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Abstract Transshipments enable supply chains to reduce inventories while
maintaining fill rates by sharing stored goods between different locations. In this
paper, the supply chain is composed of the external manufacturer, the central ware-
house and three identical retail outlets. Transshipment lead times are assumed to be
negligible, while supply lead times are assumed to be deterministic as long as the
sender is not out of stock. Any demand that cannot be satisfied immediately or after
transshipments is lost or backlogged. A quick approximation method to estimate
the expected transshipment quantities is provided. Simulation results strongly sup-
port the fit of the approximation. Numerical studies confirm the effect of lead time
demand distributions on several performance measures.

1 Introduction

One approach to addressing the operating efficiency of distribution networks is to
allow lateral transshipments between stocking locations at the same level (see [3]).
By means of inventory pooling, stocking locations at the same echelon may reduce
their safety stocks while maintaining or improving fill rates. Thus, transshipments
reduce the costs of supply chain operations. The aim of this paper is to extend a
single-level model according to [4] and to provide a simple method to estimate the
expected transshipment quantities.
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2 The Model

We consider a single-product two-level supply chain (One Warehouse, N Retailer)
consisting of the external manufacturer, the central warehouse and three identical
retail outlets under periodic review inventory management. The transshipment lead
times are negligible, while the replenishment lead times are composed of deter-
ministic shipment times and stochastic delays caused by stockouts at the central
warehouse.

The incoming demand can lead to two consequences: If the pre-transshipment
stock onhand exceeds the demand, the retail outlet fulfills it immediately and keeps an
inventory surplus which can be offered to other retail outlets experiencing shortages.
If the local demand exceeds the pre-transshipment stock on hand, the retail outlet
requests an immediate lateral transshipment from the others.

Transshipments are subject to greedy policy constraints, cf. [2]. We utilize Risk
Balancing Policy (RBP) equalizing the next period stockout probability for both
sendingor both receiving retail outlets to determinequantities to transship, cf. [4]. The
remaining demand, which can’t be fulfilled even by means of lateral transshipments,
is backlogged or lost. At the end of each review period, every retail outlet attempts
to increase its inventory position up to Sr . The central warehouse fills the orders as
far as possible and raises its own inventory position up to Sc. We also utilize RBP
at the central warehouse in case the central warehouse is unable to fulfill the orders
completely. At the end of the period, the stock on hand is forwarded to the next
period, while the backorders are backlogged or lost.

The objective function is to minimize the expected costs which are holding costs
and transshipment costs.

min
Sr ,Sc

EC = τET + ηcEI +
c +

∑

i∈I
ηrEI +

i (1)

s.t. βi ≥ br , i ∈ I ,I = {1, 2, 3}

We assume τ < ηc ≤ ηr with respect to the unit cost parameters, and br denotes
the desired end-customer fill rate after transshipments.

Considering the objective values from (1), we obtain the economic benefit of the
transshipment policy at any particular point of the solution space:

ΔEC(Sr , Sc) = τET + ηcΔEI +
c + 3ηrΔEI +

i (2)

Any transshipment flow decreases the end-of-period inventories at the retail outlets.
Consequently, these outlets have to order more from the central warehouse, so the
end-of-period inventories at the central warehouse are non-increasing, too. In order
to minimize (1), the initial order-up-to levels Sr and Sc are pre-specified.

Let EI +
i be the expected end-of-period on hand inventory, let EI −

i be the expected
backordered demand at the retail outlet i , and let X be the demand the retail outlet i is
experiencing. Clearly, EI +

i −EI −
i = Sr −EX . Assuming any stationary distribution
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for X , we haveΔEI +
i −ΔEI −

i = ΔSr . Analogously, we concludeΔEI +
c −ΔEI −

c =
ΔSc − ΔEZ ′, Z ′ being the demand of three retail outlets addressed to the central
warehouse. If we consider lost sales, we expect |ΔEZ ′| = |ΔEI +

i |. Otherwise, we
expect ΔEZ ′ = 0.

First, let us consider ΔSc = ΔSr = 0. Every transshipment flow is triggered
by demand which can’t be fulfilled without transshipment. This demand can be
satisfied only once. As every transshipment flow has exactly one source or exactly
one destination, we expect |ΔEI +

i | = |ΔEI −
i | = |ΔEI +

c | = ET to be the case, if
Sc ≥ 3Sr .

At some particular points of the solution space lying on the line Sc = 3Sr , we
utilize analytic estimates of EI +

c , EI +
i in case transshipments are not allowed. With

an initial Sc being reasonably high and ΔSc being sufficiently small or Sc being still
increasing, we expect ΔEI −

c ≈ 0. Consequently, ΔEI +
c ≈ ΔSc.

Further, we expect |ΔEI +
i | = |ΔEI −

i | > ET > |ΔEI +
c | as a result of transship-

ment flows initiated to compensate the insufficient order-up-to level at the central
warehouse, if Sr ≥ EX , Sc < 3Sr .

Unfortunately, we are not able to find out EI +
i and EI +

c analytically due to the
limited supply from the central warehouse. Nonetheless, ΔEC(Sr , Sc) is expected
to be negative at any point of the solution space. As a result, the point of the solu-
tion space with the maximum transshipment quantity coincides with the minimum
objective value.

The expected quantity ET to transship at time t is dependent on both Sr and Sc.
For the desired end-customer fill rates br = {0.90, 0.95}, we expect to find minimum
objective values setting Sr ≥ EX , Sc < 3Sr . We look at ET and develop an analytic
approximation requiring no sophisticated computing efforts.

3 Approximation Procedure and Simulation Results

Weare utilizingnormal demandwith parametersEX = {200, 400, 800} andσX = 75
as an initial point for our numerical studies. For gamma distributed demand, the
corresponding parameter values resulting in the same values for EX and σX are
identified. For the ease of the simulation, random demand values are rounded to the
nearest integer. Negative demand values, if any, are replaced by zero.

In our approximation approach, we need to differ between the following regions
of the solution space, as shown in Fig. 1. For three identical retail outlets, Sc = 3Sr

defines a reasonable upper bound for Sc. For a long-term view, Sc = 3Sr is sufficient
to establish a fill rate of 100 % at the central warehouse. Any order-up-to level
Sc > 3Sr would only increase the costs of the system and have no effect on ET . The
dash line represents the fill rate constraint bounding the feasible region to the bottom
and to the left.

Figure 2 depicts the expected transshipment quantities per period for particular Sr

and Sc values. Sr < EX is suppressed, as it leads to fill rates which are insufficient
for any reasonable application.



440 A. Serin and B. Hillebrand
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S c = 3 S r

β r ≥ br

Fig. 1 Solution space

Fig. 2 Expected transship-
ment quantities per period

ScEZ

ET
Sr =400
Sr =450
Sr =500
Sr =550

Normal Demand
EX=400, σX=75

Approximation

For Sr ≤ EX , Sc < 3Sr , the expected transshipment quantity is an increasing
s-shaped curve depending on Sc independently of Sr . For Sr > EX , Sc < 3Sr , it is
a unimodal first increasing and then decreasing curve in Sc which is dependent on
Sr , too. Above the diagonal, the expected transshipment quantity is constant in Sc

depending only on Sr .
This behaviour can be explained by demand-triggered versus supply-triggered

transshipment flows. Stockouts at the retail outlets can occur despite inventory posi-
tions as high as Sr . In this case, high demand triggers transshipment flows immedi-
ately. Stockouts at the central warehouse cause time-delayed transshipment flows as
a consequence of the fact that retail outlets are not able to raise their inventory posi-
tions up to Sr . The interaction between the central warehouse and the retail outlets
determines transshipment flows in the close neighbourhood of Sc = EZ , if Sc < 3Sr

and Sr ≥ EX , Z being the threefold convolution of the demand X . For this reason,
the horizontal (vertical) piece of the fill rate constraint can be approximated easily by
ignoring any interdependences from the interaction between the central warehouse
and the retail outlets.

For Sr ≤ EX , Sc < 3Sr , the expected quantities to transship are not sensitive
to changes in Sr . As a result, we consider the central warehouse as the only signif-
icant factor determining ET (·, Sc) in this part of the solution space. For the ease of
computation, we assume Sc

3 to be an appropriate order-up-to level for one of three
identical retail outlets.



Inventory Management with Transshipments Under Fill Rate Constraints 441

ET (·, Sc) ≈ 3
∫ ∞

Sc
3

(
x − Sc

3

)
d F(x) −

∫ ∞

Sc

(z − Sc)d F(z). (3)

Above the diagonal, the expected quantities to transship are not sensitive to changes
in Sc. These quantities are approximated in the same manner for each particular Sr

value.

ET (Sr , ·) ≈ 3
∫ ∞

Sr

(x − Sr )d F(x) −
∫ ∞

3Sr

(z − 3Sr )d F(z). (4)

For Sr > EX , Sc < 3Sr , we approximate ET (Sr , Sc) as the weighted average of
(3) for the particular value of Sc and (4) for the particular value of Sr . The weights
pn(α) versus 1− pn(α) are calculated with nth-degree polynomials of α where n is
an odd number. Let α = P(Z ≤ Sc) denote the non-stockout probability of a single
stocking location serving the completely pooled demand Z , Sc being the particular
order-up-to level for the periodic review policy.

Polynomials with �n/2	 binomial coefficients perform well for Sr values up to
Sr ≈ EX + 2σX . We suggest using 9th- or higher degree polynomials to improve
the fit of the approximation, especially where ET (Sr , Sc) is still increasing in Sc

for a given Sr . Though this approximation procedure doesn’t need sophisticated
computations, it establishes an impressive fit (R2 > 0.98) for enabling reliable
estimates of the expected transshipment quantities.

The solution of the entire model can be achieved by numerical methods which are
beyond the scope of this paper. Herer et al. [1] describe an optimization procedure
combining the advantages of simulation and stochastic optimization which can be
utilized to find the minimum objective value, taking into account the relevant fill rate
constraint.

4 Conclusion

Lateral transshipments lead to substantial cost benefits due to lower order-up-to levels
required to establish the desired end-customer fill rate. The economic benefits depend
strongly on the lead time demand distribution and unit costs under consideration. The
simulation confirms cost reductions of approximately {40.55 %, 25.50 %} at the
optima for br = {0.90, 0.95} referring to normal demand with EX = 200, σX = 75,
ηr = ηc and τ = 0.9ηr . Additionally, there are somemarginal improvements in terms
of fill rates that the end-customers are the recipients of despite the lower order-up-to
levels.
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