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Abstract The Rolling Stock Rotation Problem is to schedule rail vehicles in order
to cover timetabled trips by a cost optimal set of vehicle rotations. The problem
integrates several facets of railway optimization, such as vehicle composition, main-
tenance constraints, and regularity aspects. In industrial applications existing vehicle
rotations often have to be re-optimized to deal with timetable changes or construc-
tion sites. We present an integrated modeling and algorithmic approach to this task
as well as computational results for industrial problem instances of DB Fernverkehr
AG.

1 Introduction

Rolling stock, i.e., rail vehicles, is the most expensive and limited asset of a railway
company and must therefore be used efficiently. The Rolling Stock Rotation Problem
(RSRP) deals with the cost minimal implementation of a railway timetable by con-
structing rolling stock rotations to operate passenger trips by rail vehicles. The RSRP
integrates several operational requirements like vehicle composition rules, mainte-
nance constraints, infrastructure capacity constraints, and regularity requirements.
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Fig. 1 Concept of re-optimization for the RSRP

A detailed problem description, a mixed integer programming formulation, and an
algorithm to solve this problem in an integrated manner is described in detail in [3].

In this paper, we discuss one of the most important and challenging industrial
applications of the RSRP, namely, re-optimization.

A re-optimization high-level concept for the RSRP is illustrated in Fig. 1. At
some point in time a railway undertaking has to tackle an instance of the RSRP and
constructs a solution (see boxes RSRP and Reference rotations). At another point
in time this problem changes, such that the existing reference rotation plan can no
longer be operated. Thus, a new problem RSRP has to be solved. The most important
difference to the previous planning step is thatmuch of the reference rotation planwas
already implemented: Crew was scheduled for vehicle operations and maintenance
tasks, capacity consumption of parking areas was reserved, and most important in
a segregated railway system, e.g., in Europe and Germany: train paths were already
allocated for the deadhead trips. Therefore a major goal is to change as little as
possible in comparison to the reference rotation plan.

A literature overview on re-optimization can be found in [1, 2].
Re-optimization problems comeupvery often at a railway company. There are var-

ious causes that can lead to a situation where the implemented rotation plan becomes
infeasible in an unexpected manner. Predictable and unpredictable construction sites
are main causes. Fleet changes due to disruptions of operations or technical con-
straints, e.g., different maintenance constraints, modified speed limits for rolling
stock vehicles, or changed infrastructure capacity, also ask for a modification of the
vehicle rotation plans.

Depending on how large and how long the changes and their consequences are,
re-optimization is required either by the dispatchers or in sufficiently lasting cases
by the tactical and strategical divisions of the railway companies. In the latter case
the problem is considered as a cyclic planning problem as it is introduced in [3].

The paper contributes an adaptation of the generic mixed integer programming
approach presented in [3] to re-optimize rolling stock rotations. We show how to
incorporate detailed re-optimization requirements into a hypergraph based formu-
lation for rolling stock optimization by simply defining an appropriate objective
function.
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This paper is organized as follows. Section 2 defines the problem including an
overview of our hypergraph based formulation. In Sect. 3 we introduce an objective
modification procedure for the re-optimization case. Computational results in Sect. 4
show that our model and algorithm produce high quality and implementable results
even for complicated re-optimization settings. Rotation planners of Deutsche Bahn
validated the resulting rolling stock rotations fromadetailed technical andoperational
point of view. It turned out that our configuration of the objective function described
in Sect. 3 is sufficient and very precise for all re-optimization instances we got.

2 The Rolling Stock Rotation Problem

In this section we provide an overview on the hypergraph based rolling stock opti-
mization model proposed in our previous paper [3]. We focus here on the main
modeling ideas. For technical details including the treatment of maintenance and
capacity constraints see [3]. The extension of the following problem description and
model to include maintenance constraints is straight forward and does not affect the
content or the contribution of the paper. Nevertheless, in our computational study we
provide results for instances with maintenance constraints.

We consider a cyclic planning horizon of one standard week. The set of timetabled
passenger trips is denoted by T . Let V be a set of nodes representing departures and
arrivals of vehicles operating passenger trips of T , let A ⊆ V × V be a set of
directed standard arcs, and H ⊆ 2A a set of hyperarcs. Thus, a hyperarc h ∈ H is
a set of standard arcs. The RSRP hypergraph is denoted by G = (V, A, H). The
hyperarc h ∈ H covers t ∈ T , if each standard arc a ∈ h represents an arc between
the departure and arrival of t . We define the set of all hyperarcs that cover t ∈ T
by H(t) ⊆ H . By defining hyperarcs appropriately vehicle composition rules and
regularity aspects can be directly handled by our model.

The RSRP is to find a cost minimal set of hyperarcs H0 ⊆ H such that each
timetabled trip t ∈ T is covered by exactly one hyperarc h ∈ H0 and

⋃
h∈H0

a is a
set of rotations, i.e., a set packing of cycles (each node is covered at most one time).

We define sets of incoming and outgoing hyperarcs of v ∈ V in the RSRP hyper-
graph G as H(v)in := {h ∈ H | ∃ a ∈ h : a = (u, v)} and H(v)out := {h ∈
H | ∃ a ∈ h : a = (v, w)}, respectively. By using a binary decision variable for each
hyperarc, the RSRP can be stated as a mixed integer program as follows:

min
∑

h∈H

ch xh, (MP)



52 T. Schlechte et al.

∑

h∈H(t)

xh = 1 ∀t ∈ T, (1)

∑

h∈H(v)in

xh =
∑

h∈H(v)out

xh ∀v ∈ V, (2)

x ∈ {0, 1}|H | (3)

The objective function of model (MP) minimizes the total cost of operating a
timetable. For each trip t ∈ T the covering constraints (1) assign exactly one hyperarc
of H(t) to t . The equalities (2) are flow conservation constraints for each node v ∈ V
that imply the set of cycles in the arc set A. Finally, constraints (3) state the integrality
constraints for our decision variables.

3 Re-Optimization

The major re-optimization requirement for the RSRP is to change as little as possible
in the reference rotation plan. We argue that this requirement can be handled by
defining a suitable objective function based on the reference rotation plan.

c : H �→ Q+ : c(h) :=
〈
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. . . connection deviations

. . . composition deviations

. . . rotation deviations

. . . service deviations

. . . vehicles

. . . services

. . . deadhead distance

. . . regularity

. . . couplings
(4)

Definition (4) illustrates our approach. Our objective function is the sum of the
re-optimization cost

∑4
i=1 ci pi and the original objective function

∑9
i=5 ci pi . We

propose to compute the parts of the re-optimization objective as a sum of costs
depending on individual hyperarcs.

Let h ∈ H be a hyperarc. In a first step we reinterpret h in the reference rotations,
i.e., we search the timetabled trips that are connected or covered by h in the reference
rotation plan, if they still exist. The reinterpretation procedure is very precise as a
node in our hypergraph has the following attributes w.r.t. the vehicle traversing the
node: position in a composition, orientation w.r.t. driving direction, fleet type, and
rotation (i.e., cycle) of a vehicle.

In a second step we compute a property pi (h) ∈ N for i = 1, . . . , 4 for h ∈ H
that states the number of differences of h w.r.t. the reference rotations. Examples for
such differences are:
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Table 1 Key numbers of re-optimization scenarios

Instance Trips Compositions Fleets Maintenances |V | |H |
RSRP_11 104 2 1 0 486 186,130
RSRP_12 104 2 1 1 486 192,612
RSRP_13 104 2 1 2 486 198,758
RSRP_21 805 2 2 0 9,810 15,770,498
RSRP_22 805 2 2 2 9,810 18,768,740
RSRP_31 788 2 2 0 7,776 11,727,856
RSRP_32 788 2 2 2 7,776 14,019,208
RSRP_41 789 10 4 0 16,790 42,764,116
RSRP_42 789 10 4 4 16,790 54,640,466

• Let h ∈ H a hyperarc connecting the timetabled trips t1 and t2. If t1 and t2 exist in
the reference rotations and both trips are not connected there, we set p1(h) = |h|.
In all other cases we set p1(h) = 0.

• If h covers trip t that exists in the reference rotations and is operated by a different
vehicle composition than h, we set p2(h) ≥ 1, otherwise p2(h) = 0. The exact
numeric number depends on |h|, how these vehicles are oriented, which fleets are
used etc.

• If h implies that t is operated in a different rotation we set p3(h) = |h|, otherwise
p3(h) = 0.

• If h implies a different maintenance service before or after a timetabled trip
p4(h) = 1, otherwise p4(h) = 0.

Solutions of re-optimization instances often have the characteristic that major
parts of the reference rotations are not changed but some small parts have to be
modified. In some cases, however, new timetabled trips have to be incorporated into
the reference rotation plans. To handle this casewe also have to consider properties of
the original objective function

∑9
i=5 ci pi for re-optimization instances, i.e., costs for

vehicles consumed by a hyperarc, costs for maintenance services, costs for deadhead
distances, cost for irregularities, and costs for coupling activities. Finally all of these
individual properties are multiplied by individual cost parameters ci , i = 1, . . . , 9
that can be adjusted to the requirements of industrial use cases.

In this way we are able to handle a lot of technical re-optimization details simply
by changing objective coefficients. As alreadymentioned, wewere able to instantiate
all technical re-optimization scenarios we got so far by this simple objective config-
uration procedure, i.e., by penalizing local deviations w.r.t. the reference rotations.
This makes it possible to apply the general model and algorithm presented in [3] to
solve re-optimization instances.
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Table 2 Key numbers of re-optimization results with ROTOR 2.0 and CPLEX 12.5

Instance Vehicles Dev. Dev. Dev. Dev. Gap hh:mm:ss
heads configurations fleets orientations (%)

RSRP_11 9 0 0 0 0 0.00 00:03:13
RSRP_12 9 0 0 0 0 0.09 00:04:05
RSRP_13 9 1 0 0 0 1.65 00:05:35
RSRP_21 55 3 1 1 0 0.00 00:09:27
RSRP_22 55 1 0 0 0 0.15 03:34:00
RSRP_31 55 29 2 2 0 0.00 00:07:59
RSRP_32 55 30 2 2 0 0.28 01:17:17
RSRP_41 61 39 7 45 23 0.32 00:49:36
RSRP_42 59 40 7 42 17 0.91 02:48:20
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1 (9) (2)2B2 2B1 1B2 1A20A2 0A11B1 2B2 1B11A1 1B1 2B2 0A21A2 1A10A21B1 2B2 2B1 1B2 1A20A2 0A11B1 2B2 1B1 2B21A1 1B1 2B2 0A2

1 (9) (2)1B2 1A2 1A12B11A1 1B1 2B21A12B2 2B1 1B2 1A21B1 1A11A1 1B1 2B21A11A22B2 2B1 1B21B1 1A1 1A12B2 1B1 2B21B11A1 1B1 2B21A1

2 (1) (3)2B1 1B2 1A2 1A11A1 1B1 2B2 0A21A2 1A10A21B1 2B2 2B1 1B2 1A20A2 0A11B1 2B2 1B1 2B21A1 1B1 2B2 0A21A2 1A10A2

2 (1) (3)1A2 1A1 2B11B22B2 1B11B11A1 1B1 2B21A12B2 2B1 1B2 1A21B1 1A1 1A12B2 1B1 2B21B11A1 1B1 2B21A11A22B2 2B1 1B21B1 1A1 1A1

3 (2) (4)1B2 1A2 1A1 2B1 0A12B2 1A1 2B10A1 0A11B2 1A2 1B10A12B2 2B1 1B2 1A2 1A12B1 1B2 1A2 1A1 0A12B2 1A1 2B1 1B20A1 0A11B2 1A2 1B10A1

3 (2) (4)2B1 1B2 1A22B2 1A11A1 2B12B21A11B2 1A2 1B1 1A1 1A12B1 1B2 1A2 1A12B21B2 1A2 1A1 1A12B11A1 2B1 1B22B21A11B2 1A2 1B1 1A1 1A1

4 (3) (5)2B2 1A1 2B1 1B20A11B2 1A2 1B1 0A10A12B2 2B1 1B2 1A2 1A12B1 1B2 1A2 1A1 0A12B2 1A1 2B1 1B20A1 0A11B2 1A2 1B10A12B2 2B1 1B2 1A2 1A1

4 (3) (5)1A1 2B1 1B22B21A11B2 1A2 1B1 1A1 1A12B1 1B2 1A2 1A12B21B2 1A2 1A1 1A12B11A1 2B1 1B22B21A11B2 1A2 1B1 1A1 1A12B1 1B2 1A2 1A12B2

5 (4) (6)1B2 1A2 1B1 0A10A12B2 2B1 1B2 1A2 1A12B1 1B2 1A2 1A1 0A12B2 1A1 2B1 1B20A1 0A11B2 1A2 1B10A12B2 2B1 1B2 1A2 1A12B1 1B2 1A2 1A1 0A10A2

5 (4) (6)1B2 1A2 1B1 1A1 1A12B1 1B2 1A2 1A12B21B2 1A2 1A1 1A12B11A1 2B1 1B22B21A11B2 1A2 1B1 1A1 1A12B1 1B2 1A2 1A12B21B2 1A2 1A1 1A12B1

6 (5) (7)1B2 1A21A1 2B10A21B2 1A20A11A1 2B10A21B2 1A21A1 2B10A21B2 1A20A1

6 (5) (7)1A21B21A11A1 2B1 1A1 1A11A21B21A11A1 2B1 1A1 1A11A21B21A11A1 2B1 1A1 1A11A21B21A1

7 (6) (8)1A1 2B10A2 0A11B2 1A20A11A1 2B10A21B2 1A21A1 2B10A21B2 1A20A11A1 2B10A2

7 (6) (8)1A1 2B1 1A1 1A11A21B21A11A1 2B1 1A1 1A11A21B21A11A1 2B1 1A1 1A11A21B21A11A1 2B1 1A1 1A1

8 (7) (9)2B2 1B1 2B2 1B1 2B22B1 1B2 1A2 1A1 0A12B2 1A1 2B1 1B20A1 0A11B2 1A2 1B10A12B2 2B1 1B2 1A2 1A12B1 1B2 1A2 1A1 0A12B2 1A1 2B1 1B20A1 0A1

8 (7) (9)2B2 1B1 2B2 1B1 2B21B2 1A2 1A1 1A12B11A1 2B1 1B22B21A11B2 1A2 1B1 1A1 1A12B1 1B2 1A2 1A12B21B2 1A2 1A1 1A12B12B2 1A1 2B1 1B21A1

9 (8) (1)1A2 1A10A21B1 2B2 2B1 1B2 1A20A2 0A11B1 2B2 1B1 2B21B1 2B2 1B1 2B21A1 1B1 2B2 0A21A2 1A10A21B1 2B2 2B1 1B2 1A20A2 0A1

9 (8) (1)1A1 1B1 2B2 1B1 1A21A12B2 2B1 1B2 1A21B1 1A1 1A11B1 2B2 1B1 2B22B2 1B1 2B21B11A1 1B1 2B21A11A22B2 2B1 1B21B1 1A1 1A12B2 1B1 2B21B1

10 (10) (10)1A1 1B1 2B2 1B1 1A20A21A2 1A10A21B1 2B2 2B1 1B2 1A20A2 0A11A1 1B1 2B2 0A21A2 1A10A21B1 2B2 2B1 1B2 1A20A2 0A11B1 2B2 1B1 2B20A2

Fig. 2 Comparison of reference and re-optimized rolling stock rotations

4 Computational Results

We implemented our re-optimization model and algorithm in a computer program,
called ROTOR 2.0. This implementation makes use of the commercial mixed inte-
ger programming solver CPLEX 12.5. ROTOR 2.0 is integrated in the IT envi-
ronment of Deutsche Bahn. All our computations were performed on computers with
an Intel(R) Xeon(R) CPU X5672 with 3.20 GHz, 12 MB cache, and 48 GB of RAM
in multi thread mode with eight cores.

Table 1 lists the sizes of the instances, i.e., the number of trips, compositions,
fleets, and maintenance constraints. In addition the total number of nodes (|V |) and
hyperarcs (|H |) report about the size of the hypergraphs for the considered instances.

Furthermore, Table 2 provides re-optimization results. The second column reports
on the number of used vehicles. The next four columns denote the number of devia-
tions w.r.t. the reference solution introduced in Sect. 3. Finally, the last two columns
show the proven worst case optimality gap and the total computation time.

The considered instances include scenarios where vehicles got broken, where the
timetable was changed due to track sharingwith other railway operators. Andwe also
tackle instances where the fleet size increases, i.e., for the case when new vehicles
are available and have to be integrated in the current operations. All scenarios were
given by Deutsche Bahn Fernverkehr AG. Figure 2 shows a difference view of the
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reference solution and the solution re-optimized with ROTOR 2.0 in green. The
rows alternate between the reference solution and the re-optimized solution. The red
parts of the reference solution can never be reproduced because of timetable changes.

We conclude that re-optimization instances of Deutsche Bahn Fernverkehr AG for
the RSRP can be handled in great detail. On the other hand huge parts of the reference
rotation plans must not be changed: See column trips w.r.t. column

∑
p1 (sum of

connection deviations) in Table 2 and Fig. 2. This combination directly results in
short computation times, high quality solutions, and therefore a powerful tool for
re-optimization of rolling stock rotations at Deutsche Bahn Fernverkehr AG.
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