
‘‘Each to His Own’’: Distinguishing
Activities, Roles and Artifacts in EUD
Practices

Federico Cabitza, Daniela Fogli and Antonio Piccinno

Abstract End-User Development (EUD) studies how to empower end users
(among which, e.g., professionals and organizational workers) to modify, adapt
and extend the software systems they daily use, thus coping with the evolving
needs of their work organizations and the shop-floor environment. This research
area is becoming increasingly important also for the cross fertilization of ideas and
approaches that come from the fields of Information Systems and Human-Com-
puter Interaction. However, if one considers the variety of research proposals
stemming from this common ground, there is the risk of losing denotational pre-
cision of the key terms adopted in the common vocabulary of EUD. To counteract
this natural semantic drift, the objective of this paper is to distinguish within three
EUD complementary important notions, namely activities, roles, and artifacts, in
order to help researchers deepen important phenomena regarding the ‘‘meta-
design’’ of systems built to support EUD practices.

Keywords End-user development � User task � Meta-design � Intermediary
object � Knowledge artifact

F. Cabitza
Università degli Studi di Milano-Bicocca, Milan, Italy
e-mail: cabitza@disco.unimib.it

D. Fogli
Università degli Studi di Brescia, Brescia, Italy
e-mail: fogli@ing.unibs.it

A. Piccinno (&)
Università degli Studi di Bari, Bari, Italy
e-mail: antonio.piccinno@uniba.it

L. Caporarello et al. (eds.), Smart Organizations and Smart Artifacts,
Lecture Notes in Information Systems and Organisation 7,
DOI: 10.1007/978-3-319-07040-7_19,
� Springer International Publishing Switzerland 2014

193



1 Introduction

Humanist studies and disciplines have often provided Information Systems (IS)
and Human-Computer Interaction (HCI) researchers with sets of so-called ‘‘sen-
sitizing’’ concepts, that is terms and expressions that ‘‘help analysts unpack the
social organization of cooperative activities’’ [1]. However, a natural semantic
drift usually occurs when such sensitizing concepts are borrowed by scholars of
different disciplines. This has occurred, especially in the HCI field, with regard to
the concepts of boundary object [2], community of practice [3], and appropriation
[4], as well as to the recent concept of meta-design [5]. In this drift, as also argued
in [6], subtle but yet important nuances of the original concepts are either com-
pletely lost or get blurred in the description and analysis of social settings; in this
way, they fail to inform requirement elicitation and Information Technology (IT)
design to their full potential.

The objective of this paper is to shed light on three necessary notions, which
could help researchers better analyze subtle but yet important phenomena for a
more successful meta-design in End-User Development (EUD) initiatives [7, 8].
Indeed, in 2003, EUD has been defined as ‘‘the set of methods, techniques, and
tools that allow users of software systems, who are acting as non-professional
software developers, at some point to create, modify, or extend a software artifact’’
[9]. However, if one analyses the variety of proposals in the EUD field, like those
included, for example, in the book on EUD [9] or in the proceedings of the so far
four editions of the International Symposium on EUD, it is possible to observe
that, over the years, such a definition became blurred and too general, due to the
possibilities provided by technology today (e.g., the advent of the Web 2.0 and
3.0) that ten years ago people could not anticipate. Indeed, the objective of this
paper is to propose a clear distinction in the EUD discourse between comple-
mentary articulations around three perspectives: namely, the perspectives of
activities, roles and artifacts, according, respectively, to the aim and scope of the
EUD practice, to whom is to take advantage of the product of such a practice, and
lastly to the role of mediation played by IT artifacts in EUD scenarios. This
threefold articulation is based on a series of field studies that the authors have
performed in the last years in heterogeneous and unrelated EUD projects, whose
main element in common has been the endeavor of adapting the meta-design
framework to real communities of practice and practitioners.

The paper is organized as follows. Section 2 presents a classification of EUD
activities. In Sect. 3 the roles in EUD practices are discussed, while in Sect. 4 a
classification of the artifacts as a result of the different EUD activities is presented.
Finally, in Sect. 5 the implications that the three articulations may have on meta-
design activities and on the role of meta-designers are discussed.

194 F. Cabitza et al.



2 Activities

To disentangle EUD articulations, we propose at first to classify EUD into indi-
vidual EUD and public EUD (see Fig. 1). Individual EUD encompasses all those
activities that lead to the creation, modification or extension of a software artifact
for personal use only. Typical examples of individual EUD regard spreadsheet
programming [10], where end users create or modify formulas and macros for their
own purposes, or scripting environments for statistical computing and graphics,
like R and MatLab, by which experts in scientific domains (biology, statistics,
geology, etc.) write usually short bunches of software code to analyze and display
their data autonomously [11]. Individual EUD is the main research subject of End-
User Software Engineering (EUSE) [12], which proposes a variety of methods for
requirement analysis and specification, system design and reuse, verification and
testing, code debugging, specifically devoted to non-professional software
developers.

However, in many situations, single end users either program or configure
software artifacts that are used by (or also by) other people, as in the case of multi-
tiered proxy design problems [13, 14]. Usually these people are colleagues and
co-workers (as in the case of the Electronic Patient Record in [15]), but also people
working in other departments, contexts, and communities (as in the case of
e-government in [16]): In this case, we speak of public EUD, since the outcome of
the EUD activity is aimed at being shared and publicly available to others than the
end user involved in the programming activity. The main difference between
public and individual EUD is then the explicit intention behind the programming
effort: either making something intended to be shared or not, respectively.

Public EUD can be further specialized into inward EUD and outward EUD. In
the former case, the people carrying out any EUD activity work for a community
they also belong to, with or without the intention to build an artifact that could be
adopted also in other, possibly different, settings. Although this cannot be a priori
excluded, EUD activities are intended to support members of small teams and
groups of people sharing sets of conventions, assumptions and practices, i.e., in
many cases what are called ‘‘communities of practice’’ [17]. In these settings many
things can be given for granted and computational support is intentionally adjusted
in a ‘‘quick and dirty’’ fashion to achieve effectiveness and flexibility, rather than
maintainability and transferability. An example is a ‘‘pipe’’ in Yahoo!Pipes: this is
usually developed for personal use, but it can also (either intentionally or unin-
tentionally) be shared among the Yahoo!Pipes community. In the outward EUD
case, conversely, the quality of the software artifacts is more likely to be purposely
pursued, as the EUD activity is intentionally aimed at building and improving tools
that are to be used across different communities or, even, in other communities.

In the case of inward EUD, who undertakes EUD tasks is usually denoted with
a number of different names, like ‘‘power user’’, ‘‘gardener’’ or ‘‘local developer’’
[18]; these terms are usually used to indicate someone who, belonging to a given
community, works for the proficiency of the community itself, in virtue of a deep

‘‘Each to His Own’’: Distinguishing Activities, Roles 195



and often tacit knowledge of the characteristics and skills of its members. For
example, in the case of the Electronic Patient Record discussed in [15], the head
physician is called to visually compose the software environment, i.e., the elec-
tronic patient record that will be used in her/his ward by her/his colleagues and co-
workers. In [19], the authors report of a system in which doctors could create
simple rules so that relevant information displayed in their medical records could
be highlighted according to the context. Another example is in the archaeological
context: in [20], it is described how professional guides use different software
solutions that allow them to create personal information spaces, which could be
shared with other colleagues through annotation mechanisms.

Conversely, in outward EUD, at least two communities are involved and there
is no guarantee that those who carry out EUD activities will also take advantage of
the product of these activities; this case has been investigated to a lesser extent by
the EUD community, but, nevertheless, can occur in complex and important
domains. For instance, in [21] the authors report how civil servants, acting as non-
professional software developers, are called to create e-government services for
citizens; in [13] it is described how, in a similar way, mobile user interfaces for
disabled patients can be easily developed by caregivers (parents or assistants) by
means of a script-based system; in [22], it is reported and discussed how editorial
staff members of a Web shop portal may be asked to personalize systems for shop
owners, and, finally, in the archaeological context mentioned above [20, 23], each
guide can retrieve and compose, via a desktop application, the material for his/her
personal information space to be shown to a group of visitors during a visit of an
archaeological park.

Fig. 1 EUD activities articulation

196 F. Cabitza et al.



This classification, far from being a rigid taxonomy of EUD practices, hints
rather at a spectrum of possible uses (see Fig. 1) and is provided for its role in
pointing to specific design implications that will be discussed in Sect. 5.

3 Roles

Distinguishing between kinds of activities allows also to consider more precisely
scopes and roles involved in those activities. In particular, in addition to the oft-
cited roles of the end user and meta-designer, we propose to consider also the roles
of domain developer and maieuta-designer, according to the task these people are
supposed to undertake in an EUD process of IT artifact construction.

As widely known, the end user is a passive user of the IT artifact and consumer
of its products and services.

We propose the term ‘‘domain developer’’ to subsume all those roles that are in
charge of carrying out EUD activities, like the above mentioned ‘‘power user’’,
‘‘local developer’’, ‘‘gardener’’, ‘‘end-user developer’’ [14], ‘‘bricolant bricoleur’’
[24]. Therefore, a domain developer is a domain expert actively involved in the so-
called meta-task of improving the system used in the domain-specific task: such a
task is ‘‘meta’’ in that it is aimed at creating better artifacts for the main tasks in the
work domain at hand.

Likewise, the meta-designer is someone involved in the design of the EUD
environment and tools by which domain developers can build their own artifacts.
Therefore, s/he is usually a professional software developer in charge of creating
the technical conditions for EUD practice, according to a vision of meta-design as
a two-phase process [7, 25]: The former consisting of designing the design
environment, the latter consisting of designing the artifacts for end users using the
design environment.

On the other hand, the maieuta-designer specializes some of the activities that
previous literature contributions assigned to the meta-designer and which are more
concerned with the establishment and conservation of the most favorable social
conditions for empowering and motivating users in shaping their tools at use time
[5, 8]. This role actually encompasses and subsumes those that are involved in the
task of supporting the meta-task of the domain developers, that is of having the
domain experts (playing the role of domain developers) internalize the design
culture and the technical notions necessary for the meta-task of artifact develop-
ment. The maieuta-designer is therefore supposed to facilitate the evolution of
single users from being passive end users of their tools to become domain devel-
opers, that is domain experts capable to develop their own tools and make them
more fit to their settings, or at least to empower and help end users appropriate their
IT artifacts more actively and consciously, so that they can commit themselves in
improving the artifact e.g., by simply reporting shortcomings and system faults, and
expressing due modifications and appreciated improvements to whom it concerns
or is able to intervene (i.e., the domain developers or the IT professionals, if

‘‘Each to His Own’’: Distinguishing Activities, Roles 197



available). For this reason we call such a designer a maieuta-designer, partly in
analogy with the Socratic method of getting people acquire notions, motivations
and self-confidence to undertake challenging tasks by themselves, and partly in
clear assonance with the term meta-designer, of which it is a specialization more
oriented to work practice and EUD activities than to IT design and development
[24]. The maieuta-designer role is also in line with a new and more recent vision of
EUD that considers it (and meta-design) as one of the foundations of the cultures of
participation rather than a mere technical instrument [8].

Domain developer and maieuta-designer are just new roles that we have
introduced to specify the activities of the end user and meta-designer in EUD
practice (see Fig. 2). However, nothing prevents that the same person plays dif-
ferent roles at different degrees: for example, especially in individual EUD, the
end user actually becomes, at some time, a domain developer. Similarly, the roles
of meta-designer and maieuta-designer could be played by a software engineer and
by a HCI expert respectively, as in the case described in [26], or both roles may be
played by a professional software developer as in [13]. In the same vein, the
maieuta-designer could be occasionally just the most passionate one of the prac-
titioners involved in an EUD initiative, who tries to convince his/her colleagues to
join the initiative as well and have an active stake in the continuous improvement
of the IT artifacts that are in their partial or total control.

Indeed, as Fig. 2 shows, these four roles are also aimed at representing a sort of
continuum in the attitude towards the IT artifact, from the less active one, i.e., the
end user that just uses the IT artifact and occasionally gives feedback to the person
who is officially accountable for its quality, often on a professional basis (i.e., the
meta-designer). Compliant with the EUD tenets, our categorization does not force
domain analysis to fit actors into narrow boxes that do not reflect the complexity of
real work settings; quite the opposite we recognize such a complexity considering
that no wall should be established between roles, and that responsibilities, although
clear at any given time, can change as the project unfolds over time and contri-
butions are given on a voluntary basis irrespective of the intended planning. The
unpredictability and necessary openness of EUD projects is what makes them
substantially different from traditional software engineering projects and urges for
role and activity models that could cope with situated processes of IT appropri-
ation and collaborative development of the technology in a community context.

4 Artifacts

The classification proposed above, which distinguishes between individual EUD
and public EUD, as well as between inward and outward EUD, allows also to
distinguish in a finer-grained manner the IT artifacts used by the roles involved in
those activities.

In particular, it is useful to distinguish between: personal artifacts, which are
used by single users that employ the EUD environment for their own purposes, as

198 F. Cabitza et al.



in the case of spreadsheet programming; and intermediary objects. These are
objects that are shared, exchanged and circulated among members of networks and
communities to mediate their interactions [27]; in so doing, they represent the
intermediate steps of any design or meta-design task [28], i.e., ‘‘the traces as well
as the outputs of a collaborative transformational process’’ [29] and thus support
the continuous process by which they and other objects evolve over time. Personal
artifacts and intermediary objects mirror the EUD activities that they support:
individual and public EUD, respectively. Intermediary objects can be further
distinguished in knowledge artifacts and boundary objects, as extremes of a
continuous range that do not only cross boundaries but also contribute in shaping
them [29, 30]. Boundary objects is the notion introduced by Bowker and Star in
[31] to account for those artifacts that enable a sort of standardized and effectively
simplified communication and coordination between members of different com-
munities of practice; knowledge artifacts, on the other hand, are artifacts that
enable and support learning and innovation within a specific community of
practice, that is processes of knowledge acquisition, circulation and creation
among its members [32]. This spectrum of EUD artifacts is illustrated in Fig. 3.

In the EUD literature, boundary objects are often recognized between the
community of end users and the community of the IT professionals (i.e., meta- and
maieuta-designers) involved in the digitization process (e.g. [33]). Although this
can be perfectly the case, we should always remember that, in a real EUD scenario,
IT professionals should be present only at the inception of a digitization project, as
EUD is ultimately aimed at making end users autonomous in the long run. For this
reason, in standard use, speaking of EUD software artifacts as intermediary objects
seems more appropriate. That notwithstanding, either boundary objects or
knowledge artifacts, as particular instances of intermediary objects, cannot be
rigidly associated with either Inward or Outward EUD activities: it is a matter of
analysis to understand what roles an IT artifact is playing in an organizational
domain and understand how to support it computationally. Indeed, on one hand,
inward EUD addresses IT artifacts that often play the role of knowledge artifact;
moreover, hosting or being the objective of inward EUD activities make those IT
artifacts become also knowledge artifacts in the process itself of development, as
these latter end up by ‘‘mirroring and reflecting’’ how the community (or its

Fig. 2 Roles in EUD practices

‘‘Each to His Own’’: Distinguishing Activities, Roles 199



domain developers) has improved both the work tasks and the meta-tasks that
characterize the community itself. This is for example the case of the Electronic
Patient Record in the medical domain [15, 19, 23], which represents a shared
artifact within a hospital ward and among different wards, useful for accumulating
and sharing knowledge about each patient. In outward activities IT artifacts can
‘‘fertilize’’ different communities, by enabling activities that require some learning
by the members of the ‘‘receiving’’ community: therefore also in this case it is
possible to speak of knowledge artifacts ‘‘across communities of practice’’ [32].
On the other hand, outward EUD always encompasses the transfer of more or less
full-fledged IT artifacts from one community to another, but this does not nec-
essarily imply that these latter will play any coordinative role between these two
communities, thus being boundary objects as Bowker and Star defined them
originally [31]. However, one of the main reasons why a community could want to
develop tools to be given to other communities is to achieve a better communi-
cation and alignment of meanings, purposes and activities, so as to make those
tools effective boundary objects: for instance, an administrative office could pro-
vide a commercial office with a partially precompiled spreadsheet to have com-
mercial agents fill in expense accounts more accurately and completely, as
reported in [34]. Another example is in the e-government domain, where a civil
servant may create the description of an e-government service, which gives rise to
the automatic generation of both the web pages to be used by citizens to apply for
the service, and of the web pages to be used by administrative employees to
manage citizens’ requests [16].

Fig. 3 EUD artifacts articulation

200 F. Cabitza et al.



Once again, our point is that distinguishing between different activities, roles
and artifacts is not a nominalist effort, but rather an analytic stance that allows for
detecting nuances that could call for different design approaches, quality
requirements and EUD solutions.

5 Discussion and Conclusion

In this paper we proposed a threefold ‘‘activity, role and artifact’’ perspective in
EUD, in order to address complementary and mutually affecting components of an
EUD project. As said above, our effort is not merely taxonomic, but rather oriented
to the situated practices of requirement analysis and design. Indeed, a fine-grained
articulation of roles can help in understanding how to deploy efficient training
programs and apply effective rewarding mechanisms; for instance, distinguishing
between end-user, domain developer, and meta- and maieuta-designer, according
to the level of involvement in the process of artifact production, can help in
detecting different tasks to be supported in different ways and hence in shedding
light on specific meta-design principles. On the other hand, distinguishing what
kind of preexisting artifact has to be digitized in an organizational domain, that is
focusing on what main role a traditional artifact is playing, which has to be
substituted by a software application or IT artifact, would help designers invest on
more critical functionalities that are typically necessary in one case, but redundant
if not detrimental in the other one, or in detecting a palette of reusable off-the-shelf
EUD components to offer to domain developers. In the same light, the analysis we
outlined above on the distinction between individual and public EUD suggests to
reconsider meta-design priorities and the meta-designer’s role.

To this aim, we find it interesting to recall the seminal work of Grudin [35], who
discusses the different emphasis put on utility and usability of software systems in
different development contexts: whilst in in-house and internal system development
emphasis is rightly put more on utility since IT artifacts are built around their
intended functionalities, in commercial projects it is conversely usability the most
important characteristic, as one of the priorities is to facilitate system acceptance by
users and therefore increase the likelihood of success of the digitization process.
This tension between utility and usability has also influenced different approaches
to IT artifact development that have been pursued in the IS and HCI communities
over the years respectively. Nowadays, the cross-fertilization of these two research
fields can provide insights for dealing with this controversial relation between
usability and utility that in the EUD discourse revives as a primary concern and can
find, hopefully, an effective solution.

On the one hand, if one considers individual EUD and public/inward EUD,
emphasis should be mainly put on utility: indeed, EUD activities encompass
system adaptation and extension to increase effectiveness of the individual user
and/or of the whole community. Usually this is achieved through development
techniques that are very close to traditional programming languages, such as

‘‘Each to His Own’’: Distinguishing Activities, Roles 201



macro or script development, component-based development and programming by
examples. This requires that domain experts are trained (or even self-trained) in
programming methods and languages, so as to become what we have therefore
called ‘‘domain developers’’, that is domain experts that develop IT artifacts for
their own domain or setting. More specifically, in individual EUD, end users and
domain developers coincide as people who are in control of modifying the IT
artifact for their own purpose.

Conversely, in public/outward EUD, domain developers modify the IT artifact
by constantly taking into account the requests of other end users, for the sake of the
whole community’s advantage, a community they often do not belong to.

As a consequence, to support the meta-task of domain developers in individual
EUD and public/inward EUD, meta-designers must focus on the design of EUD
tools and infrastructures for communication within the community, whilst the
maieuta-designer must focus on the proper training of the domain developers, and
on managing the risk and the impact that the system under evolution may have on
the organization and its work practices.

On the other hand, in public/outward EUD, artifacts must be designed more
carefully for at least two reasons: first, because these artifacts will be used by people
that did not participate in the development process and could find contacting the
developers very hard, if not impossible at all. In fact, an EUD artifact is not
guaranteed by any commercial company, nor a help desk exists to troubleshoot its
problems or provide guidance about its proper use. Secondly, it is possible that
other non-professional software developers will have to adjust the artifacts to make
them more suitable and fit to the community of end users where these are eventually
adopted. This means that public/outward EUD requires a greater emphasis on
usability: not only tools supporting domain developers must fit their characteristics,
skills and background, but also the artifacts created for end users by the domain
developers must be usable as well. Thus, in this case, EUD techniques must be both
informed by domain-specific concepts and oriented toward the support of daily
work practices: for instance, EUD environments in e-government [21] and medical
projects [36] adopt the metaphors of the form-based interaction and of the active
document because these recalls the usual ways work is accomplished in those
domains. Furthermore, the activity of domain developers consists of creating
software artifacts for people that belong to a different community; thus, proper
mechanisms for making artifact creation easier and code generation transparent,
that is free of unnecessary implementation details or language-specific technicali-
ties, must be defined, along with procedures that guarantee the creation of usable
artifacts [37]. Both aspects still regard the meta-task of domain developers, which
should be supported no more with training in programming, but rather with user-
friendly and visually engaging EUD systems [38], along with proper incentive and
rewarding mechanisms. Therefore, in public/outward EUD, the meta-designer must
pay more attention on easy-to-use EUD techniques and automatic code generation
mechanisms (for example through meta-modeling [39]), whilst the maieuta-
designer must focus on motivation strategies.

202 F. Cabitza et al.



In light of the considerations mentioned above, novel meta-design guidelines
emerge and should be refined and put to the ‘‘test of life’’. Therefore, our future
work will be aimed at extending the current proposals on meta-design and making
them more concretely applicable in the challenging context of the communities of
practice for the creation of supportive EUD tools and infrastructures that can
evolve more easily along with the needs and objectives of the members of those
communities.

References

1. Hughes, J.A., Randall, D., Shapiro, D.: Faltering from ethnography to design. In: ACM
Conference on Computer-Supported Cooperative Work, pp. 115–122. ACM Press, New York
(1992)

2. Star, S.L.: This is not a boundary object: reflections on the origin of a concept. Sci. Technol.
Human Values 35(5), 601–617 (2010)

3. Duguid, P.: Prologue: community of practice then and now. In: Amin, A., Roberts, J. (eds.)
Community, Economic Creativity, and Organization, pp. 1–10. Oxford University Press,
Oxford (2008)

4. Dix, A.: Designing for appropriation. In: 21st British HCI Group Annual Conference on
People and Computers: HCI…but not as we know it, vol. 2, pp. 27–30. British Computer
Society, Swinton (2007)

5. Fischer, G., Giaccardi, E.: Meta-design: a framework for the future of end user development.
In: Lieberman, H., Paternò, F., Wulf, V. (eds.) End User Development, vol. 9, pp. 427–457.
Springer, Dordrecht (2006)

6. Alter, S.: Work systems and IT artifacts—does the definition matter? Commun. Assoc. Inf.
Syst. 17, 299–313 (2006)

7. Costabile, M.F., Fogli, D., Mussio, P., Piccinno, A.: A meta-design approach to End-User
Development. In: IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), pp. 308–310. IEEE Computer Society (2005)

8. Fischer, G.: End user development and meta-design: foundations for cultures of participation.
J Organ. End User Comput. 22(1), 52–82 (2010)

9. Lieberman, H., Paternò, F., Wulf, V. (eds.): End User Development. Springer, Dordrecht
(2006)

10. Burnett, M., Rothermel, G., Cook, C.: An integrated software engineering approach for end-
user programmers. In: Lieberman, H., Paternò, F., Wulf, V. (eds.) End User Development,
vol. 9, pp. 87–113. Springer, Netherlands (2006)

11. Letondal, C.: Participatory programming: developing programmable bioinformatics tools for
end-users. In: Lieberman, H., Paternò, F., Wulf, V. (eds.) End User Development,
pp. 207–242. Springer, Dordrecht (2006)

12. Ko, A.J., Abraham, R., Beckwith, L., Blackwell, A., Burnett, M., Erwig, M., Scaffidi, C.,
Lawrance, J., Lieberman, H., Myers, B., Rosson, M.B., Rothermel, G., Shaw, M.,
Wiedenbeck, S.: The state of the art in end-user software engineering. ACM Comput.
Surv. 43(3), 1–44 (2011)

13. Carmien, S., Dawe, M., Fischer, G., Gorman, A., Kintsch, A., Sullivan Jr, J.F.: Socio-
technical environments supporting people with cognitive disabilities using public
transportation. ACM Trans. Comput. Hum. Inter. 12(2), 233–262 (2005)

14. Fogli, D., Piccinno, A.: Co-evolution of end-user developers and systems in multi-tiered
proxy design problems. In: Dittrich, Y., Burnett, M., Mørch, A., Redmiles, D. (eds.) End-
User Development. LNCS, vol. 7897, pp. 153–168. Springer, Berlin (2013)

‘‘Each to His Own’’: Distinguishing Activities, Roles 203



15. Ardito, C., Buono, P., Costabile, M.F., Lanzilotti, R., Piccinno, A.: End users as co-designers
of their own tools and products. J. Vis. Lang. Comput. 23(2), 78–90 (2012)

16. Fogli, D.: Towards a new work practice in the development of e–government applications.
Electron. Gov. Inter. J. 10(3), 238–258 (2013)

17. Wenger, E., McDermott, R.A., Snyder, W.: Cultivating Communities of Practice: A Guide to
Managing Knowledge. Harvard Business Press, Boston (2002)

18. Gantt, M., Nardi, B.A.: Gardeners and gurus: patterns of cooperation among CAD users. In:
ACM Conference on Human Factors in Computing Systems (CHI), pp. 107–117. ACM, New
York, NY, USA (1992)

19. Cabitza, F., Simone, C.: Affording mechanisms: an integrated view of coordination and
knowledge management. Comput. Support. Coop. Work (CSCW) 21(2–3), 227–260 (2012)

20. Ardito, C., Bottoni, P., Costabile, M.F., Desolda, G., Matera, M., Piccinno, A., Picozzi, M.:
Enabling end users to create, annotate and share personal information spaces. In: Dittrich, Y.,
Burnett, M., Mørch, A., Redmiles, D. (eds.) End-User Development. LNCS, vol. 7897,
pp. 40–55. Springer, Berlin (2013)

21. Fogli, D., Provenza, L.P.: A meta-design approach to the development of e-government
services. J. Vis. Lang. Comput. 23(2), 47–62 (2012)

22. Ardito, C., Barricelli, B.R., Buono, P., Costabile, M.F., Piccinno, A., Valtolina, S., Zhu, L.:
Visual mediation mechanisms for collaborative design and development. In: Stephanidis, C.
(ed.) Universal Access in Human-Computer Interaction. Design for All and eInclusion.
LNCS, vol. 6765, pp. 3–11. Springer, Berlin (2011)

23. Ardito, C., Buono, P., Costabile, M.F., Lanzilotti, R., Piccinno, A., Zhu, L.: On the
transferability of a meta-design model supporting End-User Development. Univ. Access Inf.
Soc. J. (UAIS) (in print)

24. Cabitza, F., Simone, C.: Building socially embedded technologies: implications on design. In:
Randall, D., Schmidt, K., Wulf, V. (eds.) Designing Socially Embedded Technologies: A
European Challenge. Springer, Berlin (in print)

25. Sutcliffe, A., Mehandjiev, N.: End-user development (Introduction to Special Issue).
Commun. ACM 47(9), 31–32 (2004)

26. Costabile, M.F., Fogli, D., Marcante, A., Mussio, P., Provenza, L.P., Piccinno, A.: Designing
customized and tailorable visual interactive systems. Inter. J. Softw. Eng. Knowl. Eng. 18(3),
305–325 (2008)

27. Vinck, D., Blanco, E.: Everyday Engineering: an Ethnography of Design And Innovation.
MIT Press, Cambridge (2003)

28. Boujut, J.-F., Blanco, E.: Intermediary objects as a means to foster co-operation in
engineering design. Comput. Support. Coop. Work (CSCW) 12(2), 205–219 (2003)

29. Lee, C.P.: Boundary negotiating artifacts: unbinding the routine of boundary objects and
embracing chaos in collaborative work. Comput. Support. Coop. Work (CSCW) 16(3),
307–339 (2007)

30. Cabitza, F.: At the boundary of communities and roles: boundary objects and knowledge
artifacts as complementary resources for the design of information systems. In: Mola, L.,
Pennarola, F., Za, S. (eds.) From Information to Smart Society: Environment, Politics and
Economics. LNISO. Springer, Berlin (in print)

31. Bowker, G.C., Star, S.L.: Sorting Things Out: Classification and Its Consequences. MIT
Press, London (1999)

32. Cabitza, F., Colombo, G., Simone, C.: Leveraging underspecification in knowledge artifacts
to foster collaborative activities in professional communities. Int. J. Hum. Comput. Stud.
71(1), 24–45 (2013)

33. Hess, J., Reuter, C., Pipek, V., Wulf, V.: Supporting end-user articulations in evolving
business processes: a case study to explore intuitive notations and interaction designs. Inter.
J. Coop. Inf. Syst. 21(4), 263–296 (2012)

34. Batini, C., Barone, D., Cabitza, F., Grega, S.: A data quality methodology for heterogeneous
data. Inter. J. Database Manag. Syst. (IJDMS) 3(1), 60–79 (2011)

204 F. Cabitza et al.



35. Grudin, J.: Utility and usability: research issues and development contexts. Interact. Comput.
4(2), 209–217 (1992)

36. Cabitza, F., Simone, C.: WOAD: a framework to enable the end-user development of
coordination-oriented functionalities. J. Organ. End User Comput. 22(2), 1–20 (2010)

37. Fogli, D., Piccinno, A.: Enabling domain experts to develop usable software artifacts. In:
Spagnoletti, P. (ed.) Organizational Change and Information Systems. LNISO, vol. 2,
pp. 419–428. Springer, Berlin (2013)

38. Cabitza, F., Gesso, I., Simone, C.: Providing end-users with a visual editor to make their
electronic documents active. In: IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC), pp. 171–174. IEEE Computer Society (2012)

39. Fogli, D., Provenza, L.P.: End-user development of e-government services through meta-
modeling. In: Costabile, M.F., Dittrich, Y., Fischer, G., Piccinno, A. (eds.) End-User
Development. LNCS, vol. 6654, pp. 107–122. Springer, Berlin, (2011)

‘‘Each to His Own’’: Distinguishing Activities, Roles 205


	19 ‘‘Each to His Own’’: Distinguishing Activities, Roles and Artifacts in EUD Practices
	Abstract
	1…Introduction
	2…Activities
	3…Roles
	4…Artifacts
	5…Discussion and Conclusion
	References


