
Misspecified Dependency Modelling: What Does
It Mean for Risk Measurement?

Theo Berger

Abstract Forecasting portfolio risk requires both, estimation of marginal return
distributions for individual assets and dependence structure of returns as well. Due
to the fact, that the marginal return distribution represents the main impact factor
on portfolio volatility, the impact of dependency modeling which is required for
instance in the field of Credit Pricing, Portfolio Sensitivity Analysis or Correlation
Trading is rarely investigated that far. In this paper, we explicitly focus on the impact
of decoupled dependency modeling in the context of risk measurement. We do so, by
setting up an extensive simulation analysis which enables us to analyze competing
copula approaches (Clayton, Frank, Gauss, Gumbel and t copula) under the assump-
tion that the “true” marginal distribution is known. By simulating return series with
different realistic dependency schemes accounting for time varying dependency as
well as tail dependence, we show that the choice of copula becomes crucial for VaR,
especially in volatile dependency schemes. Albeit the Gauss copula approach does
neither account for time variance nor for tail dependence, it represents a solid tool
throughout all investigated dependency schemes.

1 Introduction

Interdependencies between individual assets need to be captured to measure diver-
sification effects and to precisely measure a single asset risk contribution on an
aggregated portfolio level. Albeit, as Fantazzini [3] points out, the impact of mis-
specified marginals offsets the bias in dependency modeling on a portfolio level,
precise dependency measurement represents a crucial information. For instance, a
risk manager needs to know the effect of a hedged risk position on the overall portfo-
lio risk. As well, correlation trading, the modeling of derivatives and measuring risk
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diversification heavily depends on the information which are exclusively captured
by dependency measurement.

So far there are only a few analysis which explicitly address the impact of depen-
dencymodeling on the measurement of Portfolio risk. Ane and Kharoubi [1] analyse
the choice copula in the context of VaR forecasts, and show that inadequate depen-
dency modeling explains up to 18 % of a VaR misspecification.1 However, given
the dominant impact stemming from the marginal return distributions, the separated
impact of dependency modeling on aggregated portfolio risk in the absence of mis-
specified margins has not been explicitly investigated so far.

Thus, we add to the literature and set up an extensive simulation analysis account-
ing for realistic dependency scenarios such as time varying dependency and tail
dependency. Both phenomena are discussed in a realistic as well as disproportion-
ated environment. Further we investigate the dependency bias ofmodern dependency
approaches on portfolio risk, in the absence of any bias caused by the modeling
of marginal return distributions. More concrete, we generate samples with prede-
fined margins, characterized by different dependency schemes and apply competing
dependency models to forecast portfolio risk. By doing so, we are able to explicitly
compare the forecasting bias caused by the applied dependency approaches in an
applied risk measurement environment via out of sample analysis. Specifically, the
simulation exercise should answer the question whether the choice of copula does
affect the VaR performance when the data generating process is described by time
varying conditional correlations or tail dependence.

The remainder is structured in the following way: Sect. 2 gives a brief overview
about the relevant dependency approaches and Sect. 3 describes the setup of the
simulation analysis. Section 4 gives the empirical results and Sect. 5 summarizes the
results of this paper.

2 Methodology

2.1 Copulas

The copula approach is based on Sklar‘s Theorem [7]:
Let X1, . . . , Xn be random variables, F1, . . . , Fn the corresponding marginal distri-
butions and H the joint distribution, then there exists a copula C: [0, 1]n → [0, 1]
such that:

H(x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)). (1)

Conversely if C is a copula and F1, . . . , Fn are distribution functions, then H (as
defined above) is a joint distribution with margins F1, . . . , Fn .

1 The analysis is based on applied loss functions in an empirical setup.
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TheGaussian and t copula belong to the family of elliptical copulas and are derived
from the multivariate normal and t distribution respectively.

The setup of the Gaussian copula is given by:

CGa(x1, . . . , xn) = Φρ(Φ−1(x1), . . . , Φ
−1(xn)), (2)
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whereas Φρ stands for the multivariate normal distribution with correlation matrix
ρ and Φ−1 symbolizes the inverse of univariate normal distribution.

Along the lines of the Gaussian copula, the t copula is given by:
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in this setup tρ,v stands for themultivariate t distributionwith correlationmatrixρ and
v degrees of freedom (d.o.f.). t−1

v stands for the inverse of the univariate t distribution
and v influences tail dependency. For v → ∞ the t distribution approximates a
Gaussian.

In contradiction to the elliptical copulas, the Clayton copula belongs to the group
of Archimedean copulas and is given by:

CClayton(x1, x2) = (
max{xθ

1 + xθ
2 − 1, 0}) 1

θ , (6)

with θ ∈ [−1,∞)\{0}. Note that the Clayton copula describes stronger dependence
in the negative tail than in the positive, for θ → ∞ the Clayton copula describes
comonoticity, and for θ → 0 independence.

Another popularArchimedean copula is represented by theGumbel copulawhich,
in contradiction to the Clayton copula, exhibits higher dependence in the positive
tail than in the negative. The copula is given by:

CGumbel(x1, x2) = exp
(
−[(−ln x1)

δ + (−ln x2)
δ] 1δ

)
, (7)

with δ ∈ [1,∞). Analogue to the Gumbel copula, we get comonoticity for θ → ∞
and independence for θ → 0.

As well we introduce the Frank copula as defined byNelson (1999) which is given
by:
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C Frank(x1, x2) = −1

θ
ln

(
1 + (e−θx1 − 1)(e−θx2 − 1)

e−θ − 1

)
, (8)

for θ ∈ R\{0}.
Due to the fact that estimating parameters for higher order copulas might be

computationally cumbersome, all parameters are estimated in a two step maximum
likelihood method given by Joe [5]. This approach is also known as inference for the
margins (IFM). The two steps divide the log likelihood into one term incorporating all
parameters concerning univariatemargins and into one term involving the parameters
of the chosen copula.Thus, thismethod enables us to explicitly isolate thedependency
modeling from fitting the univariate marginals.

2.2 VaR

In order to make the results of the competing copula approaches comparable, we
translate the figures into a VaR universe, so that we are able to evaluate the properties
of different copulas within a realistic risk measurement framework. Generally, VaR
is defined as the quantile at level α of the distribution of portfolio returns:

VaRα = F−1(α) =
V a Rα∫

−∞
f (r)dr = P(r ≤ V a Rα). (9)

So that, the respective quantiles are direct functions of the variances,which enables
us to directly translate the quantiles of the estimated portfolio variances into VaR
figures. Let α be the quantile, Ht the covariance matrix and w the vector of portfolio
weights, then VaR at time t is given by: V a Rt = −α

√
w′ Ht w for both normal and

t distributions. For instance the 99 % VaR of PF return yt represents the empirical
1 % quantile of the variance.

3 Simulation Design

The aim of the simulation exercise is to analyze the impact of dependency modeling
apart from the choice of optimal marginal distribution. Further, we explicitly address
the isolated impact stemming from dependency modeling on quantile forecasts from
two angles:

Three different dependency scenarios (weak/medium/strong) are investigated for
each copula (Table 1).

Once the sample covering 1001 observations is generated, we use the introduced
copula approaches to forecast Value-at-Risk. At this, the forecast is based on 1000
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Table 1 Archimedean copulas: simulated scenarios

Copula Low dependency Medium dependency High dependency

Clayton θ = 0, 5 θ = 1, 5 θ = 2, 5
Gumbel θ = 1 θ = 3 θ = 5
Frank θ = 10 θ = 20 θ = 30

Fig. 1 1001 normally distributed return observations generated by Clayton copula (θ = 25),
Gumbel copula (θ = 5) and Frank Copula (θ = 30)

Fig. 2 Correlation scenarios

observations and can be evaluated by the 1001th one. This approach enables us to
investigate the VaR performance and thus the compatibility of the competing cop-
ula approaches when the samples are not in line with the underlying assumptions.
Figure 1 illustrates examples of the investigated scenarios. 10.000 scenarios for each
dependency modification are simulated and evaluated. Secondly, to take account for
financial time series specific properties, we generate normally distributed return
series characterized by time varying conditional correlations (see Fig. 2) to investi-
gate the consequences of time varying dependency schemes on the applied copula
approaches. Again, for each scenario 10.000 return series covering 1001 observations
are generated and the competing copula models are evaluated by the VaR forecasting
performance regarding the 1001th observation.
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4 Simulation Results

To sum it up, the empirical VaR backtesting performance for all investigated scenar-
ios is given in Table 2. Obviously, given that dependency is modeled via time varying
linear correlation coefficient, the elliptical copulas outperform theArchimedean cop-
ulas in terms of empirical VaR performance. The Clayton copula underestimates risk
when the data generating process is not a Clayton copulawhereasmixed evidence can
be reported for both Gumbel and Frank copula. However, both approaches, are not
able to adequately capture tail dependence generated via Clayton copula. By compar-
ing both Gauss and t copula, the overall performance of the t copula is slightly more
precise when it comes to forecast VaR.2 According to the return series generated
by Archimedean copulas, mixed evidence can be reported. For 95 % VaR forecasts,
the Gumbel and Frank copula applied to returns generated via Clayton copula result
in an inappropriately high number of misspecifications3 and thus both dependency
approaches would be rejected by standard statistical VaR backtesting.4 Interestingly,
the Gumbel and Frank copula lack in capturing tail dependence generated by Clayton
copula and vice versa. However, given that the empirical backtesting performance of
all the other investigated models are “statistically” acceptable, leads us to conclude
that misspecified dependency modeling has an impact on the rejection of a VaR
model. Thus, given that the rejection rate is impacted by the choice of the applied
copula approach, our findings are twofold:

• From a pregulatory perspective, the classical gauss and t copula seem to be an
appropriate choice for all investigated dependency scenarios. According to our
results, it is the Gauss and t copula which mainly result in the “second best”
solution5 when the returns are generated by different copulas. Thus, the higher
parametrisation of the competing copula approaches does not lead to more pre-
cise dependency measurement and hence more accurate VaR failure rate. Further,
due to the higher parameterisation, the Archimedean copulas lack in terms of pre-
ciseness when the underlying sample does not exhibit the characteristics of the
applied copulas. Moreover, having in mind that Gauss copulas do neither account
for time varying dependency structure nor for tail dependence, we show that the
parsimonious approach leads to acceptable VaR figures throughout all investigated
scenarios.

• However, from an institutional point of view, it is not only the rejection rate which
is relevant but also the absolute size of VaR. If we analyse both, the rejection rate
as well as the absolute amount of VaR forecast, we favour the model which results
in the lowest amount of VaR forecast, given that the empirical failure rate is in
line with the expectations. For time varying linear dependency, again, the elliptical

2 We applied the CPA test proposed by Giacomini and White (2006) to prove this fact. Results are
available upon request.
3 The empirical backtesting performance would get rejected by statistical backtesting criteria,
“conditional coverage”, by Christoffersen (1998).
4 Results are available upon request.
5 The “first best” solution is always the original model.
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Table 2 Empirical misspecification performance, 95 % and VaR forecasts

Scenario G Cop (%) t Cop (%) Clayton (%) Gumbel (%) Frank (%)

95 % VaR
Elliptical 4,97 4,99 4,03 4,68 5,04
Clayton 6,10 6,09 5,16 7,05 6,37
Gumbel 4,71 4,70 4,60 4,82 4,77
Frank 5,07 5,07 4,89 5,44 4,92

copulas do outperform theArchimedean approaches, since they result in the lowest
VaR values and show an acceptable empirical failure rate. Along the lines of the
linear dependency scenarios, the elliptical copulas also represent the (second-) best
choice forVaR forecasts for sampleswhich are generated byArchimedean copulas.
The Archimedean copulas heavily depend on the assumptions of the underlying
samples, so that Frank copulas adequately capture tail dependency generated by
Gumbel copula (and vice versa) whereas both Frank and Gumbel fail to capture
characterstics generated by Clayton copula.

5 Conclusion

Albeit the main impact on multivariate portfolio VaR stems from the choice of mar-
ginal return distributions, the adequate modeling of dependency needs to be consid-
ered in order to achieve an appropriate VaR performance. So that, when it comes to
the impact of dependency modeling on VaR forecasts, the choice of copula is crucial.

Based on the given extensive simulation analysis covering different dependency
scenarios and triggered by the comparison of competing copula approaches, we
conclude that the investigated elliptical copulas do outperform the Archimedean
copulas due to more precise VaR forecasts. Thus, having in mind that both the Gauss
and t copula are straightforward to apply to multivariate asset portfolios comprising
three or more assets, we strongly recommend the application of elliptical copulas in
the context of VaR forecasts.
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