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Abstract Two-stage robust combinatorial optimization is an established methodol-
ogy for handling combinatorial optimization problems with uncertain input. Without
knowing the actual data, a partial solution needs to be fixed in the first stage which is
then extended to a feasible solution in the second stage at higher cost once the data
is revealed. The overall goal is to construct a solution that is feasible in all scenarios,
i.e., robust against uncertainty, and minimizes the worst-case cost. Since considering
all possible scenarios usually leads to a robust solution that is too conservative and
too expensive, a central question is to decide on a subset of scenarios to be taken
into account. Restricting the set of possible scenarios is a common approach, but this
usually depends on subjective decision criteria like the willingness to take risks or
the expectation on the future. We propose an alternative concept. Instead of restrict-
ing the set of scenarios we price all scenarios, which affects the objective function
in such a way that we receive a certain scenario-dependent reward that reduces the
overall cost. This leads to new two-stage robust optimization problems. We study
complexity and devise approximation algorithms for such problems.

1 Introduction

Practical applications of combinatorial optimization often require decision making
under data uncertainty. Reasons for that are usually measurement errors or simply
the impossibility of precisely predicting the future. Data uncertainty in optimization
problems is usually represented by a set of possible scenarios, where a scenario is
a particular realization of the uncertain input parameters. Two-stage robust com-
binatorial optimization is an established methodology for handling combinatorial
optimization problems with uncertain input. The methodology was introduced by
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Dhamdhere et al. [3] and subsequently used by different authors [4–7]. Two-stage
robust combinatorial optimization is based on a two-stage decision process that we
want to illustrate with the following example.

In a frequently flooded region, high restoration cost needs to be paid if a town is
under water. In order to avoid these costs, we want to equip some towns with flood
protection systems that prevent any damage in case of a flood event. In the first stage
we do not know whether a town will be flood-affected or not. That is, the set of
flood-affected towns is uncertain in the first stage. We only have information about
possible scenarios, where in this example a scenario is a particular set of affected
towns. In the second stage a scenario is revealed to us and we have to pay the cost
for the restoration of all flood-affected towns that are not equipped with a protection
system. We assume, that the cost for the restoration of a town is much higher than
the investment in a flood protection system. Our goal is to find a set of towns that
we equip with protection systems in the first stage such that we minimize the total
cost (first stage cost and second stage cost) in the worst-case scenario. We remark
that the worst-case scenario depends on our first stage decision. This means that we
want to solve a min-max problem, where we minimize over our possible first stage
choices and maximize over our underlying set of scenarios. We can think of a malign
adversary, who, once we have taken the first stage decision, picks a scenario which
is worst possible with respect to our decision.

We can extend the described two-stage decision process to a decision process with
multiple stages. Optimization problems of that kind are called multi-stage robust
(combinatorial) optimization problems. However, in this work we restrict our atten-
tion to the two-stage model and refer the interested reader to [1, Chap. 14] and the
references therein.

2 Priced Scenarios

The goal of robust optimization problems is to construct a solution that is feasible
in all scenarios of an underlying scenario set, i.e., robust against uncertainty, and
we want to minimize the worst-case cost of the constructed solution. In the above
example, feasibility of a solutionmeans that either we have equipped a flood-affected
townwith a protection system in the first stage or we pay the cost for the restoration of
that town in the second stage. If we take all possible scenarios into account, then, by
the cost assumption, this will cause us to equip every town with a protection system
which is very conservative. Aiming for a more reasonable solution, we firstly have
to answer the following central question: Which scenarios do we take into account?
The more scenarios we take into account the more expensive our robust solution
usually is. This is often called “the price of robustness” [2]. Restricting the set of
all possible scenarios to a set of reasonable scenarios is a common approach. Note
that in robust combinatorial optimization we usually are able to express the set of all
possible scenarios in a compact way. In the above example, it is the power set of the
set of all considered towns.
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In two-stage robust combinatorial optimization, the discrete scenario approach
(see [3, 8]) and the Γ -scenario approach (see [2, 4]) have become the two main
approaches for representing the scenario set in the input. In the discrete scenario
approach, all scenarios that we want to take into account are explicitly given as part
of the input. This approach is appropriate for problems where the number of possible
scenarios is manageable. In the Γ -scenario approach, we implicitly describe the
scenario set by a parameter Γ which is part of the input. Let us illustrate this by the
above example. Suppose, we only want to be robust against situations where at most
Γ many towns are flood-affected. One reason for that might be that we expect the
number of affected towns to be no greater than Γ , though we do not know the exact
set of affected towns. In this case, we only need the set of all towns and the parameter
Γ to describe our scenario set. This approach allows us to consider an exponential
number of scenarios without listing them all as in the discrete scenario approach.

Both approaches enable us to restrict the set of all possible scenarios, but restricting
the scenario set usually depends on subjective decision criteria like the willingness to
take risks or the expectationon the future.Wepropose an alternative approach. Instead
of restricting the scenario set we price all scenarios. That is, we define a function that
assigns a nonnegative price to each scenario of the unrestricted scenario set. Those
prices affect the objective function and lead to new two-stage robust combinatorial
optimization problems. We want to illustrate this new approach by the introductory
example.

In the new approach, we consider the unrestricted scenario set. In other words,
our scenario set is the power set of the set of all considered towns. We extend our
example by an insurance company. With this insurance company we negotiate in
advance a scenario-dependent price which is paid out to us in the second stage. That
is, we agree a price for each scenario that we get paid if the scenariomaterializes. Our
new goal is to find a set of towns that we equip with protection systems in the first
stage such that we minimize the balance (first stage cost and second stage cost minus
insurance payout) in the worst-case scenario.We assume the insurance premium (fee
paid by us to the insurer) to be constant and therefore we can ignore it in the objective
function. Again, we want to solve a min-max problem, but now we have a different
objective function and we do not have to restrict the scenario set.

Before we give an overview of our results with the new approach, we observe
that the new approach generalizes both the discrete scenario approach and the
Γ -scenario approach. We can set the price of the scenarios that we want to “exclude”
from the scenario set to infinity and thus the adversary has no incentive to choose
those scenarios.

3 Results

In this section we give an overview of our results with the new approach. We study
complexity and approximation algorithms for a generalization of the afore-mentioned
example. This more general problem is called two-stage robust weighted disjoint
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hitting set problem. The deterministic version of that problem is a special case of
many different combinatorial optimization problems, e.g. the set cover problem and
the Steiner tree problem. This also holds for the two-stage robust versions of those
problems. Let us first describe the deterministic weighted disjoint hitting set problem
(WDHS problem). We are given a set of n elements E := {e1, . . . , en}, a collection
M := {M1, . . . , Mm} of m pairwise disjoint subsets of E, i.e., Mi ∩ Mj = ∅ for all
i, j ∈ {1, . . . , m} with i �= j, and a cost function c : E → N. A feasible solution
for the WDHS problem is a set F ⊆ E that has at least one element in common
with every set M ∈ M , i.e., |F ∩ M| ≥ 1 for all M ∈ M . Thus, the set of feasible
solutions can be defined asF := {F ⊆ E | ∀M ∈ M : |F ∩ M| ≥ 1}. The goal is to
find a feasible solution F ∈ F that minimizes the total cost f (c, F) := ∑

e∈F c(e).
The WDHS problem can be solved in polynomial time by selecting the cheapest
element out of each set M ∈ M .

Based on this, we can describe the two-stage robust WDHS problem. As in the
deterministic version, we are given the setE, the collectionM and the cost function c

as defined above. Additionally, we are given a vector λ := (
λe1, . . . , λen

)T ∈ Q
n

with λe ≥ 1 for all e ∈ E and a scenario set S , where a scenario S is a subset
of M . That means that every scenario S ∈ S defines a set of feasible solutions
F S := {F ⊆ E | ∀M ∈ S : |F ∩ M| ≥ 1}. In the following, a set M ∈ M is called
active in scenario S ifM ∈ S. In the first stage we do not knowwhich scenario S ∈ S
will materialize in the second stage, but we already can buy elements e ∈ E in order
to “hit" sets. A set M ∈ M is hit if we buy at least one element of the set M. In
the first stage, the cost of an element e ∈ E is c(e). If we hit a set M ∈ M already
in the first stage, we do not have to hit M in the second stage in case M is active in
the realized scenario. In the second stage a scenario S ∈ S is revealed to us and
we need to hit all sets M ∈ S that were not already hit in the first stage. Hitting a
set in the second stage is costlier than in the first stage. Every element e ∈ E has
its own given inflation factor λe ≥ 1 and costs in the second stage λec(e). Let us
formulate the goal. We buy a set of elements F1 ⊆ E already in the first stage and
pay f (c, F1) := ∑

e∈F1
c(e). In the second stage we augment the set F1 by buying

an additional set of elements FS ⊆ E, where S is the realized scenario, and we pay
f (λc, FS) := ∑

e∈FS
λec(e). Our solution (F1, FS) is feasible in the scenario S if

F1 ∪ FS ∈ F S . The goal is to find a set F1 and sets FS , S ∈ S , such that we
minimize the total cost in the worst-case scenario. That is, we want to find a solution
for the following min-max problem:

min

{

f (c, F1) + max
S∈S

{f (λc, FS)} | ∀S ∈ S : F1 ∪ FS ∈ F S
}

. (1)

Following the discrete scenario approach, we can show that the two-stage robust
WDHS problem is NP-hard, even if we are given only two scenarios. This is shown
by a reduction from the NP-complete decision problem minimum knapsack. Ideas
from the reduction can be used to formulate the problem as a dynamic program that
can be solved in pseudo-polynomial time if the cardinality of the scenario set is
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constantly bounded from above. By using known methods from two-stage stochastic
programming [9], we can show that there is a 2-approximation algorithm for the
two-stage robust WDHS problem with discrete scenarios.

However, if we follow the Γ -scenario approach, the two-stage robust WDHS
problem can be solved in polynomial time. In this case the scenario set is defined
byS := {S ⊆ M : |S| ≤ Γ }, where Γ ∈ {1, . . . , m} is part of the input. We obtain
this result by narrowing down the solution space and greedily selecting sets M ∈ M
to be hit already in the first stage.

Using the new approach, we slightly need to modify the objective function in (1).
We need to incorporate the given price function p : S → Q

+ that reduces the second
stage cost as described in Sect. 2. This leads to the following min-max problem:

min

{

f (c, F1) + max
S∈S

{f (λc, FS) − p(S)} | ∀S ∈ S : F1 ∪ FS ∈ F S
}

, (2)

where S := 2M . In the following, we consider two different price functions p. To
define them we need the following additional input. For each set M ∈ M we are
given a price γM ∈ Q

+. Based on this, we say that the price function p is sum-based
if p(S) := ∑

M∈S γM and we called it extremum-based if p(S) := maxM∈S γM for all
S ∈ S . To explain the following results we introduce the values αM := mine∈M c(e)
and βM := mine∈M λec(e) for all M ∈ M .

Let us first consider the case that we are given a sum-based price function p. In
this case the two-stage robust WDHS problem (as defined in (2)) can be solved in
polynomial time. Let us examine why this is the case and therefor we let M ′ ⊆ M
be the collection of all sets that we hit already in the first stage. The collection M ′
depends on F1. First of all, we observe that the adversary will confront us with
the worst-case scenario S∗ := {

M ∈ M \ M ′ | βM − γM > 0
}
. Thus we pay∑

M∈M ′ αM in the first stage and
∑

M∈S∗ (βM − γM) in the second stage. It is not
hard to see that we minimize that payment if we hit all sets M ∈ M (at minimum
cost) already in the first stage that fulfill αM ≤ βM − γM . This is in line with what
intuition tells us.

However, the situation changes drastically if we consider the case that we are
given an extremum-based price function p. We can show that the corresponding two-
stage robust WDHS problem is NP-hard. This is also shown by a reduction from
the NP-complete decision problem minimum knapsack. We can also show that the
problem can be formulated as a dynamic program which can be transformed into an
FPTAS by using [10].

4 Conclusion

Pricing scenarios instead of restricting the set of scenarios is an alternative way for
dealingwith two-stage robust optimization problems. In this workwe havemotivated
and introduced the new approach andwe have studied complexity and approximation



382 R. Rischke

algorithms for the two-stage robust WDHS problem. In particular, we have seen that
the complexity significantly depends on the pricing method. In this work we have
presentedourfirst resultswith the newapproach andwehope to foster further research
in this fascinating area.
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