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Abstract Previous research on inventory distributions between local warehouses or
retailers (bases) has focused separately on either of two types of stock transshipment
policies: preventive lateral transshipments or emergency lateral transshipments. Each
of these has its advantages and disadvantages, and combining these policies maywell
enable merchandisers to achieve higher service levels. Thus, the combined use of
these policies is the focus of the present study. A stochastic programming problem
is formulated with demand as a stochastic variable, and the policy of using both
preventive and emergency lateral transshipment is examined for its effectiveness
while solution methods are examined for their efficiency.

1 Introduction

The approach to supply chain issues in recent years has been for suppliers to seek to
improve service levels while satisfying a broad spectrum of consumer needs and at
the same time to reduce inventory amounts and their associated expenses. However,
there is a trade-off between inventory volume and service levels. To improve both at
the same time, a supply chain must be carefully constructed from the planning stage,
which may involve a large investment.

Lateral transshipments between retail bases are viewed as effective method for
improving both inventory volume and service levels, and has come into use in some
operating businesses. Two inventory transfer policies have been investigated in pre-
vious research on distribution between bases: preventive lateral transshipment [5]
and emergency lateral transshipment [7]. Each has its own advantages and disadvan-
tages, and so it is reasonable to expect that combining these will allow higher service
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levels to be provided. For this reason, examining the combination of these policies
is the focus of the present study. Specifically, a stochastic programming problem is
formulated with demand as a stochastic variable, and the policy of combined pre-
ventive and emergency lateral transshipment is examined for its effectiveness and
solution methods for the formulated problem are examined for their efficiency.

2 Lateral Transshipments

In most supply chains, when a warehouse faces a stock-out situation, or when it
expects a stock-out situation, it sends an order upstream. It is possible, however,
that this order will have repercussions throughout the supply chain. Lateral trans-
shipments, which regularize the risk of stock-outs by transferring inventory between
bases at the retail level, are employed to reduce orders to the distribution center and
improve service levels. The following two policies for lateral transshipments exist.

Preventive transshipments: Made in response to future demand expected due to
inventory fluctuations prior to detecting demand increases.

Emergency transshipments:Made in response to emergencies occurringbecause
of empty inventories, after detecting demand increases.

According to Herer, Tzur and Yucesan [3], research on problems in transferring
inventory is classified into that on preventive lateral shipments, in which stock is
supplied when the demand is known in advance, and that on emergency lateral
shipments, in which urgent transfers are made after demand is known. Research on
the former has been carried out by Karmarkar and Patel [5] and others, whereas the
latter is has been studied by Tagaras [7] and others.

3 Stochastic Programming Formulation

Stochastic programming [2, 4] deals with optimization under uncertainty. A sto-
chastic programming problem with recourse is referred to as a two-stage stochastic
problem. To solve the problem, an L-shapedmethod [9] has been used. This approach
is based on Benders [1] decomposition. The expected recourse function is piecewise
linear and convex, but it is not given explicitly in advance. The L-shaped method was
used to solve stochastic programs having discrete decisions in the first stage [6, 8].
The following notations are employed in the problem.

Variables

oi Volume of order sent to the distribution center for base i
xi j Volume of preventive lateral transshipment from base i to base j
si Intended inventory volume at base i
ui 1 if order is sent from base i to the distribution center, otherwise 0
yk

i j Volume of emergency lateral transshipment from base i to base j in scenario k
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z+k
i Inventory at period end at base i in scenario k

z−k
i Shortage in inventory at base i in scenario k

Parameters

Ri Variable costs of orders to distribution center at base i
Ci j Variable costs of preventive lateral transshipment from base i to base j
S0

i Initial inventory at base i
Ei j Variable costs of emergency lateral transshipments from base i to base j
Li Losses due to inventory outage at base i
Hi Inventory storage cost at base i
Wi Fixed order cost at base i
pk Probability of scenario k
ξ k

i Demand at base i in scenario k
K Total number of scenarios
I Total number of bases

The stochastic programming problem is formulated as follows.

min
I∑

i=1

Wi ui +
I∑

i=1

Ri oi +
I∑

i=1

I∑

j �=i

Ci j xi j +
K∑

k=1

pk Q(s, ξ k)

subject to S0
i + oi +

I∑

j=1

x ji −
I∑

i=1

xi j = si , i = 1, . . . , I

oi ≤ Mui , i = 1, . . . , I (M : positive large number)
si ≥ 0, oi ≥ 0, xi j ≥ 0, ui j ∈ {0, 1}, i = 1, . . . , I, j = 1, . . . , I, i �= j

Q(s, ξ k) = min

{ I∑

i=1

I∑

j �=i

Ei j yk
i j +

I∑

i=1

Li z
k−
i +

I∑

i=1

Hi z
k+
i

∣∣∣∣

zk+
i +

I∑

j=1

yk
i j − (zk−

i +
I∑

j=1

y ji ) = si − ξ k
i , i = 1, . . . , I

zk+
i , zk−

i ≥ 0, yk
i j ≥ 0, i = 1, . . . , I, j = 1, . . . , I, i �= j

}
, k = 1, . . . , K

In the L-shaped algorithm, the following problem Master uses θ as the upper bound
of the expected value for the recourse function.

(Master): min
I∑

i=1

Wi ui +
I∑

i=1

Ri oi +
I∑

i=1

I∑

j �=i

Ci j xi j + θ

subject to S0
i + oi +

I∑

j=1

x ji −
I∑

i=1

xi j = si , i = 1, . . . , I

oi ≤ Mui , i = 1, . . . , I
si ≥ 0, oi ≥ 0, xi j ≥ 0, ui j ∈ {0, 1}, i = 1, . . . , I, j = 1, . . . , I, i �= j
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L-shaped algorithm for approximate solution

Step 1: Solve the continuous relaxation of Master, providing a solution in terms of
(û, x̂, ŝ, ô, θ̂ ).

Step 2: Solve the second stage problem for each scenario. Because the second stage
problem is feasible, the upper bound of the optimal value of the recourse
function is found as Q(ŝ, ξ k), k = 1, . . . , K .

Step 3: If θ̂ <
∑K

k=1 pk Q(ŝ, ξ k), the optimality cut θ ≥ ∑K
k=1 pk∑I

i=1(si −ξ k
i )μ̂k

i
is generated from the optimal dual solution μ̂k and added to the Master
problem. Return to Step 1.

Step 4: Find the solution (ū, x̄, s̄, ō, θ̄ ) for the MIP problem Master. Given this
solution, calculate

∑I
i=1 Wi ūi +∑I

i=1 Ri ōi +∑I
i=1

∑I
j �=i Ci j ¯xi j +∑K

k=1

pk Q(s̄, ξ k) and the upper bound for the value of the optimal objective
function of the original problem can be obtained.

In order to find an optimal solutionwith integer constraints of the original problem,
the recourse function must be approximated in a feasible solution to a first stage
problem satisfying the integer constraints. This must be done by solving the MIP
problemMaster repeatedly, and so the calculation time is potentially extremely long;
however, an optimal solution is being sought for the original problem. Since the
solution method shown in this paper does not necessarily approximate a recourse
function completely, it provides an approximate solution for the original problem.
And, it can be expected to have advantages from the viewpoint of calculation time.

4 Numerical Experiments

This experiment employed examples of lateral shipments between 20 and 25 bases.
The bases were generated from a uniform distribution on a [0, 100] × [0, 100] grid.
The variable cost Ci j of a preventive lateral transshipment from base i to base j
was defined as 0.1 × (the distance between the bases), and the variable cost of an
emergency lateral transshipment was defined as Ei j = 1.5× Ci j . The variable costs
of orders were set at Ri = 5, and other parameters were set with random numbers
obeying a normal distribution. Specifically, the demand at base i in scenario k,

ξ k
i , had mean 100 and variance 10; the fixed order cost at base i, Wi , had mean
200 and variance 10; the losses due to inventory outage at base i, Li , had mean
10 and variance 1; and the inventory storage cost at base i, Hi , had mean 4 and
variance 0.4.

The data sets for the different numbered scenarios (indicating problem scale)
were supplied for solution by deterministic equivalent MIP conversion and by the
L-shaped algorithm and the calculation times were compared. The computer used
for this experiment had a 3.2 GHz Core i7-2600K (8.0 GB of memory) main proces-
sor and ran the IBM ILOG AMPL-CPLEX System 11.0 branch-and-bound solver.
Both methods showed calculation times increasing with the problem scale, but the
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Table 1 Results of experiment (computing time)

Base Scenarios L-shaped Branch-and-bound Relative
error (%)locations K Optimal objective Computing Optimal objective Computing

I function value time (s) function value time (s)

20 10 12,420 8 12,298 28 0.99
20 20 12,424 12 12,298 63 1.02
20 30 12,502 18 12,390 233 0.90
25 10 15,574 11 15,454 747 0.77
25 20 15,449 35 15,385 1,759 0.42
25 30 15,426 51 15,365 5,979 0.40

Table 2 Results of experiment (comparing transshipment policies)

Base Scenarios Variance Preventive only Emergency only Combined policy
locations K Var[ξ̃ ] Optimal Shortage Optimal Shortage Optimal Shortage
I cost ratio (%) cost ratio (%) cost ratio (%)

20 10 10 12,738 9.9 13,865 4.6 12,298 3.3
20 10 20 13,367 23.4 13,723 14.1 12,381 5.8
20 10 30 14,012 29.7 13,779 10.0 12,608 7.5
20 20 10 12,877 9.0 13,999 5.4 12,476 3.2
20 20 20 13,502 20.6 13,993 8.0 12,650 6.0
20 20 30 14,426 33.3 13,840 16.0 12,680 10.5
20 30 10 12,862 9.5 13,937 5.7 12,420 2.9
20 30 20 13,579 19.4 14,020 7.7 12,720 7.1
20 30 30 14,054 32.1 13,803 18.0 12,706 9.7

L-shaped algorithmhad shorter times. As shown, solving the problemusing the direct
branch-and-bound algorithm for a deterministic equivalentMIP required a quite long
calculation time. Thus, the L-shaped algorithm is advantageous in terms of calcula-
tion time for large-scale problems. Also, the calculation errors in this method were
kept within almost 1 %, so the L-shaped method clearly provides highly accurate
solutions.

Next, the difference between the costs of sending emergency and preventive lateral
transshipments independently or together was compared and the effectiveness of the
policy of combining emergency and preventive shipmentswas validated (Tables 1, 2).

For comparison with the policy of combining emergency and preventive lateral
transshipments, the transfer policies restricting transshipments to either the emer-
gency or the preventive types were reformulated, and the effectiveness of the two
lateral transshipment policies was shown by comparing with the total costs of the
policy of combining transshipments. The reformulation of the policy of restrict-
ing transshipments to preventive was obtained from the formulation of the pol-
icy of combining transshipments, and then eliminating the two-stage variable yk

i j .

The reformulation of the policy of restricting transshipments to emergency ship-
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ments was obtained from the formulation of the policy of combining transshipments,
eliminating the firts stage variable xi j .

The optimal costs of the above policies and the policy of combining transship-
ments were compared. The numbers of demand scenarios and the standard deviations
were varied in a comparison experiment. The policy of combining transshipments
exhibited lower total costs than exercising policies independently, regardless of the
number of scenarios or the variance. When the variance was small, the “preventive
lateral transshipments only” policy had lower total costs than the “emergency lateral
transshipments only” policy, and the opposite was true at high variances. This was
due to the fact that the mean shortage ratio, which was defined as given below, was
high when there were large fluctuations in demand. In turn, this raised shortage costs,
making more emergency shipments required in order to avoid shortages.

Mean shortage ratio (%) =
K∑

k=1

pk

(
I∑

i=1

zk+
i /

I∑

i=1

ξ k
i

)
× 100. (1)

5 Summary

In the present study, stochastic programming was employed to formulate a lateral
transshipment problem, and two solutionmethods were examined for their efficiency
in providing solutions and in combining policies enforcing preventive or emergency
lateral transshipments.

The L-shaped algorithm and the direct branch-and-bound algorithm for an equiv-
alent MIP were compared in a numerical experiment. The L-shaped algorithm was
found to be advantageous in terms of calculation time for large-scale problems. It
was also shown that the total costs are lowered if preventive and emergency lateral
transshipment policies are combined, rather than exercising them independently.

References

1. Benders, J. F. (1962). Partitioning procedures for solving mixed-variables programming prob-
lems. Numerische Mathematik, 4, 238–252.

2. Birge, J. R., &Louveaux, F. V. (1997). Introduction to stochastic programming. Berlin: Springer.
3. Herer, Y. T., Tzurv, M., & Yucesan, E. (2002). Transshipments: an emerging inventory recourse

to achieve supply chain leagility. International Journal of Production Economics, 80, 201–212.
4. Kall, P., & Wallace, S. W. (1994). Stochastic programming. New York: Wiley.
5. Karmarkar, U. S., & Patel, N. (1977). The one-period N-location distribution problem. Naval

Research Logistics Quarterly, 24, 559–575.
6. Laporte, G., & Louveaux, F. V. (1993). The integer L-shaped method for stochastic integer

programs with complete recourse. Operations Research Letters, 13, 133–142.
7. Tagaras, G. (1999). Pooling in multi-location periodic inventory distribution systems. Omega,

27, 39–59.



Solution Method for the Inventory Distribution Problem 449

8. Shiina, T. (2000). L-shaped decomposition method for multi-stage stochastic concentrator lo-
cation problem. Journal of the Operations Research Society of Japan, 43, 317–332.

9. Van Slyke, R., & Wets, R. J.-B. (1969). L-shaped linear programs with applications to optimal
control and stochastic linear programs. SIAM Journal on Applied Mathematics, 17, 638–663.


	60 Solution Method for the Inventory  Distribution Problem
	1 Introduction
	2 Lateral Transshipments
	3 Stochastic Programming Formulation
	4 Numerical Experiments
	5 Summary
	References


