
W. Zamojski et al. (eds.), Proceedings of the Ninth International Conference
DepCoS-RELCOMEX, Advances in Intelligent Systems and Computing 286,

455

DOI: 10.1007/978-3-319-07013-1_44, © Springer International Publishing Switzerland 2014

Heuristic Cycle-Based Scheduling with Backfilling
for Large-Scale Distributed Environments

Victor Toporkov1, Anna Toporkova2,
Alexey Tselishchev3, Dmitry Yemelyanov1, and Petr Potekhin1

1
 National Research University “MPEI”,

ul. Krasnokazarmennaya, 14, Moscow, 111250, Russia
{ToporkovVV,YemelyanovDM,PotekhinPA}@mpei.ru

2 National Research University Higher School of Economics,
Moscow State Institute of Electronics and Mathematics,

Bolshoy Trekhsvyatitelsky per., 1-3/12, Moscow, 109028, Russia
atoporkova@hse.ru

3 European Organization for Nuclear Research (CERN),
Geneva, 23, 1211, Switzerland

Alexey.Tselishchev@cern.ch

Abstract. The paper is devoted to comparing the results of an independent job
batch scheduling in terms of a virtual organization policy and available
resources usage efficiency in large distributed environments like utility Grid. A
hybrid approach is proposed on the basis of a cyclic scheduling scheme and
backfilling combination. Additionally the paper offers a heuristic shifting
procedure which improves jobs execution alternatives selected in the cyclic
scheme. The simulation results show that depending on the scheduling
efficiency indicator and the level of resource availability each of the approaches
is able to provide the best results. Moreover the obtained results are valid under
conditions of dynamically varying state of resources and inaccurate user job
runtime estimations.

Keywords: Distributed computing, economic scheduling, slot, job, backfilling.

1 Introduction

Some of the most important quality of service (QoS) indicators of a distributed
computational environment is a utilization level of the available resources and job
start (“response”) time. In distributed environments with non-dedicated resources the
computational nodes are usually partly utilized by local priority jobs. Thus, the
resources available for use can be represented as a set of slots – time intervals during
which the individual computational nodes are vacant to execute parts of
multiprocessor parallel jobs. Presence of this set of slots (which generally have
different start and finish times and difference in performance depending on the node,
where the slot is allocated) impedes the problem of a coordinated selection of the
resources required to execute the job flow from the computational environment users.

456 V. Toporkov et al.

Resource fragmentation also results in a steady decrease of the total computing
environment utilization level. Resource management and job scheduling economic
models proved to be efficient in such conditions [1-8]. Application-level scheduling,
as a rule, does not imply any global resource sharing or allocation policy. Resource
brokers [9-15] are usually considered as mediators between users and resource
owners. Scheduling and resource management systems in this approach are well-
scalable and application-oriented. However, simultaneous application-level
scheduling with diverse optimization criteria set by independent users, especially
upon possible competition between applications, may deteriorate such QoS
characteristics of a distributed environment as total job batch execution time or
overall resource utilization. The regulations of a virtual organization (VO) in Grid
[16] usually suppose a job flow scheduling. A meta-scheduler or a meta-broker are
considered as intermediate chains between the users and a local resource management
and job batch processing systems [1, 17-20]. VOs, on one hand, naturally restrict the
scalability of resource management systems (though, it is worth remarking here, that
there is a good experience [19] of enabling interoperability among meta-schedulers
belonging to different VOs). On the other hand, uniform rules of a resource sharing
and consumption, in particular based on economic models [1-8], make it possible to
improve the job-flow level scheduling and resource distribution efficiency. In some
well-known models of a distributed computing environments with non-dedicated
resources, only the first fit set of resources is chosen depending on the environment
state [18, 21-23], while job scheduling optimization mechanisms are usually not
supported. In other models [2, 3, 17] the aspects related to the specifics of the
environments with non-dedicated resources (particularly dynamic resource loading,
the competition between independent users, users’ global and owners’ local job
flows) are not presented.

In this paper, we propose a combined approach to meta-scheduling in VOs. First of
all, we address a problem of an early resources release and “on the fly” rescheduling
by combining our original cyclic scheduling scheme (CSS) [24] with backfilling [25].
For overall job-flow execution optimization and a resource occupation time prediction
existing schedulers rely on the time specified in the job request, e.g. using Job
Submission Description Language (JSDL). However, the reservation time is usually
based on the user inaccurate runtime estimates [26]. In case, when the application is
completed before the term specified in the resource request, the allocated resources
remain underutilized. Second, we introduce a schedule shifting heuristic in CSS.
Thus, we outline two main job-flow optimization directions. First, optimal or a
suboptimal (under a given VO criteria) scheduling is performed on the basis of a
priori information about the computational nodes local schedules and the resource
reservation time for each job execution. CSS belongs to this type of systems. Another
approach represents scheduling “on the fly” which depends on dynamically updated
information about resource utilization. In this case, schedulers are focused on overall
resources load maximization and a job start time minimizing. Backfilling may be
related to this scheduling model.

 Heuristic Cycle-Based Scheduling with Backfilling 457

The rest of the paper is organized as follows. Section 2 is devoted to analysis of the
related works. In Section 3, there is a concept of CSS and backfilling combination as
well as of the shifting procedure. Section 4 contains simulation results of the
considered scheduling approaches comparison. Finally, section 5 summarizes the
paper and describes further research topics.

2 Related Works

Many resource selection and scheduling algorithms, and heuristic-based solutions
have been proposed for parallel jobs and tasks with dependencies in distributed
environments [3, 18, 19, 21-23, 27-33].

In [3], heuristic algorithms for slot selection, based on user-defined utility
functions, are introduced. Slot window allocation is based on the user defined
efficiency criterion under the maximum total execution cost constraint. However, the
optimization occurs only on the stage of the best found offer selection. The paper [28]
presents architecture and an algorithm for performing Grid resources co-allocation
without the need for advance reservations based on synchronous subtasks queuing.
However, advance reservation is efficient to improve the co-allocation QoS. Advance
reservation-based co-allocation algorithms are proposed in [21-23, 29, 30].

First fit resource selection algorithms [21-23] assign any job to the first set of slots
matching the resource request conditions without any optimization. Preference-based
matchmaking [18] is not focused on the scheduling process. The job is scheduled on
the first available resource according to user preferences. In [19], an approach to
resource matchmaking among VOs combining hierarchical and peer-to-peer meta-
schedulers models is proposed.

The co-allocation algorithms described in [29-31] suppose an exhaustive search
and some of them are based on a linear integer programming (IP) [7, 30] or a mixed-
integer programming (MIP) model [31]. The co-allocation algorithm presented in [30]
uses the 0-1 IP model with the goal of creating reservation plans satisfying user
resource requirements. Users can specify a time frame for each resource: the earliest
start time, the latest start time and the job duration, where user wants to reserve a time
slot. This condition imposes restrictions for slots search only within this time frame.
A linear IP-driven algorithm is proposed in [7]. It combines the capabilities of an IP
and a genetic algorithm and allows obtaining the best meta-schedule that minimizes
the combined cost of all independent users in a coordinated manner. In [31], the
authors propose a MIP model which determines the best scheduling for all the jobs in
the queue in environments composed of multiple clusters that act collaboratively. The
scheduling techniques proposed in [7, 29-33] are efficient compared with other
scheduling techniques under given criteria: the minimum processing cost, the overall
makespan, resources utilization, load balancing for related tasks [32, 33], etc.
However, complexity of the scheduling process is extremely increased by the
resources heterogeneity and the co-allocation process, which distributes the tasks of
parallel jobs across resource domain boundaries.

458 V. Toporkov et al.

In this work, we use algorithms for efficient slot selection based on criteria defined
by users, resource owners and VO administrators. The algorithms have linear
complexity against the number of all available time-slots and operate on a scheduling
interval denoting how far in the future the system may schedule resources [24, 27].

3 A Concept of Combined Cycle-Based Scheduling

CSS was proposed for a model based on a hierarchical job-flow management [24].
Job-flow scheduling is performed in cycles with separate job batches on the basis of
dynamically updated computational nodes’ local schedules.

Among the major CSS restrictions in terms of an efficient scheduling and resource
allocation one may outline the following. First of all, it is not possible to affect
execution parameters of an individual job: the search for particular alternatives is
performed on the First Fit principle, while choice of the optimal alternatives
combination represents only the VO interests. Second, the job batch scheduling is
based on an often inaccurate user estimation of a particular job runtime [26]. Third,
the job batch scheduling requires allocation of a multiple “nonintersecting” in terms
of slots alternatives, and only one alternative is chosen for each job execution.

Fig. 1. Cyclic scheduling with batch-slicing

We introduce a modified CSS model: Batch-slicer (Fig. 1). In order to satisfy the
user preferences a desirable optimization criterion is introduced into the job request.
In Fig. 1: Cj-1, Cj, Cj+1 are slot costs determined by resource owners. We propose
initial job batch separation into a set of sub-batches and each sub-batch scheduling at
the same given scheduling interval. According to the alternatives search algorithm
adopted in CSS [24], at a high resource utilization level the number of the batch jobs’
execution alternatives may be relatively small up to just a single alternative for every
job. Such a small number of alternatives found may affect the optimal slot

 Heuristic Cycle-Based Scheduling with Backfilling 459

combination selection, and therefore, may reduce overall scheduling efficiency. The
job batch “slicing” increases the number of alternatives found for high-priority jobs
and diversifies the choice on the slots combination selection stage, and thereby
increases the resource sharing efficiency according to VO policy.

Backfilling [25] responds to early resources releases and performs “on the fly”
rescheduling which is very important when a user job runtime estimation is
significantly different from the actual job execution time. However backfilling has
some limitations for distributed computing. The first one is inefficient resource usage
by criteria different from average job start time (especially at a relatively low resource
load level). The second one is a principal inability to affect the resource sharing
quality by defining policies and criteria in VO.

We introduce a combined approach. During every scheduling cycle a set of high
priority jobs is allocated from the initial job batch. These jobs are grouped into a
separate sub-batch and should be scheduled before other jobs, probably, without
compliance with the queue discipline. The scheduling of this sub-batch is further
performed by Batch-slicer based on the preliminary known resources utilization
schedule. The scheduling of the rest batch jobs is performed by backfilling with the
dynamically updated information about the actual computational nodes utilization.
The cyclic scheduling method combined with backfilling (Batch-slice-Filling - BSF)
combines the main advantages of both Batch-slicer and backfilling, namely the
optimization of the most time-consuming jobs execution as well as the efficient
resource usage, preferential job execution queue order compliance and a relatively
low response time.

A heuristic shifting procedure is proposed for the job execution alternatives
selected for advanced reservation. The procedure shifts the alternatives in time
towards the beginning of the scheduling interval retaining resource instances in which
they are allocated. The shifting procedure is done iteratively for each job of the batch
being scheduled. The job selection order is determined according to the start time of
the chosen alternatives: first, an attempt to shift the alternatives with the minimal start
time is performed. Such order guarantees that when shifting a job all other jobs with
an earlier start time are already shifted and hence do not occupy the corresponding
nodes. Otherwise, a task with an earlier start time and a lower priority may block the
shift of a task with a higher priority and then, in its turn, may be shifted releasing
extra slots.

4 Simulation Studies

The experiments are devoted to study scheduling efficiency using the proposed
approaches: CSS, BSF, Shifted CSS (CSS with the use of a shifting procedure), and
also backfilling (BF). The goal is to compare the scheduling efficiency depending on
the number of computational nodes in the domain as well as to investigate schedules

460 V. Toporkov et al.

consistency under conditions of inaccurate user job execution time estimations.
A series of studies were carried out with the simulation environment [24]. Each
experiment includes an input batch of 15 jobs generation as well as the resources
structure and local schedules of the computational environment. To analyze the
approaches under different conditions the simulation is conducted individually for
different numbers of the nodes available {6, 10, 20, 30, 50, 75, 100, 150}. Thus the
investigation consists in comparing the scheduling results obtained with the same
input data by means of different algorithms.

Scheduling efficiency is considered from the viewpoint of a job batch total slot
utilization time procT minimization, start startt and finish finisht job batch execution

times minimization, and minimization of a combined criterion procstart TtF += . For

a batch consisting of multiple jobs we consider average parameter values.

Fig. 2. Average job batch start time

Figure 2 shows average scheduled job start times obtained independently with all
considered scheduling approaches depending on the computational environment
nodes number. As can be seen from Fig. 2, with increasing amount of available
computational nodes backfilling is able to reduce the average job batch start time
down to zero (i.e. all batch jobs can start at the very beginning of the scheduling
interval). At the same time average job start time obtained with CSS is almost
independent of the available nodes number. BSF provides the average job batch start
time close to backfilling’s by filling unused by CSS time slots near beginning of the
scheduling interval with relatively low priority jobs. With a relatively large resource
level an average job batch start time obtained with Shifted CSS tends to a non-zero
value since the most profitable in terms of the optimization criterion resources are
generally allocated for more than one job. Thus in case of heterogeneous resource
environment it is virtually impossible to start all the batch jobs at the beginning of the
scheduling interval using CSS (even with shifted variation).

 Heuristic Cycle-Based Scheduling with Backfilling 461

Fig. 3. Average batch jobs processor time usage

Figure 3 shows the advantage of CSS, Shifted CSS, and BSF over backfilling by
the VO target optimization criterion procT . It should be noted that with increasing

number of available resources the advantage of CSS and BSF over backfilling also
increases. The use of additional heuristics, such as job batch slicing, can provide even
greater CSS advantage on the target criterion.

Fig. 4. Average batch jobs F value

Figure 4 shows the value of the combined resource usage efficiency index

procstart TtF += . It is important to note that the intersection between the Shifted

CSS, BSF and backfilling graphs implies that in case of a relatively low level of
available resources backfilling or BSF (they provide almost the same criterion F
value) are better as compared with Shifted CSS. With increasing computational
environment size Shifted CSS becomes more advantageous in terms of resource usage
efficiency.

462 V. Toporkov et al.

Fig. 5. Average batch jobs finish time

The same conclusion can be drawn if we evaluate the resource usage efficiency by
the average batch job finish time (Fig. 5): Shifted CSS provides the best results when
computational nodes with a sufficiently large number are available. Thus the use of
BSF is justified in virtually any conditions: this combined approach provides
competitive to backfilling values of all considered resource usage efficiency indexes,
and at the same time optimizes execution performance of the high-priority jobs.

Another experiment studies the scheduling efficiency and consistency when based
on user estimated job runtimes in case when these estimations are inaccurate. During
the computational environment simulation batch jobs’ actual execution time was set
as a random variable with uniform distribution, which allows actual job execution
time and a user estimation vary by 5 times. Uniform distribution is chosen as it is
almost impossible to predict real job execution time on the specified resources. Table
1 contains the simulation results. Results show, that even if the difference between the
resource reservation time and the real job execution time is significant the advantage
of CSS over backfilling against the VO target optimization criterion not only remains
but increases. That is because backfilling does not optimize against criteria different
from the start time and implied more compact job packing uses almost all the
available resources including those less advantageous against the target criterion.

Table 1. Average batch jobs processor time usage

Approach
Processor time usage

Reserved Real

Backfilling 208 140

CSS 168 112

CSS advantage 19% 20%

 Heuristic Cycle-Based Scheduling with Backfilling 463

5 Conclusions and Future Work

In this work, we compare the scheduling results of a batch of independent jobs in
terms of a virtual organization policy and the available resources usage efficiency.
Based on a cyclic scheduling scheme and backfilling combination a hybrid approach
BSF is proposed. Additionally the shifting procedure is proposed for the alternatives
chosen in CSS. The simulation results show that depending on the considered
scheduling efficiency index, and depending on the level of the resources available,
each of the considered approaches may provide the best results. Backfilling, as a rule,
minimizes job start and finish times, while CSS is able, for example, to minimize the
job processor time usage (when given the appropriate optimization criterion). In order
to ensure compromise scheduling results it is justified to use BSF: scheduling of high
priority jobs with CSS and further filling the remaining unassigned resources with
backfilling. The results obtained remain valid in a dynamically changing
computational environment condition and composition, and in case when user jobs
runtime estimations are significantly inaccurate.

Further research will be related to a more precise investigation of dividing the job
flow into sub-batches depending on the jobs characteristics and computational
environment parameters as well as to studying of rescheduling based on the
information about computational nodes current state and performance.

Acknowledgements. This work was partially supported by the Council on Grants of
the President of the Russian Federation for State Support of Leading Scientific
Schools (SS-362.2014.9), the Russian Foundation for Basic Research (grant no. 12-
07-00042).

References

1. Garg, S.K., Konugurthi, P., Buyya, R.: A Linear Programming-driven Genetic Algorithm
for Meta-scheduling on Utility Grids. J. Par., Emergent and Distr. Systems 26, 493–517
(2011)

2. Buyya, R., Abramson, D., Giddy, J.: Economic Models for Resource Management and
Scheduling in Grid Computing. J. Concurrency and Computation 14(5), 1507–1542 (2002)

3. Ernemann, C., Hamscher, V., Yahyapour, R.: Economic Scheduling in Grid Computing.
In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2002. LNCS, vol. 2537,
pp. 128–152. Springer, Heidelberg (2002)

4. Lee, Y.C., Wang, C., Zomaya, A.Y., Zhou, B.B.: Profit-driven Scheduling for Cloud
Services with Data Access Awareness. J. Par. and Distr. Computing 72(4), 591–602 (2012)

5. Garg, S.K., Buyya, R., Siegel, H.J.: Scheduling Parallel Applications on Utility Grids:
Time and Cost Trade-off Management. In: 32nd Australasian Computer Science
Conference (ACSC 2009), Wellington, New Zealand, pp. 151–159 (2009)

6. Degabriele, J.P., Pym, D.: Economic Aspects of a Utility Computing Service, Trusted
Systems Laboratory HP Laboratories Bristol HPL-2007-101. Technical Report, pp. 1-23
(July 3, 2007)

464 V. Toporkov et al.

7. Garg, S.K., Yeo, C.S., Anandasivam, A., Buyya, R.: Environment-conscious Scheduling of
HPC Applications on Distributed Cloud-oriented Data Centers. J. Parallel and Distributed
Computing 71(6), 732–749 (2011)

8. Tesauro, G., Bredin, J.L.: Strategic Sequential Bidding in Auctions Using Dynamic
Programming. In: 1st International Joint Conference on Autonomous Agents and
Multiagent Systems, Part 2, pp. 591–598. ACM, New York (2002)

9. Thain, D., Tannenbaum, T., Livny, M.: Distributed Computing in Practice: the Condor
Experience. J. Concurrency and Computation: Practice and Experience 17(2-4), 323–356
(2004)

10. Berman, F.: High-performance Schedulers. In: Foster, I., Kesselman, C. (eds.) The Grid:
Blueprint for a New Computing Infrastructure, pp. 279–309. Morgan Kaufmann, San
Francisco (1999)

11. Yang, Y., Raadt, K., Casanova, H.: Multiround Algorithms for Scheduling Divisible
Loads. IEEE Trans. Parallel and Distributed Systems 16(8), 1092–1102 (2005)

12. Natrajan, A., Humphrey, M.A., Grimshaw, A.S.: Grid Resource Management in Legion.
In: Nabrzyski, J., Schopf, J.M., Weglarz, J. (eds.) Grid Resource Management. State of the
Art and Future Trends, pp. 145–160. Kluwer Academic Publishers, Boston (2003)

13. Beiriger, J., Johnson, W., Bivens, H.: Constructing the ASCI Grid. In: 9th IEEE
Symposium on High Performance Distributed Computing, pp. 193–200. IEEE Press, New
York (2000)

14. Frey, J., Foster, I., Livny, M.: Condor-G: a Computation Management Agent for Multi-
institutional Grids. In: 10th International Symposium on High-Performance Distributed
Computing, pp. 55–66. IEEE Press, New York (2001)

15. Abramson, D., Giddy, J., Kotler, L.: High Performance Parametric Modeling with
Nimrod/G: Killer Application for the Global Grid? In: International Parallel and
Distributed Processing Symposium, pp. 520–528. IEEE Press, New York (2000)

16. Foster, I., Kesselman, C., Tuecke, S.: The Anatomy of the Grid: Enabling Scalable Virtual
Organizations. Int. J. of High Performance Computing Applications 15(3), 200–222 (2001)

17. Kurowski, K., Nabrzyski, J., Oleksiak, A., Weglarz, J.: Multicriteria Aspects of Grid
Resource Management. In: Nabrzyski, J., Schopf, J.M., Weglarz, J. (eds.) Grid Resource
Management. State of the Art and Future Trends, pp. 271–293. Kluwer Academic
Publishers, Boston (2003)

18. Cafaro, M., Mirto, M., Aloisio, G.: Preference-Based Matchmaking of Grid Resources
with CP-Nets. J. Grid Computing 11(2), 211–237 (2013)

19. Rodero, I., Villegas, D., Bobroff, N., Liu, Y., Fong, L., Sadjadi, S.M.: Enabling
Interoperability among Grid Meta-Schedulers. J. Grid Computing 11(2), 311–336 (2013)

20. Toporkov, V.: Application-Level and Job-Flow Scheduling: an Approach for Achieving
Quality of Service in Distributed Computing. In: Malyshkin, V. (ed.) PaCT 2009. LNCS,
vol. 5698, pp. 350–359. Springer, Heidelberg (2009)

21. Aida, K., Casanova, H.: Scheduling Mixed-parallel Applications with Advance
Reservations. In: 17th IEEE Int. Symposium on HPDC, pp. 65–74. IEEE CS Press, New
York (2008)

22. Ando, S., Aida, K.: Evaluation of Scheduling Algorithms for Advance Reservations.
Information Processing Society of Japan SIG Notes HPC-113, 37–42 (2007)

23. Elmroth, E., Tordsson, J.: A Standards-based Grid Resource Brokering Service Supporting
Advance Reservations, Coallocation and Cross-Grid Interoperability. J. of Concurrency
and Computation 25(18), 2298–2335 (2009)

 Heuristic Cycle-Based Scheduling with Backfilling 465

24. Toporkov, V., Tselishchev, A., Yemelyanov, D., Bobchenkov, A.: Composite Scheduling
Strategies in Distributed Computing with Non-dedicated Resources. Procedia Computer
Science 9, 176–185 (2012)

25. Moab Adaptive Computing Suite,
http://www.adaptivecomputing.com/products/
moab-adaptive-computing-suite.php

26. Lee, S.B., Schwartzman, Y., Hardy, J., Snavely, A.: Are User Runtime Estimates
Inherently Inaccurate? In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP
2004. LNCS, vol. 3277, pp. 253–263. Springer, Heidelberg (2005)

27. Toporkov, V., Toporkova, A., Tselishchev, A., Yemelyanov, D.: Slot Selection Algorithms
in Distributed Computing with Non-dedicated and Heterogeneous Resources. In:
Malyshkin, V. (ed.) PaCT 2013. LNCS, vol. 7979, pp. 120–134. Springer, Heidelberg
(2013)

28. Azzedin, F., Maheswaran, M., Arnason, N.: A Synchronous Co-allocation Mechanism for
Grid Computing Systems. Cluster Computing 7, 39–49 (2004)

29. Castillo, C., Rouskas, G.N., Harfoush, K.: Resource Co-allocation for Large-scale
Distributed Environments. In: 18th ACM International Symposium on High Performance
Distributed Compuing, pp. 137–150. ACM, New York (2009)

30. Takefusa, A., Nakada, H., Kudoh, T., Tanaka, Y.: An Advance Reservation-Based Co-
allocation Algorithm for Distributed Computers and Network Bandwidth on QoS-
Guaranteed Grids. In: Frachtenberg, E., Schwiegelshohn, U. (eds.) JSSPP 2010. LNCS,
vol. 6253, pp. 16–34. Springer, Heidelberg (2010)

31. Blanco, H., Guirado, F., Lérida, J.L., Albornoz, V.M.: MIP Model Scheduling for Multi-
Clusters. In: Caragiannis, I., et al. (eds.) Euro-Par Workshops 2012. LNCS, vol. 7640, pp.
196–206. Springer, Heidelberg (2013)

32. Moise, D., Moise, I., Pop, F., Cristea, V.: Resource CoAllocation for Scheduling Tasks
with Dependencies, in Grid. In: The Second International Workshop on High Performance
in Grid Middleware (HiPerGRID 2008), Bucharest, Romania, pp. 41–48. IEEE Romania
(2008)

33. Olteanu, A., Pop, F., Dobre, C., Cristea, V.: A Dynamic Rescheduling Algorithm for
Resource Management in Large Scale Dependable Distributed Systems. Computers and
Mathematics with Applications 63(9), 1409–1423 (2012)

	Heuristic Cycle-Based Scheduling with Backfilling for Large-Scale Distributed Environments
	1 Introduction
	2 Related Works
	3 A Concept of Combined Cycle-Based Scheduling
	4 Simulation Studies
	5 Conclusions and Future Work
	References

