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Abstract MIP and IP programming are state-of-the-art modeling techniques for
computer-aided optimization. However, companies observe an increasing danger
of disruptions that prevent them from acting as planned. One reason is input data
being assumed as deterministic, but in reality, data is afflicted with uncertainties.
Incorporating uncertainty in existing models, however, often pushes the complexity
of problems that are in P or NP, to the complexity class PSPACE. Quantified integer
linear programming (QIP) is a PSPACE-complete extension of the IP problem with
variables being either existentially or universally quantified. With the help of QIPs,
it is possible to model board-games like Gomoku as well as traditional combinatorial
OR problems under uncertainty. In this paper, we present how to extend the model
formulation of classical scheduling problems like the Job-Shop and Car-Sequencing
problem by uncertain influences and give illustrating examples with solutions.
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1 Introduction

In the past, there have been several efforts to add uncertainties into themodel descrip-
tion of problems [1, 7].Wewere involved into examinations of uncertainties in airline
fleet assignment [6] and railway planning [2]. However, the ratio of implementing
efforts to output was rather disappointing. Therefore, we came to the conclusion that
a modeling language is needed that combines convenient MIP modeling with the
ability to express uncertainties. In 2004, Subramani introduced the idea to enrich
linear programs by universally quantified variables [8].

Definition 1 (Quantified Integer Program) Let x = (x1, . . . , xn)T ∈ Qn be a vector
with lower and upper bound vectors l ∈ Zn and u ∈ Zn such that li ≤ xi ≤ ui .
A ∈ Qm×n , b ∈ Qm and x build a linear inequality system. Moreover, there is a
vector of quantifiers Q = (Q1, . . . ,Qn)T ∈ {∀, ∃}n . Let Q ◦ x ∈ [l, u] ∩ Zn with
the componentwise binding operator ◦ denote the quantification vector (Q1x1 ∈
[l1, u1] ∩ Z, . . . ,Qn xn ∈ [ln, un] ∩ Z)T such that every quantifier Qi binds the
variable xi . Let there also be a vector of objective coefficients c ∈ Qn . Each maximal
consecutive subsequence ofQ consisting of identical quantifiers is called a quantifier
block—the corresponding i th subsequence of x is called a variable block Bi .

We call z = min
B1

(c1x1 + max
B2

(c2x2 + min
B3

(c3x3 + max
B4

( . . .min
Bk

ck xk)))))

Q ◦ x ∈ [l, u] ∩ Zn : Ax ≤ b (QIP)

a Quantified Integer Program with objective function (for a minimizing existential
player). Here we assume w.l.o.g. that Q1 = ∃ and Qn = ∃.
A QIP with objective can be interpreted as a two-person zero-sum game [3, 4]
between a max-player who tries to make the instance infeasible or to maximize the
objective function and a min-player who wants to make the instance feasible and
to minimize the objective against all odds. Note that this is a short notation for a
dynamic program where the players have recursively to find optimal vectors xBi

with fixed xB1 , . . . , xBi−1 under consideration that the other player will set the next
block of variables optimal concerning his own incentives.

2 Job Shop Scheduling

Jop Shop Scheduling is a classical optimization problem in which jobs have to be
assigned to several machines such that the total time until all jobs are finished (the
makespan) is minimized. An assignment that a job has to be processed by a machine
is called a task and is given a certain duration. If some tasks depend on one another,
a full or partial order of tasks can be given. Equation (2) defines the makespan.
Equation (3) ensures the partial task order. The ordering indicator variables yi,m, j

are defined by the following two equations.
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Table 1 Jobshop model
notation

J Set of jobs
M Set of machines
T Set of tasks, T ⊆ J × M
O Taskorder, O ⊆ T × T
s j,m Start time (integer) of task ( j, m)

d j,m Duration of task ( j, m)

δ j,m Additional duration of task ( j, m) in case of delay
e j,m Earliness of task ( j, m), i.e., e = max{d1 − d2, 0}
e Mean earliness
m Makespan
ru, j,m Indicator of unary encoding of retarded task
r̃b Indicator of binary encoding retarded task
w Wrapping indicator for binary to unary translation

For solution purposes it is relevant to use as few universally quantified variables
as possible. To that end, we introduce a binary encoding r̃ of the retardation and
add existentially quantified helper variables r as unary encoding of the retardation.
Equations (6) represent a linear formulation of this translation. Equations (7)–(10) are
an adaption of the prior constraints for the second stage variables with uncertainly
prolonged task durations. Equations (11)–(13) define the earliness caused by the
existential players reaction, which is used as a penalty term for large rearrangements
of the first stage planning (Table 1).

min m2 + k · e + 1

M
· m1 s.t. ∃ s1 y1 m1 ∀ r̃ ∃ r w , s2 y2 m2, e : (1)

s1j,m + d j,m ≤ m1 ∀ ( j, m) ∈ T (2)

s1i,m + di,m ≤ s1j,n ∀ (i, m, j, n) ∈ O (3)

s1i,m + di,m ≤ s1j,m + M · (1 − y1i,m, j ) ∀ (i, m) ∈ T, ( j, m) ∈ T (4)

s1j,m + d j,m ≤ s1i,m + M · y1i,m, j ∀ (i, m) ∈ T, ( j, m) ∈ T (5)
∑

(u, j,m)∈ U

u · r j,m =
∑

b ∈ B

2b · r̃b − |T | · w ∧
∑

u ∈ U
( j,m)= Tu

r j,m ≤ 1 (6)

s2j,m + d j,m + δ j,m · r j,m ≤ m2 ∀ ( j, m) ∈ T (7)

s2i,m + di,m + δi,m · ri,m ≤ s2j,n ∀ (i, m, j, n) ∈ O (8)

s2i,m + di,m + δi,m · ri,m ≤ s2j,m + M · (1 − y2i,m, j ) ∀ (i, m) ∈ T, ( j, m) ∈ T (9)

s2j,m + d j,m + δi,m · ri,m ≤ s2i,m + M · y2i,m, j ∀ (i, m) ∈ T, ( j, m) ∈ T (10)

ei,m ≥ s1i,m − s2i,m ∀ (i, m) ∈ T (11)
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Table 2 Jobshop tasks Job Machine Duration Extra

Paper1 Blue 45 5
Paper1 Yellow 10 0
Paper2 Blue 20 5
Paper2 Green 10 10
Paper2 Yellow 34 0
Paper3 Blue 12 0
Paper3 Green 17 0
Paper3 Yellow 28 20

Table 3 Jobshop order Prior task Later task

Paper1 Blue Paper1 Yellow
Paper2 Green Paper2 Blue
Paper2 Blue Paper2 Yellow
Paper3 Yellow Paper3 Blue
Paper3 Blue Paper3 Green

Table 4 Solution of the
jobshop example

sc. Start times m.s.
1B 1Y 2B 2G 2Y 3Y 3B 3G

First stage solution
0 45 0 45 65 0 70 82 99

1 0 50 0 50 70 0 70 82 104
2 0 45 0 45 65 0 65 82 99
3 0 45 0 45 70 0 70 82 104
4 0 45 0 45 65 0 65 82 99
5 0 45 0 45 65 0 65 82 99
6 0 45 0 45 65 0 65 82 99
7 0 45 0 45 65 0 70 82 99
8 0 48 0 50 70 0 75 87 104

ei,m ≥ 0 (12)

e = 1

|T | ·
∑

(i,m)∈ T

ei,m (13)

An example1 is given in Tables 2 and 3. Table 4 depicts an optimal solution. The
first-stage scheduling has the property that the planner can find a rescheduling to
each possible redardation such that the worst-case makespan is minimized.

1 The model formulation and example data are adapted from the work of Jeffrey Kantor, Christelle
Gueret, Christian Prins and Marc Sevaux, cf. http://estm60203.blogspot.com/.

http://estm60203.blogspot.com/
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3 Car Sequencing

In flexible manufacturing systems, varying models of same basic product are
produced. They usually require different processing times, so sequences which
alternately produce different models are preferable. We consider so called rk : sk

sequencing rules [5] that restrict too frequent production of work intensive models
at certain stations, that is, option k may only be produced at most rk times per each
sk successively sequenced models.

We add uncertainty to this problem by incorporating a malfunction in the pro-
duction process. It may happen that a car cannot be processed in the prescheduled
order and has to be reinserted a few timesteps later after the malfunction has been
corrected. The uncertainty is given by a tuple (t, t ′), t < t ′ with the new timestep t ′ at
which the model originally scheduled at t will be processed. The cars inbetween will
each be processed one timestep earlier. The resulting schedule is modeled by stage
two (s = 2) variables—note that they may be chosen differently for each possible
malfunction. The planer may react to this uncertainty by rescheduling yet another
model, i.e., he chooses a tuple (u, u′), t ′ < u < u′ such that the car which was
originally scheduled at u will be processed at u′. This final reschedule is given by
stage three variables.

The first three equations and the first stage variables (s = 1) give a formulation of
the original problem without uncertainty. Equation (15) ensures that for each class
c the produced amount equals the given demand Dc. Equation (16) specifies that
exactly one unit is produced in each time step. The rk : sk sequencing rules are
not strictly enforced—instead violations are counted by the indicator variables ys

k,t0
in Eq. (17). Similar to the job shop model, we introduce a binary encoding m̃ and
helper variables m for the uncertain machine malfunctions. Given unary encodings
of the malfunction mu and the answer au , we can encode the change of schedule
with constraints similar to Eq. (19) (which model which parts of the schedule do
not change) and further constraints which ensure that the cars are processed in the
correct new order. These equations are rather long but not very insightful, so we skip
them here.

min
∑

k ∈ O

∑

t0 ∈ T k

y1k,t0 s.t. ∃ x1 y1 ∀ m̃ ∃ m w , x2 y2 , a , x3 y3 : (14)

∑

t ∈ T

xs
t,c = Dc ∀ c ∈ C , s ∈ S (15)

∑

c ∈ C

xs
t,c = 1 ∀ t ∈ T , s ∈ S (16)

t0+sk∑

t = t0

∑

c ∈ C

Ak,c · xs
t,c ≤ rk + M · ys

k, t0 ∀ k ∈ O , t0 ∈ T k , s ∈ S (17)

∑

u ∈ U

u · mu =
∑

b ∈ B

2b · m̃b − |F | · w ∧
∑

u ∈ U

mu ≤ 1 (18)
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Table 5 Car instance

Opt r s

1 1 2
2 2 3

Class Cars Opt 1 Opt 2

0 2 0 0
1 3 0 1
2 1 1 0
3 4 1 1

Table 6 Notation of the car sequencing model

O Set of options
C Set of classes, C ⊆ P(O)

T Set of timesteps (|T | equals number of models)
T k Set of intervals (by first timestep) for option k , T k = {1, . . . , |T | − sk + 1}
rk : sk At most rk out of sk successively sequenced models may require option k
Dc Demand of models of class c
Ak,c Indicator, if models of class c require option k
xt,c Indicator, if a model of class c is produced at timestep t
yk,t0 Indicator, if the sequencing rule rk : sk beginning at timestep t0 is satisfied
S Set of stages (duplicates of the original variables after each move)
σ Stage index: 1 pre-scheduling, 2 state after delay, 3 re-scheduling
F Ordered set of possible delays, F = {(t, t ′) ∈ T × T, t < t ′}
U Unary encoding vector of F
du Indicator of unary encoding for the delay from timestep t to t ′, (t, t ′) ∈ U
B Binary encoding of possible delays
d̃b Indicator of binary encoding for the delay, b ∈ B
w Wrapping indicator for binary to unary translation

|x2t,c − x1t,c| ≤
∑

u∈U,(ti ,t j )=Fu ,ti <t<t j

mu ∀ c ∈ C , t ∈ T (19)

further stage-connecting constraints . . . (20)

An example is given by Tables 5 and 7 shows an optimal solution. The first-stage
solution has the property, that the production planner can respond (column 3) to each
possible malfunction (column 2) such that the second-stage production sequence has
a worst-case minimal number of violated sequencing constraints (Table 6).
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Table 7 Solution of the car sequencing example

Scenario Mal. Ans. Production sequence

First stage solution 1, 3, 0, 3, 0, 3, 1, 2, 1, 3
1 – (4, 5) 1, 3, 0, 3, 3, 0, 1, 2, 1, 3
2 (0, 1) (2, 7) 3, 1, 3, 0, 3, 1, 2, 0, 1, 3
3 (0, 2) – 3, 0, 1, 3, 0, 3, 1, 2, 1, 3
4 (0, 3) – 3, 0, 3, 1, 0, 3, 1, 2, 1, 3
5 (0, 4) – 3, 0, 3, 0, 1, 3, 1, 2, 1, 3
6 (0, 5) (6, 8) 3, 0, 3, 0, 3, 1, 2, 1, 1, 3
7 (0, 6) (7, 8) 3, 0, 3, 0, 3, 1, 1, 1, 2, 3
8 (0, 7) (8, 9) 3, 0, 3, 0, 3, 1, 2, 1, 3, 1
9 (0, 8) – 3, 0, 3, 0, 3, 1, 2, 1, 1, 3
10 (0, 9) – 3, 0, 3, 0, 3, 1, 2, 1, 3, 1
11 (1, 2) – 1, 0, 3, 3, 0, 3, 1, 2, 1, 3
12 (1, 3) – 1, 0, 3, 3, 0, 3, 1, 2, 1, 3
13 (1, 4) – 1, 0, 3, 0, 3, 3, 1, 2, 1, 3
14 (1, 5) – 1, 0, 3, 0, 3, 3, 1, 2, 1, 3
15 (1, 6) – 1, 0, 3, 0, 3, 1, 3, 2, 1, 3
16 (1, 7) – 1, 0, 3, 0, 3, 1, 2, 3, 1, 3
17 (1, 8) – 1, 0, 3, 0, 3, 1, 2, 1, 3, 3
18 (1, 9) – 1, 0, 3, 0, 3, 1, 2, 1, 3, 3
19 (2, 3) (4, 9) 1, 3, 3, 0, 3, 1, 2, 1, 3, 0
20 (2, 4) – 1, 3, 3, 0, 0, 3, 1, 2, 1, 3
21 (2, 5) – 1, 3, 3, 0, 3, 0, 1, 2, 1, 3
22 (2, 6) – 1, 3, 3, 0, 3, 1, 0, 2, 1, 3
23 (2, 7) – 1, 3, 3, 0, 3, 1, 2, 0, 1, 3
24 (2, 8) – 1, 3, 3, 0, 3, 1, 2, 1, 0, 3
25 (2, 9) – 1, 3, 3, 0, 3, 1, 2, 1, 3, 0
26 (3, 4) – 1, 3, 0, 0, 3, 3, 1, 2, 1, 3
27 (3, 5) – 1, 3, 0, 0, 3, 3, 1, 2, 1, 3
28 (3, 6) – 1, 3, 0, 0, 3, 1, 3, 2, 1, 3
29 (3, 7) – 1, 3, 0, 0, 3, 1, 2, 3, 1, 3
30 (3, 8) – 1, 3, 0, 0, 3, 1, 2, 1, 3, 3
31 (3, 9) – 1, 3, 0, 0, 3, 1, 2, 1, 3, 3
32 (4, 5) – 1, 3, 0, 3, 3, 0, 1, 2, 1, 3
33 (4, 6) – 1, 3, 0, 3, 3, 1, 0, 2, 1, 3
34 (4, 7) (8, 9) 1, 3, 0, 3, 3, 1, 2, 0, 3, 1
35 (4, 8) – 1, 3, 0, 3, 3, 1, 2, 1, 0, 3
36 (4, 9) – 1, 3, 0, 3, 3, 1, 2, 1, 3, 0
37 (5, 6) (7, 9) 1, 3, 0, 3, 0, 1, 3, 1, 3, 2
38 (5, 7) – 1, 3, 0, 3, 0, 1, 2, 3, 1, 3
39 (5, 8) – 1, 3, 0, 3, 0, 1, 2, 1, 3, 3
40 (5, 9) – 1, 3, 0, 3, 0, 1, 2, 1, 3, 3
41 (6, 7) (8, 9) 1, 3, 0, 3, 0, 3, 2, 1, 3, 1
42 (6, 8) – 1, 3, 0, 3, 0, 3, 2, 1, 1, 3
43 (6, 9) – 1, 3, 0, 3, 0, 3, 2, 1, 3, 1
44 (7, 8) – 1, 3, 0, 3, 0, 3, 1, 1, 2, 3
45 (7, 9) – 1, 3, 0, 3, 0, 3, 1, 1, 3, 2
46 (8, 9) – 1, 3, 0, 3, 0, 3, 1, 2, 3, 1
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4 Conclusion

We presented Quantified Integer Programming as an intuitive modelling language
to generate recoverable robust solutions for classical scheduling problems that were
extended by various uncertain influences.
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