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Abstract Hybrid energy systems become a promising way for electrification of
off-grid rural areas. We consider an autarkic mini-grid of households equipped with
local solar panels, diesel generators and energy storage devices. Our aim is to find
an energy distribution that maximizes the global welfare of the whole system. We
present an MIQP model for the hybrid energy system optimization problem together
with some remarks on computational results.

1 Introduction

Most research on stand-alone hybrid energy systems is focused on design and
simulation rather than optimization of system control [2]. In this work, we discuss the
latter problem in terms of finding a welfare-maximal power distribution of a hybrid
energy system supplying a small community. We consider a decentralized system,
where every household has its own solar panel, battery, and an optional diesel gen-
erator as backup device. The households are connected via a mini-grid to facilitate
energy trading. The considered system is extended by an additional smart component
that is able to defer the operation times of so-called smart devices on the consumer
side to times with electricity excess.

2 Model Derivation

In this section, we derive the objective function together with the most important
constraints of our model. We consider a set N = {1, . . . , N } of households con-
nected through a grid. The set of households equipped with a diesel generator is
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denoted by ND ⊆ N . Our planning horizon is subdivided into a set I of time
intervals of length one hour. Further, we assume all households to have similar con-
sumption and production possibilities and that the number of households is high
enough such that no household has any market power.

2.1 Consumer Problem

We distinguish between profile loads and so called deferrable loads. For profile
loads, the variables xpron,i ∈ X

pro
n,i denote the aggregated demands of a household n

in time interval i for all n ∈ N and i ∈ I . The bounded sets X pro
n,i ⊂ R≥0 are

the possible consumption quantities, which depend on historical load profiles but
are assumed to be given herein. The demand functions dn,i (π) : [0, π ] → X

pro
n,i

give the quantities of maximal utility for every price π ∈ [0, π̄ ] and are supposed
to be strictly decreasing, bounded and continuous. The inverse demand, i.e., the
marginal willingness to pay, is denoted by pn,i (xpron,i ) : X pro

n,i → [0, π ]. Then, the
gross benefit Bn,i of consumer n at time interval i is given by

Bpro
n,i (xpron,i ) =

xpron,i∫

0

pn,i (z) dz. (1)

In our model, we incorporate piecewise linear approximations of the demand func-
tions by means of the so-called incremental method [4] and are thus able to give
a closed-form expression of the gross benefit. Suppose that all consumers get the
same price, then let (x̄n,i,h, π̄h), with h ∈ H , denote the consumption bundles at
the breakpoints of the approximation of the demand function dn,i . Then, for each
n ∈ N and i ∈ I the demand together with the marginal willingness to pay is
modeled by

xpron,i = x̄n,i,1 +
|H |−1∑

h=1

(x̄n,i,h+1 − x̄n,i,h) δi,h, (2a)

πi = π̄1 +
|H |−1∑

h=1

(π̄h+1 − π̄h) δi,h, (2b)

1 ≥ δi,1 ≥ zi,1 ≥ · · · ≥ zi,|H |−2 ≥ δi,|H |−1 ≥ 0, (2c)

zi,h ∈ {0, 1}, for h = 1, . . . , |H | − 2. (2d)

Thus, we obtain a unique representation of each xpron,i ∈ X
pro

n,i in terms of the addi-
tional variables δi = (δi,1, . . . , δi,|H |). A similar derivation of the gross benefit,
according to a piecewise linear demand function, has been given in [5]. In our case,
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Fig. 1 Gross benefit of
consumer n at time interval i
for a consumption of x∗

n,i and
price π∗

i

the gross benefit, illustrated in Fig. 1, of consumer n at time interval i is given by

Bpro
n,i (δi ) = (x̄n,i,h+1 − x̄n,i,h) (δi,h − 1) π̄h

+ 1

2
(x̄n,i,h+1 − x̄n,i,h) (π̄h+1 − π̄h) (δ2i,h − 1) + x̄n,i,|H | π̄|H |. (3)

In contrast to profile loads, deferrable loads are not time dependent but rather have

a specified run time and energy demand Xdef
n,|I | ∈ [Xdef

n , X
def
n ]. The smart component

must decide at which point in time, within a predefined time window [in, i n] ⊆ I ,
such a consumer is turned on. By xdefn,i we denote the amount of power used for the
smart devices of household n in time interval i for all n ∈ N and i ∈ I . The set of
possible consumption quantities is described in terms of binary variables sonn,i and sn .
The variables sn indicate whether the energy demand of household n is met within
the planning horizon, while sonn,i = 1, if and only if voltage is fed to the deferrable
loads of household n during time interval i , i.e.,

xdefn sonn,i ≤ xdefn,i ≤ xdefn sonn,i , ∀n ∈ N ∀i ∈ I , (4a)

Xdef
n,i = Xdef

n,i−1 + xdefn,i , ∀n ∈ N ∀i ∈ I , (4b)

Xdef
n sn ≤ Xdef

n,|I | ≤ X
def
n sn, ∀n ∈ N , (4c)

sonn,i , sn ∈ {0, 1}, ∀n ∈ N ∀i ∈ I . (4d)

The gross benefit Bdef
n (Xdef

n,|I |) obtained from the satisfaction of demands from
deferrable loads of each household n ∈ N is linear in the amount of energy con-

sumed for these loads over the whole planning horizon if Xdef
n,|I | ∈ [Xdef

n , X
def
n ] and

zero otherwise.
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2.2 Producer Problem

The variables ysoln,i ∈ X sol
n ⊆ R≥0 denote the quantity of power produced by the solar

panel of household n in time interval i for all n ∈ N and i ∈ I . The corresponding
cost functions Csol

n (ysoln,i ) are supposed to be affine.
Next, we introduce a variable ln,i ∈ [0, lmax

n ] for the battery charge level of
household n in time interval i for all n ∈ N and i ∈ I . The capacity of the battery
in household n is denoted by lmax

n . Additionally, we assume fixed initial battery
charge levels ln,0 and lower bounds lmin

n for the battery charge levels at the end of the
planning horizon to be given. The variable l+n,i ∈ [0, l+n,max] denotes the power used
to charge the battery and l−n,i ∈ [0, l−n,max] denotes the power withdrawn from the
battery of household n during time interval i . Discharging a battery is considered as
a production facility with affine cost functions Cbat

n (l−n,i ). To properly model battery
charge levels we add the following constraints:

ln,i = ln,i−1 + l+n,i − l−n,i , ∀n ∈ N ∀i ∈ I , (5a)

l+n,i ≤ l+n,max bn,i , ∀n ∈ N ∀i ∈ I , (5b)

l−n,i ≤ l−n,max (1 − bn,i ), ∀n ∈ N ∀i ∈ I , (5c)

bn,i ∈ {0, 1}, ∀n ∈ N ∀i ∈ I . (5d)

Finally, for the diesel generators, we assume linear variable costs with non-sunk fixed
costs Cgen

n (sgenn,i , ygenn,i ) = cgenn,v ygenn,i + cgenn, f sgenn,i as in [1]. Here, the binary variables

sgenn,i ∈ {0, 1} are used to decide whether the diesel generator of household n ∈ ND

is used for production during time interval i . The amount of generated power is
denoted by ygenn,i ∈ X

gen
n ⊆ R≥0. The non-sunk fixed costs and the variable costs of

the generators are denoted by cgenn, f , cgenn,v > 0, respectively.
In general, the supply correspondence, i.e., the set of profitmaximizing production

quantities, without battery discharge, for household n ∈ ND and given price π∗
i at

time interval i ∈ I is given by

arg max π∗
i (ysoln,i + ygenn,i ) − Csol

n (ysoln,i ) − Cgen
n (sgenn,i , ygenn,i )

s.t. ysoln,i ∈ X sol
n ,(

ygenn,i
sgenn,i

)
∈ X

gen
n .

(6)

Since any demand d(π∗) ∈ (0, ygenmax) would potentially lead to infeasibility of the
overall model, using a supply function is not appropriate for cost structures with non-
sunk fixed costs as illustrated in Fig. 2. In order to allow the whole set of profitable
outputs instead, we incorporate the profit maximization problem underlying (6) into
our model.
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Fig. 2 Diesel generator
costs: The corresponding
production function is drawn
with thick lines. Note, that for
the price π∗ the producer is
indifferent between producing
either ymax or nothing at all.
The area, where production is
profitable, is depicted in gray

2.3 Welfare-Maximal Power Distribution

Theobjective of ourmodel is tomaximize the globalwelfare of thewhole community.
That is the summed gross benefits of the loads minus the production costs:

max
∑

n∈N

∑
i∈I

Bpro
n,i (δi ) +

∑
n∈N

Bdef
n (Xdef

n,|H |) −
∑

n∈ND

∑
i∈I

Cgen
n (sgenn,i , ygenn,i )

−
∑

n∈N

∑
i∈I

(
Csol

n (ysoln,i ) + Cbat
n (l−n,i )

)
, (7)

subject to the constraints from above. Due to the gross benefit of the profile loads,
the objective function is (convex) quadratic. Additionally, we have to add a clearing
condition:

∑
n∈N

(
xpron,i + xdefn,i + l+n,i

)
=

∑
n∈N

(
ysoln,i + l−n,i

)
+

∑
n∈ND

ygenn,i , ∀i ∈ I . (8)

3 Results and Conclusions

We performed computational experiments on several test instances with 3–200
households, i.e., |N | ∈ {3, 5, 15, 50, 100, 200} and |I | ∈ {24, 48, 72, 96}, where
every fifth household is equipped with a diesel generator. We are thankful to the
Siemens AG, for providing us with load and production profiles, see also [3]. All
computations have been carried out with a time limit of 6 h on a computer with a
6-Core AMD Opteron 2435 processor with 2.6 GHz and 64 GB RAM. As MIQP-
solver we used Cplex 12.5.0.0, which has been instructed to terminate, as soon as
the relative optimality gap falls below 5 %. From the results we observed that only
some of the largest instances, with 200 households and 96 time intervals, hit the time
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Fig. 3 Power distribution of the household with diesel generator

limit, whereas smaller instances, with up to 15 households, can reliably be solved
within a few minutes.

Figure 3 illustrates the results for the single household, which is equipped with a
diesel generator, from the solution of an instance with |N | = 3 and |I | = 48. To
meet all demands, the power generated by the solar panels is not sufficient. Thus, the
diesel generator runs once a day.

The power distributions of the two other households are basically similar, i.e., the
deferrable loads are operated by the diesel generator or the excess power from the
solar panel. The prioritization of the loads depends on the given demand and gross
benefit functions. Besides, these functions ensure that every household receives as
much energy as it is willing to pay.

Until now, ourmodel does not account for compensation payments for households
producing for other ones. For instance, the Shapley Value [6] defines fair and unique
compensation payments for every participant. Consequently, future research could
focus on an incorporation of the Shapley Value into our model. Beyond, polyhedral
studies could help to close the gaps earlier and speed up computation.
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