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Abstract The Travelling Salesman Problem (TSP) has been studied extensively for
over half a century, but due to its property of being at the basis of many scheduling
and routing problems it still attracts the attention of many research. One variation of
the standard TSP is the multi-depot travelling salesman problem (MTSP) where the
salesmen can start from and return to several distinct locations. This article focusses
on the MTSP with the extra restriction that each salesman should return to his home
depot, known as the fixed-destination MTSP. This problem (and its variations such
as the multi-depot vehicle routing problem) is usually formulated using three-index
binary variables, making the problem computationally expensive to solve. Here an
alternative formulation is presented using two-index binary variables through the
introduction of a limited amount of continuous variables to ensure the return of the
salesmen to their home depots.

1 Introduction

The TSP has been a topic of research for over six decades [1], but it still attracts the
attention of researchers due to its challenges and wide applicability. Many variations
of the TSP have been introduced to model a real-world problem, such as the vehicle
routing problem [12] and its many variations [8].

In this article we focus on the formulation of the TSP with multiple depots, were
each salesman should return to his home depot. When considering scheduling and
routing problems with multiple depots where each entity (e.g. a salesman or vehicle)
should return to the home depot, we talk about fixed-destination problems [2]. Such
problems are often formulated as a mixed-integer linear program (MILP) using a
three-index formulation of binary variables
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Fig. 1 A fixed-destination solution using a 3-index formulation for 3 depots and 9 cities

xi jk =
{
1 if location i precedes location j directly in a tour started at depot k

0 otherwise
(1)

resulting in C2D binary variables for a problem with C cities and D depots. This
problem can be depicted by a layered graph as shown in Fig. 1, where each depot
has a copy of all city nodes in a separate layer. When solving a MILP using standard
solvers, the computation time is largely dependent on the number of integer (binary)
variables that are used to represent the problem. Therefore, it is beneficial to try to
reduce the number of binary variables.

Recently an alternative formulation using two-index binary variables has been
presented in [3] using a multi-commodity formulation. The set of depot nodes is
cloned to create sink and source nodes for the commodity flows. Using D continuous
variables (representing the commodities) at each of the C + 2D locations (cities plus
depots) it is ensured that a flow of commodities starting at a (source) depot will end
at the associated copied (sink) depot, thereby ensuring fixed-destination solutions.

In this article an alternative two-index formulation is presented that requires a
little less binary variables and significantly less continuous variables as compared to
themulti-commodity formulation. There is no need to copy the depot nodes, and only
one additional continuous variable per location is needed, resulting in an increase
of C + D continuous variables compared to the (non-fixed destination) TSP. These
continuous variables can be seen as node currents, inspired by the subtour elimination
constraints using node potentials that were introduced by Miller et al. [10]. This
formulation has been used for solving scheduling problems for micro-ferries [5]
and harvesters [6]. Here we will discus the method in detail for the basic MTSP to
make readers aware of the possibility to use this formulation as the basis of other
multi-depot scheduling and routing problems.
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2 Fixed-Destination Travelling Salesman Problems

We will discuss the TSP with multiple depots, where each salesman should return to
its home depot at the end of his tour. A novel formulation for this fixed-destination
MTSP using two-index decision variables will be presented next.

2.1 Node Potentials and Currents

The inspiration of this approach comes from the subtour elimination constraints of
Miller et al. [10] using node potentials. To avoid cycles in (a part of) a graph one
can assign continuous variables to the nodes representing a potential in an electric
circuit, and add constraints on their values to avoid subtours. We reckoned that if
there are node potentials in a network, and the nodes are connected by arcs, there
should also be arc currents flowing between the nodes. Since for a solution to the
MTSP each node has exactly one incoming and one outgoing arc (see Fig. 2) this
current can be seen as a property of the nodes (instead of the arcs). We will present a
methodology that can be seen as the dual to theMTZ subtour elimination constraints;
cycle imposement constraints using node currents.

2.2 Description of the Problem

Consider a problem with D depots and C cities with sets D and C defined as

D = {1, . . . ,D}, C = {D + 1, . . . ,N}, N = D ∪ C , (2)

where N = D + C denotes the total number of locations represented by the set N .
This problem can be depicted by a graph with N nodes, where associated with each
possible directed arc (i, j) we define a decision variable

xi j =
{
1 if there is a connection from node i to node j,

0 otherwise.
(3)

resulting in a total of C2 binary variables in the MILP formulation.
As shown in Fig. 2 the graph can be split into two subgraphs: the nodes in D are

associated with the depots and the nodes in C are associated with the cities. From
each of the depots we want one salesman1 to travel towards a city (represented by an

1 It is possible to formulate this problem with multiple salesmen per depot as well. To avoid
distraction from the main purpose of this section the problem is kept as simple as possible.
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arc fromD to C ) and returning to his home depot at the end of the tour (represented
by an arc from C to D).

Although cycles in the set C must be avoided to obtain a correct solution, within
the setN wewant exactly D cycles; one associated with each of the depots inD (see
Fig. 2). To obtain such a solution we introduce N continuous variables ki that can
be seen as the dual to the node potentials ui ; they can be considered node currents.
To impose the existence of D cycles in the graph we give each depot node an unique
value and propagate it along the path.

2.3 Formulation of the Problem

The fixed-destinationMTSP can be formulated as the mixed-integer linear program2

minimise
∑
i∈N

∑
j∈N

ci j xi j (4a)

subject to
∑
j∈C

xhj = 1,
∑
i∈C

xih = 1 ∀ h ∈ N (4b)

ui − u j + Nxi j ≤ N − 1 ∀ i, j ∈ C (4c)

kd = d ∀ d ∈ D (4d)

ki − k j + (D − 1)xi j ≤ D − 1 ∀ i, j ∈ N (4e)

xi j ∈ {0, 1} ∀ i, j ∈ N (4f)

where (4a) is the objective function representing the total travel distance, (4b) are
the assignment constraints ensuring that each location is visited once and only once,
and (4c) are the subtour elimination constraints. Using (4d) each variable kd of the
depot nodes is given a unique value, and (4e) propagate the value ki = d along cities
i in the path of depot d. Note the strong resemblance to (4c); constraints (4c) might
appear to be weaker versions of the subtour elimination constraints, but they actually
impose the existence ofD cycles (one for each depot) in the setN as explained next.

2.4 Node Current Propagation in Detail

In order to show that inequalities (4e) indeed enforce fixed-destination solutions
(in combination with the assignment constraints (4b) and the subtour elimination
constraints (4c)), we start by analysing the inequalities.

2 To see the relation between node potentials and node currents more clearly the original subtour
elimination constraints from [10] are used in (4c). For actual implementation these constraints can
be made tighter using the formulations presented in [7, 11].
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Fig. 2 Constraints (4e) ensure the existence of D cycles. This figure shows an example solution to
the problem with D = 3 depots and C = 9 cities

When there is no direct path from location i to j we have xi j = 0 and hence

ki − k j ≤ D − 1. (5)

Since the cities will be associated to a depot with index number 1 to D, we expect
the variable ki to have a value in between 1 and D due to the equality constraints
(4d). Therefore, inequality (5) is non-restrictive since ki ≤ D and k j ≥ 1. When
xi j = 1 it means that the path of a salesman goes from location i to j directly, and

ki − k j + D − 1 ≤ D − 1 ⇔ ki ≤ k j . (6)

Hence, the value of k j will be non-decreasing along the path. Since these inequalities
should also hold for arcs (c, d) from a city c to depot d—and the value kd of the
depot is fixed by (4d)—a path that originates from depot d cannot return to a depot
with a lower index number.

Now consider depot D. Since ki ≤ k j along each path we have ki ≥ D along the
path originating from this depot. Due to the assignment constraints (4b) each node
will have exactly one incoming arc and one outgoing arc, hence the path can only
end in a depot node (otherwise there will be a city node with two incoming arcs).
The only depot node d that can satisfy the constraint kd ≥ kc ≥ D is depot d = D.
Constraints (4d) and (4e) impose the existence of a cycle containing node D, and
since D ≤ kc ≤ kd = D we have kc = D along the path of depot D.

Next consider depot node D−1. Along the path of this depot we have kc ≥ D−1,
and since kd ≥ kc ≥ D−1 should hold when going from city c to depot d, the index
number of the depot should be at least D − 1. Since we know that depot D already
has an incoming arc [and only one is allowed due to (4b)] the path started at depot
D−1 can only return to depot D−1. Also kc = D−1 along the path of depot D−1.

Continuing this reasoning one can see that each depot d has a path that returns
to depot d, and kc = d along the path associated with depot d. Hence we have a
solution with (at least) D cycles. Due to the subtour (cycle) elimination constraints
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(4c) it is ensured that there are no cycles inC ; exactlyD cycles exist in the graph, each
associated with one of the depots. This resembles the solution to the fixed-destination
MTSP, since each path returns to its home depot.

3 Conclusions

In this article we have demonstrated the use of node currents and cycle imposement
constraints to formulate thefixed-destination travelling salesmanproblemas amixed-
integer linear programusing two-index binary variables. The use of two-index formu-
lations over three-index formulations results in shorter computation times and lower
memory use when solving the problems using standard MILP solvers. Although
specialised algorithms might outperform the standard MILP solvers, it is believed
that the presented formulation might provide great benefits in solving variations of
the multi-depot travelling salesman problem (such as the micro-ferry scheduling
problem [5] and the multiple harvester routing problem [6]) for which specialised
algorithms are (not yet) available.
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