
W. Zamojski et al. (eds.), Proceedings of the Ninth International Conference
DepCoS-RELCOMEX, Advances in Intelligent Systems and Computing 286,

303

DOI: 10.1007/978-3-319-07013-1_29, © Springer International Publishing Switzerland 2014

CDM: A Prototype Implementation of the Data Mining
JDM Standard

Piotr Lasek

Chair of Computer Science, University of Rzeszów
ul. Prof. St. Pigonia 1, 35-310 Rzeszów, Poland

lasek@ur.edu.pl

Abstract. There exists a great variety of tools and applications designed for da-
ta mining and knowledge discovery. Historically, from the 1970s, a number of
available tools continues to grow. For this reason, a potential user may have dif-
ficulties when trying to choose an appropriate tool for himself. Similarly, when
it comes to the implementation and evaluation of newly proposed data mining
algorithm, an author needs to consider how to verify his proposal. Usually, a
new algorithm or a method is implemented and tested without using any stan-
dardized software library and tested by means of an ad hoc created software.
This causes difficulties in case when there is a need to compare efficiency of
two methods implemented using different techniques. The aim of the paper is to
present a prototype implementation of a data mining system (CDM) based on
the Java Data Mining standard (JDM) that provides standardized methods de-
signed for convenient implementation and verification of data mining algo-
rithms.

Keywords: Data mining, clustering, JDM standard, CDM.

1 Introduction

Data mining is a relatively new and rapidly developing field of computer science. Its
main goal is to explore data so that new, unknown and potentially useful patterns
could be discovered. Data mining methods employ different and specialized algo-
rithms for building, modeling and evaluation of discovered knowledge and are used to
analyze multiple kinds of data from many domains such as medicine, healthcare,
finance, telecommunication, science, etc. Recently, data mining tools, crucially im-
proved and simplified data mining by employing new efficient algorithms [3, 4, 6].
The number of methods and tools both commercial and open source increases rapidly
every year [2, 5, 7]. Undoubtedly, data mining tools and applications become widely
known and used when it comes to exploring knowledge from large amounts of data.

Data mining techniques evolve so that they become both more expert and problem
oriented [14]. Additionally, during recent years, they also became more useful in eve-
ryday applications, such as, for example, e-mail filtering or credit card fraud analysis
[15]. For professionals, the data mining process is more like an art because of the fact
that they usually limit their analysis to several best known techniques. On the other

304 P. Lasek

hand, beginners are often overwhelmed by the variety of methods and the diversity of
existing different, both commercial and open source, data mining tools. The diversity
of these tools was a subject of numerous works [2]. The aim of our work is not to
compete with existing software but rather to present and promote the way how to
implement and test data mining algorithms so that they could be easily reused by
another users.

Among numerous tools and data mining libraries the introduction of the Java Data
Mining standard (JDM) is a step towards standardization and vendor neutral devel-
opment of data mining solutions. JDM was designed so that it is based on solid con-
cepts such as so-called mining objects, models and tasks. On the other hand, despite it
comes with standard, its Application Programming Interface (API) is also flexible and
extensible.

The paper is divided into four sections. After the introduction we recall basic defi-
nitions of terms used in the next part of the paper which are related to the implemen-
tation of the prototype CDM (for Common Data Mining) system based on the JDM
standard. Additionally, in the second section we briefly describe the JDM standard
and present, from our perspective, its crucial features. In Section 3 we describe our
prototype implementation of data mining engine and several other components re-
quired to meet the standard of JDM. We summarize our paper as well as present our
further plans related to development of CDM in Section 4.

2 The Architecture of JDM

JDM was created by high-class experts and meets the following crucial assumptions:
addresses a large developer community, is a standard interface, has a broad accep-
tance among vendors and consumers, is extensible, simplifies data mining for novices
while allowing control for experts, recognize conformance limitations for vendor
implementations, supports requirements of real, industrial applications, appeals to
vendors and architects in other development domains [3]. For these reasons we have
chosen JDM as a base for implementation of our prototype CDM.

The specification of JDM was accepted by Java Community Process Executive
Committee in 2004. The architecture of JDM comprises three main components,
namely: API, DME (Data Mining Engine) and MR (Meta Data Repository). API (Ap-
plication Programming Interface) is the set of programming interfaces which should
be implemented so as to provide access to services available in DME. Data Mining
Engine can be implemented in several ways. One possible way is to implement it as a
library providing methods to access data to be analyzed, another may be to implement
it as a more convenient tool such as a server. In the latter case, such an implementa-
tion of DME is usually called DMS (Data Mining Server). Next, the repository of
meta data is used to store so-called Data Mining Objects which can be used in differ-
ent steps of mining process. Repositories can use flat file system or can be pro-
grammed as a relational database similarly to the Oracle Data Mining implementation
[1]. Moreover, if necessary, it is possible to add additional components that are not
included in the specification of the JDM standard.

 CDM: A Prototype Implementation of the Data Mining JDM Standard 305

In Figure 1 we recalled the diagram of several so-called Mining Objects used in
JDM. A Mining Object is a base class for all classes in JDM and comprises the basic
and common features such as: name, description, identifier or type of an exploration
object. A Mining Object can be saved, under a specific name in a Mining Objects
Repository and during a mining process, it can be accessed by another methods by
using its name. In JDM the data mining objects are divided into the following types:
Data Specification Objects, Settings Objects and Tasks. Data Specification Objects
are designed for defining input data by using both logical and physical interfaces. For
example the Logical Data based classes are used to interpret data whereas Physical
Dataset based classes designed to define the place where data are stored as well as the
attribute names and data types. By means of these two types of data classes (logical
and physical) it is possible to separate data from algorithms. For example, by using
Settings Objects, it is possible to provide parameters to data mining functions. There
are different kinds of Setting Objects classes which are appropriate for different kinds
of mining functions, namely: Clustering Settings, Supervised Settings, Attribute Im-
portance Settings, Association Settings. Settings Objects provide means to control the
build and apply process by setting values of processes or algorithms parameters. For
example Build Settings based classes are used to specify settings at the function level
and optionally at the algorithm level. Apply Settings classes for instance, provide
flexibility when defining the results from model apply.

MiningObject

PhysicalDataSet BuildSettings

CostMatrix ApplySettings

Model Task

Fig. 1. A simplified class diagram of named object of JDM

Model Objects are used to store a compact representation of the knowledge. This
kind of objects provides details at the function and algorithm level. The Model inter-
face is the base interface for all models used in JDM. It comprises another interface
called ModelDetail encapsulating algorithm-specific details. A sample implementa-
tion of the model for classification could consist of the following classes Classifica-
tionModel, ClassificationSettings and TreeModelDetail. The first class would provide
common content for all kinds of classification algorithms and the TreeModelDetail
class would provide elements specific to the algorithms based on the decision tree.

Another important element of the JDM architecture is the entity called Task. Tasks
represent all information that is required to perform mining operation. Tasks are

306 P. Lasek

started by invoking the execute method from the Connection object. Because of the
fact that when analyzing big data sources mining tasks can be long running, the JDM
architecture supports both synchronous and asynchronous execution of tasks. The
tasks can be controlled by the handle represented by an object of the ExecutionHandle
class.

Collection
VerificationReport
Exception
ExecutionHandle

javax.datamining

NamedObject
MiningObject
BuildSettings
Models
Tasks
TestMetrics
Algorithm Settings
AttributeStatisticSet

javax.datamining.base

ConnectionFactory
ConnectionSpec
Connection

javax.datamining.resource

PhysicalDataSet
PhysicalDataRecord
PhysicalAttribute
ModelSignature
SignatureAttribute

javax.datamining.data

Task

javax.datamining.Task

Fig. 2. The set of interfaces (by packages) to be implemented to meet the JDM standard

Desktop
GUI

API

Data Mining Engine
(DME)

Mining Object
Repository (MOR)

(a)

Desktop
GUI

API

Data Mining Engine
(DME)

Mining Object
Repository (MOR)

(b)

Fig. 3. A sample data mining tool’s architecture possible to be implemented using JDM

The JDM architecture allows development of customized implementations of stan-
dard interfaces. In order to create an individual implementation based on the JDM
standard, the minimum set of interfaces must be implemented. The minimum imple-
mentation comprises elements presented in Figure 1. The crucial elements are listed
below:

 CDM: A Prototype Implementation of the Data Mining JDM Standard 307

• Connection, ConnectionFactory, ConnectionSpec – these classes are designed to
provide access to data and dispatch execution of mining functions according to the
specification of the mining experiment.

• PhysicalDataSet, PhysicalDataRecord, PhysicalAttribute – these classes are used
to represent datasets as well as data records and attributes. Additionally factories
for creation of object of these classes should be implemented. Optionally, if neces-
sary LogicalData and LogicalAttribute can be implemented.

• Basic implementation of the Task interface capable of, at least, synchronous execu-
tion of a mining operation with an accompanying factory class to create objects of
concrete tasks classes.

In Figure 3 we have recalled two possible architectures of an implementation of the
JDM standard to show that the standard is flexible and extensible. For example, when
the system is created following the architecture presented in Figure 3a, a user is able
access the data mining engine (DME) directly (via graphical user interface) or by
means of API. On the other hand, as presented in Figure 3b, the system can be pro-
grammed so that the data mining engine cannot be accessed directly, but by public
API. Vendors implementing their own JDM based systems can select the most appro-
priate approach from their perspective. For example, the system can read data from
files and, on the other hand, can be more database-centric by reading and storing data
in a relational database.

The goal of our work was to create a simple tool for performing ad hoc data mining
task by providing functions for loading data from files containing sample benchmark
data. We decided to use JDM as a standard framework in order to ensure that created
methods could be easily executed in different environments supporting the JDM stan-
dards. This could give the possibility to implement and test the implemented
algorithm using one system and deploy it easily in another one.

3 The Implementation

All interfaces in JDM are defined as a pure Java specification. For this reason all
classes implementing JDM interfaces can be programmed also purely in Java. Never-
theless, vendors have possibility to implemented their own methods behind the JDM
interface so that any implementation or technology can be used. In other words, ven-
dors have possibility to wrap up any kind of a source code with the JDM interfaces.

In this section we present how we created the prototype implementation of the sys-
tem based on the JDM interfaces. First of all we determined and created the minimal
set of classes to be implemented to meet the minimum implementation of a functional
JDM system. This task required over a dozen classes to be created. In Figure 4, on the
left side, we presented those classes, however, for the sake of simplicity, some of
optional classes were not shown in the figure. On the right side, we shown how to
derive own customized classes from the minimum implementation classes in order to
create an implementation of a new algorithm, for example. In our case, we imple-
mented within CDM several clustering algorithms, such as widely known k-Means [8]
and two version of the NBC density based algorithm [9]. One can easily notice that in
our custom implementation of the clustering module, it was necessary to create a

308 P. Lasek

package called javax.datamining.clustering containing classes deriving from classes
implemented in the javax.datamining.data package and implementing appropriate
JDM interfaces. The next step was to create another package intended for the custom
implementation of a single clustering algorithm. Inside this package we placed only
two classes extending two base classes such as: the CDMBasicClusteringSettings
class and the CDMBasicClusteringAlgorithm class.

CDMCollection
CDMVerificationReport
CDMException
CDMExecutionHandle

javax.datamining

CDMNamedObject
CDMMiningObject
CDMAbstractModel
CDMAlgorithmSettings
CDMAbstractAttributeStatisticSet

javax.datamining.base

CDMFileConnectionFactory
CDMFileConnectionSpec
CDMFileConnection

javax.datamining.resource

CDMAlgorithm
CDMDataRecord
CDMPhysicalDataRecord
CDMPhysicalDataSet
CDMPhysicalDataFactory
CDMLogicalData
CDMPhycicalAttribute
CDMPhysicalAttributeFactory

javax.datamining.data

CDMBuildTask
CDMBuildTaskFactory

javax.datamining.Task

CDMBasicClusteringAlgorithm
CDMBasicClusteringModel
CDMCluster
CDMClusteringModel
CDMClusteringSettings
CDMClusteringSettingsFactory

javax.datamining.clustering

KMeansAlgorithm
KMeansAlgorithmSettings

javax.datamining.clustering.KMeans

The minimum implementation of the JDM framework.
JDM based implementation of
KMeans algorithm.

<uses>

<uses>

Fig. 4. The prototype implementation (CDM) of the JDM mining system

ConnectionMain
CDMFile

Connection
Factory

CDMFile
Physical
DataSet
Factory

CDMClustering
SettingsFactory

KMeans
Algorithm
Settings

CDMBuild
Task

Factory

getConnection()
new CDMFileConnection()

create()

new CDMFilePhysicalDataSet()
create()

clusteringSettings = new CDMClusteringSettings()

new KMeansAlgorithmSettings()

kmeansSettings

clusteringSettings.setAlgorithmSettings(kmeansSettings)

execute()

executionHandle

Fig. 5. A simplified sequence diagram presenting the execution of the implemented k-Means
algorithm

 CDM: A Prototype Implementation of the Data Mining JDM Standard 309

From the perspective of a data mining programmer, when adding a new clustering
algorithm to CDM, there are only two classes to be implemented, namely the classes
located in a package of a new algorithm. However, if one would like to add an algo-
rithm belonging to the data mining function that is not yet supported by CDM, it
would be necessary to create a new package, for example a classification package
called javax.datamining.classification, and implement the basic classes related to the
domain of classification. For example, it might be necessary to create classes such as:
CDMBasicClassificationAlgorithm, CDMBasicClassificationModel, CDMClass,
CDMClassificationModel, etc. – similarly to classes implemented and located in the
clustering package.

In Figure 5 we presented the simplified sequence diagram explaining how the sam-
ple k-Means clustering algorithm is executed. The process of execution of an algo-
rithm comprises several steps. First, it is required to create an object of connection
representing a connection to a Data Mining Repository. In our implementation, the
connection class was called CDMFileConnection. It provides method for reading data
from a file system. The path to the source of data (a text file) is given in a form of
URI. Then, after creating the connection object using a connection factory, the dataset
needs to be prepared. It is done by using CDMFilePhysicalDataSetFactory object
which creates a CDMFilePhysicalDataSet object. Next, co-called physical attributes,
are added to the dataset object (this was not shown in the figure) in order to define the
structure of the dataset. For example, in this step it is possible to specify which
attributes will be taken into account during further experiments and what are the types
of those attributes. Attributes, created by means of the CDMPhysicalAttributeFactory,
are added to the physical dataset. Finally, the defined physical dataset is saved into
the Data Mining Object repository by invoking the saveObject method which is avail-
able in the connection object. The next step is the preparation of the clustering algo-
rithm. Usually every algorithm takes one or more parameters, so at the beginning it
will be important to create the settings object (by means of the CDMClusteringSet-
tingsFactory class) to make possible to set the appropriate algorithm parameters. The
settings factory object returns an object of the CDMClusteringSettings class, and then,
by using methods provided by the settings object, the user has possibility to set values
of parameters of the algorithm. The settings are saved into the data mining repository
using the saveObject method from the connection object. The last part of the algo-
rithm preparation is the creation of the build task. The build task, represented by an
object of the CDMBuildTask class, is created by the build task factory (CDMBuild-
TaskFactory). The build task is designed to specify a task that integrates the dataset,
the settings (in which the name algorithm used in an experiment is passed) and an
output model into which the model of discovered groups will be written. After per-
forming the above actions, namely, specifying the data source, the algorithm and its
parameter as well as the output, it is now possible to run the algorithm. It is done by
invoking the execute method which is provided by the connection object. The execute
method returns an execution handle that can be used to control long running task,
however, the current implementation of CDM does not provide a possibility to ex-
ecute long running tasks yet. After the algorithm is ended, it is possible to get results
by means of the retrieveObject method from the connection object. According to the

310 P. Lasek

specification of JDM, when it comes to clustering, the output of the clustering com-
prises discovered clusters and rules. So, in the next step it is possible to take advan-
tage of the discovered clusters, for example by verifying or visualizing discovered
groups.

4 Conclusions and Further Works

In this paper we have presented the data mining system (CDM) based on the Java
Data Mining standard. The interfaces provided by the JDM standard allow creation of
the tool supporting all steps of typical process of data mining, such as: data integra-
tion, selection, cleaning, integration, data mining, pattern evaluation [13]. CDM cov-
ers the minimum implementation required for the system to comply with the JDM
standard as well as several clustering algorithms. We consider that using a standar-
dized tool for implementation and testing of new algorithms gives an opportunity to
all interested data mining programmers to create software so that it can be easily used
and tested in another projects.

The source code of the implemented system is currently available under the follow-
ing location: http://rspn.univ.rzeszow.pl/?p=682. It can be downloaded using any
SVN client. The source code is available in the form of a project of the Eclipse plat-
form and it can be run and debugged.

Since our interests are mostly focused on clustering methods, in the nearest future,
we will undoubtedly extend our implementation by adding to it more clustering algo-
rithms such as DBSCAN [10], TI-DBSCAN [11] and TI-NBC [12], as well as con-
strained versions of these algorithms. In cooperation with other authors another
missing data mining functions will be gradually added to system.

References

1. Oracle Text. Oracle Text Application Developer’s Guide 1Og Release 2
2. Mikut, R., Reischl, M.: Data mining tools. Wiley Interdisciplinary Reviews: Data Mining

and Knowledge Discovery 1(5), 431–443 (2011)
3. Hornick, M.F., Marcadé, E., Venkayala, S.: Java data mining: strategy, standard, and prac-

tice: a practical guide for architecture, design, and implementation. Morgan Kaufmann
(2010)

4. Goebel, M., Gruenwald, L.: A survey of data mining and knowledge discovery software
tools. ACM SIGKDD Explorations Newsletter 1(1), 20–33 (1999)

5. Kurgan, L.A., Musilek, P.: A survey of Knowledge Discovery and Data Mining process
models. Knowledge Engineering Review 21(1), 1–24 (2006)

6. Mariscal, G., Marbán, Ó., Fernández, C.: A survey of data mining and knowledge discov-
ery process models and methodologies. Knowledge Engineering Review 25(2), 137 (2010)

7. Ruotsalainen, L.: Data mining tools for technology and competitive intelligence. VTT
(2008)

8. Hartigan, J.A., Wong, M.A.: Algorithm AS 136: A k-means clustering algorithm. Journal
of the Royal Statistical Society. Series C (Applied Statistics) 28(1), 100–108 (1979)

 CDM: A Prototype Implementation of the Data Mining JDM Standard 311

9. Zhou, S., Zhao, Y., Guan, J., Huang, J.: A neighborhood-based clustering algorithm. In:
Ho, T.-B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI), vol. 3518, pp. 361–
371. Springer, Heidelberg (2005)

10. Ester, M., et al.: A density-based algorithm for discovering clusters in large spatial data-
bases with noise. In: KDD, vol. 96 (1996)

11. Kryszkiewicz, M., Lasek, P.: TI-DBSCAN: Clustering with DBSCAN by means of
the triangle inequality. In: Szczuka, M., Kryszkiewicz, M., Ramanna, S., Jensen, R., Hu,
Q. (eds.) RSCTC 2010. LNCS, vol. 6086, pp. 60–69. Springer, Heidelberg (2010)

12. Kryszkiewicz, M., Lasek, P.: A neighborhood-based clustering by means of the triangle
inequality. In: Fyfe, C., Tino, P., Charles, D., Garcia-Osorio, C., Yin, H. (eds.) IDEAL
2010. LNCS, vol. 6283, pp. 284–291. Springer, Heidelberg (2010)

13. Han, J., Kamber, M., Pei, J.: Data mining: concepts and techniques. Morgan Kaufmann
(2006)

14. Liao, S.-H., Chu, P.-H., Hsiao, P.-Y.: Data mining techniques and applications–A decade
review from 2000 to 2011. Expert Systems with Applications 39(12), 11303–11311 (2012)

15. Serban, F., et al.: A survey of intelligent assistants for data analysis. ACM Computing
Surveys (CSUR) 45(3), 31 (2013)

	CDM: A Prototype Implementation of the Data Mining JDM Standard
	1 Introduction
	2 The Architecture of JDM
	3 The Implementation
	4 Conclusions and Further Works
	References

