, weak DkWC
solves the largest number of instances within the time limit.

For all these benchmarks, we insist that (full) DkWC is unpractical because of the
number of possible joins and/or their size. This is the reason why we have introduced
weak DkWC. On the majority of benchmarks, we used DkWCcy but on two bench-
marks, even D3WCcy suffers from the number of 3-dual constraints and their sizes.
Consequently, we also used DkWCcy−, for which the best limit on the joins size has
been empirically found to be equal to 1 percent of the maximum original constraint
size. This parameter value allows D3WCcy− to include a significant number of small

Domain k-Wise Consistency 249

(highly filtering) 3-dual constraints without including too many of them. All these re-
sults show, on a large variety of benchmarks with constraints of various arities, that the
weak DkWC filtering procedures defined in this paper are competitive.

8 Conclusion

In this paper, we have derived a domain-filtering consistency, DkWC, from the com-
bination of kWC and GAC. We have shown how to establish and maintain this strong
consistency by simply establishing and maintaining GAC on so-called k-interleaved
CSPs. Such reformulated CSPs, which integrate dual variables, hybrid constraints and
k-dual constraints, are simple to generate, and need to be generated only once before
search. To manage the complexity of join operations, we have proposed a few solutions
such as the ones relying on the presence of cycles or on the use of a limit on the maximal
size of joins. The experimental results that we have obtained show, on a large variety of
problems, that our weak DkWC filtering procedures are competitive.

Acknowledgments. The first author is supported as a Research Assistant by the Bel-
gian FNRS. This research is also partially supported by the FRFC project 2.4504.10 of
the Belgian FNRS, and by the UCLouvain Action de Recherche Concertée ICTM22C1.
The third author benefits from the financial support of both CNRS and OSEO within
the ISI project ’Pajero’.

References

1. Bessiere, C.: Constraint propagation. In: Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook
of Constraint Programming. Elsevier, New York (2006)

2. Bessière, C., Régin, J.-C.: Enforcing arc consistency on global constraints by solving sub-
problems on the fly. In: Jaffar, J. (ed.) CP 1999. LNCS, vol. 1713, pp. 103–117. Springer,
Heidelberg (1999)

3. Bessiere, C., Stergiou, K., Walsh, T.: Domain filtering consistencies for non-binary con-
straints. Artificial Intelligence 72(6-7), 800–822 (2008)

4. Debruyne, R., Bessière, C.: Domain filtering consistencies. Journal of Artificial Intelligence
Research 14, 205–230 (2001)

5. Fleming, P., Wallace, J.: How not to lie with statistics: the correct way to summarize bench-
mark results. Communications of the ACM 29(3), 218–221 (1986)

6. Janssen, P., Jégou, P., Nouguier, B., Vilarem, M.-C.: A filtering process for general constraint-
satisfaction problems: achieving pairwise-consistency using an associated binary represen-
tation. In: Proceedings of IEEE Workshop on Tools for Artificial Intelligence, pp. 420–427
(1989)

7. Jégou, P.: Contribution à l’étude des Problèmes de Satisfaction de Contraintes: Algorithmes
de propagation et de résolution. Propagation de contraintes dans les réseaux dynamique. PhD
thesis, Université de Montpellier II (1991)

8. Karakashian, S., Woodward, R., Reeson, C., Choueiry, B., Bessiere, C.: A first practical algo-
rithm for high levels of relational consistency. In: Proceedings of AAAI 2010, pp. 101–107
(2010)

250 J.-B. Mairy, Y. Deville, and C. Lecoutre

9. Lecoutre, C.: Instances of the Constraint Solver Competition,
http://www.cril.fr/~lecoutre/

10. Lecoutre, C.: Constraint Networks: Techniques and Algorithms. ISTE/Wiley (2009)
11. Lecoutre, C., Paparrizou, A., Stergiou, K.: Extending STR to a higher-order consistency. In:

Proceedings of AAAI 2013, pp. 576–582 (2013)
12. Lhomme, O.: Practical reformulations with table constraints. In: Proceedings of ECAI 2012,

pp. 911–912 (2012)
13. Mackworth, A.K.: Consistency in networks of relations. Artificial Intelligence 8(1), 99–118

(1977)
14. Mairy, J.-B., Van Hentenryck, P., Deville, Y.: An optimal filtering algorithm for table con-

straints. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 496–511. Springer, Heidelberg
(2012)

15. Paparrizou, A., Stergiou, K.: An efficient higher-order consistency algorithm for table con-
straints. In: Proceedings of AAAI 2012, pp. 335–541 (2012)

16. Stergiou, K.: Strong inverse consistencies for non-binary CSPs. In: Proceedings of ICTAI
2007, pp. 215–222 (2007)

17. Stergiou, K.: Strong domain filtering consistencies for non-binary constraint satisfaction
problems. International Journal on Artificial Intelligence Tools 17(5), 781–802 (2008)

18. van Dongen, M., Lecoutre, C., Roussel, O.: CSP solver competition (2008),
http://www.cril.univ-artois.fr/CPAI08/

19. Vion, J., Petit, T., Jussien, N.: Integrating strong local consistencies into constraint solvers.
In: Larrosa, J., O’Sullivan, B. (eds.) CSCLP 2009. LNCS (LNAI), vol. 6384, pp. 90–104.
Springer, Heidelberg (2011)

20. Woodward, R., Karakashian, S., Choueiry, B., Bessiere, C.: Solving difficult CSPs with rela-
tional neighborhood inverse consistency. In: Proceedings of AAAI 2011, pp. 112–119 (2011)

21. Xu, K., Boussemart, F., Hemery, F., Lecoutre, C.: Random constraint satisfaction: easy gen-
eration of hard (satisfiable) instances. Artificial Intelligence 171(8-9), 514–534 (2007)

http://www.cril.fr/~lecoutre/
http://www.cril.univ-artois.fr/CPAI08/

Representative Encodings to Translate Finite

CSPs into SAT

Pedro Barahona1, Steffen Hölldobler2, and Van-Hau Nguyen2

1 Departamento de Informática, Faculdade de Ciências e Tecnologia
Universidade Nova de Lisboa, 2829-516 Caparica, Portugal

pb@fct.unl.pt
2International Center for Computational Logic

Technische Universität Dresden, 01062 Dresden, Germany
sh,hau@iccl.tu-dresden.de

Abstract. Solving Constraint Satisfaction Problems (CSPs) by Boolean
Satisfiability (SAT) requires suitable encodings for translating CSPs to
equivalent SAT instances that should not only be effectively generated,
but should also be efficiently processed by SAT solvers. In this paper we
investigate hierarchical and hybrid encodings, focussing on two specific
encodings: the representative-sparse encoding, already proposed albeit
not thoroughly tested, and a new representative-order encoding. Com-
pared to the sparse and order encodings, two widely used and efficient
encodings, these representative encodings require a smaller number of
variables and longer clauses to express complex CSP constraints. The pa-
per shows that, concerning unit propagation, these encodings are incom-
parable. Nevertheless, the preliminary experimental results show that
the new representative encodings are clearly competitive with the origi-
nal sparse and order encodings, but further studies are needed to better
understand the trading between fewer variables and longer clauses of the
representative encodings.

1 Introduction

Propositional satisfiability solving (SAT) is having an increasing impact on ap-
plications in various areas, ranging from artificial intelligence to hardware design
and verification, and its success inspired a wide range of real-world and challeng-
ing applications.

Many such applications can be expressed as constraint satisfaction problems
(CSPs) [24], although hardly any problems are originally given by SAT formu-
las. Nevertheless, to benefit from powerful SAT solvers, many SAT-encodings of
CSPs have been studied recently, and finding suitable SAT encodings for CSPs
is of greatest interest [32,1,21,1,15,9,23,31,28,12].

In fact, choosing an appropriate encoding is regarded as important as choosing
an efficient algorithm and is considered to be one of the most exciting challenges
in SAT solving [15]. Nevertheless, mapping a CSP into a SAT instance largely
remains more of an art than a science [32,11,22,21,23], and some guidance is

H. Simonis (Ed.): CPAIOR 2014, LNCS 8451, pp. 251–267, 2014.
c© Springer International Publishing Switzerland 2014

252 P. Barahona, S. Hölldobler, and V.-H. Nguyen

required for choosing appropriate encoding schemes for specific SAT-encoded
instances.

Although other alternatives have been proposed, e.g. [32,9,29,31], in practice
only two types of encodings are being widely used to encode an integer variable V
into SAT: the sparse encoding (as denoted in [14], and adopted among others by
the direct encoding [16,32] or the support encoding [11]) and the order encoding
[7,2].

The sparse encoding is a common and effective encoding of CSPs to SAT
instances. For example, Cadoni and Schaerf introduced a compiler (NP-SPEC),
that translates a problem specification to SAT [6], Berre and Lynce built a SAT-
based solver which competed in many cases against CSP solvers [4], and Jeavons
and Petke [14] recently showed that modern SAT solvers using the sparse encod-
ing can efficiently deal with certain families of CSPs which are even challenging
for conventional constraint-programming solvers.

By facilitating the propagation of bounds, many combinatorial problems can
be solved more efficiently by the order encoding, adopted in Sugar [28], BEE [18]
and in lazy-clause generation [20].

In both encodings the number of SAT variables required to represent a CSP
variable is linear on its domain size, which is quite penalizing for large domains,
significantly consuming the runtime of SAT solvers. In contrast, the number of
SAT variables required by the log encoding is only logarithmic on the domain size;
unfortunately, it requires much longer clauses to encode most CSP constraints,
and unit propagation is much less powerful than that obtained with the former
encodings. Unlike the sparse encoding or the order encoding, we are unaware of
any SAT-based solvers based on the log encoding.

Hierarchical and hybrid SAT encodings proposed by Velev [31] use one simple
SAT encoding, (a variant of) the direct encoding or (a variant of) the log encod-
ing, to recursively partition the domain of a CSP variable into subdomains. The
twelve simple encodings combined with a variety of structures led to a numerous
way of translations of a domain to SAT. However, it is impractical to determine
how these variants behave for a given problem. Nguyen et al. [19] studied in
some detail two special cases of hierarchical and hybrid SAT encodings, namely
the log-direct and the log-order encodings, which are significantly more efficient
than the direct and the order encodings.

In this paper we investigate the representative-sparse and the representative-
order encodings, and show that despite the fact that the propagation achieved
with these encodings is not comparable, the experimental results obtained with
these representative encodings are quite promising, highlighting their potential
for handling hard and practical problems.

Our work generalizes the work presented in [19], in which Nguyen et al. studied
two specific representative encodings, using a log encoding of the first level. Here
we study a more general encoding with several values at the first level, and
include not only a theoretical comparison regarding the propagation strength of
these encodings (missing in [19]) but also a more substantial empirical evidence
obtained from three distinct state-of-the-art SAT solvers.

Representative Encodings to Translate Finite CSPs 253

The rest of the paper is organized as follows. In Section 2, we briefly overview
the sparse and the order encodings in the context of CSP problems. Section 3
introduces the representative encodings and presents their main features, namely
their complexity and their propagation strength. Section 4, presents the exper-
imental results obtained in a number of typical benchmarks, and show the sig-
nificant speed-ups obtained with the representative encodings, when compared
with their flat counterparts. The final section summarizes the main results and
proposes further work.

2 Background

This section briefly overviews the two most widely and successfully used SAT
encodings of CSP variables and constraints, viz. the sparse encoding and the
order encoding, together with the basic concepts and notation of CSPs and SAT.

2.1 Constraint Satisfaction Problems (CSPs)

A constraint satisfaction problem (CSP) is a triple (V ,D, C), where

– V = {V1, V2, ..., Vk} is a finite set of variables,
– D = {D(V1), D(V2), ..., D(Vk)} is a finite set of domains,
– C = {C1, C2, ..., Cm} is a finite set of constraints.

A tuple 〈v1, v2, ..., vk〉 ∈ 〈D(V1), D(V2), ..., D(Vk)〉 satisfies a constraint Ci ∈ C
on the set of variables {Vi1, Vi2, ..., Vil} ∈ V if the projection of the tuple into
these variables is a member of the constraint, i.e. 〈vi1, vi2, ..., vil〉 ∈ Ci. A tuple
〈v1, v2, ..., vk〉 is a solution of a CSP iff it satisfies all constraints of C. The CSP
problem is to determine whether there exists one such tuple. In this paper,
without loss of generality we assume that all variables have domain {1, ..., n}.

2.2 Boolean Satisfiability Problem (SAT)

A formula in conjunctive normal form (CNF) is a finite conjunction of clauses
C1∧C2∧ ...∧Cm, defined on a finite set {x1, x2, ..., xn} of propositional variables
(m,n ∈ N). A clause C is a finite disjunction of literals l1 ∨ l2 ∨ ... ∨ lk, where
each literal li is either a Boolean variable xl or its negation (¬xl).

To each variable the truth values false (or 0) or true (or 1) can be assigned.
A clause is satisfied by a truth assignment of the variables, if at least one of its
literals is assigned value true. A CNF-formula F is satisfiable if there is a truth
assignment that satisfies all its clauses, unsatisfiable otherwise. A SAT problem
consisting of a CNF-formula F is the question whether a CNF-formula F is
satisfiable.

254 P. Barahona, S. Hölldobler, and V.-H. Nguyen

2.3 Translating a Finite CSP to an Equivalent SAT Instance

The Sparse Encoding To encode a CSP variable V with domain {1, ..., n}
the sparse encoding uses n propositional variables dVi and the assignment V = i
is modelled by assigning dVi to true and all the other propositional variables to
false.

Hence, the sparse encoding requires that exactly one dVi variable is assigned
to true. Such constraint is achieved by means of a single at-least-one (ALO)
clause:

dV1 ∨ dV2 ∨ ... ∨ dVn

and a set of at-most-one(AMO) clauses, which may be naturally modelled by
the pairwise encoding:

n−1∧
i=1

n∧
j=i+1

¬(dVi ∧ dVj) ≡
n−1∧
i=1

n∧
j=i+1

(¬dVi ∨ ¬dVj)

where ≡ denotes semantic equivalence. The pairwise encoding requires n(n−1)
2

binary clauses, but there are several efficient ways which only need O(n) clauses
(see [8,13]), like the sequential counter encoding [26] used in this paper.

The Conflict Clause The direct encoding [16] maps the CSP constraints onto a
set of conflict clauses, modeling the disallowed variable assignments.

Adopting notions and notations from [23], let KV,i be the set of pairs (W, j)
for which the assignments (V = i,W = j) violate a CSP constraint. Then these
constraints can be expressed by the following formula:∧

(w,j)∈KV,i

¬(dVi ∧ dWj) ≡
∧

(w,j)∈KV,i

(¬dVi ∨ ¬dWj)

The Support Clause. In contrast, the support encoding [11] maps the CSP con-
straints onto support clauses that specify the allowed variable assignments. Let
SV,j,W be the values in the domain of V that support W = j in some constraint.
Then, the support clauses that model the constraint are expressed as:

dWj → (
∨

i∈SV,j,W

dVi) ≡ ¬dWj ∨ (
∨

i∈SV,j,W

dVi).

The Order Encoding. The order encoding [7,2] (a reformulation of the se-
quential encoding [13]) represents a CSP variable V with domain {1, ..., n} by a
vector of n− 1 Boolean variables [oV1 , ..., o

V
n−1]. To specify the assignment V = i

the first i − 1 variables are assigned to true (or 1) and the remaining to false
(or 0). For example, the assignments V = 1, V = 3, and V = 5 for a variable V
with domain {1, 2, 3, 4, 5}, are represented as [0, 0, 0, 0], [1, 1, 0, 0], and [1, 1, 1, 1],
respectively.

Representative Encodings to Translate Finite CSPs 255

This encoding may be specified by a set of binary clauses

n−2∧
i=1

¬(¬oVi ∧ oVi+1) ≡
n−2∧
i=1

(oVi ∨ ¬oVi+1)

which guarantee the desired properties [25]:

– if oVi = 1, then oVj = 1 for all 1 ≤ j ≤ i ≤ n− 1,

– if oVi = 0, then oVj = 0 for all 1 ≤ i ≤ j ≤ n− 1.

A CSP assignment V = i is modelled by imposing oVi−1 = 1 and oVi = 0,
whereas its negation V �= i is represented by oVi−1 = oVi [18] (to cope with V =
1, we assume an extra bounding variable oV0 = 1).

According to [2] the main advantage of this encoding is in the representation
of interval domains and the propagation of their bounds. Indeed, the value of V
may be restricted to a range i...j, by setting oVi−1 = 1 and oVj = 0.

As with the sparse encoding, CSP constraints can be represented in the order
encoding either by conflict or support clauses, with the obvious adaptations.

3 The Representative Encodings

3.1 The Representative-Sparse Encoding

The representative-sparse encoding is a hierarchical hybrid encoding, where
Boolean representative variables g1, g2, ..., gm(1 ≤ m ≤ n

2) at level 1 divide the
domain into m subdomains represented at level 2 with Boolean sparse variables.
These variables of both levels require ALO and AMO constraints. An assignment
in this encoding is as follows:1

v = vi ⇔
{
g�i/r� ∧ xr if i mod r = 0;
g�i/r�+1 ∧ xi mod r otherwise.

(1)

Formula 1 translates a finite CSP domain v = {v1, v2, ..., vn} into SAT clauses
by using Boolean representative variables, {g1, ..., gm}, and a set of Boolean
sparse variables, {x1, ..., xr}, where r = &n/m'.

Fig 1 shows how the Boolean representative variables, gi, 1 ≤ i ≤ m, assigns
a value of V to the subdomains (note that when n < m ∗ r the prohibited values
must be excluded).

Proposition 1. When indexing the domain values of the CSP variables into
SAT variables, the representative-sparse encoding is sound and complete.

Proof: The representative variables gi, 1 ≤ i ≤ m ≤ n
2 , at level one

partition the domain of variable V into m subdomains {v1, . . . , vn/m�},. . . ,
{v(m−1)n/m�+1, . . . , vn}. Moreover, the at-least-one and at-most-one clauses for

1 �x� (�x�) is the biggest (smallest) integer number not bigger (less) than x, and mod
is the remainder operator.

256 P. Barahona, S. Hölldobler, and V.-H. Nguyen

g2 g3g1

x3x2x1 x4 x5x5x4x3x2x1 x1 x2 x3 x4 x5

v8v7v6 v9 v10v5v4v3v2v1 v11 v12 v13 v14 v15

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1
1

Fig. 1. An illustration of the representative-sparse encoding of the domain of a CSP
variable using a group of representative variables at level one, {g1, g2, g3}, and a set of
Boolean sparse variables at level two, {x1, x2, x3, x4, x5}, where exactly one variable is
selected at each group

both sets of Boolean variables {g1, . . . , gm} and {x1, . . . , xr} lead to the selection
of exactly one partition and exactly one value from the represented partition for
the value of V . �

Note that the sparse encoding requires n Boolean variables to encode a CSP
variable V with domain {v1, . . . , vn}, whereas the representative-sparse encoding
requires only m+ &n/m' Boolean variables, 1 ≤ m ≤ n

2 .
The sparse encoding is adopted by both the direct encoding and the support

encoding. Unit propagation on the direct encoding maintains a form of consis-
tency called forward checking [32], while unit propagation on the support encod-
ing preserves arc-consistency [11]. Propagation for representative-sparse encoding
is not stronger nor weaker with respect to the sparse encoding as stated in the
following proposition.

Proposition 2. Unit propagation applied to the representative-sparse encoding
(when m ≥ 2) is not comparable to the sparse encoding.

Proof : We prove for the case m = 3 (the others are similar). Let CSP variables
V and W have domain {1, .., 15}, as in Fig 1, and be constrained by V �= 3 ∨
W �= 5. In the representative-sparse encoding the constraint is represented by a
clause ¬gV1 ∨¬xV

3 ∨ ¬gW1 ∨¬xW
5 whereas by a simpler clause ¬dV3 ∨¬dW5 in the

sparse encoding. For a subsequent assignment W = 5 (obtained during search
or propagation), Unit propagation (UP) in the sparse encoding results in the
unit clause ¬dV3 , that may be further propagated, whereas in the representative-
sparse encoding it leads to the non-unit binary clause ¬gV1 ∨ ¬xV

3 . Hence, in
this case, UP in the sparse encoding is stronger than in the representative-sparse
encoding.

On the other hand, let V = {2, 7, 12, 13} be a constraint to be encoded
into SAT. The constraint is represented by clauses (xV

2 ∨ gV3) ∧ (xV
2 ∨ xV

3) in
the representative-sparse encoding, and by clause dV2 ∨ dV7 ∨ dV12 ∨ dV13 in the
sparse encoding. For a subsequent assignment V < 11 (i.e. ¬gV3), then UP in
the representative-sparse encoding results to the unit clause xV

2 , whereas in the
sparse encoding leads to dV2 ∨ dV7 , that is not further propagated. Hence, in this

Representative Encodings to Translate Finite CSPs 257

case UP in the representative-sparse encoding is stronger than in the sparse
encoding. �

In general, we may tailor the representative-sparse encodings for specific prob-
lems. For example, when the elimination of all odd or even values from a domain
are frequent, we could set m = n/2, with only two variables at the second level,
one for the odd and the other for the even values.

If the representative-sparse encoding cannot be compared with the sparse
encoding, it may be so with the log encoding.

Proposition 3. Unit propagation with the representative-sparse encoding (with
m = 2) is more effective than with the log encoding.

Proof : Similar to the proof of Theorem 15 in [32], after noting that the log
encoding and the representative-sparse encoding share the same one literal when
representing a CSP value domain. �

Finally, it is worth noting that one of the key strengths of the representative-
sparse encoding is the ability to represent interval variables significantly better
than the sparse encoding (in terms of the length clauses), namely when the
interval does not cross the partitions. For example, to represent V ≥ 11, the
sparse encoding requires the “long ”clause dV11 ∨ dV12 ∨ dV13 ∨ dV14 ∨ dV15, whereas
the representative-sparse encoding simply requires gV3 to be set to true.

3.2 The Representative-Order Encoding

The representative-order encoding is a new hierarchical hybrid encoding, where
level one is composed of Boolean representative variables g1, g2, ..., gm (1 ≤ m ≤
n
2) dividing the domain into m partitions represented at level two with order
encoded variables. The variables of level one require ALO and AMO constraints,
while the variables of level two require the condition of the order encoding. An
assignment in this encoding is as follows:

v = vi ⇔

⎧⎨⎩
g�i/(r+1)� ∧ xr if i mod (r + 1) = 0;
g�i/(r+1)�+1 ∧ x1 if i mod (r + 1) = 1;
g�i/(r+1)�+1 ∧ xi mod (r+1)−1 ∧ xi mod (r+1) otherwise.

(2)
Formula 2 for translating a finite CSP domain v = {v1, v2, ..., vn} into

SAT clauses by using Boolean representative variables, {g1, ..., gm}, and a set
of Boolean order variables, {x1, ..., xr}, where r = &n/m' − 1.

Note that the order encoding requires n − 1 Boolean variables to encode
a CSP variable V with domain {v1, . . . , vn}, whereas the representative-order
encoding requires only m + &n/m' − 1 Boolean variables, 1 ≤ m ≤ n

2 .
Fig 2 shows how the representative variables, gi, 1 ≤ i ≤ m, assigns a value V
to the subdomains. As with the representative-sparse encoding when n < m ∗ r
the prohibited values must be excluded. This assignment is correct as stated in
the following proposition.

258 P. Barahona, S. Hölldobler, and V.-H. Nguyen

g2 g3g1

x2x1 x3 x4x4x3x2x1 x1 x2 x3 x4

v8v7v6 v9 v10v5v4v3v2v1 v11 v12 v13 v14 v15

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1
1

Fig. 2. An illustration of the representative-sparse encoding of the domain of a CSP
variable using a group of representative variables at level one, {g1, g2, g3}, where
exactly one variable is selected, and a set of Boolean order variables at level two,
{x1, x2, x3, x4}, where these variables are set in the constraint of the order encoding

Proposition 4. When indexing the domain values of the CSP variables into
SAT variables, the representative-order encoding is sound and complete.

Proof: The representative variables at level one, gi, 1 ≤ i ≤ m ≤ n
2 ,

divide the domain of variable V into m subdomains {v1, . . . , vn/m�},. . . ,
{v(m−1)n/m�+1, . . . , vn}.

Given the at-least-one and at-most-one clauses for the representative Boolean
variables {g1, . . . , gm} exactly one partition can be selected. Moreover, the con-
straints on the Boolean variables {x1, . . . , xr} imposed by the order encoding,
lead to the selection for V of exactly one value in the selected partition. �

The comparison of the strength of unit propagation with the order and
representative-order encodings is not straightforward. In the case of convex
domains (intervals) the order encoding is usually simpler, as it sets one sin-
gle positive and one single negative literal for the interval limits, whereas the
representative-order encoding requires the setting of the representative literals
as well. In the above example of CSP variables V having domain {1, .., 15}, an
interval V ∈ {3..10} is imposed by setting oV2 ∧ ¬oV10 in the order encoding
whereas it requires setting (gV1 ∧ xV

2)∨ gV2 in the representative-order encoding.
On the other hand, for non-convex domains, the representative-order encoding

may be more compact. For example domain V ∈ {[2..4]; [7..9]; [12..14]} is repre-
sented as xV

1 ∧¬xV
4 the representative-order encoding whereas the order encoding

requires the setting of (oV1 ∧ ¬oV4) ∨ (oV6 ∧ ¬oV9) ∨ (oV10 ∧ ¬oV14), i.e., 8 ternary
clauses. Admittedly, this is an extreme example. Nevertheless, if the order en-
coding is usually more compact, many cases exist where the representative-order
is superior, especially with non-convex domains.

4 Experiments

All experiments reported in this section were performed on a 2.66 Ghz, Intel Core
2 Quad processor with 3.8 GB of memory, under Ubuntu 10.04. Runtimes re-
ported in CPU-time are in seconds. The used solvers are riss3G [17] (SAT compe-
tition 2013 version), lingeling [5] (SAT competition 2013 version) and clasp [10]

Representative Encodings to Translate Finite CSPs 259

(clasp2.1.3x86 64linux) with default configurations, conflict-driven clause learn-
ing SAT solvers, which were ranked first on application and craft benchmarks in
different categories at recent SAT competitions. 2 We use the sequential counter
encoding [26] for the at-most-one constraint in the representative-sparse encod-
ings. The columns S 1,S 2,S√

n, and Sn/2 (O1,O2,O√
n, and On/2) refer to the

representative-sparse encodings (the representative-order encodings) with corre-
sponding partitions (1, 2,

√
n and n/2).

4.1 The Pigeon-Hole Problem

The goal of the problem is to prove that p pigeons can not be fit in h = p−1 holes.
This is a trivially unsatisfiable problem, composed exclusively of disequality
constraints on the CSP variables, which SAT solvers have difficulty to handle
(there is no all different global constraint in SAT). This is confirmed in Table 1,
for different size of the partitions (2,

√
n and n/2), which are very similar in

the case of domains of this sizes of (n ∈ 10 . . . 15). Nevertheless, the speedups
show a large variation, depending on the solver, but the most relevant finding is
that, despite their different performance, all solvers exhibit a speed-up of one to
two orders of magnitude, when the problem is encoded with the representative
encodings. The main reason for this speedups is the number of SAT variables
required to encode the problems, that is much smaller with the representative
encodings, as shown in Table 2, and compensate the fact that the clauses to
encode disequality constraints are longer (but slightly less) in the representative
encodings. Column Inst refers to p, the number of pigeons.

Table 1. The running time comparison of encodings performed by riss3G, lingeling
and clasp on unsatisfiable Pigeon-Hole instances. Runtimes reported are in seconds.

Solvers Inst S1 S2 S√
n Sn/2 O1 O2 O√

n On/2

11 64.23 1.59 0.73 0.82 0.28 0.27 0.75 0.93
12 6773.73 13.26 2.82 2.97 0.61 1.08 2.34 1.04

riss3G 13 > 7200 22.14 43.74 263.73 4.23 1.71 9.51 27.02
14 > 7200 240.24 944.55 773.06 22.69 6.28 31.37 36.72
15 > 7200 3865.60 2085.45 > 7200 680.79 106.76 331.02 1820.30

11 8.10 1.22 1.47 1.50 0.53 0.68 1.29 1.43
12 863.76 7.69 5.43 2.61 1.45 3.91 4.38 6.80

lingeling 13 > 7200 33.96 12.40 37.55 10.02 15.68 5.57 27.38
14 > 7200 514.35 101.09 273.52 24.31 36.15 79.14 53.97
15 > 7200 4540.23 738.28 4293.51 136.83 137.08 98.79 2600.62

11 10.94 0.52 0.91 0.53 1.43 0.62 1.867 0.53
12 110.11 2.84 4.92 3.56 8.26 2.73 14.15 4.37

clasp 13 1127.97 12.93 14.58 12.17 45.45 9.95 11.26 12.22
14 > 7200 75.10 94.71 77.50 602.51 32.34 100.32 73.67
15 > 7200 386.52 333.03 386.26 4264.07 153.42 305.97 368.51

Finally, it is interesting to note that the representative-order encodings per-
form better than the representative-sparse encodings, even if difference con-
straints do not require handling of bounds of the domains, and this is possibly

2 http://www.satcompetition.org

260 P. Barahona, S. Hölldobler, and V.-H. Nguyen

Table 2. The number of variables and clauses on unsatisfiable Pigeon-Hole instances

Inst S1 S2 S√
n Sn/2 O1 O2 O√

n On/2

11 220| 869 121| 704 110| 715 88| 704 110| 638 66| 605 66| 638 66| 671
12 264|1086 156| 942 120| 894 120| 978 132| 834 84| 810 72| 810 84| 918
13 312|1391 169|1157 130|1105 117|1183 156|1066 91|1014 78|1014 91|1144
14 364|1715 210|1477 168|1435 154|1561 182|1337 112|1295 98|1309 112|1491
15 420|2085 225|1770 180|1725 150|1845 210|1650 120|1575 105|1590 120|1800

caused by the use of the sequential counter to code the AMO constraints in the
representative-sparse encodings.

4.2 The Golomb Ruler Problem

A Golomb ruler (m,g) can be defined as a sequence 0 ≤ a1 < a2 < · · · < am of
m integers such that the m(m − 1)/2 differences aj − ai (1 ≤ i < j ≤ m) are
all distinct. We executed the satisfiable version of the problem to check whether
there is a ruler with am ≤ g.

Table 3. The running time comparison of encodings performed by riss3G, lingeling
and clasp for finding one solutions on Golomb Ruler instances. Runtimes reported are
in seconds.

Solvers Inst S1 S2 S√
n Sn/2 O1 O2 O√

n On/2

G(9,44) 0.49 0.76 0.82 0.52 0.13 0.80 1.56 0.20
riss3G G(10,55) 2.84 1.21 3.46 2.82 1.23 1.46 3.42 5.90

G(11,72) 1.16 9.72 29.7 48.18 33.68 54.24 9.02 0.69
G(12,85) 185.26 719.41 578.62 3121.12 235.89 35.06 705.06 5.85

G(9,44) 0.51 1.22 0.94 4.62 0.34 2.16 1.30 2.09
lingeling G(10,55) 9.27 2.26 13.33 5.53 1.09 6.78 13.42 16.72

G(11,72) 112.13 35.40 20.47 76.47 125.24 51.07 73.83 152.17
G(12,85) 566.23 753.03 458.22 84.60 685.95 356.89 2272.25 5200.11

G(9,44) 0.91 2.24 3.15 3.52 0.26 4.59 4.49 1.26
clasp G(10,55) 2.48 7.38 21.85 30.73 2.51 15.78 28.73 25.40

G(11,72) 6.76 69.63 128.88 654.78 101.67 473.63 1155.79 854.12
G(12,85) 409.53 1229.56 6992.35 > 7200 1217.28 5720.18 4703.78 4593.86

The problem includes disequality and inequality constraints on the CSP vari-
ables. Despite these latter constraints, the representative-sparse encodings seem
to perform better than the representative-order encodings. The domains are now
larger (from 44 to 85) and the execution times obtained in this problem suggest
that in this problem the speed-ups obtained with the representative encodings
are not very significant, with the notable exception of the riss3G solver.

Representative Encodings to Translate Finite CSPs 261

Table 4. The number of variables and clauses of different encodings on Golomb Ruler
instances

Inst S1 S2 S√
n Sn/2

G(9,44) 3978|105694 2043|102733 945|101608 1143|110563
G(10,55) 6070|203175 3135|198735 1210|196535 1760|215235
G(11,72) 9526|411767 4840|404650 1672|401152 2596|439806
G(12,85) 13284|686628 6786|676830 2184|672150 3666|737670

Inst O1 O2 O√
n On/2

G(9,44) 1898|135718 1044|133181 585|127610 1044|110410
G(10,55) 3035|168182 1595|260056 770|247681 1595|238041
G(11,72) 4763|350770 2453|536448 1067|512424 2453|439582
G(12,85) 6624|593115 3432|900206 1404|863516 3432|817664

Table 4 shows the number of variables and clauses required by different en-
codings. Clearly, the variability of the speedups suggest that the combined effect
of less variables and longer clauses must be further investigated.

Table 5. The running time comparison of different encodings performed by riss3G
on Graph-Colouring instances. S/U indicates the satisfiability or unsatisfiability of
instances. K is the number of colours used.

Inst K C S1 S2 S√
n Sn/2 O1 O2 O√

n On/2

jean 9 U 11.03 0.48 0.19 0.18 0.13 0.18 0.16 0.19
10 S 0.02 0.03 0.02 0.02 0.01 0.02 0.03 0.03

anna 10 U 204.87 2.02 0.76 2.62 0.53 0.85 0.49 2.51
11 S 0.09 0.06 0.05 0.06 0.03 0.05 0.06 0.05

david 10 U 156.84 2.50 0.81 2.11 0.45 1.02 0.70 2.17
11 S 0.06 0.05 0.04 0.04 0.02 0.04 0.06 0.04

DSJC125.9 10 U 940.19 6.10 6.03 5.11 1.92 5.23 5.36 5.90
11 U >7200 13.86 10.18 5.23 5.82 7.67 8.55 6.13

huck 10 U 213.12 2.39 1.09 2.90 0.42 0.71 1.07 2.22
11 S 0.04 0.03 0.03 0.02 0.02 0.04 0.04 0.03

miles500 10 U 606.15 2.92 1.36 2.96 1.09 0.97 1.13 3.03
11 U 5872.35 8.93 2.87 2.15 12.32 2.78 3.93 3.29

miles750 10 U 580.88 2.38 2.18 2.61 0.84 1.13 0.93 2.74
11 U >7200 15.50 10.92 2.93 4.51 5.60 5.93 2.98

miles1000 10 U 531.56 2.98 2.12 3.58 0.90 1.82 3.87 2.71
11 U >7200 8.54 2.31 2.45 2.59 3.60 4.00 7.75

miles1500 10 U 959.88 4.61 3.66 4.43 1.66 3.62 4.52 4.96
11 U >7200 11.75 6.58 4.12 3.49 6.67 7.21 4.65

queen12 12 10 U 270.75 2.51 1.71 1.96 1.02 1.64 1.34 3.30
11 U 4926.12 7.97 4.12 4.49 2.93 4.44 11.73 4.72

queen13 13 10 U 258.80 3.35 2.00 2.86 0.93 1.82 1.90 2.90
11 U 2359.51 11.20 7.10 7.54 7.12 5.61 7.05 6.69

queen14 14 10 U 276.38 4.38 1.66 2.72 1.06 2.22 2.32 2.61
11 U 3057.18 19.35 2.46 2.76 3.64 5.16 4.34 18.61

queen15 15 10 U 472.29 3.36 3.24 3.14 1.22 2.47 2.59 3.95
11 U 6478.20 23.94 7.95 2.96 6.74 6.04 9.75 6.55

queen16 16 10 U 170.77 3.74 2.89 3.40 1.68 3.02 3.44 4.12
11 U 2829.32 16.24 9.52 14.33 10.25 6.56 4.32 9.35

262 P. Barahona, S. Hölldobler, and V.-H. Nguyen

4.3 The Graph Colouring Problem

The well known Graph Colouring problem consists of finding an assignment of k
colours to the vertices of an undirected graph, such that no two adjacent vertices
share the same colour. We experimented on several hard unsatisfiable instances
from [30], and report the results obtained in Table 5 and Table 6 (results obtained
with clasp were similar to those with riss3G and were omitted for lack of space).

Like with the pigeon hole problem, the representative-order encodings per-
form better than the representative-sparse encodings, and in the former the rep-
resentative encodings have similar runtimes, with some marginal speedup. The
effect of the representative encoding much stronger in the sparse case, where in
both solvers, speed-ups of one or two orders of magnitude are achieved with the
representative-sparse encodings, typically favoring a

√
n number of partitions.

Table 6. The running time comparison of different encodings performed by lingeling
on Graph-Colouring instances. S/U indicates the satisficability or unsatisfiability of
instances. K is the number of colors used. Runtimes reported are in seconds.

Inst K S/U S1 S2 S√
n Sn/2 O1 O2 O√

n On/2

jean 9 U 0.02 0.02 0.02 0.02 0.74 0.68 0.65 0.80
10 S 20.86 0.81 1.53 0.84 0.01 0.01 0.02 0.02

anna 10 U 142.53 1.74 2.28 1.70 1.06 1.52 1.44 2.01
11 S 0.04 0.07 0.07 0.07 0.04 0.05 0.04 0.05

david 10 U 130.68 2.24 2.03 3.17 1.03 1.52 2.02 2.03
11 S 0.02 0.05 0.05 0.06 0.03 0.04 0.03 0.04

huck 10 U 119.64 1.77 1.78 1.86 0.98 1.36 1.90 1.44
11 S 0.02 0.04 0.04 0.04 0.02 0.02 0.02 0.02

DSJC125.9 10 U 0.04 2.85 2.32 2.96 1.92 2.04 1.29 2.41
11 U 0.04 13.17 10.49 6.96 13.65 4.67 4.70 5.73

miles500 10 U 1532.22 1.78 2.34 2.26 3.91 1.90 1.60 2.79
11 U >7200.0 25.77 9.62 8.36 5.48 3.71 5.37 3.68

miles750 10 U 2041.76 2.39 2.72 2.08 1.90 2.04 1.05 2.80
11 U 6685.31 36.54 7.96 7.80 6.94 5.14 2.94 6.50

miles1000 10 U 2.76 2.49 2.63 2.07 2.32 2.23 1.17 2.11
11 U 2331.27 47.70 10.36 6.35 8.08 4.96 3.56 6.56

miles1500 10 U 0.56 3.85 2.62 3.34 3.96 3.04 1.63 3.15
11 U 4.18 43.68 8.17 7.62 15.23 9.22 3.90 6.48

queen12 12 10 U 721.29 2.70 3.04 2.28 1.22 2.08 1.06 2.09
11 U 2185.73 20.20 5.42 6.62 2.68 5.60 3.01 3.89

queen13 13 10 U 488.37 2.35 1.28 2.08 1.73 2.07 1.15 2.64
11 U >7200.0 35.73 6.60 6.47 3.74 4.69 5.26 4.64

queen14 14 10 U 715.68 2.80 1.38 2.81 2.96 2.43 1.36 1.98
11 U >7200.0 29.44 6.50 16.59 6.79 5.56 6.16 5.74

queen15 15 10 U 1760.25 2.96 1.60 2.42 4.52 2.53 1.46 2.91
11 U >7200.0 27.35 7.59 5.76 15.30 5.10 3.75 4.93

queen16 16 10 U 1679.02 3.25 1.83 3.13 4.33 2.94 1.63 2.20
11 U >7200.0 34.58 5.68 6.49 11.94 6.12 3.97 5.10

Representative Encodings to Translate Finite CSPs 263

4.4 The Open Shop Scheduling Problem

Given a set of jobs, each consisting of a set of tasks that must be processed once
in any order on a set of machines, the goal of this combinatorial optimization
problem is to find a schedule of all tasks so as to complete all jobs within a given
makespan. All CSP constraints of this problem are inequalities. The benchmarks
used here were taken from [27]. Column Instance identifies the instances of the
problem, where ab refers to the bth instance of the benchmark with a jobs and a
machines. Again, results obtained with clasp were similar to those with riss3G
and were omitted for lack of space.

Table 7. The running time comparison of encodings performed by riss3G on Open
Shop Scheduling instances. M is the makespan used. S/U indicates the satisfiability or
unsatisfiability of instances. Runtimes reported are in seconds.

Inst M C S1 S2 S√
n Sn/2 O1 O2 O√

n On/2

41 192 U 2.47 0.38 0.13 1.01 0.04 0.06 0.13 0.82
193 S 1.96 0.34 0.12 0.93 0.03 0.03 0.13 0.82

42 235 U 7.23 0.90 0.31 2.36 0.12 0.11 0.28 2.88
236 S 5.45 0.66 0.29 2.61 0.03 0.05 0.26 1.40

43 270 U 7.92 1.03 0.37 3.97 0.10 0.08 0.25 3.48
271 S 6.56 0.91 0.23 2.51 0.06 0.04 0.16 2.51

44 249 U 6.08 1.06 0.33 2.73 0.09 0.12 0.30 3.43
250 S 8.25 0.95 0.28 2.38 0.10 0.12 0.32 3.16

45 294 U 11.63 1.80 0.42 4.85 0.14 0.12 0.46 4.52
295 S 10.32 1.32 0.30 4.52 0.09 0.07 0.25 3.44

51 299 U 34.26 5.34 1.81 14.98 0.56 0.64 1.34 14.07
300 S 28.44 3.96 1.20 16.76 0.26 0.36 1.16 17.72

52 261 U 22.97 3.52 1.56 13.38 0.41 0.80 1.32 11.89
262 S 16.83 2.61 0.91 10.52 0.38 0.30 0.60 9 .13

53 322 U 57.62 8.71 2.08 27.43 0.74 1.02 1.71 27.35
323 S 59.26 8.36 2.45 33.86 0.63 0.46 2.02 37.72

54 309 U 49.51 9.57 2.81 31.54 0.81 0.81 2.06 27.39
310 S 55.83 7.74 2.59 30.57 0.64 0.78 1.53 28.57

55 325 U 89.77 14.22 4.74 48.54 1.32 1.62 3.27 45.41
326 S 73.65 5.45 3.07 32.27 0.97 1.20 2.72 29.58

71 434 U 734 .63 76.14 53.58 438.75 1.52 2.03 19.52 406.17
435 S 3091.31 428.58 75.24 2282.58 3.84 9.64 47.15 2454.82

72 442 U 613.37 28.63 9.23 124.79 1.41 2.24 14.24 471.24
443 S 2763.21 96.94 63.52 2617.25 7.83 14.76 39.42 1990.25

73 467 U 234.10 18.38 14.62 251.62 1.69 6.07 37.15 229.25
468 S >7200 1666.27 267.08 3986.71 41.64 30.81 187.10 4756.72

74 462 U 434.92 23.73 13.41 195.62 1.38 6.05 27.93 339.06
463 S 5729.13 567.61 92.15 3914.25 6.20 22.28 75.75 3905.14

75 415 U 272.00 20.22 30.14 226.33 1.24 7.12 7.72 477.94
416 S 1938.91 489.42 84.89 1909.78 7.26 7.59 58.20 1057.52

264 P. Barahona, S. Hölldobler, and V.-H. Nguyen

As expected, in this problem where CSP inequality constraints dominate, the
order encoding is much faster than the sparse encoding. The former is par-
ticularly adequate to propagate changes in the bounds, and no speedups were
expected with representative encodings (and in fact a slow-down is observed).

What is more interesting is that the representative-sparse encodings perform
very similarly to the representative-order encodings, in both solvers, possibly
due to the fact that the partition of the large size domains (size 192 to 416)
efficiently propagates the changes in the bounds, for which the sparse encoding
is not suited. Overall, the representative encodings perform worse than the order
encoding but significantly better than the sparse encoding, specially when the
number of SAT variables in levels 1 and 2 are balanced (S√

n).

Table 8. The running time comparison of encodings performed by lingeling on Open
Shop Scheduling instances. M is the makespan used. S/U indicates the satisficability
or unsatisfiability of instances. Runtimes reported are in seconds.

Inst M C S1 S2 S√
n Sn/2 O1 O2 O√

n On/2

41 192 U 1.81 0.92 0.31 3.72 0.12 0.17 0.66 2.15
193 S 8.31 1.10 0.32 3.78 0.12 0.16 0.69 2.23

42 235 U 22.14 2.40 1.11 4.60 0.28 0.28 0.98 4.88
236 S 18.16 2.13 1.03 4.67 0.10 0.21 0.94 4.16

43 270 U 43.43 2.81 1.26 8.82 0.30 0.28 0.50 7.37
271 S 47.99 2.80 1.19 6.91 0.24 0.26 0.49 7.12

44 249 U 23.03 2.67 1.12 6.71 0.25 0.29 0.93 6.88
250 S 27.11 2.36 1.15 5.26 0.21 0.22 0.91 5.18

45 294 U 41.87 3.39 1.42 9.54 0.34 0.33 0.68 11.04
295 S 42.16 2.77 1.29 7.03 0.28 0.31 0.51 7.11

51 299 U 192.11 47.74 3.87 37.16 1.07 1.23 3.46 34.22
300 S 185.54 47.71 4.14 32.39 0.40 1.05 2.33 37.01

52 261 U 132.14 30.11 3.54 27.93 1.02 1.17 3.22 25.20
262 S 106.02 2.53 2.67 19.09 0.61 0.70 2.79 20.82

53 322 U 242.74 66.64 4.41 40.80 1.29 2.46 3.52 48.04
323 S 230.84 58.65 6.24 38.61 1.62 1.63 3.52 46.48

54 309 U 271.32 51.13 6.48 38.97 1.59 1.89 5.35 51.42
310 S 114.86 47.44 5.92 36.84 0.94 1.24 5.06 51.57

55 325 U 351.43 76.02 8.64 53.36 2.91 0.30 4.56 62.49
326 S 249.76 72.24 6.43 40.63 2.32 0.31 5.74 45.34

71 434 U 6883.68 602.19 55.61 661.07 1.95 1.62 51.16 628.88
435 S >7200 644.73 73.62 685.32 9.54 11.40 75.56 522.86

72 442 U 3675.26 389.77 50.41 358.64 4.03 2.14 46.13 468.23
443 S 3454.09 414.08 76.16 594.33 8.86 9.70 50.07 822.75

73 467 U 6679.69 804.14 82.39 404.46 2.26 16.43 88.32 2108.54
468 S >7200 4026.52 162.19 2074.28 34.81 33.72 91.38 2236.85

74 462 U >7200 1853.84 58.75 944.45 2.09 1.86 53.96 910.24
463 S 6767.76 1668.02 62.32 913.24 23.04 20.57 73.70 520.93

75 415 U 4049.08 712.38 47.01 405.28 2.20 3.46 40.76 306.70
416 S 2279.14 807.89 48.15 404.55 6.98 9.21 79.28 735.05

Representative Encodings to Translate Finite CSPs 265

5 Conclusions and Future Works

This paper introduces two specific hierarchical hybrid encodings, the
representative-sparse and representative-order encodings, for modeling CSPs as
propositional SAT problems, which aim at taking advantage of the sparse and
order encodings, but requiring significant smaller number of SAT variables. The
new encodings, that use only two levels in the hierarchy (all experiments we did
with three or more levels were clearly less efficient) can be parameterised by
different sizes of the level one of the hierarchy, and in general these hierarchical
encodings are incomparable with respect to their flat counterparts (the sparse
and -order encodings which are special cases with one single partition). The
experimental results in a set of representative benchmarks show that, regardless
of the variability of run times in different SAT solvers, the representative encod-
ings are quite competitive and usually outperform (sometimes very significantly)
the sparse and order encodings, with the exception of CSP problems where in-
equality constraints dominate, in which case the order encoding is still the best
option. More work remains to be done to further assess the merit of these new
encodings and, in particular, we intend to further investigate how to tune the
number of partitions for different CSP problems and SAT solvers. One appeal-
ing work into apply some redundancy for the second level of the representative
encodings, as outlined in [3].

Acknowledgment. We thank Christoph Wernhard, Norbert Manthey, Peter
Steinke, and Tobias Philipp for useful suggestions. We are grateful to Miroslav
N. Velev for the previous works.

References

1. Ansótegui, C., del Val, A., Dotú, I., Fernández, C., Manyà, F.: Modeling Choices in
Quasigroup Completion: SAT vs. CSP. In: McGuinness, D.L., Ferguson, G. (eds.)
Proceedings of the 19th National Conference on Artificial Intelligence, Sixteenth
Conference on Innovative Applications of Artificial Intelligence, pp. 137–142. AAAI
Press / The MIT Press (2004)

2. Bailleux, O., Boufkhad, Y.: Efficient CNF Encoding of Boolean Cardinality Con-
straints. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 108–122. Springer,
Heidelberg (2003)

3. Barahona, P., Hölldobler, S., Nguyen, V.H.: Efficient SAT-Encoding of Linear CSP
Constraints. In: 13rd International Symposium on Artificial Intelligence and Math-
ematics - ISAIM, Fort Lauderdale, Florida, USA, January 6-8 (2014)

4. Berre, D.L., Lynce, I.: CSP2SAT4J: A Simple CSP to SAT Translator. In: van
Dongen, M., Lecotre, C., Rossel, O. (eds.) Proceedings of the Second International
CSP Solver Competition, pp. 43–54 (2006)

5. Biere, A.: Lingeling, Plingeling and Treengeling Entering the SAT Competition
2013. In: Adrian Balint, A.B., Heule, M., Järvisalo, M. (eds.) Proceedings of SAT
Competition 2013, pp. 51–52 (2013)

6. Cadoli, M., Schaerf, A.: Compiling Problem Specifications into SAT. Artificial In-
telligence 162(1-2), 89–120 (2005)

266 P. Barahona, S. Hölldobler, and V.-H. Nguyen

7. Crawford, J.M., Baker, A.B.: Experimental Results on the Application of Satisfia-
bility Algorithms to Scheduling Problems. In: Hayes-Roth, B., Korf, R.E. (eds.)
Proceedings of the 12th National Conference on Artificial Intelligence, vol. 2,
pp. 1092–1097. AAAI Press / The MIT Press (1994)

8. Frisch, A.M., Giannoros, P.A.: SAT Encodings of the At-Most-k Constraint. Some
Old, Some New, Some Fast, Some Slow. In: Proc. of the Tenth Int. Workshop of
Constraint Modelling and Reformulation (2010)

9. Gavanelli, M.: The Log-Support Encoding of CSP into SAT. In: Bessière, C. (ed.)
CP 2007. LNCS, vol. 4741, pp. 815–822. Springer, Heidelberg (2007)

10. Gebser, M., Kaufmann, B., Schaub, T.: The Conflict-Driven Answer Set Solver
clasp: Progress Report. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009.
LNCS, vol. 5753, pp. 509–514. Springer, Heidelberg (2009)

11. Gent, I.P.: Arc Consistency in SAT. In: van Harmelen, F. (ed.) Proceedings of the
15th European Conference on Artificial Intelligence, ECAI 2002, pp. 121–125. IOS
Press (2002)

12. Hölldobler, S., Manthey, N., Nguyen, V., Steinke, P.: Solving Hidokus Using SAT
Solvers. In: Proc. INFOCOM-5, pp. 208–212 (2012) ISSN 2219-293X

13. Hölldobler, S., Nguyen, V.H.: On SAT-Encodings of the At-Most-One Constraint.
In: Katsirelos, G., Quimper, C.G. (eds.) Proc. Twelfth International Workshop
on Constraint Modelling and Reformulation, Uppsala, Sweden, September 16-20,
pp. 1–17 (2013)

14. Jeavons, P., Petke, J.: Local Consistency and SAT-Solvers. J. Artif. Intell. Res
(JAIR) 43, 329–351 (2012)

15. Kautz, H., Selman, B.: The State of SAT. Discrete Appl. Math. 155, 1514–1524
(2007)

16. de Kleer, J.: A Comparison of ATMS and CSP Techniques. In: IJCAI, pp. 290–296
(1989)

17. Manthey, N.: The SAT Solver RISS3G at SC 2013. Department of Computer Sci-
ence Series of Publications B, vol. B-2013-1, pp. 72–73. University of Helsinki,
Helsinki, Finland (2013)

18. Metodi, A., Codish, M.: Compiling Finite Domain Constraints to SAT with BEE.
Theory and Practice of Logic Programming 12(4-5), 465–483 (2012)

19. Nguyen, V.H., Velev, M.N., Barahona, P.: Application of Hierarchical Hybrid En-
codings to Efficient Translation of CSPs to SAT. In: Brodsky, A. (ed.) Proc. 2013
IEEE 25th International Conference on Tools with Artificial Intelligence (ICTAI
2013), Special Track on SAT and CSP. pp. 1028–1035. Conference Publishing
Services (2013)

20. Ohrimenko, O., Stuckey, P., Codish, M.: Propagation via Lazy Clause Generation.
Constraints 14(3), 357–391 (2009)

21. Prestwich, S.D.: Full Dynamic Substitutability by SAT Encoding. In: Wallace, M.
(ed.) CP 2004. LNCS, vol. 3258, pp. 512–526. Springer, Heidelberg (2004)

22. Prestwich, S.D.: Local Search on SAT-encoded Colouring Problems. In:
Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 105–119.
Springer, Heidelberg (2004)

23. Prestwich, S.D.: CNF Encodings, ch. 2, pp. 75–98. IOS Press (2009)
24. Rossi, F., Beek, P.V., Walsh, T.: Handbook of Constraint Programming (Founda-

tions of Artificial Intelligence). Elsevier Science Inc., New York (2006)
25. Marques-Silva, J., Lynce, I.: Towards Robust CNF Encodings of Cardinality Con-

straints. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 483–497. Springer,
Heidelberg (2007)

Representative Encodings to Translate Finite CSPs 267

26. Sinz, C.: Towards an Optimal CNF Encoding of Boolean Cardinality Constraints.
In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 827–831. Springer, Heidelberg
(2005)

27. Taillard, É.:
http://mistic.heig-vd.ch/taillard/problemes.dir/

ordonnancement.dir/ordonnancement.html

28. Tamura, N., Taga, A., Kitagawa, S., Banbara, M.: Compiling Finite Linear CSP
into SAT. Constraints 14(2), 254–272 (2009)

29. Tanjo, T., Tamura, N., Banbara, M.: A Compact and Efficient SAT-Encoding of Fi-
nite Domain CSP. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695,
pp. 375–376. Springer, Heidelberg (2011)

30. Trick, M.: DIMACS Graph-Coloring Problems,
http://mat.gsia.cmu.edu/COLOR/instances.html

31. Velev, M.N.: Exploiting Hierarchy and Structure to Efficiently Solve Graph Col-
oring as SAT. In: International Conference on Computer-Aided Design (ICCAD
2007), San Jose, CA, USA, pp. 135–142. IEEE (2007)

32. Walsh, T.: SAT v CSP. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 441–456.
Springer, Heidelberg (2000)

http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/ordonnancement.html
http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/ordonnancement.html
http://mat.gsia.cmu.edu/COLOR/instances.html

SAT and Hybrid Models of the Car Sequencing Problem

Christian Artigues1,2, Emmanuel Hebrard1,2, Valentin Mayer-Eichberger3,4,
Mohamed Siala1,5, and Toby Walsh3,4

1 CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
2 Univ de Toulouse, LAAS, F-31400 Toulouse, France

3 NICTA
4 University of New South Wales

5 Univ de Toulouse, INSA, LAAS, F-31400 Toulouse, France
{artigues,hebrard,siala}@laas.fr,

{valentin.mayer-eichberger,toby.walsh}@nicta.com.au

Abstract. We compare both pure SAT and hybrid CP/SAT models for solving
car sequencing problems, and close 13 out of the 23 large open instances in
CSPLib. Three features of these models are crucial to improving the state of
the art in this domain. For quickly finding solutions, advanced CP heuristics are
important and good propagation (either by a specialized propagator or by a so-
phisticated SAT encoding that simulates one) is necessary. For proving infeasi-
bility, clause learning in the SAT solver is critical. Our models contain a number
of novelties. In our hybrid models, for example, we develop a linear time mecha-
nism for explaining failure and pruning the ATMOSTSEQCARD constraint. In our
SAT models, we give powerful encodings for the same constraint. Our research
demonstrates the strength and complementarity of SAT and hybrid methods for
solving difficult sequencing problems.

1 Introduction

In the car sequencing problem [26], we sequence a set of vehicles along an assembly
line. Each class of cars requires a set of options. However, the working station handling
a given option can only deal with a fraction of the cars passing on the line. Each option
j is thus associated with a fractional number uj/qj standing for its capacity (at most uj

cars with option j occur in any sub-sequence of length qj). Several global constraints
have been proposed in the Constraint Programming (CP) literature to model this family
of sequence constraints. At present, CP models with the ATMOSTSEQCARD constraint
[23] or its combination with the Global Sequencing Constraint (GSC) [20] have pro-
vided the best performance. However, pure CP approaches suffer when we consider
proving unsatisfiability. The goal of this paper is to show that by exploiting Boolean-
Satisfiability (SAT), we can improve upon the state of the art in this domain. We are
able to close 13 out the 23 large open instances in CSPLib.

We propose several approaches combining ideas from SAT and CP for solving the
car sequencing problem. First, we capture CP propagation in SAT by a careful formula-
tion of the problem into conjunctive normal form (CNF). We propose a family of pure
SAT encodings for this problem and relate them to existing encoding techniques. They
are based on an extension of Sinz’s encoding for the CARDINALITY constraint [24]

H. Simonis (Ed.): CPAIOR 2014, LNCS 8451, pp. 268–283, 2014.
c© Springer International Publishing Switzerland 2014

SAT and Hybrid Models of the Car Sequencing Problem 269

and have similarities to the decomposition of the GEN-SEQUENCE constraint given in
[2]. Second, we introduce a linear time procedure for computing compact explanations
for the ATMOSTSEQCARD constraint. This algorithm can be used in a hybrid CP/SAT
approach such as SAT Modulo Theory or lazy clause generating solver, where non-
clausal constraints need a propagator and an explanation algorithm. In principle, the
hybrid approach has access to all the advances from the SAT world, whilst benefiting
from constraint propagation and dedicated branching heuristics from CP. However, our
experiments reveal that in practice, SAT solvers maintain an edge when proving unsat-
isfiability. Due to the most up to date data structures and tuning of parameters for literal
activity and clause deletion, encoding into SAT significantly outperforms the hybrid
approach on hard unsatisfiable instances.

We made three observations based on these experiments: First, CP heuristics are
good at quickly finding solutions. Whilst generic activity based heuristics are surpris-
ingly robust, dedicated CP can be much faster. Second, propagation, either through
finite domain propagators, or through unit propagation via a “strong” encoding, is ex-
tremely important for finding solutions reliably on harder instances. Strong propagation
makes it less likely to enter an unsatisfiable subproblem during search. In conjunc-
tion with this, restarting ensures that these unlikely cases do not matter. Third, clause
learning is critical for proving unsatisfiability. In this respect, the approaches that we
introduce (especially the SAT encodings) greatly improve the state of the art for the
car sequencing problem. Moreover, counter-intuitively, it does not seem that constraint
propagation of the ATMOSTSEQCARD constraint nor the “strength” of the SAT encod-
ing, has a significant impact on the ability of the solver to prove unsatisfiability.

The remainder of this paper is organized as follows. In Section 2, we give some
background on CP, SAT and their hybridization. In Section 3, we recall the state of the
art CP models for this problem and show the connection with SAT. In Section 4, we
show that how to build explanations for the ATMOSTSEQCARD constraint based on its
propagator. Then, we present advanced SAT encodings for this constraint in Section 5.
Finally, in Section 6, we compare experimentally the approaches we introduce against
pure CP and pseudo Boolean models.

2 Background

Constraint Programming. A constraint network is defined by a triplet P = (X ,D, C)
where X is a set of variables, D is a mapping of variables to finite sets of values and C is
a set of constraints that specify allowed combinations of values for subsets of variables.
We assume that D(x) ⊂ Z for all x ∈ X . We denote [x ← v] the assignment of the
value v to the variable x, that is the restriction of its domain D(x) to {v}, similarly,
we denote [x � v] the pruning of the value v from D(x). A partial instantiation S
is a set of assignments and/or pruning such that no variable is assigned more than one
value and no value is pruned and assigned for the same variable. Let ⊥ be a failure
or a domain wipe-out, by convention equal to the set of all possible assignments and
prunings. On finite domains, we can consider a closure of partial instantiations with
respect to initial domains. That is, if the assignment [x ← v] belongs to S, we also
assume that [x � v] for all v ∈ D(x) \ v belong to S. Similarly, if all but one of the

270 C. Artigues et al.

values are pruned, the remaining value is added as an assignment. This is similar to
expanded solutions in [16]. However, we shall restrict ourselves to Boolean domains in
this paper. We therefore have S ⊆ S′ iff S′ is a stronger (tighter) partial instantiation
than S. Given an initial domain D and a partial instantiation S, we can derive a current
domain taking into account the pruning and assignments of S in D. There will not be
ambiguities about the original domains, therefore we simply denote S(x) the domain
D(x) updated by the assignment or pruning associated to x in S.

A constraint C defines a relation Rel(C), that is, a set of instantations, over the
variables in Scope(C). Let S be a partial instantiation of Scope(C). The constraint C
is said generalized arc consistent (GAC) with respect to S iff, for every x in Scope(C)
and every v ∈ S(x), there exists an instantiation T ∈ Rel(C) such that [x � v] �∈ T
(T is a support) and T ⊆ S (T is valid). We say that a constraint is dis-entailed with
respect to a partial instantiation S iff there is no T in Rel(C) such that S ⊆ T .

Throughout the paper we shall associate a propagator with a constraint C. This is
a function mapping partial instantiations to partial instantiations or to the failure ⊥.
Given a partial instantiation S, we denote C(S) for the partial instantiation (or failure)
obtained by applying the propagator associated to C on S, with S ⊆ C(S). We say that
S implies the assignment or pruning p with respect to C iff p �∈ S & p ∈ C(S). Finally,
the level of an assignment or a pruning p is the order of appearance of the assignment
(respectively pruning) in the search tree, and we denote it lvl(p). For a comprehensive
introduction to CP solving in general and its techniques we refer to [21].

SAT-Solving. The Boolean Satisfiability problem (SAT) is a particular case of CSP
where domains are Boolean and constraints are only clauses (disjunction of literals).
A SAT solver computes a satisfying instantiation of a formula of propositional logic
in conjunctive normal form (CNF) or proves that no such instantiation exists. The most
widely used method to solve SAT problems is based on the DPLL algorithm ([8]), which
is a depth first search with backtracking and unit propagation. Unit propagation (UP)
prunes the assignment of the remaining literal in a clause when all other literals have
become false. An important improvement to the DPLL algorithms is Conflict-Driven
Clause Learning (CDCL). A CDCL solver records for each conflict an appropriate rea-
son in form of a clause, and adds it to the clause database. This can potentially prune
unseen parts of the search tree. Furthermore, SAT solvers are equipped with robust
domain-independent branching and decision heuristics (for instance VSIDS [17]). For
a comprehensive introduction to SAT solving in general and its techniques we refer
to [4].

Modelling in CNF is a crucial step for the success of solving problems with SAT. A
natural approach to find a good SAT model is to describe the problem with higher level
constraints and then translate these constraints to CNF. In accordance with this method-
ology, the representation of integer domains and encodings of a variety of global con-
straints have been proposed and analyzed [2,13,28]. Similarly the notion of GAC has
been adapted to SAT. UP is said to maintain GAC on the CNF encoding of a constraint
if it forces all assignments to the variables representing values that must be set to avoid
unsatisfiability of the constraint. The quality of an encoding into SAT is measured by
both its size and its level of consistency by UP. Moreover, we must taken into account
that SAT solvers cannot distinguish between the original variables and any auxiliary

SAT and Hybrid Models of the Car Sequencing Problem 271

variables introduced to produce a more compact encoding. Thus, when aiming for a
good CNF encoding, we must consider how such auxiliary variables might increase
propagation.

2.1 Hybrid CP/SAT

The notion of nogood learning in constraint programming is not new, in fact it pre-
dates [22] similar concepts in SAT. However, CDCL learns and uses nogoods in a par-
ticular way, and such methods have been reintroduced into CP. For instance Katsirelos’s
generalized nogoods [15] [16] enable nogood learning with arbitrary domains. Another
complexity is that propagation is now not restricted to unit propagation. A given con-
straint can be associated with a specific propagator. However, to perform clause learn-
ing, it is necessary to explain either a failure or the pruning of a domain value.We say
that a partial instantiation S is an explanation of the pruning [x � v] with respect to a
constraint C if it implies [x � v] (that is, [x � v] ∈ C(S) \ S). Moreover, S is a valid
explanation iff lvl([x � v]) > max({lvl(p) | p ∈ S}).

In this paper we use a solver with an architecture similar to Lazy Clause Generation
with backward explanations [12]. In addition to a propagator, an explanation algorithm
is associated with each constraint. However, as opposed to explanation based constraint
programming [6,7], the explanations are used exactly as in CDCL, i.e., literals are re-
placed by their explanation until the current nogood contains a Unique Implication Point
of the current level’s pruning. In this sense it is very close to the way some Pseudo-
Boolean CDCL solvers, such as PBS [1], PBChaff [9] or SAT4JPseudo [3] integrate
unit propagations on clauses, dedicated propagators and explanations (cutting planes)
for linear equations. On Boolean domains, the hybrid SAT/CP approach we use works
as follows:

Propagation: The propagation is performed by a standard CP engine, except that for
each pruned value we record the constraint responsible for this pruning (a simple pointer
to the constraint is stored). Both original and learned clauses are handled by a dedicated
propagator simulating the behavior of a clause base (i.e., using watched literals).

Learning: When a failure is raised, the standard CDCL conflict analysis algorithm is
used. The constraint C responsible for the failure is asked to provide an explanation for
this failure. The literals of this explanation form the base nogood Ng. Subsequently,
any assignment [x ← v] such that lvl([x ← v]) ≥ lvl(d) where d is the last deci-
sion, is removed from Ng and replaced by its explanation by the constraint marked as
responsible for it. This process continues until Ng has a Unique Implication Point.

Search: Since a CP library (Mistral1) was used to implement this approach, it is possi-
ble to use hand made CP heuristics as well as built-in strategies such as VSIDS. How-
ever, as in CDCL algorithms, branching decisions are not refuted in a “right” branch.
Instead, we backjump to the second highest level of literals in the learned clauses, and
unit propagation for this clause is triggered.

1 https://github.com/ehebrard/Mistral-2.0

272 C. Artigues et al.

3 The Car Sequencing Problem

In the car sequencing problem, n vehicles have to be produced on an assembly line.
There are c classes of vehicles and m types of options. Each class k ∈ {1, . . . , c} is
associated with a demand Dclass

k , that is, the number of occurrences of this class on
the line, and a set of options Ok ⊆ {1, . . . ,m}. Each option is handled by a working
station able to process only a fraction of the vehicles passing on the line. The capacity
of an option j is defined by two integers uj and qj , such that no subsequence of size qj
may contain more than uj vehicles requiring option j. A solution of the problem is then
a sequence of cars satisfying both demand and capacity constraints. For convenience,
we shall also define, for each option j, the corresponding set of classes of vehicles re-
quiring this option Cj = {k | j ∈ Ok}, and the option’s demand Dj =

∑
k∈Cj

Dclass
k .

3.1 CP Modelling

As in a standard CP Model, we use two sets of variables. The first set corresponds
to n integers {x1, . . . , xn} taking values in {1, . . . , c} and standing for the class of
vehicles in each slot of the assembly line. The second set of variables corresponds to
nm Boolean variables {o11, . . . , omn }, where oji stands for whether the vehicle in the ith

slot requires option j. For the constraints, we distinguish three sets:

1. Demand constraints: for each class k ∈ {1..c}, |{i | xi = k}| = Dclass
k . This

constraint is usually enforced with a Global Cardinality Constraint (GCC) [19] [18].
2. Capacity constraints: for each option j ∈ {1..m}, we post the constraint

ATMOSTSEQCARD(uj , qj , Dj , [o
j
1..o

j
n]) using the propagator introduced in [23].

3. Channelling: Finally, we channel integer and Boolean variables: ∀j ∈ {1, ...,m},
∀i ∈ {1, ..., n}, oji = 1 ⇔ xi ∈ Cj

3.2 Default Pseudo-boolean and SAT Models

The above CP Model can be easily translated into a pseudo Boolean model since the
majority of the constraints are sum expressions. We use the same Boolean variables oji
standing for whether the vehicle in the ith slot requires option j. Moreover, the class
variables are split into nc Boolean variables cji standing for whether the ith vehicle is
of class j. We have the same constraints as in the CP model, albeit expressed slightly
differently. Moreover, we need to constrain variables standing for class assignment of
the same slot to be mutually exclusive.

1. Demand constraints: ∀j ∈ [1..c],
∑

i c
j
i = Dj

2. Capacity constraints:
∑i+qj−1

l=i ojl ≤ uj , ∀i ∈ {1, . . . , n− qj + 1}
3. Channelling:

– ∀i ∈ [1..n], ∀l ∈ [1..c], we have:

• ∀j ∈ Ol, cli ∨ oji

• ∀j /∈ Ol, cli ∨ oji

SAT and Hybrid Models of the Car Sequencing Problem 273

– For better propagation, we add the following redundant clause:

∀i ∈ [1..n], j ∈ [1..m], oji∨ ∨ l∈Cj c
l
i

4. Domain constraints: a vehicle belong to only one class: ∀i ∈ [1..n],
∑

j c
j
i = 1

A SAT Encoding for this problem could translate each sum constraint (in this case
only CARDINALITY constraints) into a CNF formula. We will show in Section 5 how
such a translation can be improved.

4 Explaining the ATMOSTSEQCARD Constraint

We present here an algorithm explaining the ATMOSTSEQCARD constraint. This algo-
rithm is based on the propagator for this constraint, which we therefore now recall. Let
[x1, x2..xn] be a sequence of Boolean variables, u, q and d be integer variables. The
ATMOSTSEQCARD constraint is defined as follows:

Definition 1.

ATMOSTSEQCARD(u, q, d, [x1, . . . , xn]) ⇔
n−q∧
i=0

(

q∑
l=1

xi+l ≤ u) ∧ (

n∑
i=1

xi = d)

In [23], the authors proposed a O(n) filtering algorithm achieving AC on this con-
straint. We outline the main idea of the propagator.

Let X = [x1..xn] be a sequence of variables, and S a partial instantiation over these
variables. The procedure leftmost returns an instantiation −→w S ⊇ S of maximum
cardinality by greedily assigning the value 1 from left to right while respecting the
ATMOST constraints. Let −→w i

S denote the partial instantiation −→w S at the beginning of
iteration i, and let −→w 1

S = S. The value maxS(i) denotes the maximum minimum car-
dinality, with respect to the current domain −→w i

S , of the q subsequences involving xi. It
is computed alongside −→w S and will be useful to explain the subsequent pruning/failure.
It is formally defined as follows (where min(−→w i

S(xk)) = 0 if k < 1 or k > n):

maxS(i) = max
j∈[1..q]

(

i+j−1∑
k=i−q+j

min(−→w i
S(xk)))

Definition 2. The outcome of the procedure leftmost can be recursively defined us-
ing maxS: at each step i, leftmost adds the assignment [xi ← 1] iff this assignment
is consistent with −→w i

S and maxS(i) < u, it adds the assignment [xi ← 0] otherwise.

Example 1. For instance, consider the execution of the procedure leftmost on the
constraint ATMOSTSEQCARD(2, 4, 6, [x1, x2, x3, x4, x5, x6, x7, x8, x9, x10]). We sup-
pose that we start from the partial instantiation {[x2 ← 0], [x6 ← 1], [x8 ← 0]}. Ini-
tially, we have the following structures, for each i representing an iteration (and also the
index of a variable):

274 C. Artigues et al.

1 2 3 4 5 6 7 8 9 10
−→w 1

S(xi) {0, 1} 0 {0, 1} {0, 1} {0, 1} 1 {0, 1} 0 {0, 1} {0, 1}
−→w 2

S(xi) 1 0 {0, 1} {0, 1} {0, 1} 1 {0, 1} 0 {0, 1} {0, 1}
−→w 3

S(xi) 1 0 {0, 1} {0, 1} {0, 1} 1 {0, 1} 0 {0, 1} {0, 1}
−→w 4

S(xi) 1 0 1 {0, 1} {0, 1} 1 {0, 1} 0 {0, 1} {0, 1}
. . .

−→w 11
S (xi) 1 0 1 0 0 1 1 0 0 1

maxS(i) 0 1 1 2 2 1 1 2 2 1

The partial solution −→w 1
S is equal to S. Then at each step i, leftmost adds the as-

signment [xi ← 1] or [xi ← 0] according to Definition 2. For instance, at the begining of
step 4, the subsequences to consider are [x1, x2, x3, x4], [x2, x3, x4, x5], [x3, x4, x5, x6]
and [x4, x5, x6, x7], of cardinality 2, 1, 2 and 1, respectively, with respect to the instan-
tiation −→w 4

S(xi). The value of maxS(4) is therefore 2.

To detect failure, we simply need to run this procedure and check that the final cardi-
nality of −→w S is greater than or equal to the demand d. We shall see that we can explain
pruning by using essentially the same procedure.

In order to express declaratively the full propagator, we need the following further
steps: The same procedure is applied on variables in reverse order [xn..x1], yielding
the instantiation ←−w S . Observe that the returned instantiations −→w S and ←−w S assign every
variable in the sequence to either 0 or 1. We denote respectively LS(i) and RS(i) the
sum of the values given by −→w S (resp. ←−w S) to the i first variables (resp. n − i + 1 last
variables). That is:

LS(i) =

i∑
k=1

min(−→w S(xk)) , RS(i) =

n∑
k=i

min(←−w S(xk))

Now we can define the propagator associated to the constraint ATMOSTSEQCARD

described in [23], and which is a conjunction of GAC on the ATMOST (i.e.
∑q

l=1 xi+l ≤
u) constraints on each subsequence, of CARDINALITY constraint

∑n
i=1 xi = d, and of

the following:

ATMOSTSEQCARD(S) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

S, if LS(n) > d
⊥, if LS(n) < d
S ∪ {[xi ← 0] | S(xi) = {0, 1}

& LS(i) +RS(i) ≤ d}
∪ {[xi ← 1] | S(xi) = {0, 1}

& LS(i− 1) +RS(i + 1) < d} otherwise

(4.1)

If a failure/pruning is detected by the CARDINALITY or an ATMOST constraint,
then it is easy to give an explanation. However, if a failure or a pruning is due to the
propagator defined in equation 4.1, then we need to specify how to generate a relevant
explanation. We start by giving an algorithm explaining a failure. We show after that
how to use this algorithm to explain pruning.

SAT and Hybrid Models of the Car Sequencing Problem 275

4.1 Explaining Failure

Suppose that the propagator detects a failure at a given level l. The original instantiation
S would be a possible naive explanation expressing this failure. We propose in the
following a procedure generating more compact explanations.

In example 2, the instantiation S = {[x1 ← 1], [x3 ← 0], [x6 ← 0]} is subject
to ATMOSTSEQCARD(2, 5, 3, [x1..x6]). S is unsatisfiable since LS(6) < d. Consider
now the sequenceS∗ = {[x6 ← 0]}. The result of leftmost on S and S∗ is identical.
Therefore, S∗ and S are both valid explanations for this failure, however S∗ is shorter.
The idea behind our algorithm for computing shorter explanations is to characterise
which assignments will have no impact on the behavior of the propagator, and thus are
not necessary in the explanation.

Example 2.

S 1 . 0 . . 0−→w (S) 1 1 0 0 0 0
max(S) 1 1 2 2 2 1
L(S) 1 2 2 2 2 2

d = 3
L(6) = 2
→ Failure

S∗ 0−→w (S∗) 1 1 0 0 0 0
max(S∗) 1 1 2 2 2 1
L(S∗) 1 2 2 2 2 2

d∗ = 3
L∗(6) = 2
→ Failure

Let I = [xk+1..xk+q] be a (sub)sequence of variables of size q and S be a partial in-
stantiation. We denote card(I, S) the minimum cardinality of I under the instantiation
S, that is: card(I, S) =

∑
xi∈I min(S(xi)).

Lemma 1. If S∗ = S \ ({[xi ← 0] | maxS(i) = u} ∪ {[xi ← 1] | maxS(i) �= u})
then −→w S = −→w S∗ .

Proof. Suppose that there exists an index i ∈ [1..n] s.t. −→w S(xi) �= −→w S∗(xi) and let k be
the smallest index verifying this property. Since the instantiationS∗ is a subset of S (i.e.,
S∗ is weaker than S) and since leftmost is a greedy procedure assigning the value
1 whenever possible from left to right, it follows that −→w S(xk) = 0 and −→w S∗(xk) = 1.
Moreover, it follows that maxS(k) = u and maxS∗(k) < u. In other words, there
exists a subsequence I containing xk s.t the cardinality of I in −→w k

S (i.e. card(I,−→w k
S))

is equal to u, and the cardinality of I in −→w k
S∗ (card(I,−→w k

S∗)) is less than u. From
this we deduce that there exists a variable xj ∈ I such that min(−→w k

S(xj)) = 1 and

min(−→w k
S∗(xj)) = 0.

First, we cannot have j < k. Otherwise, both instantiations −→w k
S(xj) and −→w k

S∗(xj)

contain an assignment for xj , and therefore we have −→w k
S(xj) = {1} and −→w k

S∗(xj) =
{0}, which contradicts our hypothesis that k is the smallest index of a discrepancy.

Second, suppose now that j > k. Since we have card(I,−→w k
S) = u, we can deduce

that card(I,−→w j
S) = u. Indeed, when going from iteration k to iteration j, leftmost

only adds assignments, and therefore card(I,−→w j
S) ≥ card(I,−→w k

S). It follows that
maxS(j) = u, and by construction of S∗, we cannot have [xj ← 1] ∈ S \S∗. However,

it contradicts the fact that min(−→w k
S(xj)) = 1 and min(−→w k

S∗(xj)) = 0.
�

Theorem 1. If S is a valid explanation for a failure and S∗ = S \ ({[xi ←
0] | maxS(i) = u} ∪ {[xi ← 1] | maxS(i) �= u}), then S∗ is also a valid
explanation.

276 C. Artigues et al.

Proof. By Lemma 1, we know that the instantiations −→w S and −→w S∗ , computed from,
respectively the instantiations S and S∗ are equal. In particular, we have LS(n) =
LS∗(n) and therefore ATMOSTSEQCARD(S) =⊥ iff ATMOSTSEQCARD(S∗) =⊥.

�
Theorem 1 gives us a linear time procedure to explain failure. In fact, all the val-

ues maxS(i) can be generated using one call of leftmost. Example 3 illustrates the
explanation procedure.

Example 3.

S 1 0 1 0 0 . . 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1
maxS(i) 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1−→w S(xi) 1 0 1 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1
LS(i) 1 1 2 2 2 3 3 3 3 3 4 5 5 5 5 5 6 6 6 6 6 7
S∗ 1 . 1 1 1 . . . 0 . 0 0 0 0 .

maxS∗(i) 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1−→w S∗(xi) 1 0 1 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1

We illustrate here the explanation of a failure on ATMOSTSEQCARD(2, 5, 8,
[x1..x22]). The propagator returns a failure since LS(22) = 7 < d = 8. The default
explanation corresponds to the set of all the assignments in this sequence, whereas our
procedure shall generate a more compact explanation by considering only the assign-
ments in S∗. Bold face values in the maxS(i) line represent the variables that will not
be included in S∗. As a result, we reduce the size of the explanation from 20 to 9.

Observe, however, that the generated explanation is not minimal. Take for instance the
assignment [x1 ← 1]. Despite it does not meet Theorem 1 conditions (i.e. maxS(1) =
u), the set of assignments S∗ \ [x1 ← 1] is a valid explanation since leftmost would
return the same result between S∗ and S∗ \ [x1 ← 1].

4.2 Explaining Pruning

Suppose that a pruning [xi � v] was triggered by the propagator in equation 4.1
at a given level l on S (i.e. propagating ATMOSTSEQCARD(S) implies [xi � v]).
Consider the partial instantiation S[xi←v] identical to S on all assignments at level l
except for [xi ← v] instead of [xi � v]. By construction S[xi←v] is unsatisfiable. Let
S∗ be the explanation expressing this failure using the previous mechanism. We have
then S∗ \ [xi ← v] as a valid explanation for the pruning [xi � v].

5 SAT-Encoding for the ATMOSTSEQCARD Constraint

In this section we present several SAT-encodings for the ATMOSTSEQCARD con-
straint and relate them to existing encoding techniques. First we describe a transla-
tion of Boolean cardinality constraints by a variant of the sequential counter encoding
[24]. This encoding can be used to translate the decomposition of ATMOSTSEQCARD

into CARDINALITY and ATMOST. Then we introduce an encoding taking advantage
of the globality of ATMOSTSEQCARD by reusing the auxiliary variables for the
cardinality constraint and integrating the sequence of ATMOST constraints. Finally,
we combine the two encodings and prove that in this case UP maintains GAC on
ATMOSTSEQCARD.

SAT and Hybrid Models of the Car Sequencing Problem 277

5.1 Sequential Counter

We describe first a translation of the cardinality expression l ≤
∑

i∈[1..n] xi ≤ u to
CNF by a sequential counter where l, u ∈ N and xi ∈ {0, 1}. For technical reasons we
use an additional variable x0 s.t. D(x0) = {0}.

– Variables:
• si,j : ∀i ∈ [0..n], ∀j ∈ [0..u+ 1], si,j is true iff |xk; s.t.D(xk) = {1}| ≥ j

– Encoding: ∀i ∈ [1..n]

• Clauses for restrictions on the same level: ∀j ∈ [0..u+ 1]

1. ¬si−1,j ∨ si,j
2. xi ∨ ¬si,j ∨ si−1,j

• Clauses for increasing the counter, ∀j ∈ [1..u+ 1]

3. ¬si,j ∨ si−1,j−1

4. ¬xi ∨ ¬si−1,j−1 ∨ si,j
• Initial values for the bounds of the counter:

5. s0,0 ∧ ¬s0,1 ∧ sn,l ∧ ¬sn,u+1

In the rest of the section we refer to the clauses by numbers 1 to 5. The intuition is that
the variables si,j represent the bounds for cumulative sums of the sequence x1 . . . xi.
The encoding is best explained by visualising si,j as a two dimensional grid with po-
sitions (horizontal) and cumulative sums (vertical). The binary clauses 1 and 3 ensure
that the counter (i.e. the variables representing the cumulative sums) is monotonically
increasing. Clauses 2 and 4 control the interaction with the variables xi. If xi is true,
then the counter has to increase at position i whereas if xi is false an increase is pre-
vented at position i. The conjunction 5 sets the initial values for the counter to start
counting at 0 and ensures that the partial sum at position n is between to l and u.

Example 4. We illustrate the auxiliary variables: Given a sequence of 8 variables and
l = u = 2. To the left the initial condition of the variables, followed assigning x2 to
true and then to the right x7 to true.

3 0 0 0 0 0 0 0 0 0
2 0 0 1
1 0 1 1
0 1 1 1 1 1 1 1 1 1
si,j 0 1 2 3 4 5 6 7 8
xi

3 0 0 0 0 0 0 0 0 0
2 0 0 1
1 0 . 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 1
si,j 0 1 2 3 4 5 6 7 8
xi . 1

3 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 1 1
1 0 0 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 1
si,j 0 1 2 3 4 5 6 7 8
xi 0 1 0 0 0 0 1 0

By variants of the above set of clauses we introduce two encodings CC and CA, that
suffice to translate ATMOSTSEQCARD:

– CC(d, [x1, x2, . . . xn]) encodes
∑

i∈[1..n] xi = d using clauses 1 to 5 with u = l =
d.

– CA(u, q, [x1, x2, . . . xn]) encodes
∧n−q

i=0 (
∑q

l=1 xi+l ≤ u) by a set of separate
translations on each

∑q
l=1 xi+l ≤ u with i = 1 . . . n − q using clauses 1 to 5

with l = 0 and u the upper bound.

278 C. Artigues et al.

Since each of the above encodings is a superset of the encoding introduced in [24],
CS and CA have the following property regarding propagation:

Proposition 1. Unit Propagation enforces GAC on

1.
∑

i∈[1..n] xi = d by the encoding CC(d, [x1, x2, . . . xn]).
2. ATMOSTSEQ(u, q, [x1, . . . , xn]) by the encoding CA(u, q, [x1, x2, . . . xn]).

With these encodings at hand we can completely translate ATMOSTSEQCARD to
CNF and fulfil the first two properties of a GAC propagator as characterised in the end
of Section 4. However, we are missing the global propagation of Equation 4.1.

The sequential counter encoding in [24] uses only clauses 1 and 4. Indeed, they
are sufficient to enforce GAC by unit propagation in case of ATMOST. However, their
encoding does not necessarily force all auxiliary variables when all xi are assigned and
this effectively increases the number of models which can lead to unnecessary search.
Thus, we prefer the more constrained version of the counter encoding.

The encoding in [2] of the more general AMONG constraint has similarities to a
counter encoding. This encoding builds on the translation of the REGULAR constraint
and introduces variables for states and transitions of a deterministic finite automaton.
Regarding propagation, this encoding is equivalent to the sequential counter, but on the
clausal level, it is not identical. Our encoding consists only of binary and ternary clauses
whereas their encoding introduces longer clauses using two types of auxiliary variables.
Another difference is that the state variables represent exact partial sums whereas the
encoding presented here relate to the idea of an order encoding.

5.2 Extension to ATMOSTSEQCARD

We still need to capture the missing propagation of a GAC propagator of
ATMOSTSEQCARD. To do so we introduce the following binary clauses. They are re-
ferred to by CS(u, q, [x1 . . . xn]) and reuse the auxiliary variables si,j introduced by
CC . ∀i ∈ [q..n], ∀j ∈ [u..d+ 1]:

6. ¬si,j ∨ si−q,j−u

We will show that the binary clauses capture the missing propagation for
ATMOSTSEQCARD as in Equation 4.1. For this, we precisely show how the auxiliary
variables si,j relate to LS and RS .

Proposition 2. Let CC and CS be the decomposition of ATMOSTSEQCARD(u, q, d,
[x1 . . . xn]). Given a partial assignment S on {x1, x2 . . . xn} and assuming that
LS(n) ≤ d and RS(0) ≤ d, for all i ∈ {0 . . . n} UP forces

1. si,LS(i)+1 to false and
2. si−1,d−RS(i) to true.

Proof. We concentrate on 1) since 2) is analogous. The proof follows an inductive ar-
gument on i. For i = 0 it holds from unit s0,1 in the clauses 5 of CC . For the inductive

SAT and Hybrid Models of the Car Sequencing Problem 279

step we have to show, assuming si,LS(i)+1 is set to false, that si+1,LS(i+1)+1 is en-
forced to false by UP. There are two cases to analyse: a) LS(i + 1) = LS(i) + 1, and
b) LS(i + 1) = LS(i). The first case follows from clauses 3 in CC . The second case
involves a complicated step, essentially showing that with the induction hypothesis,
clauses 6 in CS and GAC on CC , UP enforces si+1,LS(i)+1 to false.

For case b) there are two situations to consider using the definition of LS: xi+1 is
assigned to false in S or xi+1 is unassigned. The first situation is covered by clauses 2.
In the second situation it holds that −→w (xi+1) = 0. This is caused by leftmost not
evaluating xi+1 to true. Hence, there exists a window k+1...k+q that includes position
i + 1 and the maximal number of variables in this windows assigned to true by −→w is
equal to u. Let there be α true assignements in −→w before i + 1 and β after. We have
LS(k) = LS(i) − α. However, since k ≤ i, we know by induction that ¬sk,LS(k)+1,
that is, ¬sk,LS(i)−α+1 holds.

Now, clauses 6 of CS , instantiated to ¬sk+q,LS(i)−α+u+1 ∨ sk,LS(i)−α+1 infers by
UP ¬sk+q,LS(i)+β+1 (recall that α+ β = u).

Finally, observe that when leftmost computed LS(i), no assignment were made on
the interval i + 2...k + q. Hence we have

∑k+q
j=i+2 min(xj) = β. Standard cardinality

reasoning (clauses 1 and 4) is thus sufficient to show that ¬sk+q,LS(i)+β+1 implies
¬si+1,LS(i)+1. Since we are in the case where LS(i + 1) = LS(i) we have shown that
UP infers ¬si+1,LS(i+1)+1. This concludes the inductive proof and it demonstrates that
UP maintains the values for LS(i) for all positions i. The case for RS follows a dual
argument. �

The key idea of the binary clauses 6 can also be found behind the decomposition of
GEN-SEQUENCE into cumulative sums as in [5]. Furthermore, there is a strong similar-
ity between the combination of CC with CS and the encoding of GEN-SEQUENCE

in [2] and it is possible to show that also here in fact it detects dis-entailment on
ATMOSTSEQCARD similarly to Theorem 3 of [2]. The following case exemplifies
what kind of propagation is missing with the combination of CC and CS .

Example 5.

Consider the encodings CC and CS on u = 1, q =
2, d = 2, n = 5 and let x3 be true, then UP does
not enforce x2 nor x4 to false. Setting them to true
will lead to a conflict by UP through clauses 4 and
6 on positions 2, 3 and 4.

3 0 0 0 0 0 0
2 0 0 0 . . 1
1 0 . . 1 1 1
0 1 1 1 1 1 1
si,j 0 1 2 3 4 5
xi . . 1 . .

We see that the encoding CA would propagate in the case of the previous example.
If we combine all three encodings we can provide a CNF encoding that maintains the
desired property of GAC on ATMOSTSEQCARD:

Theorem 2. UP on CC+CA+CS enforces GAC on the ATMOSTSEQCARD constraint.

Proof. The proof follows from Proposition 1 and 2 showing that this encoding fulfils
all sufficient properties of a GAC propagator as described in Section 4.

In particular, UP maintains GAC on
∧n−q

i=0 (
∑q

l=1 xi+l ≤ u) and
∑

i∈[1..n] xi = d
by CC and CA. We elaborate on the interesting cases of Equation 4.1:

1. Let LS(i)+RS(i) ≤ d. By Proposition 2 , UP forces¬si,LS(i)+1 and si−1,d−RS(i)

on S, and by assumption we know that d − RS(i) is greater or equal to LS(i), so UP

280 C. Artigues et al.

forces also si−1,LS(i) to true. By clauses 4 instantiated to ¬xi ∨¬si−1,LS(i) ∨ si,L(i)+1

UP forces xi to false. Hence if LS(i) +RS(i) ≤ d holds then UP forces xi to false.
2. Let LS(i − 1) + RS(i + 1) < d. By Proposition 2, UP forces ¬si−1,LS(i−1)+1

and si,d−RS(i+1). Since LS(i − 1) < d − RS(i + 1) UP enforces by clauses 1 and 3
that si,LS(i−1)+1 is true. Now clauses 2 trigger by xi ∨ si−1,LS(i)+1 ∨ ¬si,LS(i)+1 and
set xi to true by UP. �

6 Experimental Results

We tested the different approaches on the three data sets available at CSPLib [14].
All experiments ran on Intel Xeon CPUs 2.67GHz under Linux. For each instance, we
performed 5 randomized runs with a 20 minutes time cutoff. The first set contains 5
unsatisfiable and 4 satisfiable instances of relatively small size (100 cars). The second
set contains 70 instances generated with varying usage rate. All instances in this set
are satisfiable and involve 200 cars. The third set, proposed by Gagné, features larger
instances divided into three sets of ten each, involving respectively 200, 300 and 400
cars. Seven of these instances were solved using local search algorithms. To the best
of our knowledge the remaining 23 instances have never been proved unsatisfiable. To
facilitate the analysis, we grouped the instances into three categories:

In the first category (sat[easy]), we consider the 70 satisfiable instances of the
second set as well as the 4 satisfiable instances of the first set. All these instances are
extremely easy for all the methods we introduce in this paper;

In the second category (sat[hard]), we consider the 7 known satisfiable instances
of the second set. These instances are challenging and were often out of reach of previ-
ous systematic approaches;

In the third category (unsat∗), we consider the remaining 5 unsatisfiable instances
of the first set as well as the 23 unknown instances form the third set. Those instances
are challenging and indeed open for 23 of them.

We ran the following methods:

SAT Encoding. We use Minisat (version 2.2.0) with default parameter settings on three
variants of the SAT encoding. Links between classes and options as well as the con-
straint for exactly one class of vehicle per position are translated as in the basic model.
For each option we encode one ATMOSTSEQCARD. The following three models differ
only in how this translation is performed (w.r.t Section 5):

1. SAT (1) encodes the basic model by using CC+CA for each ATMOSTSEQCARD.
2. SAT (2) uses CC+CS for each ATMOSTSEQCARD.
3. SAT (3) combines all of three encodings CC+CA+CS .

Hybrid CP/SAT. We use Mistral as a hybrid CP/SAT solver (Section 2) using our ex-
planation for the ATMOSTSEQCARD constraint. We tested four branching heuristics:

1. hybrid (VSIDS) uses VSIDS;
2. hybrid (Slot) uses the following heuristic (denoted Slot): we branch on option

variables from the middle of the sequence and towards the extremities following
the first unassigned Slot. The options are firstly evaluated by their dynamic usage
rate[25] then lexicographically compared.

SAT and Hybrid Models of the Car Sequencing Problem 281

3. hybrid (Slot/VSIDS) first uses the heuristic Slot, then switches after 100 non-
improving restarts to VSIDS.

4. hybrid (VSIDS/Slot) reverse of above.

Baseline methods. We also use three “control” approaches run in the same setting:

1. CP: A pure CP approach, implemented using Mistral without clause learning on
the model described in Section 3 using the Slot branching.

2. PBO-clauses: A pseudo-Boolean method relying on SAT encoding. We used Min-
iSat+ [11] on the pseudo-Boolean encoding described in Section 3 except that the
ATMOSTSEQCARD constraint is decomposed into CARDINALITY and ATMOST.

3. PBO-cutting planes: A pseudo-Boolean method with dedicated propagation and
learning based on cutting planes [10]. We used SAT4J [3] on the same model, with
the ”CuttingPlanes” algorithm.

For each considered data set, we report the total number of successful runs (#suc).2

Then, we report the number of fail nodes (fails) and the CPU time (time) in seconds
both averaged over all successful runs. We emphasize the statistics of the best method
(w.r.t. #suc, ties broken by CPU time) for each data set using bold face fonts.

Table 1. Evaluation of the models

Method
sat[easy] (74× 5) sat[hard] (7× 5) unsat∗ (28× 5)
#suc avg fails time #suc avg fails time #suc avg fails time

SAT (1) 370 2073 1.71 28 337194 282.35 85 249301 105.07
SAT (2) 370 1114 0.87 31 60956 56.49 65 220658 197.03
SAT (3) 370 612 0.91 34 32711 36.52 77 190915 128.09

hybrid (VSIDS) 370 903 0.23 16 207211 286.32 35 177806 224.78
hybrid (VSIDS/Slot) 370 739 0.23 35 76256 64.52 37 204858 248.24
hybrid (Slot/VSIDS) 370 132 0.04 34 4568 2.50 37 234800 287.61

hybrid (Slot) 370 132 0.04 35 6304 3.75 23 174097 299.24
CP 370 43.06 0.03 35 57966 16.25 0 - -

PBO-clauses 277 538743 236.94 0 - - 43 175990 106.92
PBO-cutting planes 272 2149 52.62 0 - - 1 5031 53.38

We first observe that most of the approaches we introduce in this paper significantly
improve the state of the art, at least for systematic methods. For instance, in the experi-
ments reported in [23] several instances of the set sat[hard] were not solved within
a 20 minutes cutoff. Moreover we are not aware of other systematic approaches being
able to solve these instances. More importantly, we are able to close 13 out of the 23
large open instances proposed by Gagné. The set of open instances is now reduced to
pb 200 02/06/08, pb 300 02/06/09, and pb 400 01/02/07/08.

Second, on satisfiable instances, we observe that pure CP approaches are difficult to
outperform. It must be noticed that the results reported for CP are significantly better

2 They all correspond to solutions found for the two first categories, and unsatisfiability proofs
for the last.

282 C. Artigues et al.

than those previously reported for similar approaches. For instance, the best methods
introduced in [27] take several seconds on most instances of the first category and were
not able to solve two of them within a one hour time cutoff. Moreover, in [23], the same
solver on the same model had a similar behavior on the category sat[easy], but was
only able to solve 2 instances of the category sat[hard] due to not using restarts.

However, the best method on sat instances is the hybrid solver using a CP heuris-
tic. Moreover, we can see that even with a “blind” heuristic, MiniSat on the strongest
encodings has extremely good results (all sat instances were solved with a larger cutoff).

This study shows that propagation is very important to find solutions quickly, by
keeping the search “on track” and avoiding exploring large unsatisfiable subtrees. There
is multiple evidence for these claims: First, the pseudo Boolean models (PBO-clauses
and PBO-cutting planes) perform limited propagation and are consequently very poor
even on sat[easy]. Second, the best SAT models forsat[easy] andsat[hard]
are those providing the tightest propagation. Last, previous CP approaches that did not
enforce GAC on the ATMOSTSEQCARD constraint are all dominated by CP.

For proving unsatisfiability, our results clearly show that clause learning is by far the
most critical factor. Surprisingly, stronger propagation is not always beneficial when
building a proof using clause learning, as shown by the results of the different encod-
ings. One could even argue for a negative correlation, since the “lightest” encodings
are able to build more proofs than stronger ones. Similarly, the pure pseudo Boolean
model performs much better comparatively to the satisfiable case. The hybrid models
are slightly worse than pseudo Boolean but far better than the pure CP approach that
was not able to prove any case of unsatisfiability. To mitigate this observation, however,
notice that other CP models with strong filtering, using the Global Sequencing Con-
straint [20], or a conjunction of this constraint and ATMOSTSEQCARD [23,27] were
able to build proofs for some of the 5 unsatisfiable instances of the CSPLib. However,
these models were not able to solve any of the 23 larger unsatisfiable instances.

7 Conclusion

We proposed and compared hybrid CP/SAT models for the car sequencing problem
against several SAT-encodings. Both approaches exploit the ATMOSTSEQCARD con-
straint. In particular, we proposed a linear time procedure for explaining failure and
pruning as well as advanced SAT-encodings for this constraint. Experimental results
emphasize the importance of advanced propagation for searching feasible solutions and
of clause learning for building unsatisfiability proofs. Our models advance the state of
the art in this domain, and close 13 out of the 23 large open instances in CSPLib.

References

1. Aloul, F.A., Ramani, A., Markov, I.L., Sakallah, K.A.: Generic ILP versus specialized 0-1
ILP: An update. In: Proceedings of ICCAD, pp. 450–457 (2002)

2. Bacchus, F.: GAC Via Unit Propagation. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741,
pp. 133–147. Springer, Heidelberg (2007)

3. Berre, D.L., Parrain, A.: The Sat4j library, release 2.2. Journal on Satisfiability, Boolean
Modeling and Computation 7, 59–64 (2010)

SAT and Hybrid Models of the Car Sequencing Problem 283

4. Biere., A., Heule., M., van Maaren., H., Walsh, T.: Handbook of Satisfiability. Frontiers in
Artificial Intelligence and Applications, vol. 185. IOS Press (2009)

5. Brand, S., Narodytska, N., Quimper, C.-G., Stuckey, P.J., Walsh, T.: Encodings of the
SEQUENCE Constraint. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 210–224.
Springer, Heidelberg (2007)

6. Cambazard, H.: Résolution de problmes combinatoires par des approches fondées sur la
notion dexplication. PhD thesis, Ecole des mines de Nantes (2006)

7. Cambazard, H., Jussien, N.: Identifying and exploiting problem structures using explanation-
based constraint programming. Constraints 11(4), 295–313 (2006)

8. Davis, M., Putnam, H.: A Computing Procedure for Quantification Theory. Journal of the
ACM 7(3), 201–215 (1960)

9. Dixon, H.: Automating Pseudo-Boolean Inference within a DPLL Framework. PhD thesis,
University of Oregon (2004)

10. Dixon, H.E., Ginsberg, M.L.: Inference Methods for a Pseudo-Boolean Satisability Solver.
In: Proceedings of AAAI, pp. 635–640 (2002)

11. Eén, N., Sörensson, N.: Translating Pseudo-Boolean Constraints into SAT. Journal on Satis-
fiability, Boolean Modeling and Computation 2, 1–26 (2006)

12. Feydy, T., Schutt, A., Stuckey, P.: Semantic Learning for Lazy Clause Generation. In: TRICS
workshop, held alongside CP (2013)

13. Gent, I.P.: Arc Consistency in SAT. In: Proceedings of ECAI, pp. 121–125 (2002)
14. Gent, I.P., Walsh, T.: CSPlib: A benchmark library for constraints (1999)
15. G. Katsirelos.: Nogood Processing in CSPs. PhD thesis, University of Toronto (2008)
16. Katsirelos, G., Bacchus, F.: Generalized NoGoods in CSPs. In: Proceedings of AAAI,

pp. 390–396 (2005)
17. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an

Efficient SAT Solver. In: DAC, pp. 530–535 (2001)
18. Quimper, C.-G., Golynski, A., López-Ortiz, A., Beek, P.V.: An Efficient Bounds Consistency

Algorithm for the Global Cardinality Constraint. Constraints 10(2), 115–135 (2005)
19. Régin, J.C.: Generalized Arc Consistency for Global Cardinality Constraint. In: Proceedings

of AAAI, vol. 2, pp. 209–215 (1996)
20. Régin, J.-C., Puget, J.-F.: A Filtering Algorithm for Global Sequencing Constraints. In:

Smolka, G. (ed.) CP 1997. LNCS, vol. 1330, pp. 32–46. Springer, Heidelberg (1997)
21. Rossi, F., Beek, P.V., Walsh, T.: Handbook of Constraint Programming. Elsevier (2006)
22. Schiex, T., Verfaillie, G.: Nogood Recording for Static and Dynamic CSP. In: Proceeding of

ICTAI, pp. 48–55 (1993)
23. Siala, M., Hebrard, E., Huguet, M.-J.: An optimal arc consistency algorithm for a particular

case of sequence constraint. Constraints 19(1), 30–56 (2014)
24. Sinz, C.: Towards an Optimal CNF Encoding of Boolean Cardinality Constraints. In: van

Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 827–831. Springer, Heidelberg (2005)
25. Smith, B.M.: Succeed-first or Fail-first: A Case Study in Variable and Value Ordering (1996)
26. Solnon, C., Cung, V.D., Nguyen, A., Artigues, C.: The car sequencing problem: Overview of

state-of-the-art methods and industrial case-study of the ROADEF 2005 challenge problem.
European Journal of Operational Research 191, 912–927 (2008)

27. van Hoeve, W.J., Pesant, G., Rousseau, L.-M., Sabharwal, A.: New Filtering Algorithms for
Combinations of Among Constraints. Constraints 14(2), 273–292 (2009)

28. Walsh, T.: SAT v CSP. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 441–456.
Springer, Heidelberg (2000)

Continuously Degrading Resource and Interval
Dependent Activity Durations in Nuclear Medicine

Patient Scheduling

Cyrille Dejemeppe and Yves Deville

ICTEAM, Université Catholique de Louvain (UCLouvain), Belgium
{cyrille.dejemeppe,yves.deville}@uclouvain.be

Abstract. Nuclear Medicine (NM) is a medical imaging technique in which pa-
tients are administered radioactive tracers. As the tracers decay in the human
body, they emit photons, which are then captured to generate an image used for
diagnostic purposes. The schedule of daily patients in an NM center is a hard
and interesting problem due to the continuous decay of these radioactive tracers.
This scheduling problem allows us to define two new scheduling concepts: con-
tinuously degrading resources and interval dependent activity durations. In this
paper, we model the NM scheduling problem as a COP; we propose a resolu-
tion strategy using Constraint Programming with LNS, and we introduce a new
propagator to deal with continuously degrading resources and interval dependent
activity durations.

1 Introduction

Nuclear Medicine is a clinical practice in which patients are administered nuclear trac-
ers in order to provide diagnostic information for a wide range of diseases. A nuclear
tracer is a set of radioactive compounds. As defined in [3], the activity of a radioactive
tracer decreases with time according to the following law of decay:

Rad(t) = Rad0 × e
−t ln(2)

t0.5 (1)

where Rad0 is the initial activity of the decaying substance and t0.5 is its half-life. As
it decays, the radioactive component in the tracer emits gamma rays or high-energy
photons. The energy levels of these emissions are such that a significant amount of
energy can exit the body without being scattered or attenuated. External gamma-ray
sensors allow capturing these emissions, and computers are then able to recreate an im-
age from them. As stated in [2], NM has several advantages over other medical imaging
techniques. The precision and the quality of the images obtained with NM makes it a
technique widely used for medical imaging.

Nuclear Medicine Problem (NMP) consists in the optimization of the schedule of
patient workflows inside an NM center. Patients coming to an NM center are first ad-
ministered a nuclear tracer. Then they have to wait in a waiting room in order to allow
their body to incorporate the tracer. The duration of this waiting time has to last a min-
imum amount of time, otherwise the human body will not have fully incorporated the

H. Simonis (Ed.): CPAIOR 2014, LNCS 8451, pp. 284–292, 2014.
c© Springer International Publishing Switzerland 2014

Continuously Degrading Resource and Interval Dependent Activity Durations 285

nuclear tracer. On the other hand, the waiting time cannot be too long, since then the
radioactive tracer would have decayed for too long, leading to its radioactive activity’s
being too low to provide satisfactory images. Once a patient’s body has fully incorpo-
rated the tracer, the patient goes into a scanning room in which the image is captured.
There can be several different scanning rooms which differ in their scanner equipment.
The amount of time needed by the scanner equipment to capture the image directly de-
pends on the amount of time the patient has been waiting after having been administered
the radioactive tracer.

Even if the workflows of the patients are similar, they can differ by the duration of
each step inside the workflow, by the type and quantity of tracer administered, by the
minimal and maximal durations of their waiting times, and by the scanning room and
equipment needed to capture the image. As stated in [7], the acquisition time can be
expressed as a linear function of the waiting time as follows:

acquisition time = α + δ ×waiting time (2)

where α and δ are positive constants depending on the quantity and type of tracer
administered to the patient. Figure 1b shows an example of how the acquisition time
depends on the waiting time.

Patients are administered their tracer dose with a special injector and most NM cen-
ters only have a few of these. The scanning rooms exist in different instances and some-
times they have different kinds of equipment. There are not very many of these scanning
rooms, and some NM centers even have only one scanning room. The day’s radioactive
tracers are delivered to the NM center every morning. These tracers decay with time,
i.e. their radioactive activity decreases. As the patients need to be injected with a cer-
tain amount of radioactivity, the quantity of tracer they are injected with increases with
time to compensate for the decrease in the radioactivity of the tracer that has occurred
since the beginning of the day. An example of the radioactive activity of the widely used
Fludeoxyglucose (FDG) tracer over time can be seen in Figure 1a.

Time

Rad(t)

Rad0

t0

(a) Activity of the FDG tracer over time

Waiting Time

Acquisition Time

min waiting time max waiting time

(b) Time required for image acquisition in
function of the length of the waiting time after
injection

Fig. 1. Example of radioactivity decrease and its effects on acquisition time

NMP is an optimization problem with two distinct objectives. First, the purpose is
to be able to treat patients in the shortest amount of time possible. This would possibly
allow treating more patients per day. The second objective is to minimize the total con-
sumption of radioactive tracer. Indeed, these substances are very expensive and being

286 C. Dejemeppe and Y. Deville

able to start the day with a smaller quantity would save money. These objectives are not
aggregated, and NMP is thus a bi-objective optimization problem.

We model NMP as a scheduling problem. To model the decay of nuclear tracers, we
have to introduce two new scheduling concepts: continuously degrading resources and
interval dependent activity durations. The abstraction of a continuously degrading re-
source allows us to model a resource whose capacity decreases continuously over time.
This allows us to represent the decay of the radioactive tracers, said capacity represent-
ing the decreasing radioactivity of the tracer. The abstraction of an interval dependent
activity is used to model an activity whose duration depends on the interval between
the activity itself and the activity preceding it. As we introduce these two scheduling
abstractions, we define new constraints and their associated new propagators.

The two new abstractions we introduce could be used in several other scheduling
applications. The continuously degrading resource abstraction could be used to model
chemical compounds which react with each other and whose quantities thus continu-
ously decrease over time. The interval dependent activity duration abstraction could be
used to model other medical processes such as in the cure of an uncoupled shoulder:
if the time between the radiography and the replacement of the shoulder is longer, the
muscles will tighten more, so that the operation to replace the shoulder will take more
time. This article also intends to illustrate how to solve cumulative scheduling problems
with business constraints. As such, the modelling and search techniques described for
NMP are as generic as possible.

2 The Model

In this section, we define a model for NMP defined in Section 1. NMP is a scheduling
problem and can thus be defined by the four main components of a scheduling problem:
activities, resources, constraints and objectives.

The activities of our model are the steps of the patient workflows. The workflow for
each patient consists of a job j containing two activities: injection and image acquisi-
tion. The resources of NMP are the injectors and the scanning rooms, which are mod-
elled by the cumulative resources, and the radioactive tracers, which are modelled by a
new abstraction: a continuously degrading resource. There are precedence constraints
imposing an order between the activities of the same job. There are also resource con-
straints to ensure that the resource capacities are not exceeded. Some constraints must
also be imposed to ensure that the waiting time of a patient between the injection and
the image acquisition remains bounded. Finally, some constraints are needed to model
the durations of the activities: a fixed constraint for the injection, but one that depends
on the length of the waiting time for the image acquisition. The objective of treating
a patient in as little time as needed is modelled by a makespan minimization. On the
other hand, the minimization of the total consumption of radioactive tracers is modelled
by the sum of the consumptions of the tracer by the patients. We express our schedul-
ing model more formally as a Constraint Optimization Problem (COP) 〈X ,D,C,O〉 as
follows.

X: The Set of Variables. The variables of our problem are the starting and ending times
of each activity. We consider instances containing k jobs and inside each job there are n

Continuously Degrading Resource and Interval Dependent Activity Durations 287

activities. So for each activity Ai, j, the jth activity of the ith job, we define two decision
variables: start(Ai, j) and end(Ai, j) with 1 ≤ i ≤ k and 1 ≤ j ≤ n.

D: The Domains of the Variables The start variables start(Ai, j) of the activities have
the following domains:

D(start(Ai, j)) =

{
[0;horizon− duration(Ai, j)] if the duration is fixed
[0;horizon]otherwise

(3)

with 1 ≤ i ≤ k, 1 ≤ j ≤ n, and horizon being the horizon of the problem.
Similarly, the end variables end(Ai, j) of the activities have the following domains:

D(end(Ai, j)) =

{
[duration(Ai, j);horizon] if the duration is fixed
[0;horizon]otherwise

(4)

with 1 ≤ i ≤ k and 1 ≤ j ≤ n.

C: The Constraints. The first constraints described here define an order between the
activities belonging to the same job and impose a setup time between two successive
activities when needed:

end(Ai, j)+ setup(Ai, j,Ai, j+1)≤ start(Ai, j+1) (5)

with 1 ≤ i ≤ k, 1 ≤ j ≤ n− 1 and setup(Ai, j,Ai, j+1) being the amount of time needed
between the two activities. If the two successive activities are not subject to a setup
time, then we have setup(Ai, j,Ai, j+1) = 0.

Another constraint must impose a maximal delay between those pairs of activities
which need it.

start(Ai, j+1)− end(Ai, j)≤ delaymax(Ai, j,Ai, j+1) (6)

with 1 ≤ i ≤ k, 1 ≤ j ≤ n− 1, and delaymax(Ai, j,Ai, j+1) being the maximal amount of
time allowed between the two activities. If the two successive activities are not subject
to a maximum delay, then we have delaymax(Ai, j,Ai, j+1) = horizon.

As explained above, some activities have fixed durations while others have interval
dependent durations. In our model, some durations depend linearly on the length of the
interval according to a monotonic increasing function f (interval) = α + δ × interval
where α and β are positive constants. The following constraints explain these proper-
ties:

end(Ai, j)− start(Ai, j) =

{
duration(Ai, j) if fixed duration
f (start(Ai, j)− end(Ai, j−1)) otherwise

(7)

with 1≤ i≤ k, 1≤ j ≤ n−1, and Ai, j being an activity with interval dependent duration.
The cumulative resource constraints can be expressed as follows:

∑
A

usage(A,Rcum, t)≤ capacity(Rcum) (8)

288 C. Dejemeppe and Y. Deville

where 0 ≤ t ≤ horizon, Rcum is a cumulative resource, usage(A,Rcum, t) is the usage of
Rcum by the activity A at time t, and capacity(Rcum) is the capacity of Rcum.

Finally, we have to express the constraint on the continuously degrading resources.
We model these constraints not by diminishing the resource capacity over time, but by
increasing the quantity required by the activities over time. We assume that the needed
amount of a resource for an activity is consumed at its starting time in an atomic way.
The quantity needed by an activity Ai, j of the continuously degrading resource Rdec if
starting at a time t is

q(Ai, j,Rdec, t) =
Ci

Rad(t)
=

Ci

Rad0
× e

t ln(2)
t0.5 (9)

where Rad(t) is defined in Equation 1, Rad0 and t0.5 depend on Rdec, and Ci is a posi-
tive constant allowing to determine the amount of radioactivity needed by patient corre-
sponding to job i. This formula expresses that the quantity of tracer a patient is injected
is inversely proportional to the radioactivity of the tracer. We must ensure that the total
consumption of each resource is less than or equal to the initial capacity of that resource.
This constraint is expressed by

∑
A

q(A,Rdec,start(A))≤ initialCapacity(Rdec) (10)

where initialCapacity(Rdec) is the initial capacity of the resource Rdec.

O: The Objectives. The first objective is to minimize the makespan. This can be rep-
resented as follows:

minimize makespan = max
A

(end(A)) . (11)

The second objective is to minimize the total consumption of the continuously degrad-
ing resources. This can be expressed as follows:

minimize ∑
Rdec

∑
A

wdec × q(A,Rdec,start(A)) (12)

where the wdec are positive weights.

3 Propagation

In this section, we describe how to perform propagation for the continuously degrading
resource constraint and the interval dependent activity duration constraint.

3.1 Continuously Degrading Resource

The propagation procedure we describe achieves Bound Consistency (BC) for the con-
straint stated in Equation 10. For a given activity Ai, j and a given continuously decreasing
resource Rdec, the quantity of resource required by the activity is a monotonic function

Continuously Degrading Resource and Interval Dependent Activity Durations 289

increasing with time t: q(Ai, j,Rdec, t). This increasing quantity can be defined for NMP
by Equation 1. The quantity of tracer a patient is injected is inversely proportional to the
radioactivity of a tracer. We can thus express q(Ai, j,Rdec, t) as follows:

q(Ai, j,Rdec, t) = βi, j × e
t ln(2)
γdec (13)

where βi, j is a constant depending on Ai, j and γdec is a constant depending on Rdec. We
are thus able to rewrite the constraint stated in Equation 10 as follows:

∑βi, j × e
start(Ai, j) ln(2)

γdec ≤ initialCapacity(Rdec) (14)

To express this constraint as a linear sum constraint, we will use the view-based propa-
gator derivation technique proposed in [6]. Given a propagator p, a view is represented
by two functions φ and φ−1 that are composed with p to obtain the desired propagator
φ ◦ p ◦ φ−1. The φ function transforms the input domain and φ−1 applies the inverse
transformation to the propagator’s output domain. To be able to use a linear bounded
sum constraint propagator, we define a φi, j function for each variable start(Ai, j) in-
volved in Equation 14 as follows:

φi, j(v) = βi, j × e
v ln(2)
γdec (15)

The inverse functions φ−1
i, j are defined as follows:

φ−1
i, j (v) =

γdec

ln(2)
× ln

(
v

βi, j

)
(16)

As values returned by the φ function are real values and our start variables only accept
integer values, we consider the domain of start(Ai, j) mapped by φ is a discrete domain
in which each value correspond to a single value in the domain of start(Ai, j). The
definitions of φ and φ−1 allow us to use a classical linear sum constraint propagator as
proposed in [1].

3.2 Interval Dependent Activity Durations

The propagation procedure we describe achieves BC for the constraint stated in Equa-
tion 7. As stated earlier, the f function in Equation 7 is a linear monotonic increasing
function. From this, we can rewrite the constraint depicted in Equation 7 as follows:

end(Ai, j)− start(Ai, j) = εi, j + δi, j ×
(
start(Ai, j)− end(Ai, j−1)

)
(17)

where δi, j and εi, j are positive constants. Similarly to what was described in Section 3.1,
by using trivial views for variables, we are able to obtain a classical linear sum equality
constraint. The propagation of the interval dependent activity duration can be achieved
by using the propagator of a linear sum equality constraint and views.

290 C. Dejemeppe and Y. Deville

4 Experimental Results

To give an overview of the complex nature of the NM problem, we propose to solve
four different versions of the problem. Each version adds a new source of complexity to
the previous version. These problems are solved using a Constraint Programming (CP)
with Large Neighborhood Search (LNS) where the branching heuristic used is a binary
first fail on the start variables. As defined in [8], a CP with LNS search favors the explo-
ration of the search space at the loss of completeness. When a solution is found, several
relaxations are applied to it and a new search begins from the partial solution obtained.
For each version of our problem, a time limit of three minutes is imposed and the best
values found for both objective functions (makespan and quantity of tracer consumed)
are reported in Table 1. All experiments were conducted with the OscaR open-source
solver [4]. The instances considered are lists from 10 to 50 patients obtained by a bi-
ased random generator we designed. The durations of patient activities and the resource
capacities and decay parameters are generated using realistic values. However, typical
NM centers with the considered configurations treat at most 25 patients per day and
larger instances are considered to test the limits of the model.

The first problem, V1, is a relaxation of the NM problem in which nor continuously
decreasing resources nor the interval dependent activity durations (i.e. durations are
fixed for all activities) are considered and the only objective is the minimization of the
makespan. Hence, V1 is a classical Cumulative Job-Shop Problem. In Table 1, we can
observe that the quantity of tracer used (TQ) increases dramatically with the number of
patients and the makespan (MS). This is due to the exponential nature of the quantity
of tracer required with time by patients, as stated in Equation 9.

The second problem, V2, adds the interval dependent activity duration constraint to
the V1 version of our problem. Hence, the durations of the acquisition activities of pa-
tients are not fixed any more and we add the constraint stated in Equation 7. Again, we
only consider minimization of the makespan. When comparing the results from Table 1
for the problem V1 with results for problem V2, we can see the makespan and quantity of
resource used are higher for V2 than for V1. This can be explained by two main reasons.
First, the solutions for problem V1 are not solutions for problem V2. Indeed, V2 adds a
relation linking the waiting time of patients with the duration of imagery acquisition
durations. This relation could not be respected in a solution for problem V1. Second, as
V2 relaxes the duration of acquisition activities, the search space is larger for V2 than for
V1. As both problems V1 and V2 have ran under the same conditions and with the same
branching heuristics, it is normal that V2 obtains solutions as good as those for V1.

The third problem, V3, adds the continuously decreasing resource constraint to the
V2 version of our problem. Furthermore, the search now focuses on minimizing the
quantity of tracer used. As expected, when comparing results for problem versions V2

and V3 in Table 1, we observe that the quantity of tracer used is on average lower for V3

than for V2 as opposed to the makespan which is higher. To obtain solutions which are
tradeoff between the two objective function, it is interesting to consider a bi-objective
search version of our problem.

The fourth problem, V4, considers the NM problem as a bi-objective problem min-
imizing the makespan and the quantity of tracer used. Hence, this version will find a
set of non-dominated solutions instead of a single one. To solve this problem we use a

Continuously Degrading Resource and Interval Dependent Activity Durations 291

variant of the constraint introduced in [5]. Results for the version V4 of the problem are
reported in Table 1. These results are the average best solutions obtained for both objec-
tives. We can observe the reported average of the best solutions obtained are between
the best and the worst values found for V2 and V3 for the makespan and the quantity of
tracer used. In Figure 2, we report the Pareto front obtained by V4 as well as the best
solutions obtained by V2 and V3 on instances with 20 and 40 patients. We observe that
some solutions obtained by V4 are dominated by the best solutions obtained by V2 and
V3. Nevertheless some other solutions are not dominated by best solution for V2 nor for
V3. As such, the problem version V4 is well suited to obtain a set of tradeoffs between
the two objectives considered.

Table 1. Average objective values for different versions of problem on different size of instances.
MS is the makespan and TQ is the quantity of tracer used. For problems V1, V2 and V 3, the values
reported are the average values for the instance size considered. For problem V4, values reported
are the averages of the best values found for each objective for the instance size considered.

Problem Version 10 Patients 20 Patients 30 Patients 40 Patients 50 Patients
MS TQ MS TQ MS TQ MS TQ MS TQ

Problem V1 251 9.97 446 40.44 650 129.9 867 516 1,048 1,268
Problem V2 253 11.49 486 51.16 737 242.6 994 1,065 1,211 2,770
Problem V3 291 9.17 530 39.04 779 164.7 1,029 671 1,245 1,862
Problem V4 266 9.42 495 38.32 751 182.2 1,011 757 1,234 1,885

Makespan

Tracer Quantity

(a) Pareto front of an instance with 20 patients

Makespan

Tracer Quantity

(b) Pareto front of an instance with 40 patients

Fig. 2. Comparison of Pareto front solutions obtained by the problem version V4 and the best
solutions obtained by versions V2 and V3. The red squares are the best solutions obtained by
version V2, the blue triangles are the best solutions obtained by V3 and the black circles are the
points of the Pareto front obtained by the version V4.

5 Conclusion

In this paper, we have described the NM problem and we modelled it as a schedul-
ing problem. To deal with some characteristics of the problem, we introduced two
new scheduling abstractions: continuously decreasing resources and interval dependent

292 C. Dejemeppe and Y. Deville

activity durations. These two scheduling abstractions were modelled with the help of
views and sum constraints. Finally, we proposed an efficient method to solve the NM
problem with CP and LNS. The resolution strategies and the problem tackled was de-
clined in different versions. Each version allows to solve the problem according to the
desired objective function or to perform bi-objective optimization to obtain a set of
solutions which are tradeoffs between these objectives.

The proposed modelling and search techniques are generic and could be used for
other cumulative scheduling problems with specific constraints. The only requirement is
that these specific constraints combine existing constraints (i.e. with an existing propa-
gator) on new variables which are defined as functions of variables of the initial problem
(e.g. start and end activity variables). Thanks to the use of views, propagators of these
constraints can be applied. Our approach allows a large range of cumulative scheduling
problems with specific additional constraints.

Acknowledgments. The authors want to thank the anonymous reviewers for their help-
ful comments. This research is supported by the Mirror Project, the FRFC project
2.4504.10 of the Belgian FNRS, and the UCLouvain Action de Recherche Concerte
ICTM22C1.

References

1. Apt, K.R.: Principles of Constraint Programming. Cambridge University Press, UK (2003)
2. Cherry, S., Sorenson, J., Phelps, M.: Physics in Nuclear Medicine. Elsevier Health Sciences

(2012)
3. Fowler, J.S., Ido, T.: Initial and subsequent approach for the synthesis of 18fdg. Seminars

in Nuclear Medicine 32(1), 6–12 (2002), Impact of FDG-PET Imaging on the Practice of
Medicine

4. OscaR Team. OscaR: Scala in OR (2012), https://bitbucket.org/oscarlib/oscar
5. Schaus, P., Hartert, R.: Multi-objective large neighborhood search. In: Schulte, C. (ed.) CP

2013. LNCS, vol. 8124, pp. 611–627. Springer, Heidelberg (2013)
6. Schulte, C., Stuckey, P.J.: Efficient constraint propagation engines. Transactions on Program-

ming Languages and Systems 31(1), 2:1–2:43 (2008)
7. Schder, H., Erdi, Y., Larson, S., Yeung, H.: Pet/ct: A new imaging technology in nuclear

medicine. European Journal of Nuclear Medicine and Molecular Imaging 30(10), 1419–1437
(2003)

8. Shaw, P.: Using constraint programming and local search methods to solve vehicle rout-
ing problems. In: Maher, M.J., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, pp. 417–431.
Springer, Heidelberg (1998)

https://bitbucket.org/oscarlib/oscar

Cost Impact Guided LNS

Michele Lombardi1 and Pierre Schaus2

1 DISI, University of Bologna
michele.lombardi2@unibo.it

2 ICTEAM, Université Catholique de Louvain, Belgium
pierre.schaus@uclouvain.be

Abstract. In Large Neighborhood Search (LNS) [14], a problem is
solved by repeatedly exploring (via tree search) a neighborhood of an in-
cumbent solution. Whenever an improving solution is found, this replaces
the current incumbent. LNS can improve dramatically the scalability of
CP on large real world problems, provided a good neighborhood selection
heuristic is available. Unfortunately, designing a neighborhood heuristic
for LNS is still largely an art and on many problems beating a random
selection requires a considerable amount of both cleverness and domain
knowledge. Recently, some authors have advocated the idea to include in
the neighborhood the variables that are most directly affecting the cost
of the current solution. The proposed approaches, however, are either
domain dependent or require non-trivial solver modifications. In this pa-
per, we rely on constraint propagation and basic solver support to design
a set of simple, cost based, domain independent neighborhood selection
heuristics. Those techniques are applied on Steel Mill Slab problems il-
lustrating the superiority of some of them over pure random relaxations.

1 Introduction

Large Neighborhood Search (LNS) is a powerful hybrid method that employs
ideas from Local Search to dramatically improve the scalability of Constraint
Programming (CP) on large scale optimization problems. Specifically, LNS is an
iterative approach that starts from an incumbent solution and tries to improve
it by using CP to explore a neighborhood. This neighborhood is usually defined
by freezing a subset of variables, which are left assigned to the value they had
in the incumbent solution. The remaining variables are instead relaxed, meaning
that their domain is restored to its initial content. Typically, the neighborhood is
explored under some search limit (e.g. maximum number of backtracks or time),
to avoid spending too much time in a single iteration. If an improving solution
is found, it becomes the new incumbent.

Formally, let P = 〈z,X,D,C〉 be a Constraint Optimization Problem, where
X is the set of variables, D is the set of the variable domains (with Di being
the domain of xi), and z is a cost variable. Without loss of generality we assume
that z has initial domain [−∞,∞] and must be minimized. The set C contains
the problem constraints. Each constraint ci is defined over a subset of variables
S(ci), known as its scope. The scope can include both the X and the z variables.

H. Simonis (Ed.): CPAIOR 2014, LNCS 8451, pp. 293–300, 2014.
c© Springer International Publishing Switzerland 2014

294 M. Lombardi and P. Schaus

We view a (partial) assignment τ as a particular constraint that forces each
variable xi in its scope S(τ) to assume a specific value vi = τ(xi). An assignment
τ is a solution if S(τ) = X and the problem Pτ = 〈z,X,D,C ∪ τ〉 is consistent
(none of the constraints detected an infeasibility). We use the special notation
σ to refer to solutions.

In each LNS iteration we start from a solution σ, then we select a subset of
variables to relax XR and we build a partial assignment τ such that:

– the scope includes the variables to freeze, i.e. S(τ) = X \XR

– τ(xi) = σ(xi) for each xi ∈ S(τ)

then we try to find a solution for Pτ with an improving cost. More precisely,
let the notation lbτ(xi) refer to the lower bound of the domain of xi after the
propagation has reached a fix point on Pτ . Similarly, we use the notation ubτ (xi)
for the upper bound. Then a solution σ′ has better cost than σ iff lbσ′(z) < lbσ(z).

The choice of the variables XR to relax is crucial for the effectiveness of the
approach. Currently, most of the best selection heuristics are domain specific and
require a great deal of both expertise and knowledge to be formulated. While
several researchers have addressed the topic of independent black-box search
for CP [11,15,8,2], much less effort has been dedicated to make neighborhood
selection in LNS problem independent. Some of the most relevant attempts in
this direction are summarized in Section 2.

In this paper, we propose a novel cost driven, domain independent neighbor-
hood selection method, based on the information collected by the progressive
re-application of the current incumbent solution (a.k.a. a dive). The method is
described in Section 3. In Section 4 we report results for the Steel Mill Slabs
problem and in Section 5 we offer some concluding remarks.

2 Related Work

This section describes existing domain independent and cost based approaches
for neighborhood selection in LNS. The discussion does not include adaptive
approaches, where the goal is to automatically learn the best neighborhood (from
a given pool) or the best parameters for a selection method. The interested reader
is invited to check [5,3,12,6] for more details. As a remark, the integration of
domain independent neighborhood selection and adaptive schemes offers a lot of
opportunities and represents a very interesting topic for future research.

2.1 Propagation Guided LNS (PGLNS)

This approach is introduced in [10], where the authors define two neighborhood
selection methods relying on information coming from constraint propagation.
The first method defines the set of variable to freeze by incrementally building
a partial assignment τ , starting from an empty scope. In particular:

Cost Impact Guided LNS 295

1. First, a variable is selected at random from X and inserted in S(τ)
2. The fix point for Pτ is reached
3. Then the next variable is selected at random among the 10 with the largest

(non-zero) impact (defined as in [11]). If the list is empty the selection is
done at random from X \ S(τ).

4. The process goes back to step 2, until the size of the search space of Pτ

(actually, an approximation of that) is small enough.

The underlying idea is that of freezing related variables.
The second method, name Reversed PGLNS also follows an incremental

scheme, but performs no propagation and relies on the availability of a closeness
measure between pairs of variables. The method builds incrementally the set XR

of variables to relax by always choosing the next variable among the 10 with the
largest (non-zero) closeness to the ones in XR. The choice is made at random
if the list is empty. As one can see, this approach is based on the idea of re-
laxing related variables. In their implementation, the authors interleave PGLNS
and Reversed PGLNS and use the impacts from PGLNS to obtain the closeness
scores. The Reversed PGLNS approach performed best in their experimentation.

2.2 Cost Based Neighborhoods for Scheduling Problems

As a major drawback, the PGLNS approach makes no effort to exploit the con-
nection between variable assignment and the cost variable z. In [3], the authors
propose a cost driven neighborhood selection method for scheduling problems.
The main underlying idea is to include in the set XR the variables that are
most directly affecting the cost of the current solution. The authors successfully
apply this idea to Job-Shop Scheduling by choosing the start variables to be re-
laxed among those having the smallest slack. Activities with a larger slack start
to be considered only after a certain number of non-improving LNS iterations.
Unfortunately, this approach cannot be considered really problem independent.

2.3 Generic Adaptive Heuristics for LNS

Several cost driven and domain independent neighborhood selection methods are
proposed in [7], the most successful ones being based on the so-called dynamic
impact of a variable. The dynamic impact tries to capture the effect that relaxing
a variable would have on the problem cost. Specifically, let σ be the incumbent
solution and let τi,v be an assignment that is identical to σ, except that τi,v(xi) =
v. Then the impact of the pair (xi, v) is defined as:

Id(xi, v, σ) = lbτi,v(z)− lbσ(z) (1)

Note that τi,v is not guaranteed to be a solution, since it may make the prob-
lem infeasible. To avoid this problem, during the impact evaluation the authors
disregard all constraints that are not needed for the cost computation.

296 M. Lombardi and P. Schaus

The authors obtain their best results by selecting the variables to be relaxed
with a probability proportional to their mean dynamic impact, defined as:

Id
(xi, σ) =

1

|Di|
∑

v∈Di,
v �=σ(xi)

Id(xi, v, σ) (2)

which requires to compute the dynamic impact for each value in the original
domain Di. The author evaluated the neighborhood selection heuristic by per-
forming a single LNS iteration starting from several reference solutions. The
method based on mean impact was able to improve the solution more frequently
than a random selection. This evaluation approach, although sound, may be bi-
ased by the choice of the reference solutions (e.g. improving a solution with loose
constraints is very different improving one with tight constraints). The described
approach has furthermore some drawbacks:

– Ignoring problem constraints (except for those needed for the cost computa-
tion) does not account for the indirect cost impact that a variable may have
due to other constraints.

– Automatically detecting the constraints needed for the cost computation
may not be doable. In such situation, the user would need to manually
specify them, requiring a custom extension in the modeling interface.

– It is not necessarily true that measuring the cost impact of a variable under
the assumption that it is the last to be assigned leads to a reliable evaluation.

3 Cost Impact Guided LNS

In this work we extend the idea introduced in [3] that an effective LNS neigh-
borhood heuristics should be cost based. Our goal is to make this principle
independent of the problem, by relying on the propagation over the cost vari-
able, similarly to [7]. At the same time, however, we wish to avoid the drawbacks
that we have identified in the previous section.

Our method relies on a cost impact metric based on the variation of the lower
bounds of the cost variable1. Unlike [7], however, we collect those variations
by incrementally re-applying the current solution in rearranged order, i.e. by
performing a dive.

Specifically:

Definition 1. Let π be a permutation of the variables in X and let k be the
position of xi in π. Then the cost impact of xi w.r.t. a solution σ is the quantity:

Iz(xi, σ, π) = lbτπ,k
(z)− lbτπ,k−1

(z) (3)

where:

S(τπ,k) = {xπj | j = 0...k} (4)

τπ,k(xi) = σ(xi) ∀xi ∈ S(τπ,k) (5)

i.e., τπ,k forces the first k+1 variables in π to assume the value they have in σ.

1 There is some similarity with the idea of pseudo-costs for MIP [1].

Cost Impact Guided LNS 297

In other words, our impact measure is simply the variation of the cost lower
bound recorded when adding the k-th assignment, during the re-application of
the current solution σ in the order specified by π. It is possible to aggregate the
cost impacts over a set of dives Π via their average, in this case we have:

Iz(xi, σ,Π) =
1

|Π |
∑
π∈Π

Iz(xi, σ, π) (6)

A permutation-independent measure could be obtained by aggregating the cost
impacts for every possible permutation. Since this would be prohibitive to ob-
tain exactly, we propose to use the average impacts over a finite set of dives
as an approximation. How often to perform the dives and how to choose the
permutation π for each of them are some of the decisions that must be taken in
order to design an actual neighborhood selection heuristic. Specifically, we have
experimented with:

– For the diving frequency: 1) n dives per LNS iteration and 2) diving every
n LNS iterations (which incurs less overhead).

– For the choice of the permutation: 1) uniformly randomized permutations
and 2) decreasing-impact permutations (the variables are sorted in π by
decreasing impact in an attempt to spread the cost variations).

Since the cost impacts depend on the incumbent solution, the accumulated im-
pacts must be reinitialized whenever an improving solution is discovered. If no
improving solution is found, each dive will add to the aggregated cost impacts,
so that they will converge to the real average.

We experimented with different neighborhood selection strategies based on
this information. Our most successful approach exploits the impacts for biasing
the choice probability of the variables to be relaxed. The method is described in
Algorithm 3 and consists in drawing a fixed number of variables from X , without
replacement. The drawing probabilities are given by a score (see line 1), that in
our case is a convex combination of the cost impact and a uniform quantity:

si = α · Iz(xi, σ,Π) + (1− α) · 1

|X |
∑
xj∈X

Iz(xj , σ,Π) (7)

The presence of a uniform term ensures that even variables with zero impact have
a chance to be relaxed. The strategy has a single additional parameter α ∈ [0, 1]
(with α = 0 corresponding to a pure random selection). In our experiments,
we use α = 0.5. We dive every 10 (failed) LNS attempts and every time an
improving solution is found.

4 Experiments

The ability to diversify is one of the main reasons why on some benchmarks
a pure random relaxation obtains very good results. For instance, on the Steel

298 M. Lombardi and P. Schaus

Algorithm 1. Cost Impact Based Probability

1. assign a score si to each variable (see Equation 7)
2. let r =

∑
xi

si
3. while not enough variables selected for relaxation do
4. pick a random value v in [0, r]
5. for all not selected xi do
6. v = v − si
7. if v ≤ 0 then
8. r = r − si
9. select xi for relaxation and continue at line 2

Mill Slab problem, a pure random relaxation was the best performer in [4,13].
Mairy et al. also concluded in [6] that their advanced reinforcement based learn-
ing strategy does not obtain better results than a random neighborhood on car
sequencing problems. Given that our experimentation targets the Steel Mill Slab
problem, it was natural to choose a pure random relaxation as a baseline for a
comparison. Furthermore, we decided to include in our evaluation an implemen-
tation of the Reversed PGLNS from [10], because the strategy was demonstrated
to be better than random relaxation on the car sequencing problem.

From the Steel Mill Slabs benchmarks most commonly employed in the liter-
ature2, we selected the instances with 2,3,4 and 5 slab capacities (80 instances
in total), because they were found to be the most difficult in [13]. We limited
the number of LNS iterations per run to 1,000, so that the best solution was
stable enough for each of the 3 considered relaxation strategies. The size of the
neighborhood is 5 (i.e. we relax five variables) and each LNS iteration is stopped
after 50 backtracks, as in [13]. All experiments were performed using the OscaR
solver [9]. We report detailed results on Table 1.

As it can be seen in Table 1, the Cost Impact based relaxation dominates the
Random and Reversed PGLNS on most of the instances. Surprisingly PGLNS
seems inferior to Random on this problem3. For all of our benchmarks, we used
the Student’s t-test to check the statistical significance of the performance differ-
ences. On 75 over 80 instances the Cost Impact based relaxation obtains smaller
average costs at a 5% significance level.

The results we obtained with other Cost Impact based relaxation strategies
(not reported due to lack of space), confirmed that retaining some diversification
ability is a key feature to obtain a good performance on the Steel Mill Slabs
Problem. This is achieved by the proposed neighborhood selection method via
the inclusion of a uniform term in the variable scores. This set of experiments
confirmed also how beating a pure random relaxation strategy is far from trivial
on this problem, which stresses the relevance of our results.

2 The instances and best known results are available at
http://becool.info.ucl.ac.be/steelmillslab

3 However, the description of the PGLNS approach from [10] lacks some details, hence
implementation differences may exist.

http://becool.info.ucl.ac.be/steelmillslab

Cost Impact Guided LNS 299

Table 1. Results obtained on the instances from [13] with 2,3,4 and 5 capacities aver-
ages over 100 executions with different seeds

#capa instance 0 1 2 3 4 5 6 7 8 9
Random 52.98 74.1 177.62 100.02 36.4 86.32 96.87 77.47 531 114.34

2 PGLNS 55.24 75.76 178 99.64 38.75 97.06 151.72 77.82 531 110.1
Cost Impact 45.67 71.4 176.83 98.59 33.02 72.02 93.12 72.32 531 107.46
Random 18.05 74.11 30.38 63.6 23 67.58 67.59 78.98 118.84 235.38

3 PGLNS 26.01 79.74 36.45 65.64 18.98 75.35 69.67 86.4 133.56 236.59
Cost Impact 13.92 69.11 24.8 55.1 18.32 64.59 49.48 71.63 116.86 227.57
Random 38.32 40.94 33.64 32.31 16.16 22.1 21.78 26.59 16.03 27.25

4 PGLNS 39.36 40.12 41.33 32.2 16.36 22.25 24.05 29.25 18.14 27.5
Cost Impact 38.03 38.43 42.59 28.01 13.64 16.56 14.25 20.16 11.81 23.44
Random 5.93 32.07 15.68 10.19 21.19 18.83 9.09 17.34 14.63 27.43

5 PGLNS 7.25 32.51 16.32 13.23 21.25 21.34 12.57 18.58 13.21 28.4
Cost Impact 4.51 31.38 15.28 8.64 17.99 17.72 5.96 15.52 11.54 20.95

#capa instance 10 11 12 13 14 15 16 17 18 19
Random 97.13 118.26 58.03 166.16 159.63 296 160.08 196.14 65.04 45.09

2 PGLNS 112.54 134.58 53.98 199.56 182.39 296.06 194.66 195.73 71.67 45.41
Cost Impact 92.69 123.66 47.2 157.81 172.67 296.06 159.72 195.46 60.64 45
Random 51.28 50.65 20.93 84.39 28.99 47.52 53.99 28.27 63.6 48.9

3 PGLNS 49.5 54.52 25.73 84.52 37.49 48.4 55.85 30.89 65.42 56.51
Cost Impact 49.01 40.26 15.53 85.34 23.64 47.05 47.74 24.58 54.31 38.93
Random 27.09 26.46 19.35 42.47 11.45 29.55 43.89 19.62 27.35 14.07

4 PGLNS 32.54 33.84 20.99 42.02 19.08 30.89 45.84 19.47 27.53 14.76
Cost Impact 25.1 22.81 9.72 36.43 11.06 25.88 36.06 9.02 20.81 13.9
Random 15.97 18.05 35.21 24.97 8.2 26.81 12.12 20.61 31.89 10.21

5 PGLNS 17.54 18.72 38.09 28.29 7.92 29.46 12.49 22.03 33.52 11.68
Cost Impact 14.02 14.61 32.54 23.16 5.68 22.07 9.21 19.77 29.94 8.51

5 Conclusion

In this paper, we have introduced the Cost Impact, a measure of the propagation
on the cost variable obtained when replaying the incumbent solution in a random
or customized order. Obtaining Cost Impacts is easy and requires only basic
support from the solver. In particular, our technique still allows to treat the
problem constraints as black-boxes. A second contribution, we have described a
simple and effective relaxation strategy based on Cost Impacts.

Our contribution can be seen as a mix of the ideas presented in [3], [10] and [7].
As in [7], we rely on the solver propagation to measure the impact on the cost.
We also recognize that variables affecting the most the cost should be relaxed
similarly to [3]. Finally as for PGLNS [10], our approach is problem independent
and does not require to disable the propagation of any constraint when diving.

Our results have illustrated the superiority of the approach on the Steel Mill
Slabs problem over a pure random relaxation and an implementation of Reversed
PGLNS. Such outcome proves the potential of the proposed technique, providing
motivation for future research.

Our method has been explained by representing solutions as assignments of
decision variables, but it could easily be extended to more complex branching
decisions (such as ordering activities in scheduling). As future work we plan
to experiment the method on a broader set of problems, including scheduling
variants.

300 M. Lombardi and P. Schaus

References

1. Benichou, M., Gauthier, J.M., Girodet, P., Hentges, G., Ribiere, G., Vincent, O.:
Experiments in mixed-integer linear programming. Mathematical Program-
ming 1(1), 76–94 (1971)

2. Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search
by weighting constraints. In: 16th European Conference on Artificial Intelligence
(ECAI 2004), pp. 146–150 (2004)

3. Carchrae, T., Beck, J.C.: Principles for the design of large neighborhood search.
Journal of Mathematical Modelling and Algorithms 8, 245–270 (2009)

4. Gargani, A., Refalo, P.: An efficient model and strategy for the steel mill slab design
problem. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 77–89. Springer,
Heidelberg (2007)

5. Laborie, P., Godard, D.: Self-adapting large neighborhood search: Application to
single-mode scheduling problems. In: Proceedings MISTA-2007, Paris, pp. 276–284
(2007)

6. Mairy, J.-B.: Reinforced adaptive large neighborhood search. In: The Seventeenth
International Conference on Principles and Practice of Constraint Programming
(CP 2011), p. 55 (2011)

7. Mairy, J.-B., Schaus, P., Deville, Y.: Generic adaptive heuristics for large neigh-
borhood search. In: Seventh International Workshop on Local Search Techniques
in Constraint Satisfaction (LSCS 2010). A Satellite Workshop of CP (2010)

8. Michel, L., Van Hentenryck, P.: Activity-based search for black-box constraint
programming solvers. In: Beldiceanu, N., Jussien, N., Pinson, É. (eds.) CPAIOR
2012. LNCS, vol. 7298, pp. 228–243. Springer, Heidelberg (2012)

9. OscaR Team. OscaR: Scala in OR (2012),
https://bitbucket.org/oscarlib/oscar

10. Shaw, P., Furnon, V.: Propagation guided large neighborhood search. In: Wallace,
M. (ed.) CP 2004. LNCS, vol. 3258, pp. 468–481. Springer, Heidelberg (2004)

11. Refalo, P.: Impact-based search strategies for constraint programming. In: Wallace,
M. (ed.) CP 2004. LNCS, vol. 3258, pp. 557–571. Springer, Heidelberg (2004)

12. Ropke, S., Pisinger, D.: An adaptive large neighborhood search heuristic for the
pickup and delivery problem with time windows. Transportation science 40(4),
455–472 (2006)

13. Schaus, P., van Hentenryck, P., Monette, J.-N., Coffrin, C., Michel, L., Deville,
Y.: Solving steel mill slab problems with constraint-based techniques: Cp, lns, and
cbls. Constraints 16(2), 125–147 (2011)

14. Shaw, P.: Using constraint programming and local search methods to solve vehicle
routing problems. In: Maher, M.J., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520,
pp. 417–431. Springer, Heidelberg (1998)

15. Zanarini, A., Pesant, G.: Solution counting algorithms for constraint-centered
search heuristics. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 743–757.
Springer, Heidelberg (2007)

https://bitbucket.org/oscarlib/oscar

Proteus: A Hierarchical Portfolio
of Solvers and Transformations

Barry Hurley, Lars Kotthoff, Yuri Malitsky, and Barry O’Sullivan

Insight Centre for Data Analytics
Department of Computer Science, University College Cork, Ireland
{b.hurley,l.kotthoff,y.malitsky,b.osullivan}@4c.ucc.ie

Abstract. In recent years, portfolio approaches to solving SAT prob-
lems and CSPs have become increasingly common. There are also a num-
ber of different encodings for representing CSPs as SAT instances. In this
paper, we leverage advances in both SAT and CSP solving to present a
novel hierarchical portfolio-based approach to CSP solving, which we call
Proteus, that does not rely purely on CSP solvers. Instead, it may decide
that it is best to encode a CSP problem instance into SAT, selecting an
appropriate encoding and a corresponding SAT solver. Our experimental
evaluation used an instance of Proteus that involved four CSP solvers,
three SAT encodings, and six SAT solvers, evaluated on the most chal-
lenging problem instances from the CSP solver competitions, involving
global and intensional constraints. We show that significant performance
improvements can be achieved by Proteus obtained by exploiting alter-
native view-points and solvers for combinatorial problem-solving.

1 Introduction

The pace of development in both csp and sat solver technology has been rapid.
Combined with portfolio and algorithm selection technology impressive perfor-
mance improvements over systems that have been developed only a few years
previously have been demonstrated. Constraint satisfaction problems and satis-
fiability problems are both NP-complete and, therefore, there exist polynomial-
time transformations between them. We can leverage this fact to convert csps
into sat problems and solve them using sat solvers.

In this paper we exploit the fact that different sat solvers have different
performances on different encodings of the same csp. In fact, the particular
choice of encoding that will give good performance with a particular sat solver
is dependent on the problem instance to be solved. We show that, in addition to
using dedicated csp solvers, to achieve the best performance for solving a csp
the best course of action might be to translate it to sat and solve it using a
sat solver. We name our approach Proteus, after the Greek god Proteus, the
shape-shifting water deity that can foretell the future.

Our approach offers a novel perspective on using sat solvers for constraint
solving. The idea of solving csps as sat instances is not new; the solvers Sugar,
Azucar, and CSP2SAT4J are three examples of sat-based csp solving. Sugar [29]

H. Simonis (Ed.): CPAIOR 2014, LNCS 8451, pp. 301–317, 2014.
c© Springer International Publishing Switzerland 2014

302 B. Hurley et al.

has been very competitive in recent csp solver competitions. It converts the
csp to sat using a specific encoding, known as the order encoding, which will
be discussed in more detail later in this paper. Azucar [30] is a related sat-
based csp solver that uses the compact order encoding. However, both Sugar
and Azucar use a single predefined solver to solve the encoded csp instances.
Our work does not assume that conversion using a specific encoding to sat is
the best way of solving a problem, but considers multiple candidate encodings
and solvers. CSP2SAT4J [21] uses the SAT4J library as its sat back-end and a
set of static rules to choose either the direct or the support encoding for each
constraint. For intensional and extensional binary constraints that specify the
supports, it uses the support encoding. For all other constraints, it uses the direct
encoding. Our approach does not have predefined rules but instead chooses the
encoding and solver based on features of the problem instance to solve.

Our approach employs algorithm selection techniques to dynamically choose
whether to translate to sat, and if so, which sat encoding and solver to use,
otherwise it selects which csp solver to use. There has been a great deal of re-
search in the area of algorithm selection and portfolios; we refer the reader to a
recent survey of this work [20]. We note three contrasting example approaches
to algorithm selection for the constraint satisfaction and satisfiability problems:
CPhydra (csp), SATzilla (sat), and isac (sat). CPhydra [24] contains an
algorithm portfolio of csp solvers which partitions CPU-Time between compo-
nents of the portfolio in order to maximize the probability of solving a given
problem instance within a fixed time limit. SATzilla [34], at its core, uses cost-
sensitive decision forests that vote on the sat solver to use for an instance. In
addition to that, it contains a number of practical optimizations, for example
running a pre-solver to quickly solve the easy instances. isac [17] is a cluster-
based approach that groups instances based on their features and then finds the
best solver for each cluster. The Proteus approach is not a straightforward appli-
cation of portfolio techniques. In particular, there is a series of decisions to make
that affect not only the solvers that will be available, but also the information
that can be used to make the decision. Because of this, the different choices of
conversions, encodings and solvers cannot simply be seen as different algorithms
or different configurations of the same algorithm.

The remainder of this paper is organised as follows. Section 2 motivates the
need to choose the representation and solver in combination. In Section 3 we
summarise the necessary background on csp and sat to make the paper self-
contained and present an overview of the main sat encodings of csps. The
detailed evaluation of our portfolio is presented in Section 4. We create a portfolio-
based approach to csp solving that employs four csp solvers, three sat encod-
ings, and six sat solvers. Finally, we conclude in Section 5.

2 Multiple Encodings and Solvers

To motivate our work, we performed a detailed investigation for two solvers to
assess the relationship between solver and problem encoding with features of

Proteus: A Hierarchical Portfolio of Solvers and Transformations 303

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

 1

R
u

n
-t

im
e

 f
o

r
m

in
is

a
t

(s
)

S
a

ti
s
fi
a

b
ili

ty

Constraint Tightness (t)

Run-time for minisat on SAT-encoded URB CSP

Direct
Order

Support
Satisfiability

(a) Performance using MiniSat.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

 1

R
u

n
-t

im
e

 f
o

r
c
la

s
p

 (
s
)

S
a

ti
s
fi
a

b
ili

ty

Constraint Tightness (t)

Run-time for clasp on SAT-encoded URB CSP

Direct
Order

Support
Satisfiability

(b) Performance using Clasp.

Fig. 1. MiniSat and Clasp on random binary csps

the problem to be solved. For this experiment we considered uniform random
binary (urb) csps with a fixed number of variables, domain size and number
of constraints, and varied the constraint tightness. The constraint tightness t
is a measure of the proportion of forbidden to allowed possible assignments to
the variables in the scope of the constraint. We vary it from 0 to 1, where
0 means that all assignments are allowed and 1 that no assignments are part
of a solution, in increments of 0.005. At each tightness the mean run-time of
the solver on 100 random csp instances is reported. Each instance contains 30
variables with domain size 20 and 300 constraints. This allowed us to study the
performance of sat encodings and solvers across the phase transition.

Figure 1 plots the run-time for MiniSat and Clasp on uniformly random
binary csps that have been translated to sat using three different encodings.
Observe that in Figure 1(a) there is a distinct difference in the performance of
MiniSat on each of the encodings, sometimes an order of magnitude. Before the
phase transition, we see that the order encoding achieves the best performance

304 B. Hurley et al.

and maintains this until the phase transition. Beginning at constraint tightness
0.41, the order encoding gradually starts achieving poorer performance and the
support encoding now achieves the best performance.

Notably, if we rank the encodings based on their performance, the ranking
changes after the phase transition. This illustrates that there is not just a single
encoding that will perform best overall and that the choice of encoding mat-
ters, but also that this choice is dependent on problem characteristics such as
constraint tightness.

Around the phase transition, we observe contrasting performance for Clasp,
as illustrated in Figure 1(b). Using Clasp, the ranking of encodings around the
phase transition is direct � support � order; whereas for MiniSat the ranking
is order � direct � support. Note also that the peaks at the phase transition
differ in magnitude between the two solvers. These differences underline the im-
portance of the choice of solver, in particular in conjunction with the choice of
encoding – making the two choices in isolation does not consider the interdepen-
dencies that affect performance in practice.

In addition to the random csp instances, our analysis also comprises 1493
challenging benchmark problem instances from the csp solver competitions that
involve global and intensional constraints. Figure 2 illustrates the respective
performance of the best csp-based and sat-based methods on these instances.
Unsurprisingly the dedicated csp methods often achieve the best performance.
There are, however, numerous cases where considering sat-based methods has
the potential to yield significant performance improvements. In particular, there
are a number of instances that are unsolved by any csp solver but can be solved
quickly using sat-based methods. The Proteus approach aims to unify the best
of both worlds and take advantage of the potential performance gains.

3 Background

3.1 The Constraint Satisfaction Problem

Constraint satisfaction problems (csp) are a natural means of expressing and
reasoning about combinatorial problems. They have a large number of practical
applications such as scheduling, planning, vehicle routing, configuration, net-
work design, routing and wavelength assignment [26]. An instance of a csp is
represented by a set of variables, each of which can be assigned a value from
its domain. The assignments to the variables must be consistent with a set of
constraints, where each constraint limits the values that can be assigned to vari-
ables.

Finding a solution to a csp is typically done using systematic search based
on backtracking. Because the general problem is NP-complete, systematic search
algorithms have exponential worst-case run times, which has the effect of limiting
the scalability of these methods. However, thanks to the development of effective
heuristics and a wide variety of solvers with different strengths and weaknesses,
many problems can be solved efficiently in practice.

Proteus: A Hierarchical Portfolio of Solvers and Transformations 305

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

V
ir
tu

a
l
B

e
s
t

S
A

T

Virtual Best CSP

Fig. 2. Performance of the virtual best csp portfolio and the virtual best sat-based
portfolio. Each point represents the time in seconds of the two approaches. A point
below the dashed line indicates that the virtual best sat portfolio was quicker, whereas
a point above means the virtual best csp portfolio was quicker. Clearly the two ap-
proaches are complementary: there are numerous instances for which a sat-based ap-
proach does not perform well or fails to solve the instance but a csp solver does
extremely well, and vice-versa.

3.2 The Satisfiability Problem

The satisfiability problem (sat) consists of a set of Boolean variables and a
propositional formula over these variables. The task is to decide whether or
not there exists a truth assignment to the variables such that the propositional
formula evaluates to true, and, if this is the case, to find this assignment.

sat instances are usually expressed in conjunctive normal form (cnf). The
representation consists of a conjunction of clauses, where each clause is a dis-
junction of literals. A literal is either a variable or its negation. Each clause is
a logical or of its literals and the formula is a logical and of each clause. The
following sat formula is in cnf:

(x1 ∨ x2 ∨ ¬x4) ∧ (¬x2 ∨ ¬x3) ∧ (x3 ∨ x4)

This instance consists of four sat variables. One assignment to the variables
which would satisfy the above formula would be to set x1 = true, x2 = false,
x3 = true and x4 = true.

306 B. Hurley et al.

sat, like csp, has a variety of practical real world applications such as hard-
ware verification, security protocol analysis, theorem proving, scheduling, rout-
ing, planning, digital circuit design [5]. The application of sat to many of these
problems is made possible by transformations from representations like the con-
straint satisfaction problem. We will study three transformations into sat that
can benefit from this large collection of solvers.

The following sections explain the direct, support, and direct-order encodings
that we use. We will use the following notation. The set of csp variables is
represented by the set X . We use uppercase letters to denote csp variables in
X ; lowercase xi and xv refer to sat variables. The domain of a csp variable X
is denoted D(X) and has size d.

3.3 Direct Encoding

Translating a csp variable X into sat using the direct encoding [32], also known
as the sparse encoding, creates a sat variable for each value in its domain:
x1, x2, . . . , xd. If xv is true in the resulting sat formula, then X = v in the csp
solution. This means that in order to represent a solution to the csp, exactly
one of x1, x2, . . . , xd must be assigned true. We add an at-least-one clause to the
sat formula for each csp variable as follows:

∀X ∈ X : (x1 ∨ x2 ∨ . . . ∨ xd).

Conversely, to ensure that only one of these can be set to true, we add at-most-
one clauses. For each pair of distinct values in the domain of X , we add a binary
clause to enforce that at most one of the two can be assigned true. The series of
these binary clauses ensure that only one of the sat variables representing the
variable will be assigned true, i.e.

∀v, w ∈ D(X) : (¬xv ∨ ¬xw).

Constraints between csp variables are represented in the direct encoding by
enumerating the conflicting tuples. For binary constraints for example, we add
clauses as above to forbid both values being used at the same time for each
disallowed assignment. For a binary constraint between a pair of variables X
and Y , we add the conflict clause (¬xv ∨ ¬yw) if the tuple 〈X = v, Y = w〉
is forbidden. For intensionally specified constraints, we enumerate all possible
tuples and encode the disallowed assignments.

Example 1 (Direct Encoding). Consider a simple csp with three variables X =
{X,Y, Z}, each with domain 〈1, 2, 3〉. We have an all-different constraint over the
variables: alldifferent(X,Y, Z), which we represent by encoding the pairwise dis-
equalities. Table 1 shows the complete direct-encoded cnf formula for this csp.
The first 12 clauses encode the domains of the variables, the remaining clauses
encode the constraints between X , Y , and Z. There is an implicit conjunction
between these clauses.

Proteus: A Hierarchical Portfolio of Solvers and Transformations 307

Table 1. An example of the direct encoding

Domain Clauses
(x1 ∨ x2 ∨ x3) (¬x1 ∨ ¬x2) (¬x1 ∨ ¬x3) (¬x2 ∨ ¬x3)
(y1 ∨ y2 ∨ y3) (¬y1 ∨ ¬y2) (¬y1 ∨ ¬y3) (¬y2 ∨ ¬y3)
(z1 ∨ z2 ∨ z3) (¬z1 ∨ ¬z2) (¬z1 ∨ ¬z3) (¬z2 ∨ ¬z3)

X �= Y (¬x1 ∨ ¬y1) (¬x2 ∨ ¬y2) (¬x3 ∨ ¬y3)
X �= Z (¬x1 ∨ ¬z1) (¬x2 ∨ ¬z2) (¬x3 ∨ ¬z3)
Y �= Z (¬y1 ∨ ¬z1) (¬y2 ∨ ¬z2) (¬y3 ∨ ¬z3)

3.4 Support Encoding

The support encoding [9,18] uses the same mechanism as the direct encoding to
encode csp domains into sat – each value in the domain of a csp variable is
encoded as a sat variable which represents whether or not it takes that value.
However, the support encoding differs on how the constraints between variables
are encoded. Given a constraint between two variables X and Y , for each value
v in the domain of X , let SY,X=v ⊂ D(Y) be the subset of the values in the
domain of Y which are consistent with assigning X = v. Either xv is false or
one of the consistent assignments from y1 . . . yd must be true. This is encoded in
the support clause

¬xv ∨

⎛⎝ ∨
i∈SY,X=v

yi

⎞⎠ .

Conversely, for each value w in the domain of Y , a support clause is added for
the supported values in X which are consistent with assigning Y = w.

An interesting property of the support encoding is that if a constraint has
no consistent values in the corresponding variable, a unit-clause will be added,
thereby pruning the values from the domain of a variable which cannot exist
in any solution. Also, a solution to a sat formula without the at-most-one con-
straint in the support encoding represents an arc-consistent assignment to the
csp. Unit propagation on this sat instance establishes arc-consistency in optimal
worst-case time for establishing arc-consistency [9].

Example 2 (Support Encoding). Table 2 gives the complete support-encoded cnf
formula for the simple csp given in Example 1. The first 12 clauses encode the
domains and the remaining ones the support clauses for the constraints. There
is an implicit conjunction between clauses.

3.5 Order Encoding

Unlike the direct and support encoding, which model X = v as a sat variable
for each value v in the domain of X , the order encoding (also known as the
regular encoding [2]) creates sat variables to represent X ≤ v. If X is less than
or equal to v (denoted x≤v), then X must also be less than or equal to v + 1

308 B. Hurley et al.

Table 2. An example of the support encoding

Domain Clauses
(x1 ∨ x2 ∨ x3) (¬x1 ∨ ¬x2) (¬x1 ∨ ¬x3) (¬x2 ∨ ¬x3)
(y1 ∨ y2 ∨ y3) (¬y1 ∨ ¬y2) (¬y1 ∨ ¬y3) (¬y2 ∨ ¬y3)
(z1 ∨ z2 ∨ z3) (¬z1 ∨ ¬z2) (¬z1 ∨ ¬z3) (¬z2 ∨ ¬z3)

X �= Y
(¬x1 ∨ y2 ∨ y3) (¬x2 ∨ y1 ∨ y3) (¬x3 ∨ y1 ∨ y2)
(¬y1 ∨ x2 ∨ x3) (¬y2 ∨ x1 ∨ x3) (¬y3 ∨ x1 ∨ x2)

X �= Z
(¬x1 ∨ z2 ∨ z3) (¬x2 ∨ z1 ∨ z3) (¬x3 ∨ z1 ∨ z2)
(¬z1 ∨ x2 ∨ x3) (¬z2 ∨ x1 ∨ x3) (¬z3 ∨ x1 ∨ x2)

Y �= Z
(¬y1 ∨ z2 ∨ z3) (¬y2 ∨ z1 ∨ z3) (¬y3 ∨ z1 ∨ z2)
(¬z1 ∨ y2 ∨ y3) (¬z2 ∨ y1 ∨ y3) (¬z3 ∨ y1 ∨ y2)

(x≤v+1). Therefore, we add clauses to enforce this consistency across the domain
as follows:

∀d−1
v : (¬x≤v ∨ x≤v+1).

This linear number of clauses is all that is needed to encode the domain of a
csp variable into sat in the order encoding. In contrast, the direct and support
encodings require a quadratic number of clauses in the domain size.

The order encoding is naturally suited to modelling inequality constraints. To
state X ≤ 3, we would just post the unit clause (x≤3). If we want to model the
constraint X = v, we could rewrite it as (X ≤ v ∧X ≥ v). X ≥ v can then be
rewritten as ¬X ≤ (v− 1). To state that X = v in the order encoding, we would
encode (x≤v ∧ ¬x≤v−1). A conflicting tuple between two variables, for example
〈X = v, Y = w〉 can be written in propositional logic and simplified to a cnf
clause using De Morgan’s Law:

¬((x≤v ∧ x≥v) ∧ (y≤w ∧ y≥w))

¬((x≤v ∧ ¬x≤v−1) ∧ (y≤w ∧ ¬y≤w−1))

¬(x≤v ∧ ¬x≤v−1) ∨ ¬(y≤w ∧ ¬y≤w−1)

(¬x≤v ∨ x≤v−1 ∨ ¬y≤w ∨ y≤w−1)

Example 3 (Order Encoding). Table 3 gives the complete order-encoded cnf for-
mula for the simple csp specified in Example 1. There is an implicit conjunction
between clauses in the notation.

3.6 Combining the Direct and Order Encodings

The direct encoding and the order encoding can be combined to produce a po-
tentially more compact encoding. A variable’s domain is encoded in both repre-
sentations and clauses are added to chain between them. This gives flexibility in
the representation of each constraint. Here, we choose the encoding which gives
the most compact formula. For example, for inequalities we use the order encod-
ing since it is naturally suited, but for a (dis)equality we would use the direct
encoding. This encoding is referred to as direct-order throughout the paper.

Proteus: A Hierarchical Portfolio of Solvers and Transformations 309

Table 3. An example of the order encoding

Domain Clauses
(¬x≤1 ∨ x≤2) (¬x≤2 ∨ x≤3) (x≤3)
(¬y≤1 ∨ y≤2) (¬y≤2 ∨ y≤3) (y≤3)
(¬z≤1 ∨ z≤2) (¬z≤2 ∨ z≤3) (z≤3)

X �= Y
(¬x≤1 ∨ ¬y≤1)
(¬x≤2 ∨ x≤1 ∨ ¬y≤2 ∨ y≤1)
(¬x≤3 ∨ x≤2 ∨ ¬y≤3 ∨ y≤2)

X �= Z
(¬x≤1 ∨ ¬z≤1)
(¬x≤2 ∨ x≤1 ∨ ¬z≤2 ∨ z≤1)
(¬x≤3 ∨ x≤2 ∨ ¬z≤3 ∨ z≤2)

Y �= Z
(¬y≤1 ∨ ¬z≤1)
(¬y≤2 ∨ y≤1 ∨ ¬z≤2 ∨ z≤1)
(¬y≤3 ∨ y≤2 ∨ ¬z≤3 ∨ z≤2)

3.7 Algorithm Portfolios

The Algorithm Selection Problem [25] is to select the most appropriate algo-
rithm for solving a particular problem. It is especially relevant in the context of
algorithm portfolios [11,16], where a single solver is replaced with a set of solvers
and a mechanism for selecting a subset to use on a particular problem.

Algorithm portfolios have been used with great success for solving both sat
and csp instances in systems such as SATzilla [34], isac [17] or CPhydra [24].
Most approaches are similar in that they relate the characteristics of a problem
to solve to the performance of the algorithms in the portfolio. The aim of an
algorithm selection model is to provide a prediction as to which algorithm should
be used to solve the problem. The model is usually induced using some form of
machine learning.

There are three main approaches to using machine learning to build algorithm
selection models. First, the problem of predicting the best algorithm can be
treated as a classification problem where the label to predict is the algorithm.
Second, the training data can be clustered and the algorithm with the best
performance on a particular cluster assigned to it. The cluster membership of
any new data decides the algorithm to use. Finally, regression models can be
trained to predict the performance of each portfolio algorithm in isolation. The
best algorithm for a problem is chosen based on the predicted performances.

Our approach makes a series of decisions – whether a problem should be
solved as a csp or a sat problem, which encoding should be used for converting
into sat, and finally which solver should be assigned to tackle the problem.
Approaches that make a series of decisions are usually referred to as hierarchical
models. [33] and [12] use hierarchical models in the context of a sat portfolio.
They first predict whether the problem to be solved is expected to be satisfiable
or not and then choose a solver depending on that decision. Our approach is
closer to [10], which first predicts what level of consistency the alldifferent
constraint should achieve before deciding on its implementation.

310 B. Hurley et al.

To the best of our knowledge, no portfolio approach that potentially trans-
forms the representation of a problem in order to be able to solve it more effi-
ciently exists at present.

4 Experimental Evaluation

4.1 Setup

The hierarchical model we present in this paper consists of a number of layers to
determine how the instance should be solved. At the top level, we decide whether
to solve the instance using as a csp or using a sat-based method. If we choose
to leave the problem as a csp, then one of the dedicated csp solvers must be
chosen. Otherwise, we must choose the sat encoding to apply, followed by the
choice of sat solver to run on the sat-encoded instance.

Each decision of the hierarchical approach aims to choose the direction which
has the potential to achieve the best performance in that sub-tree. For exam-
ple, for the decision to choose whether to solve the instance using a sat-based
method or not, we choose the sat-based direction if there is a sat solver and
encoding that will perform faster than any csp solver would. Whether this par-
ticular encoding-solver combination will be selected subsequently depends on
the performance of the algorithm selection models used in that sub-tree of our
decision mechanism. For regression models, the training data is the best perfor-
mance of any solver under that branch of the tree. For classification models, it
is the label of the sub-branch with the virtual best performance.

This hierarchical approach presents the opportunity to employ different deci-
sion mechanisms at each level. We consider 6 regression, 19 classification, and 3
clustering algorithms, which are listed below. For each of these algorithms, we
evaluate the performance using 10-fold cross-validation. The dataset is split into
10 partitions with approximately the same size and the same distribution of the
best solvers. One partition is used for testing and the remaining 9 partitions as
the training data for the model. This process is repeated with a different par-
tition considered for testing each time until every partition has been used for
testing. We measure the performance in terms of PAR10 score. The PAR10 score
for an instance is the time it takes the solver to solve the instance, unless the
solver times out. In this case, the PAR10 score is ten times the timeout value.
The sum over all instances is divided by the number of instances.

Instances. In our evaluation, we consider csp problem instances from the csp
solver competitions [1]. Of these, we consider all instances defined using global
and intensional constraints that are not trivially solved during 2 seconds of
feature computation. We also exclude all instances which were not solved by
any csp or sat solver within the time limit of 1 hour. Altogether, we obtain
1,493 non-trivial instances from problem classes such as Timetabling, Frequency
Assignment, Job-Shop, Open-Shop, Quasi-group, Costas Array, Golomb Ruler,
Latin Square, All Interval Series, Balanced Incomplete Block Design, and many
others. This set includes both small and large arity constraints and all of the

Proteus: A Hierarchical Portfolio of Solvers and Transformations 311

global constraints used during the csp solver competitions: all-different, element,
weighted sum, and cumulative.

For the sat-based approaches, Numberjack [15] was used to translate a csp
instance specified in xcsp format [27] into sat (cnf).

Features. A fundamental requirement of any machine learning algorithm is a
set of representative features. We explore a number of different feature sets to
train our models: i) features of the original csp instance, ii) features of the
direct-encoded sat instance, iii) features of the support-encoded sat instance,
iv) features of the direct-order-encoded sat instance and v) a combination of all
four feature sets. These features are described in further detail below.

We computed the 36 features used in CPhydra for each csp instance using
Mistral; for reasons of space we will not enumerate them all here. The set
includes static features like statistics about the types of constraints used, average
and maximum domain size; and dynamic statistics recorded by running Mistral
for 2 seconds: average and standard deviation of variable weights, number of
nodes, number of propagations and a few others. Instances which are solved by
Mistral during feature computation are filtered out from the dataset.

In addition to the csp features, we computed the 54 sat features used by
SATzilla [34] for each of the encoded instances and different encodings. The
features encode a wide range of different information on the problem such as
problem size, features of the graph-based representation, balance features, the
proximity to a Horn formula, DPLL probing features and local search probing
features.

Constraint Solvers. Our csp models are able to choose from 4 complete csp
solvers:

– Abscon [22],
– Choco [31],

– Gecode [8], and
– Mistral [14].

Satisfiability Solvers. We considered the following 6 complete sat solvers:

– clasp [7],
– cryptominisat [28],
– glucose [3],

– lingeling [4],
– riss [23], and
– MiniSat [6].

Learning Algorithms. We evaluate a number of regression, classification, and
clustering algorithms using WEKA [13]. All algorithms, unless otherwise stated
use the default parameters. The regression algorithms we used were Linear-
Regression, PaceRegression, REPTree, M5Rules, M5P, and SMOreg. The clas-
sification algorithms were BayesNet, BFTree, ConjunctiveRule, DecisionTable,
FT, HyperPipes, IBk (nearest neighbour) with 1, 3, 5 and 10 neighbours, J48,
J48graft, JRip, LADTree, MultilayerPerceptron, OneR, PART, RandomForest,
RandomForest with 99 random trees, RandomTree, REPTree, and SimpleLogis-
tic. For clustering, we considered EM, FarthestFirst, and SimplekMeans. The
FarthestFirst and SimplekMeans algorithms require the number of clusters to

312 B. Hurley et al.

Table 4. Performance of the learning algorithms for the hierarchical approach. The
‘Category Bests’ consists of the hierarchy of algorithms where at each node of the
tree of decisions we take the algorithm that achieves the best PAR10 score for that
particular decision.

Classifier Mean PAR10 Number Solved

VBS 97 1493
Proteus 1774 1424
M5P with csp features 2874 1413
Category Bests 2996 1411
M5Rules with csp features 3225 1398
M5P with all features 3405 1397
LinearRegression with all features 3553 1391
LinearRegression with csp features 3588 1383
MultilayerPerceptron with csp features 3594 1382
lm with csp features 3654 1380
RandomForest99 with csp features 3664 1379
IBk10 with csp features 3720 1377
RandomForest99 with all features 3735 1383

be given as input. We evaluated with multiples of 1 through 5 of the number of
solvers in the respective data set given as the number of clusters. The number of
clusters is represented by 1n, 2n and so on in the name of the algorithm, where
n stands for the number of solvers.

We use the LLAMA toolkit [19] to train and test the algorithm selection
models.

4.2 Portfolio and Solver Results

The performance of each of the 6 sat solvers was evaluated on the three sat
encodings of 1,493 csp competition benchmarks with a time-out of 1 hour and
limited to 2GB of RAM. The 4 csp solvers were evaluated on the original csps.
Our results report the PAR10 score and number of instances solved for each
of the algorithms we evaluate. The PAR10 is the sum of the runtimes over all
instances, counting 10 times the timeout if that was reached. Data was collected
on a cluster of Intel Xeon E5430 Processors (2.66Ghz) running CentOS 6.4. This
data is available online.1

The performance of a number of hierarchical approaches is given in Table 4.
The hierarchy of algorithms which produced the best overall results for our
dataset involves M5P regression with csp features at the root node to choose
sat or csp, M5P regression with csp features to select the csp solver, Lin-
earRegression with csp features to select the sat encoding, LinearRegression
with csp features to select the sat solver for the direct encoded instance, Lin-
earRegression with csp features to select the sat solver for the direct-order

1 http://4c.ucc.ie/~bhurley/proteus/

http://4c.ucc.ie/~bhurley/proteus/

Proteus: A Hierarchical Portfolio of Solvers and Transformations 313

solve as CSP solve as SAT

encode with direct
encoding

encode with
direct-order

encoding

encode with support
encoding

Linear regression with CSP features

M5P regression with CSP features

M5P regression with CSP features Linear regression with CSP features

Linear regression with CSP features

Linear regression with direct-order
features

Fig. 3. Overview of the machine learning models used in the hierarchical approach

encoded instance, and LinearRegression with the direct-order features to select
the sat solver for the support encoded instance. The hierarchical tree of specific
machine learning approaches we found to deliver the best overall performance
on our data set is labelled Proteus and is depicted in Figure 3.

We would like to point out that in many solver competitions the difference
between the top few solvers is fewer than 10 additional instances solved. In the
2012 sat Challenge for example, the difference between the first and second place
single solver was only 3 instances and the difference among the top 4 solvers was
only 8 instances. The results we present in Table 4 are therefore very significant
in terms of the gains we are able to achieve.

Our results demonstrate the power of Proteus. The performance it delivers is
very close to the virtual best (VBS), that is the best performance possible if an
oracle could identify the best choice of representation, encoding, and solver, on an
instance by instance basis. The improvements we achieve over other approaches
are similarly impressive. The results conclusively demonstrate that having the
option to convert a csp to sat does not only have the potential to achieve
significant performance improvements, but also does so in practice.

An interesting observation is that the csp features are consistently used in
each of the top performing approaches. One reason for this is that it is quicker
to compute only the csp features instead of the csp features, then converting
to sat and computing the sat features in addition. The additional overhead
of computing sat features is worthwhile in some cases though, for example for
LinearRegression, which is at its best performance using all the different feature
sets. Note that for the best tree of models (cf. Figure 3), it is better to use the
features of the direct-order encoding for the decision of which solver to choose
for a support-encoded sat instance despite the additional overhead.

We also compare the hierarchical approach to that of a flattened setting with
a single portfolio of all solvers and encoding solver combinations. The flattened
portfolio includes all possible combinations of the 3 encodings and the 6 sat

314 B. Hurley et al.

Table 5. Ranking of each classification, regression, and clustering algorithm to choose
the solving mechanism in a flattened setting. The portfolio consists of all possible
combination of the 3 encodings and the 6 sat solvers and the 4 csp solvers for a total
of 22 solvers.

Classifier Mean PAR10 Number Solved

VBS 97 1493
Proteus 1774 1424
LinearRegression with all features 2144 1416
M5P with csp features 2315 1401
LinearRegression with csp features 2334 1401
lm with all features 2362 1407
lm with csp features 2401 1398
M5P with all features 2425 1404
RandomForest99 with all features 2504 1401
SMOreg with all features 2749 1391
RandomForest with all features 2859 1386
IBk3 with csp features 2877 1378

solvers and the 4 csp solvers for a total of 22 solvers. Table 5 shows these
results. The regression algorithm LinearRegression with all features gives the
best performance using this approach. However, it is significantly worse than
the performance achieved by the hierarchical approach of Proteus.

4.3 Greater than the Sum of Its Parts

Given the performance of Proteus, the question remains as to whether a different
portfolio approach that considers just csp or just sat solvers could do better. Ta-
ble 6 summarizes the virtual best performance that such portfolios could achieve.
We use all the csp and sat solvers for the respective portfolios to give us VB
CSP and VB SAT, respectively. The former is the approach that always chooses
the best csp solver for the current instance, while the latter chooses the best
sat encoding/solver combination. VB Proteus is the portfolio that chooses the
best overall approach/encoding. We show the actual performance of Proteus for
comparison. Proteus is better than the virtual bests for all portfolios that con-
sider only one encoding. This result makes a very strong point for the need to
consider encoding and solver in combination.

Proteus outperforms four other VB portfolios. Specifically, the VB CPhydra
is the best possible performance that could be obtained from that portfolio if a
perfect choice of solver was made. Neither SATzilla nor isac-based portfolios
consider different sat encodings. Therefore, the best possible performance either
of them could achieve for a specific encoding is represented in the last three lines
of Table 6.

These results do not only demonstrate the benefit of considering the different
ways of solving csps, but also eliminate the need to compare with existing port-
folio systems since we are computing the best possible performance that any of

Proteus: A Hierarchical Portfolio of Solvers and Transformations 315

Table 6. Virtual best performances ranked by PAR10 score

Method Mean PAR10 Number Solved

VB Proteus 97 1493
Proteus 1774 1424
VB CSP 3577 1349
VB CPHydra 4581 1310
VB SAT 17373 775
VB DirectOrder Encoding 17637 764
VB Direct Encoding 21736 593
VB Support Encoding 21986 583

those systems could theoretically achieve. Proteus impressively demonstrates its
strengths by significantly outperforming oracle approaches that use only a single
encoding.

5 Conclusions

We have presented a portfolio approach that does not rely on a single problem
representation or set of solvers, but leverages our ability to convert between
problem representations to increase the space of possible solving approaches.
To the best of our knowledge, this is the first time a portfolio approach like
this has been proposed. We have shown that, to achieve the best performance
on a constraint satisfaction problem, it may be beneficial to translate it to a
satisfiability problem. For this translation, it is important to choose both the
encoding and satisfiability solver in combination. In doing so, the contrasting
performance among solvers on different representations of the same problem can
be exploited. The overall performance can be improved significantly compared
to restricting the portfolio to a single problem representation.

We demonstrated empirically the significant performance improvements Pro-
teus can achieve on a large set of diverse benchmarks using a portfolio based
on a range of different state-of-the-art solvers. We have investigated a range of
different csp to sat encodings and evaluated the performance of a large number
of machine learning approaches and algorithms. Finally, we have shown that the
performance of Proteus is close to the very best that is theoretically possible
for solving csps and significantly outperforms the theoretical best for portfolios
that consider only a single problem encoding.

In this work, we make a general decision to encode the entire problem using a
particular encoding. A natural extension would be to mix and vary the encoding
depending on attributes of the problem. An additional avenue for future work
would be to generalize the concepts in this paper to other problem domains
where transformations, like csp to sat, exist.

Acknowledgements. This work is supported by Science Foundation Ireland
(SFI) Grant 10/IN.1/I3032 and FP7 FET-Open Grant 284715. The Insight Cen-
tre for Data Analytics is supported by SFI Grant SFI/12/RC/2289.

316 B. Hurley et al.

References

1. CSP Solver Competition Benchmarks (2009),
http://www.cril.univ-artois.fr/~lecoutre/benchmarks.html

2. Ansótegui, C., Manyà, F.: Mapping Problems with Finite-Domain Variables to
Problems with Boolean Variables. In: H. Hoos, H., Mitchell, D.G. (eds.) SAT 2004.
LNCS, vol. 3542, pp. 1–15. Springer, Heidelberg (2005)

3. Audemard, G., Simon, L.: Glucose 2.3 in the SAT 2013 Competition. In: Proceed-
ings of SAT Competition 2013, p. 42 (2013)

4. Biere, A.: Lingeling, Plingeling and Treengeling Entering the SAT Competition
2013. In: Proceedings of SAT Competition 2013 (2013)

5. Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.): Handbook of Satis-
fiability. Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press
(February 2009)

6. Een, N., Sörensson, N.: Minisat 2.2 (2013), http://minisat.se
7. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Clasp: A conflict-driven

answer set solver. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS
(LNAI), vol. 4483, pp. 260–265. Springer, Heidelberg (2007)

8. Gecode Team: Gecode: Generic Constraint Development Environment (2006),
http://www.gecode.org

9. Gent, I.P.: Arc Consistency in SAT. In: Proceedings of the 15th European Confer-
ence on Artificial Intelligence — ECAI 2002, pp. 121–125 (2002)

10. Gent, I.P., Kotthoff, L., Miguel, I., Nightingale, P.: Machine learning for con-
straint solver design – a case study for the alldifferent constraint. In: 3rd Work-
shop on Techniques for Implementing Constraint Programming Systems (TRICS),
pp. 13–25 (2010)

11. Gomes, C.P., Selman, B.: Algorithm portfolios. Artificial Intelligence 126(1-2),
43–62 (2001)

12. Haim, S., Walsh, T.: Restart strategy selection using machine learning techniques.
In:Kullmann, O. (ed.) SAT2009. LNCS, vol. 5584, pp. 312–325. Springer,Heidelberg
(2009)

13. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
WEKA data mining software: An update. SIGKDD Explor. Newsl. 11(1), 10–18
(2009)

14. Hebrard, E.: Mistral, A Constraint Satisfaction Library. In: Proceedings of the
Third International CSP Solver Competition (2008)

15. Hebrard, E., O’Mahony, E., O’Sullivan, B.: Constraint Programming and Com-
binatorial Optimisation in Numberjack. In: Lodi, A., Milano, M., Toth, P. (eds.)
CPAIOR 2010. LNCS, vol. 6140, pp. 181–185. Springer, Heidelberg (2010)

16. Huberman, B.A., Lukose, R.M., Hogg, T.: An economics approach to hard com-
putational problems. Science 275(5296), 51–54 (1997)

17. Kadioglu, S., Malitsky, Y., Sellmann, M., Tierney, K.: ISAC – Instance-Specific
Algorithm Configuration. In: Coelho, H., Studer, R., Wooldridge, M. (eds.) ECAI.
Frontiers in Artificial Intelligence and Applications, vol. 215, pp. 751–756. IOS
Press (2010)

18. Kasif, S.: On the Parallel Complexity of Discrete Relaxation in Con-
straint Satisfaction Networks. Artificial Intelligence 45(3), 275–286 (1990),
http://dx.doi.org/10.1016/0004-3702(90)90009-O

19. Kotthoff, L.: LLAMA: leveraging learning to automatically manage algorithms.
Tech. Rep. arXiv:1306.1031, arXiv (June 2013),
http://arxiv.org/abs/1306.1031

http://www.cril.univ-artois.fr/~lecoutre/benchmarks.html
http://minisat.se
http://www.gecode.org
http://dx.doi.org/10.1016/0004-3702(90)90009-O
http://arxiv.org/abs/1306.1031

Proteus: A Hierarchical Portfolio of Solvers and Transformations 317

20. Kotthoff, L.: Algorithm Selection for Combinatorial Search Problems: A Survey.
AI Magazine (to appear, 2014)

21. Le Berre, D., Lynce, I.: CSP2SAT4J: A Simple CSP to SAT Translator. In: Pro-
ceedings of the Second International CSP Solver Competition (2008)

22. Lecoutre, C., Tabary, S.: Abscon 112, Toward more Robustness. In: Proceedings of
the Third International CSP Solver Competition (2008)

23. Manthey, N.: The SAT Solver RISS3G at SC 2013. In: Proceedings of SAT Com-
petition 2013, p. 72 (2013)

24. O’Mahony, E., Hebrard, E., Holland, A., Nugent, C., O’Sullivan, B.: Using Case-
based Reasoning in an Algorithm Portfolio for Constraint Solving. In: Proceeding
of the 19th Irish Conference on Artificial Intelligence and Cognitive Science (2008)

25. Rice, J.R.: The algorithm selection problem. Advances in Computers 15, 65–118
(1976)

26. Rossi, F., van Beek, P., Walsh, T.: Handbook of Constraint Programming. Foun-
dations of Artificial Intelligence. Elsevier, New York (2006)

27. Roussel, O., Lecoutre, C.: XML Representation of Constraint Networks: Format
XCSP 2.1. CoRR abs/0902.2362 (2009)

28. Soos, M.: Cryptominisat 2.9.0 (2011)
29. Tamura, N., Tanjo, T., Banbara, M.: System Description of a SAT-based CSP

Solver Sugar. In: Proceedings of the Third International CSP Solver Competition,
pp. 71–75 (2009)

30. Tanjo, T., Tamura, N., Banbara, M.: Azucar: A SAT-Based CSP Solver Using
Compact Order Encoding — (Tool Presentation). In: Cimatti, A., Sebastiani, R.
(eds.) SAT 2012. LNCS, vol. 7317, pp. 456–462. Springer, Heidelberg (2012)

31. choco team: choco: An Open Source Java Constraint Programming Library (2008)
32. Walsh, T.: SAT v CSP. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894,

pp. 441–456. Springer, Heidelberg (2000)
33. Xu, L., Hoos, H.H., Leyton-Brown, K.: Hierarchical hardness models for SAT. In:

Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 696–711. Springer, Heidelberg
(2007)

34. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla: Portfolio-based Al-
gorithm Selection for SAT. Journal of Artificial Intelligence Research pp. 565–606
(2008)

Buffered Resource Constraint:

Algorithms and Complexity

Christian Bessiere1, Emmanuel Hebrard2, Marc-André Ménard3,
Claude-Guy Quimper3, and Toby Walsh4

1 CNRS, Université Montpellier, LIRMM
bessiere@lirmm.fr

2 CNRS, Université de Toulouse, LAAS
hebrard@laas.fr
3 Université Laval

marc-andre.menard.2@ulaval.ca, claude-guy.quimper@ift.ulaval.ca
4 NICTA, University of New South Wales

toby.walsh@nicta.com.au

Abstract. The notion of buffered resource is useful in many problems.
A buffer contains a finite set of items required by some activities, and
changing the content of the buffer is costly. For instance, in instruction
scheduling, the registers are a buffered resource and any switch of regis-
ters has a significant impact on the total runtime of the compiled code.

We first show that sequencing activities to minimize the number of
switches in the buffer is NP-hard. We then introduce an algorithm which,
given a set of already sequenced activities, computes a buffer assignment
which minimizes the number of switches in linear time, i.e., O(nd) where
n is the length of the sequence and d the number of buffered items.
Next, we introduce an algorithm to achieve bound consistency on the
constraint Switch, that bounds the number of changes in the buffer,
in O(n2d+ n1.5d1.5) time. Finally, we report the results of experimental
evaluations that demonstrate the efficiency of this propagator.

1 Introduction

We consider a special type of resource, a buffer, corresponding to a set of items
required by some tasks. In order to process a task, all items required by the
task must be present in the buffer. However, the buffer has a limited capacity,
and adding a new item is costly. Therefore, one may want to minimize the
total number of changes, or switches. For instance, in instruction scheduling,
the buffer can stand for memory caches, and minimizing the number of switches
corresponds to minimizing page faults. Alternatively, the buffer may correspond
to the reels of colored threads on an embroidery machine, and minimizing the
number of reels changes over a sequence helps reducing the overall processing
time. Yet another example arises in the design of validation plans for satellite
payload [3]. Here, each test requires some components of the payload to be in a
given configuration, and again the total number of configuration changes during
the test campaign is a significant factor of its total duration.

H. Simonis (Ed.): CPAIOR 2014, LNCS 8451, pp. 318–333, 2014.
c© Springer International Publishing Switzerland 2014

Buffered Resource Constraint: Algorithms and Complexity 319

We show that achieving hybrid consistency on the BufferedResource con-
straint, i.e., domain consistency on the integer variables and bound consistency
on the set variables, is NP-hard. We therefore consider a decomposition involv-
ing an AllDifferent constraint to enforce that the sequence is a permutation
of the original set of tasks, and the constraint Switch, that counts the number
of switches along the sequence.

We introduce an algorithm for finding a support of Switch in linear time,
that is, O(nd) where n is the length of the sequence and d the number of items.
Moreover, we show how bound consistency can be enforced in O(n2d+n1.5d1.5)
time using a flow representation.

Finally, we compare our filtering algorithm against a decomposition on two
crafted optimization problems, albeit derived from industrial applications. In
both cases the objective function is defined using one or several Switch con-
straints. In these experiments, the proposed propagation algorithm for Switch
greatly outperforms the standard decomposition.

The paper is organized as follows: In Section 2 we recall some background
about consistency on constraints involving both integer and set variables. In Sec-
tion 3 we define the BufferedResource and Switch constraints and discuss
their complexities. Then, in Section 4, we introduce an algorithm for achieving
bound consistency on the Switch constraint. Finally, in Section 5, we report
experimental results.

2 Formal Background

A constraint satisfaction problem consists of a set of variables, each with a finite
domain of values, and a set of constraints specifying allowed combinations of
values for subsets of variables. We write dom(X) for the domain of a variable X .
For totally ordered domains, we write min(X) and max(X) for the minimum and
maximum values. A solution is an assignment of values to the variables satisfying
the constraints. We consider both integer and set variables. A set variable S is
represented by its lower bound lb(S) which contains the definite elements and
an upper bound ub(S) which also contains the potential elements.

Constraint solvers typically explore partial assignments enforcing a local con-
sistency property using either specialized or general purpose propagation algo-
rithms. Given a constraint C, a bound support on C is a tuple that assigns to
each integer variable a value between its minimum and maximum, and to each
set variable a set between its lower and upper bounds which satisfies C. Accord-
ing to [1], a bound support in which each integer variable is assigned a value
in its domain is called a hybrid support. If C involves only integer variables, a
hybrid support is a support. A constraint C is bound consistent (BC) iff for each
integer variable Xi, its minimum and maximum values belong to a bound sup-
port, and for each set variable Sj , the values in ub(Sj) belong to Sj in at least
one bound support and the values in lb(Sj) belong to Sj in all bound supports.
A constraint C is hybrid consistent (HC) iff for each integer variable Xi, every
value in dom(Xi) belongs to a hybrid support, and for each set variable Sj , the

320 C. Bessiere et al.

values in ub(Sj) belong to Sj in at least one hybrid support, and the values
in lb(Sj) are all those from ub(Sj) that belong to Sj in all hybrid supports. A
constraint C involving only integer variables is generalized arc consistent (GAC)
iff for each variable Xi, every value in dom(Xi) belongs to a support.

If all variables in C are integer variables, hybrid consistency reduces to general-
ized arc-consistency, and if all variables in C are set variables, hybrid consistency
reduces to bound consistency.

To illustrate these concepts, consider the constraint C(X1, X2, S) that holds
iff the set variable S is assigned exactly the values used by the integer variables
X1 and X2. Let dom(X1) = {1, 3}, dom(X2) = {2, 4}, lb(S) = {2} and ub(S) =
{1, 2, 3, 4}. BC does not remove any value since all domains are already bound
consistent. On the other hand, HC removes 4 from dom(X2) and from ub(S) as
there does not exist any tuple satisfying C in which X2 does not take value 2.
Note that as BC deals with bounds, value 2 was considered as possible for X1.

3 The BufferedResource and Switch Constraints

We consider the problem of performing a set of tasks, each requiring a set of
resources to be available on a buffer, whilst bounding the number of switches of
resources on the buffer. We are given:
– A maximum buffer size ki and a minimum buffer usage ki at time i;
– A set of resources R = {r1, . . . , rm};
– A set of tasks T = {Ti}1≤i≤n, where each task Ti ∈ T is associated with the

set of resources it requires, that is, ∀i ∈ [1, n], Ti ⊆ R.

Example 1. For instance, suppose that we want to embroid n garments. Each
garment requires a set of colors. However, only k reels and therefore k different
colors of thread can be loaded on the embroidery machine. Hence, whenever we
embroid a garment requiring a color of thread that is not already mounted on the
machine, we need to switch it with one of the currently mounted reels. Each such
switch is time consuming. Therefore, the goal is to sequence the garments so that
we minimize the number of reel changes. In other words, we want to compute
a permutation of the tasks p : [1, n] (→ [1, n] and an assignment σ : [1, n] (→ 2R

of the buffer over time such that the items required by each task are buffered
(∀1 ≤ i ≤ n, Ti ⊆ σ(pi)), the size of the buffer is not exceeded (ki ≤ |σ(i)| ≤ ki)
and the number of switches

∑
1≤i<n |σ(i+ 1) \ σ(i)| is minimized.

We introduce the BufferedResource constraint to model this pattern.

Definition 1 (BufferedResource). Let X1, . . . , Xn be integer variables, S1,
. . . , Sn be set variables, k1, . . . , kn and k1, . . . , kn be integers, and M an in-
teger variable. The constraint BufferedResource([X1, . . . , Xn], [S1, . . . , Sn],
[k1, . . . , kn], [k1, . . . , kn],M) holds if and only if:
1. ∀i, j ∈ [1, n], i �= j → Xi �= Xj (X1, . . . , Xn is a permutation)
2. ∀i ∈ [1, n], ki ≤ |Si| ≤ ki (the buffer has a bounded capacity)
3. ∀i, Ti ⊆ SXi (when a task is processed, all required resources are buffered)
4.

∑
1≤i<n |Si+1 \Si| ≤ M (the number of switches is less than or equal to M)

Buffered Resource Constraint: Algorithms and Complexity 321

We shall see that this constraint is NP-hard (even if the buffer’s size is fixed).
Hence, throughout the rest of the paper we shall consider a decomposition:

BufferedResource(X1, . . . , Xn, S1, . . . , Sn, [k1, . . . , kn], [k1, . . . , kn],M) ⇔
AllDifferent(X1, . . . , Xn)

∧ ∀i ∈ [1, n], ki ≤ |Si| ≤ ki

∧ ∀i, Ti ⊆ SXi

∧ Switch([S1, . . . , Sn], [k1, . . . , kn], [k1, . . . , kn],M)

And in particular the constraint Switch, defined as follows:

Definition 2 (Switch). Let S1, . . . , Sn be set variables, ki a lower bound on the
cardinality of Si, ki an upper bound on the cardinality of Si, and M an integer
variable. The constraint Switch([S1, . . . , Sn], [k1, . . . , kn], [k1, . . . , kn],M) holds
if and only if: ∀i ∈ [1, n], ki ≤ |Si| ≤ ki ∧

∑
1≤i<n |Si+1 \ Si| ≤ M .

Example 1 (Continued). Assume that we want to embroid 5 garments, each re-
quiring one of 5 colors as shown in Fig. 1a, on a machine with 3 reels of thread.
Let the domains shown Fig. 1b represent the possible permutations at some point
during search. To this sequence of variables corresponds a sequence of set vari-
ables shown in Fig. 1c. Whereas the BufferedResource constraint defines the
possible combinations for all X ’s and S’s, the constraint Switch involves only
the set variables. We illustrate a support for Switch with M = 2 in Fig. 1d and
a feasible solution for BufferedResource corresponding to the permutation
2, 1, 3, 4, 5 with 4 switches in Fig. 1e.

T1 = {B,G, Y }
T2 = {B,G,R}
T3 = {W,Y }
T4 = {B,R,W}
T5 = {R,W, Y }
(a) Garments

X1 = {1, 2}
X2 = {1, 2}
X3 = {3, 4, 5}
X4 = {3, 5}
X5 = {4, 5}
(b) Perm.

{B,G} ⊆ S1 ⊆ {B,G,R, Y }
{B,G} ⊆ S2 ⊆ {B,G,R, Y }
{R} ⊆ S3 ⊆ {B,R,W, Y }

{W,Y } ⊆ S4 ⊆ {R,W, Y }
{R,W} ⊆ S5 ⊆ {B,R,W, Y }

(c) Buffer bounds

S1 = {B,G,R}
S2 = {B,G,R}
S3 = {B,W,R}
S4 = {Y,W,R}
S5 = {Y,R,W}
(d) Support

S1 = {B,G,R}
S2 = {B,G, Y }
S3 = {B,W, Y }
S4 = {B,W,R}
S5 = {Y,W,R}
(e) Solution

Fig. 1. Illustration of Example 1

Theorem 1. Achieving HC on BufferedResource is NP-hard.

Proof. We reduce Hamiltonian path (on undirected graphs) to the problem
of finding a satisfying solution to BufferedResource. Let G = (V,E) be
an undirected graph with |V | = n and |E| = m. We build an instance of
BufferedResource on the integer variables [X1, . . . , Xn], the set variables
[S1, . . . , Sn] and switch variable M .

– For each vi ∈ V , we have a task Ti requiring m items, that is, a set Ti

of cardinality m that contains one value j for every edge ej ∈ E such that
vi ∈ ej . In order to make sure that |Ti| = m, we use as fillers values appearing
in no other task ({i ∗m+ j}1≤j≤m−d(vi) where d(vi) is the degree of vi).

322 C. Bessiere et al.

– There is one integer variable Xi per vertex vi ∈ V with domain {1, . . . , n}.
– There are as many set variables Si as vertices in the graph G, with domains

ranging from the empty set to the whole universe of values: {} ⊆ Si ⊆
{1, . . . , (n + 1)m} for each vi ∈ V . The cardinality of each one of these set
variables is ki = ki = m.

– The domain of M is set to the single value (n− 1)(m− 1).

We first show that the existence of an Hamiltonian path entails the existence
of a solution of BufferedResource on the construction above. We set the
value of Xi to the rank of the vertex vi in the Hamiltonian path. Observe that
given a permutation, there is a unique valuation of the set variables satisfying
the constraint: ∀i ∈ [1, n], SXi = Ti. Consider any two consecutive set variables
Sj , Sj+1. Their domains correspond to two consecutive vertices in the Hamilto-
nian path, hence they share exactly one value: the common edge between the
two nodes. The number of switches between these two set variables is thus equal
to m− 1, hence the total number of switches is (n− 1)(m− 1).

Next we show that the existence of a solution entails the existence of an
Hamiltonian path in G. Consider any two consecutive set variables Sj , Sj+1,
and assume that Xi = j and Xk = j + 1. There are two cases, either there
exists an edge ex = (vi, vk) in E and then Ti ∩ Tk = {x} or such edge does not
exist, and therefore Ti ∩ Tk = ∅. Since there are (n− 1) consecutive pairs of set
variables, and since the only possible value for M is (n − 1)(m − 1), the first
case must hold for every consecutive pair. We can therefore conclude that there
exists a path visiting every vertex of the graph exactly once. �

Observe that the cardinality of each set variable Si can be as low as 3 since
Hamiltonian path is still NP-hard when the maximum degree of a vertex is 3.
On the other hand, the proof above requires both the total number of resources
and the bound on the number of switches to be large.

4 Filtering Algorithm for Switch

In this section, we show how bound consistency can be enforced on Switch
in O(n2d + n1.5d1.5) time. First we introduce a greedy algorithm that finds an
assignment minimizing the number of switches in O(nd) time where d is the
total number of resources. Let L be the number of switches of that assignment.
Then we introduce a filtering procedure based on a network flow representation.
The cost of the flow represents the number of switches and for each pair Si, v
such that v ∈ ub(Si) there is an edge in the network that can receive a unit of
flow if and only if the set Si may contain the value v in a support. Observe that
forcing v ∈ Si may never entail more than two extra switches in the optimal
assignment with L switches. Therefore, we need to prune the set variables only
if the difference between L and the upper bound of M is at most 1.

The algorithm we propose therefore proceeds as follows. First, we compute a
flow of minimum cost, which is a support, and provides a lower bound on M .
Then, if max(M) − min(M) ≤ 1, we consider the residual graph with respect

Buffered Resource Constraint: Algorithms and Complexity 323

Table 1. Summary of the algorithm and its complexity

Step Complexity

Finding an optimal assignment O(nd)
Re-weighting the residual graph O((nd)1.5)
Finding null cycles O(nd)
Finding cycles of weight 1 O(n2d)

Total O(n2d+ n1.5d1.5)

to this flow, and re-weight the edges so as to eliminate negative costs. Then we
find all null cycles and, if max(M)−min(M) = 1, all cycles of weight 1. Table 1
summarizes the complexity of these four steps.

4.1 Finding a Support

We present an algorithm that greedily constructs a support for the Switch
constraint. This support is optimal in the sense that it minimizes the number
of switches. The algorithm FindSupport (Algorithm 1) successively assigns the
variables S1 to Sn to sets σ1 to σn. At each step i, the algorithm computes a
priority for each value. The lower the priority is for value v, the more likely the
value v will belong to σi. While processing the variables Si for i = 1..n, we main-
tain for each value v the index next∈(v) = min({j | v ∈ lb(Sj), j ≥ i} ∪ {n+1})
that is the smallest variable index no smaller than i such that v ∈ lb(Sj). We
also maintain the index next�∈(v) = min({j | v �∈ ub(Sj), j ≥ i} ∪ {n + 1})
that is the smallest variable index no smaller than i such that v �∈ ub(Sj). If
next∈(v) < next�∈(v), the value v will be required in the sequence Si . . . Sn be-
fore it gets forbidden. We assign such a value a priority between 1 and n. If
next∈(v) > next �∈(v), the value v will be forbidden in the sequence Si, . . . , Sn

before it gets required. We assign such a value a priority between n+2 and 2n+1.
Finally, if next∈(v) = next�∈(v), we assign to value v a priority of n+1. This later
case only occurs if the value v is allowed to appear but not required to appear
in every variable of the sequence Si, . . . , Sn. The insertion of a value that is not
required or that does not belong to the previous set σi−1 induces a unnecessary
switch. Such a value is given a penalty of 2n+1 on its priority. Once the priority
is computed, we add the value lv = prio(v)× (d+1)+ v to a set L. From lv, we
can retrieve the value using the arithmetic operation lv mod (d + 1). Moreover,
the smaller the priority is, the smaller the value lv is. The algorithm keeps a
counter k of the number of values that can be added to σi without causing an
unnecessary switch, i.e. a switch that is not due to the requirement v ∈ lb(Si).
This counter is the cardinality that will be given to σi. If k �∈ [ki, ki], we update
k to the closest value between ki and ki. We call the algorithm Selection(L, k)
to retrieve the kth smallest element in L. This algorithm has a running time
complexity of O(d) when implemented using a divide-and-conquer strategy and

324 C. Bessiere et al.

Algorithm 1. FindSupport([S1, . . . , Sn], [k1, . . . , kn], [k1, . . . , kn])

for v = 1..d do next∈(v) ← next �∈(v) ← 1;
σ0 ← ∅;
for i = 1..n do

L ← ∅, k ← 0;
for v ∈ ub(Si) do

if next∈(v) < i then next∈(v) ← i;
1 while next∈(v) ≤ n ∧ v �∈ lb(Snext∈(v)) do next∈(v) ← next∈(v) + 1;

if next �∈(v) < i then next �∈(v) ← i;
2 while next �∈(v) ≤ n ∧ v ∈ ub(Snext �∈(v)) do next �∈(v) ← next �∈(v) + 1;

prio ←
⎧
⎨

⎩

next∈(v) if next∈(v) < next �∈(v)
n+ 1 if next∈(v) = next �∈(v)
2(n+ 1)− next �∈(v) if next∈(v) > next �∈(v)

;

3 if v �∈ lb(Si) ∧ v �∈ σi−1 then prio ← prio+2n+ 1 else k ← k + 1
L ← L ∪ {prio×(d+ 1) + v};

k ← min(max(k, ki), ki);
lmax ← Selection(L, k);
σi ← {l mod (d+ 1) | l ∈ L ∧ l ≤ lmax};

return [σ1, . . . , σn];

a randomized partition algorithm [4]. We finally retrieve the k smallest elements
lv from L and include their respective value v in the set σi. Some values might
share a same priority, the algorithm breaks ties on the lexicographical order of
the values in order not to obtain sets with cardinality greater than k. The vector
[σ1, . . . , σn] constitutes an optimal support to the constraint.

Theorem 2. The algorithm FindSupport returns a support of Switch that
minimizes the number of switches.

Proof. Let nexti∈(v), next
i
�∈(v), and prioi(v) be the values of next∈(v), next�∈(v)

and prio(v) at iteration i.
We consider an optimal solution σ that cannot be built by FindSupport. Let

θi be the instantiation of Si by FindSupport and let i be the first index such
that θi �= σi. One of the three following propositions is true:

1. σi ⊂ θi, hence ∃v such that |{w | prioi(w) < prioi(v)}| ≤ |θi|, v �∈ σi;
2. θi ⊂ σi, hence ∃v such that |{w | prioi(w) < prioi(v)}| > |θi|, v ∈ σi;
3. σi �⊂ θi & θi �⊂ σi, hence ∃v, w s.t. prioi(v) < prioi(w), v �∈ σi and w ∈ σi;

Case 1: Since v �∈ σi, we have v �∈ lb(Si) and |θi| > ki. Therefore,
|σi−1 ∪ lb(Si)| > ki. It follows that v ∈ σi−1, hence adding v to σi does not
add any v-switch (and might prevent one latter).

Buffered Resource Constraint: Algorithms and Complexity 325

Case 2: Since v �∈ θi, we have v �∈ lb(Si) and since v ∈ σi we have |θi| > ki.
Therefore, |σi−1 ∪ lb(Si)| < ki. It follows that v �∈ σi−1, hence removing v from
σi suppresses one v-switch (and might entail one latter).

Case 3: From now on, we assume prioi(v) < prioi(w), v �∈ σi and w ∈ σi. We
now show that for some j > i, we can swap all instances of w for v in the sets
σi, . . . , σj−1 whilst not increasing the number of switches. Let σ′ be the solution
obtained by this transformation on σ. For each such operation, we get strictly
closer to a solution that can be obtained by FindSupport. We say that there is a
v-switch at index i in solution σ iff v ∈ σi \ σi−1. Since the transformation only
changes indices i to j − 1 and values v and w, we only have to count v-switches
and w-switches from index i to j.

Notice that prioi(v) < prioi(w) & w ∈ σi−1 implies v ∈ σi−1. Indeed, in
Line 3 of Algorithm 1, we make sure that values in σi−1 ∪ lb(Si) have the best
priority. Moreover, since w and v can be interchanged, none of them is in lb(Si).

We first consider the case where only v is in the previous buffer: w �∈ σi−1 and
v ∈ σi−1. Let j be the minimum integer greater than i such that either w �∈ σj

or v ∈ σj or w ∈ lb(Sj) or v �∈ ub(Sj) or j = n+ 1.
Now we count v- and w-switches on the solutions σ and σ′ .

– On σ there is a w-switch at index i, and there may be a v-switch at index j.
– On σ′ there is no v-switch, however there may be a w-switch at index j.

Therefore, in this case the transformation can only decrease the number of
switches, or leave it unchanged.

Now we consider the case where both v and w are either in or out the previous
buffer: w ∈ σi−1 ⇔ v ∈ σi−1. Let j be the minimum integer greater than i such
that either w �∈ σj or v ∈ σj or j = n + 1. We show that v ∈ ub(Sl) and
w �∈ lb(Sl) for all i ≤ l < j, i.e.,

j ≤ nexti∈(w) and j ≤ nexti�∈(v) (1)

Now, by hypothesis, prioi(w) > prioi(v). There are two cases:

1. nexti∈(v) < next�∈(i)v: In this case, nexti∈(v) < nexti∈(w). However, v ∈
σnexti∈(v) entails j ≤ nexti∈(v), therefore proposition 1 is correct in this case.

2. nexti∈(v) ≥ next�∈(i)v: In this case, nexti∈(w) ≥ nexti�∈(w) and next �∈(i)v >

nexti�∈(w). However, w �∈ σnexti�∈(w) we have j ≤ nexti�∈(w), therefore proposi-

tion 1 is correct in this case too.

Now we count v- and w-switches on the solutions σ and σ′ .

– On σ there is a w-switch at index i iff w �∈ σi−1. Moreover, if v ∈ σj there is
a v-switch at index j.

– On σ′ : there is a v-switch at index i iff v �∈ σi−1. Moreover, if w ∈ σj there
is a w-switch at index j.

By definition of j, w ∈ σj implies that v ∈ σj , hence there is a w-switch at
index j in σ′ only if there is a v-switch at index j in σ. Moreover, by hypothesis,
w �∈ σi−1 ⇔ v �∈ σi−1. It follows that the number of switches may not increase
after the transformation. �

326 C. Bessiere et al.

The increments on line 1 and 2 are executed at most n times for each value v.
The Selection algorithm is called exactly n times and has a running time com-
plexity of O(d). Consequently, the algorithm FindSupport runs in time O(nd).

4.2 Network Flow Model

Let σ1, . . . , σn be an optimal solution with L switches, such as the one computed
by FindSupport. For any set Si, any value v ∈ ub(Si) can be inserted into σi

by adding at most 2 more switches (unless | lb(Si)| = ki). Indeed we can add a
value v to Si or replace any value w ∈ Si \ lb(Si) with v, entailing at most one
switch with Si−1 and one switch with Si+1. Hence no pruning is required unless
max(M)− L < 2,.

We therefore focus on the case where max(M) − L < 2 and we describe an
algorithm that finds the values that can be used without additional switches and
the values that require exactly one additional switch.

We construct a network flow Gs where every flow of value d represents a
solution to the Switch constraint. The network has the following nodes. For
every v ∈ ub(Si), we have the nodes avi and bvi . For 0 ≤ i ≤ n, we have a
collector node Ci. The collector node C0 is the source node and the collector
node Cn is the sink node.

Each edge has a capacity of the form [l, u] where l is the required amount
and u is the allowed amount of flow that can circulate through the edge. The
network Gs has the following edges:

1. An edge between the node avi and bvi for every v ∈ ub(Si)
(a) with capacity [1, 1] if v ∈ lb(Si);
(b) with capacity [0, 1] otherwise.

2. An edge between bvi and avi+1 of capacity [0, 1] if these two nodes exist.
3. An edge between bvi and Ci of capacity [0, 1] for 1 ≤ i ≤ n and v ∈ ub(Si).
4. An edge between Ci−1 and avi of capacity [0, 1] for 1 ≤ i ≤ n and v ∈ ub(Si).
5. An edge between Ci−1 and Ci of capacity [d− ki, d− ki] for 1 ≤ i ≤ n.

All edges have a cost of zero except the edges (Ci−1, a
v
i) for 2 ≤ i ≤ n and

v ∈ ub(Si) that have a cost of 1. The cost c(f) of a flow f is the sum, over
the edges, of the cost of the edge times the amount of flow on this edge, i.e.
c(f) =

∑
(x,y)∈E f(x, y)c(x, y). Figure 2 shows the network flow of Example 1.

Lemma 1. Each flow of value d in Gs corresponds to an assignment of the
Switch constraint where capacities are satisfied.

Proof. We construct a solution σ1, . . . , σn by setting v ∈ σi if and only if the edge
(avi , b

v
i) accepts a unit of flow. Since the flow value is d and there are between

d− ki and d− ki units of flow circulating through the edge (Ci−1, Ci), there are
between ki and ki edges (a

v
i , b

v
i) accepting a unit of flow, thus ki ≤ |σi | ≤ ki. �

Buffered Resource Constraint: Algorithms and Complexity 327

a11

a21

a31

a41

a51

b11

b21

b31

b41

b51

a12

a22

a32

a52

b12

b22

b32

b52

a13

a33

a43

a53

b13

b33

b43

b53

a14

a24

a34

a44

a54

b14

b24

b34

b44

b54

a25

a35

a45

a55

b25

b35

b45

b55

C0

C1 C2 C3 C4

C5

Fig. 2. The network flow associated to the Switch constraint of Example 1. Bold
edges represent the flow. A pair of nodes (av

i , b
v
i) in bold indicates that v ∈ lb(Si) and

that the flow must go through the edge (av
i , b

v
i).

Lemma 2. The cost of a flow in Gs gives the number of switches in the solution.

Proof. The amount of flow going out of the collector Ci−1 to the nodes avi in-
dicates the number of switches between Si−1 and Si. Since these edges have a
cost of 1, the cost of the flow equals the number of switches in the solution. Note
that a flow can go through the nodes bvi−1, Ci−1, and then avi which counts as
a switch. Such cases do not occur in a minimum-cost flow as the flow could go
through the edge (bvi−1, a

v
i) at a lesser cost. �

4.3 Bound Consistency

The function FindSupport computes a minimum-cost flow with a flow value
of d. Let f(x, y) be the amount of flow circulating on the edge (x, y) that has
capacity [l, u]. The residual graph Gr has the same nodes as the original network
but has the following edges. If f(x, y) < u, there is an edge (x, y) with capacity
[l−f(x, y), u−f(x, y)] and cost c(x, y). If f(x, y) > l there is an edge (y, x) with
capacity [f(x, y) − u, f(x, y) − l] and cost −c(x, y). Note that in the residual
graph, all costs are either -1, 0, or 1.

Theorem 3. Let f be a flow of minimum cost in Gs, and Gr the corresponding
residual graph, Switch is BC if and only if:

1. For all v ∈ ub(Si), f(a
v
i , b

v
i) > 0 or the edge (avi , b

v
i) belongs to a cycle of

cost lower than or equal to max(M)− c(f) in Gr.

2. For all v ∈ lb(Si), f(a
v
i , b

v
i) > 0 and there is no cycle of cost lower than or

equal to max(M)− c(f) in Gr that involves the edge (bvi , a
v
i).

328 C. Bessiere et al.

Proof. By Lemma 1, we know that a flow in Gs corresponds to an assignment
of S1, . . . , Sn that satisfies the capacities of the sets. Moreover, by Theorem 2,
we know that the support corresponding to f minimizes the number of switches.
Hence, f witnesses the existence of a support for all v ∈ Si such that f(avi , b

v
i) >

0. Now, if f(avi , b
v
i) = 0, it is known that there is a flow going through the edge

(avi , b
v
i) iff there exists a cycle in Gr passing by the edge (avi , b

v
i). Moreover, by

Lemma 2, the cost of the minimum cycle passing by the edge (avi , b
v
i) gives the

number of required additional switches if v ∈ Si is forced. It follows that in this
case, v ∈ Si has a support iff there exists a cycle of cost max(M)− c(f) or less
going through (avi , b

v
i) in the graph Gr.

The flow f satisfies the bounds and capacities of the sets. Therefore, if
f(avi , b

v
i) = 0 then v cannot be in the lower bound of Si. Now, suppose that

f(avi , b
v
i) > 0. By a reasoning similar as above, we have that there exists a

bound support where v �∈ Si iff there exists a cycle of cost max(M) − c(f) or
less going through (bvi , a

v
i) in the graph Gr. Therefore, v ∈ lb(Si) is entailed iff

there is no such cycle. �

Recall that we assume max(M) ≥ c(f) + 2 where c(f) is the number of
switches in an optimal solution. Therefore, we are interested to find all cycles of
cost 0 and 1. We now describe how can this be done efficiently.

Since computing the minimum cycles is as hard as finding shortest paths, we
first perform a preprocessing operation that will eliminate negative weights in the
residual graph. This preprocessing is the same as the one used in Johnson’s all-
pair shortest path algorithm and was also used by Régin to filter Cost-GCC [7].

We add a dummy node z to the residual graph that is connected to all other
nodes with an edge of null cost. We compute the shortest path from the dummy
node z to all other nodes. This can be done using Goldberg’s algorithm [5]
which computes the shortest path in a graph in O(

√
|V ||E| logW) time where

|V | is the number of vertices, |E| is the number of edges, and W is the greatest
absolute cost of an edge. In our case, we have |V | ∈ O(nd), |E| ∈ O(nd), and
W = 1 which leads to a complexity of O((nd)1.5). Let π(x) be the shortest
distance between the dummy node z and the node x. Let (x, y) be an edge in
the residual graph with cost c(x, y). We re-weight this edge with the cost function
cπ(a, b) = c(a, b)+π(a)−π(b). It is known that with the new cost function, there
are no negative edges and that the cost of any cycle remains unchanged.

Finding null cycles in the new re-weighted residual graph becomes an easy
problem. Since there are no negative edges, a cycle is null if and only if all its
edges have a null cost. We can thus compute the strongly connected components
in the graph induced by the edges of null costs. All values v ∈ ub(Si) such that
the edge (avi , b

v
i) belongs to a null cycle has a support without extra switches.

To compute the supports with one additional switch, we modify once more
the residual graph. We delete all edges with a cost greater than 1. Such edges
necessarily lie on a path of weight greater than 1 and are not relevant. Only
edges with weight 0 and 1 remain in the graph. We create two copies of the
graph. We connect the two copies as follows: if there is an edge (x, y) of cost
cπ(x, y) = 1, then we delete this edge in both copies and add an edge from x in

Buffered Resource Constraint: Algorithms and Complexity 329

the first graph to y in the second graph. The intuition is that to travel from a
node in the first graph to a node in the second graph, one must pass through
an edge of cost 1. Moreover, it is not possible to cross twice such an edge. So all
paths in the resulting graph have cost at most 1.

To find a cycle of cost 1 passing by the edge (avi , b
v
i) in the original graph, one

needs to find a path from bvi in the first graph to avi in the second graph. The
problem is therefore transformed to a problem of reachability.

Computing whether there is a path from each of the O(nd) nodes bvi to their
associated nodes avi can be done using O(nd) depth first search (DFS) for a total
computational time of O(n2d2). However, we use a key information to decrease
this complexity. We know that to generate one more switch, the flow needs to
pass by a collector. We can restrict our search to the cycles passing by a collector.
For each of the n collectors Ci, we can compute with a DFS the nodes F 0

i that
can be reached from this collector with a forward path of cost 0 and the nodes
F 1
i that can be reached with a path of cost 1. While doing the DFS, we use

two bitsets to represent F 0
i and F 1

i and flag the nodes in the appropriate bitsets
depending whether the node belongs to the first copy of the graph or the second
copy. We perform the same operation on the transposed graph to compute the
nodes B0

i and B1
i that can be reached with a backward path from collector Ci

with a cost of at most 0 and at most 1. We then compute the set of nodes Pub

that lie on a cycle of cost at most 1 that passes by a collector as follows.

Pub =

n⋃
i=1

(
F 0
i ∩B1

i ∪ F 1
i ∩B0

i

)
(2)

For every v ∈ ub(Si) such that v �∈ σi and avi ∈ Pub, then it is possible to modify
the solution σ to obtain a new solution σ′ with v ∈ σ′

i. One simply needs to
push one unit of flow on the cycle on which lies the node avi . Since this node has
(avi , b

v
i) has unique outgoing edge in the residual graph, the new flow will pass

by (avi , b
v
i) and will have at most one more switch.

We use the same idea to test whether v �∈ Si has a bound support whenever
f(avi , b

v
i) > 0. We compute the set Plb that contains all indices i such that there

does not exist a cycle of cost at most 1 that passes by a collector and by the
edge (bvi , a

v
i) as follows.

Plb = {i | � ∃j s.t. (avi ∈ B0
j ∧ bvi ∈ F 1

j) ∨ (avi ∈ B1
j ∧ bvi ∈ F 0

j)} (3)

For every v �∈ lb(Si) such that v ∈ σi and i ∈ Plb, then it would not be possible
to modify the solution σ to obtain a new solution σ′ with v �∈ σ′

i. Indeed there is
no alternative for the unit of flow going through (avi , b

v
i) without increasing the

cost above max(M). We can therefore deduce that v should be added to lb(Si).
Each of the n DFS runs in time O(nd). The union and intersection operations

required for the computation of Pub and Plb can be done using bitwise conjunc-
tion and disjunctions in time O(n2d). So the computation of the cycles are done
in time O(n2d).

330 C. Bessiere et al.

5 Experimental Evaluation

We tested our propagator for Switch on two optimization problems based on
industrial applications. However, they have been somewhat abstracted and sim-
plified for the purpose of our experiments. Moreover, we randomly generated two
sets of instances.1 All experiments were run on Intel Core i5 2.30GHz machine
with 6GB of RAM on Windows 7. For each problem, we have generated 50 in-
stances of four classes, each defined by a tuple of parameters. We compare two
Choco programs that differ in the representation of the objective function. In
the first model it is decomposed into a sum of reified LessThan (<) constraints.
In the second model, the objective function is represented using a single Switch
constraint (for the first problem), or several (for the second problem). All other
constraints are the same in both models. Finally, we used two search heuristics
(Impact-based Search [6] and the Domain over Weighted Degree Heuristic [2],
denoted respectively Impact and Wdeg).

Embroidery Scheduling. This first problem is derived from a real life scheduling
problem in the textile industry involving job-dependent setup times.

A set of n garments have to be embroidered using m machines. Each garment
is characterized by a set coli ⊆ {1, . . . , k} of colors required for embroidering a
given pattern. Last, at most cj reels of threads can be mounted on machine j
(i.e., at most cj colors of threads can be used without changing the reels).

The load on each machine must be balanced, so we assume that each machine
will process n/m garments. A feasible solution for this problem is a mapping
of the garments to the machines f : {1, . . . , n} (→ {1, . . . ,m}. Moreover, each
garment i must be assigned a position si on the machine it is assigned to, and
for each machine j the set of colors of threads Sj

g available when processing

the the gth garment must be sufficient for embroidering that garment (Eq. 5)
while taking into account the maximum number of reels that can be mounted on
each machine (Eq. 6). However, whenever the next garment to be embroidered
requires a color of thread that is not loaded on the machine, one need to turn
the machine off, change some reels and restart the machine. The number of reel
changes must therefore be minimized (Eq. 4).

minimize :
∑

1≤j≤m

∑
1≤g<n/m |Sj

g+1 \ Sj
g | (4)

subject to : ∀i ∈ {1, . . . , n} coli ⊆ S
f(i)
s(i) (5)

∀j ∈ {1, . . . ,m}, g ∈ {1, . . . , n/m} |Sj
g | ≤ cj (6)

We have a set of n integer variables with domain {1, . . . ,m} standing for the
mapping of garments to position in the sequence (we consider here the whole
sequence obtained by concatenating the sequences on each machine). Then we
have n set variables, one for each garment and standing for the set of colors

1 Available at http://homepages.laas.fr/ehebrard/switch/

Buffered Resource Constraint: Algorithms and Complexity 331

 40

 60

 80

 100

 120

 140

 160

 0 10000 20000 30000 40000 50000 60000

o
b
j
e
c
t
i
v
e

(
#
s
w
i
t
c
h
e
s
)

cpu time (ms)

Decomposition (Impact)
Decomposition (Wdeg)

Propagator (Impact)
Propagator (Wdeg)

(a) 100 garments, 2 machines, 5 colors

 60

 80

 100

 120

 140

 160

 0 10000 20000 30000 40000 50000 60000

o
b
j
e
c
t
i
v
e

(
#
s
w
i
t
c
h
e
s
)

cpu time (ms)

Decomposition (Impact)
Decomposition (Wdeg)

Propagator (Impact)
Propagator (Wdeg)

(b) 80 garments, 2 machines, 7 colors

 80

 100

 120

 140

 160

 180

 200

 0 10000 20000 30000 40000 50000 60000

o
b
j
e
c
t
i
v
e

(
#
s
w
i
t
c
h
e
s
)

cpu time (ms)

Decomposition (Impact)
Decomposition (Wdeg)

Propagator (Impact)
Propagator (Wdeg)

(c) 100 garments, 2 machines, 7 colors

 120

 140

 160

 180

 200

 220

 0 10000 20000 30000 40000 50000 60000

o
b
j
e
c
t
i
v
e

(
#
s
w
i
t
c
h
e
s
)

cpu time (ms)

Decomposition (Impact)
Decomposition (Wdeg)

Propagator (Impact)
Propagator (Wdeg)

(d) 120 garments, 3 machines, 7 colors

Fig. 3. Embroidery: #switches over time

of threads on the machine when embroidering the ith garment. Then we used a
set of Element constraints to channel these two sets of variables. In the first
model, the objective function is implemented through a decomposition using a
Sum of reified LessThan and Member constraints. In the second model, the
objective is stated as a sum of m Switch constraints (one per machine).

Test Sequencing. Next we consider the design of validation tests. A set of n tests
have to be performed in order to verify a system involving a set F of k features.
A test i is defined by a set oni ⊆ F of features that must be turned ON, and
a set offi ⊆ F \ oni of features that must be turned OFF while doing the test.
A configuration is a complete characterization of the system, represented by the
set Cj ⊆ F of features that are ON (all other features are considered OFF).

The verification will go through m phases during which the system will be
in a given configuration, and a subset of the tests will be performed. A feasible
solution is a sequence ofm configurations [S1, . . . , Sm] and a mapping of the tests
to a phase f : {1, . . . , n} (→ {1, . . . ,m} such that each test is compatible with
the configuration in which it is done (Eq. 8). Moreover, there are restrictions
on the number of features that can be ON simultaneously (Eq. 9). Finally, the
total duration of the test campaign depends on the set of features that need to
be turned ON during the transitions between two configurations (Eq. 7).

332 C. Bessiere et al.

minimize :
∑

1≤j<m |Sj+1 \ Sj | (7)

subject to : ∀j ∈ {1, . . . ,m} l ≤ |Sj | ≤ u (8)

∀i ∈ {1, . . . , n} oni ⊆ Sf(i) & offi ∩ Sf(i) = ∅ (9)

We use two straightforward models for this problem. In both models, we have
a set of n integer variables with domain {1, . . . ,m} standing for the mapping
between tests to phases andm set variables standing for the configuration during
phase j. Then we use a set of Element constraints to channel these two sets
of variables. In the first model, the objective function is implemented through a
decomposition using a Sum of reified LessThan and Member constraints. In
the second model, the objective is stated as a Switch constraint.

Results. We generated 4 classes of 50 instances, for each of the two problems,
parameterized respectively by number of garments, colors and machines, and
number of tests, features and configurations. For each class, we report the mean
value of the objective function over time in both models. Results are shown in
Figure 3 and Figure 4, for the Embroidery and Test Sequencing problems, respec-
tively. These curves were obtained by averaging the step functions corresponding
to the runs of one algorithm on every instance of the class.

 30

 35

 40

 45

 50

 55

 60

 65

 70

 0 10000 20000 30000 40000 50000 60000

o
b
j
e
c
t
i
v
e

(
#
s
w
i
t
c
h
e
s
)

cpu time (ms)

Decomposition (Impact)
Decomposition (Wdeg)

Propagator (Impact)
Propagator (Wdeg)

(a) 150 tests, 15 config., 15 features

 30

 40

 50

 60

 70

 80

 90

 0 10000 20000 30000 40000 50000 60000

o
b
j
e
c
t
i
v
e

(
#
s
w
i
t
c
h
e
s
)

cpu time (ms)

Decomposition (Impact)
Decomposition (Wdeg)

Propagator (Impact)
Propagator (Wdeg)

(b) 300 tests, 20 config., 10 features

 50

 60

 70

 80

 90

 100

 0 10000 20000 30000 40000 50000 60000

o
b
j
e
c
t
i
v
e

(
#
s
w
i
t
c
h
e
s
)

cpu time (ms)

Decomposition (Impact)
Decomposition (Wdeg)

Propagator (Impact)
Propagator (Wdeg)

(c) 300 tests, 20 config., 15 features

 30

 40

 50

 60

 70

 80

 90

 0 10000 20000 30000 40000 50000 60000

o
b
j
e
c
t
i
v
e

(
#
s
w
i
t
c
h
e
s
)

cpu time (ms)

Decomposition (Impact)
Decomposition (Wdeg)

Propagator (Impact)
Propagator (Wdeg)

(d) 300 tests, 10 config., 15 features

Fig. 4. Test Sequencing: #switches over time

Buffered Resource Constraint: Algorithms and Complexity 333

We observe that the model using the propagator for Switch clearly outper-
forms the decomposition model. In particular, the decomposition does not seem
able to significantly improve the objective after the initial drop. It is interesting
to notice that whilst Wdeg outperforms Impact on the decomposition model, it
is slightly worse in the model using the global constraint (except for the classes
〈100, 2, 5〉 in the Embroidery benchmark and 〈300, 10, 15〉 for the Test Sequenc-
ing benchmark). This is actually not surprising since Wdeg relies heavily on the
shape of the constraint network and is severely hindered when using a global
constraint. Despite this, the propagator yields better results, irrespective of the
heuristic that is used. On the Embroidery problem, the improvement on the ob-
jective value obtained by using the propagator ranges from 32 to 48% (counted
on the best heuristic in each case). On the Test Sequencing problem, we observe
more modest but still sizeable improvements, ranging from 12 to 29%.

6 Conclusion

We have introduced the constraintsBufferedResource and Switch to reason
about the number of item switches in a buffered resource. The former constraint
is NP-hard, however it can be effectively decomposed using the latter in con-
junction with an AllDifferent. We have introduced a linear algorithm to find
a support to the Switch constraint, that is, to assign a sequence of set variables
standing for the buffer so that the number of switches is minimized. Further-
more, using this algorithm and a flow-based model, we have shown that bound
consistency can achieved in O(n2d + n1.15d1.5) time. Finally, our experimental
results show that this propagator is a significant improvement with respect to
expressing this relation with primitive constraints.

References

1. Bessiere, C., Hebrard, E., Hnich, B., Kiziltan, Z., Walsh, T.: The range and
roots constraints: Specifying counting and occurrence problems. In: Proceedings of
the Nineteenth International Joint Conference on Artificial Intelligence, pp. 60–65
(2005)

2. Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting Systematic Search
by Weighting Constraints. In: Proceedings of the 16th European Conference on
Artificial Intelligence - ECAI 2004, pp. 146–150 (2004)

3. Verfaillie, G., Maillet, C., Cabon, B.: Constraint programming for optimising satel-
lite validation plans. In: 7th International Workshop on Planning and Scheduling
for Space, IWPSS 2011 (2011)

4. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. The MIT Press (2009)

5. Goldberg, A.V.: Scaling Algorithms for the Shortest Path Problem. SIAM Journal
on Computing 24, 494–504 (1995)

6. Refalo, P.: Impact-Based Search Strategies for Constraint Programming. In:
Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 557–571. Springer, Heidelberg
(2004)

7. Régin, J.-C.: Cost-based arc consistency for global cardinality constraints. Con-
straints 7(3-4), 387–405 (2002)

Combining Discrete Ellipsoid-Based Search

and Branch-and-Cut for Binary Quadratic
Programming Problems

Wen-Yang Ku and J. Christopher Beck

Department of Mechanical & Industrial Engineering
University of Toronto, Toronto, Ontario M5S 3G8, Canada

{wku,jcb}@mie.utoronto.ca

Abstract. We propose a hybrid algorithm that combines discrete
ellipsoid-based search (DEBS) and a branch-and-cut (B&C) MIP solver
to solve binary quadratic programming (BQP) problems, an important
class of optimization problems with a number of practical applications.
We perform experiments on benchmark instances for the BQP prob-
lem and compare the performance of two B&C based solvers, the DEBS
method that is commonly used in the communications community, and
the new hybrid algorithm. Our experimental results demonstrate that
the new hybrid algorithm outperforms both the well-known MIP solvers
and the DEBS approach. Further comparison against two state-of-the-art
special-purpose algorithms in the literature demonstrates that the hy-
brid approach is competitive: achieving the same or better performance
on six of seven benchmark sets against one algorithm and performing
competitively against the semi-definite programming (SDP) based al-
gorithm for moderate size problems and some dense problems, while
under-performing on larger problems.

1 Introduction

Binary quadratic programming (BQP) problems arise in many combinatorial
optimization problems such as task allocation [1], quadratic assignment [2], and
max-cut problems [3]. A variety of exact methods exist for solving BQP problems
including the linearization method [4], discrete ellipsoid-based search (DEBS)
[5,6], and mixed integer programming (MIP) [7,8].

Semi-definite programming (SDP) based branch-and-bound approaches [9,3]
are often regarded as the state-of-the-art approach for solving BQPs. In this
approach, the semi-definite relaxation bound of the objective function is used
to prune nodes during the branch-and-bound process. Krislock et al. [3] showed
that their SDP algorithm dominates existing approaches for the BQP problems
in the Biq-Mac library [10].

Recently, Li et al. [11] proposed a specialized branch-and-bound approach and
demonstrated its strong performance on benchmark instances from a number of
sources. Li et al.’s techniques are derived from the geometric structure of the
BQP problem based on perturbation analysis. The results of the analysis are

H. Simonis (Ed.): CPAIOR 2014, LNCS 8451, pp. 334–350, 2014.
c© Springer International Publishing Switzerland 2014

Combining DEBS and B&C for BQP Problems 335

implemented in the form of problem-specific lower bounding techniques and
inference rules to fix values. Variable and value ordering heuristics, as well as
a primal heuristic to find high quality feasible solutions, are also proposed to
accelerate the convergence of the search. Empirical results demonstrate that
the algorithm is one of the state-of-the-arts for finding exact solutions to these
benchmark BQP problems.

The common generic approach in Operations Research for exactly solving
BQPs is the use of a commercial MIP solver such as CPLEX or Gurobi, solvers
that have been extended over the past few years to be able to reason about
quadratic constraints [12]. A modern MIP solver is able to outperform several
other exact approaches [13] and MIP is commonly used as a standard comparison
for evaluating heuristic methods [1].

In this paper we develop a new hybrid algorithm that combines discrete
ellipsoid-based search (DEBS) and a branch-and-cut (B&C) MIP solver. DEBS
is a specialized search used in the communications literature (e.g., see [14]) to
solve integer least squares problems based on the clever enumeration of integer
points within the hyper-ellipsoid defining the feasible space. As BQPs can be
reformulated as integer least squares problems, we perform this transformation
and, for the first time, evaluate DEBS on BQP. We then hybridize DEBS with
a MIP solver (SCIP [15]), incorporating aspects of DEBS into presolving, into
global-constraint-based inference, and as a primal heuristic.

Our experimental results demonstrate that DEBS performs much better than
CPLEX on average, though approximately at the same level as default SCIP
(without the hybrid extensions) on seven standard benchmark sets. Interestingly,
DEBS is both significantly better and significantly worse than SCIP on different
problem sets. The hybrid approach, implemented in SCIP, outperforms CPLEX,
SCIP, and DEBS on all seven problem sets, though on some sets the improvement
is marginal. Li et al.’s approach dominates the B&C solvers and DEBS overall
while being comparable to our new hybrid approach: on one problem set Li
et al.’s approach is superior, on another the hybrid performs approximately an
order-of-magnitude better, and on the remaining five sets, the performance of the
two algorithms is essentially equivalent. When compared to the SDP approach,
the hybrid algorithm performs as efficiently for moderate size problems but lags
behind the SDP approach for large problems. However, on some dense problems,
the hybrid algorithm greatly outperforms the SDP approach. Overall, the SDP
approach still appears to be the strongest for solving BQPs.

The contribution of this paper is two-fold. First, it is the first study that
applies the DEBS approach from communications to BQPs. The somewhat dif-
ferent approach of DEBS compared to standard OR approaches provides new
insight into this well-studied problem and may inspire future innovation. Second,
we make use of this inspiration to propose a novel, competitive hybrid algorithm
that combines DEBS and a B&C MIP solver. A particular advantage of this
hybrid approach is that, unlike the SDP solver or Li et al.’s B&B, the hybrid al-
gorithm can be applied to a broader class of problems, such as the unconstrained

336 W.-Y. Ku and J.C. Beck

integer quadratic programming (IQP) problem and IQP problems with general
integer bounds on the variables [16].

The rest of the paper is organized as follows. In Section 2 we define the BQP
problem. Section 3 presents the necessary background, including a literature
review for the DEBS method, B&C MIP solvers for the BQP problem, and
previous results. Section 4 describes the hybrid algorithm. Sections 5 and 6
provide computational results and discussions. We conclude in Section 7.

2 Problem Definition

In this section we first define the BQP problem and its equivalent binary integer
least squares (ILS) problem that can be solved with the DEBS method. Then
we present the transformation between these two problems.

The BQP problem is defined as follows:

min
x∈{0,1}

1

2
xTHx+ fTx, (1)

where H ∈ Rn×n is a symmetric semi-definite positive matrix and f ∈ Rn is a
vector.

Current MIP solvers can solve problems with quadratic objectives when the
objective is semi-definite posiitve [12]. When H is not symmetric, the symmetric
form can be obtained by setting H = (H +HT)/2. Another common issue for
real world applications is the non-convexity property of the matrix H . Convex-
ifying H is possible in the BQP case since, for every variable, the relationship
xi = x2

i holds. Therefore, we can perturb the H matrix and make it semi-definite
positive by using a vector u until (H + diag(u)) is semi-definite positive. The
convex equivalent BQP problem can be obtained as follows:

min
x∈{0,1}

1

2
xT (H + diag(u))x+

(
f − 1

2
u
)T

x. (2)

A computationally inexpensive way to find such a u vector consists of com-
puting the eigenvectors of H [13].

To solve the BQP problem with the DEBS method, we transform the BQP
problem into its equivalent binary ILS problem through the relationship H =
ATA and f = −yTA. Thus, the binary ILS problem can be defined as follows

min
x∈{0,1}

‖y −Ax‖22 . (3)

3 Background

In this section we present the discrete ellipsoid-based search technique in detail
and provide other the necessary background.

Combining DEBS and B&C for BQP Problems 337

3.1 Discrete Ellipsoid-Based Search

Discrete Ellipsoid-Based Search (DEBS)1 was originally proposed to solve the in-
teger least squares (ILS) problems that arise in some communication applications
[14]. For example, to achieve a very high precision in a global navigation satellite
system, an ILS problem has to be solved to estimate the double-difference car-
rier phase ambiguities obtained from pairs of satellite and receivers [14]. Loosely,
this problem is to find the integer number of wavelengths between the satellite
and the receiver in order to precisely estimate their range. The DEBS method
is the most common method for solving the ILS problem to optimality in the
communication literature [5].

The DEBSmethod consists of two phases: reduction and search. The reduction
is a preprocessing step that transforms the given ILS problem into one for which
the search process is more efficient [5]. Search consists of the enumeration of the
integer points in a bounded region [17].

Geometrically, the optimal solution is found by searching discretely inside the
ellipsoid defined by the objective function of the binary ILS problem (3). Suppose
the optimal solution z to the binary ILS problem (3) satisfies the following bound

‖y −Az‖22 < β, (4)

where β is a constant. This is a hyper-ellipsoid with center A−1y. The DEBS
method systematically searches for the optimal integer solution inside the ellip-
soid.

Reduction. Reduction can be regarded as a preprocessing technique that trans-
forms A to an upper triangular matrix R with certain properties such that the
search is more efficient. It has been shown that the order of the diagonal entries
of R can greatly affect the performance of the DEBS method [5]. It is desirable
to have the diagonal entries satisfying the following relationship:

|r11| ≤ |r22| ≤ . . . ≤ |rkk| ≤ . . . ≤ |rn−1,n−1| ≤ |rnn|.

In order to keep the solution of the binary ILS problem (3) unchanged, a
transformation applied to A from the left-hand side must be an orthogonal
matrix. To keep the integer nature of the unknown integer vector and the bounds
on the variables unchanged, a transformation to A from the right-hand side has
to be a permutation matrix. Therefore, the reduction can be described as the
process of transforming A to R, by finding an orthogonal matrix Q ∈ Rm×m

and a permutation matrix P ∈ Zn×n such that

QTAP =

[
R
0

]
, Q =

[
Q1,Q2

]
,

1 There does not seem to be a standard name for this approach in the communications
literature and so we have adopted this term.

338 W.-Y. Ku and J.C. Beck

where Q ∈ Rm×m is orthogonal, R ∈ Rn×n is upper triangular, and P ∈ Zn×n

is a permutation matrix. With the QR factorization, we have

‖y −Ax‖22 =
∥∥∥QT

1 y −RP Tx
∥∥∥2
2
+
∥∥∥QT

2 y
∥∥∥2
2
,

where
ȳ = QT

1 y, z = P Tx, l̄ = P T l, ū = P Tu.

Since the original lower and upper bounds on the variables are all 0 and 1 for the
binary ILS problem, the new bounds after applying the permutation matrix P
remain the same. Therefore, the original binary ILS problem (3) is transformed
to the new reduced binary ILS problem

min
z∈{0,1}

‖ȳ −Rz‖22 , (5)

where
z = P Tx.

After the optimal solution z∗ to the new binary ILS problem (5) is found, the
optimal solution, x∗, to the original binary ILS problem (3) can be recovered
with the following relationship:

x∗ = P Tz∗.

An effective reduction algorithm for ILS problems with bounds on the vari-
ables was proposed by Chang & Han [5], in which different reduction strategies
are empirically compared. In our implementation of the DEBS method, we adopt
Chang & Han’s reduction algorithm for the binary ILS problem.

Search. After the reduction phase, we have the equivalent reduced problem
(5). To illustrate the search strategy, we first explain the search with the un-
constrained ILS problem, i.e., z ∈ Zn instead of z ∈ {0, 1} then specialize the
search for the binary ILS problem.

Suppose the optimal solution z satisfies the following bound

‖ȳ −Rz‖22 < β,

or equivalently
n∑

k=1

(ȳk −
n∑

j=k

rkjzj)
2 < β,

where β is a constant which can be obtained by substituting any feasible integer
solution to equation (5). This is a hyper-ellipsoid with center R−1ȳ. The goal is
to search this ellipsoid to find the optimal integer solution.

Among several search strategies, the Schnorr & Euchner strategy is usually
considered the most efficient [17]. Let zn

i = [zi, zi+1, . . . , zn]
T . Define the so far

unknown (apart from cn) and usually non-integer variables

cn = ȳn/rnn, ck = ck(z
n
k+1) = (ȳk −

n∑
j=k+1

rkjzj)/rkk, k = n− 1, . . . , 1.

Combining DEBS and B&C for BQP Problems 339

Notice that ck is fixed when znk+1 is fixed. The above equation can be rewritten
as

n∑
k=1

r2kk(zk − ck)
2 < β.

This inequality is equivalent to the following n inequalities:

level n : (zn − cn)
2 <

1

r2nn
β,

level n− 1 : (zn−1 − cn−1)
2 <

1

r2n−1,n−1

[β − r2nn(zn − cn)
2],

...

level k : (zk − ck)
2 <

1

r2kk
[β −

n∑
i=k+1

r2ii(zi − ci)
2],

...

level 1 : (z1 − c1)
2 <

1

r211
[β −

n∑
i=2

r2ii(zi − ci)
2].

During the search process, zk is determined at level k, where zn, zn−1, . . . , zk+1

have already been determined, but zk−1, zk−2, . . . , z1 are still unassigned (note
that ck depends on zk+1, zk+2, , zn). Therefore, ck is only changed when we
move to level k from level k+1 but remains unchanged when we move to level k
from level k− 1. When we move from level k+ 1 to level k, we first compute ck
and then choose zk = #ck', the nearest integer to ck. When we move from level
k − 1 to level k, we choose zk to be the next nearest integer to ck. At each level
k, zk takes on values in the order

#ck', #ck − 1', #ck + 1', #ck − 2', . . . , if ck ≤ #ck',

or
#ck', #ck + 1', #ck − 1', #ck + 2', . . . , if ck > #ck'.

In the Schnorr & Euchner strategy, the initial bound β can be set to ∞.
When we first find the integer point, the k-th entry of the first integer point is
#ck' for k = n, . . . , 1. We can use this integer point to update β, reducing the
hyper-ellipsoid in what is, from an OR perspective, a bounding operation.

Alternatively, we can obtain an initial bound by rounding the solution of the
continuous least squares (LS) problem. Let zLS be the continuous LS solution,
i.e., zLS = R−1ȳ. Then we round each entry of zLS to its nearest integer to
get the integer vector #zLS'. As the problem is unconstrained, #zLS' is feasible
and therefore the optimal solution must be as least as good. So we can set
β = ‖ȳ −R#zLS'‖22.

The search algorithm for the binary ILS problem is modified to take into
account the variable bounds, i.e., z ∈ {0, 1}. Chang & Han [5] proposed an

340 W.-Y. Ku and J.C. Beck

efficient algorithm for ILS problems with bounds on the variables based on the
same search framework, which is considered the state-of-the-art search algorithm.
We use this algorithm in our implementation for the binary ILS problem.

3.2 B&C MIP Solvers

BQP problems can be modeled as a MIP, a well-known approach in OR that
has been widely used for combinatorial optimization problems since the 1950s.
It is also one of the most common approaches for solving discrete optimization
problems. MIP can be further categorized into mixed integer linear programming
(MILP) and mixed integer nonlinear programming (MINLP).

BQP is a special type of the more general integer quadratic programming
problem (IQP), both of which belong to the sub-class of MINLP that is gener-
ally solved with the following four approaches based on MIP-related techniques:
branch-and-bound and branch-and-cut (B&C) [18], outer approximation [19], ex-
tended cutting-planes [20], and generalized Benders decomposition [21]. Of the
above methods, the outer-approximation and the B&C methods have received
the most attention and both commercial and non-commercial solvers are avail-
able based on these two approaches. An empirical study of these two methods
on binary quadratic programming problems concluded that the two approaches
performs significantly differently on various classes of problems and it is not clear
which is generally superior [7]. Though note that this conclusion was made in
1997.

The state-of-the-art MIP solvers are typically hybrid algorithms that com-
bine many of the above elements. Many solvers such as SCIP [15] and FilMINT
[22] incorporate the outer-approximation into the B&C framework and are effi-
cient for solving convex MINLP problems. Commercial software such as CPLEX,
GUROBI and BARON also provide functionality to solve convex mixed IQP
problems and so can all be applied to solve the BQP problems. We refer inter-
ested readers to Bussieck & Vigerske [12] for a recent review of MINLP solvers.

3.3 Previous Results

Our preliminary results in solving general IQP problems with variable bounds
demonstrated that the DEBSmethod performs especially well on problems where
the residual ‖y −Az∗‖22 is small, where z∗ is the optimal integer solution [16].
However, a MIP solver was more efficient than DEBS for problems with small
variable domains (i.e., narrow variable bounds) and larger residual. These results
provide motivation to combine the techniques and design a DEBS/B&C hybrid
algorithm for the BQP problem: the BQP problem has the smallest possible
variable domains and the residual is generally large. A detailed analysis of the
residuals of the problem instances used here is given below in Section 6.

4 A DEBS/B&C Hybrid Algorithm

In this section we describe the three techniques that we integrated into the
B&C-based MIP solver SCIP: preconditioning, axis-aligned circumscribed box

Combining DEBS and B&C for BQP Problems 341

constraints, and a primal heuristic using DEBS. First, preconditioning applies
the same reduction techniques from the DEBS method to the BQP problem
to transform it into a new BQP problem with the hope of reducing the size
of the search tree explored by the B&C algorithm. Second, the axis-aligned
circumscribed box represents globally valid bounds of the variables derived from
the geometry of the objective function of the BQP problem. The box is computed
and used to update the bounds whenever a new incumbent solution is found.
Finally, we also apply DEBS as a primal heuristic during the search to help find
high-quality solutions.

4.1 Preconditioning

We first describe the procedure of preconditioning for the BQP problem and then
explain the logic behind it. Preconditioning applies the reduction techniques from
the DEBS method to the BQP problem to transform the original BQP problem
into a new BQP problem, defined as follows:

min
x∈{0,1}

1

2
xT H̄x+ f̄

T
x, (6)

where H̄ = RTR and f̄ = −ȳTR. Note that R and ȳ are from the reduced
binary ILS problem (5).

The reason for performing preconditioning can be explained with the idea
of distance to integrality. Let xR denote the optimal solution to the continuous
relaxation of the ILS problem and xI the solution to the ILS problem. We define
the distance to integrality as

d(xR,xI) = ‖xR − xI‖2 .

Thus, the distance to integrality is the Euclidean distance between the real and
integer optimal solutions to the ILS problem. It has been shown that the above
distance is a useful indicator of the size of the search tree explored in a B&C
based MIP solvers [23]. The intuition is that if the root node xR is closer to
the leaf node xI, fewer branching decisions are required and hence the search
tree will be smaller. Previous results on communication applications showed
that the experimental correlation between the number of nodes and the distance
to integrality in logarithmic scales is around 0.7 [23]. Preconditioning aims at
decreasing this distance.

In the following we describe the relationship between preconditioning and the
distance between the real and integer optimal solutions to the ILS problem.

UsingA†, the Moore-Penrose generalized inverse ofA, we can write xR = A†y
and A†A = I. Therefore

d(xR,xI) = ‖xR − xI‖2 = ‖A†y − xI‖2 = ‖A†(y −AxI)‖2,

leading to
d(xR,xI) ≤ ‖A†‖2‖y −AxI‖2. (7)

342 W.-Y. Ku and J.C. Beck

Therefore, it is possible to decrease the distance to integrality by transforming
the problem using a unimodular matrix U that minimizes ‖(AU)†‖2. We refer
the process of using the unimodular transformation to reduce the conditioning
factor to as preconditioning.

Preconditioning is effective for the general unconstrained IQP problems in
communication applications [23]. In this paper we apply the preconditioning
technique to the BQP problem. In our implementation, we perform the precon-
ditioning in the presolving stage of the B&C algorithm to the BQP problem (3)
and transform the BQP problem to its reduced formulation (5), then we perform
the B&C search on the reduced problem.

4.2 Axis-Aligned Circumscribed Box Constraints

Based on the geometry of the objective function of the BQP problem, the axis-
aligned circumscribed box can be computed and used to fix the values of the
(binary) variables. Chang & Golub [6] proposed an efficient way to compute the
smallest hyper-rectangle whose edges are parallel to the axes of the coordinate
system and that includes the hyper-ellipsoid defined by Equation (4). Let B be

the smallest hyper-rectangle including the reduced hyper-ellipsoid ‖ȳ −Rz‖22 ≤
β, the lower bound l and the upper bound u can be computed as follows:

uk =
⌊√

β
∥∥∥R−T ek

∥∥∥
2
+ eTk R

−1ȳ
⌋
,

lk =
⌈
−
√
β
∥∥∥R−Tek

∥∥∥
2
+ eTkR

−1ȳ
⌉
.

In our implementation, the axis-aligned circumscribed box is computed every
time a new incumbent is found. Since this box is globally feasible, the global
bounds of the variables are updated if the box is tighter than the current global
bounds of the variables. As our decision variables are binary, any bound tight-
ening corresponds to fixing a value.

4.3 DEBS as a Primal Heuristic

Primal heuristics are important components in state-of-the-art MIP solvers [15]
used to find feasible solutions. Good quality feasible solutions are beneficial in
a number of ways [8]. First, the feasible solution proves that the problem is
feasible, and the solution might already be good enough. Second, the feasible
solution can be used to derive valid bound for pruning the search tree. Third,
the feasible solution can be used for dual fixing or reduction to strengthen the
problem formulation.

When applying the DEBS as a primal heuristic, we first employ a resource
bound (e.g., a short time limit) for running the DEBS method at the root node
after MIP presolving. If the DEBS method finds an optimal solution, SCIP re-
turns it and the algorithm terminates. If the optimal solution is not found within
the time limit, the best incumbent found by the DEBS method is given to SCIP

Combining DEBS and B&C for BQP Problems 343

as the starting integer solution. In addition, the DEBS method is executed during
the search process. In our implementation, we follow SCIP’s primal heuristics pa-
rameters: frequency and offset. The offset is the depth where the primal heuristic
is executed first and frequency + offset defines the subsequent depths. We chose
the values of 10 for frequency and 0 for offset meaning that the DEBS method
is only used as a primal heuristic at the root and at nodes of depth 10. If the
solution found by the DEBS is better than the current incumbent, the current
incumbent is updated, and we re-compute the axis-aligned circumscribed box
(Section 4.2) to further tighten the bounds of the variables.

During the B&C process, variables are fixed either by branching decisions or
other techniques. When such fixing takes place, we reduce the size of the binary
ILS problem. Let U be the set of indices of variables that are not yet fixed at a
given node in the search tree and let Ai be the i-th column vector of A of the
original binary ILS problem in Equation (3). The updated binary ILS can be
defined as follows:

min
x̃∈{0,1}

∥∥∥ỹ − Ãx̃
∥∥∥2
2
,

where
Ã = [Ai] , i ∈ U ,

ỹ = y −
∑
i∈U

Aixi, i ∈ U ,

Ã ∈ Rn×|U | and ỹ ∈ Rn. The resulting problem is (n− |U |) dimensional smaller
than the original problem.

5 Computational Results

In this section we compare the performance of the B&C-based MIP solvers
CPLEX and SCIP, the DEBS method, and the new hybrid algorithm imple-
mented in SCIP. We also provide the best current results from Li et al. [11] and
Krislock et al. [3]. For the problems we did not find results in the SDP literature
(Carter and William type problems), we use the online SDP solver BiqCrunch
[24] for comparison. We present results for CPLEX and SCIP in order to com-
pare DEBS and our hybrid both to a state-of-the-art commercial MIP solver
and to isolate the impact that our DEBS-based hybridizations have on default
SCIP performance.

5.1 Experimental Setup

All experiments were performed on a Intel Core i7 3.40 GHz machine (in 64
bit mode) with 8GB memory running Red Hat Enterprise 6.2 with one thread.
We perform experiments with CPLEX Optimization Studio v12.5 and SCIP
v3.0.2. We use MATLAB 7.7.0 for generating the problem instances. The DEBS
approach is written in C and the new hybrid algorithm is implemented in SCIP.
The CPU time limit for each run on each problem instance is 3600 seconds.

344 W.-Y. Ku and J.C. Beck

We use a subset of the benchmark instances presented by Li et al. [11], exclud-
ing the max-cut problems as they require additional transformations and cannot
be solved with MIP or DEBS directly. We perform experiments on medium size
BQP problems on seven problem sets: Carter type problems [25], William type
problems [26], bqp50 and bqp100 problems, and gkaia, gkaib, and gkaid problems
[10]. We generate ten problem instances for each of the Carter and William type
problems. In order to ensure convexity, we perform the same transformation as Li
et al. We compute the smallest eigenvalue for the H matrix of each problem and
let it be λmin. Then we apply the perturbation vector u = (−λmin + 0.001)e to
the BQP problem (2) when λmin is negative. Note that the transformed problem
has the same optimal solution as the original problem. For the DEBS method, we
use Cholesky decomposition on matrix H in the BQP problem to obtain matrix
A in the binary ILS problem, and we obtain y from the equation f = −yTA,
which gives us y = −(fA−1)T .

5.2 Results

The results for all seven problem sets are presented in Table 1. For the bqp50,
bqp100, gkaia, gkaib, and gkaid problems, we report the CPU time for each
instance. For the Carter and Williams type problems, we report the arithmetic
mean CPU time “arith”, and the shifted geometric mean CPU time “geo” on
the ten instances for each problem size.2

The comparison of the identical MIP models in CPLEX and SCIP shows,
somewhat surprisingly, that CPLEX performs substantially better than SCIP
on only two of the seven problem sets (Williams and Carter). SCIP is clearly
superior for bqp50, bqp100, gkaia, and gkaib sets while solving one problem
more for gkaid. We attribute this strong performance of SCIP to the quadratic
constraint handler described in Berthold et al. [8].

DEBS is noticeably more efficient than B&C (both CPLEX and SCIP) on the
William and Carter type problems and superior to CPLEX on the bqp50, gkaia,
and gkaib problems. While CPLEX does not out-perform DEBS for any problem
instances, SCIP has the edge over DEBS on bqp50, bqp100, and gkaia. For the
final problem set, gkaid, SCIP is able to solve one more problem than DEBS.
Comparing the DEBS method and CPLEX, the DEBS method is noticeably
more efficient than CPLEX for five problem sets: William type, Carter type,
bqp50, gkaia and gkaib.

With respect to the first contribution of this paper, therefore, we conclude
that the DEBS approach from the communications literature is a competitive
approach to solving BQPs that are of interest to the OR community. In fact,
DEBS is superior to a state-of-the-art commercial solver, CPLEX.

Turning to the hybridization of B&C and DEBS, we see that the new hy-
brid approach out-performs CPLEX on all problem sets while achieving clearly

2 The shifted geometric mean time is computed as follows:
∏
(ti + s)1/n − s, where ti

is the actual CPU time, n is the number of instances, and s is chosen as 10. Using
geometric mean can decrease the influence of the outliers of data [15].

Combining DEBS and B&C for BQP Problems 345

Table 1. A comparison of four approaches plus Li et al.’s results and Krislock et
al.’s SDP results for the seven problem sets. Bold numbers indicate the best approach
for a given problem. The symbol ‘-’ means that no problem instances were solved to
optimality within 3600 seconds. For the Carter and William type problems, n is the
size of the problem, and p and d are problem generation parameters. The superscripts
indicate the number of instances for which no optimal solution was found.

Carter type problems

n p CPLEX SCIP DEBS Hybrid Li SDP

arith geo arith geo arith geo arith geo arith arith

40 0.2 0.21 0.21 29.55 21.06 0 0 0.02 0.02 0.32 0.32
40 0.3 0.38 0.38 34.01 26.35 0.01 0.01 0.03 0.03 0.26 0.62
50 0.2 2.38 2.26 896.53 655.17 0.15 0.15 0.24 0.24 1.5 0.66
50 0.3 2.85 2.69 891.71 767.32 0.80 0.80 1.10 0.85 1.2 1.15
80 0.4 1170.012 349.342 - - 1020.202 249.312 98.37 67.40 89.9 21.39
80 0.5 659.99 369.26 - - 225.33 60.03 48.09 31.02 2.5 16.01

100 0.5 3222.908 2955.288 - - 2766.317 2226.487 2249.535 1584.125 10.8 57.97

William type problems

n d CPLEX SCIP DEBS Hybrid Li SDP

arith geo arith geo arith geo arith geo arith arith

40 0.5 0.25 0.25 8.29 7.59 0.01 0.01 0.01 0.01 0.44 0.33
40 0.7 0.22 0.21 14.16 12.16 0.01 0.01 0.01 0.01 0.47 0.34
50 0.2 1.75 1.70 12.00 10.51 0.35 0.32 0.44 0.40 6.6 0.52
50 0.4 1.74 1.68 148.64 115.64 0.09 0.09 0.14 0.14 24 0.75
50 1 2.78 2.61 1463.022 948.472 0.13 0.09 0.19 0.18 2.5 0.85
60 0.1 21.83 15.29 4.61 4.17 1.57 1.51 1.93 1.85 0.72 0.72
60 0.2 22.81 11.20 387.15 163.29 2.10 1.84 2.65 2.26 5.3 1.33
60 0.4 14.18 11.49 2568.634 1833.754 31.21 10.48 6.24 5.17 18.9 2.32
80 0.1 2014.325 1047.605 1688.283 850.383 157.52 80.99 178.82 89.52 7 3.01
80 0.2 1023.811 530.401 - - 188.92 97.89 140.83 82.79 123.1 2.19

bqp50 problems

Instance CPLEX SCIP DEBS Hybrid Li SDP

bqp50-1 11.66 0.07 0.65 0.06 <0.2 0.25
bqp50-2 1.84 0.06 1.2 0.03 <0.2 0.24
bqp50-3 0.60 0.04 0 0.03 <0.2 0.17
bqp50-4 2.84 0.05 0.30 0.04 <0.2 0.22
bqp50-5 3.72 0.03 0.13 0.02 <0.2 0.21
bqp50-6 0.46 0.01 0.15 0.02 <0.2 0.21
bqp50-7 1.70 0.05 0.02 0.05 <0.2 0.26
bqp50-8 0.93 0.06 0.03 0.06 <0.2 0.19
bqp50-9 5.32 0.09 0.35 0.07 <0.2 0.25
bqp50-10 14.30 0.07 0.25 0.06 <0.2 0.24

346 W.-Y. Ku and J.C. Beck

bqp100 problems

Instance CPLEX SCIP DEBS Hybrid Li SDP

bqp100-1 - 55.50 - 46.13 1648 1.40
bqp100-2 - 6.74 - 7.12 63.4 2.06
bqp100-3 - 4.99 - 9.10 66.3 1.6
bqp100-4 - 8.83 - 8.96 165.7 1.42
bqp100-5 - 10.28 - 9.17 1230 1.69
bqp100-6 - 566.92 - 55.54 175.2 11.12
bqp100-7 - 42.52 - 13.37 427 1.8
bqp100-8 - 4.63 - 5.96 25.6 1.63
bqp100-9 - 3.50 1282.42 5.90 21.9 1.46
bqp100-10 - 4.43 - 4.45 57.2 1.67

gkaia problems

Instance n CPLEX SCIP DEBS Hybrid Li SDP

gka1a 50 11.32 0.03 4.55 0.02 <1 0.25
gka2a 60 1.60 0.02 0.84 0.02 <1 0.42
gka3a 70 2817.3 0.93 1335.20 0.79 <1 0.93
gka4a 80 88.86 1.12 348.61 0.86 <1 1.07
gka5a 50 3.22 0.94 0.11 0.11 <1 0.29
gka6a 30 0.11 0.37 0 0.02 <1 0.06
gka7a 30 0.05 0.41 0 0.02 <1 0.06
gka8a 100 - 0.08 634.88 0.08 <1 2.11

gkaib problems

Instance n CPLEX DEBS SCIP Hybrid Li SDP

gka1b 20 0.08 0 0.29 0.01 <1 0.1
gka2b 30 0.1 0 0.36 0.01 <1 2.18
gka3b 40 0.58 0 0.6 0.01 <1 9.44
gka4b 50 1.7 0.01 1.15 0.03 <1 18.42
gka5b 60 5.86 0.04 1.44 0.07 <1 39.2
gka6b 70 21.75 0.15 1.95 0.26 <1 86.56
gka7b 80 59.88 0.34 2.52 0.53 <1 212.73
gka8b 90 160.79 0.98 3.67 1.43 <1 789.1
gka9b 100 502.79 2.66 6.04 3.67 <1 1608.04
gka10b 125 - 20.7 9.51 12.06 <1 5104.21

gkaid problems

Instance n CPLEX DEBS SCIP Hybrid Li SDP

gka1d 100 - - 5.90 5.84 24 1.96
gka2d 100 - - - - 5671 1.63
gka3d 100 - - - - 1713 1.85
gka4d 100 - - - - 3835 3.25
gka5d 100 - - - - 5466 55.72
gka6d 100 - - - - 1534 2.14
gka7d 100 - - - - 4273 46.04
gka8d 100 - - - - 683 2.94
gka9d 100 - - - - 2481 34.08
gka10d 100 - - - - 1878 30.97

Combining DEBS and B&C for BQP Problems 347

better performance than SCIP on the Williams and Carter type problems and
marginally better performance on the other five problem sets: there are a number
of problem instances in the latter five sets where the hybrid makes meaningful
improvements on the default SCIP performance and none where it is substan-
tially inferior. Similarly, the hybrid improves on the pure DEBS results on all
problem sets though the improvement is marginal for bqp50, gkaib and gkaid.

While our experimental environment is different from that of Li et al., the new
hybrid algorithm appears competitive on the Carter type, William type, bqp50,
gkaia, and gkaib problems. The hybrid algorithm performs better on the bqp100
problems and worse on the gkaid problems. For the bqp100 problems, the hybrid
algorithm outperforms Li et al.’s algorithm by about an order of magnitude.

Compared to the SDP approach, the hybrid algorithm performs basically the
same or slightly better for moderate size problems, but significantly less effi-
ciently for larger problems. However for some dense problem instances (gkaib),
the hybrid algorithm greatly outperforms the SDP approach. The hybrid algo-
rithm was able to solve all of them quickly, while the SDP approach is in general
two orders of magnitudes slower. Overall, the SDP approach still appears to be
most efficient for the BQP problems.

6 Discussion

Our preliminary work showed that the DEBS method performs especially well
on ILS problems with bounds on the variables when the residual, ‖y −Az∗‖22,
is small (z∗ is the optimal integer solution). However, a MIP solver performs
much better than DEBS with small variable domains and large residual [16].
To explain the role of the residual, we define the noise3 in the data with the
following linear model: y = Ax + v, where v ∈ Rn denotes the noise vector.
A large noise vector results a large residual. The residual directly determines
the search space of the DEBS method, since the minimum ellipsoid is defined
by the optimal integer solution z∗ and its associated residual (Eqn. (4)). In the
extreme case, when v = 0, there is no noise. When such a problem (3) is solved

to optimality, ‖y −Az∗‖22 is equal to zero and so the ellipsoid reduces to a single
point. As v increases, the DEBS method needs to search a larger space.

In communication applications, a noise vector v of σ ∗ randn(m,1), σ ≥ 5 is
generally considered as a very large noise in the data [23]. Note that randn(m,1)
is a MATLAB function which returns an m-dimensional vector containing pseu-
dorandom values drawn from the standard normal distribution N(0, 1). We com-
puted the noise vectors in the seven problem sets by substituting the optimal
solution or the best solution found within the time limit into the linear model
and found that σ > 5 for all seven problem sets. Therefore these problems can
be regarded as problems with very large noise and the poor performance of the
DEBS method on the larger problems is consistent with both our previous results
and the need to search a larger ellipsoid.

3 Noise has a recognized physical meaning in the communications literature [5].

348 W.-Y. Ku and J.C. Beck

However, it is surprising that the DEBS method performs so well compared to
the MIP solvers, especially CPLEX, given the large noise and tightest possible
variable bounds in the problem instances. This contradicts our previous results
on general IQPs that CPLEX performs better than the DEBS method for prob-
lems with large noise and small variable domains [16]. One interesting direction
for future work is to further investigate the reason that the DEBS method per-
forms well on the BQP problem and extract more information to enhance the
hybrid approach.

Our results show that combining the DEBS method with a B&C based MIP
solver indeed results in better performance when large noise is present in the
problem instances. The additional techniques from MIP such as relaxation, cut-
ting planes, and inference appear to complement the presolving, axis-aligned box
constraints, and primal heuristic adopted from the DEBS approach.

Analysis of CPLEX solving behaviour shows that the reason that CPLEX is
unable to prove optimality for bigger problems (e.g., bqp100 and gkaid) is mainly
weakness in the dual bound. Solutions with good quality are found early in the
search but the dual bound only improves slowly. For the DEBS method, optimal
or near optimal solutions are typically found, though not as quickly as with
CPLEX. However, similarly to CPLEX, DEBS is not able to prove optimality
since the search space is too large and it does not have an effective dual bounding
mechanism. SCIP, however, performs well on the gka1d, bqp50, and bqp100
problems because it is able to make rapid improvements in the dual bound. The
lack of such an ability, conversely, appears to explain the very poor performance
of SCIP on the Carter and Williams problems. The performance of the hybrid
suggests that the poor performance of SCIP on Carter and Williams may be due
to not being able to find a high-quality feasible solution. One area for future work
is to investigate the performance differences between problem sets, in particular,
to understand the structure that SCIP appears to be taking advantage of in the
problems in which it performs well. The comparison of the hybrid algorithm and
the SDP approach shows that the hybrid algorithm seems to outperform the
SDP approach on dense problems (e.g., gkaib). Further investigation is required
to identify the reasons.

7 Conclusions

In this paper we conducted the first empirical study comparing the performance
of a B&C based MIP solver and the DEBS method for the BQP problem. We also
proposed a new hybrid algorithm that combines techniques from MIP solving
and DEBS, implementing DEBS-based presolving, axis-aligned box constraints,
and a primal heuristic in a B&C MIP solver. Though we only examine binary
quadratic problems here, the resulting hybrid algorithm can be used to solve
problems with general integer bounds on the variables.

We compared the performance of the B&C based MIP solvers CPLEX and
SCIP, the DEBS method, and the new hybrid algorithm for the BQP problems
on seven sets of benchmark instances. Results show that the DEBS performs

Combining DEBS and B&C for BQP Problems 349

much better than CPLEX and about even with SCIP, though different problem
sets show markedly different relative performance. The DEBS algorithm from
the communications literature, therefore, is at least competitive with state-of-
the-art B&C MIP approaches to binary quadratic problems.

The hybridization of DEBS and B&C out-performs both the B&C and DEBS
based approaches across all problem sets. The improvement is substantial for
some problem sets, though only marginal in others. Compared to the best special-
purpose algorithms, Li et al.’s branch-and-bound algorithm [11] and an SDP
approach [3], the new hybrid algorithm is competitive though overall not as
strong as the SDP algorithm. We, therefore, conclude that the hybridization
of DEBS with B&C is a strong contender on BQP problems, though the SDP
approach remains the state of the art.

In the future, we are interested in exploring other possibilities of using ge-
ometric information to enhance MIP solving. We expect to extend the hybrid
algorithm to solve generic MIP problems (i.e., problems with linear constraints)
while preserving the ability to solve the BQP problems efficiently. We are in-
vestigating applications in communications where such constrained quadratic
problems may be a natural model.

References

1. Lewis, M., Alidaee, B., Kochenberger, G.: Using xqx to model and solve the un-
capacitated task allocation problem. Operations research letters 33(2), 176–182
(2005)

2. Finke, G., Burkard, R., Rendl, F.: Quadratic assignment problems. Surveys in
combinatorial optimization 61 (2011)

3. Krislock, N., Malick, J., Roupin, F.: Improved semidefinite bounding procedure for
solving max-cut problems to optimality. Mathematical Programming, 1–26 (2012)

4. Watters, L.J.: Reduction of integer polynomial programming problems to zero-one
linear programming problems. Operations Research 15(6), 1171–1174 (1967)

5. Chang, X.W., Han, Q.: Solving box-constrained integer least squares problems.
IEEE Transactions on Wireless Communications 7(1), 277–287 (2008)

6. Chang, X.W., Golub, G.H.: Solving ellipsoid-constrained integer least squares prob-
lems. SIAM Journal on Matrix Analysis and Applications 31(3), 1071–1089 (2009)

7. Borchers, B., Mitchell, J.E.: A computational comparison of branch and bound
and outer approximation algorithms for 0–1 mixed integer nonlinear programs.
Computers & Operations Research 24(8), 699–701 (1997)

8. Berthold, T., Heinz, S., Vigerske, S.: Extending a CIP framework to solve MIQCPs.
In: Mixed-Integer Nonlinear Programming. The IMA Volumes in Mathematics and
its Applications, vol. 154, pp. 427–445. Springer (2012)

9. Rendl, F., Rinaldi, G., Wiegele, A.: Solving max-cut to optimality by intersect-
ing semidefinite and polyhedral relaxations. Mathematical Programming 121(2),
307–335 (2010)

10. Wiegele, A.: Biq mac library–a collection of max-cut and quadratic 0–1 program-
ming instances of medium size. Preprint (2007)

11. Li, D., Sun, X., Liu, C.: An exact solution method for unconstrained quadratic
0–1 programming: a geometric approach. Journal of Global Optimization 52(4),
797–829 (2012)

350 W.-Y. Ku and J.C. Beck

12. Bussieck, M.R., Vigerske, S.: MINLP solver software. Wiley Encyclopedia of Op-
erations Research and Management Science. Wiley, Chichester (2010)

13. Billionnet, A., Elloumi, S.: Using a mixed integer quadratic programming solver
for the unconstrained quadratic 0-1 problem. Mathematical Programming 109(1),
55–68 (2007)

14. Teunissen, P.J., Kleusberg, A., Teunissen, P.: GPS for Geodesy, vol. 2. Springer
(1998)

15. Achterberg, T.: Constraint Integer Programming. PhD thesis, Technische Univer-
sität Berlin (2007)

16. Ku, W.Y., Beck, J.C.: Combining discrete ellipsoid-based search and branch-and-
cut for integer least squares problems. Technical Report MIE-OR-TR2013-07, Uni-
versity of Toronto, Toronto (2013)

17. Schnorr, C.P., Euchner, M.: Lattice basis reduction: Improved practical algorithms
and solving subset sum problems. Mathematical programming 66(1), 181–199
(1994)

18. Gupta, O.K., Ravindran, A.: Branch and bound experiments in convex nonlinear
integer programming. Management Science 31(12), 1533–1546 (1985)

19. Duran, M.A., Grossmann, I.E.: An outer-approximation algorithm for a class
of mixed-integer nonlinear programs. Mathematical programming 36(3), 307–339
(1986)

20. Westerlund, T., Pettersson, F.: An extended cutting plane method for solving
convex minlp problems. Computers & Chemical Engineering 19, 131–136 (1995)

21. Geoffrion, A.M.: Generalized benders decomposition. Journal of Optimization The-
ory and Applications 10(4), 237–260 (1972)

22. Abhishek, K., Leyffer, S., Linderoth, J.: Filmint: An outer approximation-based
solver for convex mixed-integer nonlinear programs. INFORMS Journal on com-
puting 22(4), 555–567 (2010)

23. Ku, W.Y., Anjos, M.F., Chang, X.W.: Lattice preconditioning for the real relax-
ation branch-and-bound approach for integer least squares problems. Technical
report, Group for Research in Decision Analysis, Montreal (2013)

24. Krislock, N., Malick, J., Roupin, F.: BiqCrunch online solver (2012),
http://lipn.univ-paris13.fr/BiqCrunch/solver (retrieved: December 22, 2013)

25. Carter, M.W.: The indefinite zero-one quadratic problem. Discrete Applied Math-
ematics 7(1), 23–44 (1984)

26. Williams, A.: Quadratic 0-1 Programming Using the Roof Dual: With Computa-
tional Results. RUTCOR, Hill Center, Rutgers University (1985)

http://lipn.univ-paris13.fr/BiqCrunch/solver

Parallel Combinatorial Optimization

with Decision Diagrams

David Bergman1, Andre A. Cire2, Ashish Sabharwal3,
Horst Samulowitz3, Vijay Saraswat3, and Willem-Jan van Hoeve2

1 School of Business, University of Connecticut, Stamford, CT 06901
david.bergman@business.uconn.edu

2 Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA 15213
{acire,vanhoeve}@andrew.cmu.edu

3 IBM Watson Research Center, Yorktown Heights, NY 10598
{samulowitz,ashish.sabharwal,vsaraswa}@us.ibm.com

Abstract. We propose a new approach for parallelizing search for
combinatorial optimization that is based on a recursive application of
approximate Decision Diagrams. This generic scheme can, in principle,
be applied to any combinatorial optimization problem for which a de-
cision diagram representation is available. We consider the maximum
independent set problem as a specific case study, and show how a re-
cently proposed sequential branch-and-bound scheme based on approx-
imate decision diagrams can be parallelized efficiently using the X10
parallel programming and execution framework. Experimental results
using our parallel solver, DDX10, running on up to 256 compute cores
spread across a cluster of machines indicate that parallel decision dia-
grams scale effectively and consistently. Moreover, on graphs of relatively
high density, parallel decision diagrams often outperform state-of-the-art
parallel integer programming when both use a single 32-core machine.

1 Introduction

In recent years, hardware design has increasingly focused on multi-core systems
and parallelized computing. In order to take advantage of these systems, it is
crucial that solution methods for combinatorial optimization be effectively par-
allelized and built to run not only on one machine but also on a large cluster.

Different combinatorial search methods have been developed for specific prob-
lem classes, including mixed integer programming (MIP), Boolean satisfiability
(SAT), and constraint programming (CP). These methods represent (implic-
itly or explicitly) a complete enumeration of the solution space, usually in the
form of a branching tree where the branches out of each node reflect variable
assignments. The recursive nature of branching trees suggests that combina-
torial search methods are amenable to efficient parallelization, since we may
distribute sub-trees to different compute cores spread across multiple machines
of a compute cluster. Yet, in practice this task has proved to be very challeng-
ing. For example, Gurobi, one of the leading commercial MIP solvers, achieves

H. Simonis (Ed.): CPAIOR 2014, LNCS 8451, pp. 351–367, 2014.
c© Springer International Publishing Switzerland 2014

352 D. Bergman et al.

an average speedup factor of 1.7 on 5 machines (and only 1.8 on 25 machines)
when compared to using only 1 machine [18]. Furthermore, during the 2011 SAT
Competition, the best parallel SAT solvers obtained a average speedup factor
of about 3 on 32 cores, which was achieved by employing an algorithm portfo-
lio rather than a parallelized search [20]. In our experimentation, the winner of
the parallel category of the 2013 SAT Competition also achieved a speedup of
only about 3 on 32 cores. Constraint programming search appears to be more
suitable for parallelization than search for MIP or SAT: different strategies, in-
cluding a recursive application of search goals [24], work stealing [14], problem
decomposition [25], and a dedicated parallel scheme based on limited discrepancy
search [23] all exhibit good speedups (sometimes near-linear) of the CP search in
certain settings, especially those involving infeasible instances or scenarios where
evaluating search tree leaves is costlier than evaluating internal nodes. Yet, re-
cent developments in CP have moved towards more constraint learning during
search, for which efficient parallelization becomes increasingly more difficult.

In general, search schemes relying heavily on learning during search (such as
learning new bounds, activities for search heuristics, cuts for MIP, nogoods for
CP, and clauses for SAT) tend to be more difficult to efficiently parallelize. It
remains a challenge to design a robust parallelization scheme for solving combi-
natorial optimization problems which must necessarily deal with bounds.

Recently, a branch-and-bound scheme based on approximate decision dia-
grams was introduced as a promising alternative to conventional methods (such
as integer programming) for solving combinatorial optimization problems [5, 7].
In this paper, our goal is to study how this branch-and-bound search scheme can
be effectively parallelized. The key observation is that relaxed decision diagrams
can be used to partition the search space, since for a given layer in the diagram
each path from the root to the terminal passes through a node in that layer.
We can therefore branch on nodes in the decision diagram instead of branching
on variable-value pairs, as is done in conventional search methods. Each of the
subproblems induced by a node in the diagram is processed recursively, and the
process continues until all nodes have been solved by an exact decision diagram
or pruned due to reasoning based on bounds on the objective function.

When designing parallel algorithms geared towards dozens or perhaps hun-
dreds of workers operating in parallel, the two major challenges are i) balancing
the workload across the workers, and ii) limiting the communication cost be-
tween workers. In the context of combinatorial search and optimization, most of
the current methods are based on either parallelizing the traditional tree search
or using portfolio techniques that make each worker operate on the entire prob-
lem. The former approach makes load balancing difficult as the computational
cost of solving similarly sized subproblems can be orders of magnitude differ-
ent. The latter approach typically relies on extensive communication in order to
avoid duplication of effort across workers.

In contrast, using decision diagrams as a starting point for parallelization
offers several notable advantages. For instance, the associated branch-and-bound
method applies relaxed and restricted diagrams that are obtained by limiting the

Parallel Combinatorial Optimization with Decision Diagrams 353

size of the diagrams to a certain maximum value. The size can be controlled,
for example, simply by limiting the maximum width of the diagrams. As the
computation time for a (sub)problem is roughly proportional to the size of the
diagram, by controlling the size we are able to control the computation time. In
combination with the recursive nature of the framework, this makes it easier to
obtain a balanced workload. Further, the communication between workers can
be limited in a natural way by using both global and local pools of currently open
subproblems and employing pruning based on shared bounds. Upon processing a
subproblem, each worker generates several new ones. Instead of communicating
all of these back to the global pool, the worker keeps several of them to itself
and continues to process them. In addition, whenever a worker finds a new
feasible solution, the corresponding bound is communicated immediately to the
global pool as well as to other workers, enabling them to prune subproblems that
cannot provide a better solution. This helps avoid unnecessary computational
effort, especially in the presence of local pools.

Our scheme is implemented in X10 [13, 26, 28], which is a modern program-
ming language designed specifically for building applications for multi-core and
clustered systems. For example, Bloom et al. [11] recently introduced SatX10 as
an efficient and generic framework for parallel SAT solving using X10. We refer
to our proposed framework for parallel decision diagrams as DDX10. The use of
X10 allows us to program parallelization and communication constructs using
a high-level, type checked language, leaving the details of an efficient backend
implementation for a variety of systems and communication hardware to the
language compiler and run-time. Furthermore, X10 also provides a convenient
parallel execution framework, allowing a single compiled executable to run as
easily on one core as on a cluster of networked machines.

Our main contributions are as follows. First, we describe, at a conceptual level,
a scheme for parallelization of a sequential branch-and-bound search based on
approximate decision diagrams and discuss how this can be efficiently imple-
mented in the X10 framework. Second, we provide an empirical evaluation on
the maximum independent set problem, showing the potential of the proposed
method. Third, we compare the performance of DDX10 with a state-of-the-art
parallel MIP solver, IBM ILOG CPLEX 12.5.1 . Experimental results indicate
that DDX10 can obtain much better speedups than parallel MIP, especially when
more workers are available. The results also demonstrate that the parallelization
scheme provides near-linear speedups up to 256 cores, even in a distributed set-
ting where the cores are split across multiple machines.

The remainder of the paper is structured as follows. In Section 2 we provide
a brief overview of the sequential branch-and-bound algorithm based on ap-
proximate binary decision diagrams, specifically in the context of the maximum
independent set problem. We then, in Section 3, describe how the algorithm is
well-suited for parallelization, and describe our framework. We report on exper-
imental results in Section 4 and conclude in Section 5.

354 D. Bergman et al.

2 Review: Branch-and-Bound with Decision Diagrams

Binary decision diagrams (BDDs) were originally introduced to represent Boolean
functions in the context of circuit design and formal verification [1, 12, 22]. More
recently, BDDs, and more generally multi-valued decision diagrams (MDDs),
have been successfully applied to represent the solution set to arbitrary discrete
optimization problems, with applications in constraint programming [2, 6, 19],
disjunctive scheduling [15], and general discrete optimization [4, 5, 7–10].

In this section, we briefly summarize the branch-and-bound search scheme
based on decision diagrams proposed by Bergman [5] which was further ex-
tended by Bergman, Cire, van Hoeve, and Hooker [7]. It can be applied to any
combinatorial optimization (and more generally discrete optimization) problem
for which a decision diagram representation is available. For clarity, we discuss
the application to the maximum independent set problem, although the pre-
sented techniques are generally applicable. (Bergman et al. [7] report results for
the maximum independent set, maximum 2-SAT, and maximum cut problems.)

2.1 Maximum Independent Set Problem and BDDs

Given a graph G = (V,E), V = {1, . . . , n}, an independent set I is a subset
I ⊆ V for which no two vertices in I are connected by an edge in E. Given a non-
negative weight wj for each vertex j ∈ V , the maximum independent set problem
(MISP) asks for an independent set of G with maximum total weight. The MISP
is equivalent to the maximum clique problem (in the complement graph) and
finds application in areas ranging from data mining [17] to bioinformatics [16]
and social network analysis [3].

We next describe how we can represent all independent sets of G using a
binary decision diagram. To this end, we let I(G) be the family of independent
sets in G, and v∗(G) the value of a maximum independent set in G. Let the
neighborhood of j ∈ V be N(j) = {j′ : (j, j′) ∈ E}. In addition, for any subset
V ′ ⊆ V, let G[V ′] be the graph induced by V ′.

For our purposes, a binary decision diagram (BDD) B = (U, �, A, d) for a
graph G = (V,E) is a directed graph with nodes U and arcs A. The mapping
� : U → {1, . . . , n+ 1} associates a layer with each node in U and the mapping
d : A → {0, 1} associates an arc-domain with each arc in A. For an arc a = (u, u′)
in A with �(u) = j, we define its weight w(a) as wj if d(a) = 1 and 0 otherwise.
We impose conditions that ∀a = (u, u′) ∈ A, �(u) < �(u′) and that there exist
two special nodes r, t (the root and terminal, respectively) which are the unique
nodes with �(r) = 1, �(t) = n + 1. With these conditions, B is acyclic, and all
maximal paths connect r to t. Let B|u,u′ be the subgraph of B induced by the
nodes that belong on some u, u′ path in B.

Paths in B correspond to subsets of V as follows. Let p = (a1, . . . , ak) be
any path in B with ai = (ui, u

′
i) for i = 1, . . . , k. Denote by V (p) the subset of

vertices of V that are associated with the domains of the arcs in p, i.e. V (p) =
{j : d(ai) = 1, �(ui) = j} ⊆ V . In this way, if P(B) is the set of all r − t paths
in B, then the family of subsets of V represented by B is given by Sol(B) =

Parallel Combinatorial Optimization with Decision Diagrams 355

13

2

4

3

2

4

2

5

7

Fig. 1. Graph with vertex weights for the MISP

x1

x2

x3

x4

x5

r
0 3

04 0

0 2 0 0

0 2
0

t
0

7
0

(a)

r
0 3

0 4 0

0
2 0

0 2
0

t
0

7
0

(b)

r
0 3

0 0

2
0

0

0 2
0

t
0

7
0

(c)

Fig. 2. Representing/approximating independent sets of the graph in Figure 1 with
an exact BDD (a), relaxed BDD (b), and restricted BDD (c). Each layer in a BDD
corresponds to binary decision xi, where a dashed arc represents excluding vertex i,
and a solid arc represents including vertex i.

∪p∈P(B)V (p). B is exact for G if Sol(B) = I(G) and is relaxed (resp. restricted)
if Sol(B) ⊇ I(G)(resp.Sol(B) ⊆ I(G)). The weight w(p) of a path p ∈ P(B)
corresponds to the weight of the subset represented by p: w(p) =

∑
a∈p w(a).

We therefore have that the maximum path weight in B, z∗(B), equals the size
of the maximum weight set in Sol(B). When B is exact, z∗(B) = v∗(G), and
when B is relaxed, resp. restricted, z∗(B) ≥ v∗(G), resp.z∗(B) ≤ v∗(G).

To each r− u path p we associate a path-state Ẽ(p) ⊆ V . Ẽ(p) represents the
set of vertices of V which correspond to the layers below node u that are not
adjacent to any vertex in V (p); i.e., Ẽ(p) := {i ≥ �(u) | ∀ j ∈ V (p) : (j, i) /∈ E}.
Path-states induce a state for each node u defined by the union of all path-
states ending at u: i.e., E(u) := ∪p∈P(B|r,u)Ẽ(p). Note that in an exact BDD,

Ẽ(p1) = Ẽ(p2) for p1, p2 ∈ P(B|r,u).
An example of an exact, relaxed, and restricted BDD for the graph in Figure 1

is given in Figure 2. The longest path length in the exact BDD (left-most dia-
gram) is 11 and corresponds to vertex set {2, 5}. The longest path in the relaxed
BDD (middle diagram) is 13, an upper bound on the optimal value, while the
longest path value in the restricted BDD (right diagram) is 9, a lower bound on
the objective value, and corresponds to vertex set {3, 5}.

356 D. Bergman et al.

2.2 BDD Construction

One technique for building BDDs is by top-down construction, which starts
at the root node r, assigns the root state E(r) = V , and then creates the
BDD layer-by-layer. Having constructed all nodes with �(u) ≤ j, the algorithm
builds layer j + 1 by examining the nodes with �(u) = j. If j /∈ E(u), �(u) is
increased by 1, pushing it to the next layer j + 1. Otherwise, two nodes u0, u1

with �(u0) = �(u1) = j + 1 are created along with arcs ak = (u, uk), d(ak) = k
for k = 0, 1. E(u0) = E(u)\{j} and E(u1) = E(u)\ ({j} ∪N(j)). If two nodes
w1, w2 are created for which E(w1) = E(w2), they are merged by creating node
w and redirected all arcs with tail w1 or w2 to w, deleting w1 and w2.

It has been shown [8] that the algorithm described above generates an exact
BDD for the MISP, and that the states established by running the algorithm are
equivalent to the definition of the state in the previous subsection. If an exact
BDD can be constructed, it will exactly represent the family of independent
sets, and therefore allow us to find the optimal value for the MISP by a single
longest-path calculation. However, for most practically-sized problems, the BDD
will grow exponentially large, requiring a modification of the algorithm that will
create a relaxed/restricted BDD, from which we can extract upper/lower bounds,
respectively, as described in the previous subsection.

To create a relaxed BDD, we forcibly merge nodes after each layer j is created
if the number of nodes with �(u) = j + 1 exceeds a pre-set maximum allotted
width W . We reassign the state of the node as the union of the states of the nodes
that are merged, and continue the construction algorithm as before, merging
nodes whenever the width exceeds W . This process creates a relaxed BDD [10].
To create a restricted BDD, if the number of nodes with �(u) = j + 1 exceeds
W , we choose some nodes and delete them until the number of nodes in the
layer equals W ; see Bergman et al. [9]. This will ensure that a restricted BDD
is created since we are never modifying any states – simply deleting nodes, and
hence paths.

2.3 The Branch-and-Bound Algorithm

The branch-and-bound algorithm proceeds by branching on nodes in relaxed
BDDs. Before describing the algorithm, we first define, recursively, exact versus
relaxed nodes in relaxed BDDs. The root r is exact, and any other node u in a
relaxed BDD B is exact if all nodes u′ with arcs (u′, u) directed to u are exact,
and Ẽ(p) = E(u), for all p ∈ P(B|r,u). A node is relaxed otherwise.

An exact cut C is a set of exact nodes whose removal disconnects r and t.
The following theorem by Bergman [5] provides the basis for the algorithm:

Theorem 1 ([5]). Let B be a relaxed BDD for a graph G and let C be an exact
cut of B. Then,

v∗(G) = max
u∈C

{z∗(B|r,u) + v∗ (G[E(u)])} .

Parallel Combinatorial Optimization with Decision Diagrams 357

Theorem 1 thereby establishes that, having constructed a relaxed BDD for G,
we can branch on any exact cut C, and solve the problem defined by the graphs
G[E(u)] for every u ∈ C, adding the longest path to the nodes u to find the
optimal value. Note that each node in the exact cut can therefore be processed
individually by recording only the state of the node and the longest-path value
up to that node in the relaxed BDD that created the node.

In general there are many choices for an exact cut to branch on. One possi-
ble cut is any layer prior to the first forced node merger during the top-down
construction. Let �̃ be the first layer where we forcibly merged nodes together
during the relaxation construction. For any j < �̃, each node must be exact, and
any such layer (which contains all nodes with �(u) = j) will be an exact cut and
can be used to create subproblems. Another possible cut is the frontier cut [5].

The algorithm branches on a set of partial solutions, as opposed to individual
assignments of values to the problem variables, as is typically seen in algorithms
designed to solve discrete optimization problems. This removes symmetry, and
also allows the subproblems to be solved recursively, and individually. In princi-
ple, each node defines a subproblem which can be solved by any technique, but
for the purpose of this paper, we will build restricted BDDs for primal heuristics,
and relaxed BDDs for relaxation bounds, recursively defining subproblems.

3 Parallelizing BDD-Based Branch-and-Bound

The limited amount of information required for each BDD node makes the
branch-and-bound algorithm naturally suitable for parallel processing. Once an
exact cut C is computed for a relaxed BDD, the nodes u ∈ C are independent
and can be each processed in parallel. The information required to process a
node u ∈ C is its corresponding state, which is bounded by the number of ver-
tices of G, |V |. After processing a node u, only the lower bound v∗(G[E(u)]) is
needed to compute the optimal value, as shown in Theorem 1.

3.1 A Centralized Parallelization Scheme

There are many possible parallel strategies that can exploit this natural charac-
teristic of the branch-and-bound algorithm for approximate decision diagrams.
We propose here a centralized strategy defined as follows. A master process keeps
a pool of BDD nodes to be processed, first initialized with a single node associ-
ated with the root state V . The master distributes the BDD nodes to a set of
workers. Each worker receives a number of nodes, processes them by creating the
corresponding relaxed and restricted BDDs, and either sends back to the master
new nodes to explore (from an exact cut of their relaxed BDD) or sends to the
master as well as all workers an improved lower bound from a restricted BDD.
The workers also send the upper bound obtained from the relaxed BDD from
which the nodes were extracted, which is then used by the master for potentially
pruning the nodes according to the current best lower bound at the time these
nodes are brought out from the global pool to be processed.

358 D. Bergman et al.

Even though conceptually simple, our centralized parallelization strategy in-
volves communication between all workers and many choices that have a signif-
icant impact on performance. After discussing the challenge of effective paral-
lelization, we explore some of these choices in the rest of this section.

3.2 The Challenge of Effective Parallelization

Clearly, a BDD constructed in parallel as described above can be very different
in structure and overall size from a BDD constructed sequentially for the same
problem instance. As a simple example, consider two nodes u1 and u2 in the
exact cut C. By processing u1 first, one could potentially improve the lower
bound so much that u2 can be pruned right away in the sequential case. In the
parallel setting, however, while worker 1 processes u1, worker 2 will be already
wasting search effort on u2, not knowing that u2 could simply be pruned if it
waited for worker 1 to finish processing u1.

In general, the order in which nodes are processed in the approximate BDD
matters — information passed on by nodes processed earlier can substantially
alter the direction of search later. This is very clear in the context of combinato-
rial search for SAT, where dynamic variable activities and clauses learned from
conflicts dramatically alter the behavior of subsequent search. Similarly, bounds
in MIP and impacts in CP influence subsequent search.

Issues of this nature pose a challenge to effective parallelization of anything
but brute force combinatorial search oblivious to the order in which the search
space is explored. Such a search is, of course, trivial to parallelize. For most
search methods of interest, however, a parallelization strategy that delicately
balances independence of workers with timely sharing of information is often
the key to success. As our experiments will demonstrate, our implementation,
DDX10, achieves this balance to a large extent on both random and structured
instances of the independent set problem. In particular, the overall size of parallel
BDDs is not much larger than that of the corresponding sequential BDDs. In
the remainder of this section, we discuss the various aspects of DDX10 that
contribute to this desirable behavior.

3.3 Global and Local Pools

We refer to the pool of nodes kept by the master as the global pool. Each node in
the global pool has two pieces of information: a state, which is necessary to build
the relaxed and restricted BDDs, and the longest path value in the relaxed BDD
that created that node, from the root to the node. All nodes sent to the master
are first stored in the global pool and are then redistributed to the workers.
Nodes with an upper bound that is no more than the best found lower bound at
the time are pruned from the pool, as these can never provide a solution better
than one already found.

In order to select which nodes to send to workers first, the global pool is
implemented here using a data structure that mixes a priority queue and a
stack. Initially, the global pool gives priority to nodes that have a larger upper

Parallel Combinatorial Optimization with Decision Diagrams 359

bound, which intuitively are nodes with higher potential to yield better solutions.
However, this search strategy simulates a best-first search and may result in an
exponential number of nodes in the global queue that still need to be explored.
To remedy this, the global pool switches to a last-in, first-out node selection
strategy when its size reaches a particular value (denoted maxPQueueLength),
adjusted according to the available memory on the machine where the master
runs. This strategy resembles a stack-based depth-first search and limits the
total amount of memory necessary to perform search.

Besides the global pool, workers also keep a local pool of nodes. The subprob-
lems represented by the nodes are usually small, making it advantageous for
workers to keep their own pool so as to reduce the overall communication to the
master. The local pool is represented by a priority queue, selecting nodes with a
larger upper bound first. After a relaxed BDD is created, a certain fraction of the
nodes (with preference to those with a larger upper bound) in the exact cut is
sent to the master, while the remaining fraction (denoted fracToKeep) of nodes
are added to the local pool. The local pool size is also limited; when the pool
reaches this maximum size (denoted maxLocalPoolSize), we stop adding more
nodes to the local queue and start sending any newly created nodes directly to
the master. When a worker’s local pool becomes empty, it notifies the master
that it is ready to receive new nodes.

3.4 Load Balancing

The global queue starts off with a single node corresponding to the root state
V , which is assigned to an arbitrary worker which then applies a cut to produce
more states and sends a fraction of them, as discussed above, back to the global
queue. The size of the global pool thus starts to grow rapidly and one must
choose how many nodes to send subsequently to other workers. Sending one
node (the one with the highest priority) to a worker at a time would mimic the
sequential case most closely. However, it would also result in the most number
of communications between the master and the workers, which often results in
a prohibitively large system overhead. On the other hand, sending too many
nodes at once to a single worker runs the risk of starvation, i.e., the global queue
becoming empty and other workers sitting idle waiting to receive new work.

Based on experimentation with representative instances, we propose the fol-
lowing parameterized scheme to dynamically decide how many nodes the master
should send to a worker at any time. Here, we use the notation [x]u as a short-
hand for min{u,max{�, x}}, that is, x capped to lie in the interval [�, u].

nNodesToSendc,c̄,c∗(s, q, w) =
[
min

{
c̄s, c∗

q

w

}]∞
c

(1)

where s is a decaying running average of the number of nodes added to the global
pool by workers after processing a node,1 q is the current size of the global pool,
w is the number of workers, and c, c̄, and c∗ are parametrization constants.

1 When a cut C is applied upon processing a node, the value of s is updated as
snew = rsold + (1− r)|C|, with r = 0.5 in the current implementation.

360 D. Bergman et al.

The intuition behind this choice is as follows. c is a flat lower limit (a relatively
small number) on how many nodes are sent at a time irrespective of other factors.
The inner minimum expression upper bounds the number of nodes to send to
be no more than both (a constant times) the number of nodes the worker is
in turn expected to return to the global queue upon processing each node and
(a constant times) an even division of all current nodes in the queue into the
number of workers. The first influences how fast the global queue grows while
the second relates to fairness among workers and the possibility of starvation.
Larger values of c, c̄, and c∗ reduce the number of times communication occurs
between the master and workers, at the expense of moving further away from
mimicking the sequential case.

Load balancing also involves appropriately setting the fracToKeep value dis-
cussed earlier. We use the following scheme, parameterized by d and d∗:

fracToKeepd,d∗(t) = [t/d∗]1d (2)

where t is the number of states received by the worker. In other words, the
fraction of nodes to keep for the local queue is 1/d∗ times the number of states
received by the worker, capped to lie in the range [d, 1].

3.5 DDX10: Implementing Parallelization Using X10

As mentioned earlier, X10 is a high-level parallel programming and execution
framework. It supports parallelism natively and applications built with it can be
compiled to run on various operating systems and communication hardware.

Similar to SatX10 [11], we capitalize on the fact that X10 can incorporate
existing libraries written in C++ or Java. We start off with the sequential version
of the BDD code base for MISP [7] and integrate it in X10, using the C++
backend. The integration involves adding hooks to the BDD class so that (a)
the master can communicate a set of starting nodes to build approximate BDDs
for, (b) each worker can communicate nodes (and corresponding upper bounds)
of an exact cut back to the master, and (c) each worker can send updated lower
bounds immediately to all other workers and the master so as to enable pruning.

The global pool for the master is implemented natively in X10 using a sim-
ple combination of a priority queue and a stack. The DDX10 framework itself
(consisting mainly of the main DDSolver class in DDX10.x10 and the pool in
StatePool.x10) is generic and not tied to MISP in any way. It can, in principle,
work with any maximization or minimization problem for which states for a
BDD (or even an MDD) can be appropriately defined.

4 Experimental Results

The MISP problem can be formulated and solved using several existing general
purpose discrete optimization techniques. A MIP formulation is considered to
be very effective and has been used previously to evaluate the sequential BDD
approach [7]. Given the availability of parallel MIP solvers as a comparison

Parallel Combinatorial Optimization with Decision Diagrams 361

point, we present two sets of experiments on the MISP problem: (1) we compare
DDX10 with a MIP formulation solved using IBM ILOG CPLEX 12.5.1 on
up to 32 cores, and (2) we show how DDX10 scales when going beyond 32
cores and employing up to 256 cores distributed across a cluster. We borrow the
MIP encoding from Bergman et al. [7] and employ the built-in parallel branch-
and-bound MIP search mechanism of CPLEX. The comparison with CPLEX is
limited to 32 cores because this is the largest number of cores we have available
on a single machine (note that CPLEX 12.5.1 does not support distributed
execution). Since the current version of DDX10 is not deterministic, we run
CPLEX also in its non-deterministic (‘opportunistic’) mode.

DDX10 is implemented using X10 2.3.1 [28] and compiled using the C++
backend with g++ 4.4.5.2 For all experiments with DDX10, we used the fol-
lowing values of the parameters of the parallelization scheme as discussed in
Section 3: maxPQueueLength = 5.5 × 109 (determined based on the available
memory on the machine storing the global queue),maxLocalPoolSize = 1000, c =
10, c̄ = 1.0, c∗ = 2.0, d = 0.1 and d∗ = 100. The maximum width W for the BDD
generated at each subproblem was set to be the number of free variables (i.e.,
the number of active vertices) in the state of the BDD node that generated the
subproblem. The type of exact cut used in the branch-and-bound algorithm for
the experiments was the frontier cut [5]. These values and parameters were cho-
sen based on experimentation on our cluster with a few representative instances,
keeping in mind their overall impact on load balancing and pruning as discussed
earlier.

4.1 DDX10 versus Parallel MIP

The comparison between DDX10 and IBM ILOG CPLEX 12.5.1 was conducted
on 2.3 GHz AMD Opteron 6134 machines with 32 cores, 64 GB RAM, 512 KB
L2 cache, and 12 MB L3 cache.

To draw meaningful conclusions about the scaling behavior of CPLEX vs.
DDX10 as the number w of workers is increased, we start by selecting prob-
lem instances where both approaches exhibit comparable performance in the
sequential setting. To this end, we generated random MISP instances as also
used previously by Bergman et al. [7]. We report comparison on instances with
170 vertices and six graph densities ρ = 0.19, 0.21, 0.23, 0.25, 0.27, and 0.29. For
each ρ, we generated five random graphs, obtaining a total of 30 problem in-
stances. For each pair (ρ, w) with w being the number of workers, we aggregate
the runtime over the five random graphs using the geometric mean.

Figure 3 summarizes the result of this comparison for w = 1, 2, 4, 16, and
32. As we see, CPLEX and DDX10 display comparable performance for w = 1
(the left-most data points). While the performance of CPLEX varies relatively
little as a function of the graph density ρ, that of DDX10 varies more widely.
As observed earlier by Bergman et al. [7] for the sequential case, BDD-based

2 The current version of DDX10 may be downloaded from
http://www.andrew.cmu.edu/user/vanhoeve/mdd

http://www.andrew.cmu.edu/user/vanhoeve/mdd

362 D. Bergman et al.

 1

 10

 100

 1000

 1 2 4 8 16 32

T
im

e
(s

ec
on

ds
)

Number of Cores

D19
D21
D23
D25
D27
D29

 1

 10

 100

 1000

 1 2 4 8 16 32

T
im

e
(s

ec
on

ds
)

Number of Cores

D19
D21
D23
D25
D27
D29

Fig. 3. Performance of CPLEX (left) and DDX10 (right), with one curve for each graph
density ρ shown in the legend as a percentage. Both runtime (y-axis) and number of
cores (x-axis) are in log-scale.

 1

 10

 100

 1000

 1 4 16 64 256

T
im

e
(s

ec
on

ds
)

Number of Cores

D19
D21
D23
D25
D27
D29

 1

 10

 100

 1000

 1 4 16 64 256

T
im

e
(s

ec
on

ds
)

Number of Cores

D19
D21
D23
D25
D27
D29

Fig. 4. Scaling behavior of DDX10 on MISP instances with 170 (left) and 190 (right)
vertices, with one curve for each graph density ρ shown in the legend as a percentage.
Both runtime (y-axis) and number of cores (x-axis) are in log-scale.

branch-and-bound performs better on higher density graphs than sparse graphs.
Nevertheless, the performance of the two approaches when w = 1 is in a compa-
rable range for the observation we want to make, which is the following: DDX10
scales more consistently than CPLEX when invoked in parallel and also retains
its advantage on higher density graphs. For ρ > 0.23, DDX10 is clearly exploit-
ing parallelism better than CPLEX. For example, for ρ = 0.29 and w = 1,
DDX10 takes about 80 seconds to solve the instances while CPLEX needs about
100 seconds—a modest performance ratio of 1.25. This same performance ratio
increases to 5.5 when both methods use w = 32 workers.

4.2 Parallel versus Sequential Decision Diagrams

The two experiments reported in this section were conducted on a larger cluster,
with 13 of 3.8 GHz Power7 machines (CHRP IBM 9125-F2C) with 32 cores (4-
way SMT for 128 hardware threads) and 128 GB of RAM. The machines are
connected via a network that supports the PAMI message passing interface [21],

Parallel Combinatorial Optimization with Decision Diagrams 363

Table 1. Runtime (seconds) of DDX10 on DIMACS instances. Timeout = 1800

instance n density 1 core 4 cores 16 cores 64 cores 256 cores

hamming8-4.clq 256 0.36 25.24 7.08 2.33 1.32 0.68
brock200 4.clq 200 0.34 33.43 9.04 2.84 1.45 1.03
san400 0.7 1.clq 400 0.30 33.96 9.43 4.63 1.77 0.80
p hat300-2.clq 300 0.51 34.36 9.17 2.74 1.69 0.79
san1000.clq 1000 0.50 40.02 12.06 7.15 2.15 9.09
p hat1000-1.clq 1000 0.76 43.35 12.10 4.47 2.84 1.66
sanr400 0.5.clq 400 0.50 77.30 18.10 5.61 2.18 2.16
san200 0.9 2.clq 200 0.10 93.40 23.72 7.68 3.64 1.65
sanr200 0.7.clq 200 0.30 117.66 30.21 8.26 2.52 2.08
san400 0.7 2.clq 400 0.30 234.54 59.34 16.03 6.05 4.28
p hat1500-1.clq 1500 0.75 379.63 100.3 29.09 10.62 25.18
brock200 1.clq 200 0.25 586.26 150.3 39.95 12.74 6.55
hamming8-2.clq 256 0.03 663.88 166.49 41.80 23.18 14.38
gen200 p0.9 55.clq 200 0.10 717.64 143.90 43.83 12.30 6.13
C125.9.clq 125 0.10 1100.91 277.07 70.74 19.53 8.07
san400 0.7 3.clq 400 0.30 – 709.03 184.84 54.62 136.47
p hat500-2.clq 500 0.50 – 736.39 193.55 62.06 23.81
p hat300-3.clq 300 0.26 – – 1158.18 349.75 172.34
san400 0.9 1.clq 400 0.10 – – 1386.42 345.66 125.27
san200 0.9 3.clq 200 0.10 – – – 487.11 170.08
gen200 p0.9 44.clq 200 0.10 – – – 1713.76 682.28
sanr400 0.7.clq 400 0.30 – – – – 1366.98
p hat700-2.clq 700 0.50 – – – – 1405.46

although DDX10 can also be easily compiled to run using the usual network
communication with TCP sockets. We used 24 workers on each machine, using
as many machines as necessary to operate w workers in parallel.

Random Instances. The first experiment reuses the random MISP instances
introduced in the previous section, with the addition of similar but harder in-
stances on graphs with 190 vertices, resulting in 60 instances in total.

As Figure 4 shows, DDX10 scales near-linearly up to 64 cores and still very
well up to 256 cores. The slight degradation in performance when going to 256
cores is more apparent for the higher density instances (lower curves in the plots),
which do not have much room left for linear speedups as they need only a couple
of seconds to be solved with 64 cores. For the harder instances (upper curves), the
scaling is still satisfactory even if not linear. As noted earlier, coming anywhere
close to near-linear speedups for complex combinatorial search and optimization
methods has been remarkably hard for SAT and MIP. These results show that
parallelization of BDD based branch-and-bound can be much more effective.

DIMACS Instances. The second experiment is on the DIMACS instances
used by Bergman [5] and Bergman et al. [7], where it was demonstrated that se-
quential BDD-based branch-and-bound has complementary strengths compared

364 D. Bergman et al.

Table 2. Number of nodes in multiples of 1, 000 processed (#No) and pruned (#Pr)
by DDX10 as a function of the number of cores. Same setup as in Table 1.

1 core 4 cores 16 cores 64 cores 256 cores
instance #No #Pr #No #Pr #No #Pr #No #Pr #No #Pr

hamming8-4.clq 43 0 42 0 40 0 32 0 41 0
brock200 4.clq 110 42 112 45 100 37 83 30 71 25
san400 0.7 1.clq 7 1 8 1 6 0 10 1 14 1
p hat300-2.clq 80 31 74 27 45 11 46 7 65 12
san1000.clq 29 16 50 37 18 4 13 6 28 6
p hat1000-1.clq 225 8 209 0 154 1 163 1 206 1
sanr400 0.5.clq 451 153 252 5 354 83 187 7 206 5
san200 0.9 2.clq 22 0 20 0 19 0 18 1 25 0
sanr200 0.7.clq 260 3 259 5 271 17 218 4 193 6
san400 0.7 2.clq 98 2 99 5 112 21 147 67 101 35
p hat1500-1.clq 1586 380 1587 392 1511 402 962 224 1028 13
brock200 1.clq 1378 384 1389 393 1396 403 1321 393 998 249
hamming8-2.clq 45 0 49 0 49 0 47 0 80 0
gen200 p0.9 55.clq 287 88 180 6 286 90 213 58 217 71
C125.9.clq 1066 2 1068 0 1104 38 1052 13 959 19
san400 0.7 3.clq – – 2975 913 2969 916 2789 779 1761 42
p hat500-2.clq – – 2896 710 3011 861 3635 1442 2243 342
p hat300-3.clq – – – – 18032 4190 17638 3867 15852 2881
san400 0.9 1.clq – – – – 2288 238 2218 207 2338 422
san200 0.9 3.clq – – – – – – 9796 390 10302 872
gen200 p0.9 44.clq – – – – – – 43898 5148 45761 7446
sanr400 0.7.clq – – – – – – – – 135029 247
p hat700-2.clq – – – – – – – – 89845 8054

to sequential CPLEX and outperforms the latter on several instances, often the
ones with higher graph density ρ. We consider here the subset of instances that
take at least 10 seconds (on our machines) to solve using sequential BDDs and
omit any that cannot be solved within the time limit of 1800 seconds (even with
256 cores). The performance of DDX10 with w = 1, 4, 16, 64, and 256 is reported
in Table 1, with rows sorted by hardness of instances.

These instances represent a wide range of graph size, density, and structure.
As we see from the table, DDX10 is able to scale very well to 256 cores. Except
for three instances, it is significantly faster on 256 cores than on 64 cores, despite
the substantially larger communication overhead for workload distribution and
bound sharing.

Table 2 reports the total number of nodes processed through the global queue,
as well as the number of nodes pruned due to bounds communicated by the
workers.3 Somewhat surprisingly, the number of nodes processed does not increase
bymuch compared to the sequential case, despite the fact that hundreds of workers

3 Here we do not take into account the number of nodes added to local pools, which is
usually a small fraction of the number of nodes processed by the global pool.

Parallel Combinatorial Optimization with Decision Diagrams 365

start processing nodes in parallel without waiting for potentially improved bounds
which might have been obtained by processing nodes sequentially. Furthermore,
the number of pruned nodes also stays steady as w grows, indicating that bounds
communication isworking effectively.This provides insight into the amiable scaling
behavior of DDX10 and shows that it is able to retain sufficient global knowledge
even when executed in a distributed fashion.

5 Summary and Future Work

We have introduced a parallelization scheme for a branch-and-bound search
based on approximate binary decision diagrams. We implemented our approach
using the X10 parallel programming and execution framework. Our application
of the technique to the maximum independent set problem demonstrates that
approximate BDD-based branch-and-bound can scale significantly better with
increasing number of workers than a state-of-the-art commercial-strength solver.
The results indicate that the solution technique is amenable to effective paral-
lelization on hundreds of compute cores.

Besides extending DDX10 to different problem classes in addition to MISP,
two interesting extensions of the underlying parallel framework would be to sup-
port determinism and decentralized load balancing. Determinism is important
to many industrial users and therefore a desirable feature. Conveniently, X10
comes with native determinacy constructs called clocks that can be employed
in order to ensure that DDX10 can also be executed deterministically. Second,
while the centralized load balancing scheme proposed here scaled well to 256
cores, a central global queue is likely to become a bottleneck when extending
to thousands of cores. Particularly attractive in the current setting is the recent
work by Saraswat et al. [27] which provides a general determinate application
framework, called the Global Load-Balancing (GLB) framework, available as a
library in the latest release of X10. The GLB framework is responsible for au-
tomatically distributing the generated collection of tasks across all nodes, and
detecting global termination. This can be used to design a distributed variant
of DDX10 targeted for much larger compute clusters.

In summary, our work highlights how integrating branch-and-bound based
on approximate decision diagrams into X10 allows one to leverage the features
of a major parallel programming language in order to substantially improve our
ability to solve hard combinatorial optimization problems by exploiting hundreds
of compute cores in parallel.

Acknowledgements. Andre Cire and Willem-Jan van Hoeve were partially
supported by NSF under grant CMMI-1130012 and a Google Research Award.

References

1. Akers, S.B.: Binary decision diagrams. IEEETransactions onComputers 27, 509–516
(1978)

366 D. Bergman et al.

2. Andersen, H.R., Hadzic, T., Hooker, J.N., Tiedemann, P.: A Constraint Store
Based on Multivalued Decision Diagrams. In: Bessière, C. (ed.) CP 2007. LNCS,
vol. 4741, pp. 118–132. Springer, Heidelberg (2007)

3. Balasundaram, B., Butenko, S., Hicks, I.V.: Clique relaxations in social net-
work analysis: The maximum k-plex problem. Operations Research 59(1), 133–142
(2011)

4. Behle, M.: Binary Decision Diagrams and Integer Programming. PhD thesis, Max
Planck Institute for Computer Science (2007)

5. Bergman, D.: New Techniques for Discrete Optimization. PhD thesis, Tepper
School of Business, Carnegie Mellon University (2013)

6. Bergman, D., Cire, A.A., van Hoeve, W.-J.: MDD Propagation for Sequence Con-
straints. JAIR (to appear)

7. Bergman, D., Cire, A.A., van Hoeve, W.-J., Hooker, J.N.: Discrete optimization
with decision diagrams (2013) (under review)

8. Bergman, D., Cire, A.A., van Hoeve, W.-J., Hooker, J.N.: Optimization bounds
from binary decision diagrams. INFORMS Journal on Computing (to appear)

9. Bergman, D., Cire, A.A., van Hoeve, W.-J., Yunes, T.: BDD-based heuristics for
binary optimization. Journal of Heuristics (to appear)

10. Bergman, D., van Hoeve, W.-J., Hooker, J.N.: Manipulating MDD relaxations for
combinatorial optimization. In: Achterberg, T., Beck, J.C. (eds.) CPAIOR 2011.
LNCS, vol. 6697, pp. 20–35. Springer, Heidelberg (2011)

11. Bloom, B., Grove, D., Herta, B., Sabharwal, A., Samulowitz, H., Saraswat, V.:
SatX10: A scalable plug & play parallel SAT framework. In: Cimatti, A., Sebas-
tiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 463–468. Springer, Heidelberg
(2012)

12. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers C-35, 677–691 (1986)

13. Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A., Ebcioglu, K., von
Praun, C., Sarkar, V.: X10: an object-oriented approach to non-uniform cluster
computing. In: OOPSLA 2005, San Diego, CA, USA, pp. 519–538 (2005)

14. Chu, G., Schulte, C., Stuckey, P.J.: Confidence-Based Work Stealing in Paral-
lel Constraint Programming. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732,
pp. 226–241. Springer, Heidelberg (2009)

15. Cire, A.A., van Hoeve, W.-J.: Multivalued decision diagrams for sequencing prob-
lems. Operations Research 61(6), 1411–1428 (2013)

16. Eblen, J.D., Phillips, C.A., Rogers, G.L., Langston, M.A.: The maximum clique
enumeration problem: Algorithms, applications and implementations. In: Chen, J.,
Wang, J., Zelikovsky, A. (eds.) ISBRA 2011. LNCS, vol. 6674, pp. 306–319. Springer,
Heidelberg (2011)

17. Edachery, J., Sen, A., Brandenburg, F.J.: Graph clustering using distance-k cliques.
In: Kratochv́ıl, J. (ed.) GD 1999. LNCS, vol. 1731, pp. 98–106. Springer, Heidelberg
(1999)

18. Gu, Z.: Gurobi Optimization - Gurobi Compute Server, Distributed Tuning Tool
and Distributed Concurrent MIP Solver. In: INFORMS Annual Meeting (2013),
http://www.gurobi.com/products/gurobi-compute-server/

distributed-optimization
19. Hoda, S., van Hoeve, W.-J., Hooker, J.N.: A systematic approach to MDD-

based constraint programming. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308,
pp. 266–280. Springer, Heidelberg (2010)

20. Järvisalo, M., Le Berre, D., Roussel, O., Simon, L.: The international SAT solver
competitions. Artificial Intelligence Magazine (AI Magazine) 1(33), 89–94 (2012)

http://www.gurobi.com/products/gurobi-compute-server/distributed-optimization
http://www.gurobi.com/products/gurobi-compute-server/distributed-optimization

Parallel Combinatorial Optimization with Decision Diagrams 367

21. Kumar, S., Mamidala, A.R., Faraj, D., Smith, B., Blocksome, M., Cernohous, B.,
Miller, D., Parker, J., Ratterman, J., Heidelberger, P., Chen, D., Steinmacher-
Burrow, B.: PAMI: A parallel active message interface for the Blue Gene/Q su-
percomputer. In: IPDPS-2012: 26th IEEE International Parallel & Distributed
Processing Symposium, pp. 763–773 (2012)

22. Lee, C.Y.: Representation of switching circuits by binary-decision programs. Bell
Systems Technical Journal 38, 985–999 (1959)

23. Moisan, T., Gaudreault, J., Quimper, C.-G.: Parallel Discrepancy-Based Search.
In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 30–46. Springer, Heidelberg
(2013)

24. Perron, L.: Search Procedures and Parallelism in Constraint Programming. In:
Jaffar, J. (ed.) CP 1999. LNCS, vol. 1713, pp. 346–361. Springer, Heidelberg (1999)

25. Régin, J.-C., Rezgui, M., Malapert, A.: Embarrassingly Parallel Search. In: Schulte,
C. (ed.) CP 2013. LNCS, vol. 8124, pp. 596–610. Springer, Heidelberg (2013)

26. Saraswat, V., Bloom, B., Peshansky, I., Tardieu, O., Grove, D.: Report on the
experimental language, X10. Technical report, IBM Research (2011)

27. Saraswat, V.A., Kambadur, P., Kodali, S., Grove, D., Krishnamoorthy, S.: Lifeline-
based global load balancing. In: Proceedings of the 16th ACM Symposium on
Principles and Practice of Parallel Programming, PPoPP 2011, pp. 201–212. ACM,
New York (2011), http://doi.acm.org/10.1145/1941553.1941582
ISBN 978-1-4503-0119-0

28. X10. X10 programming language web site, http://x10-lang.org/ (January 2010)

http://doi.acm.org/10.1145/1941553.1941582
http://x10-lang.org/

A Portfolio Approach to Enumerating Minimal

Correction Subsets for Satisfiability Problems

Yuri Malitsky1, Barry O’Sullivan1,
Alessandro Previti2, and Joao Marques-Silva2

1 Insight Centre for Data Analytics, University College Cork, Ireland
{y.malitsky,b.osullivan}@4c.ucc.ie

2 Complex and Adaptive Systems Laboratory, Dublin, Ireland
alessandro.previti@ucdconnect.ie, jpms@ucd.ie

Abstract. Even when it has been shown that no solution exists for a
particular constraint satisfaction problem, one may still aim to restore
consistency by relaxing the minimal number of constraints. In the con-
text of a Boolean formula like SAT, such a relaxation is referred to as
a Minimal Correction Subset (MCS). In the context of SAT, identify-
ing MCSs for an instance is relevant in a wide range of applications,
including MaxSAT solution approximation and Minimal Unsatisfiable
Subset (MUS) enumeration. However, while there are a number of ex-
isting approaches to this problem, in this paper we demonstrate how
performance can be significantly improved by employing algorithm port-
folios. Yet, instead of applying the standard approach of selecting a single
solver for the instance at hand, we present a new technique that within
a predetermined timeout switches between enumeration algorithms mul-
tiple times. Through experimental study, this new approach is shown to
outperform any possible optimal portfolio that solely relies on solvers
that run uninterrupted for the allotted time.

1 Introduction

A set of constraints without a solution is referred to as being inconsistent, unsat-
isfiable, or over-constrained. Regardless of the terminology, in order to restore
consistency some of the constraints have to be relaxed. To preserve as much infor-
mation about the original problem as possible, in practice the goal is usually to
do this with a minimal set of constraints. In the context of Boolean formulas, such
a minimal set is referred to as the Minimal Correction Subset (MCS), and the
importance of computing such a minimal relaxation is well-known, e.g. [9,15,5].
Furthermore, aside from their obvious benefits, MCSs for Boolean formulas also
find other applications. As an example, the state-of-the-art in Minimal Unsatisfi-
able Subset (MUS) computation, complete enumeration relies upon the compu-
tation of the whole set of MCSs [12]. MCSs can also be used to compute minimal
models [2,21]. On top of this, it is important to highlight that MCSs with the
smallest size correspond to the solution of the Maximum Satisfiability (MaxSAT)
problem.

H. Simonis (Ed.): CPAIOR 2014, LNCS 8451, pp. 368–376, 2014.
c© Springer International Publishing Switzerland 2014

A Portfolio Approach to Enumerating Minimal Correction Subsets 369

Defined formally, if F is a formula expressed as a set of clauses, then we define
an MCS as follows:

Definition 1 (Minimal Correction Subset). C ⊆ F is a Minimal Correction
Subset (MCS) iff F \ C is satisfiable and ∀c ∈ C,F \ (C \ {c}) is unsatisfiable.

The study of over-constrained problems for these sets has been considered
in a number of settings, e.g. [8], and include Reiter’s seminal work in diagno-
sis [18]. Note that in this context MCSs and MUSs are referred to as minimal
diagnoses and minimal conflict sets respectively. The computation of these sets
has also been studied extensively in the area of constraints, e.g. [9,15,5]. In the
last decade, various approaches have been proposed for computing MCSs. An
intuitive approach for computing a single MCS was proposed in [1]. Here the
idea being that, starting with the empty set, to add one constraint at a time
and repeatedly calling a solver to check satisfiability. When the extended set of
constraints became unsatisfiable, the constraint added last is guaranteed to be
part of the MCS under construction. We will refer to this algorithm as the Basic
Linear Search algorithm (bls). However, [12] showed that such an approach was
inefficient in practice, and proposed an alternative based on MaxSAT. Addi-
tional research had also revealed how, in the context of model-based diagnosis,
a divide-and-conquer strategy [15,5] could also be embraced for this task.

More recently, new techniques were introduced to enhance performance of
existing algorithms [14]. In that same paper, a new algorithm was introduced
where, inspired by the work of [3], it was shown how to outperform the alterna-
tives for the computation of a single MCS. Results in that paper, show that the
performance gains of the Virtual Best Solver (VBS) with respect to the other
algorithms are quite significant. This meant that these algorithms complement
each other and, as explicitly said by the authors, suggests the possibility of using
portfolio solutions, one of the goals of this paper.

This paper shows how the algorithms presented in [14] can benefit from a
portfolio approach. We show how the performance can be significantly improved
for both discovering a single solution as well as the enumeration of all MCSs.
In particular we show that instead of directly applying a portfolio approach to
predict the next solver, it is far more beneficial to continuously switch among
solvers within the allotted time.

2 A Portfolio Approach

Over the last few years, it has become increasingly evident that there is often no
single solver that performs optimally on every instance [10,22,16,17], an observa-
tion strongly connected to the No Free Lunch Theorem. And in practice we often
see that different solvers work noticeably better on certain instances than their
counterparts. It is this observation that drives research into accurately identify-
ing the most appropriate solver for a given problem instance. A task known in
the community as Algorithm Selection.

370 Y. Malitsky et al.

Algorithm 1. Solver-based Nearest Neighbor for Algorithm Portfolios

1: function SNNAP-Train(T,F,R)
2: for all instances i in T do
3: R̄i ← Scaled(Ri)
4: end for
5: for all solver j in the portfolio do
6: PMj ← PredictionModel(T, F, R̄)
7: end for
8: return PM
9: end function

1: function SNNAP-Run(x,PM, T, R, R̄, A, k)
2: PR ← Predict(PM,x)
3: dist ← CalculateDistance(PR,T, R̄)
4: neighbors ← FindClosestInstances(dist, k)
5: j ← FindBestSolver(neighbors,R)
6: return Aj(x)
7: end function

The premise is that there exist some detectable structural differences between
the instances, and that by correctly discerning them, it is possible to predict the
quality of a solvers’ performance. There are of course many portfolio approaches
that use a plethora of prediction techniques. One approach trains regression
models to predict the performance of each solver, selecting the expected best
one [19]. Alternatively, a ranking approach can suggest a preference order over
all solvers [7]. Forests of trees have been used to distinguish between every pair
of solvers in a portfolio, selecting the one voted upon most frequently [23]. Mean-
while, clustering can be used to group similar instances, and identifying a solver
for each such grouping [13]. An overview of many of these approaches is presented
in [11].

For the experiments detailed in this paper we utilize the Solver-based Nearest
Neighbor for Algorithm Portfolios, or SNNAP [4]. In a recent study, this ap-
proach has been shown to work well in practice by making predictions not solely
on the feature vector but by also considering the similarities in solver perfor-
mances over the instances. This section first presents the SNNAP methodology in
further detail and present the features which will be used to distinguish amongst
instances. The section will then demonstrate the effectiveness of SNNAP in prac-
tice.

2.1 SNNAP

An acronym for Solver-based Nearest Neighbor for Algorithm Portfolios, this
approach uses a two step procedure to select the best solver for an instance, the
details of which are presented in Algorithm 1. In the training phase, provided are
a collection of training instances T , a feature vector describing each instance F ,
and the performance of each algorithm in the portfolio on every instance R.

A Portfolio Approach to Enumerating Minimal Correction Subsets 371

To avoid working with the actual performances, which can behave highly stochas-
tically and take on a wide range of values, the values in R are normalized for
each instance. Thus, for each instance the mean performance is set at 0 and the
standard deviation to 1. Subsequently a random forest is trained for each solver
to predict this normalized value when provided with the appropriate features.

During the testing phase, SNNAP utilizes the random forest to predict the
effectiveness of each solver on the provided instance. Therefore, our trees pre-
dict how much better or worse a solver is than average on this instance, which
helps avoid biasing predictions to instances that have a high range of possible
outcomes. However, any prediction approach is likely to have some errors. As-
suming, however, that the best solver would be among the top predictions, a
binary vector is created where only the top n values are set to 1, while all oth-
ers are set to 0. The distance between any two instances therefore becomes the
Jaccard distance:

1− |intersection((Aa1 , . . . Aan), (Ab1 , . . . Abn))|
|union((Aa1 , . . . Aan), (Ab1 , . . . Abn))|

Using this definition two instances that will prefer the exact same n solvers will
have a distance of 0, while instances which prefer completely different solvers
will have a distance of 1. Employing this distance metric, SNNAP finds the m
nearest neighbors to the new instance, and uses the solver that performed best
on those neighbors.

2.2 Features

The success or failure of Algorithm Selection largely depends on the ability to
detect structural differences between the instances. In practice, these structural
differences are defined by a vector of features. In the case of finding MCSs, we
are dealing with Partial MaxSAT (PMS) instances. PMS instances are utilized
rather than plain SAT in order to be able to consider SAT instances to which
additional clauses have been added in order to avoid previously discovered MCSs.
For this problem type, we introduce the following features:

Problem Size Features:
1-2 Number of variables and

clauses in original formula:
denoted v and c, respectively

3 Percentage of Soft Clauses

4-7 Soft Clause Weights: mean,
stdev, min and max

8 Ratio of variables to clauses

Variable-Clause Graph Features:
9-13 Variable node degree statistics:

mean, stdev, min, max, spread
14-18 Clause node degree statistics:

mean, stdev, min, max, spread

Balance Features:
19-23 Positive to negative

occurrences of each variable:
mean, stdev, min, max, spread

24-28 Positive to negative

literals in each clause:
mean, stdev, min, max, spread

29-31 Fraction of unary, binary

and ternary clauses

Proximity to Horn Formula:
32-36 Occurrences of a variable

in a Horn clause: mean, stdev,
min, max, spread

37 Fraction of Horn clauses

372 Y. Malitsky et al.

Table 1. Comparison of existing MCS solvers in terms of the time needed to find the
first MCS

PAR10 Average # Not Solved

Best Single 587.13 98.08 8
SNNAP 127.88 66.75 1

VBS 11.58 11.58 0

All of these features can be computed from the problem specification and
can therefore be computed within a few seconds. Above, by the Variable-Clause
Graph, we refer to a bipartite graph where each node represents either a variable
or a clause, with an edge existing between the two if that variable appears in
the clause.

2.3 Numerical Results

Our first set of experiments focus on continuing the research proposed in [14],
which targeted to find a single MCS as quickly as possible. Utilizing the same
265 instances and 15 solvers, we present the results in Table 1. The table shows
the results after 10-fold cross validation in terms of average runtime, number
of instances not solved, and the penalized average runtime. Here, the PAR10
means that if the instance was not solved within the allotted 1,800 seconds, it
was recorded as having taken 18,000 seconds to complete. From these results we
observe the best solver, a parameterization of efd, can on average find a solution
in under 100 seconds. A portfolio approach like SNNAP can drop this average
by nearly 35 seconds, and solve an additional 2% more instances. Yet the virtual
best solver (VBS), the one which for every instance knows beforehand the fastest
solver, can do significantly better still.

These results with finding a single MCS serve to confirm the findings presented
in [14], showing how crucial portfolios are to this area. In practice, however, it is
usually not enough to just find a single MCS. In order to find Minimal Unsatisfi-
able Subsets, for example, it is instead necessary to enumerate over all MCSs.

For this next round of experiments, we gather a collection of 180 SAT in-
stances, which were randomly split into 100 training and 80 testing. These
instances have been developed over the last two decades expressly for the enu-
meration task. Whereas when computing a single MCS one only needs a handful
of calls to a SAT solver, enumeration requires millions of such calls. Thus the
need for the two datasets to comprise different instances. Almost half of the
instances come from DaimlerChrysler’s Mercedes benchmarks [20], an exten-
sively studied benchmark suite [12] from an automotive product configuration
problem. The remaining instances are an assortment of small sized industrial
instances, like the FVP-UNSAT/SSCALAR and UCLID hardware verification
instances, CMDADD and DIMACS set of benchmarks. On these instances we
ran the five MCS solvers contained in the MCSls tool [14]: bfd (Basic Fast-
Diag), bls (Basic Linear Search), cld (Clause D based), efd (Enhanced FastDiag),
and els (Enhanced Linear Search). The bls algorithm has already been pre-
sented in the introduction. The bfd algorithm computes MCSs by means of a

A Portfolio Approach to Enumerating Minimal Correction Subsets 373

Table 2. Comparison of the 5 MCS finding solvers over 80 test instances. The table
presents the total number of MCSs found over the test set in millions (M), and the
average number of MCSs per instance in thousands (K).

bfd bls cld efd els SNNAP VBS

Sum (M) 5.04 6.64 6.05 5.01 6.88 8.42 8.75
Average (K) 63.02 83.02 75.68 62.62 86.03 105.31 109.43

divide-and-conquer strategy. The cld algorithm, makes use of a clause (D clause)
to lead the extension of an initial set of satisfied clauses. The two algorithms els
and efd represent the enhanced version of bls and bfd respectively, that extend
the basic algorithms with the new techniques presented in [14]. One reason for
this choice of solvers, is that they have been previously proven to be among
the best performing. Moreover, they are the only ones able to deal with Partial
MaxSAT instances, which is crucial to the subsequent section of our experiments
that need to restart solvers.

Each of the solvers were run uninterrupted for 1 hour and the number of
found MCSs was recorded. Table 2 summarizes the results. What we observe is
that although els is empirically the best, there is not much difference between
the solvers. However, if we introduce SNNAP to predict which of the solvers to
run, the performance improves dramatically. Furthermore, the table also presents
the absolute best possible performance for an oracle solver that for each instance
knows beforehand which of the 5 solvers will return the most number of MCSs.
This virtual best solver (VBS) is the upper bound for any conceivable portfolio
approach which relies solely on running a single solver for the allotted hour.
What is encouraging is that SNNAP is able to almost match this performance.

3 A Dynamic Approach

Although algorithm selection can be shown to significantly improve the state-of-
the-art in MCS solvers, it may not be the most effective approach to the problem
at hand. At a first glance, it may seem advantageous to run a solver as long as
possible, uninterrupted. However, as was shown with other NP-complete solvers
like SAT, runtime can oftentimes be very heavy tailed [6]. This means that usually,
by setting or trying just the right variables, commonly referred to as backdoor
variables, the solver can finish very quickly. Yet, if something goes wrong, then the
runtime can become essentially infinite. Therefore, it was found that if a solver
is seemingly taking too long to solve an instance, it maybe beneficial to simply
restart the search. Even though when looking for MCSs we are not interested in
optimizing for time, the same concept of restarts can be exploited.

Furthermore, it can be assumed that solvers typically find many of the MCSs
very quickly, with the rate of return decreasing as time progresses. Thus, as soon
as a solver has found additional sets, the structure of the problem may change
significantly enough that an alternate solving strategy may be preferred. Thus,
instead of running the same solver for an hour, we propose to switch among solvers

374 Y. Malitsky et al.

every 10 minutes. This particular shortened timeout was chosen empirically after
observing that the available solvers were sure to find new MCSs in this time.

To avoid repeatedly finding the same MCSs, after each run the current in-
stance is expanded with blocking clauses. It is important to point out here, that
the restarts we employ here do not carry any information other than the previ-
ously found MCSs. Yet this setup allows us to investigate a portfolio approach
that takes advantage of an ability to switch solvers multiple times.

Note that even though we are switching between solvers, the proposed ap-
proach is different from algorithm scheduling [10,16]. In these existing approaches,
a schedule is determined which details the order in which solvers should run and
for what duration. This schedule, however, is made once and then adhered to
for the whole computation. What we propose is instead to make the decisions
iteratively, once we have observed exactly how the problem has changed after
the previous computations.

For the underlying approach to choose the next solver, we utilize SNNAP.
However, we cannot simply train on performance of solvers on the original train-
ing instances. The portfolio will be faced with instances that are significantly al-
tered through the addition of blocking clauses. We therefore expand the training
set to include 300 additional instances. This dataset is formulated by registering
all the MCSs found after an hour by any solver for a particular instance, and
then creating instances that have a random subset of ∼ 25%, ∼ 50%, and ∼ 75%
of these MCSs. We say approximately, because to improve the coverage of pos-
sible instances, we allow for deviations of ±5%. This, therefore, better simulates
the type of instances a portfolio would encounter during its operation.

4 Evaluation

To observe the effects of restarting a solver every 10 minutes, Table 3 presents
each solver with a “ r” suffix symbolizing a restart. We can see that although
most solvers, like els, do not benefit from this change, others like cld, improve
dramatically. Therefore we see that for just these pure solvers it is best to just
leave them running. In the case of cld, however, the solver is known to occasion-
ally return poor results, so we posit that restarts help stabilize its performance.

Subsequently, we experiment with the effects of just switching among solvers
randomly after every 10 minutes. Table 3 presents the average over 3 seeds under
Rand, and as expected, this does not lead to very good performance.

Finally we investigate a portfolio approach that takes advantage of an ability
to switch solvers every 10 minutes. As we can determine from the table, this
portfolio approach performs significantly better than any of the existing solvers,
regular and restarted. Perhaps even more importantly, this portfolio also out-
performs the upper bound of a portfolio that only runs solvers uninterrupted
with a 1 hour timeout.

Interestingly for many of the test instances, the new portfolio solver switched
between solvers after the first 10min. Subsequently, the same solver kept being
used for each subsequent step. This suggests that even though we are able to

A Portfolio Approach to Enumerating Minimal Correction Subsets 375

Table 3. Comparison of techniques that restart the solving process every 10 minutes.
VBS-5 is the oracle solver which runs one of the 5 solvers for a full hour. Rand is
the average of 3 seeds where after each 10 minute execution, a new solver is picked
uniformly at random. Each of the 5 solvers were also run “* r”, where after 10 minutes
it would be halted, and then restarted on an instance that had the previously found
MCSs added. Portfolio is the solver that intelligently chooses the next solver to run
and VBS is the approximated upper bound of a portfolio approach where solvers are
restarted every 10 minutes.

VBS-5 Rand bfd r bls r cld r efd r els r Portfolio VBS

Sum (M) 8.75 5.8 4.67 6.16 7.98 4.56 6.31 9.24 10.56
Average (K) 109.43 72.47 59.05 76.98 99.74 57.75 78.82 115.44 132.06

outperform the VBS of an uninterrupted solver, future research should investi-
gate automatically varying the timeout of each run.

5 Conclusion

Enumerating all of the Minimal Conflict Subsets (MCS) is a prevalent prob-
lem in practice with many applications. In this paper we demonstrate that the
state-of-the-art in this field can be greatly improved through the application of
algorithm selection. In particular, we demonstrate a collection of features that
can be used to distinguish between problem instances and suggest which is the
best solver to apply. Although this approach led to a significant boost in the
number of MCSs that could be found after running a solver uninterrupted with
a 1 hour timeout, we also presented how these results can be further improved.
Specifically, after running for a short time, the new approach would add the ob-
served MCSs as blocking constraints, analyze the structure of the new instance,
and then choose the most appropriate solver to run for the next short burst.
The results of this methodology outperformed even the upper bound that could
have been achieved by an optimal portfolio which left its solvers running un-
interrupted. It is important to note that these improvements were there even
with the overhead of repeatedly reading and writing the instance to file for each
restart. A future algorithm that performs the proposed approach internally is
likely to improve the results even further.

Acknowledgements. This work is partly supported by Science Foundation
Ireland (SFI) Grant 10/IN.1/I3032, FP7 FET-Open Grant 284715, SFI PI grant
BEACON (09/IN.1/I2618), FCT grants ATTEST (CMU-PT/ELE/0009/2009),
POLARIS (PTDC/EIA-CCO/123051/2010), and by INESC-ID multiannual
funding from the PIDDAC program funds. The Insight Centre for Data An-
alytics is supported by SFI Grant SFI/12/RC/2289.

References

1. Bailey, J., Stuckey, P.J.: Discovery of minimal unsatisfiable subsets of constraints
using hitting set dualization. In: Practical Aspects of Declarative Languages,
pp. 174–186 (2005)

376 Y. Malitsky et al.

2. Ben-Eliyahu, R., Dechter, R.: On computing minimal models. Ann. Math. Artif.
Intell. 18(1), 3–27 (1996)

3. Birnbaum, E., Lozinskii, E.L.: Consistent subsets of inconsistent systems: structure
and behaviour. J. Exp. Theor. Artif. Intell. 15(1), 25–46 (2003)

4. Collautti, M., Malitsky, Y., Mehta, D., O’Sullivan, B.: Snnap: Solver-based near-
est neighbor for algorithm portfolios. In: Blockeel, H., Kersting, K., Nijssen,
S., Železný, F. (eds.) ECML PKDD 2013, Part III. LNCS (LNAI), vol. 8190,
pp. 435–450. Springer, Heidelberg (2013)

5. Felfernig, A., Schubert, M., Zehentner, C.: An efficient diagnosis algorithm for
inconsistent constraint sets. AI EDAM 26(1), 53–62 (2012)

6. Gomes, C., Selman, B., Kautz, H.: Heavy-tailed phenomena in satisfiability and
constraint satisfaction problems. J. of Automated Reasoning, 67–100 (2000)

7. Hurley, B., O’Sullivan, B.: Adaptation in a CBR-based solver portfolio for the
satisfiability problem. In: Agudo, B.D., Watson, I. (eds.) ICCBR 2012. LNCS,
vol. 7466, pp. 152–166. Springer, Heidelberg (2012)

8. Jampel, M., Freuder, E.C., Maher, M.J. (eds.): Over-Constrained Systems.
Springer (1996)

9. Junker, U.: QUICKXPLAIN: Preferred explanations and relaxations for over-
constrained problems. In: AAAI, pp. 167–172 (2004)

10. Kadioglu, S., Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Al-
gorithm selection and scheduling. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876,
pp. 454–469. Springer, Heidelberg (2011)

11. Kotthoff, L., Gent, I., Miguel, I.P.: An evaluation of machine learning in algorithm
selection for search problems. AI Communications (2012)

12. Liffiton, M., Sakallah, K.: Algorithms for computing minimal unsatisfiable subsets
of constraints. J. Autom. Reasoning 40(1), 1–33 (2008)

13. Malitsky, Y., Sellmann, M.: Instance-specific algorithm configuration as a method
for non-model-based portfolio generation. In: Beldiceanu, N., Jussien, N., Pinson,
É. (eds.) CPAIOR 2012. LNCS, vol. 7298, pp. 244–259. Springer, Heidelberg (2012)

14. Marques-Silva, J., Heras, F., Janota, M., Previti, A., Belov, A.: On computing
minimal correction subsets. In: IJCAI (2013)

15. O’Callaghan, B., O’Sullivan, B., Freuder, E.C.: Generating corrective explanations
for interactive constraint satisfaction. In: Principles and Practice of Constraint
Programming, pp. 445–459 (2005)

16. O’Mahony, E., Hebrard, E., Holland, A., Nugent, C., O’Sullivan, B.: Using case-
based reasoning in an algorithm portfolio for constraint solving. In: AICS (2008)

17. Pulina, L., Tacchella, A.: A self-adaptive multi-engine solver for quantified boolean
formulas. Constraints 14(1), 80–116 (2009)

18. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95
(1987)

19. Silverthorn, B., Miikkulainen, R.: Latent class models for algorithm portfolio meth-
ods. AAAI (2010)

20. Sinz, C., Kaiser, A., Küchlin, W.: Formal methods for the validation of automotive
product configuration data. AI EDAM 17(1), 75–97 (2003)

21. Soh, T., Inoue, K.: Identifying necessary reactions in metabolic pathways by min-
imal model generation. In: ECAI, pp. 277–282 (2010)

22. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Satzilla: Portfolio-based algo-
rithm selection for SAT. CoRR (2011)

23. Xu, L., Hutter, F., Shen, J., Hoos, H.H., Leyton-Brown, K.: Satzilla2012: Improved
algorithm selection based on cost-sensitive classification models. SAT Competition
(2012)

Parallel Depth-Bounded Discrepancy Search

Thierry Moisan, Claude-Guy Quimper, and Jonathan Gaudreault

FORAC Research Consortium, Université Laval, Québec, Canada
Thierry.Moisan.1@ulaval.ca,

{Claude-Guy.Quimper,Jonathan.Gaudreault}@ift.ulaval.ca

Abstract. Search strategies such as Limited Discrepancy Search (LDS)
and Depth-bounded Discrepancy Search (DDS) find solutions faster than
a standard Depth-First Search (DFS) when provided with good value-
selection heuristics. We propose a parallelization of DDS: Parallel Depth-
bounded Discrepancy Search (PDDS). This parallel search strategy has
the property to visit the nodes of the search tree in the same order as the
centralized version of the algorithm. The algorithm creates an intrinsic
load-balancing: pruning a branch of the search tree equally affects each
worker’s workload. This algorithm is based on the implicit assignment of
leaves to workers which allows the workers to operate without communi-
cation during the search. We present a theoretical analysis of DDS and
PDDS. We show that PDDS scales to multiple thousands of workers. We
experiment on a massively parallel supercomputer to solve an industrial
problem and improve over the best known solution.

1 Introduction

Parallelization has been of growing interest in recent years, including in the
optimization community. de la Banda et al. [1] consider parallelization as one of
the three main challenges in the future of optimization technologies. Search is
at the core of optimization and constraint solvers. If one wants to parallelize a
solver, it is natural to consider parallelizing search strategies.

Parallelization of constraint programming solver is a hard problem mainly due
to communication between workers. When the number of workers is large, the
time each worker spends communicating with the other workers often exceeds
the time spent at solving the original problem.

We have recently seen good parallel algorithms without communication that
are based on centralized algorithms. Régin et al. [2] split the problem into multi-
ple subproblems. These subproblems are then given to workers that solve them
using classic centralized algorithm.

Parallel Limited Discrepancy-based Search (PLDS1) [3] is based on Limited
Discrepancy-based Search (LDS) [4]. LDS has a huge advantage over traditional
search strategies such as Depth-First Search (DFS) when a good value ordering
heuristic is used. The PLDS parallel version keeps this advantage by preserving

1 In the original article this algorithm was named PDS. In this paper, we name it
PLDS for clarity concerns.

H. Simonis (Ed.): CPAIOR 2014, LNCS 8451, pp. 377–393, 2014.
c© Springer International Publishing Switzerland 2014

378 T. Moisan, C.-G. Quimper, and J. Gaudreault

the node visit ordering of the centralized algorithm. Each leaf of the search tree
is implicitly assigned to a worker. Every worker branches in the search tree while
making sure there is at least one leaf in the subtree of the current node that is
assigned to it. An important property of this approach is that, upon pruning the
search tree, workload balance difference can be theoretically bounded. PLDS
scales to thousands of workers.

In this paper, we show that the parallelization mechanism used by PLDS can
also be used to parallelize other search strategies while keeping the same proper-
ties. We parallelize the Depth-bounded Discrepancy Search algorithm (DDS) [5]
to obtain Parallel Depth-bounded Discrepancy Search (PDDS). Our motivation
lies in the observation that in a centralized environment, DDS is generally more
efficient than LDS when it is provided with good value ordering heuristics. We
also show how the same parallelization mechanism can be applied to DFS which
becomes Parallel Depth-First Search (PDFS). The theoretical analysis of PDFS
will simplify the analysis of PDDS.

The rest of this paper is divided as follows. Section 2 describes the DDS
algorithm and reviews related parallel computing work. Section 3 details the
PDFS algorithm while section 4 details the PDDS algorithm. Section 5 presents
a theoretical analysis of the algorithms. Finally, we experiment with an industrial
problem coming from the wood-products industry in Section 6.

2 Literature Review

We review the related works by presenting different parallelization approaches.
Then, we describe the original DDS algorithm that we parallelize in Section 4.

2.1 Shared Memory

It is possible to parallelize a search strategy by sharing, through a shared memory
space, a list of open nodes, i.e. the visited nodes for which there are still values
to branch on. Each worker can select an open node and process it until no more
work can be done from that point. Then, the worker comes back to the pool of
open nodes to obtain more work.

Perron [6] proposes a framework based on this idea. Good performances are
often reported, as in [7] where a parallel Best First Search is implemented and
evaluated up to 64 processors. However, this approach cannot easily scale up to
thousands of processors due to communication overload.

2.2 Portfolios

Portfolio-based methods use a set of different solvers, parameters and/or search
strategies. Workers are using different configurations to solve the exact same
problem in parallel, increasing the probability of quickly finding a good solution.
The approach can be improved by making use of randomized restarts [8] and
nogoods learning [9].

Parallel Depth-Bounded Discrepancy Search 379

Finding good alternative configurations for a specific problem can be a difficult
problem by itself. Xu et al. [10] use machine learning to find appropriate SAT
solver configurations to a new problem based on a set of learned examples.

2.3 Search Space Splitting and Work Stealing

Space splitting divides the search tree into small subtrees that are assigned to
the workers. As it is unlikely that those subtrees are of equal size, a work stealing
mechanism (see [11,12]) allows busy workers to share their workload with idle
workers and therefore evenly balance the workload among all workers. In [13],
Menouer et al. parallelize the constraint programming solver OR-Tools using a
framework based on work-stealing.

Communication may cause issues when there are too many workers. At some
point, the communication monopolizes the majority of the computing power.
Reducing the amount of communication speeds up the search. For example, Xie
and Davenport [14] allocate specific workers to coordinate the tasks, allowing
more processors to be used before performance starts to decline.

Yun and Epstein [15] combined the use of portfolios with work-stealing. They
start by launching a portfolio phase by making a choice of solver configuration.
Then the search space is divided and work is distributed among the workers.
During the search, information about the success (or lack thereof) is transmitted
from the workers to the manager inducing a change in the future choices among
the portfolio of solvers.

Recent work showed how to implicitly balance the workload while minimizing
the communication during the search. Régin et al. [2] split the problem into a
large number of subtrees. Some are quicker to explore than others, as pruning
occurring during the search does not equally affect each part of the search tree.
However, since a large number of subtrees is assigned to each worker, their
workload tend to balance.

The exclusion of all communication during the search is also the solution we
advocate in our previous work [3] where we introduced PLDS, a parallel version
of Limited Discrepancy Search (LDS) [4]. The parallelization is done by implicitly
assigning leaves of the search tree to workers. We showed how to test whether a
worker has any work assigned to it in the subtree under the current node. This
parallel algorithm has the property to keep the same node visit ordering as the
sequential version. This is the approach we will generalize in this paper.

2.4 Depth-Bounded Discrepancy Search

Harvey and Ginsberg [4] introduce the concept of discrepancy. Each time a solver
needs to assign a value to a variable, a value-ordering heuristic is used to select
the value that will most likely lead to a solution. As a convention, when a binary
search tree is represented graphically, the left branch under a node corresponds
to the recommendation of the heuristic while the right one does not. Figure 1
shows such binary search tree. Therefore, each time the solver branches to the
right in this tree, it goes against the heuristic recommendation. Such branching

380 T. Moisan, C.-G. Quimper, and J. Gaudreault

0 1 1 2 1 2 2 3 2 3 3 4

0 1 1 2 2 3

0 1 2

0

Fig. 1. A binary search tree with the number of discrepancies of each node

is called a discrepancy. Leaves on Figure 1 are labeled with the total number
of discrepancies one must follow to go from the root of the tree to that leaf.
Harvey and Ginsberg show that, when using a good value ordering heuristic, the
expected quality of a leaf decreases as the number of discrepancies increases.

Limited discrepancy search (LDS) [4] is the first search strategy based on
discrepancies. It visits the leaves of the tree in order of discrepancies. Improved
Limited Discrepancy Search (ILDS) [16] is an improvement over LDS since it
visits each leaf at most once (the original LDS has redundancy). There are
other search strategies that take advantage of discrepancies such as Discrepancy-
Bounded Depth First Search (DBDFS) [17] and Limited Discrepancy Beam
Search (BULB) [18].

Depth-bounded Discrepancy Search (DDS) [5] makes the following assump-
tion: it is more probable that the value ordering heuristic makes a mistake at the
top of the search tree than at the bottom. A value-ordering heuristic can make
better decisions lower in the search tree since it has more information about the
problem. Hence, it is more likely that the heuristic makes a mistake at top the
of the tree. Based on this assumption, if the search has to reconsider the choices
it made, it better reconsider choices made at the top of the search tree rather
than at the bottom.

Given a search tree of depth n, DDS performs n + 1 iterations. At iteration
k = 0, DDS visits the leftmost leaf of the tree. At iteration k, for 1 ≤ k ≤ n,
DDS visits all the branches in the search tree above level k − 1. At level k,
the algorithm visits all value assignments that do not respect the value ordering
heuristic. Beyond level k, DDS visits all value assignments that respect the value
ordering heuristic and therefore have no discrepancies. For example, for k = 2,
DDS visits all nodes down to level 1, branches once on values that do not respect
the heuristic, and then always branches on the leftmost child until it reaches a
leaf.

Algorithms 1 and 2 are a generalization of the original DDS algorithm [5] for
n-ary variables.

In the following description, we suppose that the variable ordering heuristic is
deterministic and only depends on the states of the domains. Hence, under the
same conditions, the algorithm will always make the same choices (otherwise,
the variable ordering heuristics could cause the search strategy to visit multiple

Parallel Depth-Bounded Discrepancy Search 381

Algorithm 1. DDS([dom(X1), . . . , dom(Xn)])

for k = 0..n do
s ← DDS-Probe([dom(X1), . . . ,dom(Xn)], k)
if s �= ∅ then return s

return ∅

Algorithm 2. DDS-Probe([dom(X1), . . . , dom(Xn)], k)

Candidates ← {Xi | |dom(Xi)| > 1}
if Candidates = ∅ then

if dom(X1), . . . ,dom(Xn) satisfies all the constraints then
return dom(X1), . . . ,dom(Xn)

return ∅
Choose a variable Xi ∈ Candidates
Let v0, . . . , v| dom(Xi)|−1 be the values in dom(Xi) sorted by the heuristic.
if k = 1 then d ← 1 else d ← 0

if k = 0 then d ← 0 else d ← |dom(xi)| − 1

for d = d..d do
s ← DDS-Probe([dom(X1), . . . ,dom(Xi−1), {vd},

dom(Xi+1), . . . ,dom(Xn)],max(0, k − 1))
if s �= ∅ then return s

return ∅

times some leaves and ignore other leaves). This supposition was also made in
[4] and [5].

3 PDFS Algorithm

PDFS will simplify the theoretical analysis of DDS and PDDS for the following
reason. At iteration k, DDS (PDDS) performs a DFS (PDFS) over the first k−1
variables of the problem.

To our knowledge, it is the first time that DFS and DDS are parallelized this
way.

We parallelize DFS over ρ workers labeled from 0 to ρ − 1. Let s be a leaf
of the search tree and v(s) its order of visit in DFS, i.e. the first leaf visited by
DFS has a visit order of 0, the second leaf visited by DFS has a visit order of
1, and so on. We implicitly assign a leaf s to worker v(s)mod ρ. Each worker
is aware of its label and the total number of workers ρ. A worker w performs a
standard DFS but only visits the nodes that have at least one leaf, among their
descendants, whose assigned worker is w. Each worker needs to decide whether
a node leads to a leaf of interest. This is done as follows.

Let a be the current node and left(a) its left child. The PDFS search keeps
track of the worker l(a) assigned to the leftmost leaf, in the subtree rooted at

382 T. Moisan, C.-G. Quimper, and J. Gaudreault

a, to be visited in the current iteration of the centralized search strategy. In
the case of PDFS, there is only one iteration but PDDS is run over multiple
iterations. We necessarily have l(a) = l(left(a)) since both subtrees have the
same leftmost leaf. The function CDFS takes as input a node and returns the
number of its descendants that are leaves to be visited in the current iteration
of the centralized search strategy.

CDFS([X1, . . . , Xn]) =
n∏

i=1

| dom(Xi)| (1)

If all variable domains have cardinality δ, Equation 1 simplifies to Equation 2.

CDFS([X1, . . . , Xn]) = δn (2)

The list of workers that needs to visit left(a) is given by l(a), (l(a)+ 1)mod ρ,
(l(a) + 2)mod ρ, . . . , (l(a) + CDFS(left(a)) − 1)mod ρ. Consequently, the worker
w only needs to visit the node left(a) if it belongs to this list. This can be
tested with the inequality (w − l(left(a)))mod ρ < CDFS(left(a)). One can apply
the same reasoning on the right child right(a) knowing that that l(right(a)) =
(l(left(a)) + CDFS(left(a)))mod ρ.

Algorithm 3. PDFS([dom(X1), . . . , dom(Xn)], l)

Candidates ← {Xi | |dom(Xi)| > 1}
Choose a variable Xi ∈ Candidates
z ← CDFS(Candidates \ {Xi})
for vd ∈ dom(Xi) do

if (currentProcessor − l)mod ρ < z then
s ← PDFS([dom(X1), . . . ,dom(Xi−1), {vd},dom(Xi+1) . . . ,dom(Xn)], l)
if s �= ∅ then return s

l ← (l + z)mod ρ

return ∅

Algorithm 3 describes PDFS. The first call to PDFS is done with the original
variable domains and l = 0.

4 PDDS Algorithm

We show in this section how the same mechanism can be applied to DDS which
becomes a Parallel Depth-bounded Discrepancy Search (PDDS). As in PLDS
and PDFS, parallelization is done by assigning the leaves of the search tree to
each worker in a round-robin fashion.

Algorithms 4 and 5 show how PDDS operates. Algorithm 4 visits all the leaves
whose discrepancies appear within the first k variables. Algorithm 5 launches an
iteration to visit all those leaves following a DFS search.

Parallel Depth-Bounded Discrepancy Search 383

Algorithm 4. PDDS([dom(X1), . . . , dom(Xn)])

l ← 0
for k = 0..n do

Candidates ← {Xi | |dom(Xi)| > 1}
z ← CDDS(Candidates, k)
if (currentProcessor − l)mod ρ < z then

s ← PDDS-Probe([dom(X1), . . . ,dom(Xn)], k, l)
if s �= ∅ then return s

l ← (l + z)mod ρ

return ∅

As for PDFS, the algorithm requires a function CDDS that counts the num-
ber of leaves under the current node that should be visited during the current
iteration of DDS. The next subsection shows how to implement the function
CDDS.

Algorithm 5. PDDS-Probe([dom(X1), . . . , dom(Xn)], k, l)

Candidates ← {Xi | |dom(Xi)| > 1}
if Candidates = ∅ then

if dom(X1), . . . ,dom(Xn) satisfies all the constraints then
return dom(X1), . . . ,dom(Xn)

return ∅
Choose a variable Xi ∈ Candidates
Let v0, . . . , v| dom(Xi)|−1 be the values in dom(Xi) sorted by the heuristic.
if k = 1 then d ← 1 else d ← 0

if k = 0 then d ← 0 else d ← |dom(Xi)| − 1

for d = d..d do
z ← CDDS(Candidates \ {Xi},max(0, k − 1))
if (currentProcessor − l)mod ρ < z then

s ← PDDS-Probe([dom(X1), . . . ,dom(Xi−1), {vd},
dom(Xi+1), . . . ,dom(Xn)],max(0, k − 1), l)

if s �= ∅ then return s

l ← (l + z)mod ρ

return ∅

4.1 Counting Functions

We provide two functions that count the number of leaves in a subtree that have
to be visited in the current iteration of the DDS. Both functions take as input
the variables to be explored in this subtree and the number of levels k where

384 T. Moisan, C.-G. Quimper, and J. Gaudreault

discrepancies are allowed. Function 3 assumes that all variable domains have
cardinality δ. Function 4 assumes that variables are selected in a static ordering.
Without these assumptions, one would need to integrate the knowledge of the
branching heuristic into the computation of the number of leaves. However, it
is always possible to do a workaround and to extend the domains of all vari-
ables with dummy values to match the cardinality of the largest domain. The
dummy values can be filtered out causing a slight workload imbalance among
the processors as it will be discussed in Section 5.6.

If all variable domains have cardinality δ, then one can count the number of
leaves as follows. At iteration k, DDS performs a DFS over a tree of height k−1.
For each leaf of this tree, DDS explores the δ − 1 solutions that cause one or
more discrepancies to occur.

CDDS([X1, . . . , Xn], k) =

{
1 if k = 0

δk−1(δ − 1) if k > 0
(3)

Interestingly, when all domains have the same size, the number of leaves de-
pends only on the iteration number k and the cardinality of the domains δ but
not on the number of variables.

We can also suppose a static variable ordering X1, X2, . . . , Xn which is used
in every branch of the search. Under this assumption, variable domains can have
different cardinalities.

CDDS([X1, . . . , Xn], k) =

⎧⎪⎨⎪⎩
1 if k = 0

| dom(X1)| − 1 if k = 1

(| dom(Xk)| − 1)
∏k−1

i=1 | dom(Xi)| if k > 1

(4)

If the variables do not have the same domain size and their ordering is not
static, then the number of leaves in the search tree visited at iteration k depends
on the variable ordering. The function CDDS should be redefined according to
the branching heuristic.

5 Analysis

This section provides an analysis of DFS, DDS, PDFS and PDDS. To compare
these search strategies, we count the number of times each strategy visits a node
while exploring an entire search tree of n binary variables.

5.1 Analysis of DFS

In a DFS, each node of the search tree is visited once. Since there are 2n+1 − 1
nodes in a binary tree of height n, we define DFS(n) = 2n+1−1 to be the number
of node visits in a complete DFS.

Parallel Depth-Bounded Discrepancy Search 385

5.2 Analysis of DDS

Let n be the number of binary variables in a search tree and k the level of the
last discrepancy for k ≤ n. If the level of the last discrepancy is 0, then the
search goes directly to the leftmost leaf of the subtree. Hence, the algorithm
visits one node per variable left to instantiate, which is equal to n plus the root
node which gives n + 1. Otherwise, the search does a DFS over the k − 1 first
variables. For each of the 2k−1 leaves of this DFS, n − k + 1 nodes are visited
down to the bottom of the search tree.

DDS(n, k) =

{
n+ 1 if k = 0

DFS(k − 1) + 2k−1(n− k + 1) otherwise

=

{
n+ 1 if k = 0

2k − 1 + 2k−1(n− k + 1) otherwise

The total number of node visits done by the DDS search strategy is given by
the sum over all levels k = 0..n in the search tree.

DDS(n) =

n∑
k=0

DDS(n, k) (5)

= 4 · 2n − n− 3 (6)

Surprisingly, this is the same number of node visits as a complete LDS search
(the version proposed in [16]). The number of node visits of LDS was previously
shown in [3].

5.3 Analysis of PDFS

We are interested in the number of node visits done by PDFS. To simplify the
analysis, we suppose that the number of workers is a power of two: ρ = 2x. If
there are more workers than leaves (ρ > 2n), then there are 2n workers that
each visits n+1 nodes from the root to a leaf. The other ρ− 2n workers remain
idle. If there are more leaves than workers (ρ ≤ 2n), then all nodes at level i,
for n − log2 ρ < i ≤ n, are visited by exactly 2n−i workers, i.e. the 2n leaves
are visited by one worker each, the 2n−1 parents of the leaves are visited by 2
workers each, the 2n−2 grand-parents are visited by 4 workers each and so on
until level n− log2 ρ where all nodes are visited by all workers. All nodes in levels
0 to n− log2 ρ are visited by all processors. The function PDFS(ρ, n) returns the
number of node visits of PDFS with ρ workers in a tree of n binary variables.

PDFS(ρ, n) =

{
(n+ 1)2n if 2n < ρ

ρ ·DFS(n− log2 ρ) +
∑n

i=n−log2 ρ+1 2
i2n−i otherwise

(7)

=

{
(n+ 1)2n if 2n < ρ

(2 + log2 ρ)2
n − ρ otherwise

(8)

386 T. Moisan, C.-G. Quimper, and J. Gaudreault

This shows that as the number of workers grows, the computational power
grows linearly while the number of node visits grows logarithmically until we
reach the degenerate case where the workers outnumber the leaves of the tree.

5.4 Analysis of PDDS

An iteration of PDDS can be seen as a PDFS over k − 1 variables. For each of
the 2k−1 leaves in this PDFS, PDDS completes the search by instantiating the
remaining n − k + 1 variables. Let PDDS(ρ, n, k) be the number of node visits
in iteration k of PDDS with ρ workers.

PDDS(ρ, n, k) =

{
n+ 1 if k = 0

PDFS(ρ, k − 1) + 2k−1(n− k + 1) otherwise
(9)

which can be expanded to

PDDS(ρ, n, k) =

⎧⎪⎨⎪⎩
n+ 1 if k = 0

(n+ 1)2k−1 if k > 0 and 2k−1 ≤ ρ

(log2 ρ+ n− k + 3)2k−1 − ρ otherwise

(10)

We can further analyze the behavior of PDDS by summing the node visits over
all the levels k = 0..n.

PDDS(ρ, n) =

n∑
k=0

PDDS(ρ, n, k) (11)

= n+ 1 +

min(log2 ρ,n)∑
k=1

PDDS(ρ, n, k) +

n∑
k=log2 ρ+1

PDDS(ρ, n, k)

(12)

=

{
(4 + log2 ρ)2

n − ρ(n− log2 ρ+ 3) if ρ ≤ 2n

(n+ 1)2n otherwise
(13)

In comparison, as reported in [3], equation (14) shows the number of node visits
done by PLDS when searching a complete binary tree.

PLDS(ρ, n) = 2n + 2n
n∑

i=1

i∑
k=0

1

2i
min(ρ,

(
i

k

)
) (14)

5.5 Speedup Analysis

The speedup is the ratio between the time for a single worker to accomplish
a task over the time required for ρ workers to accomplish the same task. We

Parallel Depth-Bounded Discrepancy Search 387

measure the time in number of node visits while supposing that all nodes have
an equal processing time. A single worker visits PDDS(n, 1) nodes to explore

an entire search tree of n binary variables while ρ workers each visits PDDS(n,ρ)
min(ρ,2n)

nodes to collectively explore the entire search tree. We therefore have a speedup

of min(ρ,2n)PDDS(n,1)
PDDS(n,ρ) . A similar computation applies for PDFS.

0 1000 2000 3000 4000 5000 6000

Number of workers (ρ)

0

200

400

600

800

1000

1200

1400

1600

S
p
e
e
d
u
p
 =

 m
in
(ρ
,2
n
)P
D
D
S
(n
,1
)

P
D
D
S
(n
,ρ
)

n=11 variables

n=15 variables

n=17 variables

n=20 variables

n=30 variables

(a) Speedup of PDDS exploring a complete
binary tree in function of the number of work-
ers

0 1000 2000 3000 4000 5000 6000

Number of workers (ρ)

0

200

400

600

800

1000

1200

1400

1600

S
p
e
e
d
u
p
 =

 m
in
(ρ
,2
n
)P
D
F
S
(n
,1
)

P
D
F
S
(n
,ρ
)

n=11 variables PDFS

n=15 variables PDFS

n=17 variables PDFS

n=20 variables PDFS

n=30 variables PDFS

(b) Speedup of PDFS exploring a complete
binary tree in function of the number of work-
ers

0 20 40 60 80 100

Percentage of search space covered (%)

0

50

100

150

200

250

300

350

400

450

S
p
e
e
d
u
p
 =

 m
in
(ρ
,

k ∑ i
=
0
C
D
D
S
(i
))

k ∑ i
=
0
P
D
D
S
(n
,1
,i
)

k ∑ i
=
0
P
D
D
S
(n
,ρ
,i
)

n=11 variables

n=15 variables

n=17 variables

n=20 variables

n=30 variables

(c) Speedup of PDDS with ρ = 512 in
function of the percentage of search space
covered. Recalls CDDS(k) is the number of
leaves processed at iteration k.

Fig. 2. Theoretical speedup of PDDS and PDFS algorithms

Figure 2a and Figure 2b show the speedup for PDDS and PDFS. For n = 11
variables, the speedup stops growing after 2048 workers. Beyond this point, there
are more processors than leaves in the search tree. Since any additional worker
is an idle worker, the speedup reaches a plateau. The number of variables affects
the performance of PDDS, especially when there are few variables. However, as
the number of variables grows, the effects become negligible.

388 T. Moisan, C.-G. Quimper, and J. Gaudreault

One can see from Figure 2a and Figure 2b that the speedups in function of
n for PDDS and PDFS are almost linear. In fact, while analyzing the functions
PDDS(ρ, n) (Equation 10) and PDFS(ρ, n) (Equation 8), one sees that the most
dominant term, 2n, is multiplied by log2 ρ. This shows that the number of nodes
to be visited logarithmically increases with the number of workers. However, the
computation power increases linearly with ρ. It results in a speedup in Θ(ρ

log2 ρ).

PDDS shows a greater speedup than PDFS when a complete search of the
tree is performed. However, it is uncommon in practice to completely visit a
search tree. Actually, even in a centralized environment we expect DDS to find
a solution sooner than DFS as we better exploit the value ordering heuristic.

Figure 2c shows the speedup obtained when the search is interrupted after
some fraction of the search space has been covered. The speedup increases until
it reaches a peak from where it decreases. The peak is reached at iteration log2 ρ,
when the number of visited leaves reaches the number of workers.

Since there are few leaves visited from iteration 0 to iteration log2 ρ, not
all workers contribute to these iterations. As k grows, more leaves need to be
explored and more workers contribute to these iterations which explains why the
speedup increases. After the peak, there are more leaves to visit than workers.
The decrease in the speedup is due to the increase in the redundancy among the
workers. Indeed, at iteration k, the redundancy occurs when the workers visit
the first k − 1 levels of the tree. The greater k is, the greater is the subtree in
which the redundancy occurs.

5.6 Workload Analysis

Theorem 1. Let n be the number of variables in the problem. If a branch is
pruned from the search tree during the PDDS search, the number of leaves re-
moved from the workload of each worker differs by at most n.

Proof. If a branch of the tree is pruned, all the nodes under this branch are
removed. Each leaf in the removed subtree are associated to a worker w and to
an iteration k in which DDS visits the leaf. The leaves belonging to the same
iteration are assigned to the workers in a round-robin fashion. Therefore, for
the same iteration k, the workload among the workers differs by at most one.
Since there are n+ 1 iterations (k = 0..n), one concludes that the accumulated
workload gap is bounded by n+ 1.

However, the leaf visited at iteration 0 and the leaf visited at iteration 1
cannot be both filtered without filtering the whole tree. If the whole tree is
filtered, then the workload between each worker is the same as there is no work
to do. Otherwise, either iteration 0 or 1 does not create a workload difference of
one. Hence, the maximum workload gap is bounded by n. �

Theorem 1 shows the benefit of implicitly assigning leaves to workers in a
round-robin fashion.

Parallel Depth-Bounded Discrepancy Search 389

6 Experiments with Industrial Data

We carried out experiments with industrial data for an integrated planning and
scheduling problem from the forest-products industry. Planning and schedul-
ing lumber finishing operations is very challenging for the following reason: (1)
the manufacturing operations lead to co-production (we simultaneously produce
many different types of products from a single input) and (2) there are many
alternative operations that can be used to transform a given raw product (each
operation leads to a different basket of products). The result is that each op-
eration contributes to partially fulfill many orders at the same time and each
order can be fulfilled by many operations. The lumber finishing problem is fully
described in [19] which provides a good heuristic to solve this problem. This
heuristic inspired a search procedure (variable/value selection heuristics) [20]
that allowed a constraint programming model to outperform standard mathe-
matical programming. In [3], DFS, LDS and PLDS were compared using indus-
trial data. LDS outperformed DFS, and PLDS allowed an impressive speedup
and and solution quality that were never obtained before.

Using the same datasets and methodology as in [3], we compare DFS, LDS,
PLDS, DDS, and PDDS. The search only considers integer variables. Once the
values for these variables are known, the remaining continuous variables define a
linear program that can be easily solved to optimality using the simplex method.
Therefore, each time a valid assignment of the integer variables is obtained, we
consider we have reached a leaf in the search tree and a linear program is solved
to evaluate the value of this solution. The linear programs were solved using
CPLEX version 12.5.

We used Colosse, a supercomputer with 7680 cores (dual, quad-core Intel
Nehalem CPUs, 2.8 GHz with 24 GB RAM). Two Canadian lumber companies
involved in the project provided the industrial instances.

Figures 3a to 3c show the objective value (minimizing backorder costs) ac-
cording to computation time (maximum one hour) for 1, 512 and 4096 workers.
DDS and PDDS with one worker showed the same performance. For this reason
we omit the latter in the chart. The same comment applies to LDS (PLDS) and
DFS (PDFS).

As expected, DDS outperformed LDS since we use a specialized value and
variable ordering heuristic adapted to this problem. This shows that the as-
sumption of DDS is true in this case: exploring discrepancies at the top of the
search tree first leads to better solution faster. The centralized DDS even catches
up PLDS running on 512 workers (see Figure 3b).

PDDS using 4096 workers obtains solutions of quality that was never reached
before. The gap between the solutions obtained with PLDS (4096 workers) and
PDDS (4096 workers) is considerable from an industrial point of view. PDDS has
reduced the backorders by a ratio ranging between 68% and 85% when compared
to DDS. Finally, if one needs a solution of a given quality, PDDS finds it with
much less computation time than PLDS and PDFS.

Table 1 reports statistics computed during these experiments. The speedup is
computed as the ratio of the number of leaves visited by multiple workers divided

390 T. Moisan, C.-G. Quimper, and J. Gaudreault

0 500 1000 1500 2000 2500 3000 3500

time (seconds)

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

o
b
je

c
ti

v
e
 v

a
lu

e
1e7

DFS

LDS

DDS

PLDS ρ=512

PLDS ρ=4096

PDDS ρ=512

PDDS ρ=4096

(a) M1 dataset

0 500 1000 1500 2000 2500 3000 3500

time (seconds)

5.0

5.5

6.0

6.5

7.0

7.5

8.0

o
b
je

c
ti

v
e
 v

a
lu

e

1e6

DFS

LDS

DDS

PLDS ρ=512

PLDS ρ=4096

PDDS ρ=512

PDDS ρ=4096

(b) M2 dataset

0 500 1000 1500 2000 2500 3000 3500

time (seconds)

0.5

0.6

0.7

0.8

0.9

1.0

1.1

o
b
je

c
ti

v
e
 v

a
lu

e

1e7

DFS

LDS

DDS

PLDS ρ=512

PLDS ρ=4096

PDDS ρ=512

PDDS ρ=4096

(c) M3 dataset

Fig. 3. Best objective value found depending on time for various datasets

by the number of leaves visited by one worker.2 The true speedup measure based
on wall-clock time is not used since it was not practical from an experimental
point of view. For example, with dataset M1, DDS visits 615 leaves in one hour.
The same leaves are visited in a few seconds with PDDS 1024 workers while
409 workers are idle. With the same dataset, PDDS 1024 workers visits 614885
leaves in 10 minutes which is equivalent to 110 days of work for a centralized
DDS. Experiments with such high difference in task size would not lead to any
significant results.

Even if the whole search tree is not visited, we wanted to measure the dif-
ference of workload between workers, in terms of visited leaves. Let χj be the
number of leaves processed by worker j. Let min(χ) be the minimum value of
χj for every j ∈ 0, 1, . . . , ρ− 1 and max(χ) the maximum. Let χ be the average

2 The super-linear speedup obtained on instance M1 with ρ = 512 workers is explained
by the uneven time required to solve the linear programs associated to each leaf. The
average solving time is greater for the leaves both reached by DDS and PDDS than
for the additional leaves visited by PDDS. Other instances do not show this behavior.

Parallel Depth-Bounded Discrepancy Search 391

Table 1. Statistics of the industrial datasets experiments. The column χ is the average
number of leaves visited by each worker. The column σχ standard deviation of the
number of leaves visited by each worker. The column max(χ)−min(χ) is the maximum
difference of processed leaves between workers.

dataset ρ speedup χ σχ max(χ)−min(χ)

M1 512 517.9 622.04 1.94 12
M1 1024 1001.0 601.21 4.95 24
M1 2048 2008.2 603.06 4.68 24
M1 4096 4087.0 613.66 4.37 24

M2 512 475.0 756.11 2.68 14
M2 1024 945.4 752.41 2.44 14
M2 2048 1886.7 750.82 2.53 17
M2 4096 3732.8 742.72 2.76 18

M3 512 469.0 830.79 11.16 84
M3 1024 926.5 820.67 13.55 90
M3 2048 1844.2 816.75 11.8 85
M3 4096 3695.4 818.3 14.29 113

number of leaves visited by each worker. The standard deviation of the number
of leaves visited by each worker is σχ. This measure shows that processors have
visited roughly the same number of leaves.

7 Conclusion

We proposed a parallelization of DDS that we named Parallel Depth-bounded
Discrepancy Search (PDDS). We theoretically showed that PDDS scales to un-
limited number of workers until there are more workers than leaves in the search
tree, thanks to the fact that there is no communication between the workers.
When only a part of the tree is searched, as it is most common, the instances
with more variables lead to a greater speedup.

We theoretically analyzed the numbers of node visits of DDS and PDDS.
These numbers of node visits are used to analyze the theoretical speedup of
PDDS. We showed that the number node visits of DDS is the same as LDS
when visiting a complete search tree.

Finally we used an industrial problem from the forest-products industry to
experiment with PDDS. We showed that PDDS consistently performs better
than PLDS in our industrial context for which a good heuristic was provided.
From an industrial point of view, the computation time is reduced and the
solution quality is enhanced.

References

1. de la Banda, M.G., Stuckey, P.J., Van Hentenryck, P., Wallace, M.: The future of
optimization technology. Constraints, 1–13 (2013)

2. Régin, J.-C., Rezgui, M., Malapert, A.: Embarrassingly parallel search. In: Schulte,
C. (ed.) CP 2013. LNCS, vol. 8124, pp. 596–610. Springer, Heidelberg (2013)

392 T. Moisan, C.-G. Quimper, and J. Gaudreault

3. Moisan, T., Gaudreault, J., Quimper, C.-G.: Parallel discrepancy-based search. In:
Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 30–46. Springer, Heidelberg (2013)

4. Harvey, W.D., Ginsberg, M.L.: Limited discrepancy search. In: Proceedings of the
Fourteenth International Joint Conference on Artificial Intelligence (IJCAI 1995),
pp. 607–613 (1995)

5. Walsh, T.: Depth-bounded discrepancy search. In: Proceedings of the Fifteenth In-
ternational Joint Conference on Artificial Intelligence (IJCAI 1997), pp. 1388–1393
(1997)

6. Perron, L.: Search procedures and parallelism in constraint programming. In:
Jaffar, J. (ed.) CP 1999. LNCS, vol. 1713, pp. 346–361. Springer, Heidelberg (1999)

7. Vidal, V., Bordeaux, L., Hamadi, Y.: Adaptive k-parallel best-first search: A simple
but efficient algorithm for multi-core domain-independent planning. In: Proceed-
ings of the Third International Symposium on Combinatorial Search, SOCS 2010
(2010)

8. Shylo, O.V., Middelkoop, T., Pardalos, P.M.: Restart strategies in optimization:
Parallel and serial cases. Parallel Computing 37(1), 60–68 (2010)

9. Hamadi, Y., Sais, L.: ManySAT: a parallel SAT solver. Journal on Satisfiability,
Boolean Modeling and Computation 6, 245–262 (2009)

10. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Satzilla: Portfolio-based al-
gorithm selection for sat. Journal of Artificial Intelligence Research (JAIR) 32,
565–606 (2008)

11. Michel, L., See, A., Van Hentenryck, P.: Transparent parallelization of constraint
programming. INFORMS Journal on Computing 21, 363–382 (2009)

12. Chu, G., Schulte, C., Stuckey, P.J.: Confidence-based work stealing in parallel con-
straint programming. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 226–241.
Springer, Heidelberg (2009)

13. Menouer, T., Le Cun, B., Vander-Swalmen, P.: Partitioning methods to parallelize
constraint programming solver using the parallel framework Bobpp. In: Nguyen,
N.T., van Do, T., Thi, H.A. (eds.) ICCSAMA 2013. SCI, vol. 479, pp. 117–127.
Springer, Heidelberg (2013)

14. Xie, F., Davenport, A.: Massively parallel constraint programming for supercom-
puters: Challenges and initial results. In: Lodi, A., Milano, M., Toth, P. (eds.)
CPAIOR 2010. LNCS, vol. 6140, pp. 334–338. Springer, Heidelberg (2010)

15. Yun, X., Epstein, S.L.: A hybrid paradigm for adaptive parallel search. In: Milano,
M. (ed.) CP 2012. LNCS, vol. 7514, pp. 720–734. Springer, Heidelberg (2012)

16. Korf, R.E.: Improved limited discrepancy search. In: Proceedings of the 30th Na-
tional Conference on Artificial Intelligence and the 8th Innovative Applications of
Artificial Intelligence Conference, vol. 1, pp. 286–291 (1996)

17. Beck, J.C., Perron, L.: Discrepancy-bounded depth first search. In: Proceedings of
the Second International Workshop on Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems (CP-AI-OR
2000), pp. 8–10 (2000)

18. Furcy, D., Koenig, S.: Limited discrepancy beam search. In: Proceedings of
the 17th International Joint Conference on Artificial Intelligence (IJCAI 2005),
pp. 125–131 (2005)

Parallel Depth-Bounded Discrepancy Search 393

19. Gaudreault, J., Forget, P., Frayret, J.M., Rousseau, A., Lemieux, S., D’Amours,
S.: Distributed operations planning in the lumber supply chain: Models and co-
ordination. International Journal of Industrial Engineering: Theory, Applications
and Practice 17 (2010)

20. Gaudreault, J., Frayret, J.M., Rousseau, A., D’Amours, S.: Combined planning
and scheduling in a divergent production system with co-production: A case study
in the lumber industry. Computers and Operations Research 38, 1238–1250 (2011)

Self-splitting of Workload in Parallel

Computation

Matteo Fischetti, Michele Monaci, and Domenico Salvagnin

DEI, University of Padova, Via Gradenigo 6/A, 35131 Padova, Italy
{matteo.fischetti,michele.monaci,domenico.salvagnin}@unipd.it

Abstract. Parallel computation requires splitting a job among a set of
processing units called workers. The computation is generally performed
by a set of one or more master workers that split the workload into
chunks and distribute them to a set of slave workers. In this setting,
communication among workers can be problematic and/or time consum-
ing. Tree search algorithms are particularly suited for being applied in a
parallel fashion, as different nodes can be processed by different workers
in parallel. In this paper we propose a simple mechanism to convert a se-
quential tree-search code into a parallel one. In the new paradigm, called
SelfSplit, each worker is able to autonomously determine, without any
communication with the other workers, the job parts it has to process.
Computational results are reported, showing that SelfSplit can achieve
an almost linear speedup for hard Constraint Programming applications,
even when 64 workers are considered.

1 Introduction

Parallel computation requires splitting a job among a set of workers. A commonly
used parallelization paradigm is MapReduce [1]. According to the MapReduce
paradigm, the overall computation is organized in two steps, and performed
by two user-supplied operators, namely, map() and reduce(). The MapReduce
framework is in charge of splitting the input data and dispatching it to an appro-
priate number of map workers, and also of the shuffling and sorting necessary
to distribute the intermediate results to the appropriate reduce workers. The
output of all reduce workers is finally merged. This scheme is very well suited
for applications with a very large input that can be processed in parallel by a
large number of mappers, while producing a manageable number of intermediate
parts to be shuffled. However, the scheme may introduce a large overhead due to
the need of heavy communication/synchronization between the map and reduce
phases.

A different approach is based on work stealing [2,3,4]. The workload is initially
distributed to the available workers. If the splitting turns out to be unbalanced,
the workers that have already finished their processing steal part of the work
from the busy ones. The process is periodically repeated in order to achieve a
proper load balancing. Needless to say, this approach can require a significant
amount of communication and synchronization among the workers.

H. Simonis (Ed.): CPAIOR 2014, LNCS 8451, pp. 394–404, 2014.
c© Springer International Publishing Switzerland 2014

Self-splitting of Workload in Parallel Computation 395

Tree search algorithms are particularly suited for being applied in a parallel
fashion, as different nodes can be processed by different workers in parallel.
However, traditional schemes can require an elaborate load balancing strategy, in
which the set of active nodes is periodically distributed among the workers [5,6,7],
in a work stealing fashion. Depending on the implementation, this may yield
a deterministic or a nondeterministic algorithm, with the deterministic option
being in general less efficient because of synchronization overhead. In any case, a
non-negligible amount of communication and synchronization is needed among
the workers, with negative effects on scalability [8,9].

Recently, strategies that try to overcome the traditional drawbacks of the
work stealing approach within enumeration algorithms have been proposed. In
particular, in [10] a master problem enumerates the partial solutions associated
with a subset of the variables of the problem to solve, each of which will be later
processed by a worker; the number of variables to consider is chosen in such a
way to have significantly more subproblems than workers. All subproblems are
put into a queue and distributed to workers as needed (usually, a subproblem is
assigned to a given worker as soon as the worker is idle). In [11], a parallelization
strategy for LDS [12] is presented, in which the leaves of the complete LDS tree
are deterministically assigned to the workers, and each worker processes a subtree
only if it contains a leaf assigned to it. These strategies share some similarities
with our approach, although some important differences remain.

In the present paper we show how to modify a given deterministic (sequential)
tree-search algorithm to let it run on a set of workers. The main features of the
approach, that we call SelfSplit, are that

1. each worker works on the whole input data and is able to autonomously
decide the parts it has to process;

2. almost no communication between the workers is required;

3. the resulting algorithm can be implemented to be deterministic;

4. in most cases, the modification only requires a few lines of codes.

The above features make SelfSplit very well suited for those applications
in which encoding the input and the output of the problem requires a reason-
ably small amount of data (i.e., it can be handled efficiently by a single worker),
whereas the execution of the job can produce a very large number of time-
consuming job parts. This is indeed the case when using an enumerative method
to solve an NP-hard problem. As such our method is well suited for, but not lim-
ited to, High Performance Computing (HPC) applications including Constraint
Programming (CP) and Mixed Integer Programming (MIP), whereas approaches
based on the MapReduce paradigm are more suited for Big Data applications.

The outline of the paper is as follows. Section 2 describes the basic self-
splitting idea for tree search algorithms, along with possible variants aimed at
improving load balancing, while Section 3 describes possible implementation
strategies. Section 4 reports computational experiments of the application of
the above technique within a CP solver. Finally, in Section 5 we draw some
conclusions and outline future research directions.

396 M. Fischetti, M. Monaci, and D. Salvagnin

2 SelfSplit Paradigm

SelfSplit addresses the parallelization of a given deterministic algorithm, called
the original algorithm in what follows, that solves a given problem by breaking it
into subproblems called nodes. In this paper we will only deal with original algo-
rithms of enumeration type (branch-and-bound or alike), but other applications
of SelfSplit are possible.

2.1 The Idea

Figure 1 illustrates our self-splitting method to parallelize an enumerative orig-
inal algorithm.

a) Each worker reads the original input data and receives an additional input
pair (k,K), where K is the total number of workers and k ∈ {1, · · · ,K}
identifies the current worker. The input is assumed to be of manageable size,
so no parallelization is needed at this stage.

b) The same deterministic computation is initially performed, in parallel, by all
workers. This initial part of the computation is called sampling phase and
is illustrated in the figure by the fact that exactly the same enumeration
tree is initially built by all workers. No communication at all is involved in
this stage. It is assumed that the sampling phase is not a bottleneck in the

Fig. 1. Illustration of the SelfSplit paradigm

Self-splitting of Workload in Parallel Computation 397

overall computation, so the fact that all workers perform redundant work
introduces an acceptable overhead.

c) When enough open nodes have been generated, the sampling phase ends
and each worker applies a deterministic rule to identify and solve the nodes
that belong to it (gray subtrees in the figure), without any redundancy. No
communication among workers is involved in this stage. It is assumed that
processing the subtrees is the most time-consuming part of the algorithm, so
the fact that all workers perform non-overlapping work is instrumental for
the effectiveness of the self-splitting method.

d) When a worker ends its own job, it communicates its final output to a merge
worker that process it as soon as it receives it. The merge worker can in
fact be one of the K workers, say worker 1, that merges the output of the
other workers after having completed its own job. We assume that output
merging is not a bottleneck of the overall computation, as it happens, e.g., for
enumerative algorithms where only the best solution found by each worker
needs to be communicated.

Note that all steps but d) requires absolutely no communication among work-
ers. SelfSplit is therefore very well suited for those computational environ-
ments where communication among workers is time consuming or unreliable as,
e.g., in a large computational grid where the workers run in different geographi-
cal areas—a relevant context being cloud computing, or a constellation of mobile
devices.

Though very desirable, the absence of communication implies the risk that
workload is quite unbalanced, i.e., lucky and unlucky workers can finish their
computation at very different points in time. To contrast this drawback, our
recipe, as in [10], is to keep a significant number of open nodes for each worker
after sampling, so as to increase the chances that workload is split in a fair way.
More sophisticated rules can also be applied, as described later on.

2.2 Vanilla Algorithm

In its simplest version, our method modifies the original algorithm as follows:

1. Two integer parameters (k,K) are added to the original input: K denotes the
number of workers, while k is an index that uniquely identifies the current
worker (1 ≤ k ≤ K).

2. A global flag ON SAMPLING is introduced and initialized to true. The flag
becomes false when a given condition is met, e.g., when there are enough
open nodes in the branch-and-bound tree. When the flag ON SAMPLING
is set to false we say that the sampling phase is over.

3. Each time a node n is created, it is deterministically assigned a color c(n)
which is a pseudo-random integer in {1, · · · ,K} during the sampling phase,
and c(n) = k otherwise.

398 M. Fischetti, M. Monaci, and D. Salvagnin

4. Whenever the modified algorithm is about to process a node n, condition

(¬ON SAMPLING) ∧ (c(n) �= k)

is evaluated. If the condition evaluates to true, node n is just discarded, as
it corresponds to a subproblem assigned to a different worker; otherwise, the
processing of node n continues as usual and no modified action takes place.

Each worker executes exactly the same algorithm, but receives a different
input value for k. The above method ensures that each worker can autonomously
and deterministically identify and skip the nodes that will be processed by other
workers, and each node is covered by (at least) one worker. A similar strategy is
exploited in [11], where however the details of the split are very much dependent
of the LDS algorithm, and cannot be easily (and efficiently) generalized to an
arbitrary tree search algorithm.

Load balancing is automatically obtained by the modified algorithm in a sta-
tistical sense: if the condition that triggers the end of the sampling phase is
chosen appropriately, then the number of subproblems to distribute is signif-
icantly larger than the number of workers K, thus it is unlikely that a given
worker will be assigned much more work to do than any other worker. Static de-
composition and statistical load balancing were also at the base of the method
proposed in [10], with some key differences:

– a master process is used to generate the subproblems to distribute. Enumer-
ation in the master problem is more static than in SelfSplit, and some
communication is needed to distribute the subproblems;

– open problems are dynamically assigned to idle workers as soon as they
become available, which again requires some communication;

– the algorithm in [10] is non-deterministic because of dynamic scheduling.

SelfSplit is straightforward to implement if the original deterministic al-
gorithm is sequential, and the random/hash function used to color a node is
deterministic and identical for all workers. The algorithm can however be ap-
plied even if the original deterministic algorithm is itself parallel, provided that
the pseudo-random coloring at Step 3 is done right after a synchronization point.

2.3 Paused-Node Queue Algorithm

A slightly more elaborate version, aimed at improving workload balancing among
workers, can be devised using an auxiliary queue S of paused nodes. The modified
algorithm reads as follows:

1. As before, two integer parameters (k,K) are added to the original input.
2. A paused-node queue S is introduced and initialized to empty.
3. Whenever the modified algorithm is about to process a node n, a boolean

function NODE PAUSE(n) is called: if NODE PAUSE(n) is true, node n is
moved into S and the next node is considered; otherwise the processing of
node n continues as usual and no modified action takes place.

Self-splitting of Workload in Parallel Computation 399

4. When there are no nodes left to process, the sampling phase ends. All nodes
n in S, if any, are popped out and assigned a color c(n) between 1 and K,
according to a deterministic rule.

5. All nodes n whose color c(n) is different from the input parameter k are just
discarded. The remaining nodes are processed (in any order and possibly in
a nondeterministic way) till completion.

Because it has access to all the nodes in S, the coloring phase at Step 4 has
more chances to determine a balanced workload split among the workers than
its “vanilla” counterpart”, at the expense of a slightly more elaborate implemen-
tation.

3 Implementation Details

We will next give more details about the application of our method within an
enumerative method for optimization problems. We will focus on the version
exploiting the queue S of paused nodes. In this version, both the decision of
moving a node into S as well as the color actually assigned to a node are based
on an estimate of the computational difficulty of the node. The idea is to move a
node in S if it is expected to be significantly easier than the root node (original
problem), but not too easy as this would lead to an exceedingly time-consuming
sampling phase.

Within NODE PAUSE, a rough estimate of the difficulty of a node can be
obtained by computing the logarithm of the cardinality of the Cartesian product
of the current domains of the variables, to be compared with the same measure
computed at the end of the root node—for problems involving binary variables
only, this figure coincides with the number of free variables at the node. To
cope with the intrinsic approximation involved in this estimate, the following
adaptive scheme can be used to improve SelfSplit robustness. At the end of
the sampling phase, if the number of nodes in S is considered too small for the
number K of available workers, then the internal parameters of NODE PAUSE
are updated in order to make the move into the queue S less likely, and the
sampling procedure is continued after putting the nodes in S back into the
branch-and-bound queue—or the overall method is just restarted from scratch.

As to node coloring, in our implementation the color c(n) associated with
each node n in S is obtained in three steps: (1) compute a score estimating the
difficulty of each node n, (2) sort the nodes by decreasing scores, and (3) assign
a color c between 1 and K, in round-robin, so as to split node scores evenly
among workers.

4 SelfSplit for Constraint Programming

We implemented SelfSplit within the CP solver Gecode 4.0 [13]. While the
most natural option is to implement the scheme as a search engine, we opted
for implementing self-splitting as a custom constraint propagator. This is only

400 M. Fischetti, M. Monaci, and D. Salvagnin

because we found the implementation much easier: implementing search engines
is somewhat more involved, and requires some expertise in Gecode programming.
In addition, our proof of concept implementation shows that the method can
be implemented with very limited effort. Of course, different implementation
strategies for different solvers can be devised.

Our global constraint, node pause, is implemented as a generic n-ary prop-
agator, that takes on input an array x of variables, a pointer to the queue S
to store delayed nodes, a measure of node difficulty V0 computed from the do-
mains of the variables in x at the root node, and a threshold θ. Each time the
propagate method of our propagator is called, the node-difficulty measure V is
computed based on the local domains of the variables in x, and the resulting
value is compared with V0. If their ratio is greater than θ, then the local do-
mains of the variables x are copied into a custom node class, which is stored in
S, and the propagator returns a failure in order to kill the node. Otherwise, we
just return. Note that this implementation is compatible with Gecode copy and
recomputation backtracking model.

We next address the computation of the node-difficulty estimate within
NODE PAUSE, namely, the logarithm of the cardinality of Cartesian product of
the variable domains. We provide an implementation both for arrays of integer
variables and for arrays of set variables.

In the integer case, for each variable xj in x we consider its current domain
as a list of ranges {[lkj , uk

j]|k ∈ Kj}, as implemented in Gecode. As such, the
contribution of variable xj to the difficulty measure can be computed as

log2
∑
k∈Kj

(uk
j − lkj + 1)

which is a refinement of the simpler expression log2(uj − lj + 1).
In the set case, Gecode approximates the domain of a variable xj with three

pieces of information:

i) a set of elements glbj which is known to be contained in any feasible value
for xj , i.e., glbj ⊆ xj

ii) a set of elements lubj which is known to contain any feasible value for xj ,
i.e., xj ⊆ lubj

iii) bounds (mj ,Mj) on the cardinality of x, i.e., mj ≤ |xj | ≤ Mj .

With this encoding, we can compute the contribution of variable xj as

log2

Mj−lubj∑
i=mj−|glbj |

(
|lubj \ glbj|

i

)

Note that the above expression can become expensive to compute, and prone to
overflow for even modest values of |lubj \ glbj|. For this reason, if the resulting
number is greater than 64 we use the valid upper bound |lubj \ glbj|.

The overall scheme is implemented as follows:

Self-splitting of Workload in Parallel Computation 401

– the model to solve is coded into a C++ class (as usually done in Gecode)
and the node pause constraint is added to the model with the appropri-
ate parameters. Note that the array x of variables that are considered for
computing the measure of difficulty of the current subproblem is possibly a
subset of the whole set of variables, chosen by exploiting knowledge about
the model. We do not consider this an issue, since modeling a problem in
Gecode requires some problem-specific coding in any case;

– the model (with the node pause) propagator is completely enumerated (sam-
pling phase);

– the nodes collected in S that survive the coloring phase are used to con-
struct new models, copying the domains from the nodes, each of which is
enumerated by Gecode. Note that the propagator node pause is not used in
this phase.

To avoid to have too few nodes in S after the sampling phase, we implemented
the following simple adaptive mechanism, along the lines of the previous section.
The boolean value returned by NODE PAUSE(n) is true when the difference
between the estimated difficulty of the root node and that of node n, computed
as outlined above, is greater or equal to θ = 10 (corresponding to a reduction
of the cardinality of the Cartesian product of at least 1,024 times). When the
sampling phase is over, if |S| < 2000 then θ is doubled and the overall method
is just restarted.

We tested our implementation on several instances taken from the repository
of modeling examples bundled with Gecode. Since we are interested in measuring
the scalability of our method, we considered only instances which are either
infeasible or in which we are required to find all feasible solutions (the parallel
speedup for finding a first feasible solution can be completely uncorrelated to the
number of workers, making the results hard to analyze). On some instances we
added some form of symmetry breaking constraints in order to make the search
for all solutions more efficient. We ran our method with number of workers
K ∈ {1, 4, 16, 64}. Each worker is configured to use only a single thread: this is
because a deterministic behavior is needed for correctness in the sampling phase,
and it also makes the results more easily reproducible.

Detailed results are available in Table 1. According to the table, even on
moderately easy instance requiring half a minute to solve, SelfSplit can achieve
an almost linear speedup with up to 16 workers, and the speedup is still good
for K = 64. On harder instances, the method scales almost linearly also with 64
workers. In all cases, the resulting algorithm is deterministic. Note that, despite
the fact that our instances are very different, we used exactly the same parameter
tuning on all of them, showing that the method is quite robust.

5 Conclusions and Future Work

We have presented SelfSplit, a new deterministic and (almost) communication
free parallelization paradigm for tree search methods. The idea is that a given
deterministic algorithm can easily be parallelized by letting each processing unit

402 M. Fischetti, M. Monaci, and D. Salvagnin

Table 1. Measuring scalability with Gecode

time (s) speedup
instance K = 1 K = 4 K = 16 K = 64

golomb 12 41.5 3.84 14.31 41.50
golomb 13 1195.8 4.00 15.67 57.49
golomb 14 19051.9 3.97 15.71 61.34
partition 16 30.0 3.75 13.64 46.15
partition 18 354.8 3.90 14.78 54.58
partition 20 4116.4 3.86 15.64 59.40
ortholatin 5 29.3 3.89 13.95 36.63
sports 10 98.7 3.91 14.51 44.86
hamming 7 4 10 32.3 3.85 14.04 40.38
hamming 7 3 6 2402.4 3.91 15.44 59.76

autonomously decide which are the parts of work it can skip as they will be
performed by other units. This is achieved without any communication among
the units, and only requires a same deterministic selection rule be applied by all
units in the early part of the computation.

A main feature of the method is that exactly the same code is run indepen-
dently by all units, without the need of any external coordination nor master-
slave hierarchy—the work gently “splits itself” over the units. As a consequence,
SelfSplit is very well suited for HPC on a computational grid (or cloud) where
the processing units are geographically distributed and communication is expen-
sive or unreliable, and task synchronization becomes a bottleneck of the overall
computation.

Two different implementations of SelfSplit have been outlined, that only
require minor changes of the deterministic algorithm to be parallelized. Com-
putational results on a Constraint Programming implementation on top of an
open-source solver show that an almost linear speedup can be achieved, even
on 64 processing units, without any communication among them—besides the
final merge of the solution(s) returned by each unit, and still with deterministic
behavior.

A practically very important feature of SelfSplit is that it often requires
just minor code changes. As an exercise, we took the Asymmetric TSP sequential
codes in [14] (pure branch-and-bound) and in [15] (branch-and-cut code), which
are optimized yet legacy FORTRAN codes. We parallelized them by using the
SelfSplit approach, adding about 10 new lines of codes in the both cases,
obtaining surprisingly good speedups.

Because of lack of communication among workers, SelfSplit can turn out
to be not suitable for solvers that collect/learn important global information
during the search, as this information can be crucial to reduce the search tree.
Observe however that some solvers—notably, MIP branch-and-cut methods—do
in fact collect their main global information (cuts, pseudocosts, incumbent, etc.)

Self-splitting of Workload in Parallel Computation 403

in their early nodes, i.e., during sampling, thus all such information is automat-
ically available to all workers. Therefore, performing the sampling phase redun-
dantly in parallel by all workers has the advantage of sharing a potentially big
amount of global information without communication—a distinguishing feature
of SelfSplit. In any case, for those solvers a limited amount of communication
(e.g., of the incumbent value) can be advisable.

Possible SelfSplit variants to be addressed in future work are outlined below:

a) SelfSplit can be run with just K ′ 0 K workers, with input pairs (1,K),
(2,K), · · · , (K ′,K). In this case the overall procedure is heuristic in nature,
meaning that some nodes will not be explored by any worker (namely, those
with color k = K ′ + 1, · · · ,K). This setting is particularly attractive for
the parallelization of heuristics for optimization/feasibility problem, as it
guarantees that the solution spaces explored (exactly or heuristically) by
the K ′ workers after sampling is non-overlapping—though their union does
not necessarily cover the whole solution space.

b) The previous variant of runningK ′ 0 K workers can also be used to obtain a
lower bound on the amount of computing time needed to solve the problem
with K workers (just take the maximum computing time among the K ′

workers) as well as an estimate of the amount of computing time T1 needed
to solve the problem with the original (unmodified) algorithm by a single
worker, e.g., through the simple formula

T1 = Ts +K · T

where Ts is the sampling time and T is the average time spent by a worker
after sampling.

c) SelfSplit can also be used to split the overall workload into K chunks
to be solved at different points in time by a single (or few) worker(s), thus
implementing a simple strategy to pause and resume the overall computation.
This is also beneficial in case of failures, as it allows one to re-execute the
affected chunks only.

d) A limited amount of communication may be introduced between the work-
ers after the sampling and coloring phases. This communication is meant to
exchange globally valid information, such as the primal bound in an enumer-
ative scheme, which can be used to avoid unnecessary work. For example, if
a feasibility problem is addressed, as soon as a worker finds the first feasible
solution all the other workers can be interrupted as the overall problem is
solved. Similarly, if the incumbent is periodically shared among the workers,
each worker can be interrupted in case its own best bound is worse than the
incumbent value. If the incumbent is not used in any other way, the search
path followed by each workers is not affected by communication and each
worker behaves deterministically till its own abort point.

e) Workers can be allowed to (periodically) communicate to deal with failures
in the computational environment that require re-running a certain (k,K)
pair.

404 M. Fischetti, M. Monaci, and D. Salvagnin

f) After sampling, each worker can decide not to discard the nodes that have
two or more colors c1, c2, ..., cm, where c1 = k and the other colors c2, · · · , cm
are selected according to some rules. In this case some redundant work is
performed by the workers, e.g., with the aim of coping with failures in the
computational environment. The final merge worker can stop the overall
computation when all colors have been processed by some worker, even if
other workers are still running or were aborted for whatever reason. Alterna-
tively, two or more workers with the same (k,K) pair can be run, in parallel,
making the event that all of them fail very unlikely, and still keeping the
communication overhead negligible.

References

1. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
CACM 51(1), 107–113 (2008)

2. Grama, A., Kumar, V.: State of the art in parallel search techniques for discrete
optimization problems. IEEE Trans. Knowl. Data Eng. 11(1), 28–35 (1999)

3. Michel, L., See, A., Hentenryck, P.V.: Transparent parallelization of constraint
programming. INFORMS Journal on Computing 21(3), 363–382 (2009)

4. Chu, G., Schulte, C., Stuckey, P.J.: Confidence-based work stealing in parallel con-
straint programming. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 226–241.
Springer, Heidelberg (2009)

5. Bordeaux, L., Hamadi, Y., Samulowitz, H.: Experiments with massively parallel
constraint solving. In: Boutilier, C. (ed.) IJCAI 2009, pp. 443–448 (2009)

6. Gent, I.P., Jefferson, C., Miguel, I., Moore, N.C., Nightingale, P., Prosser, P.,
Unsworth, C.: A preliminary review of literature on parallel constraint solving.
In: Proceedings PMCS 2011 Workshop on Parallel Methods for Constraint Solving
(2011)

7. Shinano, Y., Heinz, S., Vigerske, S., Winkler, M.: Fiberscip – a shared memory
parallelization of scip. Technical report, ZIB (2013)

8. Koch, T., Ralphs, T.K., Shinano, Y.: Could we use a million cores to solve an integer
program? Mathematical Methods of Operations Research 76(1), 67–93 (2012)

9. Achterberg, T., Wunderling, R.: Mixed integer programming: Analyzing 12 years
of progress. In: Facets of Combinatorial Optimization, pp. 449–481 (2013)

10. Régin, J.C., Rezgui, M., Malapert, A.: Embarrassingly parallel search. In: Schulte,
C. (ed.) CP 2013. LNCS, vol. 8124, pp. 596–610. Springer, Heidelberg (2013)

11. Moisan, T., Gaudreault, J., Quimper, C.-G.: Parallel discrepancy-based search. In:
Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 30–46. Springer, Heidelberg (2013)

12. Harvey, W.D., Ginsberg, M.L.: Limited discrepanc search. In: IJCAI 1995,
pp. 607–615 (1995)

13. Gecode Team: Gecode: Generic constraint development environment (2012), Avail-
able at http://www.gecode.org

14. Fischetti, M., Toth, P.: An additive bounding procedure for the asymmetric trav-
elling salesman problem. Mathematical Programming 53, 173–197 (1992)

15. Fischetti, M., Lodi, A., Toth, P.: Exact methods for the asymmetric travel-
ing salesman problem. In: The traveling Salesman Problem and Its Variations,
pp. 169–205. Springer, US (2004)

http://www.gecode.org

The Markov Transition Constraint

Michael Morin and Claude-Guy Quimper

Department of Computer Science and Software Engineering
Université Laval, Québec, Qc, Canada

Michael.Morin.3@ulaval.ca,
Claude-Guy.Quimper@ift.ulaval.ca

Abstract. We introduce a novel global Markov transition constraint
(Mtc) to model finite state homogeneous Markov chains. We present
two algorithms to filter the variable domains representing the imprecise
probability distributions over the state space of the chain. The first filter-
ing algorithm is based on the fractional knapsack problem and the second
filtering algorithm is based on linear programming. Both of our filtering
algorithms compare favorably to the filtering performed by solvers when
decomposing an Mtc into arithmetic constraints. Cases where the frac-
tional knapsack decomposition enforces bounds consistency are discussed
whereas the linear programming filtering always perform bounds consis-
tency. We use the Mtc constraint to model and solve a problem of path
planning under uncertainty.

1 Introduction

We introduce a novel global markov transition constraint (Mtc) to model finite
state space Markov processes with a finite number of steps T . Markov processes
(also called Markov chains) are central to many applications. They are used in
physics to model the motion of a target in a physical environment [22] and in
computer science they are used in the Pagerank algorithm used by Google [20].
They are also used in economics and business science [8]. Markov processes even
apply to arts for the generation of melodies [19] and lyrics [1]. They form the basis
of decision making frameworks, such as Markov decision processes and hidden
Markov decision processes which are fundamental to many artificial intelligence
applications [16].

Let N = {1, . . . , N} be a space of N states. States are mutually exclusive and
jointly exhaustive, i.e., the process is in exactly one state of N at any time. Let M
be the N ×N transition matrix of the Markov process. That is, the probability of
moving from state i to state j at any step t ∈ {1, . . . , T } is 0 ≤ Mij ≤ 1 (∀i, j ∈
N), and the total probability of moving from state i ∈ N (given that the process
is in state i) is 1, i.e.,

∑
j∈N Mij = 1 (∀i ∈ N). Let xt = [xt

1, . . . , x
t
N] be the row

vector of the probability distribution on the states at a time t ∈ {1, . . . , T } where
xt
i is the probability that the process is in state i ∈ N at step t ∈ {1, . . . , T }. Given

an initial distribution x1 over the states such that
∑

i∈N x1
i = 1 and 0 ≤ x1

i ≤ 1
for all i ∈ N , the Markov property states that

xt+1 = xtM, ∀t ∈ {2, . . . , T } . (1)

H. Simonis (Ed.): CPAIOR 2014, LNCS 8451, pp. 405–421, 2014.
c© Springer International Publishing Switzerland 2014

406 M. Morin and C.-G. Quimper

That is, the state at time t + 1 depends on the previous state only.1 Given the
distribution xt, the distribution after k steps from step t, xt+k, is computed as:

xt+k = xtMk, ∀t ∈ {1, . . . , T } , k ∈ {0, . . . , T − t, } . (2)

Example 1. Suppose that we wish to model the motion of a lost child between
three stores (store 1, 2, and 3) of a mall with discrete time intervals of one
minute. The child’s behavior is as follows: s/he may spend time in the toys store
(number 1); after one minute, her/his probability of leaving to the candy store
(number 2) is 1

8 ; from the candy store, s/he either returns to the toys store, stays
there, or goes to the food market (number 3); whenever the child is in the food
market, s/he directly returns to the candy store. The child’s motion model is a
transition matrix M:

M =

⎡⎣ 7
8

1
8 0

1
3

1
3

1
3

0 1 0

⎤⎦ . (3)

As a first experiment, suppose that the child starts in room 1. That is, the
probability distribution at time 1 is x1 = [1, 0, 0]. We may, using equation (1), in-
fer that the distribution over the child’s location after a minute is x2 =

[
7
8 ,

1
8 , 0

]
.

It is as easy to know, using equation (2), the distribution over the child’s location
after a delay of k > 1 minutes.

As a second experiment, suppose that we have no information on the child’s
initial location, but that we want to get the best possible estimation over her/his
location after 1 minute, i.e., at time t = 2. The probability distribution at time
1 is uncertain. The only thing we know is that x1 is a distribution: it sums
up to 1 and the probabilities are in the interval [0, 1]. By relying on linear
optimization techniques or on the fractional knapsack filtering algorithm we
present in Section 4, we find that, the probabilities of locating the child in room
1, 2 or 3 are in the intervals

[
0, 78

]
,
[
1
8 , 1

]
and

[
0, 1

3

]
respectively; a solution that

interval arithmetic alone is not able to provide. �

Clearly, filtering the uncertain probability distributions to the tightest pos-
sible intervals is not as easy in the second experiment as computing the prob-
abilities in the first example. Uncertainty on probability distributions arises in
modeling and problem solving due to external factors influencing the chain, im-
precise data, and/or uncertain knowledge. For instance, in the search operation
model presented in Section 6, the probability distributions are updated given
the searcher’s actions. There is no way, without knowing the entire searcher’s
path, to compute the exact probability distribution for each time step.

The introduction of a global constraint to model the evolution of the state
space enables to intuitively model a Markov chain and leads to stronger filtering

1 Even if some generalizations allow the current state to depend on d ≥ 1 states (e.g.,
Markov chains of order d), we restrict ourselves to previous state dependencies only,
i.e., to first-order Markov chains.

The Markov Transition Constraint 407

of the constrained variables when compared to a decomposition of the chain into
elementary constraints.

The paper is organized as follows. We describe the Mtc global constraint
in Section 2. Section 3 discusses the literature related to similar constraints. In
Section 4, we introduce two filtering algorithms: the first one based on linear
optimization and the second one inspired from a fractional knapsack algorithm.
We also discuss about the filtering of a decomposition into linear constraints.
We identify cases where the different filtering techniques achieve bounds consis-
tency. In Section 5, we conduct an empirical study of the filtering algorithms.
Section 6 presents an application of the Mtc constraint to a practical problem.
We conclude in Section 7.

2 Modeling Markov Transition Processes as a Global
Constraint

We define a new constraint that encodes a Markov transition process. As a con-
vention, we write constrained variables in italic upper case and global constraints
in small capitals. The Mtc is defined as follows:

Mtc([Y1, . . . , YN] , [X1, . . . , XN] ,M) ⇔ ∀j ∈ N ,
∑
i∈N

XiMij = Yj ∧
∑
i∈N

Xi = 1.

The matrix M is a known Markovian transition matrix. The vectors X =
[X1, . . . , XN] and Y = [Y1, . . . , YN] are probability distributions over N . The
domains of the variables in vectors X and Y are:

dom(Xi) =
[
X i, Xi

]
, ∀i ∈ N , (4)

where Xi and Xi are lower and upper bounds on variable Xi; and

dom(Yj) =
[
Y j, Y j

]
, ∀j ∈ N , (5)

where Y j and Y j are lower and upper bounds on variable Yj .
The constraint Mtc(Y,X,M) applies a transition matrix M to X and ob-

tains Y, i.e., Mtc(Y,X,M) states that Y = XM. Multiple Mtc constraints
may be chained to compute a finite Markov chain of T steps:

Mtc(Xt,Xt−1,M), ∀t {2, . . . , T } . (6)

Other constraints may be added on the Xi variables to interact with the chain.
Since the constraint Mtc(Y,X,M) is satisfied only if X and Y represent

probability distributions, filtering this constraint can both be seen as an appli-
cation of the theory of interval-probability and as a linear optimization prob-
lem [12,24].

Definition 1 (Uncertain distribution). We call a probability distribution an
uncertain distribution if at least one of its probability is defined as an interval.

For instance, the vector [dom(X1), . . . , dom(Xn)] is a vector of intervals which
is an uncertain distribution if and only if there exists at least an assignment to
the variables Xi that sums up to 1.

408 M. Morin and C.-G. Quimper

3 Markov Constraints and Related Literature

Pachet and Roy [18] introduced the elementary markov constraint (Emc). The
Emc is defined as follows2:

Emc(S, S′,PS′) ⇔ PS′ = MSS′ . (7)

That is, Emc(S, S′,PS′) states that the probability of moving from state S to
state S′ is PS′ . The domains of the state variables S and S′ are subsets of N .
The domain of the probability variable is the set of conditional probabilities,
computed during the generation of the model, of achieving state S′ from any
previous state: dom(PS′) =

{
p
∣∣ (∃i ∈ N

∣∣ p = MiS′
)}

.
Using multiple Emcs, the authors model constrained Markov processes, i.e.,

Markov processes with supplementary constraints on the generated sequence. Let
S1, . . . , ST be the state variables of a sequence of a first-order Markov chain. Let
PS2 , . . . ,PST be the variables that represent the probabilities. The constrained
sequence is modeled as chained Emcs:

Emc(St, St+1,PSt+1), ∀t ∈ {1, . . . , T − 1} . (8)

The Markov property, enforced by the Emcs, is a cost function to optimize
whereas supplementary constraints are used to steer the generation of the se-
quence. The approach is used on chords sequence and melody generation.

Following [18], Pachet et al. [19] show that when the scope of the supplemen-
tary constraints does not exceed the chain’s order d, the constrained Markov
process may be recompiled into a statistically equivalent unconstrained Markov
process. The approach is illustrated on the melody generation problem. In [1],
the authors apply constrained Markov processes to the generation of lyrics.

The markov transition constraint (Mtc) we introduce differs from the elemen-
tary markov constraint (Emc) presented in [18,19]. The former aims at modeling
the evolution of the state space by computing the distributions xt defined for
all t ∈ {1, . . . , T } while the latter aims at generating the sequence of states in
a constrained fashion, i.e., a Markov sequence with supplementary constraints.
Moreover, the Mtc deals with interval-domain probabilities while the Emc deals
with finite-domain probabilities.

Markov chains with uncertain data (imprecise Markov chains) are related
to Markov constraints. Imprecise Markov chains are provided a credal set (or
probability interval) for each possible transition whereas we deal with precise
(singleton) transition probabilities and uncertain distributions. Further details
on imprecise Markov chains may be found in [5,6].

4 Filtering the Markov Transition Constraint

A filtering algorithm for the Mtc prunes the values from the domains of the
variables Xi and Yi that are inconsistent with the constraint.
2 We restraint our Emc definition to first-order Markov chains even though the defi-

nition found in [18] is general.

The Markov Transition Constraint 409

Definition 2 (Interval support). Let C([X1, . . . , Xn]) be a constraint of arity
n. The assignment [X1, . . . , Xn] = [x1, . . . xn] is an interval support if and only
if C([x1, . . . xn]) is satisfied and the inequalities Xi ≤ xi ≤ X i hold.

Definition 3 (Bounds consistency). A constraint C([X1, . . . , Xn]) is bounds
consistent if and only if, for every variable Xi, there exists an interval support
where the variable is assigned to the lower bound of its domain and a bounds
support where the variable is assigned to the upper bound of its domain.

A filtering algorithm enforces bounds consistency if and only if after being
executed, no interval supports are eliminated and the constraint is bounds con-
sistent. From now on, we simply say that an assignment has a support instead
of an interval support.

We present three filtering algorithms to filter the variables Xi and Yj (∀i, j ∈
N) subject to an Mtc constraint. The first algorithm, denoted MTC-IA, uses
the interval arithmetic [14] that is applied on a decomposition of the constraint.
Following [24], the second algorithm, denoted MTC-LP, performs a linear opti-
mization to achieve bounds consistency. The third algorithm, denoted MTC-FK,
is a compromise between the two previous approaches. It relaxes the problem into
a set of fractional knapsack constraints on which it enforces bounds consistency.

4.1 Filtering Using Interval Arithmetic (MTC-IA)

We decompose the global constraint Mtc(Y,X,M) into linear constraints as
follows:∑
i∈N

XiMij = Yj , ∀j ∈ N , (9)∑
i∈N

Xi = 1, (10)∑
j∈N

YjM
−1

ij = Xi, ∀i ∈ N , (11)

∑
j∈N

Yj = 1. (12)

Constraints (9) and (10) follow from the definition of the Mtc. Constraints (11)
and (12) are implied constraints that enhance the filtering. We call MTC-IA
the algorithm that uses the interval arithmetic to enforce bounds consistency on
the constraints (9) to (12). This algorithm, that is already implemented in most
constraint solvers, simply enforces bounds consistency on each constraint until
a fixed point is reached. The implied constraints necessitate the inverse of the
transition matrix M. The inverse M−1 is computed during the generation of the
model, prior to solving the problem. This pre-solving process is done in cubic
time.

We discuss specific cases where interval arithmetic enforces bounds consis-
tency on the constraint Mtc. These cases require new definitions.

410 M. Morin and C.-G. Quimper

Definition 4 (Monomial matrix). A matrix A is monomial if and only if it
has one and only one non-null element in each column and each row.

Proposition 1. A monomial transition matrix M is a permutation matrix.

Proof. The rows of M sums up to 1 by definition. Because M is monomial, we
must have one element set to one in every row and all other elements are null
which result into a binary matrix. Monomial binary matrices are permutation
matrices. �

Proposition 2. The inverse of a monomial transition matrix M is a transition
matrix.

Proof. M is a permutation matrix. The inverse of a permutation matrix is its
transpose which is also a permutation matrix. �

Lemma 1. If M is monomial, then enforcing bounds consistency on the linear
constraints (9) and (10) enforces bounds consistency on Mtc(Y,X,M).

Proof. If M is monomial, it is a permutation matrix and the constraints (9) are
binary equalities. Suppose that constraints (9) and (10) are bounds consistent.
Let x be an interval support for (10) then y = xM is a permutation of x and,
thanks to the equality constraints (9), we have yi ∈ dom(Yi). Consequently, the
upper bound and lower bounds of the domains dom(Xi) have an interval support
for Mtc(Y,X,M). Let π be the permutation encoded by M. Since the bounds
of dom(Yπ(i)) are equal to the bounds of dom(Xi), the bounds of dom(Yi) also
have an interval support for Mtc(Y,X,M). �

Thanks to Proposition 2, Lemma 1 also holds when replacing constraint (9) by
constraint (11) and/or constraint (10) by constraint (12).

4.2 Filtering Using Linear Programming (MTC-LP)

In this section, we describe our linear programming (LP) reformulation of the
filtering problem for the Mtc global constraint. Even though LP has not been ap-
plied (to our knowledge) to the filtering of global constraints encoding a Markov
chain, there exist examples in the literature (e.g., [3] and [4]) where LP is used
to filter global constraints. These successes justify the application of the idea to
Markov chains.

The LP filtering algorithm solves two linear programs per variable: one for the
lower bound and one for the upper bound. To obtain a lower bound on variable
Xi, the LP minimizes Xi subject to the constraints (14) to (17).

minXi (13)

The Markov Transition Constraint 411

subject to∑
i∈N

MijXi = Yj , ∀j ∈ N , (14)∑
i∈N

Xi = 1, (15)

Xi ≤ Xi ≤ Xi, ∀i ∈ N , (16)

Y j ≤ Yj ≤ Y j , ∀j ∈ N . (17)

New bounds on X i, Y i, and Y i follow from a modification of the objective
function. For each state i ∈ N , we have the following LPs:

– Xi = maxXi (resp. Y i = maxYi) subject to constraints (14) to (17);
– Xi = minXi (resp. Y i = minYi) subject to constraints (14) to (17).

Each of the 4N linear programs may be solved using the simplex method [7].
We call this filtering technique based on linear optimization MTC-LP.

If an exact LP method is used (e.g., the simplex algorithm), we obtain optimal
bounds on the domains of both X and Y .

Theorem 1. MTC-LP enforces bounds consistency on Mtc(Y, X, M).

Proof. The proof is a direct consequence of using an exact method for solving
the linear programs. �

4.3 Filtering Using the Fractional Knapsack (MTC-FK)

The last filtering algorithm we present, denoted MTC-FK, is based on the frac-
tional knapsack problem and improves on the filtering done by the interval arith-
metic. It is inspired from the global knapsack constraint [9].

We consider, for some l ∈ N , the pair of constraints
∑

i∈N Xi = 1 and∑
i∈N MilXi = Yl. To compute an upper bound on the variable Yl, one greedily

assigns the largest possible values to the variables Xi that are multiplied by the
greatest weights Mil while making sure that the constraint (10) is satisfied. On
the other hand, to compute a lower bound on the variable Yl, one needs to assign
the largest values to the variables multiplied by the smallest weights.

Algorithm 1 propagates the constraints (9) to (12) as well as the knap-
sack constraints (

∑
i∈N XiMij = Yj ,

∑
i∈N Xi = 1) and (

∑
j∈N YjM

−1
ij =

Xi,
∑

j∈N Yj = 1) until it reaches a precision of ε. Algorithm 2 computes a lower
bound on Yl (or Xl). Reversing the order of the iterations in the for loop makes
Algorithm 2 compute an upper bound on Yl (or Xl).

Lemma 2. Let mj and mj be the greatest and smallest value in column j of
the matrix M. If

[
mj ,mj

]
⊆ dom

(
Yj

)
∀j ∈ N then any distribution x1, . . . , xN

(i.e., any assignment to the variables of vector X that sums to one) has a support
in Mtc(Y, X, M).

412 M. Morin and C.-G. Quimper

Function MTC-FK([X1, . . . , XN], [Y1, . . . , YN],M,M−1)
Input: A vector of variables that represents the current uncertain

distribution over N : [X1, . . . , XN]; a vector of variables that
represents the resulting uncertain distribution: [Y1, . . . , YN]; a
transition matrix and its inverse: M and M−1.

Output: The vectors of probability variables with filtered domain:
[X1, . . . , XN], and [Y1, . . . , YN].

repeat
for i ∈ N do xold

i ← Xi −Xi;
for i ∈ N do yold

i ← Y i − Y i;
Enforce bounds consistency on constraints (9) to (12);
foreach l ∈ N do

Y l ← Fk-FilterLowerBound ([X1, . . . , XN],Yl,[M1l, . . . ,MNl]);
Y l ← Fk-FilterUpperBound ([X1, . . . , XN],Yl,[M1l, . . . ,MNl]);
Xl ← Fk-FilterLowerBound ([Y1, . . . , YN],Xl,[M−1

1l , . . . ,M−1
Nl]);

Xl ← Fk-FilterUpperBound ([Y1, . . . , YN],Xl,[M−1
1l , . . . ,M−1

Nl]);

until
√∑

i∈N (xold
i −Xi +Xi)

2 +
√∑

i∈N (yold
i − Y i + Y i)

2 ≤ ε;
return [X1, . . . , XN], [Y1, . . . , YN];

Algorithm 1. The MTC-FK filtering algorithm

Proof. Let Mj be the jth column of M. Since the components of X sums to
one and that none are negative, the scalar product of X and Mj is a convex
combination of the elements in Mj . Consequently, the result lies in the convex
hull of Mj and it cannot be greater nor smaller than any element in Mj. �

Lemma 3. Let mj and mj be the greatest and smallest value in column j of
the matrix M. If

[
mj ,mj

]
⊆ dom

(
Yj

)
∀j ∈ N then MTC-FK enforces bounds

consistency on Mtc(Y,X,M).

Proof. The algorithm MTC-FK enforces bounds consistency on the constraint∑
i∈N Xi = 1 so that the lower bound and upper bounds of the domains of

Xi can each form an assignment of the variables Xi that sums to one. From
Lemma 2, any assignment that sums to 1 can be extended to a support of
Mtc(Y,X,M). We now need to prove that the variables Yi are fully pruned. If
a bound of dom(Yi) is modified, this bound was computed by the Algorithm 2
which constructed a valid support for the constraint. If a bound of dom(Yi) is
not filtered, then either Algorithm 2 computed the same bound (in which case,
it has a support) or it computed a larger one. However, the second case cannot
occur since, as seen in Lemma 2, the scalar product of any distribution with a
column of M leads to a value in

[
mj ,mj

]
⊆ dom(Yj). �

Lemma 3 is particularly useful at the beginning of the search in a problem
where the domains of the variables Yi are the intervals [0, 1].

The Markov Transition Constraint 413

Function FK-FilterLowerBound([U1, . . . , UN],V l, [t1, . . . , tN])
Input: A vector of variables that represents an uncertain distribution over

N : [U1, . . . , UN]; a lower bound on the variable that represents the
probability that the process is in state l after applying transitions:
V l; a vector of the transition probabilities to state l: [t1, . . . , tN].

Output: A new lower bound on state l probability: V l.

for i ∈ N do ui ← U i;
λ ← 1−∑

l∈N U l;
for k ∈ N in non-decreasing order of tk do

δ ← min
(
λ,Uk − Uk

)
;

uk ← uk + δ;
λ ← λ− δ;
if λ = 0 then break;

return max
(∑

i∈N uiti, V l

)
;

Algorithm 2. The FK-FilterLowerBound lower bound filtering algorithm

Theorem 2. The consistency achieved by each algorithm satisfies MTC-IA ≺
MTC-FK ≺ MTC-LP.

Proof. We first prove MTC-IA + MTC-FK + MTC-LP. The MTC-FK algo-
rithm filters the same constraints as MTC-IA but the knapsack constraints con-
sider pairs of constraints which offer a filtering that is not weaker. The algorithm
MTC-LP achieves bounds consistency which is optimal. We now show two ex-
amples which prove that MTC-IA �= MTC-FK, and that MTC-FK �= MTC-LP.
Let N = 3. Let dom (X1) = [.3, 1], and dom (X2) = dom (X3) = [0, 1]. Let
dom (Y1) = dom(Y2) = dom(Y3) = [0, 1]. Let the transition matrix be

M =

⎡⎣ 0 .4 .6
.3 .4 .3
.4 .6 0

⎤⎦ . (18)

By Lemma 2, MTC-FK enforces bounds consistency whereas MTC-IA does not.
In fact, MTC-FK sets Y 1 = 0.28 whereas MTC-IA sets Y 1 = 0.49. Suppose that
dom (Y1) = [.1, 1]. By Theorem 1, MTC-LP enforces bounds consistency which
is not the case of MTC-FK. In fact, MTC-LP sets X1 = 0.75 while MTC-FK
sets X1 = 0.9. �

5 Empirical Experiments and Discussion

We generated random domains and transition matrices to compare the three
filtering algorithms and see how much their filtering differ. For MTC-IA, we
present the results with and without the implied constraints (11) and (12). The
MTC-LP enforces bounds consistency on all instances providing the optimal

414 M. Morin and C.-G. Quimper

bounds. Let xold, xold, yold and yold be the initial bounds of the filtering problem.
Let x∗, x∗, y∗ and y∗ be the optimal bounds found by MTC-LP. Let x, x, y
and y be the bounds found by a given filtering method. We define the proportion
of optimality as the ratio of the sum of the distances traveled, in the domain
space, by a filtering method to the sum of the distances traveled by MTC-LP:

Indp =

∥∥x − xold
∥∥+ ∥∥xold − x

∥∥+ ∥∥∥y − yold
∥∥∥+

∥∥yold − y
∥∥

‖x∗ − xold‖+
∥∥xold − x∗∥∥+

∥∥∥y∗ − yold
∥∥∥+

∥∥yold − y∗∥∥ . (19)

We generated five sets of filtering problem instances: a transition matrix M
along with random bounds on the variables of vectors X and Y. The randomly
generated bounds are feasible, i.e., the constraint Mtc is satisfiable. Table 1
summarizes the sets’ characteristics. The first set (random) contains randomly
generated transition matrices. The second and the third sets (star and plus grids)
contain transition matrices that represents square grids, i.e., states are located
on a square grid and are only connected to their neighbors. Plus grids are grids
where a state is linked to its North, South, West and East neighbors. Star grids
also include diagonals (NW, NE, SW, SE). Let ρ be the conditional probability
that the process stays in state i when it is in state i for any i ∈ N , i.e., the
probability of stationarity ρ = Mii (∀i ∈ N). Let deg(i) be the degree of cell i
(loops included) in the adjacency matrix of the grid. The transition matrix of a
grid instance is defined as:

Mij =

{
1−ρ

deg(i)−1 if i �= j;

ρ if i = j.
(20)

We chose ρ ∈ {.2, .4, .6, .8}. The fourth set (zero-one-Y) contains randomly
generated transition matrices, but the domains of the variables of vector Y are
[0, 1]. That is, the information about the future (i.e., the uncertain distribution
of vector Y) comes from the present (i.e., the uncertain distribution of vector
X). This is the usual way to process Markov chains in Markov processes. The
fifth set (zero-one-X) models the converse case where the information about the
present process’ state comes from the future. Our benchmark library includes
non-singular matrices only. We generated 10 different instances for each pair of
state space size N and probability of stationarity ρ in each set for a total of 3690
instances.

Figures 1 and 2 show scatter plots comparing the proportion of optimality
achieved by different filtering algorithms. The higher the proportion of optimal-
ity is on a given axis, the better the filtering algorithm performs (a value of 1
represents a bounds consistent domain as obtained by the MTC-LP algorithm).
The dotted line is a visual frontier between the two compared algorithms’ per-
formance. A dot representing an instance for which both algorithms produce the
same filtering lies on this visual frontier. A dot for which the algorithm on the
x-axis (y-axis) performs better than the algorithm on the y-axis (x-axis) lies on
the right (left) hand-side of the frontier. The algorithm with the highest density

The Markov Transition Constraint 415

Table 1. The characteristics of the instance sets

Name N M ρ = Mii Set size

Random {2, . . . , 100} Random Random 990
Star grids {4, 9 . . . , 100} Star grids {.2, .4, .6, .8} 360
Plus grids {4, 9, . . . , 100} Plus grids {.2, .4, .6, .8} 360
Zero-one-Y {2, . . . , 100} Random Random 990
Zero-one-X {2, . . . , 100} Random Random 990

of dots on its side of the frontier tends to achieve the best overall performance.
Darker blue shades are used for instances with a larger state space size (N);
lighter blue shades are used for instances with a smaller N .

As shown on Figure 1, MTC-IA (x-axis) outperforms MTC-IA without im-
plied constraints (y-axis) on all instance sets. While the performance of the two
algorithms is similar on some random instances (Figure 1a), the importance of
implied constraints is clear as all the dots fall on the right hand side of the fron-
tier. The scatter plots of grid instance sets (Figures 1b and 1c) favor MTC-IA.
Zero-one-Y instances represent forward in time inferences using M (Figure 1d).
Zero-one-X instances represent backward in time inferences using M−1 (Fig-
ure 1e). On these instances, we see the benefits of the interaction between a
set of elementary constraints: the implied constraints enable the algorithm to
further filter the domains backward in time whenever knowledge on the future is
acquired by forward filtering. The difficulty of backward inferences is shown by
the fact that the distribution of the results on the Zero-one-Y instances (forward
inference) is closer to 1 when compared to the distribution of the results on the
Zero-one-X instances (backward inference). This is partly due to the negative
values in the inverse of most transition matrix M.

As shown on Figure 2, MTC-FK (x-axis) outperforms MTC-IA (y-axis) on all
instance sets. The performance of both algorithms is close on the Random set
(Figure 2a), but still, MTC-FK performs better. The same tendency appears for
grids (Figures 2b and 2c). MTC-FK enforced bounds consistency on all Zero-
one-Y instances (a result of Lemma 3) whereas this is not the case for MTC-IA.
Forward inference is easier than backward inference for both algorithms: the
distribution of the optimality results is closer to 1 on the Zero-one-Y set than
on the Zero-one-X set.

6 An Application to Path Planning under Uncertainty

We illustrate the Mtc constraint usage on an optimal search path (OSP) prob-
lem [15]. A searcher moves on a graph GA = (V (GA) , E (GA)), within T time
steps, in order to find a lost object. In absence of search, the object would
simply move from vertex to vertex according to a transition matrix M. The
searcher, however, influences the chain evolution by searching the vertices and by

416 M. Morin and C.-G. Quimper

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

IA proportion of optimality

IA
−

pr
op

or
ti

on
 o

f
op

ti
m

al
it

y

N

20

40

60

80

100

(a) Random instances

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

IA proportion of optimality

IA
−

pr
op

or
ti

on
 o

f
op

ti
m

al
it

y

N

20

40

60

80

100

(b) Plus grids instances

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

IA proportion of optimality

IA
−

pr
op

or
ti

on
 o

f
op

ti
m

al
it

y

N

20

40

60

80

100

(c) Star grids instances

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

IA proportion of optimality

IA
−

pr
op

or
ti

on
 o

f
op

ti
m

al
it

y

N

20

40

60

80

100

(d) Zero-one-Y instances

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

IA proportion of optimality

IA
−

pr
op

or
ti

on
 o

f
op

ti
m

al
it

y

N

20

40

60

80

100

(e) Zero-one-X instances

Fig. 1. Proportion of optimality achieved by MTC-IA (IA) when compared to MTC-IA
without implied constraints (IA-)

removing the object as soon as it detects it: a special “removed” state that rep-
resents the searcher’s hands is added to the state space.

The probability that a vertex r contains the object at a time t is called the
probability of containment, or poct(r). The initial distribution (poc1) is known a
priori. The distribution xt over the states is

xt = [poct(1), . . . , poct(N), cost−1] , (21)

where cost is the searcher’s cumulative overall probability of success linked to the
removed state at time t (cos0 = 0). When the searcher is located in a given vertex
r at time t, i.e., yt = r, s/he searches that vertex. Her/his known probability of
detection (pod) is conditional to the object’s presence. The local success of the
searcher in r at time t is defined as:

post(r) =

{
poct(r)× pod if r = yt,

0 if r �= yt.
(22)

We split the chain to introduce a distribution x̂t that represents the search and
to apply the object’s motion:

x̂t = [poct(1)− post(1), . . . , poct(N)− post(N), cost] , (23)

xt+1 = x̂t

[
M 0
0 1

]
. (24)

The Markov Transition Constraint 417

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FK proportion of optimality

IA
 p

ro
po

rt
io

n
of

 o
pt

im
al

it
y

N

20

40

60

80

100

(a) Random instances

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FK proportion of optimality

IA
 p

ro
po

rt
io

n
of

 o
pt

im
al

it
y

N

20

40

60

80

100

(b) Plus grids instances

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FK proportion of optimality

IA
 p

ro
po

rt
io

n
of

 o
pt

im
al

it
y

N

20

40

60

80

100

(c) Star grids instances

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FK proportion of optimality

IA
 p

ro
po

rt
io

n
of

 o
pt

im
al

it
y

N

20

40

60

80

100

(d) Zero-one-Y instances

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FK proportion of optimality

IA
 p

ro
po

rt
io

n
of

 o
pt

im
al

it
y

N

20

40

60

80

100

(e) Zero-one-X instances

Fig. 2. Proportion of optimality achieved by MTC-FK (FK) when compared to
MTC-IA (IA)

The searcher’s goal is to maximize cosT . The OSP problem is known to be NP-
hard even for stationary objects [23]. Recent examples of OSP-related researches
with a single searcher may be found in the works of [2,11,21].

This leads to a CP model with four sets of interval-domain probability vari-
ables: the variables COSt that represent the probability of finding the object up
to time t, and the variables POCt(r), POCSearched

t (r), and POSt(r) that repre-
sent the probabilities in the split Markov chain (∀t ∈ {1, . . . , T } , r ∈ V (GA)).
A set of finite-domain variables PATHt models the searcher’s path. The do-
mains of each path variable is a subset of vertices, i.e., dom(PATHt) ⊆ V (GA)
(∀t ∈ {1, . . . , T }). POC1(r) = poc1(r), and PATH0 = y0 are known data. The
probability of finding (removing) the object up to time t is:

COSt =
∑

1≤t′≤t

max
r∈V(GA)

POSt′(r). (25)

The objective is to maximize COST subject to the graph edges constraints:

(PATHt−1, PATHt) ∈ E (GA) , ∀t ∈ {1, . . . , T } ; (26)

the probability of success along the path of the searcher:

PATHt = r =⇒ POSt(r) = POCt(r)pod, ∀t ∈ {1, . . . , T } , ∀r ∈ V (GA) ;
(27)

PATHt �= r =⇒ POSt(r) = 0, ∀t ∈ {1, . . . , T } , ∀r ∈ V (GA) ;
(28)

418 M. Morin and C.-G. Quimper

the effect of searching on the chain:

POCSearched
t (r) = POCt(r)− POSt(r), ∀t ∈ {1, . . . , T } , ∀r ∈ V (GA) ; (29)

and the application of the Markovian transition matrix of the object on the split
chain:

Mtc
(
Xt+1, X̂t,

[
M 0
0 1

])
, ∀t ∈ {1, . . . , T − 1} , ∀r ∈ V (GA) , (30)

where

Xt+1 = [POCt+1(1), . . . , POCt+1(N), COSt] , (31)

and

X̂t =
[
POCSearched

t (1), . . . , POCSearched
t (N), COSt

]
. (32)

6.1 Applied Experiment and Discussion

We implemented two Markov chain-based models for the OSP using Choco Solver
2.1.3 [10], a state-of-the-art CP solver. The first, OSP-IA-, uses a standard el-
ementary arithmetic constraints decomposition in (30). The second, OSP-FK,
uses fractional knapsack filtering in (30). We kept the model as close as possible
to the one presented in [15] while adding the necessary variables to model the
search with Mtcs. The goal of the experiment is to show the benefits of the fil-
tering achieved by the Mtc when compared to elementary arithmetic constraint
decomposition. All implementations of the application are done using the Java
programming language, the Apache Commons Math [13] library, and the Java
Universal Network/Graph (JUNG) 2.0.1 framework [17]. The total detection
value selection heuristic developed for the OSP problem [15] is used.

The accessibility graphs (GA) are the following: G+, a 11 × 11 plus grid,
G∗ a 11 × 11 star grid, and the University Laval tunnels map GL [15]. We
allowed a total of T = 17 time steps. The probability of detection are pod(r) ∈
{0.3, 0.6, 0.9} (∀r ∈ V (GA)). The assumed Markovian object’s motion model
of the objective, i.e., its transition matrix M, is based on equation (20). The
probability of stationary of the object in M are ρ ∈ {0.3, 0.6, 0.9}. We allowed a
total number of 5,000,000 backtracks and a time limit of 20 minutes. We tested
with different epsilon values and retained ε = 0.3 as it is sufficient in practice
for most search operations. All tests were run on an Intel(R) Core(TM) i7-2600
CPU with 4 GB of RAM.

Table 2 compares standard filtering (OSP-IA-) to the fractional knapsack
filtering (OSP-FK). We chose three performance criteria: the objective value
(COS), the time consumed to the last incumbent solution, and the total num-
ber of backtracks to obtain the last incumbent solution. The objective value
and the time to last incumbent tell us which model achieves the highest perfor-
mance on a given problem instance independently of its filtering performance.

The Markov Transition Constraint 419

Table 2. Results on OSP problem instances with ε = 10−3; underlined values are
better

pod(r) ρ Objective (COS) Time† (s) Backtracks

IA- FK IA- FK IA- FK

GL with T = 17

0.3 0.3 0.519 0.519 1 1 1948 1
0.6 0.578 0.578 1 2 1880 2
0.9 0.738 0.738 1 1 1550 11

0.6 0.3 0.735 0.735 1 1 1980 10
0.6 0.758 0.758 1 1 1851 9
0.9 0.845 0.845 1 1 1475 35

0.9 0.3 0.810 0.810 1 1 1911 23
0.6 0.835 0.835 1 1 1832 35
0.9 0.890 0.890 1 1 1396 61

G+ with T = 17

0.3 0.3 0.106 0.106 4 7 7205 1
0.6 0.165 0.165 3 5 5343 0
0.9 0.442 0.442 3 5 2236 20

0.6 0.3 0.189 0.189 4 7 7044 2
0.6 0.298 0.298 3 5 5241 0
0.9 0.551 0.551 3 5 2325 43

0.9 0.3 0.259 0.259 4 7 6946 2
0.6 0.329 0.329 3 5 5130 0
0.9 0.623 0.623 3 5 2152 73

G∗ with T = 17

0.3 0.3 0.131 0.131 5 9 7757 1
0.6 0.219 0.219 4 7 6444 0
0.9 0.584 0.584 3 6 3324 35

0.6 0.3 0.226 0.226 5 10 7514 6
0.6 0.314 0.348 4 7 6334 0
0.9 0.686 0.686 3 6 3344 58

0.9 0.3 0.304 0.301 5 9 7209 9
0.6 0.381 0.381 4 7 6065 2
0.9 0.734 0.734 3 6 2945 54

† The time to last incumbent solution.

The total number of backtracks to last incumbent and the time consumed tell us
whether the model filtering performance is good or not. For each criterion, un-
derline results belongs to the best performing techniques. We do not underline
ties. Overall, OSP-FK outperformed OSP-IA- by achieving a higher or equal
objective values while maintaining a lower number of backtracks on most in-
stances. Even though we demonstrated that the theoretical consistency achieved
by MTC-FK is better than the one achieved by MTC-IA (with and without
implied constraints), some cases may occurs where MTC-IA (with or without
implied constraints) outperforms MTC-FK on applications. This may be due to
the interaction between a heuristic (e.g., the total detection heuristic) and the
solving process. Efficient heuristics lead to smaller search trees removing some
filtering needs. As demonstrated by our positive results, thorough filtering of the
variables is beneficial in most cases. The MTC-FK filtering algorithm achieves
high quality solutions soon in the solving process while greatly reducing the total
number of backtracks when compared to a model with elementary constraints.

420 M. Morin and C.-G. Quimper

7 Conclusion

We introduced Mtc, a global constraint that models Markov chains. We dis-
cussed cases where elementary arithmetic constraints enforce bounds consistency.
We proved that elementary arithmetic constraints, even with implied constraints,
are insufficient to enforce bounds consistency in all cases and discussed a linear
programming algorithm that always performs bounds consistency. However, a
constraint solver needs to run the filtering algorithms on an exponential number
of nodes, and linear optimization turns out to be an expensive filtering solution.
Thus, we provided, as a trade-off, a filtering algorithm based on the fractional
knapsack problem. The method is proved to achieve bounds consistency when
the transition matrix is monomial and in the case of forward reasoning. Finally,
we successfully applied the Mtc global constraint on the OSP problem, a path
planning problem under uncertainty involving Markov transitions.

References

1. Barbieri, G., Pachet, F., Roy, P., Degli Esposti, M.: Markov constraints for gener-
ating lyrics with style. In: Proceedings of 20th Biennial European Conference on
Artificial Intelligence. IOS Press (2012)

2. Berger, J., Lo, N., Noel, M.: Exact solution for search-and-rescue path planning.
International Journal of Computer and Communication Engineering 2(3) (2013)

3. Bessière, C., Hebrard, E., Hnich, B., Kiziltan, Z., Walsh, T.: Filtering algorithms
for the NValue constraint. In: Barták, R., Milano, M. (eds.) CPAIOR 2005. LNCS,
vol. 3524, pp. 79–93. Springer, Heidelberg (2005)

4. Bessiére, C., Hebrard, E., Hnich, B., Kiziltan, Z., Walsh, T.: Filtering algorithms
for the NValue constraint. Constraints 11(4), 271–293 (2006)

5. Blane, H., Den Hertog, D.: On markov chains with uncertain data. Available at
SSRN 1138144 (2008)

6. De Cooman, G., Hermans, F., Quaeghebeur, E.: Imprecise markov chains and their
limit behavior. Probability in The Engineering and Informational Sciences 23(4),
597 (2009)

7. Garfinkel, R.S., Nemhauser, G.L.: Integer programming, vol. 4. Wiley, New York
(1972)

8. Hamilton, J.: A new approach to the economic analysis of nonstationary time
series and the business cycle. In: Econometrica: Journal of the Econometric Society,
pp. 357–384 (1989)

9. Katriel, I., Sellmann, M., Upfal, E., Van Hentenryck, P.: Propagating knapsack
constraints in sublinear time. In: Proceedings of the National Conference on Arti-
ficial Intelligence (AAAI-2007), pp. 231–236 (2007)

10. Laburthe, F., Jussien, N.: Choco Solver Documentation (2012),
http://www.emn.fr/z-info/choco-solver/

11. Lau, H., Huang, S., Dissanayake, G.: Discounted mean bound for the optimal
searcher path problem with non-uniform travel times. European Journal of Oper-
ational Research 190(2), 383–397 (2008)

12. Luis, M., Campos, D., Huete, J., Moral, S.: Probability intervals: a tool for un-
certain reasoning. International Journal of Uncertainty, Fuzziness and Knowledge-
Based Systems 2(02), 167–196 (1994)

http://www.emn.fr/z-info/choco-solver/

The Markov Transition Constraint 421

13. Apache Commons: Commons math: The apache commons mathematics library
(2010) (accessed: October 2013)

14. Moore, R.E.: Interval analysis, vol. 2. Prentice-Hall Englewood Cliffs (1966)
15. Morin, M., Papillon, A.-P., Abi-Zeid, I., Laviolette, F., Quimper, C.-G.: Constraint

programming for path planning with uncertainty. In: Milano, M. (ed.) CP 2012.
LNCS, vol. 7514, pp. 988–1003. Springer, Heidelberg (2012)

16. Norvig, P., Russell, S.J.: Artificial Intelligence: A Modern Approach, 3rd edn.
Prentice-Hall (2013)

17. O’Madadhain, J., Fisher, D., Nelson, T., White, S., Boey, Y.: Jung: Java universal
network/graph framework (2010), http://jung.sourceforge.net

18. Pachet, F., Roy, P.: Markov constraints: steerable generation of markov sequences.
Constraints 16(2), 148–172 (2011)

19. Pachet, F., Roy, P., Barbieri, G.: Finite-length markov processes with constraints.
In: Proceedings of the Twenty-Second International Joint Conference on Artificial
Intelligence-Volume Volume One. AAAI Press, pp. 635–642 (2011)

20. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking:
bringing order to the web. Technical report, Stanford InfoLab (1999)

21. Sato, H., Royset, J.: Path optimization for the resource-constrained searcher. Naval
Research Logitics 57(5), 422–440 (2010)

22. Stone, L.: Theory of Optimal Search. Academic Press, New York (2004)
23. Trummel, K., Weisinger, J.: The complexity of the optimal searcher path problem.

Operations Research 34(2), 324–327 (1986)
24. Weichselberger, K.: The theory of interval-probability as a unifying concept for

uncertainty. International Journal of Approximate Reasoning 24(2), 149–170 (2000)

http://jung.sourceforge.net

New Lower Bounds on the Number of Vehicles

for the Vehicle Routing Problem
with Time Windows

Sohaib Afifi, Rym Nesrine Guibadj, and Aziz Moukrim

Université de Technologie Compiègne
Laboratoire Heudiasyc, UMR 7253 CNRS, 60205 Compiègne, France
{sohaib.afifi,rym-nesrine.guibadj,aziz.moukrim}@hds.utc.fr

Abstract. The Vehicle Routing Problem with Time Windows
(VRPTW) consists in determining the routing plan of vehicles with iden-
tical capacity in order to supply the demands of a set of customers with
predefined time windows. This complex multi-constrained problem has
been widely studied due to its industrial, economic and environmental
implications. In this work, we are interested in defining the number of
vehicles needed to visit all the customers. This objective is very impor-
tant to evaluate the fixed costs for operating the fleet. In this paper, we
provide an analysis of several lower bounds based on incompatibility be-
tween customers and on vehicle capacity constraints. We also develop an
adaptation of Energetic Reasoning algorithm for VRPTW with a lim-
ited fleet. The proposed approach focuses on some time-intervals and
exploits time constraints, incompatibility graph and bin packing models
in order to obtain new valid lower bounds for the fleet size. Experiments
conducted on the standard benchmarks show that our algorithms outper-
form the classical lower bound techniques and give the minimum number
of vehicles for 339 out of 468 instances.

Keywords: vehicle routing, time windows, lower bounds, energetic rea-
soning.

1 Introduction

In today’s business world, transportation costs become a major share of the total
logistic expenses of companies. That is why many companies try to improve their
transportation by using rational manners and effective tools. The objective of
these problems is to make a vehicle scheduling strategy in order to minimize
the number of routes and the corresponding total travel distance or cost. In the
literature such problems are referred to as routing problems.

The vehicle routing problem with time windows (VRPTW) [10] is among the
most studied variants of routing problems due its wide range of applications.
Common examples are newspaper delivery, beverage and food delivery, commer-
cial and industrial waste collection [13]. In VRPTW, a set of customers must

H. Simonis (Ed.): CPAIOR 2014, LNCS 8451, pp. 422–437, 2014.
c© Springer International Publishing Switzerland 2014

New Lower Bounds on the Number of Vehicles 423

be served by a fleet of vehicles located in a single depot. A quantity of goods
should be delivered to each customer whose service takes an amount of time.
Each customer is associated with a time window that represents the interval of
time when the customer is available to receive the service. This means that if the
vehicle arrives too soon, it should wait until the opening of the time window to
serve the customer while too late arrival is not allowed. Since deliveries cannot
be split, a customer must be served by a single vehicle. All vehicles are identical
and have a maximum capacity Q. The aim is to plan the minimal number of
routes starting and ending in a unique depot in order to serve all the customers
while respecting all the time windows and capacity constraints.

VRPTW was first introduced by Solomon [25]. Both exact and heuristic algo-
rithms have been proposed to solve VRPTW. Most of the exact methods focus
on the variant of the problem where the number of available vehicles is not fixed.
A review on the exact methods up to 2002 is reported in [7]. Kallehauge in [17]
gave a detailed analysis of existing formulations. More recently, Baldacci et al.
[3] reviewed mathematical formulations, relaxations and recent exact methods.
They reported the computational comparison between the methods proposed in
[15], [8] and [2] that are considered as the most effective exact methods in the
literature. These approaches have significantly improved the quality of the lower
bounds for instances with up to 100 customers. The key factor of their success
is the effective combination between the set partitioning formulation and the
column generation based algorithms.

Since, VRPTW is an NP-Hard problem [21], the computational times for exact
methods can be very high, even for instances with a moderate size. This has been
the motivation for some researches to focus on approximate methods. It is worth
pointing out that the literature concerning VRPTW is split according to the
objective considered. While exact methods usually minimize the total traveled
distance, most heuristics consider a hierarchical objective which first minimizes
the number of vehicles used and then the total distance. Thus, a solution that
employs fewer vehicles is always better than a one using more, even if its total
traveled distance is worse. A good survey of heuristic methods is reported in the
papers of Bräysy and Gendreau [5] [6]. Among the best performing heuristics
are the hybrid genetic algorithm of [16], the column generation heuristic of [1]
and the memetic algorithm of [20]. A new optimization framework was later
developed by Ursani et al. [27] for the distance minimization objective only.
This framework is an iterative procedure between optimization and deterioration
phases and uses a genetic algorithm as an optimization methodology. In the
recent paper of Vidal et al. [28], a hybrid genetic solver is developed to deal
with a large class of time-constrained vehicle routing problem. A third stream of
research focuses on solving VRPTW as a multi-objective problem in which both
vehicles and cost are considered depending on the needs of the user [26] [24].

The goal of this paper is to use scheduling methods via Energetic Reason-
ing in order to develop new lower bounding procedures for VRPTW. This is
mainly based on constraint propagation concept. The objective is to reduce the
computational effort by removing some values from the variables of the problem

424 S. Afifi, R.N. Guibadj, and A. Moukrim

because a given subset of the constraints cannot be satisfied. The remained of
the paper is organized as follows. Section 2 briefly describes the problem. In Sec-
tions 3 and 4, the detailed description of the proposed lower bound methods is
given and in Section 5 the results of a computational study are reported. Finally,
Section 6 provides some concluding remarks.

2 Problem Formulation

In the following, we present a mixed integer formulation for VRPTW. The prob-
lem is modeled using an oriented graph G = (V +, E), where V + = {0, 1, 2, ..., n}
is the vertex set representing the set of customers V = {1, 2, ..., n} and the depot
0. E = {(i, j) : i �= j, i, j ∈ V +} is the edge set. The capacities of all vehicles are
equal and are denoted by Q. A demand qi, a service time si and a time window
[ei, li] are associated to each vertex i ∈ V . Vehicle v cannot arrive later than li
and if it arrives earlier than ei, it must wait before the service can start. Each
edge (i, j) ∈ E is associated with a travel cost δi,j which satisfies the triangle in-
equality. Each vehicle must start and finish its tour at the depot. Each customer
must be served within a predefined time window and assigned to exactly one
vehicle. The total size of deliveries for customers assigned to the same vehicle
must not exceed the vehicle capacity Q and the travel cost/time C(R) of each
tour R must not exceed l0 which is the latest possible arrival time to the depot.

The model involves three types of variables: the binary routing variables xij ∈
{0, 1} (i, j ∈ V +), the scheduling variables wi ≥ 0 (i ∈ V) and the vehicle load
variables yi (i ∈ V). The routing variables xij is one if a vehicle traverses the
arc (i, j) ∈ E. The scheduling variable wi denotes the time the vehicle arrives at
customer i ∈ V . yi denotes the vehicle load at departure from customer i. The
formulation is as follows:

min
∑
i∈V

x0i (1)

subject to:∑
j∈V +

xij = 1 ∀i ∈ V (2)

∑
j∈V +

xij −
∑
j∈V +

xji = 0 ∀i ∈ V + (3)

wj ≥ wi + xij(max(δi,j + si, ej − li))− (1− xij)(li − ej) ∀i, j ∈ V (4)

ei ≤ wi ≤ li ∀i ∈ V (5)

yj ≥ yi + qj − (1− xij)Q ∀i, j ∈ V (6)

qi ≤ yi ≤ Q ∀i ∈ V (7)

xij ∈ {0, 1} ∀i, j ∈ V + (8)

New Lower Bounds on the Number of Vehicles 425

The objective function (1) is to minimize the total number of vehicles used to
serve all the customers. Constraints (2) and (3) define the routing network and
the constraints (4) and (5) guarantee the connectivity of each tour and ensure
that the time windows are respected. We assume that the time windows are
adjusted such that ei = max(ei, δ0,i) and li = min(li, l0 − (δi,0 + si)) ∀i ∈ V .
Constraints (6) and (7) ensure that the vehicle’s capacity is not exceeded. Also,
constraints (6) eliminate subtours in a manner similar to (4). Finally, (8) are
integral constraints.

3 Classical Lower Bounding Techniques

There were only few attempts to propose lower bounds for VRPTW when the
objective is to minimize the number of vehicles. To the best of our knowledge,
the most competitive results are currently offered by Kontoravdis and Bard
[19]. In this section, we briefly review the main features of their lower bounding
heuristics.

3.1 A Lower Bound Based on Incompatibilities between Customers

The first lower bound is deduced from the incompatibility constraints. Let i and
j be two customers. If there is no feasible route containing i and j then they
define an incompatible pair denoted by i||j. Such a situation occurs if one of the
following conditions is verified:

1. Customers i and j cannot be in the same route due to their time window
constraints:
(ei + si + δi,j > lj) ∧ (ej + sj + δj,i > li) ⇒ i||j.

2. The travel cost of any tour with i and j exceeds the cost limit l0:
(C(R1) > l0) ∧ (C(R2) > l0) where R1 = (0, i, j, 0) ∧R2 = (0, j, i, 0) ⇒ i||j.

3. The sum of the demands is greater than the vehicle capacity:
qi + qj > Q ⇒ i||j.

Using these conditions, we build the graph of incompatibilities between cus-
tomers defined as: GV

inc = (V,EV) where EV = {(i, j) ∈ V × V : i||j}. Based
on this graph the minimum number of routes to be used, denoted LBClique, is
equal to the size of the maximum clique extracted from GV

inc.

3.2 A Lower Bound Based on Vehicle Capacity Constraints

The second bound is based on a relaxation of time window constraints. When
considering only the capacity constraints, VRPTW can be reduced to a Bin
Packing Problem (BPP). Each vehicle is considered as a bin with fixed size Q
and each customer demand as an item with size qi that should be put in a bin.
Any lower bound LBCapacity on the number of bins required to pack all the
items is considered as a valid lower bound for VRPTW.

426 S. Afifi, R.N. Guibadj, and A. Moukrim

3.3 A Lower Bound Based on the Amount of Needed Travel Time

This lower bound consists of calculating the minimum number of bins LBBP of
capacity l0 to pack n+m items. The size πi of an item i, 1 ≤ i ≤ n, represents
the necessary amount of time that a vehicle needs to serve customer i and to
travel to its closest neighbor. This time is defined by:

πi ← min
j∈V +

{max(δi,j + si, ej − li)} (9)

The sizes of the other m items correspond to the m least travel times from the
depot to the first served customers where m = max(LBClique, LBCapacity).

4 New Lower Bounds Inspired from Energetic Reasoning

In this section, we first present a brief overview of Energetic Reasoning, then we
discuss its adaptation to VRPTW.

4.1 Energetic Reasoning

Energetic Reasoning (ER) is one of the most powerful propagation algorithms.
It has been originally developed by Erschler et al. [9] for Cumulative Schedul-
ing Problems (CuSP). The idea is to propose a smart way to simultaneously
consider time and resource constraints in a unique reasoning. In this context,
the energy is generally defined by multiplying the time duration by the resource
quantity of a given time interval. Considering the quantities of energy supplied
by the resources and consumed by the tasks within given intervals, the energetic
approach aims to develop satisfiability tests to ensure that a given schedule is
feasible. Since its inception, Energetic Reasoning has gained popularity and has
been used for solving more complex scheduling problems [23].

In order to keep the same notation used for vehicle routing problem, we de-
scribe the CuSP as follows. We consider a set V of n activities to be scheduled
on a resource of quantity m. Each activity i has a release time ei, a latest start
time li and a processing time si. Moreover, the activity i requires a constant
amount bi of resource throughout its processing. We will deal here only with the
case where bi = 1, ∀i ∈ V . This is equivalent to the problem of scheduling n
activities on m identical parallel machines. For ease of presentation, we denote
this problems as PMSP.

Given a time interval [t1, t2], with t1 < t2, the part of an activity i that must
be processed between t1 and t2 is called work of i in the time interval [t1, t2]. To
compute this work, the activities are either left-shifted or right-shifted on their
time window, which means that, they can start either at their release date ei, or
at their latest start time li. Thus, the work of an activity i over [t1, t2] is equal
to the minimum between its left work and its right work. For convenience, the
left work, the right work and the work of an activity i over [t1, t2] are denoted

New Lower Bounds on the Number of Vehicles 427

respectively Wleft(i, t1, t2), Wright(i, t1, t2) and W (i, t1, t2). They are formally
defined as follows:

Wleft(i, t1, t2) = min{ t2 − t1, si,max(0, ei + si − t1)} (10)

Wright(i, t1, t2) = min{ t2 − t1, si,max(0, t2 − li)} (11)

W (i, t1, t2) = min(Wleft(i, t1, t2),Wright(i, t1, t2)) (12)

Finally, we define the total work over [t1, t2] as the sum of the works of

all the activities W (t1, t2) =
∑i=n

i=1 W (i, t1, t2) and the available energy in the
considered interval as E(t1, t2) = m ∗ (t2 − t1). If the total work is greater than
the available energy then no feasible solution exists.

Proposition 1. satisfiability test
if ∃[t1, t2], W (t1, t2) > E(t1, t2) then the instance is infeasible.

Note that one crucial point to apply efficiently Energetic Reasoning is to de-
termine the relevant time-intervals on which it may be useful to check feasibility
conditions. Baptiste et al. [4] have proved that the only relevant time intervals
[t1, t2] that need to be considered are those where t1 ∈ T1 and t2 ∈ T2 such as
t1 < t2, T1 = {ei, i ∈ V } ∪ {li, i ∈ V } ∪ {ei + si, i ∈ V } and T2 = {li + si, i ∈
V } ∪ {ei + si, i ∈ V } ∪ {li, i ∈ V }. Therefore, the satisfiability test algorithm
runs in O(n3). The detailed steps are summarized in Algorithm 1.

Algorithm 1. satisfiability test of Energetic Reasoning

Data: I : PMSP instance;
1 begin
2 initialization;
3 T1 = {ei, i ∈ V } ∪ {li, i ∈ V } ∪ {ei + si, i ∈ V };
4 T2 = {li + si, i ∈ V } ∪ {ei + si, i ∈ V } ∪ {li, i ∈ V };
5 foreach t1 ∈ T1 do
6 foreach t2 ∈ T2 such as t1 < t2 do
7 W ← 0;
8 foreach i ∈ V do
9 W ← W +W (i, t1, t2);

10 if W > m ∗ (t2 − t1) then
11 Infeasible instance ;

4.2 From VRPTW to PMSP

Our approach is to relax a VRPTW instance, where a limited number of vehicles
is given, in order to obtain a PMSP instance. Once the transformation is per-
formed, we apply the same satisfiability test on the relaxed m-VRPTW instance,

428 S. Afifi, R.N. Guibadj, and A. Moukrim

using Algorithm 1. Starting from a trivial valuem = max(LBClique, LBCapacity),
feasibility tests are carried out to detect an infeasibility (if in at least one of the
time intervals, the minimum number of vehicles found exceeds m). If an infea-
sibility is detected, then m + 1 is a valid lower bound. The process is iterated
until no infeasibility is detected.

A trivial relaxation of an m-VRPTW instance can be done by ignoring travel
times, customer demands and vehicle capacities. We obtain a PMSP where the
vehicles are considered as m identical parallel machines, the number of activities
is equal to the number of customers n and each activity i has to be processed
for si units of time by only one machine. The processing of activity i cannot be
started before its release date ei or after its lastest start time li.

In vehicle routing problems, travel times are not negligible compared to the
service times. Ignoring the travel time would undervalue the energy consumed.
Therefore, few adjustments could be performed and Energetic Reasoning be-
comes inefficient. Better results are obtained by considering the time that a
vehicle needs to travel in order to visit each customer.

First, the travel time δi,j between the customers i and j is updated to eliminate
the waiting time at the customer j.

δi,j ← max(δi,j , ej − (li + si)) ∀i ∈ V ∀ j ∈ V + (13)

Then, the number of potential successors of customer i is reduced. This is per-
formed by eliminating the transition δi,j if j cannot be served after i due to its
time window:

if(ei + si + δi,j > lj) then δi,j ← ∞ ∀i ∈ V + ∀ j ∈ V + \ {i} (14)

Before giving the detail of our travel evaluation procedure, we note by I ′ the
instance derived from the m-VRPTW instance I. We associate I ′ with a graph
G′ = (V ′, E′) after performing the following transformations:

1. We introduce m artificial departure vertices Vd and m artificial arrival ver-
tices Va. Then, we define the set V ′ = V ∪ Vd ∪ Va with V = {1, ..., n},
Vd = {n+ 1, ..., n+m} and Va = {n+m+ 1, ..., n+ 2×m}.

2. The set of arcs is defined by E′ = E ∪ {(i, j) : i �= j, i ∈ V ∪ Vd, j ∈ V ∪ Va}.
3. The distance matrix Π = (δi,j) is extended to Π′ = (δ′i,j) which is associated

to E′ such as:

δ′i,j =

⎧⎪⎪⎨⎪⎪⎩
δi,j (i, j ∈ V),
δ0,j (i ∈ Vd, j ∈ V),
δi,0 (i ∈ V, j ∈ Va),
∞ (i ∈ V ′, j ∈ Vd) or (i ∈ Va, j ∈ V ′)

(15)

New Lower Bounds on the Number of Vehicles 429

to
from 1 2 3 4 0

1 1 2 4 3

2 1 5

3 6

4 2

0 3 5 6 2

i [ei,li] si

1 [2,3] 2

2 [6,6] 2

3 [7,7] 2

4 [9,10] 2

0 [0,14] 0

b) The customers data

1

2

3

4

s01

12

14

13

02

01

03

20

30

24

 Departure Arrival 40

a) Illustration of an m-VRPTW instance with 4 customers and 2 vehicles

c) The distance matrix

 1 2 4 3 3

 1 5 5

 6 6

 2 2

3 5 6 2

3 5 6 2

arrival
vertices

departure
vertices

de
pa

rtu
re

ve
rti

ce
s

arr
iva

l
ve

rti
ce

s

c) Reducing the rows d) Reducing the columns

i' [e'i,l'i] s'i

1 [2,3] 3

2 [6,6] 3

3 [6,6] 9

4 [9,10] 4

5 [0,0] 2

6 [0,0] 3

7 [0,14] 0

8 [0,14] 0

d) The extended distance matrix ’

 0 1 3 2 2

 0 4 4

 0 0

 0 0

1 3 4 0

0 2 3 0

 0 0 3 2 2

 0 4 4

 0 0

 0 0

1 3 3 0

0 2 2 0

e) Reducing the rows f) Reducing the columns

1

2

3

4

s’1

6

5

h) Illustration of the resulting PMSP

Activities
corresponding to
the artificial
departure vertices

7

8

Activities
corresponding
to the artificial
arrival vertices

g) The activities data of the resulting PMSP

Fig. 1. An example of m-VRPTW instance relaxed to PMSP instance

430 S. Afifi, R.N. Guibadj, and A. Moukrim

The set of vertices V ′ in G′ denotes the n + 2 × m activities assigned to
I ′. The artificial departure activities corresponding to Vd have a time window
equal to [0, 0] and durations equal to the m smallest travel time from the depot
to customers {δmin

0,1 , ..., δmin
0,m }. This supposes that the vehicles must leave the

depot immediately in order to visit the m first customers. The artificial arrival
activities corresponding to Va have the largest possible time window [0, l0] and
no processing time. For the remaining activities, the range of the possible start
dates is equal to the customer’s time window [ei, li], while the processing time
is equal to the sum of the service time si with the minimal travel time that the
vehicle will necessary perform to reach the next customer.

[e′i, l
′
i] =

⎧⎪⎨⎪⎩
[0, 0] i ∈ Vd,

[0, l0] i ∈ Va,

[ei, li] i ∈ V

(16)

s′i =

⎧⎪⎨⎪⎩
δmin
0,i−n i ∈ Vd,

0 i ∈ Va,

si +minj∈V ′{δ′i,j} i ∈ V

(17)

Each row i , i ∈ V ′ of the extended matrix Π′ is updated by subtracting the
smallest element from the remaining ones (18). This means that the minimal
travel time after serving customer i is subtracted from the total distance of any
solution since every solution must include only one customer from this row. This
process is called reducing the rows. It was introduced by [22] in order to solve
the well known Traveling Salesman Problem.

δ′i,j =

{
δ′i,j −minj∈V ′{δ′i,j} ∀i ∈ V j ∈ V ′,
max(0, δ′i,j − δmin

0,i−n) ∀i ∈ Vdj ∈ V ′ (18)

Next, we apply the same argument to the resulting matrix, by considering
the minimal travel time to arrive from any customer j to customer i (19). This
time is added at the beginning of activity i. For this reason, the bounds of the
corresponding time window are shifted (20) (21). After these reducing operations,
the matrixΠ′ contains at least one zero in each row and each column. The Figure
1 illustrates the relaxation of an m-VRPTW instance with 4 customers and 2
vehicles.

s′i ← s′i +minj∈V ′{δ′j,i} ∀i ∈ V ′ (19)

e′i ← max(0, e′i −minj∈V ′{δ′j,i}) ∀i ∈ V ′ (20)

l′i ← max(0, l′i −minj∈V ′{δ′j,i}) ∀i ∈ V ′ (21)

According to the evaluation procedure of travel times, we distinguish two
possible lower bounds LBEReval1

and LBEReval2
. The former is obtained if the

New Lower Bounds on the Number of Vehicles 431

travel times to the successors are considered before the remaining travel times
from the predecessors whereas the latter is obtained by reversing the order of
the considered travels. LBER denotes the maximum between LBEReval1

and
LBEReval2

.

4.3 Bin-Packing Lower Bounds and Energetic Reasoning

We extend Energetic Reasoning, using the Bin-Packing Problem with Conflicts
(BPPC), to get tighter lower bounds for VRPTW. In each time-interval [t1, t2],
we compute the mandatory parts of activities and then we deduce an associated
bin-packing instance. The decision version of BPPC that we use can be formu-
lated as follows: given a set of items with different weights and a graph where
the vertices represent the items and the edges represent the conflicts between
the pairs of items; is there a packing of these items in less than m bins with a
capacity T ?

We now state the link between a necessary condition for the existence of
m-VRPTW solution and the existence of BPPC solution. Let I ′(V ′, Ginc,m)
denote a relaxed instance of m-VRPTW where V ′ is the set of activities, m
the number of available vehicles and Ginc the graph of incompatibilities be-
tween activities. Let [t1, t2] be a time-interval, we assume that the corresponding
mandatory parts of activities have been computed: W (i, t1, t2), ∀i ∈ V ′. Then,
BPPC(I ′, Ginc, t1, t2) denotes the packing instance which is associated to the
scheduling instance I ′ in the time-interval [t1, t2]. BPPC(I ′, Ginc, t1, t2) is made
ofm bins and n′ items of sizeWi = W (i, t1, t2), ∀i ∈ {1, ..., n}. The size of the bin
is equal to the length of the time-interval T = t2− t1. Then, deciding whether all
mandatory parts of the activities can be scheduled within [t1, t2] in I ′ is equiv-
alent to determine for BPPC(I ′, Ginc, t1, t2) if all items can be packed into the
available bins.

Property 1. If there exists a time-interval [t1, t2], such that BPPC(I ′, Ginc, t1,
t2) has no solution, then there is no solution to the initial problem I ′(V , Ginc,m).

Since this lower bound is based on NP-hard relaxation of m-VRPTW, it is
naturally much time consuming than LBER. Therefore, we did not lunch it on all
the previously defined time intervals. An interval [t1, t2] is selected if its conflict
sub graph density is greater than or equal 80% or if the ratio of activities works
to the available energy is close to 1 i.e. W (t1, t2)/[m ∗ (t2 − t1)] > 0.9.

As stated in Section 4.2, Energetic Reasoning uses two procedures to deter-
mine the processing time of activities. The new obtained lower bound LBERBPPC

represents the maximum between LBERBPPC eval1 and LBERBPPC eval2. In the
same way and by ignoring the conflict constraints, we can obtain a quicker lower
bound LBERBPP .

The example in Figure 2 illustrates the contribution of bin packing lower bounds
in the improvement of Energetic Reasoning results. We consider a VRPTW in-
stance with 8 customers defined by their time windows and service times. We sup-
pose that the vehicle capacity is large enough to satisfy all customers demands and

432 S. Afifi, R.N. Guibadj, and A. Moukrim

1

2

4

3

a) m-VRPTW instance with its associated incompatibility graph

b) Energetic Reasoning: LBER=3

6

8

5

1 2
3 4

5 6

8

7
7

1 2
3 4
5 6

8

7

1 2
3 4
5 6

8
7

7

i [ei,li] si

1 [2,3] 3

2 [6,7] 3

3 [2,3] 3

4 [6,7] 3

5 [2,3] 3

6 [6,7] 3

7 [2,3] 3

8 [3,3] 2

t1 =2 t2 =10 t1 =2 t2 =10 t1 =2 t2 =10

c) Energetic Reasoning with Bin Packing:
LBERBPP=4

d) Energetic Reasoning with Bin
Packing and conflicts:

LBERBPPC=5

Fig. 2. Illustration of Energetic Reasoning lower bounds

that customer 8 cannot be served with any other customer. The results obtained
by LBCapacity and LBClique are equal to 1 and 2 respectively.When analyzing the
interval [t1, t2], the Energetic Reasoning LBER gives 3. This result is improved by
applying Bin Packing lower bound and taking into account the conflicts between
customers (LBERBPP = 4 and LBERBPPC = 5).

5 Numerical Results

We tested our algorithms on the well known instances of Solomon [25], Gehring
and Homberger [11]. The benchmark comprises 6 sets (R1, C1, RC1, R2, C2,
RC2). Each data set contains 25, 50, 100, 200, 400, 600, 800 and 1000 customers
who have specific euclidean coordinates. Customers’ locations are determined
using a random uniform distribution for the problem sets R1 and R2, but are
restricted to be within clusters for the sets C1 and C2. Sets RC1 and RC2 have
a combination of clustered and randomly placed customers. Sets R1, C1 and
RC1 have a short scheduling horizon with tight time windows, while R2, C2
and RC2 are based on wide time windows. Our algorithms are coded in C++
and all experiments were conducted on an Intel(R) Core(TM) 2 Duo 2.93GHz.

New Lower Bounds on the Number of Vehicles 433

T
a
b
le

1
.
A
v
er
a
g
e
lo
w
er

b
o
u
n
d
re
su
lt
s
a
n
d
C
P
U

ti
m
es

fo
r
S
o
lo
m
o
n
in
st
a
n
ce
s

D
a
ta

S
e
t

n
C
la
s
s
ic
a
l

N
e
w

B
e
s
tL

B
B
e
s
tU

B
A
v
g
G
A
P

C
li
q
u
e

C
a
p
a
c
it
y

B
P

E
R

E
R
B
P
P

E
R
B
P
P
C

L
B

C
P
U

L
B

C
P
U

L
B

C
P
U

L
B

C
P
U

L
B

C
P
U

L
B

C
P
U

C
1

2
5

1
.8
9

0
3

0
2

0
3

0
3

0
3

0
3

3
0

C
2

2
5

1
0

1
0

1
0

1
.1
3

0
1
.1
3

0
1
.1
3

0
1
.1
3

1
.1
3

0
R
1

2
5

3
.5
8

0
2

0
3
.2
5

0
3
.9
2

0
3
.9
2

0
.0
1

4
0
.2
6

4
4
.7
5

0
.7
5

R
2

2
5

1
0

1
0

1
0

1
.0
9

0
1
.0
9

0
1
.0
9

0
.0
4

1
.0
9

1
.2
7

0
.1
8

R
C
1

2
5

2
.7
5

0
3

0
2
.2
5

0
3
.1
3

0
3
.1
3

0
3
.1
3

0
.0
3

3
.1
3

3
.2
5

0
.1
3

R
C
2

2
5

1
0

1
0

1
0

1
0

1
0
.0
1

1
0
.0
8

1
1
.5

0
.5

C
1

5
0

3
0

5
0

4
0

5
0

5
0

5
0

5
5

0
C
2

5
0

1
0

2
0

2
0

2
0

2
0

2
0

2
2

0
R
1

5
0

5
.2
5

0
4

0
5
.1
7

0
6
.3
3

0
.0
2

6
.3
3

0
.0
9

6
.4
2

7
6
.4
1

6
.4
2

7
.4
2

1
R
2

5
0

1
0

1
0

1
.1
8

0
1
.2
7

0
.0
1

1
.2
7

0
.0
6

1
.2
7

0
.2
3

1
.2
7

2
0
.7
3

R
C
1

5
0

4
.2
5

0
5

0
4
.1
3

0
5
.2
5

0
.0
1

5
.2
5

0
.0
5

5
.3
8

8
9
.8
8

5
.3
8

6
.5

1
.1
3

R
C
2

5
0

1
.1
3

0
1

0
1

0
1
.1
3

0
.0
1

1
.1
3

0
.0
5

1
.1
3

0
.2
8

1
.1
3

2
0
.8
8

C
1

1
0
0

4
.8
9

0
1
0

0
8

0
1
0

0
1
0

0
1
0

0
1
0

1
0

0
C
2

1
0
0

1
.3
8

0
3

0
3

0
3

0
3

0
3

0
3

3
0

R
1

1
0
0

7
.9
2

0
8

0
8
.3
3

0
1
0
.4
2

0
.1
1

1
0
.4
2

0
.4
5

1
0
.4
2

3
6
4

1
0
.4
2

1
1
.9
2

1
.5

R
2

1
0
0

1
.1
8

0
2

0
2

0
2
.0
9

0
.0
7

2
.0
9

0
.3
1

2
.0
9

2
7
.2

2
.0
9

2
.7
3

0
.6
4

R
C
1

1
0
0

6
.3
8

0
9

0
7
.6
3

0
9
.6
3

0
.1

9
.6
3

0
.4
5

9
.6
3

9
9
.5
2

9
.6
3

1
1
.5

1
.8
8

R
C
2

1
0
0

1
.1
3

0
2

0
2

0
2
.1
3

0
.1
1

2
.1
3

0
.4
4

2
.1
3

3
3
.1
6

2
.1
3

3
.2
5

1
.1
3

434 S. Afifi, R.N. Guibadj, and A. Moukrim

T
a
b
le

2
.
A
v
er
a
g
e
lo
w
er

b
o
u
n
d
re
su
lt
s
a
n
d
C
P
U

ti
m
es

fo
r
G
eh

ri
n
g
a
n
d
H
o
m
b
er
g
er

in
st
a
n
ce
s

D
a
ta

S
e
t

n
C
la
s
s
ic
a
l

N
e
w

B
e
s
tL

B
B
e
s
tU

B
A
v
g
G
A
P

C
li
q
u
e

C
a
p
a
c
it
y

B
P

E
R

E
R
B
P
P

E
R
B
P
P
C

L
B

C
P
U

L
B

C
P
U

L
B

C
P
U

L
B

C
P
U

L
B

C
P
U

L
B

C
P
U

C
1

2
0
0

8
.8

0
1
8

0
1
5

0
1
8
.3

0
.4
1

1
8
.3

1
.8
2

1
8
.3

4
2
9
.4
1

1
8
.3

1
8
.9

0
.6

C
2

2
0
0

2
.1

0
6

0
6

0
6

0
6

0
6

0
6

6
0

R
1

2
0
0

1
0
.4

0
1
8

0
7
.3

0
1
8
.2

0
1
8
.2

0
1
8
.2

0
1
8
.2

1
8
.2

0
R
2

2
0
0

1
.6

0
4

0
2

0
4

0
4

0
4

0
4

4
0

R
C
1

2
0
0

6
.8

0
1
8

0
6
.5

0
1
8

0
1
8

0
1
8

0
1
8

1
8

0
R
C
2

2
0
0

1
.9

0
4

0
2

0
4

0
.1
5

4
0
.7
5

4
1
4
0
.5
6

4
4
.3

0
.3

C
1

4
0
0

1
6
.9

0
.0
1

3
6

0
.0
1

2
6
.5

0
.0
1

3
6
.5

2
.8

3
6
.5

1
2
.4
7

3
6
.5

2
8
8
0
.1
2

3
6
.5

3
7
.6

1
.1

C
2

4
0
0

2
.5

0
.0
1

1
1

0
.0
1

1
1

0
.0
1

1
1
.2

2
.6

1
1
.2

1
2
.3
1

1
1
.2

2
8
8
0
.0
9

1
1
.2

1
1
.6

0
.4

R
1

4
0
0

1
7
.9

0
.0
1

3
6

0
.0
1

1
1
.7

0
.0
1

3
6
.4

0
3
6
.4

0
3
6
.4

0
3
6
.4

3
6
.4

0
R
2

4
0
0

2
.4

0
.0
1

8
0
.0
1

2
.7

0
.0
1

8
0

8
0

8
0

8
8

0
R
C
1

4
0
0

1
2
.8

0
.0
1

3
6

0
.0
1

1
0
.8

0
.0
1

3
6

0
3
6

0
3
6

0
3
6

3
6

0
R
C
2

4
0
0

3
.1

0
.0
1

8
0
.0
1

2
.8

0
.0
1

8
1
.1
1

8
5
.5
5

8
1
4
4
0
.0
4

8
8
.4

0
.4

C
1

6
0
0

2
4
.2

0
.0
3

5
6

0
.0
2

4
0
.4

0
.0
2

5
6
.4

5
.3
5

5
6
.4

3
1
.2
5

5
6
.4

2
1
6
0
.3
2

5
6
.4

5
7
.2

0
.8

C
2

6
0
0

4
.3

0
.0
2

1
7

0
.0
1

1
5
.9

0
.0
2

1
7
.1

5
.9
2

1
7
.1

2
8
.7
2

1
7
.1

2
1
6
0
.3
1

1
7
.1

1
7
.4

0
.3

R
1

6
0
0

2
8
.1

0
.0
3

5
4

0
.0
1

1
3
.9

0
.0
2

5
4
.5

0
5
4
.5

0
5
4
.5

0
5
4
.5

5
4
.5

0
R
2

6
0
0

4
.3

0
.0
2

1
1

0
.0
1

3
.4

0
.0
1

1
1

0
1
1

0
1
1

0
1
1

1
1

0
R
C
1

6
0
0

1
9
.7

0
.0
4

5
5

0
.0
2

1
2
.2

0
.0
2

5
5

0
5
5

0
5
5

0
5
5

5
5

0
R
C
2

6
0
0

4
.7

0
.0
2

1
1

0
.0
1

2
.9

0
.0
2

1
1

3
.6
3

1
1

1
8
.3
8

1
1

1
4
4
0
.1
6

1
1

1
1
.4

0
.4

C
1

8
0
0

3
4
.4

0
.0
8

7
2

0
.0
5

4
9
.3

0
.0
5

7
2
.8

1
8
.3
6

7
2
.8

9
7
.4
5

7
2
.8

4
3
2
2
.5

7
2
.8

7
5

2
.2

C
2

8
0
0

5
.7

0
.0
5

2
2

0
.0
4

2
1

0
.0
4

2
2
.2

4
8
.5
5

2
2
.2

2
2
8
.2
5

2
2
.2

9
7
2
2
.1
8

2
2
.2

2
3
.3

1
.1

R
1

8
0
0

3
5
.3

0
.0
6

7
2

0
.0
5

1
5
.8

0
.0
5

7
2
.8

0
7
2
.8

0
7
2
.8

0
7
2
.8

7
2
.8

0
R
2

8
0
0

5
.3

0
.0
5

1
5

0
.0
4

3
.5

0
.0
4

1
5

0
1
5

0
1
5

0
1
5

1
5

0
R
C
1

8
0
0

2
7
.5

0
.4
1

7
2

0
.0
5

1
4
.9

0
.0
4

7
2

0
7
2

0
7
2

0
7
2

7
2

0
R
C
2

8
0
0

6
.6

0
.0
5

1
5

0
.0
4

3
.5

0
.0
4

1
5

8
.9
6

1
5

4
5
.7

1
5

2
1
6
0
.5
2

1
5

1
5
.4

0
.4

C
1

1
0
0
0

4
4
.6

0
.3
4

9
0

0
.0
9

5
8

0
.0
9

9
1

3
5
.2
2

9
1

1
8
5
.6
4

9
1

4
3
2
4
.8

9
1

9
3
.9

2
.9

C
2

1
0
0
0

7
.9

0
.1
1

2
8

0
.0
9

2
5
.1

0
.0
7

2
8
.1

6
7
.8
1

2
8
.1

2
8
4
.2
1

2
8
.1

6
4
8
4
.5
9

2
8
.1

2
8
.8

0
.7

R
1

1
0
0
0

4
4
.5

0
.1
3

9
1

0
.0
9

1
9
.5

0
.0
8

9
1
.9

0
9
1
.9

0
9
1
.9

0
9
1
.9

9
1
.9

0
R
2

1
0
0
0

6
.5

0
.0
9

1
9

0
.0
8

4
0
.0
7

1
9

0
1
9

0
1
9

0
1
9

1
9

0
R
C
1

1
0
0
0

3
1
.5

0
.7
9

9
0

0
.0
8

1
7
.7

0
.0
8

9
0

0
9
0

0
9
0

0
9
0

9
0

0
R
C
2

1
0
0
0

7
.8

0
.1

1
8

0
.0
8

4
.1

0
.0
7

1
8

8
.2
1

1
8

4
0
.3
2

1
8

1
0
8
0
.5
7

1
8

1
8
.2

0
.2

New Lower Bounds on the Number of Vehicles 435

Finding a clique with the greatest cardinality involves the use of an exact
method with exponential worst case performance. Nevertheless, our experiments
on the standard benchmarks show that the maximum clique can be identified
in a fraction of a second using the exact method described in [18]. For the Bin
Packing Problem, we use the heuristic algorithm developed by [14] to get good
lower bounds in a reasonable computational times. When conflicts are considered
in solving Bin Packing, we apply the approach proposed in [12]. For performance
purpose, we launch this algorithm with a time out of 3 hours.

Table 1 and Table 2 compare the performance of our Energetic Reasoning
bounds: LBER, LBERBPP and LBERBPPC to the elementary bounds present in
the literature: LBClique, LBCapacity and LBBP . The column BestUB represents
the overall best-published upper bounds. The maximum of the lower bounds is
reported in column BestLB. In AvgGAP , we present the average gap between
BestUB and BestLB.

In general, the proposed techniques give the minimum number of vehicles
of 339 instances among the 468 instances tested and give near optimal solu-
tion for the rest. The average performance of LBCapacity is consistently better
than LBClique, but LBClique outperforms LBCapcaity in 5 instances in C1, 25
instances in R1, 4 instances in RC1 and 1 instance in RC2 by a margin of 128.
This is due to the structure of the data sets which does not favor time and
capacity incompatible pairs. On the other hand, the three new lower bounds:
LBER, LBERBPP and LBERBPPC produced consistent results across all data
sets. Compared to the classical lower bound techniques: LBClique, LBCapacity

and LBBP , they give better bounds for 23 instances.
When Energetic Reasoning is combined to BPP (LBERBPP) and BPPC

(LBERBPPC), the results outperform the bounds produced by LBER in 3 in-
stances. This is due to the fact that the incompatibilities are considered at
each examined time interval. These results confirm that the association of ER
and BPPC is very efficient for VRPTW. We believe that ERBPPC will clearly
outperform ER on highly constrained data set with more incompatible pairs.
To conclude, the overall performance of the new lower bounding procedures
has been encouraging. The use of Energetic Reasoning improves many lower
bounds and gives good results for both capacity constrained problems and time
constrained problems.

6 Conclusion

In this paper, we introduced several combinatorial optimization methods which
can be used to get lower bounds for the Vehicle Routing Problem with Time
Windows (VRPTW). Investigating the concept of Energetic Reasoning, we were
able to propose new lower bounding techniques based on the transformation of
m-VRPTW instance to PMSP. The numerical results confirm the contribution
brought by the new proposed techniques. With a very fast computing time, we
were able to provide the exact number or a reasonable approximation of the
minimum number of vehicles required to visit all the customers. This suggests

436 S. Afifi, R.N. Guibadj, and A. Moukrim

that our lower bounds techniques can quickly produce a good estimation of the
fleet size. A challenging area for future research is to develop an exact method
using the proposed lower bound procedures.

Acknowledgments. This work is partially supported by the Regional Coun-
cil of Picardie and the European Regional Development Fund (ERDF), under
PRIMA project. It is also partially supported by the National Agency for Re-
search (project ATHENA, Reference ANR-13-BS02-0006-01).

Bibliography

[1] Alvarenga, G.B., Mateus, G.R., De Tomi, G.: A genetic and set partitioning two-
phase approach for the vehicle routing problem with time windows. Computers &
Operations Research 34(6), 1561–1584 (2007)

[2] Baldacci, R., Mingozzi, A., Roberti, R.: New route relaxation and pricing strategies
for the vehicle routing problem. Operations Research 59(5), 1269–1283 (2011)

[3] Baldacci, R., Mingozzi, A., Roberti, R.: Recent exact algorithms for solving the
vehicle routing problem under capacity and time window constraints. European
Journal of Operational Research 218(1), 1–6 (2012)

[4] Baptiste, P., Le Pape, C., Nuijten, W.: Satisfiability tests and time-bound ad-
justments for cumulative scheduling problems. Annals of Operations Research 92,
305–333 (1999)

[5] Bräysy, O., Gendreau, M.: Vehicle routing problem with time windows, part i:
Route construction and local search algorithms. Transportation Science 39(1),
104–118 (2005)

[6] Bräysy, O., Gendreau, M.: Vehicle routing problem with time windows, part ii:
Metaheuristics. Transportation Science 39(1), 119–139 (2005)

[7] Cordeau, J.F., Desaulniers, G., Desrosiers, J., Solomon, M.M., Soumis, F.: The
vehicle routing problem. ch. VRP with Time Windows, pp. 157–193. Society for
Industrial and Applied Mathematics, Philadelphia (2001)

[8] Desaulniers, G., Lessard, F., Hadjar, A.: Tabu search, partial elementarity, and
generalized k-path inequalities for the vehicle routing problem with time windows.
Transportation Science 42(3), 387–404 (2008)

[9] Erschler, J., Lopez, P., Thuriot, C.: Raisonnement temporel sous contraintes de
ressources et problèmes d’ordonnancement. Revue d’Intelligence Artificielle 5(3),
7–36 (1991)

[10] Fisher, M.L., Jörnsten, K.O., Madsen, O.B.: Vehicle routing with time windows:
Two optimization algorithms. Operations Research 45(3), 488–492 (1997)

[11] Gehring, H., Homberger, J.: A parallel hybrid evolutionary metaheuristic for the
vehicle routing problem with time windows. In: Proceedings of EUROGEN 1999,
vol. 2, pp. 57–64 (1999)

[12] Gendreau, M., Laporte, G., Semet, F.: Heuristics and lower bounds for the bin
packing problem with conflicts. Computers & Operations Research 31(3), 347–358
(2004)

[13] Golden, B.L., Assad, A.A., Wasil, E.A.: Routing vehicles in the real world: Ap-
plications in the solid waste, beverage, food, dairy, and newspaper industries. In:
The Vehicle Routing Problem, pp. 245–286. SIAM Monographs on Discrete Math-
ematics and Applications, Philadelphia (2002)

New Lower Bounds on the Number of Vehicles 437

[14] Haouari, M., Gharbi, A.: Fast lifting procedures for the bin packing problem.
Discrete Optimization 2(3), 201–218 (2005)

[15] Jepsen, M., Petersen, B., Spoorendonk, S., Pisinger, D.: Subset-row inequali-
ties applied to the vehicle-routing problem with time windows. Operations Re-
search 56(2), 497–511 (2008)

[16] Jung, S., Moon, B.R.: A hybrid genetic algorithm for the vehicle routing problem
with time windows. In: GECCO 2002: Proceedings of the Genetic and Evolution-
ary Computation Conference, July 9-13, pp. 1309–1316. Morgan Kaufmann, New
York (2002)

[17] Kallehauge, B.: Formulations and exact algorithms for the vehicle routing problem
with time windows. Computers & Operations Research 35(7), 2307–2330 (2008)

[18] Konc, J., Janezic, D.: An improved branch and bound algorithm for the maximum
clique problem. Proteins 58, 569–590 (2007)

[19] Kontoravdis, G., Bard, J.F.: A grasp for the vehicle routing problem with time
windows. ORSA Journal on Computing 7(1), 10–23 (1995)

[20] Labadi, N., Prins, C., Reghioui, M.: A memetic algorithm for the vehicle routing
problem with time windows. Rairo-Operations Research 42, 415–431 (2008)

[21] Lenstra, J.K., Kan, A.: Complexity of vehicle routing and scheduling problems.
Networks 11(2), 221–227 (1981)

[22] Little, J.D.C., Murty, K.G., Sweeney, D.W., Karel, C.: An algorithm for the trav-
eling salesman problem. Operations Research 11(6), 972–989 (1963)

[23] Néron, E., Baptiste, P., Gupta, J.N.: Solving hybrid flow shop problem using
energetic reasoning and global operations. Omega 29(6), 501–511 (2001)

[24] Ombuki, B., Ross, B.J., Hanshar, F.: Multi-objective genetic algorithms for vehicle
routing problem with time windows. Applied Intelligence 24, 17–30 (2006)

[25] Solomon, M.M.: Algorithms for the vehicle routing and scheduling problems with
time window constraints. Operations Research 35(2), 254–265 (1987)

[26] Tan, K.C., Chew, Y., Lee, L.: A hybrid multiobjective evolutionary algorithm for
solving vehicle routing problem with time windows. Computational Optimization
and Applications 34(1), 115–151 (2006)

[27] Ursani, Z., Essam, D., Cornforth, D., Stocker, R.: Localized genetic algorithm
for vehicle routing problem with time windows. Applied Soft Computing 11(8),
5375–5390 (2011)

[28] Vidal, T., Crainic, T.G., Gendreau, M., Prins, C.: A hybrid genetic algorithm with
adaptive diversity management for a large class of vehicle routing problems with
time-windows. Computers & Operations Research 40(1), 475–489 (2013)

Constrained Clustering Using Column

Generation

Behrouz Babaki1, Tias Guns1, and Siegfried Nijssen1,2

1 Department of Computer Science, KU Leuven, Belgium
{firstname.lastname}@cs.kuleuven.be

2 LIACS, Universiteit Leiden, The Netherlands

Abstract. In recent years, it has been realized that many problems in
data mining can be seen as pure optimisation problems. In this work,
we investigate the problem of constraint-based clustering from an opti-
misation point of view. The use of constraints in clustering is a recent
development and allows to encode prior beliefs about desirable clusters.
This paper proposes a new solution for minimum-sum-of-squares clus-
tering under constraints, where the constraints considered are must-link
constraints, cannot-link constraints and anti-monotone constraints on
individual clusters. Contrary to most earlier approaches, it is exact and
provides a fundamental approach for including these constraints. The
proposed approach uses column generation in an integer linear program-
ming setting. The key insight is that these constraints can be pushed into
a branch-and-bound algorithm used for generating new columns. Exper-
imental results show the feasibility of the approach and the promise of
the branch-and-bound algorithm that solves the subproblem directly.

1 Introduction

One of the core problems studied in the data mining and machine learning
literature is that of clustering. Given a database of examples, the clustering task
involves identifying groups of similar examples; such groups are for instance
indicative for patients with similar clinical observations, customers with similar
purchase behaviour, or website visitors with similar click behaviour.

While the clustering problem is common in the data mining literature, it is
only recently realized in the data mining community that this problem is closely
related to problems studied in the optimization literature, and hence that open
problems in clustering may be solved using generic optimization tools. In this
paper, we study one such open problem: Optimal Constrained Minimum Sum-
of-Squares Clustering (MSSC). We show that a generic optimization strategy
can be used to address this problem.

Many types of clustering problems are known in the literature; however, MSS
clustering is arguably one of the most popular clustering settings. In MSS clus-
tering, the task is to find a clustering in which each example is put into exactly
one cluster. Clusters do not overlap and together they cover all the available
data. Clusters should be chosen such that points within a cluster have small
sum-of-squared distances.

H. Simonis (Ed.): CPAIOR 2014, LNCS 8451, pp. 438–454, 2014.
c© Springer International Publishing Switzerland 2014

Constrained Clustering Using Column Generation 439

The popularity of the MSS clustering setting is partially due to the k-means
algorithm. K-means is a heuristic algorithm which quickly converges to a local
minimum and is included in most data mining toolkits. Even though successful,
basic k-means has several disadvantages. One is its randomized nature: each run
of the algorithm may yield a different clustering. Another is its lacking ability
to take into account prior knowledge of a user.

There are many types of prior knowledge that a user may have. A common
perspective is to formalize prior knowledge in terms of constraints on the clusters
one wishes to find [6], where the most popular constraints are must-link and
cannot-link constraints. A must-link constraint enforces that examples that are
known to be related, are part of the same cluster. A cannot-link constraint,
on the other hand, enforces that examples that are not related are not part of
the same cluster. These constraints are popular as many other constraints can
be transformed into must-link and cannot-link constraints [9]. The maximum
cluster diameter constraint, for instance, requires that each cluster must have a
diameter of at least distance Γ; hence, any two points that are further than Γ
apart cannot link together. The minimum cluster separation constraint requires
that clusters must be separated by at least distance Θ; hence, any two points
that are less than Θ apart must link together.

Other clustering settings that can be seen as constraint-based clustering prob-
lems are problems in which clusters need to have a minimum or maximum size,
or where one is looking for alternative clusterings [15].

An important question is how to find a clustering that satisfies constraints.
Here, most algorithms in the data mining literature take a heuristic approach.
Arguably, the most well-known example is the COP-k-means algorithm [23],
which modifies the k-means algorithm to deal with must-link and cannot-link
constraints. Unfortunately, even though the algorithm is fast, it may not find a
solution that satisfies all constraints even if such a solution exists [9]. In itself, this
is not surprising as the problem is known to be NP hard and hence a polynomial
solution is not likely to exist [2,9]. As a result, the problem of how to solve the
MSSC problem under constraints is still open.

This paper addresses this challenge and develops a generic approach that can
find an optimal solution to constrained MSSC problems. While we will focus on
must-link and cannot-link constraints, the approach allows for the inclusion of
several other constraints as well; we will show that the approach works for all
constraints that are anti-monotone.

Our approach builds on earlier work that showed the feasibility of uncon-
strained optimal MSS clustering [14,4] by using column generation in an integer
linear programming setting. The column generation process is here responsible
for identifying candidate clusters that can be put into a clustering. We will show
that most clustering constraints can be dealt with by pushing the constraints in
a branch-and-bound algorithm for column generation.

This paper is organized as follows. Section 2 introduces MSS clustering and
MSS clustering under constraints. Section 3 gives an overview of how to find a
solution using a column generation process, building on the earlier work of [14,4].

440 B. Babaki, T. Guns, and S. Nijssen

In Section 4 we introduce a branch-and-bound approach for generating columns
under constraints. Section 5 discusses practical considerations in the implemen-
tation of this algorithm. Section 6 provides experiments, Section 7 discusses
related work and Section 8 concludes.

2 MSSC

Assumed given is a dataset D with n data points. Each example in the dataset is
a point p in anm-dimensional space and is represented by a vector withm values.
One cluster is defined as a set of data points C ⊆ D. A clustering consists of k
such clusters, and corresponds to a partitioning of the data into k groups. The
number of clusters k is typically given upfront by the user. In MSS clustering,
the clusters in a clustering are usually non-overlapping, that is, each data point
belongs to exactly one cluster.

Given a cluster C ⊆ D, the cluster center or centroid is the mean of the data
points that belong to that cluster:

zC = mean(C) =

∑
p∈C p

|C| (1)

The quality of a clustering can be measured in many different ways. In MSS
clustering, the quality of a clustering is measured using the sum of squared dis-
tances between each point in a cluster and the centroid of the cluster: SSC(C) =∑

C∈C
∑

p∈C d2(p, zC), where d(·, ·) calculates the distance between two points,
for example, the Euclidean distance.

Note that for a cluster C, the sum of squared distances to its centroid equals
the sum of all pairwise distances between the points of that cluster, divided by
the size of the cluster:∑

p∈C

d2(p, zC) =

∑
p1,p2∈C d2(p1, p2)

|C| (2)

For simplicity of notation, when we write p1, p2 ∈ C we assume that every pair
of two points in C is included in the sum exactly once. To summarize the MSSC
problem, a mathematical programming formulation is given in Table 1.

The best known clustering algorithm that uses sum of squared distances is
the k-means algorithm. It is an approximate algorithm that starts with an initial
random clustering and iteratively minimizes the sum-of-squares using the follow-
ing two steps: 1) add each data point to the cluster with closest cluster centre;
2) compute the new cluster centre of the resulting clusters. These two steps are
iterated until convergence, that is, the cluster centres do not change any more.
This procedure can get stuck in local minima and it is not uncommon that two
different runs (e.g. with different initial clusters) produce different clusterings.

Constraints. The most well-known constraints are must-link and cannot-link
constraints. Let ML and CL be subsets of D ×D. Then a cluster C satisfies a

Constrained Clustering Using Column Generation 441

must-link constraint (p1, p2) ∈ ML iff |{p1, p2}∩C| �= 1; it satisfies a cannot-link
constraint (p1, p2) ∈ CL iff |{p1, p2} ∩ C| ≤ 1.

Note that both constraints can be evaluated on the individual clusters in a
clustering. This is a key observation for our work.

In a seminal paper by Wagstaff et al [23], the COP-k-means algorithm is pro-
posed. COP-k-means is an extention of the k-means algorithm towards must-link
and cannot-link constraints. It modifies the k-means algorithm by not assign-
ing each point to its closest cluster centre, but rather to the closest centre that
satisfies all constraints. If no such centre exists, the algorithm terminates. An
alternative approach is to continue running the algorithm, even though the final
solution might then not satisfy all constraints; in any case, the algorithm is not
guaranteed to find a solution even if there exists one.

Many other constraints are possible. We will not give a complete overview here
(see Section 7 and [6]). For this work it is however important to observe that
many problems can be formalized using constraints that are anti-monotone. We
call a boolean constraint γ(C) on a cluster C of data points anti-monotone iff
γ(C) implies γ(C′) for all C′ ⊆ C. The cannot-link constraint is anti-monotone:
if a cluster C satisfies a cannot-link constraint, every subset also satisfies this
constraint. There are many other anti-monotone constraints:

– a maximum cluster size constraint on clusters |C| ≤ π, which can be used to
avoid that one cluster dominates a clustering;

– a maximum overlap constraint |C ∩X | ≤ π, which can be used to avoid that
any cluster found is too similar to a given set of points X ; this generalizes
the cannot-link constraint;

– a minimum difference constraint |C\X | ≤ π, which requires a certain simi-
larity to cluster X ;

– a soft cannot-link constraint, which requires that the number of pairs of
points in a cluster that have a cannot-link constraint among them is bounded;

– conjunctions or disjunctions of anti-monotone constraints.

A conjunction of anti-monotone constraints can for instance be used to find an
alternative clustering: starting from a clustering C, we can enforce that in a new
clustering every cluster is different from all clusters in the earlier clustering.

Must-link constraints are an example of constraints that are not anti-monotone.
In the following sections, we will show how to solve the MSS problem under a
combination of anti-monotone constraints and must-link constraints, by adapting
a state-of-the-art unconstrained optimal clustering algorithm. A feature of the
algorithm is that it exploits the anti-monotonicity of cluster constraints.

3 Column Generation Framework

In this section we give a brief overview of an ILP formulation of MSSC and a
column generation method for solving it, based on the (unconstrained) MSSC
column generation framework of Aloise et al. [4]. The next section will introduce
our proposed approach for taking constraints into account.

442 B. Babaki, T. Guns, and S. Nijssen

Table 1. MSS clustering

minimize
C

∑
C∈C

∑
p∈C

d2(p, zC), (3)

s.t.

C1 ∩ C2 = ∅ ∀C1, C2 ∈ C
(4)

|
⋃
C∈C

C| = n (5)

|C| = k (6)

Table 2. An ILP model for MSS clustering

minimize
x

∑
t∈T

ctxt, (7)

s.t. ∑
t∈T

xtait = 1 ∀i ∈ {1, . . . , n}

(8)∑
t∈T

xt = k (9)

xt ∈ {0, 1} ∀t ∈ T
(10)

An ILP formulation of MSSC. Given a dataset with n data points, the number
of possible clusters is 2n. In principle, we can hence reformulate the clustering
problem using a Boolean n by 2n matrix A that represents all possible clusters:
each column is a cluster where ait = 1 if data point pi is in cluster t and
ait = 0 otherwise. We define the cost of a cluster (column) as the sum of squared
distances of the points in the cluster to its mean: ct =

∑n
i=1 d

2(pi, zt)ait.
The problem in equations 3-6 can then be formulated as an Integer Linear

Program as in Table 2 [14], where T = {1, . . . , 2n} denotes all possible clusters.
Equation 7 corresponds to the SSC criterion. Equation 8 states that each data
point must be covered exactly once. Hence it enforces both that the clusters
are not overlapping and that all points are covered. Equation 9 finally ensures
that exactly k clusters are found. Note that the k-means (and COP-k-means)
algorithm can return empty clusters and hence less than k clusters in some
occasions. This can not arise in the above formulation.

For even moderate sizes of n the number of clusters will be too large to solve
the above ILP by first materializing A. However, we can use a column generation
approach in which the master problem (Eq. 7-10) is restricted to a smaller set
T ′ ⊆ T and columns (clusters) are incrementally added until the optimal solution
is provably found.

Column Generation. iterates between solving the restricted master problem and
adding one or multiple columns. A column is a candidate for being added to
the restricted master problem if adding it can improve the objective function.
If no such column can be found, one is certain that the optimal solution of the
restricted master problem is also the optimal solution of the full master problem.
Whether a column can improve on the objective can be derived from the dual.

The dual of the master problem (Table 2) is given in Table 3. Here τi indicates
a dual value corresponding to the constraint in equation 8 and α a dual value
corresponding to equation 9. One column in the master problem corresponds to
one constraint in the dual (Equation 12).

Constrained Clustering Using Column Generation 443

Table 3. Dual of the optimization problem

maximize
λ,σ

− kσ +

n∑
i=1

λi (11)

s.t.

− σ +
n∑

i=1

aitλi ≤ ct ∀t ∈ T

(12)

λi ≥ 0 ∀i ∈ {1, . . . , n}
(13)

σ ≥ 0 (14)

Table 4. Model with stabilization in-
cluded (N = {1, . . . , n})

minimize
x

∑
t∈T

ctxt +
n∑

i=1

θiyi, (15)

s.t. ∑
t∈T

xtait + yi = 1 ∀i ∈ N

(16)∑
t∈T

xt = k (17)

xt ∈ {0, 1} ∀t ∈ T
(18)

− μ ≤ yi ≤ μ ∀i ∈ N
(19)

Given values for τ and α, obtained by solving a restricted master problem, we
need to determine whether there are columns for which α−

∑n
i=1 aitτi + ct < 0,

that is, whether there are columns with a negative reduced cost. If no such column
can be found, the current solution is optimal.

Finding a column with negative reduced cost is called pricing. While a pric-
ing routine can return any column with a negative reduced cost, one typically
searches for the smallest one; hence we are interested in finding:

argmin
t∈T

α −
n∑

i=1

aitτi + ct. (20)

Solving this pricing problem is not trivial, given the large number of columns.
The details of solving the pricing subproblem will be discussed in more detail in
Section 4.

When solving the restricted master problem, it is possible that it has no
feasible solution. In this case, Farkas’ Lemma [22] can be used to add columns
that gradually move the solutions of the restricted master problems closer to
the feasible region, or to prove infeasibility of the master problem. This Farkas
pricing is similar to the regular pricing explained above. In this case, the problem
to optimize is:

argmin
t∈T

α′ −
n∑

i=1

aitτ
′
i (21)

where α′ and τ′ are the dual Farkas values. Note that this is the same problem
as the regular pricing problem above, with the exception that the cost ct of the
cluster does not need to be taken into account.

444 B. Babaki, T. Guns, and S. Nijssen

4 Column Generation with Constraints

Given the earlier observations, one can see that enforcing constraints on clusters
C amounts to removing from the cluster matrix A all clusters that do not satisfy
these constraints. In a column generation scheme, this means that it is sufficient
to add these constraints to the subproblem solver; they do not need to be added
to the master problem. The rest of this section explains our proposed branch-
and-bound method for solving the (constrained) subproblem.

4.1 Subproblem Solving

Essentially, in each iteration of the column generation process we need to solve a
constrained minimisation problem. The objective function to minimize is given
by equation 20 (equation 21 in case of infeasibility). By removing the constant
α and using equation 2, we can rewrite the objective as:

argmin
t∈T

n∑
i=1

d2(pi, zt)ait + α −
n∑

i=1

aitτi (22)

= argmin
t∈T

∑n
i=1

∑n
j=i+1 d

2(pi, pj)aitajt∑n
i=1 ait

−
n∑

i=1

aitτi (23)

Let us represent the cluster t ∈ T and its corresponding column a·t as a set X .
We define d(X) =

∑
i,j∈X d2(pi, pj), where every pair is only considered once

in the sum, d(X,Y) =
∑

i∈X,j∈Y d2(pi, pj) and τ(X) =
∑

i∈X τi. We can now
rephrase our problem as that we wish to search for a cluster X :

argmin
X

d(X)

|X | − τ(X) (24)

and such that all constraints on clusters are satisfied.

Blocks. A first simple observation is that the must-link constraints are transitive
and hence the must-link relation is an equivalence relation. We will refer to
the equivalence classes as blocks. We can rephrase our optimization problem
as an optimization problem over the blocks. Let X = [pi]ML denote the block
that point pi ∈ D belongs to (a point can never belong to two blocks) and let
D/ML = {[pi]ML | pi ∈ D} denote the blocks in the data. We are looking for a
subset of the blocks X̄ ⊆ D/ML such that the following criterion is minimized:

f(X̄) =

⎛⎝∑
X∈X̄

d(X) +
∑

X,Y ∈X̄

d(X,Y)

⎞⎠ /
∑
X∈X̄

|X | −
∑
X∈X̄

τ(X). (25)

Note that we can precompute the terms d(X), d(X,Y), |X | and τ(X) for all
X,Y ∈ D/ML. Note furthermore that if ML = ∅ then ∀X ∈ X̄ : |X | = 1 and
this formula is identical to the one without constraints.

In addition, the choice of X̄ has to satisfy the cannot-link constraint: for no
two X,Y ∈ X̄ it may be the case that i ∈ X, j ∈ Y, (i, j) ∈ CL.

Constrained Clustering Using Column Generation 445

Algorithm 1. Branch-and-bound(Set: X̄, Set: C̄)

X̄ is the current set of blocks under consideration, C̄ the possible extensions to X̄ .

1: C̄ := reduce-candidates(X̄, C̄)
2: if not prunable(X̄, C̄) then
3: Store C̄ in a stack
4: Process X̄ as candidate cluster
5: while C̄ is not empty do
6: C := C̄.pop ()
7: Branch-and-bound (X̄ ∪ {C}, C̄)
8: end while
9: end if

Algorithm. We propose to use a branch-and-bound algorithm to solve this prob-
lem. This algorithm performs a set-enumeration and is given in Algorithm 1
(initialized with Branch-and-bound({}, D/ML)). It uses newly developed prun-
ing strategies to make the search feasible and is easily extended to include a
wide range of constraints. In order to prune candidates, we either remove some
candidates from consideration (line 1) or discard a branch of the search tree
using bounds on the objective function (line 2).

The removal of candidates in line 1 corresponds to propagation in a constraint
programming setting [8]. However, we will show that the proposed bound used
in line 2 is not valid in the presence of arbitrary constraints and hence cannot
be used in general.

4.2 Reducing the Number of Candidates

We employ three strategies to reduce the set of candidates in line 1 of
Algorithm 1:

Cannot-Link Constraints. The cannot-link constraint is easily taken into ac-
count: when there is a cannot-link constraint between a block in C̄ and a block
in X̄, the block is removed from C̄.

Anti-monotone constraints other than cannot-link constraints are easily in-
cluded as well: if a set X̄ ∪ {C} does not satisfy an anti-monotone constraint,
the candidate C can be removed in line 1.
Block Compatibility. Assume that we have a block C1 ∈ X̄ and a block C2 ∈ C̄
and the following holds:

d(C1) + d(C2) + d(C1, C2)

|C1|+ |C2|
− τ(C1)− τ(C2) > 0,

then any cluster X̄ ′ we could build that includes both C1 and C2 can be improved
by removing both C1 and C2:

446 B. Babaki, T. Guns, and S. Nijssen

f(X̄) =
∑

pi∈∪X̄

d(pi, z∪X̄)2 −
∑
X∈X̄

τ(X) ≥

∑
pi∈∪X̄\{C1,C2}

d(pi, z∪X̄\{C1,C2})
2 +

∑
pi∈C1∪C2

d(pi, zC1∪C2)
2 −

∑
X∈X̄

τ(X) ≥

∑
pi∈∪X̄\{C1,C2}

d(pi, z∪X̄\{C1,C2})
2 +−

∑
X∈X̄\{C1,C2}

τ(X). (26)

Note that this argument is only valid in the presence of anti-monotone con-
straints in combination with must-link constraints. We refer to this test as a
compatibility test. When a block in C̄ is incompatible with a block in X̄, the
block is removed from C̄.

4.3 Pruning Using a Bound on the Objective Function

For the remaining set of candidates, a more elaborate test is carried out to
determine whether to continue the search (line 2). This test consists of calculating
a bound on achievable solutions and comparing it with the best solution found
so far. A key feature of this bound is that it can be calculated efficiently.

The key idea is as follows. Let X̄ ′ be a set that is found below a set X̄ in the
search tree, that is, X̄ ′ ⊆ C̄ ∪ X̄ . We can write its quality as follows:

(d(∪X̄)︸ ︷︷ ︸
old

+
∑

X∈X̄′\X̄
Θ(X̄,X)

︸ ︷︷ ︸
(1) between old and new

+
∑

X,Y ∈X̄′\X̄
d(X,Y)

︸ ︷︷ ︸
(2) between new blocks

)/
∑

X∈X̄′

|X |

︸ ︷︷ ︸
(3) sizes

−
∑

X∈X̄′

τ(X)

︸ ︷︷ ︸
(4) lambdas

,

where Θ(X̄,X) = d(X) +
∑

Y ∈X̄ d(X,Y).
Essentially, we need to have a bound on the best X̄ ′. An important first

concern is that we do not know the size of the best X̄ ′ and hence we do not know
term (3). We simplify this problem by iterating over all cluster sizes

∑
X∈X̄ |X | ≤

s ≤
∑

X∈X̄ |X |+
∑

C∈C̄ |C| and calculating a bound on the quality assuming the
best cluster has size s, i.e., we calculate a bound on the above formula assuming
part (3) is iteratively fixed. The overall bound is the best bound among all the
sizes considered.

Calculating a lower bound for a fixed value s of (3) requires a lower bound on
(1) and (2), and an upper bound on (4). We discuss each in turn. A lower bound
on part (1) for a given size s is obtained as follows:

– sort allC ∈ C̄ increasing in theirΘ(X̄, C)/|C|values, yielding orderC1, . . . , Cm;

– determine the largest value k such that
∑k

i=1 |Ci| ≤ s;

– determine
∑k

i=1 Θ(X̄, Ci) as bound.

The argument for this is as follows. All additional points that are selected by
the algorithm above in C1, . . . , Ck are characterized by the Θ(X̄, C)/|C| value
their corresponding block has. If we sum these characteristic values over all

Constrained Clustering Using Column Generation 447

points, the result is
∑k

i=1 Θ(X̄, Ci). Choosing the lowest possible characteristic
values is a lower bound as the sum of characteristic values of the points in the
optimum X̄∗, and hence also the value

∑
X∈X̄∗\X̄ Θ(X̄,X), can never be better.

A similar algorithm can be used to determine an upper bound for term (4):

– sort all C ∈ C̄ decreasing in their τ(C)/|C| values, yielding order C1, . . . , Cm;

– determine the smallest value k such that
∑k

i=1 |Ci| ≥ s;

– determine
∑k

i=1 τ(Ci) as bound.

A simple lower bound on term (2) is that it is always higher than zero. Calcu-
lating a good bound is hard, as we essentially need to solve an edge-weighted
clique problem.

While the overall bound obtained is not very tight, also because term (1) and
term (4) are sorted independently, it has important computational advantages.
First, we can sort the τ(C)/|C| and Θ(X̄, C)/|C| values before iterating over
potential sizes; hence, we can avoid doing this repeatedly for each size s. Second,
we do not need to consider all sizes s indicated earlier. If we consider the sorted
ranges of τ and Θ values, there are ranges of sizes in which the bound does not
change; the bound only changes when either a lambda value changes or a Θ value
changes. It hence suffices to consider 2|C̄| different sizes for s. Finally, we can
maintain the bounds incrementally.

As a result, the overall bound over all sizes s can be calculated in O(|C̄| log |C̄|)
time. As furthermore all required counts can be maintained incrementally in
O(|C̄|) time, the overall time spent in one call of the Branch-and-bound algo-
rithm (excluding recursive calls) is O(|C̄| log |C̄|); in other words, the complexity
of the algorithm is not dependent on the number of points in the data, but only
on the number of blocks that the must-link constraints identify in it.

5 Practical Considerations

The column generation approach, in combination with the branch-and-bound
algorithm, provides a fundamental approach for finding optimal solutions under
constraints. However, several practical considerations are of importance when
implementing the column generation approach.

5.1 Initialisation

Initially, there are no columns in the restricted master problem. This means that
Farkas pricing needs to be performed until a feasible solution is found, which
can be time consuming. However, assuming a heuristic solver such as COP-k-
means finds a solution, one can initialize the restricted master problem with this
known (sub-optimal) solution. This avoids the need for Farkas pricing, provides
a number of good initial columns (cuts to the dual problem) as well as an upper
bound for the master problem.

448 B. Babaki, T. Guns, and S. Nijssen

5.2 Branching

Integer linear programs are typically solved by solving a number of LP relax-
ations and using branching to enforce integrality. So far, we have described how
we employ the column-generation method for solving the LP relaxations. In the-
ory, if the solution to the linear program is fractional any type of branching
can be used. In previous work [14] a Ryan-Foster branching scheme was em-
ployed. In this scheme, in the restricted problem two columns are determined
that have a corresponding fractional value and that cover the same data point
(p1). Branching will enforce that in subsequent problems only one of these two
columns can cover that point. Observe that no two columns cover exactly the
same data points and hence they must differ in at least one data point (p2). We
can now branch by enforcing that in one branch points p1 and p2 are in the same
cluster and that in the other branch p1 and p2 are not in the same cluster.

This type of branching naturally fits our approach as it corresponds to adding
a must-link or cannot-link constraint. Compared to [14], the proposed approach
can hence handle both constrained and unconstrained cases in the same
principled manner.

5.3 Slow Convergence

Many large-scale column generation approaches suffer from slow convergence.
Similar to [14], we also observed degeneracy in our experiments: even when
given the optimal solution, a large number of column generation iterations is
required before the optimality is proved. We implemented a dual stabilisation
scheme similar to the one of [14]: adding a linear penalisation to the dual ob-
jective corresponds to adding a perturbation variable to each of the constraints
in equation 8 and adding them to the objective function, given in Table 4. Here
yi are the perturbation variables, +/ − μ its bounds and πi its coefficients in
the objective function. The πi form a stabilisation centre in the dual that will
penalize duals that are too far from it. A good choice for π is the dual τ values
from the best known solution so far. The value of μ has to be progressively de-
creased until 0. At this point, all perturbation variables are 0 and the problem
is identical to the original restricted master problem.

We employ a scheme where the πi are given an equal initial value and μ is
set to 0.99. Each time an optimal solution to the perturbed restricted master
problem is found, the πi values are changed to the duals of that optimal solution
and μ is divided by 2 where β is a counter of the number of such updates.

6 Experiments

Data was obtained from the UCI machine learning repository [5]. Table 5 lists
the properties of the datasets.

We used the open-source SCIP [1] system as column generation framework.
The branch-and-bound pricer is written in C++. Source code is available at

Constrained Clustering Using Column Generation 449

Table 5. Description of datasets

name # points dimensions # labels

Iris 150 4 3
Wine 178 13 3
Soybean 47 35 4

Fig 1. Run times on the Iris data set

http://dtai.cs.kuleuven.be/CP4IM/cccg/. All experimentswere run on quad-
core Intel 64 bit computers with 16GB of RAM running Ubuntu Linux 12.04.3.

Constraints were generated according to the common methodology of [23]: two
data points are repeatedly sampled randomly from labelled data; if they have
the same label a ML constraint is generated, otherwise a CL constraint. This
is repeated until the required number of constraints is generated. The code for
generating these constraints and for the COP-k-means algorithm were obtained
from http://www.cs.ucdavis.edu/~davidson/constrained-clustering/ .

It is common practice to run (COP-)k-means multiple times to avoid that it
is stuck in a local minimum. For each setting, we ran COP-k-means 500 times.
The implementation obtained continues until convergence and is not guaranteed
to satisfy all constraints. We will report on the number of runs that satisfy all
constraint (COP sat). Only when at least one solution is found that satisfies all
constraints will we report on its quality (COP max).

We initialized our column generation method with the best solution found by
COP-k-means. Best is here defined by the clustering with the largest number
of clusters satisfying all constraints. Among these clusterings, the one with the
lowest MSS is selected. Note that in case COP-k-means did not find a solution
satisfying all constraints, our column generation method started with the best
infeasible solution. The stabilisation parameter μ was set to 0.99. Initial pertur-
bation values πi can be set to any value; the update mechanism is explained in
Section 3. In case a feasible solution is at hand, a good initial value for πi can
be obtained from bounds on the dual variables. These bounds are calculated
as in [14], and we used the lower bounds of the dual variables to initialize the
corresponding πi.

The branch-and-bound method for solving the subproblem maintains a list of
all clusters that improve the bound during search (including the final best one).
All these clusters are added as columns to the restricted master problem.

Results. We compare the result of our column generation approach to that of
repeated runs of COP-k-means. Our column generation approach is initialized
as explained above, and a time-out of 30 minutes is used.

Table 6 shows the quality of the results for the Iris dataset, once for k = 3
(the true number of class labels, left) and once for k = 5 (right); Figure 1 gives
an impression for the amount of run time it took to calculate these results.

http://dtai.cs.kuleuven.be/CP4IM/cccg/
http://www.cs.ucdavis.edu/~davidson/constrained-clustering/

450 B. Babaki, T. Guns, and S. Nijssen

Table 6. Clustering with ’#c’ constraints, Iris dataset. *optimality proven

k=3
#c COP sat COP max CG best

2 100.00% 90.3725 90.3725
60 100.00% 83.6675 83.6675
100 37.20% 87.2082 87.2082
140 0% - 87.8750∗

200 0% - 89.1496∗

240 0% - 85.2477∗

300 0% - 89.3868∗

340 31.40% 89.3868 89.3868∗

400 0% - 89.3868∗

440 31.00% 88.6409 88.6409∗

500 0% - 89.3868∗

k=5
#c COP sat COP max CG best impr.

2 100% 46.5616 46.5616 0%
60 100% 53.399 53.399 0%
100 100% 57.3827 57.3804∗ 0.004%
140 100% 63.1699 62.2115∗ 1.5%
200 100% 71.1401 69.3154∗ 2.56%
240 100% 72.7078 69.9776∗ 3.76%
300 83.6% 82.0819 81.9792∗ 0.13%
340 100% 85.9036 82.9945∗ 3.39%
400 100% 84.0495 84.0357∗ 0.02%
440 100% 82.6373 82.6373∗ 0%
500 100% 85.8908 85.8719∗ 0.02%

A first observation is that in case of k = 3, and a low number of clusters,
COP-k-means easily finds clusterings that satisfy the constraints (indicated by
“COP sat”). For higher numbers of constraints, COP-k-means encounters more
problems finding clusterings satisfying all constraints. In multiple cases none of
the 500 runs finds a clustering satisfying all constraints. When we increase the
number of clusters to k = 5, the constrained clustering problem becomes eas-
ier [9]; as a consequence, COP-k-means can find satisfying solutions more easily.
Even when COP-k-means can not find a solution, our method finds acceptable
clusterings; even optimal ones are found for higher numbers of constraints. The
case of 140 constraints is an exception. For k = 5 and higher numbers of con-
straints, our method can find the optimal constrained clustering.

Table 7 shows the results for the bigger Wine dataset. This dataset is much
harder, both for COP-k-means and for the column generation approach. In case
of k = 3, the true number of class labels, COP-k-means is again rarely able
to find a solution satisfying all constraints. The CG approach is able to find
solutions for some cases, but can not prove them optimal within the time-out.
In case of k = 5 the problem becomes easier, as was the case on Iris. We can see
that the CG approach can sometimes greatly improve the best solution found in
500 COP-k-means runs, even without being able to prove its optimality.

Table 8 shows results on the Soybean dataset, a smaller dataset of higher
dimensionality; its true number of labels is 4. Observe that for k = 3 and 80
constraints, CG is able to prove that this problem is infeasible. The heuristic
COP-k-means simply does not find a solution, as happens for 40 and 60 con-
straints. We further note that in contrast to k = 4, for k = 5 COP-k-means is
often not able to find the optimal solution.

Constrained Clustering Using Column Generation 451

Table 7. Clustering with ’#c’ constraints, Wine dataset. *optimality proven

k=3
#c COP sat max CG best

240 0% - 4860250∗

300 0% - 5133144∗

340 0% - 5214981∗

380 0% - 5220299∗

420 0% - 5232632∗

460 0% - 5232632∗

500 0% - 5232632∗

k=5
#c COP sat COP max CG best impr.

240 100% 4021090 3327908∗ 17.24%
300 0% - 4077296∗ +
340 16.6% 4659910 4329603∗ 7.09%
380 66.6% 4729860 4450036∗ 5.92%
420 59.6% 4740180 4537678∗ 4.27%
460 94.2% 4819200 4540041∗ 5.79%
500 15% 4922560 4684355∗ 4.84%

Table 8. Soybean, different k and number of clusters (#c); GC quality gap = difference
between best solution quality of cop-kmeans and the solution of CG, INF = infeasible

k=3 k=4 k=5
cons COP sat. CG quality gap COP sat. CG quality gap COP sat. CG quality gap

2 100.00% 0 100.00% 0 100.00% 0.00%
10 100.00% 0 100.00% 0* 100.00% 4.56%*
20 100.00% 0* 100.00% 0.12%* 100.00% 0.29%*
40 0.00% 339* 100.00% 0* 100.00% 1.25%*
60 0.00% 418* 52.60% 0* 81.20% 0.24%*
80 0.00% INF 74.00% 0* 27.00% 0.38%*

7 Related Work

We build on a column generation approach first described in [14] and improved
in [4]. This earlier work only studies unconstrained clustering settings. We show
that with modifications it can also be used in the presence of constraints. The
main necessary modification is in the subproblem solver. We use a branch-and-
bound approach that directly solves the subproblem and can be used in the
presence of any constraint that is anti-monotone.

A feature of the first approach [14] is that it uses a heuristic Variable Neigh-
borhoud Search method to solve a subproblem, and only when a solution can
not be found in this way an exact method is used. The exact method uses
Dinkelbach’s lemma [13] to solve equation 23 through a series of unconstrained
quadratic 0-1 problems. The latter are solved using a heuristic VNS combined
with an exact branch-and-bound algorithm for verifying the stopping criterion
of the Dinkelbach method.

This method is improved in [4]. One of these improvements is the introduction
of a compatibility test. We adapted this test for use in the presence of must-link
constraints.

Other exact methods for MSSC are branch and bound methods [18,12,7], a
cutting plane algorithm that starts from the observation that MSSC is a concave
optimisation problem [24], dynamic programming [16,20] and a branch-and-cut

452 B. Babaki, T. Guns, and S. Nijssen

semi-definite programming algorithm [3]. These methods do not consider the
addition of extra constraints.

Exact methods for constrained-based clustering have been studied before.
Typical is that they do not use MSS as optimisation criterion, but rather a
function that is linear or quadratic. Saglam et al. [21] use an integer linear
programming approach for minimizing the maximum cluster diameter. More re-
cently, constraint programming has been used for solving constrained clustering
tasks [8]. A range of constraints is supported including instance-level constraints,
size of cluster constraints and constraints on the separation between clusters and
maximum diameter of a cluster. As objective function the (non-normalized) sum
of squared distances between clusters or maximum diameter is supported.

A large class of clustering methods are those that evaluate the quality of a
cluster based on a cut-value. Also in such methods the use of column generation
has been proposed [17]. The inclusion of constraints in this method may be a
topic for further research.

Exact methods are also used as part of approximate constraint-based clus-
tering methods. Demiriz et al. [11] propose to modify k-means such that the
assignment step, where points are assigned to their nearest feasible cluster, cor-
responds to solving an LP. Constraints on minimum cluster size can be taken
into account, as well as instance level constraints. Davidson et al. studied the
use of SAT solvers, also using diameter as optimization criterion [10]. Müller
and Kramer [19] use integer linear programming to solve constrained clustering
tasks where a fixed number of candidate clusters is given upfront. The problem
consists of selecting the right subset of clusters, which can be compared to solv-
ing one iteration of the restricted master problem. They investigate a number
of different optimisation criterion, as well as constraints at the clustering level,
such as the maximum amount of overlap between clusters or logical formula
over entire clusters. These methods are not guaranteed to find globally optimal
solutions.

8 Conclusions

We proposed a column generation strategy for solving the constrained MSS clus-
tering problem. The main novelty is a branch and bound algorithm that directly
solves the subproblem. Experiments showed its promise: in cases where the COP-
k-means algorithm is not able to find a solution satisfying all constraints even in
500 runs, CG could find solutions and in several cases even prove their optimality.

Several open questions remain. Degeneracy was not a main concern in this
study, however we observe that with the simple stabilisation scheme described in
section 5 the master problem still converges very slowly. It is worth investigating
if advanced stabilisation techniques work better [14]. Furthermore, the pruning
strategy in the branch-and-bound algorithm could be improved and the branch-
and-bound could be expanded to deal with additional constraints.

Constrained Clustering Using Column Generation 453

Acknowledgments. This work was supported by the European Commission
under the project “Inductive Constraint Programming” contract number FP7-
284715 and by the Research Foundation–Flanders by means of two Postdoc
grants.

References

1. Achterberg, T.: SCIP: solving constraint integer programs. Mathematical Program-
ming Computation 1(1), 1–41 (2009)

2. Aloise, D., Deshpande, A., Hansen, P., Popat, P.: NP-hardness of euclidean sum-
of-squares clustering. Machine Learning 75(2), 245–248 (2009)

3. Aloise, D., Hansen, P.: A branch-and-cut SDP-based algorithm for minimum sum-
of-squares clustering. Pesquisa Operacional 29, 503–516 (2009)

4. Aloise, D., Hansen, P., Liberti, L.: An improved column generation algorithm for
minimum sum-of-squares clustering. Mathematical Programming 131(1-2), 195–220
(2012)

5. Bache, K., Lichman, M.: UCI machine learning repository (2013)
6. Basu, S., Davidson, I., Wagstaff, K.: Constrained Clustering: Advances in Algo-

rithms, Theory, and Applications. Chapman & Hall/CRC Press (2008)
7. Brusco, M.J., Stahl, S.: Minimum within-cluster sums of squares partitioning. In:

Branch-and-Bound Applications in Combinatorial Data Analysis. Springer (2005)
8. Dao, T.-B.-H., Duong, K.-C., Vrain, C.: A declarative framework for constrained

clustering. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML
PKDD 2013, Part III. LNCS, vol. 8190, pp. 419–434. Springer, Heidelberg (2013)

9. Davidson, I., Ravi, S.S.: The complexity of non-hierarchical clustering with instance
and cluster level constraints. Data Min. Knowl. Discov. 14(1), 25–61 (2007)

10. Davidson, I., Ravi, S.S., Shamis, L.: A sat-based framework for efficient constrained
clustering. In: SDM, pp. 94–105 (2010)

11. Demiriz, A., Bennett, K., Bradley, P.: Using assignment constraints to avoid empty
clusters in k-means clustering. In: Constrained Clustering: Algorithms, Applica-
tions and Theory. Chapman & Hall/CRC (2008)

12. Diehr, G.: Evaluation of a branch and bound algorithm for clustering. SIAM Jour-
nal on Scientific and Statistical Computing 6(2), 268–284 (1985)

13. Dinkelbach, W.: On nonlinear fractional programming. Management Science 13(7),
492–498 (1967)

14. du Merle, O., Hansen, P., Jaumard, B., Mladenovic, N.: An interior point algorithm
for minimum sum-of-squares clustering. SIAM J. Sci. Comput. 21(4), 1485–1505
(1999)

15. Gondek, D., Hofmann, T.: Non-redundant data clustering. In: ICDM, pp. 75–82
(2004)

16. Jensen, R.E.: A dynamic programming algorithm for cluster analysis. Operations
Research 17(6), 1034–1057 (1969)

17. Johnson, E.L., Mehrotra, A., Nemhauser, G.L.: Min-cut clustering. Mathematical
Programming 62(1-3), 133–151 (1993)

18. Koontz, W.L.G., Narendra, P.M., Fukunaga, K.: A branch and bound clustering
algorithm. IEEE Trans. Comput. 24(9), 908–915 (1975)

19. Mueller, M., Kramer, S.: Integer linear programming models for constrained clus-
tering. In: Pfahringer, B., Holmes, G., Hoffmann, A. (eds.) DS 2010. LNCS,
vol. 6332, pp. 159–173. Springer, Heidelberg (2010)

454 B. Babaki, T. Guns, and S. Nijssen

20. Os, B., Meulman, J.: Improving dynamic programming strategies for partitioning.
Journal of Classification 21(2), 207–230 (2004)

21. Saglam, B., Salman, F.S., Sayin, S., Türkay, M.: A mixed-integer programming
approach to the clustering problem with an application in customer segmentation.
European Journal of Operational Research 173(3), 866–879 (2006)

22. Schrijver, A.: Combinatorial Optimization – Polyhedra and Efficiency. Springer
(2003)

23. Wagstaff, K., Cardie, C.: Clustering with instance-level constraints. In: ICML,
pp. 1103–1110 (2000)

24. Xia, Y., Peng, J.: A cutting algorithm for the minimum sum-of-squared error clus-
tering. In: SDM (2005)

H. Simonis (Ed.): CPAIOR 2014, LNCS 8451, pp. 455–463, 2014.
© Springer International Publishing Switzerland 2014

A Constraint Programming-Based Column Generation
Approach for Operating Room Planning and Scheduling

Seyed Hossein Hashemi Doulabi1,3, Louis-Martin Rousseau1,3, and Gilles Pesant2,3

1 Department of Mathematics and Industrial Engineering, École Polytechnique de Montréal,
Montréal, Canada

2 Department of Computer and Software Engineering, École Polytechnique de Montréal,
Montréal, Canada

3 Centre interuniversitaire de recherche sur les réseaux d'entreprise, la logistique et le transport
(CIRRELT), Montréal, Canada

{hashemi.doulabi,louis-martin.rousseau,gilles.pesant}@polymtl.ca

Abstract. The Operating Room Planning and Scheduling Problem combines
the assignment of surgeries to operating rooms and their scheduling over a
short-term planning horizon while respecting constraints such as maximum dai-
ly working hours of surgeons and due dates of surgeries. We formulate the
problem within a constraint programming-based column generation framework.
Computational results demonstrate that compared with a compact formulation
the proposed algorithm is robust in finding good solutions.

Keywords: operating room planning and scheduling, column generation, con-
straint programming.

1 Introduction

The most important goal of hospital managers is to make sure that medical resources
such as operating rooms, which are the main source of revenue for hospitals, are uti-
lized as efficiently as possible. Ad hoc planning and scheduling of operating rooms
can lead to a high rate of cancellations which decreases patient satisfaction or leads to
the inefficient use of many medical resources including staff and equipment. Operat-
ing theatre management is a very complex task since several groups such as surgeons,
nurses, anesthesiologists, patients and operating room managers with different prefe-
rences and aversions play a role in this context. As a result, satisfying all constraints
at a reasonable cost, and obtaining a solution which satisfies the objectives of all
groups is very complicated or unattainable [1].

Generally operating theatre management has been studied as a three-stage process
in the literature. The last stage is usually named elective case scheduling and is consi-
dered as the operational level of the operating theatre management which can be di-
vided itself into the following two steps: 1) Operating room planning: each surgery is
assigned to a particular operating room and a day in the planning horizon (one week).
This step is also called Advance scheduling. 2) Operating room scheduling: surgeries
are scheduled to be performed in particular periods in the day or the sequence of

456 S.H. Hashemi Doulabi, L.-M. Rousseau, and G. Pesant

surgeries is determined in operating rooms. Some researchers have referred to this
step as Allocation scheduling.

The focus of this paper is on the integration of operating room planning and sche-
duling. In the literature, integrated advance and allocation scheduling have rarely been
addressed by researchers due to the intrinsic complexity of the synchronization [2-9].
A few papers devise some two-step methods to solve the planning and scheduling
problems sequentially rather than an exact method capable of finding the optimal
solution in a unified manner [2-5]. Exact approaches in the literature are some ma-
thematical formulations based on four-index binary variables which take value
1 if surgery starts at time in operating room on day [6-9].

In this paper a new mathematical programming model is presented to solve the in-
tegrated operating room planning and scheduling problem. To solve the developed
model, a column generation approach is proposed which applies a constraint pro-
gramming model to solve subproblems. The rest of this paper is organized as follows.
Definition of the problem and assumptions are explained in Section 2. The master
problem and subproblem formulations are presented in Section 3. In Section 4, a
competitive compact formulation of the problem is formulated based on the afore-
mentioned four-index binary variables. Computational results are reported in Section
5 and some conclusions are drawn in Section 6.

2 Problem Definition and Assumptions

An integrated operating room planning and scheduling problem is defined over a
planning horizon which is usually a week. On each day, there are some operating
rooms with different availability times. All available surgeries can be categorized into
two sets: 1) Mandatory surgeries whose due dates are within the current planning
horizon and must be performed over this period. 2) Optional surgeries whose due
dates are out of the planning horizon and can be postponed to a later period. The prob-
lem is considered in an open scheduling environment, i.e. the capacity of each
operating room on each day can be used by different surgeons.

The other assumptions in this problem are as follows: 1) Durations of surgeries are
assumed to be deterministic. 2) Availabilities of surgeons are known regarding their
preferences. It is assumed that each surgeon has determined his maximum daily sur-
gery time in the planning horizon. 3) A surgeon can be physically available in at most
one operating room at a time on a given day. This constraint is referred to as coloring
constraint in the literature. 4) Surgeries are generally categorized into two groups of
infectious and non-infectious surgeries. In an operating room, for switching from an
infectious surgery to a non-infectious one a mandatory cleaning activity must be per-
formed. However, no cleaning is required between two infectious or two non-
infectious surgeries. 5) Enough beds are available in recovery rooms and this resource
does not happen to be a bottleneck. 6) Eight hours of regular time are available in
each operating room. The objective function is to maximize the sum of scheduled
surgery time in operating rooms over the planning horizon. 7) Available operating

 A Constraint Programming-Based Column Generation Approach 457

rooms on each day are identical from the viewpoint of available time and available
equipment.

3 The Proposed Column Generation Approach

We define binary variable which takes value 1 if plan is accepted, 0 otherwise. A
plan shows a schedule for an operating room on a particular day. The following
sets are defined to formulate the problem; and are the sets of mandatory and
optional surgeries respectively. There is a due date for each mandatory surgery within
the planning horizon (Note that). The set of surgeons is denoted by
and for each , stands for the set of surgeries corresponding to surgeon . The
set of days is represented by . On each day , | | identical operating rooms
are available. and represent the set of all feasible plans which include surgery
and the set of all feasible plans on day respectively. denotes the set of time slots
on day . In fact the available time in each operating room is discretized to a set of
time slots. The parameters of the model are defined as follows; is the sum of dura-
tions of surgeries scheduled in plan . and show the duration and the due date of
surgery respectively. The surgeon corresponding to surgery is represented by . denotes the maximum time that surgeon prefers to work on day . It is also as-
sumed that time slots are available in each operating room on day . Some other
auxiliary parameters are also defined as follows; is set to 1 if surgical case starts
at time regarding plan . is equal to 1 if surgical case is included in plan . is
set to 1 if plan is scheduled on day . These auxiliary parameters are set to 0 if the
stated condition is not respected.

3.1 Master Problem Formulation

Using the above definitions the master problem can be formulated as follows: ∑ (1)
Subject to: ∑ 1 Ω (2) ∑ 1 Ω (3) ∑ | | (4) ∑ ∑ Ω , (5) ∑ ∑ ∑ : 1 , , (6) 0,1 (7)

458 S.H. Hashemi Doulabi, L.-M. Rousseau, and G. Pesant

In this formulation Constraints (2)-(3) state that some surgeries must be scheduled
within the planning horizon and others are optional. Note that due dates of mandatory
surgeries will be respected in subproblems. Constraint (4) states that on each day, the
number of selected schedules must be equal to or less than the number of available
operating rooms in the day. Each surgeon has some preferences about maximum
working hours during the planning horizon which is presented by Constraint (5). Con-
straint (6) prevents from consideration simultaneous operations for a surgeon in dif-
ferent operating rooms (coloring constraint). Constraint (7) declares that variables of
the model are binary. The presented master problem is inspired from the model pre-
sented by Fei et. al [10]. The difference between this model and the one presented in
[10] is that we have included the surgeon overlapping constraint (Constraint 6). The
presented objective function is also different from [10]. Moreover the definition of a
binary variable in this model determines the schedule of an operating room in a day
while in [10] the binary variable only determines the assigned surgeries to the operat-
ing room not the detailed schedule. In fact the model presented in [10] is just a plan-
ning model and cannot prevent assigning more than one surgery to a surgeon at a
time. Therefore it is possible that the generated plans do not lead to feasible sche-
dules. This difference makes the structure of the subproblem of this formulation
totally different from that of [10].

3.2 Subproblem Formulation

In this section a constraint programming model is presented to formulate the subprob-
lem. The reason for applying constraint programming is that we plan to extend the
presented column generation to a branch-and-price-and-cut in the future, and the flex-
ibility of constraint programming will make it easier to handle the effect of adding
cuts and branching rules.

Assuming , , , and as the dual variables corresponding to
Constraints (2)-(6), the reduced cost of variable can be computed by the following
formula: ∑ ∑ ,Ω ∑ ∑ ∑ ∑∑ ∑ ∑ ∑ ∑ :

In the subproblem of column generation we have to maximize this reduced cost
expression because we are looking for the column with the most positive reduced
cost. We can decompose the subproblem of the column generation over index as
follows: ∑ ,Ω ∑ ∑∑ ∑ ∑ ∑ :

Since in each operating room only a small number of surgeries () can be per-
formed on a given day, we adopt a position-based model and define the variables of
the constraint programming model in the subproblem as follows: shows the index
of surgery to be operated in position in the pattern on day . shows the start

 A Constraint Programming-Based Column Generation Approach 459

time of the surgery assigned to position in the pattern on day . Based on these
variables, constraints in the subproblem can be presented as follows: | (8) | 0 2, … , (9) 0,1, … , | | 1, … , (10)

If 0 then 0 2, … , 1 (11)

 1, … , 1 (12)

gcc , 0 , 0, . . . ,0 , 1,1, . . . ,1 (13) ∑ (14)

If 0 then 2, … , (15) 0, 0 (16) 0, 0 Ω 0 (17)

Constraint (8) states that the first position in the pattern must be assigned to one of
the surgeries in set whose due date is on or after day . Constraint (9) shows that
other positions can be either assigned to a surgery in set or they can be left empty
by taking 0. In fact, is an upper bound on the number of assigned surgeries to an
operating room and a pattern in a day can include fewer surgeries. Constraint (10)
declares the domain of start time variables. Constraint (11) states that if a position is
left empty the next available positions must be empty. It means that positions must be
filled one after the other and there cannot be any empty position between two as-
signed surgeries. It should be noted that having a hole in the schedule is possible since
the start time of surgeries are determined by variables and Constraint (11) only
breaks the symmetry of the model by preventing it from obtaining the same solution
through different assignment of surgeries to the available positions.

Constraint (12) ensures that start time of a surgery in a position is greater than the
finish time of previously scheduled surgeries plus the duration of a possible cleaning
activity. In this constraint, is a data matrix which includes possible cleaning times
between surgeries. The entry in row and column of this matrix is equal to the dura-
tion of the cleaning activity, if surgery is infectious and surgery is non-infectious.
Each surgery can be scheduled at most once in a pattern. This constraint is formulated
by the global cardinality constraint in (13). The upper bound value for 0 is 1 in
order to prevent from generating an empty plan since empty plans have a coefficient
of 0 in the objective function and can never be generated in the subproblem. The up-
per bound values for other values in is 1. The lower bound values for all members
of Ω 0 are zero. In fact this constraint means that at most 1 positions can be
left empty and each surgery can be assigned at most once in a schedule. Constraint
(14) prevents from generating columns which do not satisfy the maximum possible
working hours of surgeons. Constraint (15) forces the start time of an empty position
to be equal to the finish time of the previous position. Constraint (16) states that when

460 S.H. Hashemi Doulabi, L.-M. Rousseau, and G. Pesant

 equals 0, and will be equal to zero. Therefore, this fact together with

Constraints (12) and (15) ensure that when equals 0 the start time of this position
and also subsequent positions will be fixed to the start time of the last position with a
surgery from . Similarly, Constraint (17) forces the entries in row 0 or column 0 of
data matrix to be equal to 0. In summary, the constraint programming model to be
solved as the subproblem is as follows: ∑ ∑ , ∑ ∑ ∑

Subject to: Constraints (9)-(18)

In the objective function, , , and are element constraints

which will be zero if equals 0. Each iteration of the column generation starts by
solving the relaxed master problem. Then using the dual values taken from the re-
laxed master problem, the subproblems will be solved consecutively. During con-
straint programming search, solutions with a positive reduced cost will be added as
new columns to the master problem. If at least one column is generated the next itera-
tion of column generation will start, otherwise, the column generation stops. At the
end of the column generation, the objective value obtained by solving the LP relaxa-
tion of the master problem is an upper bound for the problem and by solving an integ-
er programming model of the master problem restricted to the generated columns a
feasible lower bound of the problem can be obtained. It is worth mentioning that
modeling the subproblem as a constrained scheduling problem is not likely to be effi-
cient because only a small fraction of surgeries are scheduled in a subproblem on a
given day. Surgeries are all considered to be optional activities, leading to very weak
filtering.

4 A Compact Formulation

We consider the compact formulation of our problem obtained by enhancing the for-
mulation presented in [6-8] which is based on binary variables . Such a variable
takes value 1 if the surgery is scheduled on day in operating room at time and 0
otherwise. Based on these variables, constraints equivalent to (2), (3), (5) and (6) can
be formulated as presented in [8]. A constraint to prevent overlapping of surgeries in
operating rooms can be also formulated based on these variables as presented in [8].
However, to formulate the additional cleaning time due to switching from infectious
to non-infectious surgeries two new binary variables and are required to be
defined. takes value 1 if surgery is scheduled on day in operating room .
Variable is defined for those pairs of surgeries and where one of them is in-
fectious and the other one is non-infectious and also the due dates of both surgeries
must be on or after day . This variable takes 1 if surgeries and are scheduled on
day in operating room and surgery is scheduled to start before surgery and 0

 A Constraint Programming-Based Column Generation Approach 461

otherwise. Based on these variables the following constraints must be included in the
model. The set of feasible pairs of surgeries for variable is denoted by . ∑ , , Ω: (18) , , , , (19) 1 , , , (20) 1 , , , (21) ∑∑ 1

, , , (22)

Constraint (18) links variable to the model. Constraints (20)-(21) forces
 to be equal to 1, if surgeries and are scheduled in operating room on day .

In Constraint (22), is equal to the additional cleaning time if surgery is infec-
tious and surgery is non-infectious and 0 otherwise. In this constraint, is a big
constant and if takes 1 the start time of surgery will be forced to be after the
finish time of surgery plus the additional cleaning time.

5 Computational Experiments

To solve the master problem and subproblem IBM ILOG CPLEX Optimization Stu-
dio V12.4 is used which includes CPLEX and CP Optimizer to solve linear program-
ming and constraint programming models respectively. Experiments were run on a
computer with 2 processors Intel Xeon X5675, 3.07 gigahertz and 96 gigabyte of
RAM. To conduct computational experiments we generated a set of instances follow-
ing the method that Fei et. al [10] suggested. Durations of surgeries are uniformly
generated from interval [2 hours, 4 hours] where time is discretized based on five-
minute units. Six operating rooms are assumed to be available on each day and the
available time in each operating room is eight hours. 50% of surgeries are randomly
picked to be infectious. The duration of mandatory cleaning activities is set to 30
minutes. A constructive heuristic is applied to generate the initial solution of the col-
umn generation. This heuristic fills operating rooms consecutively starting from the
first operating room in the first day to the last one in the last day. Surgeries which
have not been already scheduled are sorted based on their due dates.

The computational results are shown in Table 1. In this table the first and the
second columns present the instance number and the number of surgeries. The next
column presents the objective value of the initial solution that we provide for column
generation as initial columns. Four columns under “Column Generation” show the
computational results obtained from solving the instances by the proposed column
generation method. The Columns “Best Sol.” and “UB” present the lower and upper
bound values. Upper bound values are the objective value of the relaxed master after
convergence of the column generation and lower bound values have been obtained by
solving the master problem restricted to the generated columns. The next column,
“Imp. (%)”, presents the percentage of improvement over the initial solution which is

462 S.H. Hashemi Doulabi, L.-M. Rousseau, and G. Pesant

calculated by 100*(Best Sol- Initial Obj)/ Initial Obj. The total time consumed to get the
upper and lower bounds for each instance is presented under Column “Time”. Infor-
mation on lower and upper bound values, percent of initial solution improvement and
computational time of the compact formulation presented in Section 4, are shown in
the next four columns. All computational times are in seconds. As shown in the table
the column generation method has converged within 45 minutes for all instances.

Computational results show that the compact formulation finds optimal solutions
for small instances with 40 surgeries, but it is not efficient in solving larger instances
and cannot improve the initial solution in many cases. However, the column genera-
tion is robust in improving the initial solution in all but one instance. Moreover, we
can see that the upper bound values obtained by the column generation have been
dominated by those of the compact formulation. This implies that there is a possibility
to improve the column generation by embedding it in a branch-and-price framework.

Table 1. Comparison of the developed column generation and a compact formulation

Ins.

| | Initial
Obj.

Column Generation Compact Formulation
Best
Sol.

UB
Imp.
(%)

Time
Best
Sol.

UB
Imp.
(%)

Time

1 40 1263 1342 1359 6.25 12 1342 1342 6.25 505
2 40 1365 1365 1383 0.00 8 1365 1365 0.00 36
3 40 1302 1420 1446 9.06 9 1431 1431 9.91 349
4 40 1257 1378 1512 9.63 10 1420 1420 12.9 210
5 40 1417 1457 1457 2.82 6 1457 1457 2.82 54
6 80 1874 2060 2285 9.93 296 - 2200 - 2700
7 80 1895 2146 2415 13.2 755 - - - 2700
8 80 1873 2059 2324 9.93 883 - 2222 - 2700
9 80 1837 2057 2203 11.9 191 1942 2174 5.72 2700

10 80 1991 2183 2308 9.64 403 1905 2252 -4.32 2700
11 120 1966 2126 2398 8.14 592 - 2228 - 2700
12 120 2039 2194 2421 7.60 2496 - 2368 - 2700
13 120 2074 2176 2432 4.92 911 - 2385 - 2700
14 120 2011 2180 2432 8.40 693 - 2388 - 2700
15 120 1978 2213 2432 11.8 1682 - - - 2700

6 Summary and Conclusion

We developed an efficient column generation method for the Operating Room Plan-
ning and Scheduling Problem. The proposed column generation uses a constraint pro-
gramming model to solve the subproblem. Based on the formulations in the literature, a
compact formulation is also presented as a competitive algorithm. Computational ex-
periments demonstrate that the proposed column generation is robust in finding good
solutions compared with the compact formulation. As future research, studying the
enhanced versions of the problem with more realistic constraints such as capacity con-
straints in recovery rooms is very interesting. Including the preferences of operating
rooms staff such as anesthesiologists and nurses can also be another research direction.

 A Constraint Programming-Based Column Generation Approach 463

References

1. Guerriero, F., Guido, R.: Operational research in the management of the operating theatre:
A survey. Health Care Management Science 14(1), 89–114 (2011)

2. Jebali, A., Hadj Alouane, A.B., Ladet, P.: Operating rooms scheduling. . International
Journal of Production Economics 99(1), 52–62 (2006)

3. Guinet, A., Chaabane, S.: Operating theatre planning. . International Journal of Production
Economics 85(1), 69–81 (2003)

4. Fei, H., Meskens, N., Chu, C.: An operating theatre planning and scheduling problem in
the case of a block scheduling strategy. In: 2006 International Conference on Service Sys-
tems and Service Management, vol. 1, pp. 422–428. IEEE (2006)

5. Fei, H., Meskens, N., Chu, C.: A planning and scheduling problem for an operating theatre
using an open scheduling strategy. Computers & Industrial Engineering 58(2), 221–230
(2010)

6. Roland, B., Di Martinelly, C., Riane, F.: Operating theatre optimization: A resource-
constrained based solving approach. In: 2006 International Conference on Service Systems
and Service Management, vol. 1, pp. 443–448. IEEE (2006)

7. Roland, B., Di Martinelly, C., Riane, F., Pochet, Y.: Scheduling an operating theatre under
human resource constraints. Computers & Industrial Engineering 58(2), 212–220 (2010)

8. Marques, I., Captivo, M.E., Pato, M.V.: An integer programming approach to elective sur-
gery scheduling. OR Spectrum 34(2), 407–427 (2012)

9. Vijayakumar, B., Parikh, P.J., Scott, R., Barnes, A.,Gallimore, J.: A dual bin-packing
approach to scheduling surgical cases at a publicly-funded hospital. European Journal of
Operational Research 224(3), 583–591 (2012)

10. Fei, H., Chu, C., Meskens, N.: Solving a tactical operating room planning problem by a
column-generation-based heuristic procedure with four criteria. Annals of Operations Re-
search 166(1), 91–108 (2009)

Dynamic Controllability and Dispatchability

Relationships

Paul Morris

NASA Ames Research Center
Moffett Field, CA 94035, U.S.A.

Abstract. An important issue for temporal planners is the ability to
handle temporal uncertainty. Recent papers have addressed the ques-
tion of how to tell whether a temporal network is Dynamically Control-
lable, i.e., whether the temporal requirements are feasible in the light
of uncertain durations of some processes. We present a fast algorithm
for Dynamic Controllability. We also note a correspondence between the
reduction steps in the algorithm and the operations involved in convert-
ing the projections to dispatchable form. This has implications for the
complexity for sparse networks.

1 Introduction

Many Constraint-Based Planning systems (e.g. [1]) use Simple Temporal Net-
works (STNs) to test the consistency of partial plans encountered during the
search process. These systems produce flexible plans where every solution to the
final Simple Temporal Network provides an acceptable schedule. The flexibility
is useful because it provides scope to respond to unanticipated contingencies
during execution, for example where some activity takes longer than expected.
However, since the uncertainty is not modeled, there is no guarantee that the
flexibility will be sufficient to manage a particular contingency.

Many applications, however, involve a specific type of temporal uncertainty
where the duration of certain processes or the timing of exogenous events is not
under the control of the agent using the plan. In these cases, the values for the
variables that are under the agent’s control may need to be chosen so that they do
not constrain uncontrollable events whose outcomes are still in the future. This
is the controllability problem. By formalizing this notion of temporal uncertainty,
it is possible to provide guarantees about the sufficiency of the flexibility.

In [2], several notions of controllability are defined, including Dynamic Con-
trollability (DC). Roughly speaking, a network is dynamically controllable if
there is an execution strategy that satisfies the constraints and depends only on
knowing the outcomes of uncontrollable events up to the present time.

The fastest known algorithm for computing Dynamic Controllability (DC) is
the O(N4) algorithm of [3] (N is number of nodes). That paper introduces a
structural characterization of DC in terms of the absence of a particular type
of cycle, called a semi-reducible negative cycle. This is analogous to the result

H. Simonis (Ed.): CPAIOR 2014, LNCS 8451, pp. 464–479, 2014.
c© Springer International Publishing Switzerland 2014

Dynamic Controllability and Dispatchability Relationships 465

characterizing consistency of ordinary STNs in terms of the absence of negative
cycles in the distance graph. Other properties of semi-reducible negative cycles
have been studied by Hunsberger [4], who corrected a flaw in the formal definition
of DC. An excellent tutorial on Dynamic Controllability is available online [5].

In this paper, we exploit recursive structure within the semi-reducible paths
and present a new algorithm that runs in O(N3) time. We also consider the
relationship to the dispatchability of the projections.

Other authors (e.g. [6,7]) have pursued incremental algorithms where the Dy-
namic Controllability property is rechecked after the addition of a new edge to
a network that has already been shown to be Dynamically Controllable. This
corresponds to a common situation in temporal planning where edges are added
incrementally to resolve flaws in the plan. These algorithms have been shown
empirically to have O(N3) complexity for each increment on a suite of randomly
generated problems. We do not address incrementality in this paper. Additional
work has studied related concepts in wider contexts, e.g. [8,9].

2 Background

This background section defines the basic formalism of Dynamic Controllability,
following [3,4].

A Simple Temporal Network (STN) [10] is a graph in which the edges are anno-
tated with upper and lower numerical bounds. The nodes in the graph represent
temporal events or timepoints, while the edges correspond to constraints on the
durations between the events. Each STN is associated with a distance graph de-
rived from the upper and lower bound constraints. An STN is consistent if and
only if the distance graph does not contain a negative cycle. This can be deter-
mined by a single-source shortest path propagation such as in the Bellman-Ford
algorithm [11] (faster than Floyd-Warshall for sparse graphs, which are common
in practical problems). To avoid confusion with edges in the distance graph, we
will refer to edges in the STN as links.

A Simple Temporal Network With Uncertainty (STNU) is similar to an STN
except the links are divided into two classes, requirement links and contingent
links. Requirement links are temporal constraints that the agent must satisfy,
like the links in an ordinary STN. Contingent links may be thought of as repre-
senting causal processes of uncertain duration, or periods from a reference time
to exogenous events; their finish timepoints, called contingent timepoints, are
controlled by Nature, subject to the limits imposed by the bounds on the con-
tingent links. All other timepoints, called executable timepoints, are controlled
by the agent, whose goal is to satisfy the bounds on the requirement links. We
assume the durations of contingent links vary independently, so a control pro-
cedure must consider every combination of such durations. Each contingent link
is required to have non-negative (finite) upper and lower bounds, with the lower
bound strictly less than the upper. We assume contingent links do not share
finish points. (Networks with coincident contingent finishing points cannot be
Dynamically Controllable.)

466 P. Morris

Choosing one of the allowed durations for each contingent link may be thought
of as reducing the STNU to an ordinary STN. Thus, an STNU determines a
family of STNs corresponding to the different allowed durations; these are called
projections of the STNU.

Given an STNU with N as the set of nodes, a schedule T is a mapping

T : N → 1

where T (x) is called the time of timepoint x. A schedule is said to be consistent
if it satisfies all the link constraints.

The history of a specific time t with respect to a schedule T , denoted by
T {≺ t}, specifies the durations of all contingent links that have finished up to
and including time t.

Hunsberger [4] corrected a flaw in the original definition of Dynamic Control-
lability by defining history in terms of a specific time rather than a timepoint;
we follow that approach here and in the definition of dynamic strategy below.
However, we also follow the variation of including the present that was intro-
duced in [3]. The latter issue is whether the agent can react instaneously to an
observation to execute a new timepoint, or requires an infinitesimal amount of
time to react. Both of these are mathematical idealizations: a realistic reaction
might take a finite amount of time, which could be modeled by a separate link or
folded into the contingent process being observed. The instantaneous idealization
choice leads to a cleaner mathematical formulation and simpler algorithms.

An execution strategy S is a mapping

S : P → T

where P is the set of projections and T is the set of schedules. An execution
strategy S is viable if S(p), henceforth written Sp, is consistent with p for each
projection p.

An STNU is Dynamically Controllable if there is a dynamic execution strategy,
that is, a viable execution strategy S such that

Sp1{≺ t} = Sp2{≺ t} ⇒ Sp1(x) = Sp2(x)

for each executable timepoint x and projections p1 and p2, where t = Sp1(x) [4].
Thus, a Dynamic execution strategy assigns a time to each executable timepoint
that may depend on the outcomes of contingent links in the past (or present), but
not on those in the future. This corresponds to requiring that only information
available from observation may be used in determining the schedule. We will use
dynamic strategy in the following for a (viable) Dynamic execution strategy.

3 Previous Algorithms

In [12], an algorithm for Dynamic Controllability was presented that runs in
pseudo-polynomial time. The algorithm analyzes triangles of links and possibly

Dynamic Controllability and Dispatchability Relationships 467

tightens some constraints in a way that makes explicit the limitations to the
execution strategies due to the presence of contingent links.

Some of the tightenings involve a novel temporal constraint called a wait.
Given a contingent link AB and another link AC, the <B, t> annotation on
AC indicates that execution of the timepoint C is not allowed to proceed until
after either B has occurred or t units of time have elapsed since A occurred.
More precisely, it corresponds to the constraint C −A ≥ min(B−A, t). Thus, a
wait is a ternary constraint involving A, B, and C. Note that a wait reduces to
a binary constraint in any projection, since there the value B − A is fixed.

The tightenings in the original algorithm, called reductions, were expressed
in terms of rules that were applied to the STNU graph. We now review devel-
opments in [13,3,4], which re-express the reductions in a more mathematically
concise form, using a derived graph.

An ordinary STN has an alternative representation as a distance graph [10].
Similarly, there is an analogous representation for an STNU called the labeled
distance graph [13]. This is actually a multigraph (which allows multiple edges
between two nodes), but we refer to it as a graph for simplicity. In the labeled

distance graph, each requirement link A
[x,y]−→ B is replaced by two edges A

y−→ B

and A
−x←− B, just as in an STN. For a contingent link A

[x,y]
=⇒ B, we have the

same two edges A
y−→ B and A

−x←− B, but we also have two additional edges

of the form A
b:x−→ B and A

B:−y←− B. These are called labeled edges because of
the additional “b:” and “B:” annotations indicating the contingent timepoint B
with which they are associated. Note especially the reversal in the roles of x and

y in the labeled edges. We refer to A
B:−y←− B and A

b:x−→ B as upper-case and
lower-case edges, respectively. Observe that the upper-case labeled weight B:-y
gives the value the edge would have in a projection where the contingent link
takes on its maximum value, whereas the lower-case labeled weight corresponds
to the contingent link minimum value.

There is also a representation for a A
<B, t>−→ C wait constraint in the labeled

distance graph. This corresponds to a single edge A
B:−t←− C. Note the analogy to

a lower bound. This weight is consistent with the lower bound that would occur
in a projection where the contingent link has its maximum value.

We can now represent the tightenings in terms of the labeled distance graph.
As in [3], we present a version of the rules that assumes the agent can react
instantaneously to observed events.

The reductions from the classic algorithm are replaced by what is essentially
a single reduction with different flavors, together with a label removal rule:

(Upper-Case Reduction)

A
B:x←− C

y←− D adds A
B:(x+y)←− D

(Lower-Case Reduction) If x < 0,

A
x←− C

c:y←− D adds A
x+y←− D

468 P. Morris

(Cross-Case Reduction) If x < 0, B �= C,

A
B:x←− C

c:y←− D adds A
B:(x+y)←− D

(No-Case Reduction)

A
x←− C

y←− D adds A
x+y←− D

(Label Removal Reduction) If z ≥ −x,

B
b:x←− A

B:z←− C adds A
z←− C

With this reformulation, the “Case” (first four) reductions can all be seen
as forms of composition of edges, with the labels being used to modulate when
those compositions are allowed to occur. In light of this, the unlabeled distance1

of a path in the labeled distance graph is defined to be the sum of edge weights
in the path, ignoring any labels. Thus, the reductions preserve the unlabeled
distance.

Morris [3] observes that a duration-uncertain contingent link A
[x,y]
=⇒ B can

be decomposed A
[x,x]−→ C

[0,y−x]
=⇒ B into a duration-certain part A

[x,x]−→ C and a

“pure” duration-uncertain part C
[0,y−x]
=⇒ B. If this is done for all contingent links,

the STNU is said to be in Normal Form. In that case, the contingent link lower
bounds all become zero, so the Label Removal reduction assumes a simpler
form as follows.

(Label Removal) If x ≥ 0,

A
B:x←− C adds A

x←− C

We will assume in the remainder of the paper that STNU networks are in
Normal Form since this simplifies the analysis and algorithms without loss of
generality.

3.1 Path Transformations

The key to speeding up the determination of Dynamic Controllability is to per-
form the reductions in an organized way. This in turn is facilitated by considering
the relationship of paths to Dynamic Controllability. To this end, Morris [3] de-
fines a concept of semi-reducible path, which we review here.

An ordinary STN is consistent if and only if its distance graph does not
contain a negative cycle. There is a related characterization of DC in terms of
negative cycles in the labeled distance graph. This involves a notion of path
transformation.

Consider a path P that contains a subpath Q between two points A and B
and suppose Q matches the left side of a reduction. Then applying the reduction

1 Terminology from [4]. Called reduced distance in [3], which is somewhat misleading.

Dynamic Controllability and Dispatchability Relationships 469

to Q yields a new edge e between A to B. Consider the path P ′ obtained from
P by replacing Q by e. We may regard P as being transformed into P ′ by
the reduction. Note that P ′ has the same unlabeled distance as P since the
reductions preserve unlabeled distance.

Definition 1. A path is reducible if it can be transformed into a single edge
by a sequence of reductions. A path is semi-reducible if it can be transformed
into a path without lower-case edges by a sequence of reductions.

The property of semi-reducible can be directly characterized in structural
terms. The following notation is useful. We write e < e′ in P if e is an earlier
edge than e′ in P , where P is a path in the labeled distance graph. If A and B
are nodes in the path, we write DP(A,B) for the unlabeled distance from A to
B in P . We denote the start and end nodes of an edge e by start(e) and end(e),
respectively.

Definition 2. Suppose e is a lower-case edge in P and e′ is some other edge such
that e < e′ in P . The edge e′ is adrop edge for e in P ifDP(end(e), end(e′)) < 0.
The edge e′ is a moat edge for e in P if it is a drop edge and there is no other
drop edge e′′ such that e′′ < e′ in P . In this case, we call the subpath of P from
end(e) to end(e′) the extension of e in P . We say the moat edge is unusable if e
and e′ have labels that come from the same contingent link; otherwise it is usable.

Thus, a drop edge is where the path following e becomes negative, and a moat
edge is a closest drop edge. An unusable moat edge will have a label that is the
upper-case version of the label on the lower-case edge.2

The extension subpath P turns out to have a very useful property called the
prefix/postfix property, which says that every nonempty proper prefix of P has
non-negative unlabeled distance and every nonempty proper postfix of P has
negative unlabeled distance. The Nesting Lemma [3] says if two prefix/postfix
paths have a non-empty intersection, then one of the paths is contained in the
other. This means that if a path has two subpaths with the property, then the
subpaths are either nested or disjoint.

The main results of [3] provided a characterization of Dynamic Controllability
in terms of the structure of the labeled distance graph, as follows.

Theorem 1. A path P is semi-reducible if and only if every lower-case edge in
P has a usable moat edge in P .

Theorem 2. An STNU is Dynamically Controllable if and only if it does not
have a semi-reducible negative cycle.

The labeled distance graph can be used to calculate distances between nodes
in a similar manner to an ordinary STN distance graph, provided the restrictions
imposed by the labels are respected. The approach in [3] calculates distances for-
ward from each contingent timepoint looking for a usable moat edge to reduce

2 We will see later the reductions may be viewed as performing composition of edges
in projections, and these edges belong to incompatible projections.

470 P. Morris

away the associated lower-case edge. For the innermost nested extensions, this
can be done in a single pass. This produces new edges that bypass these exten-
sions, which decrements the level of nesting. Each pass has a complexity bound
of O(N3) for the distance calculation. It was shown that the depth of nesting can
be linearly bounded leading to a linear cutoff and an overall O(N4) complexity.

4 Cubic Algorithm

We now present a cubic algorithm for Dynamic Controllability using the same
formal framework as [3], but with a different organization of the computation.
Note that a moat edge must have negative unlabeled distance; thus, it must be
either a negative ordinary edge, or a negative upper case labeled edge. Before
leaving NASA, Nicola Muscettola [14, Personal Communication] proposed the
following key ideas, which he anticipated would lead to a cubic algorithm. How-
ever, to the best of our knowledge, such an algorithm has not been published.
We have formulated one based on these ideas and include it here. The key ideas
are:

– Calculate distance backwards from potential moat edges. (That is, calculate
distance to rather than distance from.)

– Calculate the distance over non-negative edges using Dijkstra’s algorithm [11].

– If a new negative edge is encountered, invoke a recursive call before contin-
uing the distance calculation.

– A recursive cycle indicates the network is not Dynamically Controllable.

The backward distance calculation implicitly uses the reduction rules and may
add new non-negative edges. The following example illustrates the approach
(parentheses added for readability):

[(E
4−→ B

B:−2−→ A)
b:0−→ B

1−→ D
D:−3−→ C]

d:0−→ (D
3−→ B

B:−2−→ A)
b:0−→ B

−2−→ E

Consider a backward distance calculation starting at E. This will invoke a

recursive call when it gets to A, which will add a D
1−→ A edge. (It also adds

a E
2−→ A edge, which we ignore for now.) The top-level call will then continue

using the D
1−→ A edge until it gets to C, where it causes another recursive call.

When the call at C gets to A, it will use the already added E
2−→ A edge and

leave behind a new E
0−→ C edge, at which point the top-level call resumes and

encounters a recursive cycle.
An issue of special note is that Dijkstra’s algorithm is normally restricted to

graphs with non-negative edges whereas in our case the initial edges connected to
the Dijkstra source may be negative. However, it is easy to see (e.g., discussion
in [15]) that the algorithm is still valid provided that (1) the only negative
edges are the initial edges and (2) the propagation does not compute a negative

Dynamic Controllability and Dispatchability Relationships 471

distance to the source.3 If the propagation computes a negative distance to the
source, this will be detected as a recursive cycle.

The goal of the computation is to discover semi-reducible negative cycles. It
turns out that a restricted form of the reduction rules is sufficient to make this
discovery because of the negativity. In particular, the Case reductions can all
be restricted to x < 0 and y ≥ 0. Application of the rules will stop when all
the edges have the same sign, which must be negative since the whole cycle has
negative unlabeled distance. (A rule cannot fail because of the label restrictions;
if it did, the original cycle would contain an unusable moat edge and would not
be semi-reducible.) A semi-reducible negative cycle is thus transformed by the
rules to a cycle of all-negative edges, similar to a result of [7].

The restricted reduction rules are equivalent to the BackPropagate-Tighten
rules used in the Incremental Dynamic Controllability work (e.g. [6,7]).4 We
will refer to the restricted reduction rules as Plus-Minus reductions since they
involve a non-negative edge followed by a negative edge. We will also regard
Label Removal as being implicitly applied wherever it is applicable.

Before presenting the detailed algorithm (Fig. 1), we make a modification to
the STNU to simplify the exposition. (An implementation could behave as if
this modification is made without actually changing the data structures.) The
modification separates the start nodes of contingent links from other contingent
links and from the targets of ordinary negative edges. Thus,

B ⇐= A =⇒ C becomes B ⇐= A
[0,0]−→ A′ =⇒ C

B =⇒ A =⇒ C becomes B =⇒ A
[0,0]−→ A′ =⇒ C

B
−x−→ A =⇒ C becomes B

−x−→ A
[0,0]−→ A′ =⇒ C

It is easy to see that the resulting STNU is equivalent to the original one. (Recall
that we allow instantaneous reactions.) The modification keeps distance calcula-
tions involving different (and no) labels separate and adds at most O(K) nodes
and edges, where K is the number of contingent links.

The algorithm is summarized in Fig. 1. We have used indentation instead of
begin-end to set off blocks of code. The continue statement, as in Java, skips
to the next turn of the immediately enclosing loop. A negative node is a node
that is the target of some negative edge. There is a separate distance function
for the distance to each source, but we have abbreviated distance(x,source) as
distance(x) to avoid clutter.

This is essentially a distance-limited version of Dijkstra’s algorithm except for
lines 00-01 and 19-21, which deal with the recursive aspect, lines 02-03, which

3 Consider the proof of correctness [11] of the usual algorithm. This relies on the fact
that the distance to head nodes of the priority queue cannot be superseded by paths
from later nodes, which start at a greater distance and are over non-negative edges.
In our case, after processing the initial node, this will still be true for subsequent
head nodes because paths from later nodes will use non-initial edges.

4 They have more rules because of multiple choices of focus edge, and because they
make a distinction between direct and derived upper-case edges.

472 P. Morris

Boolean procedure determineDC()

for each negative node n do

if DCbackprop(n) = false

return false;

return true;

end procedure

Boolean procedure DCbackprop(source)

00 if ancestor call with same source

01 return false;

02 if prior terminated call with source

03 return true;

04 distance(source) = 0;

05 for each node x other than source do

06 distance(x) = infinity;

07 PriorityQueue queue = empty;

08 for each e1 in InEdges(source) do

09 Node n1 = start(e1);

10 distance(n1) = weight(e1);

11 insert n1 in queue;

12 while queue not empty do

13 pop Node u from queue;

14 if distance(u) >= 0

15 Edge e’ = new Edge(u, source);

16 weight(e’) = distance(u);

17 add e’ to graph;

18 continue;

19 if u is negative node

20 if DCbackprop(u) = false

21 return false;

22 for each e in InEdges(u) do

23 if weight(e) < 0

24 continue;

25 if e is unsuitable

26 continue;

27 Node v = start(e);

28 new = distance(u) + weight(e);

29 if new < distance(v)

20 distance(v) = new;

35 insert v into queue;

36 return true;

end procedure

Fig. 1. Cubic Algorithm

Dynamic Controllability and Dispatchability Relationships 473

short-circuit later calls with the same source, lines 08-11, which unroll the initial
propagation, lines 14-18, which add non-negative edges to the graph, and the
unsuitability condition in lines 25-26, which occurs if the source edge is unusable
for e (from the same contingent link).5 The distance limitation occurs at the first
non-negative value reached along a path (where a non-negative edge is added).

Notice that if the e in line 22 is a non-negative suitable edge, then since
distance(u) is negative, the Plus-Minus reductions will apply. The derived dis-
tance in line 28 will be that of either an ordinary or an upper-case edge. The
added e′ edge in line 17 is ordinary (by virtue of Label Removal if necessary).

The whole algorithm terminates if the same source node is repeated in the
recursion; thus, an infinite recursion is prevented. We will show that this condi-
tion occurs if and only if the STNU has a semi-reducible negative cycle. Thus,
the algorithm does not require a subsidiary consistency check.

The early termination conditions in lines 00-03, which prevent infinite re-
cursion and multiple calls with the same source, can be detected by marking
schemes. Thus, the algorithm involves at most N (number of nodes in the net-
work) non-trivial calls to DCbackprop, each of which (not including the recursive
call) has complexity O(N2) if a Fibonacci heap is used for the priority queue,
giving O(N3) in all. At most O(N2) edges are added to the graph; this cost
is absorbed by the O(N3) overall complexity. The early termination calls to
DCbackprop have O(1) cost and come from superior calls or from determineDC.
The former may be absorbed into the cost of line 20, while there are at most N
of the latter. We now turn to the task of proving correctness.

Theorem 3. The DCbackprop procedure encounters a recursive repetition if and
only if the STNU is not Dynamically Controllable.

Proof. Suppose first there is a recursive repetition. Note that if DCbackprop
calls itself recursively, then there is a (backwards) negative path from the source
of the superior call to that of the inferior. Since the distance calculations involve
applications of the Plus-Minus reductions, that implies there is a reducible nega-
tive path from the first source to the second. Thus, a recursive repetition involves
a cycle stitched together from reducible negative paths, which is a semi-reducible
negative cycle.

Suppose conversely that the STNU is not Dynamically Controllable. Then
it must have some semi-reducible negative cycle C. The intuition behind the
proof is that the negative segments in C will either be bypassed, or will pile
up against each other. Since they cannot all be bypassed, this will result in a
recursive cycle. For the argument, it is convenient to temporarily remove lines
00-01 of the algorithm. In that case, a recursive cycle will result in an infinite
recursion rather than returning false and we can talk about termination instead
of what value is returned.

5 It is useful to think of the distance calculation as taking place in the projection where
any initial contingent link takes on its maximum duration and every other contingent
link has its minimum. An unsuitable edge does not belong to that projection.

474 P. Morris

Note that for every negative node A in C, DCbackprop(A) will be called
eventually, either as a recursive call or as a top-level call from determineDC. By
line 17, the execution of DCbackprop(A) may add a non-negative edge BA from
some other node B in C to A. We will call this a cross-edge. Since the Dijkstra
algorithm computes shortest paths, we have weight(BA) ≤ DC(B,A).

If there is no infinite recursion, then every call to DCbackprop must terminate.
Our strategy will be to show that every terminating call to DCbackprop(A) for
some A in C will add at least one cross-edge. These will then bypass all the
negative edges in C, which contradicts the fact that C is a negative cycle.

First assume all the non-negative edges in C are ordinary edges. (Lower-case
edges add a slight complication that we will address in due course.) Consider the
very first termination of a DCbackprop(A) call for A in C. Note that the execu-
tion cannot have included a recursive call; otherwise the recursive call would have
terminated first. The backward Dijkstra propagation must reach the predecessor
A′ of A in C. This cannot be a negative node, since otherwise it would cause
a recursive call. If the distance to A′ is non-negative, then DCbackprop(A) will
add a non-negative A′A edge. Otherwise the propagation must reach predecessor
A′′ of A′ since A′ is not a negative node. (Thus, A′A is a non-negative edge.)
The propagation will continue to predecessors until a non-negative distance is
reached. This must happen eventually. (Otherwise the propagation would con-
tinue all the way back to A and cause a recursive loop.) Then the execution
of DCbackprop(A) will add a cross-edge before it terminates. For the inductive
step, the argument is similar, except any recursive calls that have already termi-
nated will have left behind cross-edges, and the propagation will be over those
rather than the edges in the original cycle.

Now consider the case where C contains lower-case edges. The difficulty here
is that subpaths of C are not necessarily shortest. Since the cross-edges resulting
from the Dijkstra calculation are shortest paths, the shortenings could result in
a closer moat edge for a lower-case edge. However, by Theorem 3 of [3], we can
assume without loss of generality that C is breach-free. (A lower-case edge in
the cycle has a breach if its extension contains an upper-case edge from the same
contingent link.) In that case, the closer moat edge would still be usable.

Thus, we have shown every terminating call to DCbackprop leaves behind
a cross-edge, which results in a contradiction. It follows there is some non-
terminating call, i.e., an infinite recursion. When we put back lines 00-01, the
recursive cycle is trapped, and results instead in a determination that the STNU
is not Dynamically Controllable. �

The algorithm as presented only adds non-negative edges, which are the only
ones needed for the Dijkstra calculations. However, derived negative edges are
implicit in the distance calculation. Thus, when distance(u) is negative in line 14
of the algorithm, we could infer and save a negative edge or wait condition. We
will call the algorithm that does this determineDC+. Results in the next section
show that the network resulting from determineDC+ is suitable for execution.

Dynamic Controllability and Dispatchability Relationships 475

5 Dispatchability

Previous papers (e.g. [6]) have noted a relationship between Dynamic Controlla-
bility and dispatchability, but have not investigated it formally. In this section,
we clarify the relationship between dispatchability and Dynamic Controllabil-
ity and explore how dispatchability applies to an STNU. We start by relating
dispatchability of an STNU to the better-understood dispatchability of its STN
projections. Since wait edges may be needed for this property to hold, we con-
sider an extended STNU (ESTNU) that may include wait edges. Recall that wait
edges reduce to ordinary edges in a projection.

A dispatching execution [16] is one that respects direct precedence constraints,
and propagates execution times only to neighboring nodes, but otherwise is free
to execute a timepoint at any time within its propagated bounds. An STN is dis-
patchable if a dispatching execution is guaranteed to succeed. It is shown in [16]
that every consistent STN can be reformulated into an equivalent minimum
dispatchable network. The reformulation procedure first constructs the AllPairs
network and then eliminates dominated edges that are not needed for dispatch-
ability. A fast version [17] of the algorithm computes distances from one node at
a time and uses that to determine which edges from that node are dominated.

We can extend these notions to an ESTNU by essentially pretending that
contingent timepoints are executed by the agent and propagating the observed
time. For an ESTNU dispatching execution, we require the free choices are made
only for executable timepoints, and respect the waits and precedences. We can-
not directly mandate that the contingent timepoints respect the precedences;
however (see proof of next result), this is indirectly achieved if the projections
of the ESTNU are dispatchable. Note that such a strategy does not depend on
future events. This leads to the following.

Definition 3. An ESTNU is dispatchable if every projection is dispatchable.

Theorem 4. A dispatchable ESTNU is Dynamically Controllable.

Proof. Suppose all the projections are dispatchable. We show that an ESTNU
dispatching execution will satisfy precedence constraints for the contingent time-

points. Suppose othewise and let A
[x,y]
=⇒ B

−z−→ C be the subnetwork where a
precedence is violated for the first time in some projection. Consider the state
of the execution after A and strictly before B, but within z/2 units of time prior
to B. This is a dispatching execution in the STN sense since no precedence has
been violated yet. However, the constraints in the projection now force C into
the past although it has not been executed yet, which implies the projection is
not dispatchable [17] contrary to our assumption.6

Thus, the ESTNU dispatching strategy restricted to each projection is a dis-
patching execution. If it fails, the projection in which it fails, and hence the
ESTNU, are not dispatchable. �
6 As an example, given an STNU A

[2,4]
=⇒ B

−1−→ C, the minimum dispatchable network

for the minimum-duration projection includes A
1−→ C, which makes C precede B.

476 P. Morris

Since dispatchability is itself a desirable property, this suggests the objective of
transforming an STNU into an ESTNU such that each projection is dispatchable,
preferably in minimum dispatchable form [16]. It is natural to consider if the fast
algorithm discussed in [17], or some variant, can be adapted for this purpose. As
it turns out, the determinDC+ algorithm may itself be viewed as such a variant,
although it does not achieve minimum form. First we prove some basic facts
about dispatchability of an STN in preparation for considering dispatchability
of STNU projections.

Recall that a path has the prefix/postfix property if every nonempty proper
prefix is non-negative and every nonempty proper postfix is negative. It turns
out that prefix/postfix paths in an STN are related to edges in a minimum
dispatchable network (MDN) for the STN. By results in [16,17], an MDN edge
is either undominated or is one (which may be arbitrarily chosen) of a group of
concurrent mutually dominating edges that are not strictly dominated.

Theorem 5. Every consistent STN has a minimum dispatchable network such
that if AB is an edge in that MDN, then there is a shortest path P from A to
B in the STN such that P has the prefix/postfix property.

Proof. First suppose AB is an undominated MDN edge. Let P be any shortest
path from A to B in the STN and let C be any node strictly between A and
B in P . Consider the case where AB is negative. Then the prefix AC must
be non-negative; otherwise AB would be lower-dominated [16]. It follows that
the postfix CB is negative. On the other hand, if AB is non-negative, then CB
must be negative (otherwise AB would be upper-dominated), and then AC is
non-negative.

For the mutual dominance case, we restrict the MDN edge choice. Among a
group of mutually dominating edges that are not strictly dominated, we choose
an MDN edge AB such that a shortest path P from A to B does not contain
a shortest path for another edge in the group. We can then use an argument
similar to the undominated case because if AB is dominated by AC or CB, it
would be strictly dominated. �

This leads to a sufficient condition for dispatchability.

Definition 4. An STN is prefix/postfix complete (PP complete) if whenever the
distance graph has a shortest path from A to B with the prefix/postfix property,
there is also a direct edge from A to B whose weight is equal to the shortest path
distance.

Theorem 6. A consistent STN that is PP complete is dispatchable.

Proof. By Theorem 5, the STN contains all the edges of one of its MDNs; thus,
it is dispatchable. �

Prefix/postfix paths have a well-behaved structure. Suppose a path P has
the prefix/postfix property. Clearly if it has more than one edge, then the first
edge must be non-negative and the last edge must be negative. Now consider

Dynamic Controllability and Dispatchability Relationships 477

a negative edge e in the interior of P . The proper prefix of P that ends with
e will be non-negative; thus, there must be some closest e′ to e such that the
subpath Q from e′ to e is non-negative. It is not difficult to see that Q will also
have the prefix/postfix property. We will call the subpath Q the train of e in
P . We get a similar train for every negative edge within P . Since they all have
the prefix/postfix property, the trains must be nested or disjoint. (This result is
similar to the Nesting Lemma for extensions of lower-case edges.) Note that an
innermost nested train consists of a negative edge preceded by all non-negative
edges, and (like all trains) has non-negative total distance.

For an ESTNU, it turns out that we only need to ensure PP completeness
for a subset of the projections. The AllMin projection is where every contingent
link takes on its minimum duration. In an AllMinButOne projection, one of the
contingent links takes on its maximum duration, and every other contingent
link takes on its minimum duration. We will call these the basic projections of
an ESTNU.

Theorem 7. Given an ESTNU, if the basic projections are PP complete, then
every projection is PP complete.

Proof. Suppose the basic projections are PP complete, and consider a pre-
fix/postfix shortest path P in one of the projections. The proof is by induction
on the depth of nesting of the trains in P . Recall that an innermost train must
consist of a negative edge preceded by all non-negative edges. It is not hard to
see that such a path has its minimum distance in one of the basic projections.
The subpath corresponding to the train will still have the prefix/postfix property
there. (The postfixes are not larger, and the proper prefixes have non-negative
edges.) By PP-completeness of that basic projection, there must be an edge in
the ESTNU that bypasses the subpath. Its distance cannot be less than the sub-
path since P is a shortest path; thus, they have the same distance. This reduces
the depth of nesting. If the depth is zero, the same reasoning can be used to
infer a bypass edge for the whole path. �

This gives us some insight into the functioning of the determineDC+ algo-
rithm. The nested trains cause recursive calls of DCBackprop. If DCBackprop(A)
is called where AB is a contingent link, then the algorithm may be viewed as
adding PP-completeness edges for the AllMinButOne projection for AB. If in-
stead, the call is where A is the target of ordinary negative edges, then it is
adding PP-completeness edges for the AllMin projection. The recursive calls en-
sure that non-negative edges are added in the order corresponding to the nesting.
In summary, the algorithm is extending the STNU so that it is prefix/postfix
complete with respect to the basic projections, and thus is dispatchable.

6 Closing Remarks

Note that in contrast to the fast MDN algorithm [17], all the edges in the original
network are kept by determineDC+. The algorithm may also add unneeded dom-
inated edges in addition to the non-dominated ones that it needs. The number

478 P. Morris

of added edges is significant because the complexity of a Dijkstra computation
is sensitive to the number of edges. This suggests a potential avenue for future
improvement.

A class of STNs is said to be sparse if the number of edges E is a fixed multi-
ple of the number of nodes N (i.e., E scales as O(N)). The cost of one Dijkstra
call is O(E +N logN), which is O(N logN) for a sparse network. Networks en-
countered in practical problems tend to be sparse. Typically for an STN, if the
original network is sparse, the minimum dispatchable network is also sparse [17],7

since it essentially contains the same information in a concise form. It is reason-
able to think the same might be true for an STNU if only non-dominated edges
are added. Thus, if the algorithm could be improved to not add any dominated
edges, then the complexity might in practice be comparable to that of the Fast
Dispatchability algorithm, i.e., O(N2 logN) for sparse networks. The issue es-
sentially is to prune unneeded edge additions from each recursive call before the
higher-level calls use them.

It might seem the ideal solution would be to adapt the fast minimum dispatch-
ability algorithm [17] (FMDA) directly. For an STNU the distance calculation
could be backwards and invoke recursive calls at negative nodes. However, the
adaption would also need to handle, or sidestep, the contraction of rigid compo-
nents in FMDA, which may be complicated by the fact that a contingent link is
itself a rigid constraint in a projection. Besides that, there is the question of how
to adapt the reweighting approach of FMDA (which makes possible a Dijkstra
computation where the original weights may be negative), so that it works for
all the basic projections. Also, to be worth it, the adaptions would need to fit
within the existing FMDA cost. These are challenges for future research.

Acknowledgment. This paper owes a profound debt to the many insights of
Nicola Muscettola, which include the key ideas underpinning the cubic algorithm.
The current author is responsible for the formal treatment and proofs, and the
results relating Dispatchability and Dynamic Controllability.

References

1. Muscettola, N., Nayak, P., Pell, B., Williams, B.: Remote agent: to boldly go where
no AI system has gone before. Artificial Intelligence 103(1-2), 5–48 (1998)

2. Vidal, T., Fargier, H.: Handling contingency in temporal constraint networks: from
consistency to controllabilities. JETAI 11, 23–45 (1999)

3. Morris, P.: A structural characterization of temporal dynamic controllability. In:
Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 375–389. Springer, Heidelberg
(2006)

4. Hunsberger, L.: Magic loops in simple temporal networks with uncertainty - ex-
ploiting structure to speed up dynamic controllability checking. In: ICAART,
vol. (2), pp. 157–170 (2013)

7 Artificially constructed exceptions are unlikely to occur in practice.

Dynamic Controllability and Dispatchability Relationships 479

5. Hunsberger, L.: Tutorial on dynamic controllability (2013),
http://icaps13.icaps-conference.org/wp-content/uploads/2013/06/

hunsberger.pdf

6. Shah, J.A., Stedl, J., Williams, B.C., Robertson, P.: A fast incremental algorithm
for maintaining dispatchability of partially controllable plans. In: Boddy, M.S.,
Fox, M., Thiébaux, S. (eds.) ICAPS, pp. 296–303. AAAI (2007)

7. Nilsson, M., Kvarnström, J., Doherty, P.: Incremental Dynamic Controllability
Revisited. In: Proceedings of the 23rd International Conference on Automated
Planning and Scheduling (ICAPS). AAAI Press (2013)

8. Rossi, F., Venable, K.B., Yorke-Smith, N.: Uncertainty in soft temporal constraint
problems: A general framework and controllability algorithms for the fuzzy case.
Journal of Artificial Intelligence Research 27, 617–674 (2006)

9. Tsamardinos, I., Pollack, M.E.: Efficient solution techniques for disjunctive tem-
poral reasoning problems. Artificial Intelligence 151, 43–89 (2003)

10. Dechter, R., Meiri, I., Pearl, J.: Temporal constraint networks. Artificial Intelli-
gence 49, 61–95 (1991)

11. Cormen, T., Leiserson, C., Rivest, R.: Introduction to Algorithms. MIT Press,
Cambridge (1990)

12. Morris, P., Muscettola, N., Vidal, T.: Dynamic control of plans with temporal
uncertainty. In: Proc. of IJCAI 2001 (2001)

13. Morris, P., Muscettola, N.: Dynamic controllability revisited. In: Proc. of AAAI
2005 (2005)

14. Muscettola, N.: Personal Communication (2006)
15. Web (2010),

http://stackoverflow.com/questions/3833500/

dijkstras-algorithm-with-negative-edges-on-a-directed-graph

16. Muscettola, N., Morris, P., Tsamardinos, I.: Reformulating temporal plans for ef-
ficient execution. In: Proc. of Sixth Int. Conf. on Principles of Knowledge Repre-
sentation and Reasoning (KR 1998) (1998)

17. Tsamardinos, I., Muscettola, N., Morris, P.: Fast transformation of temporal plans
for efficient execution. In: Proc. of Fifteenth Nat. Conf. on Artificial Intelligence
(AAAI 1998) (1998)

http://icaps13.icaps-conference.org/wp-content/uploads/2013/06/hunsberger.pdf
http://icaps13.icaps-conference.org/wp-content/uploads/2013/06/hunsberger.pdf
http://stackoverflow.com/questions/3833500/dijkstras-algorithm-with-negative-edges-on-a-directed-graph
http://stackoverflow.com/questions/3833500/dijkstras-algorithm-with-negative-edges-on-a-directed-graph

Author Index

Afifi, Sohaib 422
Artigues, Christian 268

Babaki, Behrouz 438
Barahona, Pedro 251
Beck, J. Christopher 55, 334
Belin, Bruno 104
Bellavista, Paolo 193
Belov, Gleb 159
Benoist, Thierry 1
Bergman, David 351
Bessiere, Christian 318
Boizumault, Patrice 71
Boland, Natashia 159
Bonfietti, Alessio 210
Bui, Quoc Trung 45

Carlsson, Mats 144
Christie, Marc 104
Cire, Andre A. 351
Corradi, Antonio 193
Crémilleux, Bruno 71

Dejemeppe, Cyrille 284
Deville, Yves 45, 235, 284

Fischetti, Matteo 394

Gaudreault, Jonathan 377
Gauthier Melançon, Gabrielle 136
Gharbi, Nebras 120
Guibadj, Rym Nesrine 422
Guns, Tias 438

Hashemi Doulabi, Seyed Hossein 455
Hebrard, Emmanuel 268, 318
Hemery, Fred 120
Hölldobler, Steffen 251
Hoskins, Maxim 136
Hurley, Barry 301

Jeanjean, Antoine 1
Johansson, Mikael 144
Jost, Vincent 1

Kinable, Joris 176
Kosch, Sebastian 55
Kotthoff, Lars 301
Ku, Wen-Yang 334

Larson, Jeffrey 144
Lecoutre, Christophe 120, 235
Lepailleur, Albon 71
Lombardi, Michele 210, 293
Loudni, Samir 71

Mairy, Jean-Baptiste 235
Malitsky, Yuri 301, 368
Marques-Silva, Joao 368
Marriott, Kim 88
Masson, Renaud 136
Mayer-Eichberger, Valentin 268
McCreesh, Ciaran 226
Mears, Christopher 88
Ménard, Marc-André 318
Mendoza, Jorge E. 136
Meyer, Christophe 136
Milano, Michela 193, 210
Moisan, Thierry 377
Monaci, Michele 394
Morin, Michael 405
Morris, Paul 464
Moukrim, Aziz 422

Nguyen, Van-Hau 251
Nijssen, Siegfried 438

O’Sullivan, Barry 301, 368

Pesant, Gilles 455
Pham, Quang Dung 45
Previti, Alessandro 368
Prosser, Patrick 15, 226

Quimper, Claude-Guy 318, 377, 405

Reale, Andrea 193
Rousseau, Louis-Martin 136, 455
Roussel, Olivier 120

482 Author Index

Sabharwal, Ashish 351

Salvagnin, Domenico 29, 394

Samulowitz, Horst 351

Saraswat, Vijay 351

Savelsbergh, Martin W.P. 159

Schaus, Pierre 293

Schutt, Andreas 88

Siala, Mohamed 268

Stuckey, Peter J. 88, 159

Tack, Guido 88
Trick, Michael 176
Truchet, Charlotte 104

Ugarte Rojas, Willy 71

van Hoeve, Willem-Jan 351

Wallace, Mark 88
Walsh, Toby 268, 318

	Preface
	Organization
	Table of Contents
	Call-Based Dynamic Programming for the Precedence Constrained Line Traveling Salesman
	1 Introduction
	1.1 Problem Definition and Notations
	1.2 Properties
	1.3 Complexity

	2 Lower Bounds
	3 Exact Algorithm
	3.1 Dynamic Programming
	3.2 Heuristics
	3.3 Dominance Rules
	3.4 Examples

	4 Computational Results and Conclusion
	4.1 Problem Instances
	4.2 Results
	4.3 Conclusion

	References

	Stable Roommates and Constraint Programming
	1 Introduction
	2 The Stable Roommates Problem (SR)
	3 A Simple Constraint Model
	4 A More Efficient Model
	5 Empirical Study
	5.1 Discussion

	6 Conclusion
	References

	Detecting and Exploiting Permutation Structures in MIPs
	1 Introduction
	2 Detecting Permutation Structures
	3 Exploiting Permutation Structures
	4 Testbed
	4.1 Quadratic Assignment Problems
	4.2 (Weighted) Total Tardiness Minimization in Single MachineScheduling

	5 Computational Experiments
	6 Conclusions
	References

	Solving the Quorumcast Routing Problem as a Mixed Integer Program
	1 Introduction
	2 Mathematical Models
	2.1 Natural Formulation: Model 1
	2.2 Formulation Based on Multi-commodity Flows: Model 2
	2.3 Classical Formulation: Model 3
	2.4 Miller–Tucker–Zemlin Formulation: Model 4

	3 Solving QRP as a Mixed Integer Program
	3.1 Lazy Constraint Approach
	3.2 Dynamic Constraint Separation Approach
	3.3 Preprocessing

	4 Computational Experiments
	4.1 Comparing the Approaches
	4.2 Effect of the Values of q and |S| on the Performance of the Approaches

	5 Conclusion
	References

	A New MIP Model for Parallel-Batch Scheduling with Non-identical Job Sizes
	1 Introduction
	2 Background
	2.1 Reference MIP Model
	2.2 Previous Work

	3 Exploiting the Problem Structure
	3.1 The Single-EDD Schedule and Assigning Jobs to Earlier
	3.2 Reformulating the Objective Function
	3.3 Additional Lazy Constraints

	4 A New MIP Model
	5 Empirical Comparison
	5.1 Results

	6 Discussion
	7 Conclusion
	References

	Mining (Soft-) Skypatterns Using Dynamic CSP
	1 Introduction
	2 The Skypattern Mining Problem
	2.1 Context and Definitions
	2.2 Skypatterns

	3 The Soft Skypattern Mining Problem
	3.1 Edge-Skypatterns
	3.2 δ -Skypatterns

	4 Mining (Soft-) Skypatterns Using Dynamic CSP
	4.1 Dynamic CSP
	4.2 Mining Skypatterns
	4.3 Mining Soft Skypatterns
	4.4 Pattern Encoding
	4.5 Closedness Constraints

	5 Related Work
	6 Experimental Study
	6.1 Case Study: Discovering Toxicophores
	6.2 Experiments on UCI Benchmarks

	7 Conclusion
	References

	Modelling with Option Types in MiniZinc
	1 Introduction
	2 The Logic of Option Types
	2.1 Lifting Constraints to Option Types
	2.2 Lifting Functions to Option Types

	3 Using Option Types in MiniZinc
	3.1 Basic Modelling with Option Types
	3.2 Extending Comprehension Syntax Using Option Types

	4 Implementing Option Types in MiniZinc
	4.1 Rewriting Option Type Variables
	4.2 Lifting Constraints
	4.3 Global Constraints over Option Types
	4.4 Native Support for Option Types
	4.5 Different Encodings

	5 Experiments
	6 Related Work and Conclusion
	References

	Interactive Design of Sustainable Cities with a Distributed Local Search Solver
	1 Introduction
	2 A Model for Early Stage Design of Sustainable Cities
	2.1 Urban Model

	3 A Constraint Model of the Urban Location Problem
	3.1 Grid Representation of the City
	3.2 Core Constraints
	3.3 High Level Constraints

	4 A Solver for the Interactive Design of Sustainable Cities
	4.1 Initial Resolution with Adaptive Search
	4.2 Distributed Mode
	4.3 Interactive Mode

	5 Experiments
	6 Conclusion
	References

	Sliced Table Constraints:Combining Compression and Tabular Reduction
	1 Technical Background
	2 Compression Method
	3 Filtering Sliced Table Constraints
	3.1 Data Structures
	3.2 Algorithm
	3.3 Illustration

	4 Experimental Results
	5 Conclusion
	References

	The PrePack Optimization Problem
	1 Introduction
	2 Problem Definition
	3 Mixed Integer Problem Model
	4 Hybrid Metaheuristic
	5 Results
	5.1 Exact CP and MIP Models
	5.2 Hybrid Metaheuristic

	6 Conclusion
	References

	An Integrated Constraint Programming Approach to Scheduling Sports Leagues with Divisional and Round-Robin Tournaments
	1 Introduction
	2 Problem Statement and Basic Tournament Properties
	2.1 Basic Tournament Properties
	2.2 Tournament Specific Properties

	3 Constraint Model
	3.1 Problem Variables
	3.2 Structural Constraints
	3.3 Implied Constraints
	3.4 Breaking Symmetries
	3.5 Seasonal Constraints

	4 Experiments
	5 Conclusion
	References

	Local Search for a Cargo Assembly Planning Problem
	1 Introduction
	2 Cargo Assembly Planning
	2.1 The Basic Constraint Programming Model
	2.2 Solver Search Strategy
	2.3 A Greedy Search Heuristic with Constraint Programming
	2.4 Large Neighbourhood Search
	2.5 Limited Visibility Horizon

	3 An Adaptive Scheme for a Heuristic from the Literature
	3.1 Two-Phase Adaptive Greedy Heuristic (AG)
	3.2 Differences between the Approaches

	4 Experiments
	4.1 Initial Solutions
	4.2 Visibility Horizons
	4.3 Comparison of Constraint Programming and Adaptive Greedy

	5 Conclusions
	References

	A Logic Based Benders’ Approach to the Concrete Delivery Problem
	1 Introduction
	2 Problem Outline
	3 Related Research
	4 A Logic-Based Benders’ Decomposition
	4.1 Master Problem
	4.2 Subproblem
	4.3 Generating an Initial Set of Cuts

	5 Experimental Results
	5.1 Data Sets
	5.2 Experiments

	6 Conclusion
	References

	Evaluating CP Techniques to Plan Dynamic Resource Provisioning in Distributed Stream Processing
	1 Introduction
	2 Problem Definition
	2.1 The Internal Completeness (IC) Metric
	2.2 The Replica Activation Problem
	2.3 Failure Model

	3 Solving the Problem with CP
	3.1 LNS-Based Strategy
	3.2 Decomposition-Based Strategy

	4 Experimental Evaluation
	5 Related Work
	6 Conclusions and Future Work
	References

	Disregarding Duration Uncertainty in Partial Order Schedules? Yes, We Can!
	1 Introduction
	2 Experimental Setup
	3 Our Main Result
	4 Our Analysis Framework
	4.1 Worst Case Assumptions
	4.2 Asymptotic Behavior of the Expected Makespan

	5 Empirical Analysis of the Asymptotic Behavior
	6 Concluding Remarks
	References

	An Exact Branch and Bound Algorithmwith Symmetry Breaking for the Maximum Balanced Induced Biclique Problem
	1 Introduction
	2 A Branch and Bound Algorithm
	3 Computational Experiments
	4 Conclusion and Future Work
	References

	Domain k-Wise Consistency Made as Simple as Generalized Arc Consistency
	1 Introduction
	2 Background
	3 Enforcing kWC Using k-dual CSPs
	4 Enforcing DkWC Using k-interleaved CSPs
	5 Practical Use of k-interleaved CSPs
	6 Related Work
	7 Experimental Results
	8 Conclusion
	References

	Representative Encodings to Translate Finite CSPs into SAT
	1 Introduction
	2 Background
	2.1 Constraint Satisfaction Problems (CSPs)
	2.2 Boolean Satisfiability Problem (SAT)
	2.3 Translating a Finite CSP to an Equivalent SAT Instance

	3 The Representative Encodings
	3.1 The Representative-Sparse Encoding
	3.2 The Representative-Order Encoding

	4 Experiments
	4.1 The Pigeon-Hole Problem
	4.2 The Golomb Ruler Problem
	4.3 The Graph Colouring Problem
	4.4 The Open Shop Scheduling Problem

	5 Conclusions and Future Works
	References

	SAT and Hybrid Models of the Car Sequencing Problem
	1 Introduction
	2 Background
	2.1 Hybrid CP/SAT

	 3 The Car Sequencing Problem
	3.1 CP Modelling
	3.2 Default Pseudo-boolean and SAT Models

	4 Explaining the ATMOSTSEQCARD Constraint
	4.1 Explaining Failure
	4.2 Explaining Pruning

	5 SAT-Encoding for the ATMOSTSEQCARD Constraint
	5.1 Sequential Counter
	5.2 Extension to ATMOSTSEQCARD

	6 Experimental Results
	7 Conclusion
	References

	Continuously Degrading Resource and Interval Dependent Activity Durations in Nuclear Medicine Patient Scheduling
	1 Introduction
	2 The Model
	3 Propagation
	3.1 Continuously Degrading Resource
	3.2 Interval Dependent Activity Durations

	4 Experimental Results
	5 Conclusion
	References

	Cost Impact Guided LNS
	1 Introduction
	2 Related Work
	2.1 Propagation Guided LNS (PGLNS)
	2.2 Cost Based Neighborhoods for Scheduling Problems
	2.3 Generic Adaptive Heuristics for LNS

	3 Cost Impact Guided LNS
	4 Experiments
	5 Conclusion
	References

	Proteus: A Hierarchical Portfolioof Solvers and Transformations
	1 Introduction
	2 Multiple Encodings and Solvers
	3 Background
	3.1 The Constraint Satisfaction Problem
	3.2 The Satisfiability Problem
	3.3 Direct Encoding
	3.4 Support Encoding
	3.5 Order Encoding
	3.6 Combining the Direct and Order Encodings
	3.7 Algorithm Portfolios

	4 Experimental Evaluation
	4.1 Setup
	4.2 Portfolio and Solver Results
	4.3 Greater than the Sum of Its Parts

	5 Conclusions
	References

	Buffered Resource Constraint:Algorithms and Complexity
	1 Introduction
	2 Formal Background
	3 The BufferedResource and Switch Constraints
	4 Filtering Algorithm for Switch
	4.1 Finding a Support
	4.2 Network Flow Model
	4.3 Bound Consistency

	5 Experimental Evaluation
	6 Conclusion
	References

	Combining Discrete Ellipsoid-Based Searchand Branch-and-Cut for Binary QuadraticProgramming Problems
	1 Introduction
	2 Problem Definition
	3 Background
	3.1 Discrete Ellipsoid-Based Search
	3.2 B&C MIP Solvers
	3.3 Previous Results

	4 A DEBS/B&C Hybrid Algorithm
	4.1 Preconditioning
	4.2 Axis-Aligned Circumscribed Box Constraints
	4.3 DEBS as a Primal Heuristic

	5 Computational Results
	5.1 Experimental Setup
	5.2 Results

	6 Discussion
	7 Conclusions
	References

	Parallel Combinatorial Optimizationwith Decision Diagrams
	1 Introduction
	2 Review: Branch-and-Bound with Decision Diagrams
	2.1 Maximum Independent Set Problem and BDDs
	2.2 BDD Construction
	2.3 The Branch-and-Bound Algorithm

	3 Parallelizing BDD-Based Branch-and-Bound
	3.1 A Centralized Parallelization Scheme
	3.2 The Challenge of Effective Parallelization
	3.3 Global and Local Pools
	3.4 Load Balancing
	3.5 DDX10: Implementing Parallelization Using X10

	4 Experimental Results
	4.1 DDX10 versus Parallel MIP
	4.2 Parallel versus Sequential Decision Diagrams

	5 Summary and Future Work
	References

	A Portfolio Approach to Enumerating MinimalCorrection Subsets for Satisfiability Problems
	1 Introduction
	2 A Portfolio Approach
	2.1 SNNAP
	2.2 Features
	2.3 Numerical Results

	3 A Dynamic Approach
	4 Evaluation
	5 Conclusion
	References

	Parallel Depth-Bounded Discrepancy Search
	1 Introduction
	2 Literature Review
	2.1 Shared Memory
	2.2 Portfolios
	2.3 Search Space Splitting and Work Stealing
	2.4 Depth-Bounded Discrepancy Search

	3 PDFS Algorithm
	4 PDDS Algorithm
	4.1 Counting Functions

	5 Analysis
	5.1 Analysis of DFS
	5.2 Analysis of DDS
	5.3 Analysis of PDFS
	5.4 Analysis of PDDS
	5.5 Speedup Analysis
	5.6 Workload Analysis

	6 Experiments with Industrial Data
	7 Conclusion
	References

	Self-splitting of Workload in ParallelComputation
	1 Introduction
	2 SelfSplit Paradigm
	2.1 The Idea
	2.2 Vanilla Algorithm
	2.3 Paused-Node Queue Algorithm

	3 Implementation Details
	4 SelfSplit for Constraint Programming
	5 Conclusions and Future Work
	References

	The Markov Transition Constraint
	1 Introduction
	2 Modeling Markov Transition Processes as a Global Constraint
	3 Markov Constraints and Related Literature
	4 Filtering the Markov Transition Constraint
	4.1 Filtering Using Interval Arithmetic (MTC-IA)
	4.2 Filtering Using Linear Programming (MTC-LP)
	4.3 Filtering Using the Fractional Knapsack (MTC-FK)

	5 Empirical Experiments and Discussion
	6 An Application to Path Planning under Uncertainty
	6.1 Applied Experiment and Discussion

	7 Conclusion
	References

	New Lower Bounds on the Number of Vehiclesfor the Vehicle Routing Problemwith Time Windows
	1 Introduction
	2 Problem Formulation
	3 Classical Lower Bounding Techniques
	3.1 A Lower Bound Based on Incompatibilities between Customers
	3.2 A Lower Bound Based on Vehicle Capacity Constraints
	3.3 A Lower Bound Based on the Amount of Needed Travel Time

	4 New Lower Bounds Inspired from Energetic Reasoning
	4.1 Energetic Reasoning
	4.2 From VRPTW to PMSP
	4.3 Bin-Packing Lower Bounds and Energetic Reasoning

	5 Numerical Results
	6 Conclusion
	Bibliography

	Constrained Clustering Using ColumnGeneration
	1 Introduction
	2 MSSC
	3 Column Generation Framework
	4 Column Generation with Constraints
	4.1 Subproblem Solving
	4.2 Reducing the Number of Candidates
	4.3 Pruning Using a Bound on the Objective Function

	5 Practical Considerations
	5.1 Initialisation
	5.2 Branching
	5.3 Slow Convergence

	6 Experiments
	7 Related Work
	8 Conclusions
	References

	A Constraint Programming-Based Column Generation Approach for Operating Room Planning and Scheduling
	1 Introduction
	2 Problem Definition and Assumptions
	3 The Proposed Column Generation Approach
	3.1 Master Problem Formulation
	3.2 Subproblem Formulation

	4 A Compact Formulation
	5 Computational Experiments
	6 Summary and Conclusion
	References

	Dynamic Controllability and DispatchabilityRelationships
	1 Introduction
	2 Background
	3 Previous Algorithms
	3.1 Path Transformations

	4 Cubic Algorithm
	5 Dispatchability
	6 Closing Remarks
	References

	Author Index

