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Abstract The objective of on-line portfolio selection is to design provably good
algorithms with respect to some on-line or offline benchmark. Existing algorithms
do not consider ‘trading risk’. We present a novel risk-adjusted portfolio selection
algorithm (RAPS). RAPS incorporates the ‘trading risk’ in terms of the maximum
possible loss. We show that RAPS performs provably ‘as well as’ the Universal
Portfolio (UP) [4] in the worst-case. We empirically evaluate RAPS on historical
NYSE data. Results show that RAPS is able to beat BCRP as well as several ‘follow-
the-winner’ algorithms from the literature, including UP. We conclude that RAPS
outperforms in case the assets in the portfolio follow a positive trend.

1 On-line Portfolio Selection

LetP denote the on-line portfolio selection algorithm, and letOPT denote the optimal
offline algorithm. The input sequence becomes available to P over time, while OPT
knows the whole input sequence in advance. The performance of P is evaluated by
means ofworst-case competitive analysiswithoutmaking any statistical assumptions,
e.g., on the nature of the stock market. The outcome is the ratio between the value
obtained by OPT and P on a worst-case instance, called regret.

More formally, on-line portfolio selection aims to determine practical P for
investing wealth among a set of m assets (i = 1, . . . , m) over T trading peri-
ods (t = 1, . . . , T ). The finance community mainly addresses the problem of
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maximizing the risk-adjusted return, while the information theory and machine
learning community aims to maximize the terminal wealth WT (P) of P. The out-
put of any P is a sequence of allocation vectors b = b1, . . . , bT for the m assets,
with bt = (bt1, . . . , btm). The elements bti represent the proportion of wealth to be
invested in the ith asset at the beginning of the tth period (

∑m
i=1 bti = 1). Let qti be

the price of asset i at time t, and let x = x1, . . . , xT denote an arbitrary sequence of
m-dimensional price relative vectors xt of the m assets over T . Then the elements
of xt are positive price relatives xti = qti/qt−1i of the ith asset at the end of the tth
period. In other words, within the tth period the portfolio return in-/decreases by the
factor bTt xt = ∑m

i=1 btixti. Thus, after T trading periods, the terminal wealth achieved
by P equals WT (P) = Wo

∏T
t=1 bTt xt , where Wo denotes the initial wealth and is set

to $1 for convenience in this work.
In general, any P usually learns to compete with a target set of N reference

algorithms (j = 1, . . . , N). Let Q = {
Q1, . . . , QN

}
denote this set. Following the

concept of competitive analysis, the performance of P is measured by the worst-case
logarithmic wealth ratio [3, p. 278]

WT (P,Q) = sup
x

sup
Q∈Q

ln
WT (Q)

WT (P)
, (1)

where Q can be chosen arbitrarily. Most common is the class of constant-rebalanced
portfolio (CRP) algorithms, or a mixture of different classes of algorithms.

CRP maintains a constant fraction of the total wealth in each of the underlying
m assets. In an i.i.d. market if T is large, then OPT is the Best CRP (BCRP) [2].
Thus, on-line portfolio selection always chooses a target set B = {

B1, . . . , BN
}
of N

CRP reference algorithms, known as ‘experts’. If P is compared with any possible
‘expert’ in the simplex domainΔm = {

bt : bt ∈ R
m+,

∑m
i=1 bti = 1

}
then (1) becomes

the so-called regret [4]

r(P) = WT (P,B) = sup
x

sup
B∈Δm

ln
WT (B)

WT (P)
, (2)

where supB∈Δm
WT (B) = W∗

T (B) is the wealth achieved by BCRP. Note that P
outperforms BCRP if r(P) < 0.

Further, P is called universal if it achieves asymptotically no regret on average
for T periods and arbitrary bounded x with respect to BCRP [4, (1.7)]

1

T
r(P) = 1

T
lnWT (P) − 1

T
lnW∗

T (B) → 0. (3)

In the recent years there has been a growing interest and skepticism concerning
the value of competitive theory to analyze on-line portfolio selection algorithms.
In particular, competitive analysis is inconsistent with the more widely accepted
analyses and theories based on statistical assumptions. The main criticisms are:
(i) r(P) gives a theoretical upper bound on the loss of P relative to BCRP but omits
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to analyze its applicability in practice [2], and (ii) existing CRP based algorithms do
not consider ‘trading risk’. We address both drawbacks.

In short, our risk-adjusted on-line portfolio selection algorithm (RAPS)
incorporates the ‘trading risk’ in terms of the maximum observed fluctuation of
the period wealth up to time t. A systematic higher WT (P) can only be achieved by
accepting a higher risk [7], i.e., a higher fluctuation. Addressing (i) we empirically
evaluate the practical applicability of RAPS on historical NYSE data.1 Results show
that RAPS is able to beat BCRP as well as several known ‘follow-the-winner’ algo-
rithms, including UP of [4]. Addressing (ii) we show that RAPS performs provably
‘as well as’ UP in the worst-case.

The rest of the paper is organized as follows. In the next section we give the
necessary theoretical background.We formally present and analyze RAPS. Section 3
shows the benefits of RAPS on a numerical example. Section 4 concludes.

2 Algorithm RAPS

Without making any statistical assumptions on the nature of the stock market, [4]
proves that certain P are universal. Cover’s algorithm, UP, achieves asymptotically
no regret.

UP: The idea is to start with the Uniform CRP (UCRP) in period t = 1, i.e.,
b1 = ( 1

m , . . . , 1
m ). For t ≥ 2, the b is approximated by the past performance of the

N ‘experts’ [4, (1.3), p. 2]

b̂t+1i =
∑N

j=1 bj
ti · Wt(Bj)

∑N
j=1 Wt(Bj)

, (4)

where Wt(Bj) = Wt−1(Bj) · bTt xt denotes the compound period wealth of the jth
‘expert’ in the tth period. Thus, in hindsight, b̂t+1 is the weighted average over all
‘experts’ in target set B [4, p. 3].

Lemma 1 Assume that UP competes against target set B. UP divides Wo in N equal
parts and invests according to Bj (j = 1, . . . , N). Then the terminal wealth of UP
equals WT (UP) = 1

N

∑N
j=1 WT (Bj), and its worst-case logarithmic wealth ratio is

bounded as [cf. (1)] [3, Example 10.3, p. 278]

WT (UP,B) = sup
x

sup
Bj∈B

ln
WT (Bj)

WT (UP)
≤ lnN . (5)

Lemma 2 If μ is the uniform density on Δm, then UP of [4] satisfies
[cf. (2)] [3, Theorem 10.3, p. 283]

1 http://www.cs.bme.hu/~oti/portfolio/data/nyseold.zip

http://www.cs.bme.hu/~oti/portfolio/data/nyseold.zip
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r(UP) = sup
x

sup
B∈Δm

ln
WT (B)

WT (UP)
≤ (m − 1) ln(T + 1). (6)

UP exploits the ‘follow-the-winner’ principle, and performs provably ‘almost as
well’ as BCRP [4, Theorem 7.1].

RAPS: Let mj
t = min

{
Wo, . . . , Wt(Bj)

}
and Mj

t = max
{
Wo, . . . , Wt(Bj)

}
be the

minimum and maximum compound period wealth of the jth ‘expert’ up to time t.

Then φt(Bj) = Mj
t

mj
t
equals the maximum observed fluctuation of the period wealth up

to time t, and the inverse φt(Bj)−1 quantifies an experts’ possible maximum loss up
to time t. To compute b̂t+1, UP uses the experts compound period wealth. Instead,
the idea of RAPS is to replace the Wt(Bj) in (4) by φt(Bj)−1. Like UP, RAPS starts
with UCRP in t = 1. For the subsequent t ≥ 2 periods, b is approximated by

b̂t+1i =
∑N

j=1 bj
ti · φt(Bj)−1

∑N
j=1 φt(Bj)−1

. (7)

Lemma 3 Assume that all xti ≤ 1, and that RAPS competes against a target set of B
algorithms. RAPS divides Wo in N equal parts and invests according to Bj. Then the
terminal wealth of RAPS equals WT (RAPS) = 1

N

∑N
j=1 φt(Bj)−1, and its worst-case

logarithmic wealth ratio is bounded as [cf. (1)]

WT (RAPS,B) ≤ lnN . (8)

Proof The proof is based on Lemma 1. We know that iff the assets in the portfolio
do not follow a positive trend, then xti ≤ 1. It follows φt(Bj)−1 = mj

t = Wt(Bj) for
t = 1, . . . , T and j = 1, . . . , N . Thus

WT (RAPS,B) = sup
x

ln
maxj=1,...,N φT (Bj)−1

1
N

∑N
j=1 φT (Bj)−1

≤ sup
x

ln
maxj=1,...,N φT (Bj)−1

1
N maxj=1,...,N φT (Bj)−1

= sup
x

ln
maxj=1,...,N WT (Bj)

1
N maxj=1,...,N WT (Bj)

= lnN . ��
(9)

Under worst-case assumptions WT (RAPS,B) = WT (UP,B), cf. (5). Consequently,
r(RAPS) ≤ (m−1) ln(T +1) also equals UP, cf. (6). The worst-case performance of
UP is basically unimprovable [3, p. 285], but UP has some practical disadvantages
which are addressed by [5, 6]. We aim to answer the question if RAPS is able to
outperform (some of) these algorithms from the literature in case xti > 1.

On-line Benchmarks: Motivated by the ‘follow-the-winner’ principle we limit
to P which increase the bti of more successful assets. Rather than targeting BHbest ,
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Table 1 Portfolio comparison in terms of the WT (P) achieved for N = 101

# Assets BCRP BHbest UP EG UCRP SCRP RAPS r(RAPS)

(0.01)

1 Comm. Metals and Kin Arc 144.01 52.02 78.47 117.15 118.69 26.36 127.96 +0.12
2 IBM and Coca Cola 15.07 13.36 14.18 15.00 15.02 5.48 15.36 −0.02
3 Comm. Metals and Mei Corp. 102.96 52.02 72.63 97.94 98.89 28.14 109.57 −0.06
4 W̄T (P) = 1

630

∑630
p=1 WT (P) 26.57 20.72 18.89 21.73 21.84 12.13 23.07 +0.14

these algorithms mainly track BCRP. Besides (i) UP and (ii) UCRP, we consider:
(iii) Exponential Gradient (EG(η)) of [6] which aims to reduce the computational
costs of UP from exponential to linear. The key parameter of EG(η) is the learning
rate η > 0. For η → 0 EG(η) reduces to UCRP [6, p. 35:11]. (iv) Successive CRP
(SCRP) of [5, p. 170] which directly adopts BCRP up to the tth period, i.e., bt+1
equals the subsequent BCRP allocation vector (b∗

t ). Note that, compared to UP and
RAPS, the worst-case performance guarantees of EG(η) and SCRP are inferior (not
as tight).

Offline Benchmarks: In the financial community the optimal offline benchmark
is to buy-and-hold the best-performing asset of the portfolio, denoted by BHbest
[2]. In contrast, the information theory and machine learning community considers
BCRP. [4, Proposition 2.1] proved that BCRP exceeds BHbest . Obviously, BHbest and
BCRP can only be computed in hindsight.

3 Numerical Results

The NYSE data set includes daily closing prices of 36 assets for 22 years (T =
5, 651). We only consider portfolios containing m = 2 assets, resulting in

(36
2

) =
630 possible portfolio combinations, and limit to three pairs of assets, cf. Table
1. We selected these pairs in order to make our results comparable, cf. [4, p. 23],
[6, p. 340], and [5, p. 181]. Portfolios #1 and #2 can be found in [4–6], and #3 in
[4, 6]. In addition, #4 gives the average W̄T (P); column r(RAPS) indicates whether
RAPS outperforms BCRP (< 0) or not (> 0).

#1: From [4, p. 26] we know that the outperformance of BCRP is due to the
leverage effect in the posteriori computed BCRP. Thus, Cover compared UP to a
randomly generated portfolio (98.4). Contrary to UP, RAPS clearly outperforms the
random sample (127.96 > 98.4), and all P.

#2: The assets show a lockstep performance (12.21 and 13.36). Though, like UP,
RAPS barely outperforms them (cf. [4, p. 23]). Further, RAPS outperforms BCRP
and all P.

#3: Volatile uncorrelated assets (52.02 and 22.92) lead to great gains compared
to BHbest . This also holds for #1 (52.02 and 4.13). RAPS clearly outperforms BCRP
and all P.
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Fig. 1 Proportion of wealth (b̂ti) RAPS and UP invested in BHbest : #1 (left) and #2 (right)

#4: We run experiments on all 630 portfolio combinations. For each of the 36
assets x̄ti > 1 holds, where x̄ti = 1

T

∑T
t=1 xti. On average, RAPS outperforms all P

and BHbest but not BCRP. We claim that RAPS outperforms the online benchmarks
in case the assets in the portfolio follow a positive trend, i.e., x̄ti > 1 ∀ m assets.

Summing up, RAPS outperforms BHbest and all P in all cases, and is superior to
BCRP in two of three cases. Hence, Fig. 1 shows that targeting BCRP is superior
to targeting BHbest (Comm. Metals (#1; #3) and Coca Cola (#2)) as RAPS stepwise
reduces the b̂ti invested in BHbest .

4 Conclusions

To the best of our knowledge, existing ‘follow-the-winner’ algorithms donot consider
‘trading risk’ when computing b. In contrast to existing P, RAPS targets the expert
with the lowest possible loss (φt(Bj)−1). We prove that RAPS performs ‘as well as’
UP in the worst-case, and its computational costs are also exponential. Our numerical
results (Table 1) are encouraging thatRAPSperformswell in practice.The constituent
assets and all benchmark algorithms from the literature (UP, EG(0.01), UCRP, SCRP)
are outperformed. In general, RAPS outperforms in case the assets in the portfolio
follow a positive trend. Volatile uncorrelated stocks (like in #1 and #3) lead to great
gains overBHbest . Figure 1 shows that targeting BCRP is superior to targetingBHbest .
However, ponderous stocks (like in #2) show only modest improvements. This result
is consistent with [4]. An open question is the universality of RAPS.
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