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Abstract A common technique in the solution of large or complex optimization
problems is the use of micro–macro transformations. In this paper, we carry out
a theoretical analysis of such transformations for the track allocation problem in
railway networks. We prove that the cumulative rounding technique of Schlechte
et al. satisfies two of three natural optimality criteria and that this performance cannot
be improved. We also show that under extreme circumstances, this technique can
perform inconveniently by underestimating the global optimal value.

1 Introduction

It is often the case in discrete optimization problems coming from applications that
the data is too complex to be tractable by an efficient algorithm. However, much of
the information in this precise (also called microscopic) model is not necessary to
obtain a very good feasible solution. A common technique is to derive a simplified
macroscopic model by aggregating the structures of the microscopic model, find a
good solution to the macroscopic model, and retranslate it to the original problem.
This idea has been used in diverse settings. In [1], an algorithm for solving linear
programs exactly solves a sequence of increasingly detailed LPs until the desired
degree of precision is reached. In [2], an algorithm for solving a dynamic progam
over a large state space is described. A sequence of coarse DPs is solved, and the
complexity/level of detail increases gradually. Reference [3] surveys aggregation
and disaggregation techniques for optimization problems. This research was mostly
influenced by Schlechte et al. [5], where a micro–macro transformation is used for
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solving the track allocation problem for railway networks (see [4, 5] for a precise
definition), which is the problem considered in this paper. One of themain difficulties
in developing an efficient micro–macro algorithm for this problem is choosing a
reasonable time discretization. That is, given a time unit δ in the microscopic model,
we seek to find a larger unitΔ for themacroscopicmodel and then determine the input
times of the macroscopic model in multiples of Δ. It is on this last step that we will
focus next. Given a microscopic running time of some route on a macroscopic track,
the most natural choice is to round it to a close multiple of Δ. Rounding down can
lead to infeasibilities, while rounding up all running times leads to an unnecessary
increase in the optimal value. Therefore, a combination of both seems to be the best
strategy. In this context, we consider the cumulative rounding method introduced by
Schlechte et al. in [5]. This method consists of rounding up the running times along
each route in order of traversal, until the total “lost” time accumulated is at least the
time corresponding to the track currently considered, at which point we round down
this running time and iterate.

While it is possible to give upper bounds on the overestimation error of the total
time needed to traverse each route, the impact of this rounding on the originating
networkoptimizationproblemas awhole has not been studied.Thepaper is structured
as follows. In Sect. 2 we describe the general problem, the motivation and the goals
of micro–macro transformations. In Sect. 3 we define three optimality criteria for
a rounding strategy for the track allocation problem. We prove that the cumulative
rounding strategy is optimal with respect to two of these criteria and that no strategy
satisfies all three of them. Finally, in Sect. 4 we show an instance in which cumulative
rounding yields a macroscopic value that is smaller than the microscopic optimum
and whose solution is impossible to translate back to the original model without
losing a significant factor. This shows the difficulty of acheiving global optimality
or near-optimality.

2 Our Setting

We consider a general minimization1 problem Pδ based on a time discretization δ

with kδ = Δ, k ∈ Z, k > 0. The problem PΔ results from rounding all times of Pδ
to multiples of Δ with respect to alternate rounding strategies. Let us consider the
trivial rounding down (� �) and up (� �). Then for the optimal values v, we have:

v(P� �
Δ

) ≤ v(Pδ) ≤ v(P� �
Δ

)

On the one hand the solution of P� �
Δ

can be re-transformed, i.e., we maintain the
orders of the trains and retranslate the departure and arrivals w.r.t. δ, to a feasible
solution of Pδ retaining the same objective value or obtaining a better one. On

1 In case of the track allocation problem we want to schedule a fixed number of trains on a network
within a minimum time horizon.
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the other hand v(P� �
Δ

) only provides in general a valid lower bound. Thus, we can

guarantee some solution quality provided by the lower bound v(P� �
Δ

).

3 Optimality Criteria

While the ultimate objective in the track allocation problem is to find a microscopic
solution of optimal or near-optimal value, it is in general not clear how to obtain a
feasible microscopic solution from a macroscopic solution such that the objective
value does not increase. For that reason, we will try to judge the quality of a trans-
formation by comparing the values of the obtained macroscopic and microscopic
solutions. There are several (often conflicting) possibilities of defining an “optimal”
rounding algorithm, and it is not obvious which of them should be considered. Here
we consider three very natural optimality criteria:

1. Global optimality: The total time is not underestimated and the corresponding
(overestimating) error is minimal.

2. Route-wise optimality: The total time on each individual route is not underesti-
mated and the corresponding (overestimating) error is minimal.

3. Local optimality: The overestimating error on any subroute
( jm, jm+1, . . . , jm+n) of a route r is less than Δ.

The no-underestimating condition guarantees that we can obtain feasible solu-
tions. The first two conditions are self-explaining and the third condition guarantees
that the approximation is good on a local level, i.e., on intervals.

In this section we prove that the cumulative rounding technique satisfies the last
two properties.

Theorem 1 For the track allocation problem, a rounding strategy is route-wise
optimal if and only if on every route j it rounds up the traversal times corresponding

to exactly

⌈∑
j∈D t̂ r

j

Δ

⌉
tracks.

Proof In the same setting as above, let r be a route. For every track j in the route, let
tr

j be the time (in units of δ) needed to traverse j , and let t̂ r
j ≡ tr

j (mod Δ). If for
this track we decide to round up, the (overestimating) error will be Δ − t̂ r

j , while if
we round down, the (underestimating) error is t̂ r

j . Let J be the set of tracks in route
r , let U ⊂ J (the set of tracks for which we round up) and D = J\U (the tracks for
which we round down). Now, the total overestimating error is

εr =
∑
j∈U

(Δ − t̂ r
j ) −

∑
j∈D

t̂ r
j = |U |Δ −

∑
j∈J

t̂ r
j .

Since
∑

j∈J t̂ r
j is independent of the choice ofU and D, the total error depends only

on the cardinality of U . By the non-overestimating property, we are looking for a
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set U of minimal cardinality such that εr is nonnegative and minimal. Clearly, this

is achieved by choosing U with |U | =
⌈∑

j∈D t̂ r
j

Δ

⌉
. �

Corollary 1 The cumulative rounding strategy is route-wise optimal and locally
optimal.

Proof The authors of [5] have proven that on each route, the total error caused by
cumulative rounding is in the interval [0,Δ). By the proof of the previous theorem,
this is a minimizer and thus the strategy is route-wise optimal.

To prove local optimality, let us consider a subroute r1 = ( jm, . . . , jm+n). We can
picture this subroute as the difference between subroutes r2 = ( j1, j2, . . . , jm+n)

and r3 = ( j1, j2, . . . , jm−1). As before, let us denote by εr the overestimating error
of a subroute r . By the result in [5] we just mentioned above, we have 0 < εr1 < Δ

and 0 < εr2 < Δ. Suppose εr3 > Δ. Then, we clearly have εr2 = εr1 + εr3 > Δ,
which is a contradiction. �

Theorem 2 There exists no rounding strategy that satisfies all three described
optimality criteria.

Proof Let us consider the following network, with Δ = kδ for some k ≥ 3:
On this network, let us consider trains 1 and 2 traveling from A to D, and train

3 traveling from D to A. We are interested in minimizing the time until the last
train arrives at its destination. We assume that for every track, the headway time
corresponding to two trains in the same direction is Δ. Similarly, the headway time
corresponding to two trains in opposite directions along track j is t j + Δ. Suppose
trains can not stop at intermediate stations and there are no restrictions on the depar-
ture or arrival times. A feasible and in fact optimal solution is to let trains 1, 2 and 3
leave their initial stations at times 0, Δ and δ, respectively. As trains 1 and 2 go from
B to C in one direction, train 3 goes from C to B in the opposite direction without
violating the headway constraints. The time until the last train (train 2) arrives is
5Δ + δ. Suppose we have a route-wise and locally optimal strategy. Let us consider
r1, the route corresponding to train 1. By route-wise optimality, we know that exactly
one traversal time is rounded down. If this time corresponds to either track AB or
track C D, we know that the remaining two tracks form a subroute with an overesti-
mating error of Δ, which contradicts local optimality. Without loss of generality, the
same reasoning applies to routes r2 and r3, so the resulting macroscopic network is
given by the numbers below the arcs on Fig. 1.

Let t j denote themicroscopic time for each train on track j and Tj the correspond-
ingmacroscopic time. By choice of themicroscopic headway times, themacroscopic
headway times are still Δ and Tj + Δ. Since now the tracks between B and C are of
time Δ, the previous solution is no longer feasible. In fact, now the optimal solution
is to let trains 1 and 2 go from A to D, and let train 3 depart only after the other two
have arrived at D. This gives a total time of 12Δ, which is more than double the time
needed in the microscopic instance.
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Fig. 1 The numbers above and below the arcs represent, respectively, the microscopic and macro-
scopic times for the corresponding tracks, assuming all trains have uniform speed

Table 1 Results for transformations of the optimization problem described in the proof of
Theorem 2

Description Discretization Rounding technique Optimal value

Original problem δ – 5Δ + δ

Approximation Δ 〈 〉 12Δ
Feasible solution δ 〈 〉 10Δ + 2δ
Feasible solution Δ � � 7Δ
Feasible solution δ � � 5Δ + δ

Lower bound Δ � � 4Δ

We use 〈 〉 to denote any strategy that is route-wise- and locally optimal

Applying the conservative approach (rounding up all running times), wewould get
a total time of 7Δ as optimum, which is more than the microscopic optimal value but
significantly smaller than 12Δ. Since the conservative rounding gives a smaller total
time we can conclude that the considered strategy does not satisfy global optimality.

�

While the previous proof shows that the conservative rounding strategy gives a
better macroscopic total time, it is not immediately clear what the corresponding
microscopic times are. If we take the solution given by cumulative rounding or a
similar strategy and translate it back to the microscopic model, we obtain a total
time of 10Δ + 2δ, which is exactly double of the optimal time. We summarize these
results in Table 1. Let us also note that we can easily make the macroscopic instance
infeasible while keeping the original feasible. For example, we could require for all
trains to arrive at their destinations at time 6Δ or before.

4 A Paradoxical Instance

In the previous section we saw some drawbacks to the cumulative rounding strategy,
but we also proved that it is impossible to improve it to a globally optimal strategy
while keepingboth of its optimality properties. In this section,wewill give an instance
such that the macroscopic optimal value is much better than the microscopic optimal
value. This shows that even if we relax the optimality requirement in the global
optimality condition, the non-underestimating condition is not necessarily satisfied.
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Fig. 2 The numbers above (below) and to the left (right) of the arcs represent the microscopic
(macroscopic) times for the corresponding tracks

Furthermore, this hints that guaranteeing non-underestimation on a global level in
general may be very hard. Consider the network with two trains in Fig. 2.

Here, train 1 has to go from A to F and train 2 from D to E . The only headway
times of interest are those corresponding to track BC . They are defined as tBC + Δ.
Trivially, an optimal solution is to let train 1 depart at time 0 and let train 2 depart
when train 1 is about to reach C (to be precise, at time 3Δ− δ). In this solution, train
2 arrives to its destination at time 7Δ − δ.

As in the previous example, the macroscopic headway times of interest are now
TBC +Δ. Letting train 1 depart at time 0 and train 2 at time 2Δ, the last train arrives
at time 6Δ. Clearly, this objective value is impossible to attain in the microscopic
problem.
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