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Preface

This volume contains 68 short refereed papers presented at the International
Conference on Operations Research, OR2013, which took place in Rotterdam
from September 3 to 6, 2013. This conference was jointly organized by the
German Operations Research Society (GOR), the Dutch Operations Research
Society (NGB), and Erasmus University Rotterdam. The latter was celebrating its
centennial in 2013. The conference attracted about 500 participants from all over
the world. In total, there were 363 talks (3 plenary, 12 semi-plenary, and 348
contributed talks).

The chapters in this volume are ranked in alphabetical order of the first author.
The volume contains chapters from all streams of the conference. The list of
streams and stream chairs can be found below:

• Applied Probability and Stochastic Programming, Forecasting (Prof. Richard
Boucherie)

• Continuous Optimization (Prof. Mirjam Dür)
• Decision Analysis and Multiple Criteria Decision Making (Prof. Martin Geiger)
• Discrete and Combinatorial Optimization, Graphs and Networks (Prof. Stan van

Hoesel)
• Energy and Environment (Prof. Rüdiger Schultz)
• Financial Modeling, Banking and Insurance (Prof. Jörn Sass)
• Game Theory and Experimental Economics (Prof. Stefan Pickl)
• Health Care Management (Dr. Erwin Hans)
• Information Systems, Neural Nets and Fuzzy Systems (Dr. Hans-Georg

Zimmermann)
• Managerial Accounting (Prof. Katja Schimmelpfeng)
• Maritime Logistics (Prof. Rob Zuidwijk)
• Production and Operations Management (Prof. Ruud Teunter)
• Revenue Management and Pricing (Prof. Robert Klein)
• Scheduling and Project Management (Prof. Erwin Pesch and Prof. Florian

Jaehn)
• Simulation and System Dynamics (Prof. Henk Akkermans)

v



• Software Applications and Modelling Systems (Prof. Joaquim Gromicho)
• Supply Chain Management, Logistics and Inventory (Prof. Dolores Romero-

Morales)
• Traffic and Transportation (Prof. Leena Suhl)

Moreover, the volume contains papers from different award winners:

• Timo Berthold (Young Participant with Most Academic Impact)
• Kirsten Hoffmann (GOR Master Award)
• Max Klimm (GOR Ph.D. Award)
• Jenny Nossack (GOR Ph.D. Award)
• Alena Otto (GOR Ph.D. Award)
• Christian Raack (GOR Ph.D. Award)
• Roman Rischke (GOR Master Award)
• Lara Wiesche (GOR Master Award)

We would like to congratulate all these award winners and Mariel Lavieri, the
winner of the Young Participant with Most Practical Impact award.

Finally, we would like to thank everyone who contributed to the organization of
this conference. In particular, we would like to mention the members of the
program and organizing committee, the stream chairs, the support staff and, last
but not least, our sponsors.

Rotterdam, March 2014 Dennis Huisman
Ilse Louwerse

Albert P. M. Wagelmans
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Computing an Upper Bound for the Longest
Edge in an Optimal TSP-Solution

Hans Achatz and Peter Kleinschmidt

Abstract A solution of the traveling salesman problem (TSP) with n nodes consists
of n edges which form a shortest tour. In our approach we compute an upper bound
u for the longest edge which could be in an optimal solution. This means that every
edge longer than this bound cannot be in an optimal solution. The quantity u can be
computed in polynomial time. We have applied our approach to different problems of
the TSPLIB (library of sample instances for the TSP). Our bound does not necessarily
improve the fastest TSP-algorithms. However, the reduction of the number of edges
might be useful for certain instances.

1 Introduction

The traveling salesman problem (TSP) is one of the most studied problems in com-
binatorial optimization and has got applications in many different areas. The TSP
consists of finding a shortest tour in a complete graph whose edges (i,j) have cost
(distance) ci j . A comprehensive treatment of the traveling salesman problem can be
found in [3].

In this paper we do not assume that the cost matrix is symmetric. However, our
figures will refer to symmetric instances. We consider a dual relaxation of the original
problem—the assignment problem A based on the same cost matrix. The result is a
dual relaxation, possibly with subtours, as shown in Fig. 1. This problem can also
be solved by any code for the assignment problem, e.g. [1].
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Fig. 1 Dual relaxation with subtours

A : min
n∑

i=1

n∑

j=1

ci j xi j (1)

s.t.
n∑

i=1

xi j = 1 1 ≤ j ≤ n (2)

n∑

j=1

xi j = 1 1 ≤ i ≤ n (3)

0 ≤ xi j ≤ 1 1 ≤ i, j ≤ n (4)

This optimal solution can be transformed into a tour as shown in the figure below.
The value of the objective function of the solution in this example is 2,744 and it is an
upper bound for the optimal solution (Fig. 2). By using the Lin-Kernighan heuristic
[4] we can obtain an even better upper bound 2,726. The optimal value of the dual
heuristic is 2,426. Hence, the length of an optimal tour is between these two values.

2 Computing an Upper Bound

In this paper we introduce a new relaxation A∞ of the TSP. Due to inequality 6 and 7
every node must have at least one adjacent edge and at most two adjacent edges.
Equation 8 assures that there are exactly n − 1 edges.
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Fig. 2 Transformation into a primal feasible solution

A∞ : min
n∑

i=1

n∑

j=1

ci j xi j (5)

s.t.
n∑

i=1

xi j +
n∑

i=1

x ji ≤ 2 1 ≤ j ≤ n (6)

n∑

i=1

xi j +
n∑

i=1

x ji ≥ 1 1 ≤ j ≤ n (7)

n∑

i=1

n∑

j=1

xi j = n − 1 (8)

M, a set of valid TSP constraints (9)

0 ≤ xi j ≤ 1 1 ≤ i, j ≤ n (10)

The set M may consist of some valid TSP constraints which do not contradict
constraint 8. For example, M could be chosen as a set of subtour elimination con-
straints. We have tested our approach with M = {x : xi j + x ji ≤ 1, 1 ≤ i, j ≤ n}
to avoid 2-cycles. An optimal solution (objective value 2,624) for this problem is
shown in Fig. 3. If we delete the constraints of type 9 then the resulting problem A∗
is comparable to an assignment problem where only n − 1 nodes are assigned. In
[2] the first author analyzed the bipartite weighted matching problem with respect to
slightly changed problems of the original problem. In one type of problem two nodes
are deleted in the bipartite graph (one at each partition). The solution is of course a
complete matching (an assignment) with n − 1 edges and therefore also a solution
for A∗ which can be computed in O(n3).
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Fig. 3 Relaxation with n − 1 edges

Let f (A∞) be the objective value of the above problem A∞. OPT denotes the optimal
solution of the original TSP and P ∞ is any primal feasible solution. Then, of course
we have

f (A∞) ≤ OPT ≤ f (P ∞) (11)

Theorem 1 f (P ∞) − f (A∞) is an upper bound for the longest edge in an optimal
solution of the TSP.

Proof For any primal feasible solution P with objective value f (P) ≤ f (P ∞) we
claim:

If (i, j) is the longest edge in P then ci j ≤ f (P ∞) − f (A∞).
Suppose f (P ∞)− ci j < f (A∞) then P \ {(i, j)} is a feasible solution for problem

A∞ with objective value f (P) − ci j . Hence, f (P) − ci j ≤ f (P ∞) − ci j < f (A∞) by
our assumption. However, f (A∞) was optimal and therefore we have a contradiction.
This means that all edges longer than f (P ∞) − f (A∞) can not be in a better solution
than P ∞, in particular all these edges can not be in an optimal solution. √∩

In our example our best primal solution was 2,726 and the objective value of A∞ is
2,624. Therefore the difference 102 of these values is an upper bound for the longest
edge in an optimal solution. This improves the value 2,352 computed via A∗. In
Fig. 4 the edge (a, b) has length 104 and therefore this edge can not be in an optimal
solution. All in all 3,542 edges (or 83 %) are longer than the computed bound and
can be deleted.

Remark 1 There are TSP instances where the longest edge of the problem is in an
optimal solution.

If all cities are on a semicircular then the longest edge (the diameter of the circular)
is of course in the optimal solution. In this case our bound is useless.
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Fig. 4 Example for an edge to be deleted

Table 1 Upper bounds for longest edge

Instance Cities Length Edges Percentage

bay29 29 104 304 37
eil51 51 26 1,562 61
gr120 120 94 6,314 44
a280 280 130 32,788 42
att532 532 4,656 60,950 22

3 Computational Results

We have analyzed our approach with several instances in TSPLIB [5] where our set
M was chosen to be M = {x : xi j + x ji ≤ 1, 1 ≤ i, j ≤ n}. The first two columns
denote the name and size of the problem.

The entries of the column “length” are the computed upper bounds for the respec-
tive instances. In the last two columns the number of edges longer than this bound
and their percentage is given. This means for example for the drilling problem in
instance a280 that 42 % of all edges are too long to be in an optimal solution. In all
instances, computing the euclidian distances from the problem data takes more time
than the computation of the LP-solution of A∞. All primal feasible solutions were
produced by the Lin-Kernighan heuristic [4].

Our computed bounds may be helpful computationally as they lead to potentially
much sparser graphs to be considered in various algorithms.
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Electricity Storage Systems and Their
Allocation in the German Power System

Sonja Babrowski, Patrick Jochem and Wolf Fichtner

Abstract The need for daily electricity storage systems increases with the
growing share of volatile renewable energy in the generation mix. Since the loca-
tion of decentralized electricity generation (based on reneweable energy resource
potentials) and electricity demand (depending on industrial facilities and population
density) in Germany are geographically apart from each other, at the same time more
electricity has to be transported. At certain times, this might challenge the transmis-
sion grid. Storage systems can be used for storing the surplus production of renewable
energy and also help to prevent congestions in the grid. However, besides the tech-
nical feasibility there are economic criteria decisive for the installation of storage
systems. These depend firstly on potential alternative technologies as gas turbines or
the load shift potential of electric vehicles and secondly on the price development of
storage systems. In order to estimate the future demand and the strategic allocation
of daily storage systems in this context, expansion options for storage systems are
implemented in the optimizing energy system model PERSEUS-NET-TS. This is a
myopic material and energy flow model with an integrated nodal pricing approach. A
mixed-integer optimization calculates the expansion and use of power plants in Ger-
many until 2040 considering the DC restrictions of the transmission grid. Hence, the
commissioning and allocation of storage systems in the German transmission grid is
determined when the government target of 60 % renewable feed-in by 2040 is met.
For this paper about every forth car in Germany is considered to drive electrically by
2040. When they are charged uncontrolled, directly after arrival the results are that
by 2040 about 19 GW of storage systems are commissioned. Most are built closely
to generation centers, but some are allocated close to bottlenecks in the transmission
grid instead. When load shifting of the demand for electric mobility is allowed in
terms of a controlled charging the required daily storage capacity could be reduced
by more than half, so that only 8 GW are needed in 2040.
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1 Introduction

According to the objectives of the Federal Government in Germany 60 % of the gross
electricity generation should be from renewable sources by 2040 [5]. Because of the
volatile supply of wind and solar power, this is not going to work without adjustments
of the transmission grid and either an additional thermal (reserve) power plant fleet
or electricity storage systems. So far, electricity has mostly been generated at the
time and place where it was needed. With the construction of large wind farms in the
North and Baltic Sea this is going to change. In the future, generated electricity has
to be harmonized with the demand in terms of place and time by transporting and
storing it. Storage systems seem to be an alternative to the curtailment of renewables
and could also serve as peak-load generation unit. Simultaneously, storage systems
can be used for congestion management and thus lead to an improved utilization of
the existing transmission capacities.

In the following, the commissioning and use of storage systems in the context
of the future energy system in Germany is calculated with the energy system model
PERSEUS-NET-TS. Possible alternative technologies such as gas turbines or load
shifting through electric vehicles (EVs) are taken into account as well as restrictions
due to the transmission grid.

2 The Energy System Model PERSEUS-NET-TS

PERSEUS-NET-TS is a bottom-up model of the German energy system. It is written
in GAMS and uses the CPLEX solver. Depending on the setting it is solved by
linear or mixed-integer programming. It is a myopic follow-up model of PERSEUS-
NET [2] with a focus on daily storage systems. Besides the generation system a
DC power flow model of the high and extra high voltage grid (220 and 380 kV)
is integrated. Until 2040 PERSEUS-NET-TS calculates the commissioning and dis-
patch of the generation system at least for every fifth year. The model endogenously
decides on commissioning coal, lignite, combined-cycle and gas power stations, as
well as storage systems. These power plant extension options are modeled at most
of the 442 network nodes depicted in the model and their configuration is based
on [3]. About 550 modeled transmission lines connect these nodes. Larger power
plants (over 100 MW) of the current generation system are directly assigned to
specific grid nodes. The capacities of smaller power plants are aggregated by NUT3
regions (county level). Their cumulated capacities are assigned to the two closest grid
nodes, inverse to the distance from the center of the region to them. In PERSEUS-
NET-TS existing power plants are decommissioned 40 years after their commission-
ing. The conventional electricity demand is also calculated for each grid node based
on the GDP and the number of inhabitants of adjacent NUT3 regions [2]. Besides
this demand there is a demand for electric mobility integrated for each country based
on forecasts made by the German Aerospace Center [6]. Accordingly 22 % of the
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personal vehicles in Germany are going to be electric by 2030. This share remains
stable until 2040 for the PERSEUS-NET-TS calculations. Depending on the settings
this extra demand can either be charged controlled or uncontrolled directly after
arriving at a charging opportunity at home or at the work place. When charged con-
trolled the only restriction is that each day the needed amount has to be charged, but
the model decides endogenously at which hour during the plug-in time. The driving
force of the optimization is the exogenously given hourly electricity demand for
a winter and a summer week. This hourly demand must be met at each grid node
considering restrictions of the transmission grid and techno-economic constraints of
the generation system. The electricity can be either generated at the grid node with
the assigned power plants or transmitted over the grid from one of the neighboring
nodes. The decision relevant expenditures are minimized for each of the considered
periods. These expenditures include fuel costs and CO2 certificate prices that are
based on the World Energy Outlook 2012 [7]. Furthermore, the variable costs of the
generation are considered, as well as costs for load changing of the thermal power
plants (coal, lignite and gas-combined cycle plants). The fixed costs of the resulting
power plant fleet in the current period are also added as well as investments for new
power plants.

The commissioning of storage systems is allowed from 2020 on. The capital
expenditures for storage systems are assessed to 1,000 EUR/kW in 2020 and are
gradually reduced to 700 EUR/kW in 2040. Additionally, for battery storage sys-
tems there is a fixed ratio of installed capacity to storage volume (kW to kWh) of 1
to 5 assumed. This ratio is chosen according to the characteristics of daily storage
systems in [1]. With the use of PERSEUS-NET-TS it is possible to determine the
technology and the allocation of new generation plants. In order to prevent storage
systems from storing and generating at the same time binary variables are needed
for each hour and each storage. Thus, the model has to be solved via a mixed-integer
optimization. With 336 considered hours (two weeks) for each period, the calcu-
lation time increases significant with every implemented storage option. Through
the storing and generating at the same time, the efficiency of the storage systems
can be used to “waste” electricity. This may make sense within the optimization to
avoid the shutdown of thermal power plants with load changing costs or to meet
the exogenously given targets for the renewable feed-in. To avoid this simultaneous
bidirectional use of storage systems, we chose a two-step approach for this analyses
(see Fig. 1). First, ideal storages with an efficiency of 100 % are implemented. In this
case PERSEUS-NET-TS can be solved linearly with a relatively short computation
time of about 9.5 h.1 Each of the calculated 7 periods consists of about 2.7 mil-
lion equations and 2.3 million variables. In this step, about 350 nodes distributed
across Germany are provided with extension options for battery storage systems. In
addition, a total of 30 pump storage power plants are considered, of which 10 are
integrated as expansion option because they are currently in the planning phase.

1 With the use of 6 threats on Windows Server 2008 R2 Enterprise, Intel(R) Xeon(R) CPU E5-1650
@ 3.20 GHz 3.20 GHz; 96 GB RAM; 64 Bit.
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Input:
- Generation system (2012)
- Extension options
- County specific demand
- Fuel and CO2 prices
- Commissioning of 

renewables
Option for 
battery storage

Allocation of storage 
options

Results:
- Generation system
- Electricity mix
- Curtailment of renewables
- Commissioning and dispatch

of storage systems
Existing 
hydro storage

Option for new 
hydro storage

PERSEUS-NET-TS: 
- LP 

- ideal storages

Calculation time: > 9,5 h*

PERSEUS-NET-TS:
- MIP 

- real storages

Calculation time: > 37 h*

Fig. 1 Approach to reduce the needed binary variables

The resulting generation system of 2040 is analyzed in terms of the allocation of
endogenously build storage systems. Only the grid nodes where ideal storage systems
have been commissioned with the linear optimization are possible allocations for real
storage systems in the following mixed-integer optimization. Storage systems in the
mixed-integer optimization are modeled with an efficiency of about 80 %. The results
presented below are based on this recalculation of PERSEUS-NET-TS as a mixed-
integer problem with a calculation time of over 37 h.

3 Results

The development of the thermal generation system is a key result of PERSEUS-NET-
TS. In 2040 a given demand of about 530 TWh has to be covered, of which 42 TWh
occur due to electric mobility (about 8 %). The development of the renewables is
exogenously given and has been derived from the German pilot study 2011 of the
Federal Ministry of the Environment [4]. Overall, the installed capacity will increase
in Germany until 2040 to about 224 GW, but at the same time the thermal power
plant fleet is declining to about 47 GW (see Fig. 2, left). The commissioning of
storage systems starts 2030 when 50 % renewables are targeted and peaks 2040 with
an target of 60 % and battery prices of 700 EUR/kW, respectively 140 EUR/kWh.
With about 19 GW storage systems represent about 8 % of the installed capacity
by 2040. 12 GW consist of battery storage systems. Furthermore, considering only
the endogenous installed power plants, i.e. the commissioning of new thermal power
plants and storage systems, the commissioned storage systems represent about 40 %
of the endogenously installed capacity until 2040 (see Fig. 2, right). According to
the PERSEUS-NET-TS results most of the battery storage systems are built in the
north-west near to the coast and thus close to the feed-in from offshore wind farms
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Fig. 2 Installed capacity (left) and endogenous commissioned capacity (right)

Fig. 3 Allocation of endogenously commissioned storage systems

Fig. 4 Congestions in the transmission grid



12 S. Babrowski et al.

in the North Sea (see Fig. 3). However, looking at the bottleneck in the transmission
grid in the west of Germany (see Fig. 4) and the storage systems allocated on both
sides of that bottleneck in 2040 (see Fig. 3) it becomes clear that storage systems are
also used for grid management within the optimization.

In comparison to the results of an uncontrolled charging the need for storage
systems decreases by 55 % to only 8 GW when the charging process of the EVs is
controlled. In that case only about 2 GW battery storage systems are endogenously
commissioned in the northwest.

4 Conclusion and Outlook

Through the implementation of storage options on transmission grid level in the
energy system model PERSEUS-NET-TS we showed that the commissioning of stor-
age systems in Germany is going to make sense considering an increasing renewable
feed-in. According to the results the generation system should consist of about 8 %
storage systems by 2040 (60 % renewables). These storage systems should be in
general allocated close to the generation centers. Furthermore, the results indicate
that a strategic allocation of storage systems might also help to prevent bottlenecks
in the transmission grid. A second calculation showed that a big part of the needed
flexibility could also be granted through a controlled charging of EVs instead. This
alternative is certainly more economic assuming that the EV penetration rate is high
enough and that the technology and the acceptance for an automatic controlled charg-
ing exists. However, interpreting these results it has to be kept in mind, that in favor
to storage systems no net exchange with neighboring countries was allowed in the
model and that on the other hand no stochastics were considered for the renewable
feed-in. A more detailed analysis of the interaction between storage systems, renew-
able feed-in, power plants and the transmission grid is therefore going to be subject
for further scientific work with PERSEUS-NET-TS.
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Misspecified Dependency Modelling: What Does
It Mean for Risk Measurement?

Theo Berger

Abstract Forecasting portfolio risk requires both, estimation of marginal return
distributions for individual assets and dependence structure of returns as well. Due
to the fact, that the marginal return distribution represents the main impact factor
on portfolio volatility, the impact of dependency modeling which is required for
instance in the field of Credit Pricing, Portfolio Sensitivity Analysis or Correlation
Trading is rarely investigated that far. In this paper, we explicitly focus on the impact
of decoupled dependency modeling in the context of risk measurement. We do so, by
setting up an extensive simulation analysis which enables us to analyze competing
copula approaches (Clayton, Frank, Gauss, Gumbel and t copula) under the assump-
tion that the “true” marginal distribution is known. By simulating return series with
different realistic dependency schemes accounting for time varying dependency as
well as tail dependence, we show that the choice of copula becomes crucial for VaR,
especially in volatile dependency schemes. Albeit the Gauss copula approach does
neither account for time variance nor for tail dependence, it represents a solid tool
throughout all investigated dependency schemes.

1 Introduction

Interdependencies between individual assets need to be captured to measure diver-
sification effects and to precisely measure a single asset risk contribution on an
aggregated portfolio level. Albeit, as Fantazzini [3] points out, the impact of mis-
specified marginals offsets the bias in dependency modeling on a portfolio level,
precise dependency measurement represents a crucial information. For instance, a
risk manager needs to know the effect of a hedged risk position on the overall portfo-
lio risk. As well, correlation trading, the modeling of derivatives and measuring risk
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diversification heavily depends on the information which are exclusively captured
by dependency measurement.

So far there are only a few analysis which explicitly address the impact of depen-
dency modeling on the measurement of Portfolio risk. Ane and Kharoubi [1] analyse
the choice copula in the context of VaR forecasts, and show that inadequate depen-
dency modeling explains up to 18 % of a VaR misspecification.1 However, given
the dominant impact stemming from the marginal return distributions, the separated
impact of dependency modeling on aggregated portfolio risk in the absence of mis-
specified margins has not been explicitly investigated so far.

Thus, we add to the literature and set up an extensive simulation analysis account-
ing for realistic dependency scenarios such as time varying dependency and tail
dependency. Both phenomena are discussed in a realistic as well as disproportion-
ated environment. Further we investigate the dependency bias of modern dependency
approaches on portfolio risk, in the absence of any bias caused by the modeling
of marginal return distributions. More concrete, we generate samples with prede-
fined margins, characterized by different dependency schemes and apply competing
dependency models to forecast portfolio risk. By doing so, we are able to explicitly
compare the forecasting bias caused by the applied dependency approaches in an
applied risk measurement environment via out of sample analysis. Specifically, the
simulation exercise should answer the question whether the choice of copula does
affect the VaR performance when the data generating process is described by time
varying conditional correlations or tail dependence.

The remainder is structured in the following way: Sect. 2 gives a brief overview
about the relevant dependency approaches and Sect. 3 describes the setup of the
simulation analysis. Section 4 gives the empirical results and Sect. 5 summarizes the
results of this paper.

2 Methodology

2.1 Copulas

The copula approach is based on Sklar‘s Theorem [7]:
Let X1, . . . , Xn be random variables, F1, . . . , Fn the corresponding marginal distri-
butions and H the joint distribution, then there exists a copula C: [0, 1]n ≤ [0, 1]
such that:

H(x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)). (1)

Conversely if C is a copula and F1, . . . , Fn are distribution functions, then H (as
defined above) is a joint distribution with margins F1, . . . , Fn .

1 The analysis is based on applied loss functions in an empirical setup.
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The Gaussian and t copula belong to the family of elliptical copulas and are derived
from the multivariate normal and t distribution respectively.

The setup of the Gaussian copula is given by:

CGa(x1, . . . , xn) = Φρ(Φ−1(x1), . . . , Φ
−1(xn)), (2)

=
Φ−1(x1)∫

−∞
. . .

Φ−1(xn)∫

−∞

1

2(π)
n
2 |ρ| 1

2

exp

(
−1

2
zT ρ−1z

)
dz1 . . . dzn

(3)

whereas Φρ stands for the multivariate normal distribution with correlation matrix
ρ and Φ−1 symbolizes the inverse of univariate normal distribution.

Along the lines of the Gaussian copula, the t copula is given by:

Ct (x1, . . . , xn) = tρ,v(t
−1
v (x1), . . . , t−1

v (xn)), (4)

=
t−1(x1)∫
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2
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2 |ρ| 1
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1+1
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zT ρ−1z

)− v+n
2

dz1. . .dzn,

(5)

in this setup tρ,v stands for the multivariate t distribution with correlation matrix ρ and
v degrees of freedom (d.o.f.). t−1

v stands for the inverse of the univariate t distribution
and v influences tail dependency. For v ≤ ∞ the t distribution approximates a
Gaussian.

In contradiction to the elliptical copulas, the Clayton copula belongs to the group
of Archimedean copulas and is given by:

CClayton(x1, x2) = (
max{xθ

1 + xθ
2 − 1, 0})

1
θ , (6)

with θ ≥ [−1,∞)\{0}. Note that the Clayton copula describes stronger dependence
in the negative tail than in the positive, for θ ≤ ∞ the Clayton copula describes
comonoticity, and for θ ≤ 0 independence.

Another popular Archimedean copula is represented by the Gumbel copula which,
in contradiction to the Clayton copula, exhibits higher dependence in the positive
tail than in the negative. The copula is given by:

CGumbel(x1, x2) = exp
(
−[(−ln x1)

δ + (−ln x2)
δ] 1

δ

)
, (7)

with δ ≥ [1,∞). Analogue to the Gumbel copula, we get comonoticity for θ ≤ ∞
and independence for θ ≤ 0.

As well we introduce the Frank copula as defined by Nelson (1999) which is given
by:
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C Frank(x1, x2) = −1

θ
ln

(
1 + (e−θx1 − 1)(e−θx2 − 1)

e−θ − 1

)
, (8)

for θ ≥ R\{0}.
Due to the fact that estimating parameters for higher order copulas might be

computationally cumbersome, all parameters are estimated in a two step maximum
likelihood method given by Joe [5]. This approach is also known as inference for the
margins (IFM). The two steps divide the log likelihood into one term incorporating all
parameters concerning univariate margins and into one term involving the parameters
of the chosen copula. Thus, this method enables us to explicitly isolate the dependency
modeling from fitting the univariate marginals.

2.2 VaR

In order to make the results of the competing copula approaches comparable, we
translate the figures into a VaR universe, so that we are able to evaluate the properties
of different copulas within a realistic risk measurement framework. Generally, VaR
is defined as the quantile at level α of the distribution of portfolio returns:

VaRα = F−1(α) =
V a Rα∫

−∞
f (r)dr = P(r ∗ V a Rα). (9)

So that, the respective quantiles are direct functions of the variances, which enables
us to directly translate the quantiles of the estimated portfolio variances into VaR
figures. Let α be the quantile, Ht the covariance matrix and w the vector of portfolio
weights, then VaR at time t is given by: V a Rt = −α

√
w∩ Ht w for both normal and

t distributions. For instance the 99 % VaR of PF return yt represents the empirical
1 % quantile of the variance.

3 Simulation Design

The aim of the simulation exercise is to analyze the impact of dependency modeling
apart from the choice of optimal marginal distribution. Further, we explicitly address
the isolated impact stemming from dependency modeling on quantile forecasts from
two angles:

Three different dependency scenarios (weak/medium/strong) are investigated for
each copula (Table 1).

Once the sample covering 1001 observations is generated, we use the introduced
copula approaches to forecast Value-at-Risk. At this, the forecast is based on 1000
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Table 1 Archimedean copulas: simulated scenarios

Copula Low dependency Medium dependency High dependency

Clayton θ = 0, 5 θ = 1, 5 θ = 2, 5
Gumbel θ = 1 θ = 3 θ = 5
Frank θ = 10 θ = 20 θ = 30

Fig. 1 1001 normally distributed return observations generated by Clayton copula (θ = 25),
Gumbel copula (θ = 5) and Frank Copula (θ = 30)

Fig. 2 Correlation scenarios

observations and can be evaluated by the 1001th one. This approach enables us to
investigate the VaR performance and thus the compatibility of the competing cop-
ula approaches when the samples are not in line with the underlying assumptions.
Figure 1 illustrates examples of the investigated scenarios. 10.000 scenarios for each
dependency modification are simulated and evaluated. Secondly, to take account for
financial time series specific properties, we generate normally distributed return
series characterized by time varying conditional correlations (see Fig. 2) to investi-
gate the consequences of time varying dependency schemes on the applied copula
approaches. Again, for each scenario 10.000 return series covering 1001 observations
are generated and the competing copula models are evaluated by the VaR forecasting
performance regarding the 1001th observation.
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4 Simulation Results

To sum it up, the empirical VaR backtesting performance for all investigated scenar-
ios is given in Table 2. Obviously, given that dependency is modeled via time varying
linear correlation coefficient, the elliptical copulas outperform the Archimedean cop-
ulas in terms of empirical VaR performance. The Clayton copula underestimates risk
when the data generating process is not a Clayton copula whereas mixed evidence can
be reported for both Gumbel and Frank copula. However, both approaches, are not
able to adequately capture tail dependence generated via Clayton copula. By compar-
ing both Gauss and t copula, the overall performance of the t copula is slightly more
precise when it comes to forecast VaR.2 According to the return series generated
by Archimedean copulas, mixed evidence can be reported. For 95 % VaR forecasts,
the Gumbel and Frank copula applied to returns generated via Clayton copula result
in an inappropriately high number of misspecifications3 and thus both dependency
approaches would be rejected by standard statistical VaR backtesting.4 Interestingly,
the Gumbel and Frank copula lack in capturing tail dependence generated by Clayton
copula and vice versa. However, given that the empirical backtesting performance of
all the other investigated models are “statistically” acceptable, leads us to conclude
that misspecified dependency modeling has an impact on the rejection of a VaR
model. Thus, given that the rejection rate is impacted by the choice of the applied
copula approach, our findings are twofold:

• From a pregulatory perspective, the classical gauss and t copula seem to be an
appropriate choice for all investigated dependency scenarios. According to our
results, it is the Gauss and t copula which mainly result in the “second best”
solution5 when the returns are generated by different copulas. Thus, the higher
parametrisation of the competing copula approaches does not lead to more pre-
cise dependency measurement and hence more accurate VaR failure rate. Further,
due to the higher parameterisation, the Archimedean copulas lack in terms of pre-
ciseness when the underlying sample does not exhibit the characteristics of the
applied copulas. Moreover, having in mind that Gauss copulas do neither account
for time varying dependency structure nor for tail dependence, we show that the
parsimonious approach leads to acceptable VaR figures throughout all investigated
scenarios.

• However, from an institutional point of view, it is not only the rejection rate which
is relevant but also the absolute size of VaR. If we analyse both, the rejection rate
as well as the absolute amount of VaR forecast, we favour the model which results
in the lowest amount of VaR forecast, given that the empirical failure rate is in
line with the expectations. For time varying linear dependency, again, the elliptical

2 We applied the CPA test proposed by Giacomini and White (2006) to prove this fact. Results are
available upon request.
3 The empirical backtesting performance would get rejected by statistical backtesting criteria,
“conditional coverage”, by Christoffersen (1998).
4 Results are available upon request.
5 The “first best” solution is always the original model.



Misspecified Dependency Modelling: What Does It Mean for Risk Measurement? 21

Table 2 Empirical misspecification performance, 95 % and VaR forecasts

Scenario G Cop (%) t Cop (%) Clayton (%) Gumbel (%) Frank (%)

95 % VaR
Elliptical 4,97 4,99 4,03 4,68 5,04
Clayton 6,10 6,09 5,16 7,05 6,37
Gumbel 4,71 4,70 4,60 4,82 4,77
Frank 5,07 5,07 4,89 5,44 4,92

copulas do outperform the Archimedean approaches, since they result in the lowest
VaR values and show an acceptable empirical failure rate. Along the lines of the
linear dependency scenarios, the elliptical copulas also represent the (second-) best
choice for VaR forecasts for samples which are generated by Archimedean copulas.
The Archimedean copulas heavily depend on the assumptions of the underlying
samples, so that Frank copulas adequately capture tail dependency generated by
Gumbel copula (and vice versa) whereas both Frank and Gumbel fail to capture
characterstics generated by Clayton copula.

5 Conclusion

Albeit the main impact on multivariate portfolio VaR stems from the choice of mar-
ginal return distributions, the adequate modeling of dependency needs to be consid-
ered in order to achieve an appropriate VaR performance. So that, when it comes to
the impact of dependency modeling on VaR forecasts, the choice of copula is crucial.

Based on the given extensive simulation analysis covering different dependency
scenarios and triggered by the comparison of competing copula approaches, we
conclude that the investigated elliptical copulas do outperform the Archimedean
copulas due to more precise VaR forecasts. Thus, having in mind that both the Gauss
and t copula are straightforward to apply to multivariate asset portfolios comprising
three or more assets, we strongly recommend the application of elliptical copulas in
the context of VaR forecasts.
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Primal MINLP Heuristics in a Nutshell

Timo Berthold

Abstract Primal heuristics are an important component of state-of-the-art codes for
mixed integer nonlinear programming (MINLP). In this article we give a compact
overview of primal heuristics for MINLP that have been suggested in the literature
of recent years. We sketch the fundamental concepts of different classes of heuristics
and discuss specific implementations. A brief computational experiment shows that
primal heuristics play a key role in achieving feasibility and finding good primal
bounds within a global MINLP solver.

1 Introduction

Optimization problems that feature, at the same time, nonlinear functions as
constraints and integrality requirements for the variables are arguably among the most
challenging problems in mathematical programming. This article gives an overview
on existing heuristic approaches to find good feasible solutions for these so-called
MINLPs.

Definition 1 (MINLP) A mixed integer nonlinear program (MINLP) is an optimiza-
tion problem of the form

min cTx

s.t. gi (x) ≤ 0 for all i ∈ M

x j ∈ Z for all j ∈ I ,
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where
I ⊆ N := {1, . . . , n} is the index set of the integer variables, c ∈ R

n , and
gi : Rn → R for i ∈ M := {1, . . . , m}.

There are many subclasses of MINLPs; in this article, we will be particularly
concerned with the following: convex MINLPs, for which all constraint func-
tions gi , i ∈ M , are convex, mixed integer quadratically constrained programs
(MIQCPs), for which all constraint functions are quadratic, mixed integer linear
programs (MIPs), for which all constraint functions are linear, nonlinear programs
(NLPs), for which all variables are continuous, and linear programs (LPs), for which
the constraints are linear and all variables are continuous.

For MIPs, it is well-known that general-purpose primal heuristics like the feasi-
bility pump [1, 19, 20] are able to find high-quality solutions for a wide range of
problems. A primal heuristic is, roughly speaking, an incomplete algorithm that aims
at finding high-quality feasible solutions quickly. In general, it is neither guaranteed
to be successful, nor does it provide any additional information, such as a dual bound
on the solution quality.

For MINLPs, research in the last five years has shown an increasing interest in
primal heuristics [7–9, 11, 12, 14, 17, 22, 24, 25]. The goal of this article is to provide
a brief overview on the cited work. We focus on methods that have been developed
for the application inside a global solver such as Baron, Bonmin, Couenne, or
Scip. In such an environment, it is often worth sacrificing success on a number of
instances for a significant saving in average running time. One way to do so are
“fast fail” strategies that take the most crucial decisions in the beginning and in a
defensive fashion such that if the heuristic aborts, it will not have consumed much
running time. Furthermore, we restrict ourselves to primal heuristics that have been
specifically developed and tested for MINLPs; we do not cover the manifold ideas
to apply metaheuristics to global optimization problems.

We partition our survey by the main concepts on which the reviewed algorithms
are based. Nonlinear extensions of the feasibility pump [19] are discussed in Sect. 2,
large neighborhood search heuristics are introduced in Sect. 3, other ideas, such
as rounding and diving, are treated in Sect. 4. Section 5 presents a computational
evaluation of primal heuristics implemented within the MINLP solver Scip.

2 Feasibility Pumps

The fundamental idea of all Feasibility Pump [19] algorithms is to construct two
sequences of points that hopefully converge to a feasible solution of a given math-
ematical programming problem. One sequence consists of points that are feasible
for a continuous relaxation (e.g., an NLP relaxation of an MINLP), but possibly
integer infeasible. The other sequence consists of points that are integral (for the
integer variables), but might violate the imposed constraints. The next point of one
sequence is always generated by minimizing the distance to the last point of the
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other sequence, using different distance measures in both cases (e.g., the Φ1 and the
Φ2 norm). We refer to the process of constructing an integral point from a constraint
feasible point as the rounding step and to the process of finding a new point that
fulfills the continuous relaxation as the projection step.

Bonami et al. [11] and Bonami and Gonçalves [12] present the first two versions
of a Feasibility Pump for MINLPs. Both teams of authors consider convex MINLPs
and implement their ideas in Bonmin et al. [10].

The paper [12] is probably the closest to the original Feasibility Pump for MIPs.
It performs a simple rounding to the nearest integer in the rounding step and solves
a convex NLP relaxation with an Φ1 objective for the projection step.

In [11], the authors suggest using an Φ2 norm as objective for the projection
step. The most significant difference to [12], however, is the implementation of the
rounding step. Instead of performing an instant rounding to the nearest integer, they
solve a MIP relaxation based on an outer approximation [16] of the underlying
MINLP. This has an important effect w.r.t. the main weakness of Feasibility Pump
algorithms: cycling. For convex MINLPs, it is always possible to avoid cycling by
adding a no-good cut to the auxiliary MIP. The particular difficulty addressed by
D’Ambrosio et al. in [14] is that of handling the nonconvex NLP relaxation when
adapting the algorithm of [11] to nonconvex constraints. The authors suggest using
a stochastic multi-start approach, feeding the NLP solver with multiple randomly
generated starting points, and solving the NLP to local optimality. In the event that this
does not lead to a feasible solution, a final NLP is solved, in which the integer variables
are fixed and the original objective is re-installed on the continuous variables. To avoid
cycling, their algorithm provides the MIP solver with a tabu list of previously used
solutions.

3 Large Neighborhood Search

The main idea of large neighborhood search (LNS) is to define a neighborhood of
“good” solution candidates centered at a particular reference point—typically the
incumbent solution. The neighborhood is explored by solving an auxiliary MINLP,
which is constructed by restricting the feasible region of the original MINLP by
additional constraints and variable fixings. LNS is a common paradigm for MIP
heuristics, e.g., rins [15], which defines a neighborhood by fixing variables which
coincide in the incumbent and the LP optimum, or Local Branching [18], which
searches the neighborhood of solutions that differ in at most k variables from the
incumbent.

Bonami and Gonçalves describe an extension of the rins heuristic to convex
MINLPs [12]. They use an optimum of the NLP relaxation as a second reference
solution besides the incumbent.

Nannicini, Belotti, and Liberti introduce a Local Branching heuristic for
nonconvex MINLPs [24]. It solves a MIP that is derived from a linear relaxation
of the original MINLP, the integrality constraints, and a Local Branching constraint.
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Subsequently, an NLP local search is performed by fixing the integer variables to the
values from the Local Branching MIP’s incumbent (which is not necessarily feasible
for the original MINLP) and solving the resulting continuous problem.

In [9], Berthold et al. suggest a generic way of generalizing LNS heuristics from
MIP to MINLP, for the first time presenting nonlinear versions of Crossover [4, 26]
and the dins [21] heuristic.

Berthold presents rens [7], an LNS algorithm that optimizes over the set of
feasible roundings of a relaxation solution. To this end, integer variables that take an
integral value in the relaxation solution are fixed to that value, for others, the bounds
are changed to the two nearest integers.

In [8], Berthold and Gleixner introduce Undercover, an LNS start heuristic for
MINLP that explores a linear subproblem which is obtained by fixing as small a
subset of variables as possible. The set of variables to be fixed is determined by
solving a vertex covering problem. Although general in nature, this approach works
best for MIQCPs.

The recipe algorithm described in [22] falls into the category of variable neigh-
borhood search heuristics: it iteratively explores different neighborhoods, updating
the neighborhood definition after each iteration.

4 Rounding, Diving, and MIP Heuristics

Rounding, diving, and propagation heuristics are kind of “folklore”: Most solvers
and many custom codes use them, but there are few publications on this topic.

Bonami and Gonçalves present computational results for NLP-based diving
heuristics [12]. Their algorithm solves a convex NLP relaxation, fixes several vari-
ables (with variable selection rules referred to as Fractional Diving and Vectorlength
Diving in [4]), and iterates this process. They further tested solving a final sub-MINLP
as soon as all fractional variables exclusively belong to linear constraints. Mahajan
et al. [23] suggest a diving algorithm that uses quadratic programming relaxations.

Nannicini and Belotti present iterative rounding [25], which is a mixture of diving
and variable neighborhood search. It solves a series of auxiliary MIPs to generate
integer points near an initial optimal solution of an NLP relaxation. In each iteration,
the feasible region of the MIP gets contracted further by outer approximation and
no-good cuts.

A popular approach for solving MINLPs is to use an outer approximation gener-
ated by linearization of convex constraints and linear underestimation of nonconvex
constraints. Having an outer approximation at hand, one might employ MIP primal
heuristics to the outer approximation LP plus the integrality constraints. In particular
for heuristics that are computationally very cheap, such as rounding and propagation
heuristics [3], this is a valid strategy. Applying MIP heuristics to such a “MIP relax-
ation” typically produces points that are integral, valid for the LP outer approxima-
tion, but violate one or more nonlinear constraints. Such points are natural candidates
for an NLP local search as it is, e.g., described in [17, 22, 24]: the integer variables
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are fixed to their value in the (infeasible) reference solution and the resulting NLP is
solved to local optimality.

5 Computational Results

To evaluate the impact of primal heuristics on the performance of a global MINLP
solver, we conducted a computational experiment in which we compare the perfor-
mance of the MINLP solver Scip [2] when running with and without primal heuris-
tics. We used SCIP version 3.0.1 compiled with SoPlex 1.7.1 [28] as LP solver and
Ipopt 3.11 [27] as NLP solver. Scip does not run all of the described algorithms
by default. It features Undercover, nonlinear versions of rens and Crossover, an
NLP local search, and many MIP heuristics, including a Feasibility Pump (for an
overview, see [5]). As a test set, we chose the MINLPLIB [13], excluding instances
which feature nonlinear functions that Scip 3.0.1 cannot handle, e.g., trigonometric
functions. The results were obtained on a cluster of 64 bit Intel Xeon X5672 CPUs at
3.20 GHz with 12 MB cache and 48 GB main memory, running an openSuse 12.3
with a gcc 4.7.2 compiler. We imposed a time limit of 1 h.

Similar to the situation in MIP, the impact of primal heuristics on the overall
running time was negligible. Both versions differed by less than one percent in shifted
geometric mean. Furthermore, both variants solved 170 of the 252 test instances to
optimality. The major difference occurs when considering the primal bound. For those
instances which could not be solved within the time limit, the Scip version without
heuristics found a feasible solution in 35 cases, the one using primal heuristics in 58.
The primal bound at termination was better for 48 instances when using primal
heuristics, only for two instances it was worse. Consequently, the average primal
integral [6] of both runs differed by about 50 %.

References

1. Achterberg, T., & Berthold, T. (2007). Improving the feasibility pump. Discrete Optimization,
Special Issue, 4(1), 77–86.

2. Achterberg, T. (2009). SCIP: Solving constraint integer programs. Mathematical Programming
Computation, 1(1), 1–41.

3. Achterberg, T., Berthold, T., & Hendel, G. (2012). Rounding and propagation heuristics for
mixed integer programming. In D. Klatte, H.-J. Luthi, & K. Schmedders (Eds.), Operations
research proceedings 2011 (pp. 71–76). Berlin Heidelberg: Springer.

4. Berthold, T. (2006). Primal heuristics for mixed integer programs. Diploma thesis, Technische
Universität Berlin.

5. Berthold, T. (2008). Heuristics of the branch-cut-and-price-framework SCIP. In J. Kalcsics &
S. Nickel (Eds.), Operations research proceedings 2007 (pp. 31–36). New York: Springer.

6. Berthold, T. (2013). Measuring the impact of the primal heuristics. Operations Research Letters,
41(6), 611–614.

7. Berthold, T. (2014). RENS: the optimal rounding. Mathematical Programming Computation,
6(1), 33–54.



28 T. Berthold

8. Berthold, T., & Gleixner, A. M. (2014). Undercover: A primal MINLP heuristic exploring a
largest sub-MIP. Mathematical Programming, 144(1–2), 315–346.

9. Berthold, T., Heinz, S., Pfetsch, M. E., & Vigerske, S. (2011). Large neighborhood search
beyond MIP. In L. D. Gaspero, A. Schaerf, & T. Stutzle (Eds.), Proceedings of the 9th Meta-
heuristics International Conference (MIC 2011) (pp. 51–60).

10. Bonami, P., Biegler, L., Conn, A., Cornuéjols, G., Grossmann, I., Laird, C., et al. (2008). An
algorithmic framework for convex mixed integer nonlinear programs. Discrete Optimization,
5, 186–204.

11. Bonami, P., Cornuéjols, G., Lodi, A., & Margot, F. (2009). A feasibility pump for mixed integer
nonlinear programs. Mathematical Programming, 119(2), 331–352.

12. Bonami, P., & Gonçalves, J. (2012). Heuristics for convex mixed integer nonlinear programs.
Computational Optimization and Applications, 51, 729–747.

13. Bussieck, M., Drud, A., & Meeraus, A. (2003). MINLPLib a collection of test models for
mixed-integer nonlinear programming. INFORMS Journal on Computing, 15(1), 114–119.

14. D’Ambrosio, C., Frangioni, A., Liberti, L., & Lodi, A. (2012). A storm of feasibility pumps
for nonconvex MINLP. Mathematical Programming, 136, 375–402.

15. Danna, E., Rothberg, E., & Pape, C. L. (2004). Exploring relaxation induced neighborhoods
to improve MIP solutions. Mathematical Programming, 102(1), 71–90.

16. Duran, M. A., & Grossmann, I. E. (1986). An outer-approximation algorithm for a class of
mixed-integer nonlinear programs. Mathematical Programming, 36(3), 307–339.

17. Extending a CIP framework to solve MIQCPs. In J. Lee, & S. Leyffer (Eds.), Mixed integer
nonlinear programming. Volume 154 of The IMA volumes in mathematics and its applications
(pp. 427–444). Springer.

18. Fischetti, M., & Lodi, A. (2003). Local branching. Mathematical Programming, 98(1–3), 23–
47.

19. Fischetti, M., Glover, F., & Lodi, A. (2005). The feasibility pump. Mathematical Programming,
104(1), 91–104.

20. Fischetti, M., & Salvagnin, D. (2009). Feasibility pump 2.0. Mathematical Programming Com-
putation, 1, 201–222.

21. Ghosh, S. (2007). DINS, a MIP improvement heuristic. In M. Fischetti & D. P. Williamson
(Eds.), Proceedings of 12th International IPCO Conference on Integer Programming and
Combinatorial Optimization (Vol. 4513 of LNCS, pp. 310–323). Springer.

22. Liberti, L., Mladenovic, N., & Nannicini, G. (2011). A recipe for finding good solutions to
MINLPs. Mathematical Programming Computation, 3, 349–390.

23. Mahajan, A., Leyffer, S., & Kirches, C. (2012). Solving mixed-integer nonlinear programs by
QP-diving. Preprint ANL/MCS-2071-0312, Argonne National Laboratory, Mathematics and
Computer Science Division.

24. Nannicini, G., Belotti, P., & Liberti, L. (2008). A local branching heuristic for MINLPs. ArXiv
e-prints.

25. Nannicini, G., & Belotti, P. (2012). Rounding-based heuristics for nonconvex MINLPs. Math-
ematical Programming Computation, 4(1), 1–31.

26. Rothberg, E. (2007). An evolutionary algorithm for polishing mixed integer programming
solutions. INFORMS Journal on Computing, 19(4), 534–541.

27. Wächter, A., & Biegler, L. (2006). On the implementation of a primal-dual interior point filter
line search algorithm for large-scale nonlinear programming. Mathematical Programming,
106(1), 25–57.

28. Wunderling, R. (1996). Paralleler und objektorientierter Simplex-Algorithmus. PhD thesis,
Technische Universität Berlin.



Layout Optimisation of Decentralised Energy
Systems Under Uncertainty

Valentin Bertsch, Hannes Schwarz and Wolf Fichtner

Abstract We present a modelling approach to support the layout optimisation of
decentralised energy systems composed of photovoltaic (PV) panels and heat pumps
with thermal storage capabilities. The approach integrates the simulation-based gen-
eration of model input on the basis of publicly available meteorological data and the
subsequent optimisation. Selected results concerning the choice of an appropriate
storage size are presented for an illustrative decentralised energy system.

1 Introduction

In the context of the ongoing transformation of the electricity generation system with
an emphasis on renewables and low-carbon generation as well as the implementation
of smart grid technologies, intelligent home energy management approaches making
use of load flexibilities are discussed increasingly often. Especially, photovoltaic
(PV) systems in combination with heat pumps and thermal storages have attracted
attention in the recent past. The dimensioning of the individual components, such as
the storage size, has an immediate impact on the system’s economic performance.
When modelling such systems using linear programming (LP) techniques, a variety
of input data, subject to different sources of uncertainties, needs to be provided. Thus,
we present an approach integrating modules for (a) simulating input data, such as
solar irradiation or temperature profiles, by a stochastic process, (b) transforming
these initial profiles to consistent sets of PV generation and heat demand profiles and
(c) using the generated profiles in an optimisation.

This paper is structured as follows: The problem and its LP formulation are
described in Sect. 2. In Sect. 3, we present our modelling approach focussing on
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Fig. 1 Illustrative setup of the decentralised energy system

the stochastic simulation modules. Illustrative results are shown in Sect. 4. Finally,
Sect. 5 summarises the main findings and indicates needs for further research.

2 Problem Description

Within decentralised energy systems, we focus on a residential quarter including
several groups of multi-family or row houses. The setup is illustrated in Fig. 1. The
energy is provided by own PV panels or the local grid. Fossil fuels are not used.
Energy for room heating and hot water, represented by one heat demand profile
per group of houses, is provided by heat pumps and storages for each group. The
electricity demand beyond heating and hot water is considered as an aggregated
profile for the whole quarter. If the PV generation exceeds the demand within the
quarter, it can be fed into the grid. The quantities in Fig. 1 are explained in Table 1.
As for (large) energy systems models, the system illustrated in Fig. 1 can be modelled
as a classical LP problem. We define the target function as the minimisation of the
total system expenses within each year, see (1). The storage size is not modelled as a
continuous variable but varied exogenously on a discrete basis according to storages
available on the market. Equations (2–5) represent the most important constraints.
Equation (2) ensures that the used quantity q f,t of each electricity source does not
exceed its availability a f,t at any time t . For the PV generation, a f,t is the fluctuating
generation profile. Equation (3) guarantees that demand and supply are balanced at
all times t . Subsequently, Eq. (4) represents the storage possibility of heat, i.e. the
main flexibility in the system. Constraint (5) ensures that the storage volume can
only vary within the given boundaries.

min
∑

t

∑

f

q f,t · c f,t (1)
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subject to
0 ≤ q f,t ≤ a f,t ∀t ∀ f (2)

∑

f

q f,t = dee
t +

∑

r

deh
t,r ∀t (3)

COPt,r · deh
t,r + Vt−1,r = dh

t,r + Vt,r + Lt,r ∀t ∀r (4)

V min
r ≤ Vt,r ≤ V max

r ∀t ∀r (5)

3 The Developed Approach to Layout Optimisation

In order to solve the optimisation problem described by (1–5), manifold input data is
needed. E.g., assumptions on the development of electricity prices (c2,t ) and profiles
for the PV generation (a1,t ), the electricity (dee

t ) and the heat (dh
t,r ) demand need

to be available. However, this input data is subject to many different uncertainties
which need to be addressed adequately in the layout planning process. To generate
the necessary input data and to account for the associated uncertainties, we propose
an integrated approach supporting the generation of consistent ensembles of load and
solar PV profiles, i.e. it includes the fundamental relationships between weather and
load as well as PV generation. These profiles are used in the subsequent optimisation.
Hence, our approach includes three subsystems (see Fig. 2):

• The Weather Simulation Subsystem (WSS)
• The Demand and Supply Subsystem (DSS)
• The Economic Evaluation Subsystem (EES)

3.1 The Weather Simulation Subsystem

The main task of the WSS consists in the generation of solar irradiation and tempera-
ture profiles considering their stochastic nature. For the modelling of solar irradiation
variations, several authors proposed Markov processes. Focussing on the long-term
variations, Amato et al. [1] model daily solar irradiation using a Markov model.
Focussing on the short-term variations in a high time resolution, Morf [4] proposes
a Markov process aimed at simulating the dynamic behaviour of solar irradiation.
However, the input data is often not available in the required granularity. Since our
focus is on layout planning, our approach needs to take into account both, the short-
term as well as the long-term variations, since both of these may affect the choice of
the storage size. Hence, we suggest a two-step approach.
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Fig. 2 Conceptual structure of the integrated modelling approach

In the first step, we model daily values in order to account for the long-term vari-
ations. Having an immediate impact on the heat demand as well as the efficieny
of the solar PV panels, we need temperature profiles in addition to the solar
irradiation profiles. We therefore go one step back and simulate daily meteorological
conditions, particularly the cloudiness, on whose basis the values for daily solar irra-
diation and average daily temperature are derived under consideration of seasonality
information (e.g. the months). In this sense, our approach goes beyond Ehnberg and
Bollen [2] who simulate solar irradiation on the basis of cloud observations using
a discrete Markov process. However, neither do they use the cloud observations
for simulating consistently compatible temperature profiles nor do they introduce a
monthly component in their markov process. Besides these differences, our approach
is similar to the one proposed by [2]. The daily cloudiness cd ∈ {0, . . . , 8} is con-
sidered in oktas in our Markov process, describing how many eighths of the sky are
covered by clouds [3]. The transition probabilities pm

i j for each month are derived on
the basis of publicly available weather data from Germany’s National Meteorological
Service (DWD), which are available for a variety of locations across Germany for
periods of often more than 50 years. Overall, a backtesting of the monthly Markov
process shows good results, not only concerning the bandwidth and distribution of
the average yearly cloudiness but also concerning the standard deviation of the daily
cloudiness values.

In a second step, a stochastic process is used to generate hourly profiles on the
basis of the daily simulation results of step 1. Besides the results of step 1, the process
is based on hourly solar irradiation and temperature data, which was collected for
Karlsruhe, Germany, over a period of 4 years. While 4 years would be a short period
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for understanding long-term variations, this period provides a valuable basis for
modelling short-term fluctuations of solar irradiation and temperature.

3.2 The Demand and Supply Subsystem

The DSS’s task is the transformation of the meteorological profiles into PV supply
and heat demand profiles to be used in the subsequent optimisation. Theoretically,
the DSS could also be used to generate electricity demand profiles but since we only
consider the electricity demand on the quarter level, i.e. the total demand of approx.
70 households, we use the so-called ‘standard load or H0 profile’ as our analysis
shows a strong convergence of the aggregate household load towards the H0 profile
even for numbers of households much lower than 70. For the solar generation, a
physical PV model has been developed on the basis of [5]. Concerning the heat
load, a reference load profile approach is currently implemented in the DSS. The
approach is based on the VDI4655 guideline [6] and uses the temperature profiles
as an important input. In the long run, we envisage to replace the reference load
approach by a physical model in order to achieve a higher accuracy.

3.3 The Economic Evaluation Subsystem

The ESS uses the profiles processed by the DSS as input and allows for carrying
out economic optimisations on the basis of Eqs. (1–5). In the current state, PLEXOS
for Power Systems®, a tool for power market modelling and simulation,1 is used as
optimisation module within the ESS. In the long run, we envisage to develop an own
optimisation module tailored to the specific needs of our problem.

4 Illustrative Results

Figure 3 illustrates an example of the results, which can be produced by our approach.
We applied our approach for meteorological data of Karlsruhe, Germany. The under-
lying demand and supply profiles correspond to an average meteorological year,
the long-term variations are not yet considered. Moreover, a flat electricity tariff of
25 ct/kWh is assumed. It should be noted that already today, more attractive tar-
iffs are available for heat pumps, especially, bearing in mind that not the individual
households but the whole quarter of approx. 70 households can negotiate tariffs with
the electricity supplier. The absolute IRR values should therefore not be overrated.

1 See: http://www.energyexemplar.com. We thank Energy Exemplar for the provision of the software
and their support.

http://www.energyexemplar.com
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Fig. 3 Internal rate of return
(IRR) for different storage
sizes (Assumptions: 25 years
technical lifetime; approx.
240 EUR additional invest
per kWh additional storage
capacity)

For a flat electricity tariff, however, a relative comparison shows a maximal IRR for
a storage size of 10 kWh in our example.

5 Conclusions and Outlook

An approach to support the layout planning of decentralised energy systems has been
presented. The approach has been applied to a residential quarter including approx.
70 households and allows for choosing an appropriate storage size. The approach
now provides the basis for further analyses of the economic profitability of such
systems as well as service related business models.

Possible enhancements of the approach include the implementation of a physical
model to generate heat demand profiles, the development of a tailor-made optimi-
sation module and the increase of the time resolution. Moreover, the uncertainties
associated with the input data of the different modules and their impact on the results
needs to be analysed and visualised in more detail.
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Analysis of Micro–Macro Transformations
of Railway Networks

Marco Blanco and Thomas Schlechte

Abstract A common technique in the solution of large or complex optimization
problems is the use of micro–macro transformations. In this paper, we carry out
a theoretical analysis of such transformations for the track allocation problem in
railway networks. We prove that the cumulative rounding technique of Schlechte
et al. satisfies two of three natural optimality criteria and that this performance cannot
be improved. We also show that under extreme circumstances, this technique can
perform inconveniently by underestimating the global optimal value.

1 Introduction

It is often the case in discrete optimization problems coming from applications that
the data is too complex to be tractable by an efficient algorithm. However, much of
the information in this precise (also called microscopic) model is not necessary to
obtain a very good feasible solution. A common technique is to derive a simplified
macroscopic model by aggregating the structures of the microscopic model, find a
good solution to the macroscopic model, and retranslate it to the original problem.
This idea has been used in diverse settings. In [1], an algorithm for solving linear
programs exactly solves a sequence of increasingly detailed LPs until the desired
degree of precision is reached. In [2], an algorithm for solving a dynamic progam
over a large state space is described. A sequence of coarse DPs is solved, and the
complexity/level of detail increases gradually. Reference [3] surveys aggregation
and disaggregation techniques for optimization problems. This research was mostly
influenced by Schlechte et al. [5], where a micro–macro transformation is used for
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solving the track allocation problem for railway networks (see [4, 5] for a precise
definition), which is the problem considered in this paper. One of the main difficulties
in developing an efficient micro–macro algorithm for this problem is choosing a
reasonable time discretization. That is, given a time unit δ in the microscopic model,
we seek to find a larger unit Δ for the macroscopic model and then determine the input
times of the macroscopic model in multiples of Δ. It is on this last step that we will
focus next. Given a microscopic running time of some route on a macroscopic track,
the most natural choice is to round it to a close multiple of Δ. Rounding down can
lead to infeasibilities, while rounding up all running times leads to an unnecessary
increase in the optimal value. Therefore, a combination of both seems to be the best
strategy. In this context, we consider the cumulative rounding method introduced by
Schlechte et al. in [5]. This method consists of rounding up the running times along
each route in order of traversal, until the total “lost” time accumulated is at least the
time corresponding to the track currently considered, at which point we round down
this running time and iterate.

While it is possible to give upper bounds on the overestimation error of the total
time needed to traverse each route, the impact of this rounding on the originating
network optimization problem as a whole has not been studied. The paper is structured
as follows. In Sect. 2 we describe the general problem, the motivation and the goals
of micro–macro transformations. In Sect. 3 we define three optimality criteria for
a rounding strategy for the track allocation problem. We prove that the cumulative
rounding strategy is optimal with respect to two of these criteria and that no strategy
satisfies all three of them. Finally, in Sect. 4 we show an instance in which cumulative
rounding yields a macroscopic value that is smaller than the microscopic optimum
and whose solution is impossible to translate back to the original model without
losing a significant factor. This shows the difficulty of acheiving global optimality
or near-optimality.

2 Our Setting

We consider a general minimization1 problem Pδ based on a time discretization δ

with kδ = Δ, k ≤ Z, k > 0. The problem PΔ results from rounding all times of Pδ
to multiples of Δ with respect to alternate rounding strategies. Let us consider the
trivial rounding down (∞ ≥) and up (∗ √). Then for the optimal values v, we have:

v(P∞ ≥
Δ

) ∩ v(Pδ) ∩ v(P∗ √
Δ

)

On the one hand the solution of P∗ √
Δ

can be re-transformed, i.e., we maintain the
orders of the trains and retranslate the departure and arrivals w.r.t. δ, to a feasible
solution of Pδ retaining the same objective value or obtaining a better one. On

1 In case of the track allocation problem we want to schedule a fixed number of trains on a network
within a minimum time horizon.
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the other hand v(P∞ ≥
Δ

) only provides in general a valid lower bound. Thus, we can

guarantee some solution quality provided by the lower bound v(P∞ ≥
Δ

).

3 Optimality Criteria

While the ultimate objective in the track allocation problem is to find a microscopic
solution of optimal or near-optimal value, it is in general not clear how to obtain a
feasible microscopic solution from a macroscopic solution such that the objective
value does not increase. For that reason, we will try to judge the quality of a trans-
formation by comparing the values of the obtained macroscopic and microscopic
solutions. There are several (often conflicting) possibilities of defining an “optimal”
rounding algorithm, and it is not obvious which of them should be considered. Here
we consider three very natural optimality criteria:

1. Global optimality: The total time is not underestimated and the corresponding
(overestimating) error is minimal.

2. Route-wise optimality: The total time on each individual route is not underesti-
mated and the corresponding (overestimating) error is minimal.

3. Local optimality: The overestimating error on any subroute
( jm, jm+1, . . . , jm+n) of a route r is less than Δ.

The no-underestimating condition guarantees that we can obtain feasible solu-
tions. The first two conditions are self-explaining and the third condition guarantees
that the approximation is good on a local level, i.e., on intervals.

In this section we prove that the cumulative rounding technique satisfies the last
two properties.

Theorem 1 For the track allocation problem, a rounding strategy is route-wise
optimal if and only if on every route j it rounds up the traversal times corresponding

to exactly

⌈∑
j≤D t̂ r

j

Δ

⌉
tracks.

Proof In the same setting as above, let r be a route. For every track j in the route, let
tr

j be the time (in units of δ) needed to traverse j , and let t̂ r
j ≡ tr

j (mod Δ). If for
this track we decide to round up, the (overestimating) error will be Δ − t̂ r

j , while if
we round down, the (underestimating) error is t̂ r

j . Let J be the set of tracks in route
r , let U ∧ J (the set of tracks for which we round up) and D = J\U (the tracks for
which we round down). Now, the total overestimating error is

εr =
∑

j≤U

(Δ − t̂ r
j ) −

∑

j≤D

t̂ r
j = |U |Δ −

∑

j≤J

t̂ r
j .

Since
∑

j≤J t̂ r
j is independent of the choice of U and D, the total error depends only

on the cardinality of U . By the non-overestimating property, we are looking for a
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set U of minimal cardinality such that εr is nonnegative and minimal. Clearly, this

is achieved by choosing U with |U | =
⌈∑

j≤D t̂ r
j

Δ

⌉
. �

Corollary 1 The cumulative rounding strategy is route-wise optimal and locally
optimal.

Proof The authors of [5] have proven that on each route, the total error caused by
cumulative rounding is in the interval [0,Δ). By the proof of the previous theorem,
this is a minimizer and thus the strategy is route-wise optimal.

To prove local optimality, let us consider a subroute r1 = ( jm, . . . , jm+n). We can
picture this subroute as the difference between subroutes r2 = ( j1, j2, . . . , jm+n)

and r3 = ( j1, j2, . . . , jm−1). As before, let us denote by εr the overestimating error
of a subroute r . By the result in [5] we just mentioned above, we have 0 < εr1

< Δ

and 0 < εr2
< Δ. Suppose εr3

> Δ. Then, we clearly have εr2 = εr1 + εr3
> Δ,

which is a contradiction. �

Theorem 2 There exists no rounding strategy that satisfies all three described
optimality criteria.

Proof Let us consider the following network, with Δ = kδ for some k ≥ 3:
On this network, let us consider trains 1 and 2 traveling from A to D, and train

3 traveling from D to A. We are interested in minimizing the time until the last
train arrives at its destination. We assume that for every track, the headway time
corresponding to two trains in the same direction is Δ. Similarly, the headway time
corresponding to two trains in opposite directions along track j is t j + Δ. Suppose
trains can not stop at intermediate stations and there are no restrictions on the depar-
ture or arrival times. A feasible and in fact optimal solution is to let trains 1, 2 and 3
leave their initial stations at times 0, Δ and δ, respectively. As trains 1 and 2 go from
B to C in one direction, train 3 goes from C to B in the opposite direction without
violating the headway constraints. The time until the last train (train 2) arrives is
5Δ + δ. Suppose we have a route-wise and locally optimal strategy. Let us consider
r1, the route corresponding to train 1. By route-wise optimality, we know that exactly
one traversal time is rounded down. If this time corresponds to either track AB or
track C D, we know that the remaining two tracks form a subroute with an overesti-
mating error of Δ, which contradicts local optimality. Without loss of generality, the
same reasoning applies to routes r2 and r3, so the resulting macroscopic network is
given by the numbers below the arcs on Fig. 1.

Let t j denote the microscopic time for each train on track j and Tj the correspond-
ing macroscopic time. By choice of the microscopic headway times, the macroscopic
headway times are still Δ and Tj + Δ. Since now the tracks between B and C are of
time Δ, the previous solution is no longer feasible. In fact, now the optimal solution
is to let trains 1 and 2 go from A to D, and let train 3 depart only after the other two
have arrived at D. This gives a total time of 12Δ, which is more than double the time
needed in the microscopic instance.
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A B C D
Δ + δ

2Δ

2Δ − δ
Δ

2Δ − δ
Δ

Δ + δ
2Δ

Fig. 1 The numbers above and below the arcs represent, respectively, the microscopic and macro-
scopic times for the corresponding tracks, assuming all trains have uniform speed

Table 1 Results for transformations of the optimization problem described in the proof of
Theorem 2

Description Discretization Rounding technique Optimal value

Original problem δ – 5Δ + δ

Approximation Δ 〈 ← 12Δ

Feasible solution δ 〈 ← 10Δ + 2δ

Feasible solution Δ ∗ √ 7Δ

Feasible solution δ ∗ √ 5Δ + δ

Lower bound Δ ∞ ≥ 4Δ

We use 〈 ← to denote any strategy that is route-wise- and locally optimal

Applying the conservative approach (rounding up all running times), we would get
a total time of 7Δ as optimum, which is more than the microscopic optimal value but
significantly smaller than 12Δ. Since the conservative rounding gives a smaller total
time we can conclude that the considered strategy does not satisfy global optimality.

�

While the previous proof shows that the conservative rounding strategy gives a
better macroscopic total time, it is not immediately clear what the corresponding
microscopic times are. If we take the solution given by cumulative rounding or a
similar strategy and translate it back to the microscopic model, we obtain a total
time of 10Δ + 2δ, which is exactly double of the optimal time. We summarize these
results in Table 1. Let us also note that we can easily make the macroscopic instance
infeasible while keeping the original feasible. For example, we could require for all
trains to arrive at their destinations at time 6Δ or before.

4 A Paradoxical Instance

In the previous section we saw some drawbacks to the cumulative rounding strategy,
but we also proved that it is impossible to improve it to a globally optimal strategy
while keeping both of its optimality properties. In this section, we will give an instance
such that the macroscopic optimal value is much better than the microscopic optimal
value. This shows that even if we relax the optimality requirement in the global
optimality condition, the non-underestimating condition is not necessarily satisfied.
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A B C D

E F

Δ + δ
2Δ

2Δ − δ
Δ

Δ + δ
2Δ

ΔΔ ΔΔ

Fig. 2 The numbers above (below) and to the left (right) of the arcs represent the microscopic
(macroscopic) times for the corresponding tracks

Furthermore, this hints that guaranteeing non-underestimation on a global level in
general may be very hard. Consider the network with two trains in Fig. 2.

Here, train 1 has to go from A to F and train 2 from D to E . The only headway
times of interest are those corresponding to track BC . They are defined as tBC + Δ.
Trivially, an optimal solution is to let train 1 depart at time 0 and let train 2 depart
when train 1 is about to reach C (to be precise, at time 3Δ− δ). In this solution, train
2 arrives to its destination at time 7Δ − δ.

As in the previous example, the macroscopic headway times of interest are now
TBC +Δ. Letting train 1 depart at time 0 and train 2 at time 2Δ, the last train arrives
at time 6Δ. Clearly, this objective value is impossible to attain in the microscopic
problem.
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A Human Resource Model
for Performance Optimization
to Gain Competitive Advantage

Joachim Block and Stefan Pickl

Abstract Human resources are one of the most important assets of any organization.
This is especially true in the ongoing information age where a transformation from
blue to white collar work takes place. Implementing efficient and effective human
resource management (HRM) policies can result in a sustained competitive advan-
tage which will contribute to the long-term success of an organization. Even though
empirical studies show some evidence that HRM policies influence organizational
performance, the mechanisms at work are still not uncovered completely. We present
a model of an organization’s human resources from a holistic perspective. Using sys-
tem dynamics and agent-based modeling and simulation, we integrated two usually
distinct fields of HRM research: the micro and the macro perspective. First numerical
simulation results indicate a promising approach to unlock the causal chain between
HRM policies and organizational performance. Our research should not only con-
tribute to fill an existing research gap but also help to identify HRM policies which
enable management to optimize the performance of an organization.

1 Introduction

The modern world of today depends on well working organizations of all kinds. They
are drivers for innovation and welfare. An organization is a goal directed social entity
which is linked to the external environment and designed as deliberately structured
and coordinated activity system [5]. In the transformation process from blue to white
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collar work, human resources are not just a cost factor but a key strategic asset of any
organization [7]. Recruiting and retaining better people and integrating their specific
talents in better processes can result in a competitive advantage [3].

Therefore, human resource management (HRM) is one of the most important
management tasks. By implementing HRM policies, management intends to increase
organization’s overall performance in order to guarantee its long-term success. How-
ever, there is no golden key how to organize the HRM system.

2 Bridging Macro and Micro HRM

The implementation of sustained and value creating HRM policies depends on a
profound understanding of the mechanisms at work in the social system of the orga-
nization. A lack of such an understanding holds the probability that HRM activities
will not contribute to performance improvement but causes the opposite, on the
long-run.

One important challenge in HRM research is to unlock the causal chain between
HRM activities and organizational performance [16]. The identification of this link
holds some potential for maximizing the impact of HRM on organizational perfor-
mance [20]. Research on this topic

would benefit from a fuller integration of the micro (focused on designing recruitment,
selection, performance appraisal, rewards systems, etc., as well as individual employee
response to those systems) and macro (focused on the strategy formulation and implemen-
tation processes) domains [9, p. 422].

An integrated approach differs significantly from the traditional HRM research
that is dominated by either a macro-level view or a micro-level view [20]. However,
both views are two sides of the same coin.

Our research aims to fill the existing gap. We present a holistic and integrated
human resource model of an organization which draws on the strengths of both per-
spectives. By simulating different HRM policies with the model, value creating and
sustainable HRM policies can be identified. This should not only result in perfor-
mance optimization of the whole organization but also in a sustained competitive
advantage.

3 An Integrated Model of the Organization

Our model regards an organization as what it is: a multilevel system [10]. Main
components of the model are two perspectives found in HRM research (see e.g. [20]):

1. The workforce perspective representing the macro or top-down view of the
organization.

2. The individual perspective representing the micro or bottom-up view of the
organization.
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The workforce perspective is taken by top management or strategic management.
Here, the flow of staff between different grades and the organization’s environment
is considered. Organizations as whole or bigger groups of staff are in focus. HRM
policies are applied at this level to control the flow of staff. The wider field of
workforce or manpower planning addresses this level (see e.g. [1]).

In contrast, the individual perspective considers individuals or smaller groups
of individuals and their relations. This is the micro-level view of the organization.
It delivers detailed data on individual or group behavior. HRM practices, usually
applied by line managers, aim to influence individual behavior at this level.

Even though HRM policies are applied at the workforce perspective to increase
organizational performance, it is the individuals which perform and not the organi-
zation [10]. Actions taken on the top level have to and do in fact impact behavior
of the individual staff member [11]. On the other hand, decisions of employees can
cause disruptions on the workforce level. An example is a promising staff member
who leaves the organization because of better job opportunities elsewhere. His action
causes a new flow to occur on the workforce level (e.g. entry of a new employee to
fill the gap). Hence, workforce perspective and individual perspective not only are
tightly connected but nested.

In the first steps of the modeling process the workforce perspective and the indi-
vidual perspective are modeled as two subsystems. By using different modeling
techniques, individual specifics of the macro and micro perspectives are adequately
considered. The integration of both subsystems into a holistic system closes the
modeling process.

3.1 The Workforce Subsystem

Stocks and flows are core elements of the workforce subsystem. Stocks represent
different grades or positions in an organization, depicted for example in an organi-
zation chart [5]. They have a defined maximum carrying capacity. A certain number
of employees is assigned to one of these stocks at a time. The number of grades or
positions in the organization usually is much lower than the number of employees.
Grades and positions are personnel categories. These categories differ from each
other by certain attributes like responsibility, wage, requirements, etc.

Three kinds of flows can be identified in an organization [8]: the recruitment
flow, the internal personnel flows between different personnel categories (among
others promotion flows), and the wastage flow. New members enter the organization
into certain grades or positions (recruitment). During their professional life, they
move through different grades or positions (internal) until they leave the organization
(wastage).

Due to the nature of being a top-level or strategic perspective, modeling is
restricted to aggregated information. System dynamics (SD) is suited to study the
dynamic behavior of the stock and flow workforce system (see e.g. [18] or [14]). It
enables us to model feedbacks and nonlinearities that are inherent to the system [19].
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3.2 The Individual Subsystem

In the individual subsystem, individual members of the organization are modeled as
agents by the use of the correspondent modeling technique: agent-based modeling
and simulation (ABMS). Agents are autonomous and self-directed individuals which
live in and interact with an environment [12]. They are governed by certain rules and
are able to change these rules. Agents have attributes and show behavior [15].

As we are interested in performance optimization, we build upon the AMO the-
ory [4]. According to this theory, performance p of an individual i is a function of
his or her ability (A), motivation (M), and opportunity (O):

pi = f (Ai , Mi , Oi ) (1)

Though, ability, motivation, and opportunity are the core attributes in our ABMS
model. We conducted a literature review in order to find parameters which influence
these three elements and built a dependency graph from these information. Motivation
is for example influenced by time spent in the actual position and by promotion
prospects. On the other hand, ability depends among others on work experience and
on training effort. Ability, motivation, and opportunity are subject to change as time
goes by. The dependency graph reveals the existence of a feedback loop between
ability and motivation. Such loops can be easily modeled by SD.

Besides modeling agents’ attributes by SD we take use of this method for behav-
ioral aspects, as well. Consistent to [6], relevant behavior is: performance, turnover,
and absenteeism. In contrast to short-term absenteeism, turnover means that a mem-
ber will leave the organization permanently. Attributes influence agents’ behavior.
For instance, a low level of motivation increases turnover probability.

3.3 The Integrated System

The ABMS model of the individual perspective and the SD model of the workforce
perspective are connected. Integrating both perspectives means integrating SD and
ABMS [17].

By flows being an indicator for promotion opportunities, the workforce per-
spective affects agents’ behavior. On the other hand, behavior of individual agents
influences the workforce subsystem. Turnover results in new flows to occur and the
entrance of a new agent into the system to fill the gap. Furthermore, in case of absen-
teeism the overall workload has to be distributed among the other agents. As a result,
agents’ attributes change. To implement the depicted model we use AnyLogic® [2]
which supports message passing between the two subsystems.

In addition, we implement some parameters that are external to the two subsys-
tems but significantly impact behavior of the whole system. The external market
conditions for example influence turnover rates. While the external market is out
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of managerial control, some other parameters indeed are in. The level of training,
gratification and job design can be adjusted by management intervention. Further-
more, the implementation of different promotion rules and adjustments of the grade or
position structure on the workforce level are possible. These actions impact prospects
for personal growth of all agents and thus behavior of the system as a whole.

Our model enables management to simulate different policies by changing model
parameters. Thereby, long-term effects on overall performance can be evaluated and
negative side effects identified. Underlying assumption is that overall performance
P of the organization is a function of the performance of all agents:

P = g(p1, p2, . . . , pn) (2)

with n being the number of individuals in the organization.

4 Discussion

We configured our model with data from a German public sector organization. Mis-
cellaneous simulation runs show a system behavior which resembles past experi-
ences in Germany’s public administration [13]. By applying different HRM policies
we studied the impact on organizational performance. First results show for example
significant differences in turnover rates and performance between a policy which
solely considers the oldest employee for promotion and a promotion policy which is
based on performance.

Our hybrid SD and ABMS model seems to offer a promising way to unlock
the causal chain between HRM policies and organizational performance. However,
the results presented in this paper should be regarded as a starting point for further
research in the combined micro–macro view within HRM rather than the end of a
journey. There is still a long road to go. Especially, more effort has to be invested in
model validation and verification. The theoretical framework will be extended and
further aspects will be taken into consideration. One aspect will be about the imple-
mentation of not yet considered human attitudes. Last but not least, the calculation
of organization’s overall performance needs some critical reflections, as well.
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Re-Optimization of Rolling Stock Rotations

Ralf Borndörfer, Julika Mehrgardt, Markus Reuther, Thomas Schlechte and
Kerstin Waas

Abstract The Rolling Stock Rotation Problem is to schedule rail vehicles in order
to cover timetabled trips by a cost optimal set of vehicle rotations. The problem
integrates several facets of railway optimization, such as vehicle composition, main-
tenance constraints, and regularity aspects. In industrial applications existing vehicle
rotations often have to be re-optimized to deal with timetable changes or construc-
tion sites. We present an integrated modeling and algorithmic approach to this task
as well as computational results for industrial problem instances of DB Fernverkehr
AG.

1 Introduction

Rolling stock, i.e., rail vehicles, is the most expensive and limited asset of a railway
company and must therefore be used efficiently. The Rolling Stock Rotation Problem
(RSRP) deals with the cost minimal implementation of a railway timetable by con-
structing rolling stock rotations to operate passenger trips by rail vehicles. The RSRP
integrates several operational requirements like vehicle composition rules, mainte-
nance constraints, infrastructure capacity constraints, and regularity requirements.
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Fig. 1 Concept of re-optimization for the RSRP

A detailed problem description, a mixed integer programming formulation, and an
algorithm to solve this problem in an integrated manner is described in detail in [3].

In this paper, we discuss one of the most important and challenging industrial
applications of the RSRP, namely, re-optimization.

A re-optimization high-level concept for the RSRP is illustrated in Fig. 1. At
some point in time a railway undertaking has to tackle an instance of the RSRP and
constructs a solution (see boxes RSRP and Reference rotations). At another point
in time this problem changes, such that the existing reference rotation plan can no
longer be operated. Thus, a new problem RSRP has to be solved. The most important
difference to the previous planning step is that much of the reference rotation plan was
already implemented: Crew was scheduled for vehicle operations and maintenance
tasks, capacity consumption of parking areas was reserved, and most important in
a segregated railway system, e.g., in Europe and Germany: train paths were already
allocated for the deadhead trips. Therefore a major goal is to change as little as
possible in comparison to the reference rotation plan.

A literature overview on re-optimization can be found in [1, 2].
Re-optimization problems come up very often at a railway company. There are var-

ious causes that can lead to a situation where the implemented rotation plan becomes
infeasible in an unexpected manner. Predictable and unpredictable construction sites
are main causes. Fleet changes due to disruptions of operations or technical con-
straints, e.g., different maintenance constraints, modified speed limits for rolling
stock vehicles, or changed infrastructure capacity, also ask for a modification of the
vehicle rotation plans.

Depending on how large and how long the changes and their consequences are,
re-optimization is required either by the dispatchers or in sufficiently lasting cases
by the tactical and strategical divisions of the railway companies. In the latter case
the problem is considered as a cyclic planning problem as it is introduced in [3].

The paper contributes an adaptation of the generic mixed integer programming
approach presented in [3] to re-optimize rolling stock rotations. We show how to
incorporate detailed re-optimization requirements into a hypergraph based formu-
lation for rolling stock optimization by simply defining an appropriate objective
function.
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This paper is organized as follows. Section 2 defines the problem including an
overview of our hypergraph based formulation. In Sect. 3 we introduce an objective
modification procedure for the re-optimization case. Computational results in Sect. 4
show that our model and algorithm produce high quality and implementable results
even for complicated re-optimization settings. Rotation planners of Deutsche Bahn
validated the resulting rolling stock rotations from a detailed technical and operational
point of view. It turned out that our configuration of the objective function described
in Sect. 3 is sufficient and very precise for all re-optimization instances we got.

2 The Rolling Stock Rotation Problem

In this section we provide an overview on the hypergraph based rolling stock opti-
mization model proposed in our previous paper [3]. We focus here on the main
modeling ideas. For technical details including the treatment of maintenance and
capacity constraints see [3]. The extension of the following problem description and
model to include maintenance constraints is straight forward and does not affect the
content or the contribution of the paper. Nevertheless, in our computational study we
provide results for instances with maintenance constraints.

We consider a cyclic planning horizon of one standard week. The set of timetabled
passenger trips is denoted by T . Let V be a set of nodes representing departures and
arrivals of vehicles operating passenger trips of T , let A ≤ V × V be a set of
directed standard arcs, and H ≤ 2A a set of hyperarcs. Thus, a hyperarc h ∞ H is
a set of standard arcs. The RSRP hypergraph is denoted by G = (V, A, H). The
hyperarc h ∞ H covers t ∞ T , if each standard arc a ∞ h represents an arc between
the departure and arrival of t . We define the set of all hyperarcs that cover t ∞ T
by H(t) ≤ H . By defining hyperarcs appropriately vehicle composition rules and
regularity aspects can be directly handled by our model.

The RSRP is to find a cost minimal set of hyperarcs H0 ≤ H such that each
timetabled trip t ∞ T is covered by exactly one hyperarc h ∞ H0 and

⎧
h∞H0

a is a
set of rotations, i.e., a set packing of cycles (each node is covered at most one time).

We define sets of incoming and outgoing hyperarcs of v ∞ V in the RSRP hyper-
graph G as H(v)in := {h ∞ H | ≥ a ∞ h : a = (u, v)} and H(v)out := {h ∞
H | ≥ a ∞ h : a = (v, w)}, respectively. By using a binary decision variable for each
hyperarc, the RSRP can be stated as a mixed integer program as follows:

min
⎪

h∞H

ch xh, (MP)
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⎪

h∞H(t)

xh = 1 ∗t ∞ T, (1)

⎪

h∞H(v)in

xh =
⎪

h∞H(v)out

xh ∗v ∞ V, (2)

x ∞ {0, 1}|H | (3)

The objective function of model (MP) minimizes the total cost of operating a
timetable. For each trip t ∞ T the covering constraints (1) assign exactly one hyperarc
of H(t) to t . The equalities (2) are flow conservation constraints for each node v ∞ V
that imply the set of cycles in the arc set A. Finally, constraints (3) state the integrality
constraints for our decision variables.

3 Re-Optimization

The major re-optimization requirement for the RSRP is to change as little as possible
in the reference rotation plan. We argue that this requirement can be handled by
defining a suitable objective function based on the reference rotation plan.

c : H √∩ Q+ : c(h) :=
⎨

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c1(h)
c2(h)
c3(h)
c4(h)
c5(h)
c6(h)
c7(h)
c8(h)
c9(h)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p1(h)
p2(h)
p3(h)
p4(h)
p5(h)
p6(h)
p7(h)
p8(h)
p9(h)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡

. . . connection deviations

. . . composition deviations

. . . rotation deviations

. . . service deviations

. . . vehicles

. . . services

. . . deadhead distance

. . . regularity

. . . couplings
(4)

Definition (4) illustrates our approach. Our objective function is the sum of the
re-optimization cost

⎢4
i=1 ci pi and the original objective function

⎢9
i=5 ci pi . We

propose to compute the parts of the re-optimization objective as a sum of costs
depending on individual hyperarcs.

Let h ∞ H be a hyperarc. In a first step we reinterpret h in the reference rotations,
i.e., we search the timetabled trips that are connected or covered by h in the reference
rotation plan, if they still exist. The reinterpretation procedure is very precise as a
node in our hypergraph has the following attributes w.r.t. the vehicle traversing the
node: position in a composition, orientation w.r.t. driving direction, fleet type, and
rotation (i.e., cycle) of a vehicle.

In a second step we compute a property pi (h) ∞ N for i = 1, . . . , 4 for h ∞ H
that states the number of differences of h w.r.t. the reference rotations. Examples for
such differences are:
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Table 1 Key numbers of re-optimization scenarios

Instance Trips Compositions Fleets Maintenances |V | |H |
RSRP_11 104 2 1 0 486 186,130
RSRP_12 104 2 1 1 486 192,612
RSRP_13 104 2 1 2 486 198,758
RSRP_21 805 2 2 0 9,810 15,770,498
RSRP_22 805 2 2 2 9,810 18,768,740
RSRP_31 788 2 2 0 7,776 11,727,856
RSRP_32 788 2 2 2 7,776 14,019,208
RSRP_41 789 10 4 0 16,790 42,764,116
RSRP_42 789 10 4 4 16,790 54,640,466

• Let h ∞ H a hyperarc connecting the timetabled trips t1 and t2. If t1 and t2 exist in
the reference rotations and both trips are not connected there, we set p1(h) = |h|.
In all other cases we set p1(h) = 0.

• If h covers trip t that exists in the reference rotations and is operated by a different
vehicle composition than h, we set p2(h) ≡ 1, otherwise p2(h) = 0. The exact
numeric number depends on |h|, how these vehicles are oriented, which fleets are
used etc.

• If h implies that t is operated in a different rotation we set p3(h) = |h|, otherwise
p3(h) = 0.

• If h implies a different maintenance service before or after a timetabled trip
p4(h) = 1, otherwise p4(h) = 0.

Solutions of re-optimization instances often have the characteristic that major
parts of the reference rotations are not changed but some small parts have to be
modified. In some cases, however, new timetabled trips have to be incorporated into
the reference rotation plans. To handle this case we also have to consider properties of
the original objective function

⎢9
i=5 ci pi for re-optimization instances, i.e., costs for

vehicles consumed by a hyperarc, costs for maintenance services, costs for deadhead
distances, cost for irregularities, and costs for coupling activities. Finally all of these
individual properties are multiplied by individual cost parameters ci , i = 1, . . . , 9
that can be adjusted to the requirements of industrial use cases.

In this way we are able to handle a lot of technical re-optimization details simply
by changing objective coefficients. As already mentioned, we were able to instantiate
all technical re-optimization scenarios we got so far by this simple objective config-
uration procedure, i.e., by penalizing local deviations w.r.t. the reference rotations.
This makes it possible to apply the general model and algorithm presented in [3] to
solve re-optimization instances.
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Table 2 Key numbers of re-optimization results with ROTOR 2.0 and CPLEX 12.5

Instance Vehicles Dev. Dev. Dev. Dev. Gap hh:mm:ss
heads configurations fleets orientations (%)

RSRP_11 9 0 0 0 0 0.00 00:03:13
RSRP_12 9 0 0 0 0 0.09 00:04:05
RSRP_13 9 1 0 0 0 1.65 00:05:35
RSRP_21 55 3 1 1 0 0.00 00:09:27
RSRP_22 55 1 0 0 0 0.15 03:34:00
RSRP_31 55 29 2 2 0 0.00 00:07:59
RSRP_32 55 30 2 2 0 0.28 01:17:17
RSRP_41 61 39 7 45 23 0.32 00:49:36
RSRP_42 59 40 7 42 17 0.91 02:48:20
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1 (9) (2)2B2 2B1 1B2 1A20A2 0A11B1 2B2 1B11A1 1B1 2B2 0A21A2 1A10A21B1 2B2 2B1 1B2 1A20A2 0A11B1 2B2 1B1 2B21A1 1B1 2B2 0A2

1 (9) (2)1B2 1A2 1A12B11A1 1B1 2B21A12B2 2B1 1B2 1A21B1 1A11A1 1B1 2B21A11A22B2 2B1 1B21B1 1A1 1A12B2 1B1 2B21B11A1 1B1 2B21A1

2 (1) (3)2B1 1B2 1A2 1A11A1 1B1 2B2 0A21A2 1A10A21B1 2B2 2B1 1B2 1A20A2 0A11B1 2B2 1B1 2B21A1 1B1 2B2 0A21A2 1A10A2

2 (1) (3)1A2 1A1 2B11B22B2 1B11B11A1 1B1 2B21A12B2 2B1 1B2 1A21B1 1A1 1A12B2 1B1 2B21B11A1 1B1 2B21A11A22B2 2B1 1B21B1 1A1 1A1

3 (2) (4)1B2 1A2 1A1 2B1 0A12B2 1A1 2B10A1 0A11B2 1A2 1B10A12B2 2B1 1B2 1A2 1A12B1 1B2 1A2 1A1 0A12B2 1A1 2B1 1B20A1 0A11B2 1A2 1B10A1

3 (2) (4)2B1 1B2 1A22B2 1A11A1 2B12B21A11B2 1A2 1B1 1A1 1A12B1 1B2 1A2 1A12B21B2 1A2 1A1 1A12B11A1 2B1 1B22B21A11B2 1A2 1B1 1A1 1A1

4 (3) (5)2B2 1A1 2B1 1B20A11B2 1A2 1B1 0A10A12B2 2B1 1B2 1A2 1A12B1 1B2 1A2 1A1 0A12B2 1A1 2B1 1B20A1 0A11B2 1A2 1B10A12B2 2B1 1B2 1A2 1A1

4 (3) (5)1A1 2B1 1B22B21A11B2 1A2 1B1 1A1 1A12B1 1B2 1A2 1A12B21B2 1A2 1A1 1A12B11A1 2B1 1B22B21A11B2 1A2 1B1 1A1 1A12B1 1B2 1A2 1A12B2

5 (4) (6)1B2 1A2 1B1 0A10A12B2 2B1 1B2 1A2 1A12B1 1B2 1A2 1A1 0A12B2 1A1 2B1 1B20A1 0A11B2 1A2 1B10A12B2 2B1 1B2 1A2 1A12B1 1B2 1A2 1A1 0A10A2

5 (4) (6)1B2 1A2 1B1 1A1 1A12B1 1B2 1A2 1A12B21B2 1A2 1A1 1A12B11A1 2B1 1B22B21A11B2 1A2 1B1 1A1 1A12B1 1B2 1A2 1A12B21B2 1A2 1A1 1A12B1

6 (5) (7)1B2 1A21A1 2B10A21B2 1A20A11A1 2B10A21B2 1A21A1 2B10A21B2 1A20A1

6 (5) (7)1A21B21A11A1 2B1 1A1 1A11A21B21A11A1 2B1 1A1 1A11A21B21A11A1 2B1 1A1 1A11A21B21A1

7 (6) (8)1A1 2B10A2 0A11B2 1A20A11A1 2B10A21B2 1A21A1 2B10A21B2 1A20A11A1 2B10A2

7 (6) (8)1A1 2B1 1A1 1A11A21B21A11A1 2B1 1A1 1A11A21B21A11A1 2B1 1A1 1A11A21B21A11A1 2B1 1A1 1A1

8 (7) (9)2B2 1B1 2B2 1B1 2B22B1 1B2 1A2 1A1 0A12B2 1A1 2B1 1B20A1 0A11B2 1A2 1B10A12B2 2B1 1B2 1A2 1A12B1 1B2 1A2 1A1 0A12B2 1A1 2B1 1B20A1 0A1

8 (7) (9)2B2 1B1 2B2 1B1 2B21B2 1A2 1A1 1A12B11A1 2B1 1B22B21A11B2 1A2 1B1 1A1 1A12B1 1B2 1A2 1A12B21B2 1A2 1A1 1A12B12B2 1A1 2B1 1B21A1

9 (8) (1)1A2 1A10A21B1 2B2 2B1 1B2 1A20A2 0A11B1 2B2 1B1 2B21B1 2B2 1B1 2B21A1 1B1 2B2 0A21A2 1A10A21B1 2B2 2B1 1B2 1A20A2 0A1

9 (8) (1)1A1 1B1 2B2 1B1 1A21A12B2 2B1 1B2 1A21B1 1A1 1A11B1 2B2 1B1 2B22B2 1B1 2B21B11A1 1B1 2B21A11A22B2 2B1 1B21B1 1A1 1A12B2 1B1 2B21B1

10 (10) (10)1A1 1B1 2B2 1B1 1A20A21A2 1A10A21B1 2B2 2B1 1B2 1A20A2 0A11A1 1B1 2B2 0A21A2 1A10A21B1 2B2 2B1 1B2 1A20A2 0A11B1 2B2 1B1 2B20A2

Fig. 2 Comparison of reference and re-optimized rolling stock rotations

4 Computational Results

We implemented our re-optimization model and algorithm in a computer program,
called ROTOR 2.0. This implementation makes use of the commercial mixed inte-
ger programming solver CPLEX 12.5. ROTOR 2.0 is integrated in the IT envi-
ronment of Deutsche Bahn. All our computations were performed on computers with
an Intel(R) Xeon(R) CPU X5672 with 3.20 GHz, 12 MB cache, and 48 GB of RAM
in multi thread mode with eight cores.

Table 1 lists the sizes of the instances, i.e., the number of trips, compositions,
fleets, and maintenance constraints. In addition the total number of nodes (|V |) and
hyperarcs (|H |) report about the size of the hypergraphs for the considered instances.

Furthermore, Table 2 provides re-optimization results. The second column reports
on the number of used vehicles. The next four columns denote the number of devia-
tions w.r.t. the reference solution introduced in Sect. 3. Finally, the last two columns
show the proven worst case optimality gap and the total computation time.

The considered instances include scenarios where vehicles got broken, where the
timetable was changed due to track sharing with other railway operators. And we also
tackle instances where the fleet size increases, i.e., for the case when new vehicles
are available and have to be integrated in the current operations. All scenarios were
given by Deutsche Bahn Fernverkehr AG. Figure 2 shows a difference view of the
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reference solution and the solution re-optimized with ROTOR 2.0 in green. The
rows alternate between the reference solution and the re-optimized solution. The red
parts of the reference solution can never be reproduced because of timetable changes.

We conclude that re-optimization instances of Deutsche Bahn Fernverkehr AG for
the RSRP can be handled in great detail. On the other hand huge parts of the reference
rotation plans must not be changed: See column trips w.r.t. column

⎢
p1 (sum of

connection deviations) in Table 2 and Fig. 2. This combination directly results in
short computation times, high quality solutions, and therefore a powerful tool for
re-optimization of rolling stock rotations at Deutsche Bahn Fernverkehr AG.
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Branch-and-Price on the Split Delivery Vehicle
Routing Problem with Time Windows
and Alternative Delivery Periods

Heiko Breier and Timo Gossler

Abstract In this article we address the Split Delivery Vehicle Routing Problem with
Time Windows and alternative Periods (SDVRPTWA). The consideration of mul-
tiple delivery periods per customer and the possibility of splitting deliveries across
different periods makes it a relaxation of the well-known Vehicle Routing Problem
with Time Windows and Split Deliveries (VRPTWSD). The problem is solved by
a branch-and-price method. The opportunity for freight forwarders is to plan more
efficient tours by exploiting alternative delivery periods. The contribution of this arti-
cle is to prove the potential of this approach for cost savings and to demonstrate the
decomposition of a SDVRPTWA in a demand focused master problem and period
related pricing problems.

1 Introduction

Orders exceeding the vehicle capacity and customer induced time windows are com-
mon challenges in transport planning. As long as time windows are fix and the
customer does not offer alternatives the problem can be solved with the well known
VRPTWSD. In case that alternative non excluding delivery periods are offered, it
would be possible to split the delivery across different periods. To our knowledge,
this scenario has not been considered in the literature yet. Indeed, this methodology
becomes more and more relevant as a growing number of companies introduces time
window management systems requiring freight forwarders to book binding time win-
dows. To face this requirement, the SDVRPTWA considers the possibility of serving
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a customer either in one or in multiple periods. Thereby, it makes the selection of
delivery periods subject of the optimization and offers the opportunity to plan tours
with visits in alternative periods.

2 Related Problems

Research on the Vehicle Routing Problem with Time Windows (VRPTW) came up
with [14] and [5] and with [9] as one of the most recent publications on solving the
problem by column generation.

Splitting of deliveries was introduced by Dror and Trudeau [8]. A worst case
analysis of split delivery problems was performed by Archetti et al. [1]. Archetti
et al. [2] developed an efficient procedure to solve the Vehicle Routing Problem with
Split Deliveries by column generation.

Frizzell and Giffin [10] were among the first authors examining the combination
of split deliveries and time windows. The most relevant results to solve this problem
by Branch-and-Price were presented by Gendreau et al. [11] and Desaulniers [6]. The
two approaches differ mainly in regard to the decision, if quantities are considered
within the pricing problem.

A good overview in general on the VRPTW can be found in [7] and in [3].
Cordeau [4] presented a Periodic Vehicle Routing Problem (PRVP). Here, each

customer selects an individual combination of days. Visiting this customer is only
possible at the selected combination of days. So, the possible combinations are input
parameters for the program an not part of the optimization itself. Pirkwieser and
Raidl [12] solved this problem by a column generation approach. In addition to a
set-partioning formulation they introduce multiple pricing problems, one for each
period. Their approach, anyhow, does not ensure integer solutions.

3 Problem Formulation

Given a set V which represents the nodes of the problem. Node 0 is the depot where
all tours start and end. Set I represents the customers to deliver with I = V\0. A
is the set of all arcs (i , j) ≤ V × V. With V and A we can define a directed Graph
G = (V, A).

Additionally each customer defines which periods are valid to deliver goods. The
set of periods is P and a customer i can choose any combination of periods Pi ∞ P to
deliver him. Any delivery can have a split either within a time window in the same
period or within time windows in different periods. These customer specific periods
specify real alternatives. In an example this means: if P = [1, 2, 3, 4, 5] a customer
i can choose Pi = [2, 3, 4] as alternative periods to receive deliveries. A possible
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alternative could be to split up the delivery and to visit this customer in period 2 with
the first part of the delivery and visiting him in period 4 to bring the last part of the
delivery. This formulation is a relaxation of [4] and adds also the opportunity of split
deliveries.

The problem can be written as a decomposed problem with a single Master Prob-
lem 3.1 and Sub Problems 3.2 for each period p ≤ P.

All Sub Problems have to be solved separately for each period.

3.1 Master Problem

R is the set of available routes r in the Master Problem defined. T is the set of
available delivery patterns t .

The decision variable is λ
p
rt which indicates the usage of a route r ≤ R in p ≤ P

and a delivery pattern t ≤ T. Each route has a length er . Constraints 2 ensure that each
customer receives the complete demand di . ρi t represents the delivery for customer i
is visited in tour r with pattern t . The delivery pattern t is related to λ

p
rt . In constraints 3

we substitute each λ
p
rt with an variable y p

i j , introduced by Desaulniers [6]. β p
i jr is set

to 1 if arc (i, j) is used in λ
p
rt , it is set to 0 otherwise. Variables y p

i j will be used to
perform branches (see Sect. 3.3). These variables represent how often an arc (i, j)
is used in total or by period p as well as how often a customer i is visited in total or
by period p. For all arcs between customers the usage is limited to y p

i j ≥ 1. For all

arcs leaving/arriving at the depot usage of y p
i j is unlimited and any value ∗ 0.4 is

non-negative.

min

⎧

⎪
⎨

r≤R,p≤P,t≤T
er · λ

p
rt

⎛

⎜ (1)

s.t.
⎨

r≤R,p≤P,t≤T
ρi t · λ

p
rt ∗ di √i ≤ I (2)

⎨

r≤R,t≤T
β

p
i jrλ

p
rt = y p

i j √(i, j) ≤ V, p ≤ P (3)

λ
p
rt ∗ 0 √r ≤ R, p ≤ P, t ≤ T (4)

We start the solution procedure with a small set of columns in the Master Problem.
These columns represent single trips from the depot to one customer and back to the
depot. Also we add corresponding delivery patterns to those initial variables. With
this first set of variables we start to generate additional variables λ

p
rt in a column

generation process.
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3.2 Pricing Problem

To get new valid routes for the Master Problem we solve an Elementary Shortest
Path Problem with Ressource Constraints (ESPPRC) and include in the objective
function the dual values of the Master Problem solved. We stop generating new λ

p
rt

when no more columns with negative reduced cost can be found.
The objective of the problem is to find a route with lowest costs. α

p
i j and δi are

the dual variables from the constraints 3 and 2 from the Master Problem presented.
Variables x p

i j decide if arc (i, j) is used in period p and are binary. Variables d p
i

decide which amount of the complete order di is delivered to customer i in period p
and is integer. s p

i and s p
j , respectively, decide in which period p customers i , j are

visited and are real values.
The distance between two nodes is ci j . We have an unlimited set of identical

vehicles T with capacity Q. Each customer i ≤ I has a demand di > 0 and a time
window to deliver the goods. The customer specific interval to deliver starts at sstart

i
and ends at send

i .

min

⎧

⎪
⎨

(i, j)≤V
(ci j + α

p
i j ) · x p

i j −
⎨

i≤I
(δi · d p

i )

⎛

⎜ (5)

s.t.
⎨

i≤I
x p

oj = 1 (6)

⎨

j≤V|i ∩= j

(x p
i j − x p

ji ) = 0 √i ≤ V (7)

⎨

j≤I
x p

i0 = 1 (8)

⎨

i≤I
d p

i ≥ Q (9)

min(di ; Q)
⎨

j≤V|i ∩= j

x p
i j ∗ d p

i √i ≤ I (10)

sstart
i ≥ s p

i ≥ send
i √i ≤ V, p ≤ P, t ≤ T (11)

s p
i + bi j − M(1 − x p

i j t ) ≥ s p
j √(i, j) ≤ V, p ≤ P, t ≤ T (12)

x p
i j ≤ {0; 1} √(i, j) ≤ V (13)

d p
i ≤ {0, 1, . . .} √i ≤ I (14)
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3.3 Branching Rules

When no more columns with negative reduced costs can be found, we test the solution
of integrity. The solution is integral when the following branching rules deliver values
which are integral. (i) branch on the vehicles used in total:

⎝
r≤R,p≤P,t≤T λ

p
rt (ii)

branch on the customers visited in total:
⎝

p≤P, j≤V y p
i j (iii) branch on the arcs used

in total:
⎝

p≤P(y p
i j + y p

ji ) (iv) branch on the vehicles used by period:
⎝

r≤R,t≤T λ
p
rt

(v) branch on the customers visited by period:
⎝

j≤V y p
i j (vi) branch on the arcs used

by period: (y p
i j + y p

ji ) (vii) branch on consecutive arcs: in [13] and [6] it is stated
that also consecutive arcs are possible which generate non-integer solutions. In this
case we branch on those consecutive arcs. However, those branches are only rarely
necessary.

4 Results

The results are based on self generated instances for the problem. We created
instances for up to 17 customers. The characteristics of the instances are specified
by the available alternative periods and the demand of a customer.

Regarding the periods there are instances which allow (i) only a delivery at a
single period p, (ii) at periods p or p − 1 and/or (ii) at periods p, p − 1 and/or p − 2.
These instances are denoted as single, tight or wide period instances.

Regarding the demand we created instances where (i) all demands do not exceed
the capacity of a vehicle (di ≥ Q), (ii) all demands exceed the capacity of a vehicle
(di > Q) and (iii) the demands are a mix of the former ones. This is denoted by
deceeding, exceeding or mixed.

In an example instance 05dw is an instance with 5 customers, where demand
does not exceed the capacity of a vehicle and three alternative periods for delivery
are given.

Each of the instances was created for 4 different customer locations with different
time windows, denoted by testset a–d.

The results are summarized in Table 1. The basis for the comparision of the
savings is the related instance with a single period for delivery. For testinstance
07 dt (7 customers with a demand less or equal to the capacity of the vehicle and
alternative periods for a delivery in p or p − 1 there are minimal savings of 5 %
possible and maximal 15 % compared with instance 07 ds, where no alternative
periods are allowed.

Further, the results show decreasing savings from deceeding instances to exceed-
ing instances. The results show also that more alternative periods promise more
savings. This is due to the fact that the forwarder has more alternatives to schedule
an optimal transport plan.

Detailed results can be found in the appendix of this article.
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Table 1 Minimal and maximal possible savings of the traveling distance

Demand Periods Customers
5 (%) 7 (%) 9 (%) 11 (%) 13 (%) 15 (%) 17 (%)

Deceeding Tight Min 0 5 8 2 7 15 0
Max 13 15 20 20 19 22 10

Wide Min 6 11 9 2 14 21 1
Max 24 20 23 20 32 32 23

Mixed Tight Min 0 4 6 3 6 10 /
Max 9 12 15 16 14 17 /

Wide Min 4 5 10 3 7 10 /
Max 14 15 22 19 20 26 /

Exceeding Tight Min 0 0 2 4 / / /
Max 6 10 9 5 / / /

Wide Min 0 1 5 4 / / /
Max 6 13 11 6 / / /

5 Conclusion

We presented in this article a Vehicle Routing Problem which includes Time Win-
dows, Split Deliveries and alternative delivery periods. To the best of our knowledge
this combination of restrictions/relaxations was never reviewed before.

Compared with problems without alternative delivery periods, using alternative
delivery periods can achieve savings up to 32 % in our test instances. The idea of route
scheduling with alternative periods is relevant in practice when freight forwarders
have to book binding time windows at their destination

Appendix

In this section we present our solutions to the problem. We created instances with up
to 17 customers
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Table 2 Traveling distance for instances with 5–9 customers

Customers Scenario Testset a Testset b Testset c Testset d
Distance Savings Distance Savings Distance Savings Distance Savings

(%) (%) (%) (%)

5 ds 216.56 0.00 229.65 0.00 158.21 0.00 253.83 0.00
dt 187.68 13.34 229.65 0.00 158.21 0.00 223.16 12.08
dw 164.77 23.91 193.59 15.70 148.9 5.88 222.72 12.26
ms 366.5 0.00 340.59 0.00 231.15 0.00 364.75 0.00
mt 335.32 8.51 340.59 0.00 231.15 0.00 333.64 8.53
mw 314.71 14.13 304.53 10.59 221.84 4.03 333.64 8.53
es 547.14 0.00 523.39 0.00 427.59 0.00 678.17 0.00
et 546.4 0.14 523.39 0.00 427.59 0.00 637.73 5.96
ew 523.82 4.26 505.27 3.46 425.9 0.40 637.73 5.96

7 ds 336.95 0.00 241.89 0.00 270.42 0.00 326.6 0.00
dt 306.3 9.10 229.4 5.16 256.54 5.13 276.89 15.22
dw 270.13 19.83 215.79 10.79 240.19 11.18 265.22 18.79
ms 464.01 0.00 325.93 0.00 366.22 0.00 416.92 0.00
mt 434.1 6.45 310.08 4.86 352.34 3.79 367.21 11.92
mw 397.19 14.40 285.03 12.55 347.23 5.19 355.54 14.72
es 814.76 0.00 667.92 0.00 717.65 0.00 745.4 0.00
et 800.81 1.71 640.27 4.14 717.65 0.00 669.24 10.22
ew 752.83 7.60 640.27 4.14 710.3 1.02 649.28 12.90

9 ds 319.16 0.00 393.64 0.00 409.67 0.00 342.89 0.00
dt 270.56 15.23 358.53 8.92 377.58 7.83 275.25 19.73
dw 253.51 20.57 358.53 8.92 353.85 13.63 264.19 22.95
ms 607.82 0.00 622.14 0.00 713.35 0.00 544.61 0.00
mt 557.53 8.27 587.03 5.64 668.01 6.36 461.83 15.20
mw 511.05 15.92 553.14 11.09 641.91 10.01 424.8 22.00
es 889.31 0.00 938.62 0.00 1,026.37 0.00 899.98 0.00
et 807.35 9.22 918.22 2.17 979.8 4.54 849.77 5.58
ew 792.1 10.93 890.47 5.13 976.34 4.87 824.04 8.44
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Table 3 Traveling distance for instances with 11–17 customers

Customers Scenario Testset a Testset b Testset c Testset d
Distance Savings Distance Savings Distance Savings Distance Savings

(%) (%) (%) (%)

11 ds 333.42 0.00 342.21 0.00 417.31 0.00 369.88 0.00
dt 324.84 2.57 274.87 19.68 377.99 9.42 362.97 1.87
dw 296.64 11.03 274.73 19.72 354.84 14.97 362.97 1.87
ms 497.43 0.00 450.73 0.00 611.99 0.00 549.74 0.00
mt 469.51 5.61 378.31 16.07 568.13 7.17 533.88 2.89
mw 446.32 10.27 365.37 18.94 552.9 9.66 533.88 2.89
es 940.98 0.00 863.31 0.00 1,163.74 0.00 962.35 0.00
et 905.23 3.80 − 1,105.36 5.02 −
ew 905.98 3.72 − 1,093.1 6.07 −

13 ds 588.4 0.00 500.96 0.00 587.13 0.00 471.3 0.00
dt 492.46 16.31 438.46 12.48 545.1 7.16 380.24 19.32
dw 401.11 31.83 438.46 12.48 505.71 13.87 340.11 27.84
ms 978.39 0.00 920.02 0.00 968.78 0.00 863.41 0.00
mt 863.25 11.77 861.29 6.38 877.6 9.41 746.12 13.58
mw 789.41 19.32 858.37 6.70 818.2 15.54 723.11 16.25
es 1,500.27 0.00 1,370.7 0.00 1,494.91 0.00 1,195.62 0.00
et − 1,345.31 1.85 − −
ew − − − −

15 ds 514.1 0.00 606.84 0.00 448.31 0.00 647.74 0.00
dt 439.23 14.56 483 20.41 375.73 16.19 507.72 21.62
dw 408.28 20.58 425.94 29.81 356.61 20.45 439.5 32.15
ms 822.84 0.00 983.33 0.00 761.53 0.00 1,090.57 0.00
mt 744.65 9.50 820.99 16.51 642.4 15.64 923.34 15.33
mw − 773.46 21.34 612.92 19.51 802.37 26.43
es − − − −
et − − − −
ew − − − −

17 ds 511.73 0.00 564.42 0.00 536.06 0.00 534.07 0.00
dt 466.71 8.80 508.67 9.88 481.06 10.26 530.56 0.66
dw 454.45 11.19 433.85 23.13 467.72 12.75 527.24 1.28
ms − − − −
mt − − − −
mw − − − −
es − − − −
et − − − −
ew − − − −
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Welfare Maximization of Autarkic Hybrid
Energy Systems

Katja Breitmoser, Björn Geißler and Alexander Martin

Abstract Hybrid energy systems become a promising way for electrification of
off-grid rural areas. We consider an autarkic mini-grid of households equipped with
local solar panels, diesel generators and energy storage devices. Our aim is to find
an energy distribution that maximizes the global welfare of the whole system. We
present an MIQP model for the hybrid energy system optimization problem together
with some remarks on computational results.

1 Introduction

Most research on stand-alone hybrid energy systems is focused on design and
simulation rather than optimization of system control [2]. In this work, we discuss the
latter problem in terms of finding a welfare-maximal power distribution of a hybrid
energy system supplying a small community. We consider a decentralized system,
where every household has its own solar panel, battery, and an optional diesel gen-
erator as backup device. The households are connected via a mini-grid to facilitate
energy trading. The considered system is extended by an additional smart component
that is able to defer the operation times of so-called smart devices on the consumer
side to times with electricity excess.

2 Model Derivation

In this section, we derive the objective function together with the most important
constraints of our model. We consider a set N = {1, . . . , N } of households con-
nected through a grid. The set of households equipped with a diesel generator is
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denoted by ND ⊆ N . Our planning horizon is subdivided into a set I of time
intervals of length one hour. Further, we assume all households to have similar con-
sumption and production possibilities and that the number of households is high
enough such that no household has any market power.

2.1 Consumer Problem

We distinguish between profile loads and so called deferrable loads. For profile
loads, the variables xpro

n,i ∈ X
pro

n,i denote the aggregated demands of a household n

in time interval i for all n ∈ N and i ∈ I . The bounded sets X
pro

n,i ⊂ R≥0 are
the possible consumption quantities, which depend on historical load profiles but
are assumed to be given herein. The demand functions dn,i (π) : [0, π ] → X

pro
n,i

give the quantities of maximal utility for every price π ∈ [0, π̄ ] and are supposed
to be strictly decreasing, bounded and continuous. The inverse demand, i.e., the
marginal willingness to pay, is denoted by pn,i (xpro

n,i ) : X pro
n,i → [0, π ]. Then, the

gross benefit Bn,i of consumer n at time interval i is given by

Bpro
n,i (xpro

n,i ) =
xpro

n,i∫

0

pn,i (z) dz. (1)

In our model, we incorporate piecewise linear approximations of the demand func-
tions by means of the so-called incremental method [4] and are thus able to give
a closed-form expression of the gross benefit. Suppose that all consumers get the
same price, then let (x̄n,i,h, π̄h), with h ∈ H , denote the consumption bundles at
the breakpoints of the approximation of the demand function dn,i . Then, for each
n ∈ N and i ∈ I the demand together with the marginal willingness to pay is
modeled by

xpro
n,i = x̄n,i,1 +

|H |−1∑

h=1

(x̄n,i,h+1 − x̄n,i,h) δi,h, (2a)

πi = π̄1 +
|H |−1∑

h=1

(π̄h+1 − π̄h) δi,h, (2b)

1 ≥ δi,1 ≥ zi,1 ≥ · · · ≥ zi,|H |−2 ≥ δi,|H |−1 ≥ 0, (2c)

zi,h ∈ {0, 1}, for h = 1, . . . , |H | − 2. (2d)

Thus, we obtain a unique representation of each xpro
n,i ∈ X

pro
n,i in terms of the addi-

tional variables δi = (δi,1, . . . , δi,|H |). A similar derivation of the gross benefit,
according to a piecewise linear demand function, has been given in [5]. In our case,
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Fig. 1 Gross benefit of
consumer n at time interval i
for a consumption of x∗

n,i and
price π∗

i

the gross benefit, illustrated in Fig. 1, of consumer n at time interval i is given by

Bpro
n,i (δi ) = (x̄n,i,h+1 − x̄n,i,h) (δi,h − 1) π̄h

+ 1

2
(x̄n,i,h+1 − x̄n,i,h) (π̄h+1 − π̄h) (δ2

i,h − 1) + x̄n,i,|H | π̄|H |. (3)

In contrast to profile loads, deferrable loads are not time dependent but rather have

a specified run time and energy demand Xdef
n,|I | ∈ [Xdef

n , X
def
n ]. The smart component

must decide at which point in time, within a predefined time window [in, i n] ⊆ I ,
such a consumer is turned on. By xdef

n,i we denote the amount of power used for the
smart devices of household n in time interval i for all n ∈ N and i ∈ I . The set of
possible consumption quantities is described in terms of binary variables son

n,i and sn .
The variables sn indicate whether the energy demand of household n is met within
the planning horizon, while son

n,i = 1, if and only if voltage is fed to the deferrable
loads of household n during time interval i , i.e.,

xdef
n son

n,i ≤ xdef
n,i ≤ xdef

n son
n,i , ∀n ∈ N ∀i ∈ I , (4a)

Xdef
n,i = Xdef

n,i−1 + xdef
n,i , ∀n ∈ N ∀i ∈ I , (4b)

Xdef
n sn ≤ Xdef

n,|I | ≤ X
def
n sn, ∀n ∈ N , (4c)

son
n,i , sn ∈ {0, 1}, ∀n ∈ N ∀i ∈ I . (4d)

The gross benefit Bdef
n (Xdef

n,|I |) obtained from the satisfaction of demands from
deferrable loads of each household n ∈ N is linear in the amount of energy con-

sumed for these loads over the whole planning horizon if Xdef
n,|I | ∈ [Xdef

n , X
def
n ] and

zero otherwise.
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2.2 Producer Problem

The variables ysol
n,i ∈ X sol

n ⊆ R≥0 denote the quantity of power produced by the solar
panel of household n in time interval i for all n ∈ N and i ∈ I . The corresponding
cost functions Csol

n (ysol
n,i ) are supposed to be affine.

Next, we introduce a variable ln,i ∈ [0, lmax
n ] for the battery charge level of

household n in time interval i for all n ∈ N and i ∈ I . The capacity of the battery
in household n is denoted by lmax

n . Additionally, we assume fixed initial battery
charge levels ln,0 and lower bounds lmin

n for the battery charge levels at the end of the
planning horizon to be given. The variable l+n,i ∈ [0, l+n,max] denotes the power used

to charge the battery and l−n,i ∈ [0, l−n,max] denotes the power withdrawn from the
battery of household n during time interval i . Discharging a battery is considered as
a production facility with affine cost functions Cbat

n (l−n,i ). To properly model battery
charge levels we add the following constraints:

ln,i = ln,i−1 + l+n,i − l−n,i , ∀n ∈ N ∀i ∈ I , (5a)

l+n,i ≤ l+n,max bn,i , ∀n ∈ N ∀i ∈ I , (5b)

l−n,i ≤ l−n,max (1 − bn,i ), ∀n ∈ N ∀i ∈ I , (5c)

bn,i ∈ {0, 1}, ∀n ∈ N ∀i ∈ I . (5d)

Finally, for the diesel generators, we assume linear variable costs with non-sunk fixed
costs Cgen

n (sgen
n,i , ygen

n,i ) = cgen
n,v ygen

n,i + cgen
n, f sgen

n,i as in [1]. Here, the binary variables

sgen
n,i ∈ {0, 1} are used to decide whether the diesel generator of household n ∈ ND

is used for production during time interval i . The amount of generated power is
denoted by ygen

n,i ∈ X
gen

n ⊆ R≥0. The non-sunk fixed costs and the variable costs of

the generators are denoted by cgen
n, f , cgen

n,v > 0, respectively.
In general, the supply correspondence, i.e., the set of profit maximizing production

quantities, without battery discharge, for household n ∈ ND and given price π∗
i at

time interval i ∈ I is given by

arg max π∗
i (ysol

n,i + ygen
n,i ) − Csol

n (ysol
n,i ) − Cgen

n (sgen
n,i , ygen

n,i )

s.t. ysol
n,i ∈ X sol

n ,
(

ygen
n,i

sgen
n,i

)
∈ X

gen
n .

(6)

Since any demand d(π∗) ∈ (0, ygen
max) would potentially lead to infeasibility of the

overall model, using a supply function is not appropriate for cost structures with non-
sunk fixed costs as illustrated in Fig. 2. In order to allow the whole set of profitable
outputs instead, we incorporate the profit maximization problem underlying (6) into
our model.
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Fig. 2 Diesel generator
costs: The corresponding
production function is drawn
with thick lines. Note, that for
the price π∗ the producer is
indifferent between producing
either ymax or nothing at all.
The area, where production is
profitable, is depicted in gray

2.3 Welfare-Maximal Power Distribution

The objective of our model is to maximize the global welfare of the whole community.
That is the summed gross benefits of the loads minus the production costs:

max
∑

n∈N

∑

i∈I
Bpro

n,i (δi ) +
∑

n∈N
Bdef

n (Xdef
n,|H |) −

∑

n∈ND

∑

i∈I
Cgen

n (sgen
n,i , ygen

n,i )

−
∑

n∈N

∑

i∈I

(
Csol

n (ysol
n,i ) + Cbat

n (l−n,i )
)

, (7)

subject to the constraints from above. Due to the gross benefit of the profile loads,
the objective function is (convex) quadratic. Additionally, we have to add a clearing
condition:

∑

n∈N

(
xpro

n,i + xdef
n,i + l+n,i

)
=

∑

n∈N

(
ysol

n,i + l−n,i

)
+

∑

n∈ND

ygen
n,i , ∀i ∈ I . (8)

3 Results and Conclusions

We performed computational experiments on several test instances with 3–200
households, i.e., |N | ∈ {3, 5, 15, 50, 100, 200} and |I | ∈ {24, 48, 72, 96}, where
every fifth household is equipped with a diesel generator. We are thankful to the
Siemens AG, for providing us with load and production profiles, see also [3]. All
computations have been carried out with a time limit of 6 h on a computer with a
6-Core AMD Opteron 2435 processor with 2.6 GHz and 64 GB RAM. As MIQP-
solver we used Cplex 12.5.0.0, which has been instructed to terminate, as soon as
the relative optimality gap falls below 5 %. From the results we observed that only
some of the largest instances, with 200 households and 96 time intervals, hit the time
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Fig. 3 Power distribution of the household with diesel generator

limit, whereas smaller instances, with up to 15 households, can reliably be solved
within a few minutes.

Figure 3 illustrates the results for the single household, which is equipped with a
diesel generator, from the solution of an instance with |N | = 3 and |I | = 48. To
meet all demands, the power generated by the solar panels is not sufficient. Thus, the
diesel generator runs once a day.

The power distributions of the two other households are basically similar, i.e., the
deferrable loads are operated by the diesel generator or the excess power from the
solar panel. The prioritization of the loads depends on the given demand and gross
benefit functions. Besides, these functions ensure that every household receives as
much energy as it is willing to pay.

Until now, our model does not account for compensation payments for households
producing for other ones. For instance, the Shapley Value [6] defines fair and unique
compensation payments for every participant. Consequently, future research could
focus on an incorporation of the Shapley Value into our model. Beyond, polyhedral
studies could help to close the gaps earlier and speed up computation.
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Determining Optimal Discount Policies
for a Supplier in B2B Relationships

Viktoryia Buhayenko and Erik van Eikenhorst

Abstract This research studies which discounts a supplier needs to offer to give
incentive to his customers to change their order patterns in a way that minimizes
the supplier’s total cost. Savings for the supplier arise from reduction of set up
and inventory cost. Customers also profit from this since the total discount offered
is greater than their total cost increase. This research assumes zero or low price
elasticity of the demand, thus lower prices do not result in greater total demand, they
only affect when orders will be placed. A heuristic solution is given by separating
the problem into when orders should be placed and how much discount should be
offered to make this order pattern the cheapest for the buyer and includes three steps.

1 Introduction

Many articles in the field of operations management have analyzed ordering decisions
while quantity discounts are in place. The problem of when and how much discount
to offer is a problem that has received less attention, although it is of equally great
practical importance as how to act on a given discount.

The problem of an optimal quantity discount schedule has first been analysed from
supplier’s perspective by Monahan [6]. He examines the situation with a sole cus-
tomer and assumes that customer’s demand is independent of discounts. An all-unit
discount schedule and lot-for-lot policy are assumed. His model has been general-
ized and improved by Lee and Rosenblatt [5] who add a constraint on the amount
of discount offered and drop the assumption of a lot-for-lot policy. The problem is
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further developed in the article by Buscher and Lindner [1] who discover that the
proposed algorithm can end up with an infeasible solution and modify it to avoid
infeasibility. Rosenblatt and Lee [7] introduce the inventory holding costs of the sup-
plier into the model and assume a linear discount schedule which results in a more
equitable distribution of benefits. They also assume that the buyer tries to optimize
his own objective function and doesn’t always change his order size according to the
supplier’s desire.

The research is continued by Lal and Staelin [4] who extend their research to
multiple buyer groups of different sizes. Chakravaty and Martin [2] also develop
an algorithm for homogeneously grouped buyers. The problem is further analyzed
assuming both all-units and incremental discounts with multiple break-points by
Chen and Robinson [3] who research the situation when customers are heteroge-
neous only according to their demand. They use Pareto-type curve to describe the
heterogeneity. The same discount policy is offered to all the customers. In all the
papers mentioned above EOQ assumptions are used.

This research differs from the approaches stated above in the following way:

• dynamic demand and finite time horizon;
• a number of heterogeneous customers are considered, who are different not only

in their demand but in their holding and order costs;
• discounts are different for every single customer;
• discounts can vary from period to period.

2 Problem Description

This research deals with the question of which discounts a supplier needs to offer to
a set of heterogeneous to maximize his profit.

The supplier has a possibility to regulate the demand using discounts—to increase
the demand in periods when the product is produced and to lower the demand in peri-
ods with no production of the product. Savings for the supplier arise from reduction
of set up and inventory cost, but the buyer gets extra inventory cost. The discount
offered by the supplier should be large enough to make the buyer order anyway at
the period wanted by the supplier.

The major assumptions of this study are the following:

• Monopolistic situation of the supplier or very high barriers for switching suppliers
so that price levels of other producers need not be considered here.

• Perfect information about the demand and cost of each buyer.
• Buyers and the supplier have no capital or warehouse restrictions.
• Buyers are considered to be rational in their reaction to the discount by choosing

the lowest cost option available always.
• Buyers have full information in advance about future discounts.
• Simple discount in the form of a single price reduction.
• Single item case.
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In the researched case, the total demand remains the same; there is only a question
of when this demand is ordered and produced. This can appear, for example, when
buyers are heavy equipment manufacturers and have stable demand for spare parts
which are only a minor component of the final product [4].

3 Methodology and Solution Procedure

Exact solutions to the problem are very hard to achieve and would require an expo-
nential amount of binary variables, representing each possible order schedule, for
each customer.

Therefore, a heuristic solution approach has been developed which involves a
separation between the problem when production and orders should take place, and
the amount of discount that has to be offered to each costumer in each period to make
them order at the periods indicated.

The following parameters are used while defining the algorithm:

dit demand for every customer i(i = 1, . . . , n) in every period t. Demand of the
supplier is the summation of his customers’ orders in that period;

si fixed order processing/set up costs for every customer i and the supplier i = 0;
hit carrying charge for each customer i and the supplier in each period t;
ci initial costs for every customer i and the supplier i = 0;

We operate with the following decision variables:

Hit inventory for every customer i and supplier i = 0 in every period t;
Sit binary variable for every customer i and supplier i = 0 in every period t, 1, when

the order/set up is made, 0 otherwise;
Pi total amount of compensation for every customer i;

Qit order quantity for the customer i and the supplier in every period t.

The solution procedure includes the following three steps:
STEP 0. The problem for each customer and the supplier is solved using the

Wagner-Whitin algorithm [8]. Initial order and production patterns are obtained on
this stage. We also get initial costs ci for every customer i.

STEP 1. Supplier’s costs and compensations offered by the supplier to the cus-
tomers are minimized. The compensations are a lump sum that would compensate the
customer for ordering at the periods requested and represent increase in customers’
costs. Minimizing compensations we in the end minimize customers’ costs. Hence,
the model offered below modifies initial order and production patterns ensuring both
supplier and customers’ cost minimization.

Objective (1) is minimized for the supplier:

Minimize
m∑

t=1

(h0tH0t + s0S0t) +
n∑

i=1

Pi, (1)
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subject to
m∑

t=1

(hitHit + siSit) − Pi ≤ ci, for ∀i > 0, (2)

Constraint (2) ensures that there is no cost increase for any customer i.
There are two additional constraints (3) and (4) for the customers:

m∑

u≥t

diuSit − Qit ≥ 0, for ∀i > 0,∀t, (3)

Qit + Hit−1 − Hit = dit, for ∀i > 0, ∀t, (4)

For the supplier we have constraints (5) and (6):

n∑

k=1

m∑

u≥t

dkuS0t − Q0t ≥ 0, for ∀t, (5)

Q0t + H0t−1 − H0t =
n∑

k=1

Qkt, for ∀t, (6)

Constraints (4) and (6) ensure the continuity of the flow.
Constraints (3) and (5) link binary variables Sit with continuous variables Qit

forcing Sit to take value 1, when Qit ≥ 0, and 0, when Qit = 0.
STEP 2. Discounts offered to achieve the order patterns determined at the previous

step are calculated now.
A new variable accounting for a discount for every customer i in period t is

introduced. An equation is solved for every customer i for every period t providing
that a discount is introduced in this period. The left-hand side represents the difference
between inventory and purchasing costs of the initial and final order patterns where
the unit price is unknown; the right-hand side is the increase in costs while changing
these patterns.

This is however a heuristic solution, because the total discount that has to be
offered to make it cheaper than all other order patterns is larger than the increase in
cost which is the compensation assumed in Step 1.

4 Numerical Example

The data for the considered numerical example was generated randomly for the
problem size of 5 customers and 20 periods. We assume initial inventory to be equal
to 0 in this example.
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Fig. 1 Difference between the initial and final order/production patterns. a Initial order pattern.
b Final order pattern

Figure 1 shows initial and final order and production patterns after implementation
of the first two steps of the procedure described above. It displays the period in which
the order/set up is done. The first row (customer 0) represents set up schedules of the
supplier.

It can be noticed that in the initial pattern customers’ orders rarely coincide with
production periods. Customer 3 orders almost in every period. Customers 2 and 4
order very often as well. Despite rather low frequency of orders of customers 1 and
5 their order patterns are not synchronized with production patterns.

In the final pattern orders of customers 1, 4 and 5 totally match production periods.
Customers 2 and 3 still order in-between production periods but their orders became
significantly less frequent.

Finally at Step 2 the minimum discount needed in each order period is calculated so
that the order pattern of Step 1 becomes the cheapest order pattern for this customer. It
is assumed that the regular price is 100 per item. The resulting prices minus discounts
for each customer are given in Table 1. Periods where no discount is introduced are
omitted.

Result for the supplier is summarized in Table 2. Due to the implemented discount
pricing schedule the supplier’s profit was improved by 10,315.
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Table 1 Discount schedule and total discount for every customer

Total discount Price
1 3 4 5 7 9 12 14 16 19

1 2,290.37 92.24
2 7,286.66 95.08 95.67 90.42 99.90 86.55 99.45
3 11,107.55 96.92 98.34 97.70 95.42 89.37 99.06 97.03 86.02 95.13
4 13,908.61 82.20 86.98 97.60 98.78
5 212.07 97.81

Table 2 Result for the
supplier

Original production and inventory cost 225,780
Cost reduction due to coordination of orders 45,120
Sales revenue lost because of discounts offered 34,805
Additional profit 10,315

5 Conclusions and Further Research

The supplier has a possibility to regulate the demand—to increase it in periods when
the product is produced and to lower it in periods with no production of the product.

Savings for the supplier arise from reduction of inventory costs and sometimes
reduction of set up costs.

The customer gets extra inventory costs which are compensated for with the
discount offered by the supplier which should be large enough to make the customer
order at the period wanted by the supplier. The customer makes a profit since the
total discount is bigger than his increase in costs.

Further research will include transition from discount in form of a simple price
reduction to all-units discount, extension of the problem to the multiple item case
and introduction of a capacity constraint.
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Exact and Compact Formulation
of the Fixed-Destination Travelling Salesman
Problem by Cycle Imposement Through Node
Currents

Mernout Burger

Abstract The Travelling Salesman Problem (TSP) has been studied extensively for
over half a century, but due to its property of being at the basis of many scheduling
and routing problems it still attracts the attention of many research. One variation of
the standard TSP is the multi-depot travelling salesman problem (MTSP) where the
salesmen can start from and return to several distinct locations. This article focusses
on the MTSP with the extra restriction that each salesman should return to his home
depot, known as the fixed-destination MTSP. This problem (and its variations such
as the multi-depot vehicle routing problem) is usually formulated using three-index
binary variables, making the problem computationally expensive to solve. Here an
alternative formulation is presented using two-index binary variables through the
introduction of a limited amount of continuous variables to ensure the return of the
salesmen to their home depots.

1 Introduction

The TSP has been a topic of research for over six decades [1], but it still attracts the
attention of researchers due to its challenges and wide applicability. Many variations
of the TSP have been introduced to model a real-world problem, such as the vehicle
routing problem [12] and its many variations [8].

In this article we focus on the formulation of the TSP with multiple depots, were
each salesman should return to his home depot. When considering scheduling and
routing problems with multiple depots where each entity (e.g. a salesman or vehicle)
should return to the home depot, we talk about fixed-destination problems [2]. Such
problems are often formulated as a mixed-integer linear program (MILP) using a
three-index formulation of binary variables
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Fig. 1 A fixed-destination solution using a 3-index formulation for 3 depots and 9 cities

xi jk =
{

1 if location i precedes location j directly in a tour started at depot k

0 otherwise
(1)

resulting in C2D binary variables for a problem with C cities and D depots. This
problem can be depicted by a layered graph as shown in Fig. 1, where each depot
has a copy of all city nodes in a separate layer. When solving a MILP using standard
solvers, the computation time is largely dependent on the number of integer (binary)
variables that are used to represent the problem. Therefore, it is beneficial to try to
reduce the number of binary variables.

Recently an alternative formulation using two-index binary variables has been
presented in [3] using a multi-commodity formulation. The set of depot nodes is
cloned to create sink and source nodes for the commodity flows. Using D continuous
variables (representing the commodities) at each of the C + 2D locations (cities plus
depots) it is ensured that a flow of commodities starting at a (source) depot will end
at the associated copied (sink) depot, thereby ensuring fixed-destination solutions.

In this article an alternative two-index formulation is presented that requires a
little less binary variables and significantly less continuous variables as compared to
the multi-commodity formulation. There is no need to copy the depot nodes, and only
one additional continuous variable per location is needed, resulting in an increase
of C + D continuous variables compared to the (non-fixed destination) TSP. These
continuous variables can be seen as node currents, inspired by the subtour elimination
constraints using node potentials that were introduced by Miller et al. [10]. This
formulation has been used for solving scheduling problems for micro-ferries [5]
and harvesters [6]. Here we will discus the method in detail for the basic MTSP to
make readers aware of the possibility to use this formulation as the basis of other
multi-depot scheduling and routing problems.
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2 Fixed-Destination Travelling Salesman Problems

We will discuss the TSP with multiple depots, where each salesman should return to
its home depot at the end of his tour. A novel formulation for this fixed-destination
MTSP using two-index decision variables will be presented next.

2.1 Node Potentials and Currents

The inspiration of this approach comes from the subtour elimination constraints of
Miller et al. [10] using node potentials. To avoid cycles in (a part of) a graph one
can assign continuous variables to the nodes representing a potential in an electric
circuit, and add constraints on their values to avoid subtours. We reckoned that if
there are node potentials in a network, and the nodes are connected by arcs, there
should also be arc currents flowing between the nodes. Since for a solution to the
MTSP each node has exactly one incoming and one outgoing arc (see Fig. 2) this
current can be seen as a property of the nodes (instead of the arcs). We will present a
methodology that can be seen as the dual to the MTZ subtour elimination constraints;
cycle imposement constraints using node currents.

2.2 Description of the Problem

Consider a problem with D depots and C cities with sets D and C defined as

D = {1, . . . ,D}, C = {D + 1, . . . ,N}, N = D ∪ C , (2)

where N = D + C denotes the total number of locations represented by the set N .
This problem can be depicted by a graph with N nodes, where associated with each
possible directed arc (i, j) we define a decision variable

xi j =
{

1 if there is a connection from node i to node j,

0 otherwise.
(3)

resulting in a total of C2 binary variables in the MILP formulation.
As shown in Fig. 2 the graph can be split into two subgraphs: the nodes in D are

associated with the depots and the nodes in C are associated with the cities. From
each of the depots we want one salesman1 to travel towards a city (represented by an

1 It is possible to formulate this problem with multiple salesmen per depot as well. To avoid
distraction from the main purpose of this section the problem is kept as simple as possible.
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arc from D to C ) and returning to his home depot at the end of the tour (represented
by an arc from C to D).

Although cycles in the set C must be avoided to obtain a correct solution, within
the set N we want exactly D cycles; one associated with each of the depots in D (see
Fig. 2). To obtain such a solution we introduce N continuous variables ki that can
be seen as the dual to the node potentials ui ; they can be considered node currents.
To impose the existence of D cycles in the graph we give each depot node an unique
value and propagate it along the path.

2.3 Formulation of the Problem

The fixed-destination MTSP can be formulated as the mixed-integer linear program2

minimise
∑

i∈N

∑

j∈N
ci j xi j (4a)

subject to
∑

j∈C
xhj = 1,

∑

i∈C
xih = 1 ∀ h ∈ N (4b)

ui − u j + Nxi j ≤ N − 1 ∀ i, j ∈ C (4c)

kd = d ∀ d ∈ D (4d)

ki − k j + (D − 1)xi j ≤ D − 1 ∀ i, j ∈ N (4e)

xi j ∈ {0, 1} ∀ i, j ∈ N (4f)

where (4a) is the objective function representing the total travel distance, (4b) are
the assignment constraints ensuring that each location is visited once and only once,
and (4c) are the subtour elimination constraints. Using (4d) each variable kd of the
depot nodes is given a unique value, and (4e) propagate the value ki = d along cities
i in the path of depot d. Note the strong resemblance to (4c); constraints (4c) might
appear to be weaker versions of the subtour elimination constraints, but they actually
impose the existence of D cycles (one for each depot) in the set N as explained next.

2.4 Node Current Propagation in Detail

In order to show that inequalities (4e) indeed enforce fixed-destination solutions
(in combination with the assignment constraints (4b) and the subtour elimination
constraints (4c)), we start by analysing the inequalities.

2 To see the relation between node potentials and node currents more clearly the original subtour
elimination constraints from [10] are used in (4c). For actual implementation these constraints can
be made tighter using the formulations presented in [7, 11].
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CD k1 = 1

k2 = 2

k3 = 3

3

21

1 3

33

2

1

Fig. 2 Constraints (4e) ensure the existence of D cycles. This figure shows an example solution to
the problem with D = 3 depots and C = 9 cities

When there is no direct path from location i to j we have xi j = 0 and hence

ki − k j ≤ D − 1. (5)

Since the cities will be associated to a depot with index number 1 to D, we expect
the variable ki to have a value in between 1 and D due to the equality constraints
(4d). Therefore, inequality (5) is non-restrictive since ki ≤ D and k j ≥ 1. When
xi j = 1 it means that the path of a salesman goes from location i to j directly, and

ki − k j + D − 1 ≤ D − 1 ⇔ ki ≤ k j . (6)

Hence, the value of k j will be non-decreasing along the path. Since these inequalities
should also hold for arcs (c, d) from a city c to depot d—and the value kd of the
depot is fixed by (4d)—a path that originates from depot d cannot return to a depot
with a lower index number.

Now consider depot D. Since ki ≤ k j along each path we have ki ≥ D along the
path originating from this depot. Due to the assignment constraints (4b) each node
will have exactly one incoming arc and one outgoing arc, hence the path can only
end in a depot node (otherwise there will be a city node with two incoming arcs).
The only depot node d that can satisfy the constraint kd ≥ kc ≥ D is depot d = D.
Constraints (4d) and (4e) impose the existence of a cycle containing node D, and
since D ≤ kc ≤ kd = D we have kc = D along the path of depot D.

Next consider depot node D−1. Along the path of this depot we have kc ≥ D−1,
and since kd ≥ kc ≥ D− 1 should hold when going from city c to depot d, the index
number of the depot should be at least D − 1. Since we know that depot D already
has an incoming arc [and only one is allowed due to (4b)] the path started at depot
D−1 can only return to depot D−1. Also kc = D−1 along the path of depot D−1.

Continuing this reasoning one can see that each depot d has a path that returns
to depot d, and kc = d along the path associated with depot d. Hence we have a
solution with (at least) D cycles. Due to the subtour (cycle) elimination constraints
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(4c) it is ensured that there are no cycles inC ; exactly D cycles exist in the graph, each
associated with one of the depots. This resembles the solution to the fixed-destination
MTSP, since each path returns to its home depot.

3 Conclusions

In this article we have demonstrated the use of node currents and cycle imposement
constraints to formulate the fixed-destination travelling salesman problem as a mixed-
integer linear program using two-index binary variables. The use of two-index formu-
lations over three-index formulations results in shorter computation times and lower
memory use when solving the problems using standard MILP solvers. Although
specialised algorithms might outperform the standard MILP solvers, it is believed
that the presented formulation might provide great benefits in solving variations of
the multi-depot travelling salesman problem (such as the micro-ferry scheduling
problem [5] and the multiple harvester routing problem [6]) for which specialised
algorithms are (not yet) available.
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0–1 Multiband Robust Optimization

Christina Büsing, Fabio D’Andreagiovanni and Annie Raymond

Abstract We provide an overview of new theoretical results that we obtained while
further investigating multiband robust optimization, a new model for robust opti-
mization that we recently proposed to tackle uncertainty in mixed-integer linear
programming. This new model extends and refines the classical Γ -robustness model
of Bertsimas and Sim and is particularly useful in the common case of arbitrary asym-
metric distributions of the uncertainty. Here, we focus on uncertain 0–1 programs and
we analyze their robust counterparts when the uncertainty is represented through a
multiband set. Our investigations were inspired by the needs of our industrial partners
in the research project ROBUKOM [2].

1 Introduction

Over the last years, professionals dealing with real-world optimization problems have
increased their interest in embedding uncertainty in their decision process, showing
particular attention to tractable robust optimization (RO) techniques. The goal of RO
is to find an optimal solution that is deterministically protected against the worst
coefficient deviations specified by an uncertainty set (we refer the reader to [3, 4]
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for a comprehensive introduction to theory and applications of RO). Among the
RO models proposed over the years, the Γ -robustness model of Bertsimas and Sim
(Γ -Rob) [5] was a breakthrough in the development of tractable robust counterparts
and has without doubt been the most successful and widely applied model. However,
as pointed out by its authors, the assumptions at the basis of Γ -Rob may sensibly
limit the possibility of modeling arbitrary-shaped distributions of the uncertainty that
are commonly found in real-world problems, and lead to overconservative robust
solutions (for a more detailed discussion of the limits of Γ -Rob, we refer the reader
to [2, 6, 7]). Starting with the work [6], we have studied the possibility of refining
Γ -Rob by exploiting a very simple operation: partitioning the single deviation band
into multiple bands, each with its own parameters. This operation is at the basis of
the general theoretical study that we have started to fill the gap of knowledge about
the use of a multiband uncertainty set in RO.

2 Multiband Uncertainty

We consider a generic uncertain mixed-integer linear program (MILP):

max
∑

j≤J

cj xj s.t.
∑

j≤J

aij xj ∞ bi , i ≤ I = {1, . . . , m},

xj ≥ 0 , j ≤ J = {1, . . . , n}, xj ≤ Z
+, j ≤ JZ ∗ J.

where we assume without loss of generality that uncertainty only affects the coef-
ficients aij. We model the uncertainty through a multiband uncertainty set SM , a
natural generalization of Γ -Rob (see [6, 7] for a comparison between the two mod-
els). Specifically, we assume that for each coefficient aij we are given its nomi-

nal value aij and maximum negative and positive deviations dK−
ij , dK+

ij from aij.

The actual value aij then lies in the interval [āij + dK−
ij , āij + dK+

ij ]. We derive

the generalization of Γ -Rob by partitioning the single deviation band [dK−
ij , dK+

ij ]
for each coefficient aij into K bands, defined on the basis of K deviation values:

−√ < dK−
ij < · · · < d−1

ij < d0
ij = 0 < d1

ij < · · · < dK+
ij < +√. We use these

deviation values to define: (1) a set of positive deviation bands, such that each
band k ≤ {1, . . . , K+} corresponds to the range (dk−1

ij , dk
ij]; (2) a set of negative

deviation bands, such that each band k ≤ {K− + 1, . . . ,−1, 0} corresponds to the
range (dk−1

ij , dk
ij] and band k = K− corresponds to the single value dK−

ij (note that
the interval of each band except k = K− is therefore open on the left). With a
slight abuse of notation, we denote a generic deviation band by the index k, with
k ≤ K = {K−, . . . ,−1, 0, 1, . . . , K+} and the corresponding range by (dk−1

ij , dk
ij].

In order to complete the description of the uncertainty set, for each band k ≤ K ,
we introduce two values lk, uk ≤ Z

+: 0 ∞ lk ∞ uk ∞ n, which respectively represent
a lower bound and an upper bound on the number of deviations that may fall in k.



0–1 Multiband Robust Optimization 91

As additional assumptions, we do not limit the number of coefficients that may take
their nominal value, i.e. u0 = n, and we impose that

∑
k≤K lk ∞ n, to ensure the

existence of a feasible realization of the coefficient matrix.
The robust counterpart of the program MILP can be defined by inserting in each

constraint i ≤ I the term DEVi(x,SM) that represents the maximum deviation allowed
by the multiband uncertainty set for a solution x , (i.e., a robust constraint looks like∑

j≤J aij xj + DEVi(x,SM) ∞ bi). The term DEVi(x,SM) is equal to the optimal
value of a 0–1 linear maximization program that finds the worst coefficient dis-
tribution over the deviation bands for x (see [6] for details). The resulting robust
counterpart is thus non-linear. However, using duality theory, we proved that this
problem can be reformulated as a compact and linear problem, as stated in the fol-
lowing theorem (we refer the reader to [6, 7] for the formal complete statements and
proofs of the theorems presented in this section).

Theorem 1 [Büsing and D’Andreagiovanni, 2012] The robust counterpart of MILP
under the multiband uncertainty set is equivalent to a compact mixed-integer linear
program, which includes K · m + n · m additional variables and K · n · m additional
constraints.

In the case of large uncertain programs, the increase in size of the robust counterpart
may represent an issue for obtaining a robust optimal solution quickly. We have
thus investigated the possibility of developing a cutting-plane algorithm based on
the separation of robustness cuts, that is, cuts that impose robustness. The basic
question is simple: we are given a solution to the considered problem and we desire
to check whether the solution is robust and feasible. If this is not the case, we separate
a robustness cut and we add it to the problem, solving the new resulting problem.
This step can be iterated as in a typical cutting-plane approach, until no robustness
cut is needed and thus the generated solution is robust and optimal. In the case of
Γ -Rob, the separation of a robustness cut is trivial and just consists in sorting the
deviations and choosing the worst Γ > 0 [11]. This straightforward approach is not
valid for multiband uncertainty, but we proved anyway that the separation can be
done efficiently (see [6, 7] for the formal statement and the detailed description of
how the min-cost flow instance is built):

Theorem 2 [Büsing and D’Andreagiovanni, 2012] Under multiband uncertainty,
the separation of a robustness cut for a constraint of MILP can be done in polynomial
time by solving a min-cost flow problem.

3 Multiband Robustness for 0–1 Programs

We now focus attention on the following 0-1 linear program:

max
∑

j≤J

cj xj (BP)

xj ≤ X ∗ {0, 1}n j ≤ J,
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in which the cost coefficients cj are supposed to be non-negative (important opti-
mization problems, like the shortest path problem and the minimum spanning
tree problem, present this structure). Furthermore, we assume that the cost coef-
ficients are subject to uncertainty and that uncertainty is modeled by a multiband
set as follows: for each cost coefficient, we are given the nominal cost c̄j and a
sequence of K+ + 1 deviation values dk

j , with k ≤ K = {0, . . . , K+}, such that

0 = d0
j < d1

j < · · · < dK+
j < √ (we remark that in contrast to the previous section,

we consider here without loss of generality only positive deviations). Through these
values, we define: (1) the zero-deviation band corresponding to the single value
d0

j = 0; (2) a set K+ of positive deviation bands, such that each band k ≤ K\{0}
corresponds to the range (dk−1

j , dk
j ]. Finally, we introduce values lk, uk ≤ Z, with

0 ∞ lk ∞ uk ∞ n, to represent the lower and upper bounds on the number of
deviations falling in each band k ≤ K .

As BP is a special case of MILP, by Theorem 1, the compact and linear robust
counterpart of BP is (see [7] for details):

max
∑

j≤J

cj xj +
∑

k≤K

θk wk +
∑

j≤J

zj (Rob-BP)

wk + zj ≥ dk
j xj j ≤ J, k ≤ K (1)

wk, zj ≥ 0 j ≤ J, k ≤ K (2)

xj ≤ X ∗ {0, 1}n j ≤ J ,

in which we note (i) the presence of additional non-negative variables (1); (ii) the
presence of additional constraints (1); (iii) the insertion of additional terms in the
objective function. The coefficients θk ≥ 0 constitute the so-called profile of the
multiband uncertainty set and are equal to the number of coefficients that must fall
in the band k to maximize the deviation (the values θk are derived from the values
lk, uk exploiting domination between feasible realizations of the uncertainty set [7]).

A robust optimal solution can be computed by solving Rob-BP or by adopting
the cutting-plane approach based on robustness cuts and presented in the previous
section. Anyway, as an alternative to these two general approaches, we proved the
following special result (see [7] for details):

Theorem 3 The robust optimal solution of BP with cost uncertainty modeled through
a multiband set can be computed by solving a polynomial number of nominal
problems BP with modified objective function, if the number of bands is constant.
Tractability and approximability of BP are maintained.

In addition to these results, we characterized a new family of valid inequalities for
the robust counterpart of BP, by adopting a proof strategy similar to that of Atamtürk
for Γ -Rob [1] (see [10] for the proof).

Proposition 1 For any k ≤ K and subset T = {j1, j2, . . . , jt} ∗ J with 0 = dk
j0

∞
dk

j1
∞ · · · ∞ dk

jt
, the following inequality is valid for problem (Rob-BP):



0–1 Multiband Robust Optimization 93

∑

jl≤T

(
dk

jl
− dk

jl−1

)
xjl ∞ wk +

∑

j≤T

zj

Additionally, if 0 = dj0 < · · · < djt , then the previous inequalities are
facet-defining.

4 Robust Wireless Network Design

We used our new results about uncertain 0–1 programs in a set of preliminary exper-
iments considering a central problem in wireless network design: the power assign-
ment problem (PAP). The PAP considers the design of a wireless network made up
of a set of transmitters T providing a telecommunication service to a set of users
U. It essentially consists of setting power emissions of the transmitters, while mini-
mizing a function of emitted powers. For an exhaustive introduction to the wireless
network design problem and to the PAP, we refer the reader to [8, 12]. The PAP has
recently regained attention, due to ongoing switches from analog to digital television
that have taken place in many countries over the last years. Here, we consider a
variant of the PAP that has been recently brought to our attention from our partners
in former industrial cooperations: instead of minimizing the simple summation of
the power emission, we multiply the power of each transmitter by the price paid
to buy the power (big network operator can indeed profit from special energy fees,
which usually vary from transmitter to transmitter). This variant of the PAP can
be modeled as follows: we use a vector of non-negative continuous variables p to
represent the power emissions of transmitters. Then we introduce (1) a vector π to
represent the price of a energy unit for each transmitter, (2) a matrix A to repre-
sent signal attenuation for each transmitter-user pair, (3) a vector δ to represent the
minimum power that guarantees service coverage for a user (signal-to-interference
threshold). Using these elements, the PAP can be written in the following matrix
form: minp { π ∩p : Ap ≥ δ, p ≥ 0|U|}. Because of the presence of the attenuation
coefficients that may vary in a very wide range, this formulation is known to lead to
numerical instability in the solution process, which may greatly reduce the effective-
ness of commercial optimization solvers. As a remedy, in our computational study,
we have considered a tighter pure 0–1 formulation, the so-called power-indexed for-
mulation, based on the use of discrete power variables and of a special family of
generalized upper bound cover inequalities (see [8, 9] for details).

The energy price coefficients of the objective function are supposed to be subject
to uncertainty: a big wireless operator can indeed establish energy contracts based
on favorable prices that may however fluctuate (within limits) due to load condi-
tions of the energy network and to variability of price formation dynamics of the
energy market. Under these conditions, professionals would be interested in getting
robust solutions to the PAP, namely power configurations satisfying the coverage
constraints, while minimizing the total power expense and taking into account price
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deviations specified by an uncertainty set reflecting their risk aversion. If the uncer-
tainty is modeled by a multiband set, the resulting robust counterpart of the problem
can be solved by adopting the sequential solution approach sketched in Theorem 3:
indeed, we face a (pure binary) power-indexed formulation of the PAP, where the
uncertainty only affects the price coefficients in the objective function. Based on a
series of discussions with experts, we suppose that each price coefficient is distributed
according to a histogram resembling the shape of an exponential distribution. The
adoption of the Bertsimas-Sim Γ -robustness model would provide a low-resolution
modeling of such histogram. The multiband uncertainty model grants in contrast a
more accurate representation that reduces conservatism. Based on discussions aimed
at pointing out the risk aversion of the professionals, we adopted a system of 5 devi-
ation bands. Our experiments considered a set of 15 realistic network instances of
increasing size (including up to 150 users and 10 transmitters), all based on the
WiMAX technology. All the experiments were made on a 2.70 GHz machine with
8 GB RAM and using IBM ILOG Cplex 12.1 as optimization solver.

The main purpose of our tests was to compare the efficiency of solving directly
the compact formulation (Rob-BP) with that of the sequential approach sketched in
Theorem 3 and formalized in [7]. The sequential approach performed slower in the
case of 5 instances, while in all the other cases it reduced the solution time of 12 % on
average. Taking into account the computational challenge of a power-indexed PAP,
we consider this reduction significative and we believe that it could be enhanced
by a smart exploitation of the new family of (strong) valid inequalities identified in
Proposition 1, which will be the object of future experimentation. From the point of
view of the price of robustness, the refined representation of the uncertainty granted
by the multiband set guaranteed a reduction of up to 15 % in the conservatism of
the robust optimal solution with respect to Γ -robustness (thus sensibly reducing the
increase in power expense that a network operator must face to protect against price
fluctuations).
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A Branch-and-Price Approach for a Ship
Routing Problem with Multiple Products
and Inventory Constraints

Rutger de Mare, Remy Spliet and Dennis Huisman

Abstract In the oil industry, different oil products are blended in a refinery.
Afterwards, these products are transported to different harbors by ship. Due to the
limited storage capacity at the harbors and the undesirability of a stock-out, inven-
tory levels at the harbors have to be taken into account during the construction of
the ship’s routes. In this paper, we give a detailed description of this problem, which
we call the ship routing problem with multiple products and inventory constraints.
Furthermore, we formulate this problem as a generalized set-covering problem. We
propose a branch-and-price algorithm to solve it and we discuss this briefly.

1 Introduction

At a refinery crude oil is separated into different components. These components
are blended into oil products called grades, which are stored in tanks. From the
product tanks, grades are transported via primary terminals and secondary terminals
to the customer. The transport from the refinery to the primary terminals located at
a harbor is often done by ship. The large scale of the transported quantities implies
that a lot of money is involved. The operating cost of a ship are typically between
$50,000 and $400,000 a day. The inventory cost (including working capital cost) of
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one grade in one harbor is typically around $1 million per year. A trade off should
be made between inventory costs, operating costs of different types of ships and the
risk of a stock-out. Ideally, ship routing decisions and inventory decisions should be
a combined decision.

In this paper, we consider a ship routing problem with multiple products and
inventory constraints. Ronen [6] presents a two-stage heuristic for the multiple prod-
uct ship-scheduling problem. Al-Khayyal and Hwang [1] formulate the problem
as a mixed integer linear program. They show that even small instances cannot be
solved by a general purpose solver and they argue that specialized algorithms are
needed. A specialized exact algorithm is presented by Christiansen [3] in the case of
a single-product ship scheduling problem, and later by Brønmo et al. [2] for a ship
scheduling problem with flexible cargo sizes. Christiansen [3] looks at the trans-
portation of ammonia with production and consumption factories. In our case of oil
transportation, multiple products are considered, namely several grades of oil. The
different grades are transported in different compartments of a ship, and stored in
different tanks at the harbor.

In Sect. 2, we give a description of the ship routing problem. We formulate the
problem by extending the formulation of [4]. In Sect. 3, we discuss a Branch-and-
Price method to solve the problem. We finish the paper with concluding remarks in
Sect. 4.

2 Problem Description

Let G be the set of grades. Furthermore, let H be the set of harbors. Demand at
harbor h ≤ H for grade g ≤ G is linear in time with rate dhg . Note that for a harbor h
where grade g is produced dhg < 0. The storage capacity at harbor h ≤ H for grade
g ≤ G is given by Qhg . Note that the inventory of a grade may never exceed the
capacity. A set of vessels V is available to transport grades between harbors. They
are used to ensure that the inventory constraints at each harbor are never violated
during a finite planning horizon of length T . Each vessel v ≤ V consists of a set of
compartments Cv that are used to store the grades. We denote the first compartment
c ≤ Cv by c1

v . We assume that each compartment may contain every type of grade and
no cleaning is required when first transporting one type of grade in a compartment
and then another. Let Qc be the capacity of compartment c. For vessel v ≤ V , travel
costs between harbors i ≤ H and j ≤ H are given by ci j and travel time is given by
ti j . Furthermore, the rate of unloading/loading of grade g ≤ G at harbor h ≤ H by
vessel v ≤ V is rvhg . For each harbor h ≤ H an ordered set of non-overlapping time
windows Wh = {w1, . . . ,wk} is available. We denote each time window w ≤ W as
[w,w], where w is the start of the time window and w is the end of the time window.
We allow at most one vessel to visit harbor h during one time window. Also, we
allow the vessel to wait.

The ship routing problem with multiple products and inventory constraints,
SRPMPIC, is the problem of scheduling the vessels to transport grades between
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harbors to ensure that the inventory constraints are not violated during the planning
horizon, such that the total transportation costs are minimized. Before presenting a
mixed integer linear programming formulation for the SRPMPIC, we discuss two
underlying networks of this problem, the harbor-grade network and the compartment
network. These networks are used in our formulation.

2.1 The Harbor-Grade Network

The harbor-grade network for harbor h ≤ H and grade g ≤ G is used to represent a
loading or unloading schedule of grade g at harbor h. For ease of exposition, we will
consider loading as unloading a negative amount. During each time window w ≤ Wh

an amount of grade g is possibly unloaded at harbor h.
For harbor h, we construct a set of nodes N consisting of pairs (w, q) for w ≤ Wh

and q representing the cumulative amount of grade g delivered up to and including
time window w. To limit the size of this set of nodes, we consider only a finite
number of unloaded quantities during each time window, including the amount 0.
For example, a vessel is allowed to unload exactly 0, 20 or 40 units of grade g during
a single time window. Furthermore we construct a set of arcs A connecting nodes
(w, q) ≤ N and (w∞, q ∞) ≤ N if w is the direct predecessor of w∞ in Wh and q ∞ − q is
exactly one of the allowed unloading amounts.

The harbor-grade network is denoted as the acyclic graph Nhg = (N , A). An
unloading schedule is defined as a pair (P, t), where P is a path in Nhg from (w1, 0)
to (wk, q), for w1 the first and wk the last time window in Wh and q such that
(wk, q) ≤ N , and t is a vector containing the time of service at each location on the
path.

An unloading schedule is feasible if (i) for every (w, q) on P and corresponding
arrival time t unloading of the entire quantity can be completed between t and w
and (ii) the inventory constraints are not violated at any time during the planning
horizon. Note that the inventory constraints might be modelled by adjusting the time
window w corresponding to node (w, q) ≤ N to disallow unloading too early or
too late resulting in a violation of the inventory constraints. We denote the set of all
feasible harbor-grade schedules at harbor h ≤ H and grade g ≤ G as Shg .

2.2 The Compartment Network

The compartment network for compartment c ≤ Cv of vessel v ≤ V is used to
represent a sailing schedule of compartment c to load and unload different grades at
different harbors.

We construct a set of nodes N̂ consisting of tuples (h,w, q1, . . . , q|G|) for every
h ≤ H , for every w ≤ Wh and for q1 . . . , q|G| representing the total load of the grades
in G. As in the harbor-grade network, we consider only a finite number of unloading
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and loading quantities including the amount 0. Also, note that we only consider
tuples in which the load of at most one grade is nonzero, as a compartment may
only carry one type of grade at any moment in time. Furthermore, we construct a set
of arcs Â connecting nodes (h,w, q1, . . . , q|G|) ≤ N̂ and (h∞,w∞, q ∞

1, . . . , q ∞|G|) ≤ N̂
if harbor h∞ can be reached during time window w∞ when departing from harbor h
during time window w, and if the q ∞

g − qg is exactly one of the allowed unloading
amounts for all g ≤ G. To each arc we associate travel time of sailing from one
harbor to the other. To each arc we also assign travel costs (we elaborate on these
costs later).

The compartment network is denoted as the cyclic graph N̂c = (N̂ , Â). A com-
partment schedule is defined as a pair (P, t) where P is a path in N̂c and t is a vector
containing the time of service at each location on the path. A compartment schedule
is feasible if the time windows at each node on the path are not violated. We denote
the set of all feasible compartment schedules for compartment c as Rc.

2.3 Problem Formulation

Next, we formulate the SRPMPIC as a set partitioning problem. It is an extension of
the formulation by [4] for the single product ship scheduling problem.

With each compartment schedule r ≤ Rc we associate the variable xr indicating
whether compartment schedule r is used. Let the costs of schedule r be given by pr .
For the routes Rc1

v
of the first compartment of every vessel c1

v , these costs are the actual
traveling costs. For all other compartments these costs are 0. In our formulation we
link the routes of the different compartments of one vessel. Therefore, the traveling
costs of a vessel are represented in this way. Furthermore, we associate with each
compartment schedule r ≤ Rc the parameter qrhgw representing the amount of grade
g unloaded at harbor h during time window w. Also, we associate with r the parameter
trhgw specifying the time at which a ship commences unloading of grade g at harbor
h during time window w. Let trhgw = 0 if no unloading is performed.

We allow xr to be any fractional value between 0 and 1, hence convex combinations
of compartment schedules might be selected. However, we impose integrality on the
physical route that is traveled. This way, any quantity of grade g may be unloaded
at harbor h during time window w, in particular not only the allowed quantities used
in the construction of Rc. To model this, we introduce an auxiliary variable zhwh∞w∞c
that indicates whether compartment c departs from harbor h during time window w
and travels to harbor h∞ to arrive during time window w∞. Furthermore, we introduce
the parameter ahwh∞w∞r indicating whether route r departs from harbor h during time
window w and travels to harbor h∞ to arrive during time window w∞.

With each harbor-grade schedule s ≤ Shg we associate the variable ys indicating
whether schedule s is used. We associate with each harbor-grade schedule s ≤ Shg

the parameter qsw representing the amount of grade g unloaded at harbor h during
time window w. Furthermore, we associate with s the parameter tsw specifying the
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time at which unloading of grade g commences at harbor h during time window w.
Let tsw = 0 if no unloading is performed.

Similar to xr we allow ys to be any fractional value between 0 and 1. However,
there is no need to impose integrality conditions, as any convex combinations of
harbor-grade schedules is a feasible harbor-grade schedule in which any quantity
may be unloaded during every time window, while still satisfying the inventory
constraints. The SRPMPIC can be formulated as follows:

min
∑

v≤V
r≤R

c1
v

pr xr (1)

∑

v≤V
c≤Cv
r≤Rc

qrhgwxr −
∑

s≤Shg

qsw ysw = 0 ≥h ≤ H, g ≤ G,w ≤ Wh (2)

∑

v≤V
r≤R

c1
v

trhgwxr −
∑

s≤Shg

tsw ysw = 0 ≥h ≤ H, g ≤ G,w ≤ Wh (3)

∑

r≤R
c1
v

trhgwxr −
∑

r≤Rc

trhgwxrhgw = 0 ≥v ≤ V, h ≤ H, g ≤ G,

w ≤ Wh, c ≤ Cv\c1
v (4)

∑

r≤Rc

xr = 1 ≥v ≤ V, c ≤ Cv (5)

∑

s≤Shg

ys = 1 ≥h ≤ H, g ≤ G (6)

∑

r≤Rc

ahwh∞w∞r xr − zhwh∞w∞c = 0 ≥h, h∞ ≤ H,w,w∞ ≤ Wh, v ≤ V, c ≤ Cv (7)

xr ≤ [0, 1] ≥r ≤ Rc, c ≤ Cv, v ≤ V (8)

ys ≤ [0, 1] ≥s ≤ Shg, h ≤ H, g ≤ G (9)

zhwh∞w∞c ≤ {0, 1} ≥h, h∞ ≤ H,w,w∞ ≤ Wh, v ≤ V, c ≤ Cv (10)

The objective function is represented by (1). Constraints (2) ensure that the total
quantity of grade g unloaded by the vessels at harbor h during time window w is
equal to the quantity as specified in the selected harbor-grade schedule. Similarly,
constraints (3) ensure that the unloading of grade g by the vessels commences at
harbor h during time window w as specified in the selected harbor-grade schedule.
Furthermore, constraints (4) ensures that all compartments of a single vessel travel
the same route. Constraints (5) and (6) ensure that for each compartment and for
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every harbor-grade combination, exactly one schedule is selected. Finally, integrality
constraints are given by (7) and (10).

3 Branch-and-Price

We suggest solving the SRPMPIC using a branch-and-price algorithm. Lower bounds
can be found by solving the LP relaxation of formulation (1)–(10). As the formulation
contains many variables, we suggest using a column generation algorithm to solve
the LP relaxation. Initially we consider a restricted master problem, which is the
SRPMPIC including only a limited number of compartment schedules and harbor-
grade schedules. We iteratively solve the restricted master problem and add new
compartment schedules and harbor-grade schedules by solving a pricing problem.
The restricted master problem is solved using the simplex algorithm, yielding dual
multipliers corresponding to each constraint. Next the pricing problems are solved
to identify schedules with negative reduced costs. If such schedules are found, they
are added to the restricted master problem. If none exist, the solution to the current
restricted master problem is also the optimal solution to the LP relaxation of (1)–(10).

The pricing problem decouples per harbor-grade combination and compartment.
The pricing problem for generating a harbor-grade variable for harbor h and grade
g is a shortest path problem in Nhg with time window constraints and linear node
costs. It can be solved using the labeling algorithm by [5]. The pricing problem
for generating a compartment variable for compartment c is an elementary shortest
path problem in the cyclic graph N̂c with time window constraints and linear node
costs. Note that in particular cyclic paths in which a harbor is visited during the same
time window more than once is undesired. Nonetheless, we relax the elementarity
condition, and allow cyclic schedules to be generated. This lowers the value of the
LP bound while the optimal integer solution remains the same, as such schedules
cannot be part of any integer solution. With this relaxation, the pricing problem is
a shortest path problem with time window constraints and linear node costs. It can
be solved using the same labeling algorithm by [5] as used to solve the harbor-grade
pricing problem.

4 Concluding Remarks

In this paper, we discussed the ship routing problem with multiple products and
inventory constraints which arises in the oil industry. Since different oil products
cannot be stored in the same compartment of a ship, the capacities of the different
compartments of the ship have to be taken into account as well. We have extended the
formulation and branch-and-price algorithm by [4] to the case of multiple products
and multiple compartments.
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Data Driven Ambulance Optimization
Considering Dynamic and Economic Aspects

Dirk Degel, Lara Wiesche and Brigitte Werners

Abstract Providing high quality emergency medical services (EMS) and ensuring
accessibility to these services for the general public is a key task for health care
systems. Given a limited budget available resources, e.g. ambulances, have to be
used economically in order to ensure a high quality coverage. Emergency vehicles
have to be positioned and repositioned such that emergencies can be reached within
a legal time frame. Empirical studies have shown temporal and spatial variations of
emergency demand as well as variations of travel times during a day. The numbers
of emergency calls within 24 h differ significantly between night and day and show
peaks especially during rush hours. We provide a data driven model considering time
and spatial dependent degrees of coverage. This allows a simultaneous optimization
of empirically required coverage with minimal number of ambulances, respectively
costs. Therefore utilization and quality criteria are to be implemented. An integer
linear program is formulated using time periods in order to model time-dependent
demand and time-dependent travel times. It is shown on large empirical data records
that the presented dynamic model outperforms existing static models with respect to
coverage and utilization of resources.
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1 Introduction

Providing high quality medical services and ensuring accessibility to these services
for the general public is a key task for a health care system. Given a limited budget
available resources, e. g. ambulances or locations of EMS and fire departments, have
to be planned and used economically in order to ensure high quality supply [2–4].
Explicitly, during a regular day EMS-vehicles have to be positioned and re-positioned
such that emergencies can be reached within a legal time frame. Empirical studies
show that demand changes over time and that there are regional differences. In
the current situation in Bochum ambulances are placed at existing EMS and fire
departments. Because these rescue departments are located near the city center, this
leads to a very high degree of coverage in the city center and causes undersupply in
peripheral areas. In particular some demand areas are covered ninefold and in many
cases far exceeds the required degree of coverage. In contrast peripheral regions
are covered only once and some of these regions are not covered at all within a
given time limit. In order to handle these effects, the required or necessary coverage
is investigated empirically. An integer linear program (ILP) is applied in order to
locate and relocate ambulances according to a required degree of coverage. For this,
a number of additional, flexible ambulance locations will be considered. The goal is to
use resources such as ambulances efficiently and ensure the empirically determined
necessary coverage. This leads to a high level of service and at the same time avoids
over-coverage and saves resources.

2 Identifying Empirically Necessary Coverage

A large number of models have been developed in order to support decision mak-
ing for ambulance location in various decision situations. Farahani et al. [5] provide
a comprehensive survey of covering models which are typical for EMS applica-
tions and Li et al. [8] provide a well structured survey of optimization models with
focus on emergency response applications. Additionally, Başar et al. [1] and Hulshof
et al. [7] give taxonomic overviews of decision support systems. In almost all pre-
sented models a unique degree of coverage is maximized. For example, a double-
coverage is considered in the Double Standard Model (DSM) by Gendreau et al. [6]
and its extensions [9]. Instead of ensuring double coverage for each demand region
during the entire day analytics and data driven optimization can be used to determine
a better level of necessary coverage. We investigate empirically the number of emer-
gency situations occurring simultaneously in order to determine the required degree
of coverage (see Fig. 1). Each demand site is analyzed individually due to the fact
that usually observed demand is not equally distributed over the planning area. To
calculate the necessary coverage degree e(i) of a demand node i we have to ensure
that the probability that an emergency call could not be served because no ambulance
is available is less then 1 − Φ % = 5 %, or in other words, that:
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time t

ti

ti

t i + 1
dt

EMS op. 1

EMS op. 2

EMS op. 3 EMS op. 4

time period with length tΔ

Fig. 1 Consideration of parallel emergency operations. In this situations a double coverage (two
ambulances) is necessary

Probability

{
# of ambulances can cover

demand node i
≥ # of parallel emergencies in

the area around i

}
≥ 95 %

First a static version of the model which maximizes the empirically determined
necessary coverage is formulated and then we consider dynamic, time-dependent
modifications.

2.1 Model with Empirically Necessary Coverage

The (standard) DSM seeks to maximize the demand covered twice within a time
standard of r1, using p ambulances and subject to the double covering constraints. In
our approach the static model maximizes the demand, which is covered e(i)-times:

max
∑

i∈I

di xe(i)
i (1)

s. t.
∑

j∈N r2
i

y j ≥ 1 ∀i ∈ I (2)

∑

i∈I

di x1
i ≥ ρ

∑

i∈I

di ∀i ∈ I (3)

xk−1
i ≥ xk

i ∀i ∈ I, ∀k ∈ {2, . . . , p} (4)

∑

j∈N r1
i

y j ≥
p∑

k=1

xk
i ∀i ∈ I (5)

∑

j∈J

y j ≤ p (6)

xk
i ∈ {0, 1} ∀i ∈ I, ∀k ∈ {1, . . . , p} (7)

y j ∈ N0 ∀ j ∈ J (8)
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Fig. 2 Number of emergency calls for a 24-h-day in a German mid-size city and average (aggre-
gated) speed

where di is the demand at node i ∈ I , N rπ

i := { j ∈ J | ti j ≤ rπ} for r1 < r2
characterises the neighborhood sets of demand node i and p represents the total
number of ambulances. The decision variable

xk
i :=

{
1, if demand node i is covered k ∈ {1, . . . , p} times
0, else.

y j represents the number of ambulances located at node j . The objective function
computes the demand covered e(i)-times within r1 time units. The combination of
constraints (2) and (3) ensures that a proportion ρ of the total demand is covered
within r1 and the whole demand area is covered within r2. Constraints (3) and (4)
express the necessary coverage requirements. The left-hand side of (5) represents
the number of ambulances covering demand node i within r1 time-units, while the
right-hand side is 1 if i is covered once and so on within r1. Equation (6) limits the
number of ambulances to p. (7) and (8) describe the domain of the decision variables.

2.2 Time-Dependent Considerations

In addition to considering empirical necessary coverage e(i), significant time-
dependent variations in the input parameters as demand, travel-time and neces-
sary coverage can be observed. Almost all models in literature do not include all
dynamic aspects at the same time. In Fig. 2 the number of emergency calls is indi-
cated with respect to every hour of the day. The figure shows that there are signif-
icant differences in demand between night, day and peaks especially during rush
hours. Moreover, this figure clearly indicates that demand changes during the day.
A required constant degree of coverage will either underestimate or overestimate
actual demand, e. g. e(i, t) is time-dependent. However, existing models do not
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Fig. 3 Differences between the required empirical coverage and the coverage obtain from
(1) status quo, (2) solution by the double covering maximization model, and (3) our solution by the
empirically determined suitable covering maximization model for rush hour period (8–12 a.m.)

consider time-dependency of model parameters such as demand and travel times
for ambulances. A new modeling approach is developed that explicitly integrates
demand and travel times varying simultaneously throughout the day. In order to gen-
erate more flexibility in the EMS-system, we allow the assignment of ambulances
not only to existing EMS-departments but also to additional, flexible locations such
as hospitals or volunteer fire departments. Variations in the fleet size during the day
depending on changes in travel speed are explicitly included to consider economic
aspects. Dynamic allocation of ambulances at additional, flexible locations and relo-
cations to the main EMS-departments are required to handle time-dependent changes
in travel-speed and demand. The degree of coverage, the number of relocations and
the fleet size are considered to be major performance indicators. Incorporating these
aspects leads to a dynamic version of model (1)–(8).

3 Improvement of Status Quo

The dynamic model is part of a decision support tool that is developed for urban emer-
gency services. The aim is to support strategic and tactical decisions. The following
figures clearly show the improvement of the status quo. For Bochum (Germany)
it can be seen, that the new model also outperforms the double coverage model.
Figure 3 illustrates the positive effects of maximizing the empirical coverage for a
time period around midday in which demand is typically high (see Fig. 1). The three
maps depict the deviation from empirical coverage to (1) the actual solution (“status
quo”) which is applied by the EMS in Bochum, Germany, (2) a solution determined
by dynamic model similar to the model presented by Schmid and Doerner [9] with
a double coverage optimization function and the solution of our new model (3). The
evaluation considers the deviation of necessary coverage and the coverage obtain
by the status quo or the models. White squares mean that the empirically necessary
degree of coverage is achieved by the solution. Attaining the empirical level and
also small positive differences are preferable. Besides a very low level of coverage
(dark gray) which can lead to non-sufficient supply of population, also a very high
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degree of coverage (light gray) should not be tolerated because it wastes resources
that could be utilized in a better way. The current situation shows typical results for
urban areas: planning sites in the city center are “over-covered” to a large extent
(more than 7-times over the necessary level). Yet, the resulting degree of coverage
in the periphery is very often below a target level. The improvements according to
integrating time-dependent and spatial demand become obvious. Data driven opti-
mization and analytic methods as well as dynamic considerations lead to an efficient
ambulance utilization. The same service level in the system can be ensured by less
ambulances.

4 Conclusions

An evaluation using real-world data from 2010 to 2012 clearly points out that
considering time-dependent travel times and time-dependent demand in our approach
outperforms existing solutions using static model parameters. Overall, the proposed
approach leads to a high quality solution with respect to coverage and cost criteria.
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Risk-Adjusted On-line Portfolio Selection

Robert Dochow, Esther Mohr and Günter Schmidt

Abstract The objective of on-line portfolio selection is to design provably good
algorithms with respect to some on-line or offline benchmark. Existing algorithms
do not consider ‘trading risk’. We present a novel risk-adjusted portfolio selection
algorithm (RAPS). RAPS incorporates the ‘trading risk’ in terms of the maximum
possible loss. We show that RAPS performs provably ‘as well as’ the Universal
Portfolio (UP) [4] in the worst-case. We empirically evaluate RAPS on historical
NYSE data. Results show that RAPS is able to beat BCRP as well as several ‘follow-
the-winner’ algorithms from the literature, including UP. We conclude that RAPS
outperforms in case the assets in the portfolio follow a positive trend.

1 On-line Portfolio Selection

Let P denote the on-line portfolio selection algorithm, and let OPT denote the optimal
offline algorithm. The input sequence becomes available to P over time, while OPT
knows the whole input sequence in advance. The performance of P is evaluated by
means of worst-case competitive analysis without making any statistical assumptions,
e.g., on the nature of the stock market. The outcome is the ratio between the value
obtained by OPT and P on a worst-case instance, called regret.

More formally, on-line portfolio selection aims to determine practical P for
investing wealth among a set of m assets (i = 1, . . . , m) over T trading peri-
ods (t = 1, . . . , T ). The finance community mainly addresses the problem of
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maximizing the risk-adjusted return, while the information theory and machine
learning community aims to maximize the terminal wealth WT (P) of P. The out-
put of any P is a sequence of allocation vectors b = b1, . . . , bT for the m assets,
with bt = (bt1, . . . , btm). The elements bti represent the proportion of wealth to be
invested in the ith asset at the beginning of the tth period (

∑m
i=1 bti = 1). Let qti be

the price of asset i at time t, and let x = x1, . . . , xT denote an arbitrary sequence of
m-dimensional price relative vectors xt of the m assets over T . Then the elements
of xt are positive price relatives xti = qti/qt−1i of the ith asset at the end of the tth
period. In other words, within the tth period the portfolio return in-/decreases by the
factor bTt xt = ∑m

i=1 btixti. Thus, after T trading periods, the terminal wealth achieved
by P equals WT (P) = Wo

∏T
t=1 bTt xt , where Wo denotes the initial wealth and is set

to $1 for convenience in this work.
In general, any P usually learns to compete with a target set of N reference

algorithms (j = 1, . . . , N). Let Q = {
Q1, . . . , QN

}
denote this set. Following the

concept of competitive analysis, the performance of P is measured by the worst-case
logarithmic wealth ratio [3, p. 278]

WT (P,Q) = sup
x

sup
Q≤Q

ln
WT (Q)

WT (P)
, (1)

where Q can be chosen arbitrarily. Most common is the class of constant-rebalanced
portfolio (CRP) algorithms, or a mixture of different classes of algorithms.

CRP maintains a constant fraction of the total wealth in each of the underlying
m assets. In an i.i.d. market if T is large, then OPT is the Best CRP (BCRP) [2].
Thus, on-line portfolio selection always chooses a target set B = {

B1, . . . , BN
}

of N
CRP reference algorithms, known as ‘experts’. If P is compared with any possible
‘expert’ in the simplex domainΔm = {

bt : bt ≤ R
m+,

∑m
i=1 bti = 1

}
then (1) becomes

the so-called regret [4]

r(P) = WT (P,B) = sup
x

sup
B≤Δm

ln
WT (B)

WT (P)
, (2)

where supB≤Δm
WT (B) = W∞

T (B) is the wealth achieved by BCRP. Note that P
outperforms BCRP if r(P) < 0.

Further, P is called universal if it achieves asymptotically no regret on average
for T periods and arbitrary bounded x with respect to BCRP [4, (1.7)]

1

T
r(P) = 1

T
ln WT (P) − 1

T
ln W∞

T (B) ≥ 0. (3)

In the recent years there has been a growing interest and skepticism concerning
the value of competitive theory to analyze on-line portfolio selection algorithms.
In particular, competitive analysis is inconsistent with the more widely accepted
analyses and theories based on statistical assumptions. The main criticisms are:
(i) r(P) gives a theoretical upper bound on the loss of P relative to BCRP but omits
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to analyze its applicability in practice [2], and (ii) existing CRP based algorithms do
not consider ‘trading risk’. We address both drawbacks.

In short, our risk-adjusted on-line portfolio selection algorithm (RAPS)
incorporates the ‘trading risk’ in terms of the maximum observed fluctuation of
the period wealth up to time t. A systematic higher WT (P) can only be achieved by
accepting a higher risk [7], i.e., a higher fluctuation. Addressing (i) we empirically
evaluate the practical applicability of RAPS on historical NYSE data.1 Results show
that RAPS is able to beat BCRP as well as several known ‘follow-the-winner’ algo-
rithms, including UP of [4]. Addressing (ii) we show that RAPS performs provably
‘as well as’ UP in the worst-case.

The rest of the paper is organized as follows. In the next section we give the
necessary theoretical background. We formally present and analyze RAPS. Section 3
shows the benefits of RAPS on a numerical example. Section 4 concludes.

2 Algorithm RAPS

Without making any statistical assumptions on the nature of the stock market, [4]
proves that certain P are universal. Cover’s algorithm, UP, achieves asymptotically
no regret.

UP: The idea is to start with the Uniform CRP (UCRP) in period t = 1, i.e.,
b1 = ( 1

m , . . . , 1
m ). For t ∗ 2, the b is approximated by the past performance of the

N ‘experts’ [4, (1.3), p. 2]

b̂t+1i =
∑N

j=1 bj
ti · Wt(Bj)

∑N
j=1 Wt(Bj)

, (4)

where Wt(Bj) = Wt−1(Bj) · bTt xt denotes the compound period wealth of the jth
‘expert’ in the tth period. Thus, in hindsight, b̂t+1 is the weighted average over all
‘experts’ in target set B [4, p. 3].

Lemma 1 Assume that UP competes against target set B. UP divides Wo in N equal
parts and invests according to Bj (j = 1, . . . , N). Then the terminal wealth of UP
equals WT (UP) = 1

N

∑N
j=1 WT (Bj), and its worst-case logarithmic wealth ratio is

bounded as [cf. (1)] [3, Example 10.3, p. 278]

WT (UP,B) = sup
x

sup
Bj≤B

ln
WT (Bj)

WT (UP)
√ ln N . (5)

Lemma 2 If μ is the uniform density on Δm, then UP of [4] satisfies
[cf. (2)] [3, Theorem 10.3, p. 283]

1 http://www.cs.bme.hu/~oti/portfolio/data/nyseold.zip

http://www.cs.bme.hu/~oti/portfolio/data/nyseold.zip
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r(UP) = sup
x

sup
B≤Δm

ln
WT (B)

WT (UP)
√ (m − 1) ln(T + 1). (6)

UP exploits the ‘follow-the-winner’ principle, and performs provably ‘almost as
well’ as BCRP [4, Theorem 7.1].

RAPS: Let mj
t = min

{
Wo, . . . , Wt(Bj)

}
and Mj

t = max
{
Wo, . . . , Wt(Bj)

}
be the

minimum and maximum compound period wealth of the jth ‘expert’ up to time t.

Then φt(Bj) = Mj
t

mj
t

equals the maximum observed fluctuation of the period wealth up

to time t, and the inverse φt(Bj)−1 quantifies an experts’ possible maximum loss up
to time t. To compute b̂t+1, UP uses the experts compound period wealth. Instead,
the idea of RAPS is to replace the Wt(Bj) in (4) by φt(Bj)−1. Like UP, RAPS starts
with UCRP in t = 1. For the subsequent t ∗ 2 periods, b is approximated by

b̂t+1i =
∑N

j=1 bj
ti · φt(Bj)−1

∑N
j=1 φt(Bj)−1

. (7)

Lemma 3 Assume that all xti √ 1, and that RAPS competes against a target set of B
algorithms. RAPS divides Wo in N equal parts and invests according to Bj. Then the
terminal wealth of RAPS equals WT (RAPS) = 1

N

∑N
j=1 φt(Bj)−1, and its worst-case

logarithmic wealth ratio is bounded as [cf. (1)]

WT (RAPS,B) √ ln N . (8)

Proof The proof is based on Lemma 1. We know that iff the assets in the portfolio
do not follow a positive trend, then xti √ 1. It follows φt(Bj)−1 = mj

t = Wt(Bj) for
t = 1, . . . , T and j = 1, . . . , N . Thus

WT (RAPS,B) = sup
x

ln
maxj=1,...,N φT (Bj)−1

1
N

∑N
j=1 φT (Bj)−1

√ sup
x

ln
maxj=1,...,N φT (Bj)−1

1
N maxj=1,...,N φT (Bj)−1

= sup
x

ln
maxj=1,...,N WT (Bj)

1
N maxj=1,...,N WT (Bj)

= ln N . ∩≡
(9)

Under worst-case assumptions WT (RAPS,B) = WT (UP,B), cf. (5). Consequently,
r(RAPS) √ (m−1) ln(T +1) also equals UP, cf. (6). The worst-case performance of
UP is basically unimprovable [3, p. 285], but UP has some practical disadvantages
which are addressed by [5, 6]. We aim to answer the question if RAPS is able to
outperform (some of) these algorithms from the literature in case xti > 1.

On-line Benchmarks: Motivated by the ‘follow-the-winner’ principle we limit
to P which increase the bti of more successful assets. Rather than targeting BHbest ,
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Table 1 Portfolio comparison in terms of the WT (P) achieved for N = 101

# Assets BCRP BHbest UP EG UCRP SCRP RAPS r(RAPS)

(0.01)

1 Comm. Metals and Kin Arc 144.01 52.02 78.47 117.15 118.69 26.36 127.96 +0.12
2 IBM and Coca Cola 15.07 13.36 14.18 15.00 15.02 5.48 15.36 −0.02
3 Comm. Metals and Mei Corp. 102.96 52.02 72.63 97.94 98.89 28.14 109.57 −0.06
4 W̄T (P) = 1

630

∑630
p=1 WT (P) 26.57 20.72 18.89 21.73 21.84 12.13 23.07 +0.14

these algorithms mainly track BCRP. Besides (i) UP and (ii) UCRP, we consider:
(iii) Exponential Gradient (EG(η)) of [6] which aims to reduce the computational
costs of UP from exponential to linear. The key parameter of EG(η) is the learning
rate η > 0. For η ≥ 0 EG(η) reduces to UCRP [6, p. 35:11]. (iv) Successive CRP
(SCRP) of [5, p. 170] which directly adopts BCRP up to the tth period, i.e., bt+1
equals the subsequent BCRP allocation vector (b∞

t ). Note that, compared to UP and
RAPS, the worst-case performance guarantees of EG(η) and SCRP are inferior (not
as tight).

Offline Benchmarks: In the financial community the optimal offline benchmark
is to buy-and-hold the best-performing asset of the portfolio, denoted by BHbest
[2]. In contrast, the information theory and machine learning community considers
BCRP. [4, Proposition 2.1] proved that BCRP exceeds BHbest . Obviously, BHbest and
BCRP can only be computed in hindsight.

3 Numerical Results

The NYSE data set includes daily closing prices of 36 assets for 22 years (T =
5, 651). We only consider portfolios containing m = 2 assets, resulting in

(36
2

) =
630 possible portfolio combinations, and limit to three pairs of assets, cf. Table
1. We selected these pairs in order to make our results comparable, cf. [4, p. 23],
[6, p. 340], and [5, p. 181]. Portfolios #1 and #2 can be found in [4–6], and #3 in
[4, 6]. In addition, #4 gives the average W̄T (P); column r(RAPS) indicates whether
RAPS outperforms BCRP (< 0) or not (> 0).

#1: From [4, p. 26] we know that the outperformance of BCRP is due to the
leverage effect in the posteriori computed BCRP. Thus, Cover compared UP to a
randomly generated portfolio (98.4). Contrary to UP, RAPS clearly outperforms the
random sample (127.96 > 98.4), and all P.

#2: The assets show a lockstep performance (12.21 and 13.36). Though, like UP,
RAPS barely outperforms them (cf. [4, p. 23]). Further, RAPS outperforms BCRP
and all P.

#3: Volatile uncorrelated assets (52.02 and 22.92) lead to great gains compared
to BHbest . This also holds for #1 (52.02 and 4.13). RAPS clearly outperforms BCRP
and all P.
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Fig. 1 Proportion of wealth (b̂ti) RAPS and UP invested in BHbest : #1 (left) and #2 (right)

#4: We run experiments on all 630 portfolio combinations. For each of the 36
assets x̄ti > 1 holds, where x̄ti = 1

T

∑T
t=1 xti. On average, RAPS outperforms all P

and BHbest but not BCRP. We claim that RAPS outperforms the online benchmarks
in case the assets in the portfolio follow a positive trend, i.e., x̄ti > 1 ∧ m assets.

Summing up, RAPS outperforms BHbest and all P in all cases, and is superior to
BCRP in two of three cases. Hence, Fig. 1 shows that targeting BCRP is superior
to targeting BHbest (Comm. Metals (#1; #3) and Coca Cola (#2)) as RAPS stepwise
reduces the b̂ti invested in BHbest .

4 Conclusions

To the best of our knowledge, existing ‘follow-the-winner’ algorithms do not consider
‘trading risk’ when computing b. In contrast to existing P, RAPS targets the expert
with the lowest possible loss (φt(Bj)−1). We prove that RAPS performs ‘as well as’
UP in the worst-case, and its computational costs are also exponential. Our numerical
results (Table 1) are encouraging that RAPS performs well in practice. The constituent
assets and all benchmark algorithms from the literature (UP, EG(0.01), UCRP, SCRP)
are outperformed. In general, RAPS outperforms in case the assets in the portfolio
follow a positive trend. Volatile uncorrelated stocks (like in #1 and #3) lead to great
gains over BHbest . Figure 1 shows that targeting BCRP is superior to targeting BHbest .
However, ponderous stocks (like in #2) show only modest improvements. This result
is consistent with [4]. An open question is the universality of RAPS.
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Quantified Combinatorial Optimization

Thorsten Ederer, Ulf Lorenz and Thomas Opfer

Abstract MIP and IP programming are state-of-the-art modeling techniques for
computer-aided optimization. However, companies observe an increasing danger
of disruptions that prevent them from acting as planned. One reason is input data
being assumed as deterministic, but in reality, data is afflicted with uncertainties.
Incorporating uncertainty in existing models, however, often pushes the complexity
of problems that are in P or NP, to the complexity class PSPACE. Quantified integer
linear programming (QIP) is a PSPACE-complete extension of the IP problem with
variables being either existentially or universally quantified. With the help of QIPs,
it is possible to model board-games like Gomoku as well as traditional combinatorial
OR problems under uncertainty. In this paper, we present how to extend the model
formulation of classical scheduling problems like the Job-Shop and Car-Sequencing
problem by uncertain influences and give illustrating examples with solutions.
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1 Introduction

In the past, there have been several efforts to add uncertainties into the model descrip-
tion of problems [1, 7]. We were involved into examinations of uncertainties in airline
fleet assignment [6] and railway planning [2]. However, the ratio of implementing
efforts to output was rather disappointing. Therefore, we came to the conclusion that
a modeling language is needed that combines convenient MIP modeling with the
ability to express uncertainties. In 2004, Subramani introduced the idea to enrich
linear programs by universally quantified variables [8].

Definition 1 (Quantified Integer Program) Let x = (x1, . . . , xn)T ≤ Q
n be a vector

with lower and upper bound vectors l ≤ Z
n and u ≤ Z

n such that li ∞ xi ∞ ui .
A ≤ Q

m×n , b ≤ Q
m and x build a linear inequality system. Moreover, there is a

vector of quantifiers Q = (Q1, . . . ,Qn)T ≤ {≥, ∗}n . Let Q √ x ≤ [l, u] ∩ Z
n with

the componentwise binding operator √ denote the quantification vector (Q1x1 ≤
[l1, u1] ∩ Z, . . . ,Qn xn ≤ [ln, un] ∩ Z)T such that every quantifier Qi binds the
variable xi . Let there also be a vector of objective coefficients c ≤ Q

n . Each maximal
consecutive subsequence ofQ consisting of identical quantifiers is called a quantifier
block—the corresponding i th subsequence of x is called a variable block Bi .

We call z = min
B1

(c1x1 + max
B2

(c2x2 + min
B3

(c3x3 + max
B4

( . . . min
Bk

ck xk)))))

Q √ x ≤ [l, u] ∩ Z
n : Ax ∞ b (QIP)

a Quantified Integer Program with objective function (for a minimizing existential
player). Here we assume w.l.o.g. that Q1 = ∗ and Qn = ∗.

A QIP with objective can be interpreted as a two-person zero-sum game [3, 4]
between a max-player who tries to make the instance infeasible or to maximize the
objective function and a min-player who wants to make the instance feasible and
to minimize the objective against all odds. Note that this is a short notation for a
dynamic program where the players have recursively to find optimal vectors xBi

with fixed xB1 , . . . , xBi−1 under consideration that the other player will set the next
block of variables optimal concerning his own incentives.

2 Job Shop Scheduling

Jop Shop Scheduling is a classical optimization problem in which jobs have to be
assigned to several machines such that the total time until all jobs are finished (the
makespan) is minimized. An assignment that a job has to be processed by a machine
is called a task and is given a certain duration. If some tasks depend on one another,
a full or partial order of tasks can be given. Equation (2) defines the makespan.
Equation (3) ensures the partial task order. The ordering indicator variables yi,m, j

are defined by the following two equations.
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Table 1 Jobshop model
notation

J Set of jobs
M Set of machines
T Set of tasks, T ≡ J × M
O Taskorder, O ≡ T × T
s j,m Start time (integer) of task ( j, m)

d j,m Duration of task ( j, m)

δ j,m Additional duration of task ( j, m) in case of delay
e j,m Earliness of task ( j, m), i.e., e = max{d1 − d2, 0}
e Mean earliness
m Makespan
ru, j,m Indicator of unary encoding of retarded task
r̃b Indicator of binary encoding retarded task
w Wrapping indicator for binary to unary translation

For solution purposes it is relevant to use as few universally quantified variables
as possible. To that end, we introduce a binary encoding r̃ of the retardation and
add existentially quantified helper variables r as unary encoding of the retardation.
Equations (6) represent a linear formulation of this translation. Equations (7)–(10) are
an adaption of the prior constraints for the second stage variables with uncertainly
prolonged task durations. Equations (11)–(13) define the earliness caused by the
existential players reaction, which is used as a penalty term for large rearrangements
of the first stage planning (Table 1).

min m2 + k · e + 1

M
· m1 s.t. ∗ s1 y1 m1 ≥ r̃ ∗ r w , s2 y2 m2, e : (1)

s1
j,m + d j,m ∞ m1 ≥ ( j, m) ≤ T (2)

s1
i,m + di,m ∞ s1

j,n ≥ (i, m, j, n) ≤ O (3)

s1
i,m + di,m ∞ s1

j,m + M · (1 − y1
i,m, j ) ≥ (i, m) ≤ T, ( j, m) ≤ T (4)

s1
j,m + d j,m ∞ s1

i,m + M · y1
i,m, j ≥ (i, m) ≤ T, ( j, m) ≤ T (5)

∑

(u, j,m)≤ U

u · r j,m =
∑

b ≤ B

2b · r̃b − |T | · w ∧
∑

u ≤ U
( j,m)= Tu

r j,m ∞ 1 (6)

s2
j,m + d j,m + δ j,m · r j,m ∞ m2 ≥ ( j, m) ≤ T (7)

s2
i,m + di,m + δi,m · ri,m ∞ s2

j,n ≥ (i, m, j, n) ≤ O (8)

s2
i,m + di,m + δi,m · ri,m ∞ s2

j,m + M · (1 − y2
i,m, j ) ≥ (i, m) ≤ T, ( j, m) ≤ T (9)

s2
j,m + d j,m + δi,m · ri,m ∞ s2

i,m + M · y2
i,m, j ≥ (i, m) ≤ T, ( j, m) ≤ T (10)

ei,m ≥ s1
i,m − s2

i,m ≥ (i, m) ≤ T (11)
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Table 2 Jobshop tasks Job Machine Duration Extra

Paper1 Blue 45 5
Paper1 Yellow 10 0
Paper2 Blue 20 5
Paper2 Green 10 10
Paper2 Yellow 34 0
Paper3 Blue 12 0
Paper3 Green 17 0
Paper3 Yellow 28 20

Table 3 Jobshop order Prior task Later task

Paper1 Blue Paper1 Yellow
Paper2 Green Paper2 Blue
Paper2 Blue Paper2 Yellow
Paper3 Yellow Paper3 Blue
Paper3 Blue Paper3 Green

Table 4 Solution of the
jobshop example

sc. Start times m.s.
1B 1Y 2B 2G 2Y 3Y 3B 3G

First stage solution
0 45 0 45 65 0 70 82 99

1 0 50 0 50 70 0 70 82 104
2 0 45 0 45 65 0 65 82 99
3 0 45 0 45 70 0 70 82 104
4 0 45 0 45 65 0 65 82 99
5 0 45 0 45 65 0 65 82 99
6 0 45 0 45 65 0 65 82 99
7 0 45 0 45 65 0 70 82 99
8 0 48 0 50 70 0 75 87 104

ei,m ≥ 0 (12)

e = 1

|T | ·
∑

(i,m)≤ T

ei,m (13)

An example1 is given in Tables 2 and 3. Table 4 depicts an optimal solution. The
first-stage scheduling has the property that the planner can find a rescheduling to
each possible redardation such that the worst-case makespan is minimized.

1 The model formulation and example data are adapted from the work of Jeffrey Kantor, Christelle
Gueret, Christian Prins and Marc Sevaux, cf. http://estm60203.blogspot.com/.

http://estm60203.blogspot.com/
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3 Car Sequencing

In flexible manufacturing systems, varying models of same basic product are
produced. They usually require different processing times, so sequences which
alternately produce different models are preferable. We consider so called rk : sk

sequencing rules [5] that restrict too frequent production of work intensive models
at certain stations, that is, option k may only be produced at most rk times per each
sk successively sequenced models.

We add uncertainty to this problem by incorporating a malfunction in the pro-
duction process. It may happen that a car cannot be processed in the prescheduled
order and has to be reinserted a few timesteps later after the malfunction has been
corrected. The uncertainty is given by a tuple (t, t ′), t < t ′ with the new timestep t ′ at
which the model originally scheduled at t will be processed. The cars inbetween will
each be processed one timestep earlier. The resulting schedule is modeled by stage
two (s = 2) variables—note that they may be chosen differently for each possible
malfunction. The planer may react to this uncertainty by rescheduling yet another
model, i.e., he chooses a tuple (u, u′), t ′ < u < u′ such that the car which was
originally scheduled at u will be processed at u′. This final reschedule is given by
stage three variables.

The first three equations and the first stage variables (s = 1) give a formulation of
the original problem without uncertainty. Equation (15) ensures that for each class
c the produced amount equals the given demand Dc. Equation (16) specifies that
exactly one unit is produced in each time step. The rk : sk sequencing rules are
not strictly enforced—instead violations are counted by the indicator variables ys

k,t0
in Eq. (17). Similar to the job shop model, we introduce a binary encoding m̃ and
helper variables m for the uncertain machine malfunctions. Given unary encodings
of the malfunction mu and the answer au , we can encode the change of schedule
with constraints similar to Eq. (19) (which model which parts of the schedule do
not change) and further constraints which ensure that the cars are processed in the
correct new order. These equations are rather long but not very insightful, so we skip
them here.

min
∑

k ≤ O

∑

t0 ≤ T k

y1
k,t0 s.t. ∗ x1 y1 ≥ m̃ ∗ m w , x2 y2 , a , x3 y3 : (14)

∑

t ≤ T

xs
t,c = Dc ≥ c ≤ C , s ≤ S (15)

∑

c ≤ C

xs
t,c = 1 ≥ t ≤ T , s ≤ S (16)

t0+sk∑

t = t0

∑

c ≤ C

Ak,c · xs
t,c ∞ rk + M · ys

k, t0 ≥ k ≤ O , t0 ≤ T k , s ≤ S (17)

∑

u ≤ U

u · mu =
∑

b ≤ B

2b · m̃b − |F | · w ∧
∑

u ≤ U

mu ∞ 1 (18)
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Table 5 Car instance

Opt r s

1 1 2
2 2 3

Class Cars Opt 1 Opt 2

0 2 0 0
1 3 0 1
2 1 1 0
3 4 1 1

Table 6 Notation of the car sequencing model

O Set of options
C Set of classes, C ≡ P(O)

T Set of timesteps (|T | equals number of models)
T k Set of intervals (by first timestep) for option k , T k = {1, . . . , |T | − sk + 1}
rk : sk At most rk out of sk successively sequenced models may require option k
Dc Demand of models of class c
Ak,c Indicator, if models of class c require option k
xt,c Indicator, if a model of class c is produced at timestep t
yk,t0 Indicator, if the sequencing rule rk : sk beginning at timestep t0 is satisfied
S Set of stages (duplicates of the original variables after each move)
σ Stage index: 1 pre-scheduling, 2 state after delay, 3 re-scheduling
F Ordered set of possible delays, F = {(t, t ′) ≤ T × T, t < t ′}
U Unary encoding vector of F
du Indicator of unary encoding for the delay from timestep t to t ′, (t, t ′) ≤ U
B Binary encoding of possible delays
d̃b Indicator of binary encoding for the delay, b ≤ B
w Wrapping indicator for binary to unary translation

|x2
t,c − x1

t,c| ∞
∑

u≤U,(ti ,t j )=Fu ,ti <t<t j

mu ≥ c ≤ C , t ≤ T (19)

further stage-connecting constraints . . . (20)

An example is given by Tables 5 and 7 shows an optimal solution. The first-stage
solution has the property, that the production planner can respond (column 3) to each
possible malfunction (column 2) such that the second-stage production sequence has
a worst-case minimal number of violated sequencing constraints (Table 6).
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Table 7 Solution of the car sequencing example

Scenario Mal. Ans. Production sequence

First stage solution 1, 3, 0, 3, 0, 3, 1, 2, 1, 3
1 – (4, 5) 1, 3, 0, 3, 3, 0, 1, 2, 1, 3
2 (0, 1) (2, 7) 3, 1, 3, 0, 3, 1, 2, 0, 1, 3
3 (0, 2) – 3, 0, 1, 3, 0, 3, 1, 2, 1, 3
4 (0, 3) – 3, 0, 3, 1, 0, 3, 1, 2, 1, 3
5 (0, 4) – 3, 0, 3, 0, 1, 3, 1, 2, 1, 3
6 (0, 5) (6, 8) 3, 0, 3, 0, 3, 1, 2, 1, 1, 3
7 (0, 6) (7, 8) 3, 0, 3, 0, 3, 1, 1, 1, 2, 3
8 (0, 7) (8, 9) 3, 0, 3, 0, 3, 1, 2, 1, 3, 1
9 (0, 8) – 3, 0, 3, 0, 3, 1, 2, 1, 1, 3
10 (0, 9) – 3, 0, 3, 0, 3, 1, 2, 1, 3, 1
11 (1, 2) – 1, 0, 3, 3, 0, 3, 1, 2, 1, 3
12 (1, 3) – 1, 0, 3, 3, 0, 3, 1, 2, 1, 3
13 (1, 4) – 1, 0, 3, 0, 3, 3, 1, 2, 1, 3
14 (1, 5) – 1, 0, 3, 0, 3, 3, 1, 2, 1, 3
15 (1, 6) – 1, 0, 3, 0, 3, 1, 3, 2, 1, 3
16 (1, 7) – 1, 0, 3, 0, 3, 1, 2, 3, 1, 3
17 (1, 8) – 1, 0, 3, 0, 3, 1, 2, 1, 3, 3
18 (1, 9) – 1, 0, 3, 0, 3, 1, 2, 1, 3, 3
19 (2, 3) (4, 9) 1, 3, 3, 0, 3, 1, 2, 1, 3, 0
20 (2, 4) – 1, 3, 3, 0, 0, 3, 1, 2, 1, 3
21 (2, 5) – 1, 3, 3, 0, 3, 0, 1, 2, 1, 3
22 (2, 6) – 1, 3, 3, 0, 3, 1, 0, 2, 1, 3
23 (2, 7) – 1, 3, 3, 0, 3, 1, 2, 0, 1, 3
24 (2, 8) – 1, 3, 3, 0, 3, 1, 2, 1, 0, 3
25 (2, 9) – 1, 3, 3, 0, 3, 1, 2, 1, 3, 0
26 (3, 4) – 1, 3, 0, 0, 3, 3, 1, 2, 1, 3
27 (3, 5) – 1, 3, 0, 0, 3, 3, 1, 2, 1, 3
28 (3, 6) – 1, 3, 0, 0, 3, 1, 3, 2, 1, 3
29 (3, 7) – 1, 3, 0, 0, 3, 1, 2, 3, 1, 3
30 (3, 8) – 1, 3, 0, 0, 3, 1, 2, 1, 3, 3
31 (3, 9) – 1, 3, 0, 0, 3, 1, 2, 1, 3, 3
32 (4, 5) – 1, 3, 0, 3, 3, 0, 1, 2, 1, 3
33 (4, 6) – 1, 3, 0, 3, 3, 1, 0, 2, 1, 3
34 (4, 7) (8, 9) 1, 3, 0, 3, 3, 1, 2, 0, 3, 1
35 (4, 8) – 1, 3, 0, 3, 3, 1, 2, 1, 0, 3
36 (4, 9) – 1, 3, 0, 3, 3, 1, 2, 1, 3, 0
37 (5, 6) (7, 9) 1, 3, 0, 3, 0, 1, 3, 1, 3, 2
38 (5, 7) – 1, 3, 0, 3, 0, 1, 2, 3, 1, 3
39 (5, 8) – 1, 3, 0, 3, 0, 1, 2, 1, 3, 3
40 (5, 9) – 1, 3, 0, 3, 0, 1, 2, 1, 3, 3
41 (6, 7) (8, 9) 1, 3, 0, 3, 0, 3, 2, 1, 3, 1
42 (6, 8) – 1, 3, 0, 3, 0, 3, 2, 1, 1, 3
43 (6, 9) – 1, 3, 0, 3, 0, 3, 2, 1, 3, 1
44 (7, 8) – 1, 3, 0, 3, 0, 3, 1, 1, 2, 3
45 (7, 9) – 1, 3, 0, 3, 0, 3, 1, 1, 3, 2
46 (8, 9) – 1, 3, 0, 3, 0, 3, 1, 2, 3, 1
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4 Conclusion

We presented Quantified Integer Programming as an intuitive modelling language
to generate recoverable robust solutions for classical scheduling problems that were
extended by various uncertain influences.
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On the Modeling of Recharging Stops in Context
of Vehicle Routing Problems

Stefan Frank, Henning Preis and Karl Nachtigall

Abstract Caused by regulations regarding to climate protection, battery electric
vehicles (BEVs) offer great opportunities in context of ecological compatibility of
urban transport systems. Therefore, operating models in context of vehicle routing
are required. Because of the BEVs more restrictive driving range in comparison to
vehicles with an internal combustion engine (ICE) and due to the fact of a less-
developed network of service stations, model formulations have to include the possi-
bility of recharging at dedicated locations. So additional restrictions in formulations
are needed to handle the maximum range depending on battery capacity. There were
published only a small number of articles addressed to energy consumption, battery
range and possible recharging stops in mixed-integer programming (MIP) formula-
tions in the underlying practice relevant Vehicle Routing Problem with Time Win-
dows (VRPTW) over the past few years. So we describe different MIP-formulations
for an enhanced VRPTW, considering capacity restrictions concerning to cargo and
energy, customer time windows and the capability of charging stops. Effects of
these formulations are shown for small-sized problems, while a column generation
approach is presented for more realistic problem instances.

1 Introduction

In terms of including a distance range caused by battery capacity of BEVs and
also charging stations to recharge batteries due to tour examining in an underlying
VRPTW, Erdogan and Miller-Hooks [4], Preis et al. [5] and Schneider et al. [6] give
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MIP-formulations. In these works additional resource constraints are included to
restrict route length up to battery capacity, and also possibilities to recharge at ded-
icated locations, represented as further nodes in the graph. These nodes are imple-
mented as so called dummy sets, which means that any of the nodes representing
charging stations is included several times in the graph. The reason therefore is to
allow several visits at these charging stations and the so needed timestamps of ser-
vice beginning, which could be allocated only once. Following this, it might be tough
defining the number of dummies representing a charging station. For large problems
there are multiple possibilities of including them in tours. A slightly generous set
unnecessarily forces degeneration and increases inherent the solving time. To the
best of our knowledge, there are no formulations published which include charging
stations without defining dummy sets of them so far. Hence, following the problem
definition and notation we illustrate a standard formulation and a possible model
without the need of dummy sets.

Let G = (V, E, c) be the tuple on the complete directed graph G with vertex set
V, arc set E = V ×V, and cost c, here represented by distances. Let V be denoted
by V = D≤K≤L with depot D ={0} , the set of n customers K ={1, 2, . . . , n} , and
the set of p discrete located charging stations L = {n + 1, n + 2, . . . , n + p} . All
customers are associated with a non-negative demand bi and service time windows[
tb
i , te

i

]
. Traveltimes for arcs are represented by t F

i j , including the service times t S
i .

With each arc we also associate cost for energy consumption of the empty vehicle
cF

i j and a component cL
i j depending on the payload. Furthermore we define variables

ti of beginning service at vertex i and variables ei as the remaining energy level on
arrival at vertex i. The cargo capacity of each vehicle from the homogenous fleet is
given by C and the battery capacity by B. The maximum duration until the arrival
at the depot is denoted by T . Further decision and arc flow variables are defined
in the sections. Conveniently, we identify the following models as Vehicle Routing
Problem with Charging Stations (VRPCS).

2 A Two-Index Formulation

This formulation involves decision variables xi j equal to 1 if arc (i, j) ∞ E with
i ≥= j is used by a vehicle and 0 otherwise, and variables mi j representing the
allocated loading weight. Each discrete located charging station in set L needs to be
defined multiple times. Thus, set L is expanded to

L = {
n + 1, . . . , n + q1, n + q1 + 1, . . . , n + q1 + q2, . . . , n + q1 + · · · + qp

}

where qi is the given number of dummies of a charging station i, and p is the given
number of different located stations.

VRPCS1 min
∑

i∞V

∑

j∞V

ci j xi j (1)
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subject to ∑

i∞V

xi j = 1 ∗ j ∞ K (2)

∑

i∞V

xi j √ 1 ∗ j ∞ L (3)

∑

i∞V

xi j −
∑

i∞V

x ji = 0 ∗ j ∞ V (4)

∑

i∞V

mi j −
∑

i∞V

m ji = b j ∗ j ∞ V \D (5)

0 √ mi j √ Cxi j ∗i, j ∞ V (6)

ti √ t j − t F
i j xi j + T

(
1 − xi j

) ∗i ∞ V ; j ∞ V \D (7)

ti + t F
i0xi0 √ T ∗i ∞ V \D (8)

tb
i √ ti √ te

i ∗i ∞ K (9)

e j √ ei − cF
i j xi j − cL

i j mi j + B
(
1 − xi j

) ∗i ∞ K ; j ∞ V (10)

e j √ B − cF
i j xi j − cL

i j mi j ∗i ∞ V \K ; j ∞ V (11)

0 √ ei √ B ∗i ∞ V (12)

xi j ∞ {0, 1} ∗i, j ∞ V (13)

Constraints (2) and (3) ensure that each customer is served exactly once, while charg-
ing stations may be visited once. Constraints (4) and (5) impose flow conservation
at all vertices. Constraints (6) force that only used arcs are allocated with payload
considering cargo capacity. Constraints (7)–(9) guarantee the compliance of service
time windows, maximum route duration and furthermore the prevention of subtours.
Constraints (10)–(12) define feasible energy levels, which includes recharging at
charging stations and restricts possible recuperation up to battery capacity.

3 A Mixed Two/Three-Index Formulation

This formulation involves decision variables xik equal to 1 if arc (i, k) ∞ E is used by
a vehicle and 0 otherwise, while i and k both are not vertices from the set of charging
stations with i ≥= k, and decision variables yi jk equal to 1 if a vehicle traverses a
charging-station j starting from node i and ending at node k and 0 otherwise, while
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i and k are not nodes from the set of charging stations and consequently i ≥= k.

Besides, we accordingly involve variables mik and ni jk representing the allocated
payload of a vehicle on an arc, respectively path.

VRPCS2 min
∑

i∞V \L

∑

j∞L

∑

k∞V \L

(
cik xik + (

ci j + c jk
)

yi jk
)

(14)

subject to ∑

i∞V \L

xik +
∑

i∞V \L

∑

j∞L

yi jk = 1 ∗k ∞ K (15)

∑

i∞V \L

xik +
∑

i∞V \L

∑

j∞L

yi jk −
∑

i∞V \L

xki −
∑

i∞V \L

∑

j∞L

yk ji = 0 ∗k ∞ V \L (16)

∑

i∞V \L

mik +
∑

i∞V \L

∑

j∞L

ni jk −
∑

i∞V \L

mki −
∑

i∞V \L

∑

j∞L

nk ji = bk ∗k ∞ K (17)

0 √ mik √ Cxik ∗i, k ∞ V \L (18)

0 √ ni jk √ Cyi jk ∗i, k ∞ V \L; j ∞ L (19)

tk ∩ ti +t F
ik xik+

(
t F
i j +t F

jk

)
yi jk−T

(
1−xik−yi jk

)
∗i ∞ V \L; j ∞ L; k ∞ K (20)

te
0 ∩ ti + t F

i0xi0 +
(

t F
i j + t F

j0

)
yi j0 − T

(
1 − xi0 − yi j0

)
∗i ∞ K ; j ∞ L (21)

tb
i √ ti √ te

i ∗i ∞ V \L (22)

ek √ ei − cF
ik xik − cL

ik mik + B (1 − xik) ∗i ∞ K ; k ∞ V \L (23)

ek √ B − cF
0k x0k − cL

0k m0k ∗k ∞ K (24)

ei ∩ cF
i j yi jk + cL

i j ni jk ∗i ∞ K ; j ∞ L; k ∞ V \L (25)

cF
0 j y0 jk + cL

0 j n0 jk √ B ∗ j ∞ L; k ∞ V \L (26)

ek √ B − cF
jk yi jk − cL

jk ni jk ∗i, k ∞ V \L; j ∞ L (27)

0 √ ei √ B ∗i ∞ V \L (28)

xik ∞ {0, 1} ∗i, k ∞ V \L (29)

yi jk ∞ {0, 1} ∗i, k ∞ V \L; j ∞ L (30)
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Because of (15) a customer must be reached only once, either directly from the depot
or another customer or similarly via a charging station. So because of (16) and (17)
for flow conservation and valid payloads, the connectivity is given. Constraints (18)
and (19) enforce that used arcs, respectively traversing paths, could be allocated with
payload, which does not exceed the vehicles cargo capacity. Following constraints
(20)–(22), feasible time stamps, route duration and subtour prevention is guaranteed.
Constraints (23)–(28) impose feasible energy levels of batteries.

4 A Set-Partitioning Formulation

The VRPCS can also be reformulated as set-partitioning problem. Therefore, let R
be the set of feasible routes, each starting and ending at the depot, visiting several
customers once and charging stations maybe repeatedly. Coefficients δir takes value
1 if customer i is visited in route r and 0 otherwise. The cost of a route r represented
by its distance is denoted by λr , while variables γr takes value 1 if route r is part of
the solution and 0 otherwise.

VRPCS3 MP min
∑

r∞R

λr γr (31)

subject to ∑

r∞R

δir γr = 1 ∗i ∞ K (32)

γr ∞ {0, 1} ∗r ∞ R (33)

Constraints (32) ensure that each customer takes part in one of the selected routes.
Because it is not comprehensive to generate all possible routes of R in the master-
problem MP, a column generation approach usually is used to add feasible routes.
Therefore, the dual variables πi from the MP, representing the marginal cost of cus-
tomer i ∞ K , are attached in the following subproblem SP. Additional variables zk

equal to 1 if customer k is part of a generated route or 0 otherwise are included to
ensure flow conservation.

VRPCS3 SP min
∑

i∞V \L

∑

j∞L

∑

k∞V \L

(
(cik − πi ) xik + (

ci j + c jk − πi
)

yi jk
)

(34)

subject to ∑

k∞K

x0k +
∑

j∞L

∑

k∞K

y0 jk = 1 (35)

∑

i∞V \L

xik +
∑

i∞V \L

∑

j∞L

yi jk −
∑

i∞V \L

xki −
∑

i∞V \L

∑

j∞L

yk ji = 0 ∗k ∞ V \L (36)
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∑

i∞V \L

mik +
∑

i∞V \L

∑

j∞L

ni jk −
∑

i∞V \L

mki −
∑

i∞V \L

∑

j∞L

nk ji = bk zk ∗k ∞ K (37)

∑

i∞V \L

xik +
∑

i∞V \L

∑

j∞L

yi jk = zk ∗k ∞ K (38)

zk ∞ {0, 1} ∗k ∞ K (39)

and constraint sets (18)–(30).
Due to constraint (35) exactly one customer is served either directly from the

depot or with the detour via a charging station. Constraints (36) ensure connectiv-
ity. Constraints (37) guarantee flow conservation for allocated customers, which is
enforced by constraints (38).

For fundamentals to column generation and approaches depending on the VRPTW
we refer to Desrochers et al. [3], Toth and Vigo [8] and Desaulniers et al. [2]. For
the sake of brevity we outline several acceleration techniques of our so far approach.
To get good dual values at the beginning we use several construction heuristics and
local search for initial routes in MP. Branching in MP occurs on the decision if
customers are allocated to the same or to different vehicles. Constraints depending
on this branching are added to SP. If there exists more than one solution of SP with
reduced cost less than zero, not only the best route is added to MP, but only the best of
different solutions with same customer allocation. To accelerate the solving process
we also use several construction heuristics and local search in SP to find feasible
routes. Further work will aim at solving SP with the help of a labeling algorithm.

Table 1 Average results Customers Vehicles Stops Time ratio

10 2.44 2.24 3.47
15 2.78 2.61 3.95
20 3.21 2.89 5.99
25 4.18 3.42 21.06

Fig. 1 Time ratio dependent
on stops
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5 Preliminary Results

Experiments were made with SCIP version 3.0.1 [1] on academic instances and mod-
ified versions of the well known instances from Solomon [7], all with three charging
stations and also three dummies in VRPCS1. Table 1 shows the average results over
100 instances each for 10 to 25 customers. The number of needed vehicles, the num-
ber of realized charging stops and the ratio of solving time for VRPCS1 compared
to VRPCS2 dependent on the number of customers are stated. Figure 1 shows the
average ratio of solving time for VRPCS1 in relation to VRPCS2 over all tested
instances dependent on charging stops. It could be seen that the solving time ratio
raises with an increasing number of customers respectively charging stops, so the
model formulation without the use of dummy sets has a positive impact.
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Demand Fulfillment in an Assemble-to-Order
Production System

Sebastian Geier and Bernhard Fleischmann

Abstract We consider a computer manufacturer who assembles customized final
products from various components. Customer orders specify the product configu-
ration, the quantity and a desired delivery date. The online order promising (OP)
process must announce a first promised delivery date to the customer. Demand ful-
fillment in this Assemble-to-Order (ATO) case is still little investigated and differs
remarkably from the more popular Make-to-Stock (MTS) case: Bottlenecks are the
assembly capacity and the stocks of components, which are available to promise
(ATP). An important task of the demand fulfillment, besides OP, is Demand Supply
Matching (DSM), i.e. deciding on the assembly date of orders and eventually chang-
ing the delivery date of promised orders (repromising). We present a new concept
for demand fulfillment in the ATO case which consists of online OP for single orders
arriving during the day and DSM once a day, linked in a rolling-horizon scheme. The
DSM is based on a mixed integer programming (MIP) model which simultaneously
determines assembly and delivery dates for all promised orders. We report on a case
study with real data of a computer manufacturer with more than 10,000 orders on
hand and 2,000 different components.

1 Introduction

Taking care of the fulfillment of customer orders is of great practical importance
for most companies, but this task has been neglected in the research on supply

S. Geier (B)

University of Augsburg, Sustainable Operations and Logistics, Universitaetsstrasse 16,
86135 Augsburg, Germany
e-mail: sebastian-geier@gmx.de

B. Fleischmann
University of Augsburg, Production and Supply Chain Management, Universitaetsstrasse 16,
86135 Augsburg, Germany
e-mail: bernhard.fleischmann@wiwi.uni-augsburg.de

D. Huisman et al. (eds.), Operations Research Proceedings 2013, 137
Operations Research Proceedings, DOI: 10.1007/978-3-319-07001-8_19,
© Springer International Publishing Switzerland 2014



138 S. Geier and B. Fleischmann

chain planning in the past. In the last few years the demand fulfillment gained
more attention, probably due to the rise of online retailing and EDI-connection
in business-to-business relationships. We consider the case where customer orders
arrive during the day and every order has to be confirmed instantly. This task is
referred to as online order promising (OP) and leads to a first promised delivery
date. Further tasks are necessary to fulfill the order completely, depending on the
decoupling point of the underlying production system. In MTS production customer
orders are fulfilled from finished goods on stock and planned production, which
constitute the quantities available to promise (ATP). However, in ATO production
systems, such as computer manufacturing, customer orders initiate the final assem-
bly of (customized) products (e.g. PCs or Servers) from various components (like
casing, mainboard, HDD, GPU, RAM, optical drives, etc.). Thus bottlenecks are the
assembly capacity and the ATP quantities of components. Typically the components
have a n:m-relationship to the orders, i.e. a specific order requires several different
components and a specific component can occur in several different orders. The
promised delivery dates are simultaneously based on the ATP-quantities of compo-
nents and on capacity. Due to the assembly step, the order fulfillment time for ATO is
longer than for MTS. During this time, after the first OP, unforeseen events like faulty
material supply, machine breakdowns or the arrival of urgent new orders can happen
As a consequence, it may become impossible to meet all promised delivery dates.
Hence a very important task of demand fulfillment in ATO-production is to monitor
the promised delivery dates during the order fulfillment time. We refer to this task as
short term Demand Supply Matching (DSM). DSM decides on the assembly dates
of orders and eventually on repromising, i.e. changing the delivery dates of some
promised orders. In the worst case, repromising leads to a cancellation of promised
orders.

The next section explains a rolling horizon planning concept for online OP and
DSM. Section 3 develops a MIP model for the DSM. Section 4 shows some com-
putational results of the rolling horizon procedure for a real life case study from an
international computer manufacturer.

2 Rolling Horizon Planning for Demand Fulfillment

Figure 1 shows the planning scheme for OP and DSM in a rolling horizon. OP takes
place for every single order at the arrival and entails an update of the ATP quantities
of the concerned components. By contrast, DSM runs once a day, overnight, for the
whole set of promised, but yet unfulfilled orders. It respects the interdependency
of these orders, which compete for common components and for capacity. Thus,
repromising may improve the delivery dates for some important orders at the expense
of other orders. The new delivery dates are determined by reserving ATP quantities
and capacity for every order on appropriate days of the planning horizon. As a result,
the remaining free ATP quantities are a starting point for the OP at the next day.
More details about the use of ATP quantities are explained in [1].
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Fig. 1 Rolling horizon planning for demand fulfillment

3 Mixed-Integer Program for Demand Supply Matching

Table 1 specifies the notation for the DSM model. The main data are, day by day, the
assembly capacity and the supply of every component, which consists for day 1 of the
initial stock and for the days t = 2, . . . , T of known or planned inflow from suppliers
or from production. The main decisions are, for every order, the delivery date, the
quantities and days of assembling, and the reservation of supply of the required
components. In order to avoid splitting the delivery over several dates which is not
allowed, the delivery date is expressed by binary variables zit . Assembling may be
split and must take place on days s prior to delivery. Every assembly quantity yis

requires sufficient reservations xi jr of all relevant components j on previous days r.
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Table 1 Symbols for the demand supply matching model

t Index of periods t = 1, . . . , T, T + 1
j Index of components j = 1, . . . , J
i Index of order i = 1, . . . , I
T Number of periods in the planning horizon
T + 1 Dummy-period, corresponding to non-fulfillment of orders
Order parameters
di Order quantity for order i
tW
i Desired delivery date for order i

ri Priority of order i
aM

i j Material coefficient of component j

for a single unit of order i
aC

i Assembly capacity coefficient for a single unit of order i
cF

it Earliness and delay penalty for delivery of a single unit of order i in period t
cN

i Penalty costs for non-fulfillment of order i
c1

j Holding cost for component j

c2
i Holding cost for the added value of assembling one unit of order i

c3
j Holding cost for one unit of order i

I 0
i Initial stock of finished products for order i
Li Delivery window for order i :

Li = ⎧
tW
i − maxEarlinessi , . . . , tW

i , . . . , tW
i + maxDelayi

⎪ ∪ {T + 1}
Ci Set of necessary components for order i
Global parameter
S jt Supply of component j in period t (for t = 1: initial stock)
Ct Assembly capacity in period t
Decision variables
xi j t Reservation of component j for order i in period t
yit Assembly quantity for order i in period t ∈ Pi

zi t Delivery quantity for order i in period t ∈ Li

Z DSM = min
⎨

i

T⎨

t=1

cF
it · Lit · di +

⎨

i

Li,T +1 · di · cN
i (1)

+
T⎨

t=1

(T − t)

⎛

⎜
⎨

i

⎨

j

c1
j · xi j t +

⎨

i

c2
i · yit −

⎨

i

c3
i · Lit · di

⎝

⎞ (2)

subject to
⎨

i

xi j t ≤ S jt ∀ j, t ≤ T (3)

⎨

i

aC
i · yit ≤ Ct ∀t ≤ T (4)
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⎨

t∈Li

Lit = 1 ∀i (5)

t⎨

r=1

xi jr ≥ aM
i j ·

⎨

s∈Li ;s≤t

yis ∀i, j ∈ Ci , t ∈ Li (6)

I 0
i +

⎨

r∈Li ;r≤t

yir ≥
⎨

s∈Li ;s≤t

Lis · di ∀i, t ∈ Li (7)

xi j t ≥ 0 ∀i, j, t = 1, . . . , T + 1 (8)

yit ≥ 0 ∀i, t ∈ Li (9)

Lit ∈ {0; 1} ∀i, t ∈ Li (10)

Part (1) of the objective function corresponds to the minimization of the cost of
deviations from the desired delivery dates and the cost for non-fulfillment whereas
part (2) minimizes the inventory costs for order specific stock of components and
of finished products. Constraints (3) ensure that the reservation of components does
not exceed the supply, and (4) is the capacity restriction. Constraints (5) enforce a
unique delivery date, which may also be in the dummy period. Constraints (6) and
(7) express, for every order, the dependencies between reservations of components,
assembly quantities and delivery date, as explained before. The model formulation
and the parametrization can only be sketched here, details can be found in [2].

4 Computational Results

The presented concept has been tested with several real-life data sets, provided by a
European computer manufacturer, with more than 10,000 promised orders and 2,000
components. The results can be influenced by determining the penalty cost rates for
unpunctual delivery and for non-fulfillment. As an example, Fig. 2 shows a contrary
behavior for the two objectives minimal deviation from the desired delivery date
and minimal number of non-fulfilled orders. With higher relative costs for a non-
fulfillment of orders, not only the proportion of fulfilled orders increases, but also
the proportion of on-time delivery decreases. Thus, the trade-off between on-time
delivery and fulfillment of orders has to be considered carefully. Stability of the
promised delivery dates is a further objective of great practical importance. In the
test runs for the rolling-horizon scheme, additional penalty costs were introduced
for repromising. We simulated DSM runs on two consecutive days, starting with the
determination of the delivery dates for 10,493 orders on day t −1. The resulting ATP
quantities were used for the online OP for 1,203 arriving orders on day t. According



142 S. Geier and B. Fleischmann

Fig. 2 Effect of increasing costs for non-fulfillment on on-time deliveries and fulfilled orders

Table 2 Resulting changes in delivery plan for rolling planning

Relative cost Percentage of improved dates Percentage of deteriorated dates

0.0 7.6 2.5
0.01 6.0 1.0
0.04 5.6 0.9
0.64 4.0 0.2
1.28 3.9 0.0

to the DSM planning, 1,710 orders were fulfilled on day t. Then, a DSM run for
day t was performed. Table 2 shows results for different values of the repromising
cost. For penalty costs of 1.28 times the order priority ri , deviations of delivery
dates, representing a deterioriation of delivery service, can be avoided, while some
improvements of delivery dates (mainly of newly arrived orders on day t) are even
possible.

5 Conclusions

The study shows that in the demand fulfillment for ATO production, DSM plays an
important role. Combined with the online OP for single orders in a rolling horizon
scheme, it generates valid and stable delivery plans. It improves the results of the
OP by taking the interdependency of all orders into account. Future research effort is
required for developing advanced concepts for order promising in ATO production,
in particular the incorporation of customer classes.
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Integrating Keyword Advertising
and Dynamic Pricing for an Online
Market Place

Thomas Goertz, Jella Pfeiffer, Henning Schmidt and Franz Rothlauf

Abstract Keyword Advertising is a main marketing instrument for e-commerce
companies in order to generate traffic from search engines on their website. The costs
for Keyword Advertising are determined in an auction that is conducted for every
single search query, which is entered in by a user. In case of an online market place,
each adlink provided by the search engine refers to an ordered list of products on the
website of the online market place. Hereby, the price of the product is oftentimes one
important criteria for the user when deciding for one or the other product from the list.
However, existing models assume the price of products to be exogeneous. By taking
into account the prices of linked products as a further class of decision variables, we
propose a joint version of the advertiser’s decision problem that, apart from finding
the optimal bidding strategy for Keyword Advertising, also finds the optimal pricing
strategy for the offered products under a budget restriction and capacity constraints.

1 Introduction

Keyword Advertising has grown into a multibillion-dollar business. According to a
survey conducted by PwC the total annual spend for Keyword Advertising in the
United States in 2012 was $16.84 billion, which is 13 % increase compared to 2011.
Keyword Advertising is a service offered by Internet search engines which enables
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advertisers to personalize online-advertisement because they allow for displaying
an ad that fits to the customer’s search query. In most cases, the costs for Keyword
Advertising are determined in an auction that is automatically conducted for every
single search query entered by a user. The advertisers’ bids for keywords determine
the position of their related ad placements and the prices that they need to pay to
the search engine whenever a customer actually clicks on their ads (cost-per-click).
The most important Keyword Advertising service, Google AdWords, utilizes the
Generalized Second Price Auction (GSP) to sell their slots for paid ad placements
(see [2]): In case of a click on an advertiser’s adlink, displayed on position i, the
advertiser has to pay the submitted bid of the advertiser on position i +1. In previous
work, several authors have shown that bidding the true value of a keyword in a
GSP is not optimal (see [2, 3]). In addition to the latter finding, multiple empirical
studies in recent years have shown that top positions lead to more clicks on the
advertiser’s ad placement but also at higher costs [4, 5]. As shown by Ghose and
Yang [5], the ad position does also affect the customer’s purchase decision, i.e.,
better positions lead to higher purchase probabilities. Hence, strategically bidding is
a necessary precondition in order to maximize an advertiser’s revenue from Keyword
Advertising.

Current Keyword Advertising models rely on a calculation of revenue that assume
the value per keyword as fixed (see [6]). This approach, however, does not take into
account that an advertiser has the possibility to balance higher costs for better ad
positions with increased prices of the advertised products. Furthermore, existing
models ignore the impact of limited capacity of each product on the optimal bidding
policy. Especially in cases where the total expected demand exceeds the available
capacity of requested products, this may lead to wrong decisions.

In this work we present an extended Keyword Advertising model that integrates
prices of the advertised products as additional decision variables because we argue
that this approach has the potential to further boost an advertiser’s revenue. The
main goal of this work is therefore to create a link between Keyword Advertising
and Dynamic Pricing by proposing an optimization problem which simultaneously
optimizes bids for keywords and prices for linked products, taking into account
capacity constraints, a budget cap and the impact of bids and prices on the customer’s
purchase decision.

2 Keyword Advertising and Dynamic Pricing

Dynamic Pricing is a concept which is extensively used across different industries
with the goal to sell products at prices which match the maximum willingness-to-
pay of customers. So far, most problems in literature consider a service provider of
perishable products with a fixed inventory who has to sell these products over a finite
time horizon. Extensive literature reviews can be found in [1, 9, 10]. In all these
works it is argued that demand can mainly be controlled by allowing prices to vary.
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Another possibility to influence demand is to advertise the considered products.
Yet, only a few articles combine these both fields, advertising and Dynamic Pricing,
and thus create more flexibility in controlling demand (see [7, 8, 11]).

2.1 Advertiser’s Decision Process

In this section, we introduce our approach for modeling an advertiser’s decision
problem promoting her products exclusively via Keyword Advertising campaigns.
For this purpose, we consider a discretizised optimization period T = {t1, t2, . . .}.

2.1.1 Ad Choice Decision

For each keyword, k ∈ K = {k1, k2, . . .}, the advertiser sets a bid, bk,t > 0, at any
time slice, t ∈ T. This determines the display position posk,t ≥ 1 of the related
ad placement within the sponsored search region of the search engine’s results page
(SERP). Let Sk,t denote the aggregated number of users’ searches submitted for
keyword k in time slice t . Obviously, Sk,t is a random variable and we write Sk,t =
E

[
Sk,t

]
for the expected number of searches. Most search engines only display a

limited number of adlinks when it comes to a search. Therefore, the probability to
receive a click on the j-th search depends on the number of competing advertisers
Nk,t ≥ 0 and the search engine’s default maximum slot, η > 0, that is going to be
displayed. We define δ

(c)
j,k,t to be the indicator function of getting a click on the j th

ad impression for keyword k ∈ K in time slice t ∈ T, i.e.:

δ
(c)
j,k,t =

{
1, if a click occurs

0, otherwise.
(1)

By applying Bayes’ Theorem, the total number of website traffic, generated via
users having searched for keyword k ∈ T in time slice t ∈ T can then be calculated
as follows:

Tk,t =
Sk,t∑

j=1

min{η,Nk,t +1}∑

i=1

P
[
δ
(c)
j,k,t = 1

∣∣ posk,t = i
]

· P
[

posk,t = i
∣∣ bk,t

]
. (2)

Usually, no search engine provides search-specific data but instead aggregated data
per keyword on a time slice basis. Hence, we assume δ

(c)
j,k,t to be i.i.d. for all searches,

1 ≤ j ≤ Sk,t . As a consequence we can drop the impression index j in Eq. (2) and
the following formula results for the expected number of website traffic:



148 T. Goertz et al.

T k,t = Sk,t

min{η,Nk,t +1}∑

i=1

P
[
δ
(c)
k,t = 1

∣∣ posk,t = i
]

· P
[

posk,t = i
∣∣ bk,t

]
. (3)

One of the main characteristics of Keyword Advertising services such as Goog-
leAdWords is that advertisers pay search engines only when their ads are clicked
by customers. The click-based payment models vary across search engines. Some
search engines have implemented a first-price rule, where advertisers pay their sub-
mitted bid after a click. Other search engines use more complex payment rules. For
example, Google has implemented an extended second-price rule where, apart from
the submitted bid of the competitor at the subsequent position, the per-click payment
additionally depends on an internally determined quality factor. The basic idea of
such a factor is to reward relevancy of ad placements. Throughout this work, we
assume the concept of a sealed Generalized Second Price Auction (GSP) ignoring
an additional factor such as Google’s quality factor. In case of a click on an adlink
related to keyword k ∈ K in time slice t ∈ T, the advertiser is charged a price, which
equals the bid of the competing advertiser at the subsequent position. If there are no
competitors, i.e., Nk,t = 0, or if all competitors’ bids are higher, the advertiser is
charged a floor price by the search engine. Since the advertiser cannot observe the
competitive bids because of the sealed auction concept, we define Ck,t to be the con-
tinuous random variable expressing the competitor’s bid at the subsequent position.
Herewith the total expected cost generated via keyword k ∈ K in time slice t ∈ T

can be calculated as:

Ck,t
(
bk,t

) = T k,t
(
bk,t

) · E
[
Ck,t

∣∣ bk,t
]
. (4)

2.1.2 Purchase Decision

In this work, we set our focus on the revenue maximization problem, generated
via Keyword Advertising from the perspective of an online market place, selling
multiple products with limited capacity, provided by multiple suppliers, e.g., hotel
rooms, flights or concert tickets. In case of a click, each adlink refers to an ordered
list of products on the website of the market place which in turn may depend on the
different keyword attributes. For example, an online market place might sort the list
by price for users clicking on an adlink for “cheap hotel London” or by distance to city
centre in case of “hotel London city centre”. In that context, a product is defined to be
a combination of two classes of attributes: resource attributes, (s1, . . . , sm) ∈ S :=
S1 × · · · × Sm, and customizable attributes, (a1, . . . , an) ∈ A := A1 × · · · ×An . In
case of the online hotel reservation industry, a product might be defined by resource
attributes that uniquely describe the hotel such as hotel name and star category and
the customizable attributes can be booking parameters such as checkin/out date and
roomtype. In most cases, the keyword does not reveal the customizable attributes.
Hence, after having submitted a search for keyword k ∈ K, the customer’s first action
is to submit the preferred customizable attributes. Thereupon, the provider conducts
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an availability request for the requested products. In the next stage, the customer
has to make a decision on buying a product or to leave the page. In literature, two
different search patterns are proposed to model the customer’s search behaviour:
Sequential search and Nonsequential search (see [14]). In this work, we assume a
nonsequential search pattern, i.e., upon viewing the filtered product list, the customer
puts all displayed products together with a no-choice option in her consideration set
and chooses one of the options.

Similar to the approach of Venkateshwara Rao and Smith [13], the customer’s
purchase decision is modelled as a two-stage decision process where in the first
stage, a multinomial discrete choice model is applied to determine the customer’s
choice of the preferred product amongst all displayed products. In the second stage, a
binary decision model is utilized to estimate the probability to purchase the selected
product of the first stage. For simplification, we assume these choices to be only
conditional on the controllable variables: price per product and bid per keyword. In
general, several other factors such as content quality, average ratings, list position,
keyword length etc. also have an impact on these choices and can easily be included
as additional variables in the model (see [5, 13]).

We define Hk,t ∈ S to be the first stage choice random variable, conditional on the
selected customizable attributes, a ∈ A, the displayed product prices, ps,a,t , s ∈ S,

and the ad position, posk,t , which is determined by the submitted bid, bk,t . For the
second stage decision, we introduce the conditional random variable δ

(b)
k,s,a,t indicat-

ing if the customer purchases the selected product (s, a) ∈ S×A from the first stage.
By assumption, the online market place is able to impose mark-up’s or mark-down’s
on the suppliers’ prices entered in the reservation system. Based on the suppliers’
prices, the market place pays per booking a fix commission share γ > 0 to the
supplier. This business model can be seen as a mixture of the merchant model and
the commissionable model (see [12]). We further assume that it is not allowed to set
different prices for the same product across different keywords linking on the same
set of products. Therefore, the market place has to set a price mark-up/down rate
ms,a,t ∈ R for each product (s, a) ∈ S × A and every time slice t ∈ T. In combi-

nation with the vector rt ∈ R
|S||A|
>0 consisting of all basis product prices negotiated

with the supplier, the displayed price for product (s, a) ∈ S×A can be calculated as:

ps,a,t = ms,a,t · rs,a,t . (5)

In order to estimate the website traffic of product (s, a) ∈ S × A generated via
keyword k ∈ K in time slice t ∈ T, it is crucial to estimate the joint probability
vector wk,t ∈ [0, 1]|A1|·...·|An | of customizable attributes per keyword k ∈ K and
time slice t ∈ T. Herewith and by applying Eqs. (3, 5), the expected sale demand
Dk,s,a,t for product (s, a) ∈ S×A generated via keyword k ∈ K in time slice t ∈ T

can be calculated as:
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Dk,s,a,t
(
bk,t , ms,a,t

) = Tk,t
(
bk,t

) · wa,k,t · P
[
Hk,t = s

∣∣ ps,a,t
(
ms,a,t

)
, bk,t

]

· P
[
δ
(b)
k,s,a,t = 1

∣∣ ps,a,t
(
ms,a,t

)]
. (6)

Finally, using Eq. (6) the objective function is:

R
(
b, ms,a,t

) =
∑

k∈K

∑

s∈S

∑

a∈A

∑

t∈T
Dk,s,a,t

(
bk,t , ms,a,t

) · rs,a,t · (ms,a,t − γ ).

As in the classical Dynamic Pricing case, the supply of products being listed on the
provider’s results page is limited by several maximum capacity constraints, ensuring
that a requested product is available. As a last restriction, the provider’s advertising
spending is limited by a Budget Cap B > 0.

3 Conclusion

We presented a general model for online market places that describes the joint deci-
sion problem of finding the optimal Keyword Advertising bidding strategy as well as
the optimal pricing strategies of products in order to maximize the expected revenues
generated via Keyword Advertising campaigns. Future work contains the evaluation
of simulation experiments showing the uplift in revenue contribution by switching to
a Dynamic Pricing integrated approach for controlling Keyword Advertising cam-
paigns.
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Characterizing Relatively Minimal Elements
via Linear Scalarization

Sorin-Mihai Grad and Emilia-Loredana Pop

Abstract In this note we investigate some properties of the relatively minimal
elements of a set with respect to a convex cone that has a nonempty quasi-relative
interior, in particular their characterization via linear scalarization.

1 Introduction

The role played in the optimization theory by the generalizations of the interior of
a set has grown in importance in the last years, due to both theoretical and practical
reasons. One can find a large number of recent publications (like [3, 4, 6] and
some references therein) where different generalized interiority notions were used
for formulating weak regularity conditions for strong duality or various formulae
involving subdifferentials or conjugate functions, while in works like [2, 7, 8, 10]
new minimality concepts for sets were defined by using such generalized interiors,
leading to new efficiency notions as solutions to vector optimization problems.

After showing in [7] that the most important properties of the classical weak
minimality with respect to a convex cone, including its characterization via linear
scalarization, remain valid when the interior of the ordering cone is possibly empty
while its quasi interior is nonempty, we extend in this note the investigations to the
more general case when only the quasi-relative interior of the ordering cone is known
to be not void. The quasi-relative interior of a set was introduced in [3] and it is the
most general notion of a relative interior of a set known so far. In finite-dimensional
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spaces it coincides with the classical relative interior. Our investigations are motivated
not only by theoretical reasons, but also by the vector optimization problems where
the ordering cones of the image spaces have empty interiors met in the literature,
for instance in [1]. Relatively minimal elements of a set with respect to a cone (with
nonempty (quasi-)relative interior) were already considered in the literature, see for
instance [2, 8, 10], where different aspects concerning them were investigated by
means of nonsmooth analysis or vector optimization, respectively.

2 Preliminaries

Let X be a separated locally convex space, X≤ be the topological dual space of X
endowed with the corresponding weak≤ topology and let ∞x≤, x≥ = x≤(x) denote the
value at x ∗ X of the linear continuous functional x≤ ∗ X≤. A cone K √ X is a
nonempty set which fulfills ΦK √ K for all Φ ∩ 0. A convex cone is a cone which is
a convex set. A cone K √ X is called nontrivial if K ≡= {0} and K ≡= X and pointed
if K ∧ (−K) = {0}. The dual cone of K is K≤ = {x≤ ∗ X≤: ∞x≤, x≥ ∩ 0 ∀x ∗ K}.

For a subset U of X, by intU, clU, coneU and riU we denote its interior, closure,
conical hull, and, in case X = R

n, relative interior, respectively. The normal cone
associated to the set U at x ∗ U is given by NU(x) = {x≤ ∗ X≤: ∞x≤, y − x≥ ≤
0 ∀y ∗ U}. The quasi interior of U is qiU = {x ∗ U: cl(cone(U − x)) = X} and its
quasi-relative interior qriU = {x ∗ U: cl(cone(U − x)) is a linear subspace of X}.
Some properties of the quasi-relative interior follow (cf. [3–5]).

Lemma 1 Let U √ X be a convex set.

(a) For all x ∗ X, it holds qri{x} = {x} and qri(U − x) = qriU − x.
(b) One has intU √ qiU √ qriU and any nonempty set within this chain of inclusions

coincides with all its supersets.
(c) If x ∗ U, one has x ∗ qriU if and only if NU(x) is linear subspace of X≤.
(d) In case X = R

n, we have that qiU = intU and qriU = riU.

In a separable Banach space the quasi-relative interior of a nonempty closed
convex set is nonempty (cf. [3]), but this is no longer true in general if the space is
not separable. A situation where the interior of a set and all its generalized interiors
but the quasi interior and the quasi-relative interior are empty follows.

Example 1 Let the real Banach space ρ2 = ρ2(N) of the real sequences (xn)n∗N
that fulfill

∑←
n=1 |xn|2 < +← be equipped with the norm || · ||: ρ2 → R, ||x|| =(∑←

n=1 |xn|2
)1/2

, x = (xn)n∗N ∗ ρ2. The positive cone of ρ2 is ρ2+ = {(xn)n∗N ∗
ρ2: xn ∩ 0 ∀n ∗ N}. Then intρ2+ = ∅, but qiρ2+ = qriρ2+ = {(xn)n∗N ∗ ρ2: xn >

0 ∀n ∗ N}.
Some properties of the quasi-relative interior of a cone follow (cf. [3, 6, 7, 10]).
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Lemma 2 Let K √ X be a convex cone.

(a) If clK is pointed, then 0 /∗ qriK.
(b) One has qriK + K = qriK.
(c) The set qriK ∪ {0} is a cone, too.

In the literature there exist some separation statements for convex sets by means
of the quasi-relative interior (cf. [4, 5]). We use [5, Theorem 2.7].

Lemma 3 Let U be a nonempty convex subset of X and x ∗ U. If x /∗ qriU then
there exists an x≤ ∗ X≤ \ {0} such that ∞x≤, y≥ ≤ ∞x≤, x≥ for all y ∗ U.

If K is a closed convex cone, then qiK≤ = {x≤ ∗ K≤: ∞x≤, x≥ > 0 ∀x ∗ K \ {0}}, a
set usually denoted by K≤0, which is known in the literature as the quasi interior of
the dual cone of K or the strong dual cone of K . From here one can deduce that in
this case qiK = {x ∗ X: ∞x≤, x≥ > 0 ∀x≤ ∗ K≤ \ {0}} and let us denote the set in the
right-hand side by K0. Aware that in the literature this notation was also used for the
interior and polar cone of K , respectively, we opted for it due to the similarity with
K≤0.

Proposition 1 Let K √ X be a convex cone.

(a) One always has K ∧ K0 √ qriK.
(b) If K0 ≡= ∅, then qriK √ K0.

Proof (a) If x ∗ (K ∧ K0) \ qriK , then ∞x≤, x≥ > 0 for all x≤ ∗ K≤ \ {0} and, on
the other hand, Lemma 3 yields the existence of an x̄≤ ∗ X≤ \ {0} such that
∞x̄≤, x≥ ≤ ∞x̄≤, y≥ for all y ∗ K . Then x̄≤ ∗ K≤ \ {0} and ∞x̄≤, x≥ ≤ 0. But
∞x̄≤, x≥ > 0, and this contradiction yields that there exists no x as taken above.

(b) If x ∗ qriK \ K0 then there exists an x̄≤ ∗ K≤ \ {0} such that ∞x̄≤, x≥ = 0. Then
∞−x̄≤, y − x≥ ≤ 0 for all y ∗ K , i.e. −x̄≤ ∗ NK (x). As x ∗ qriK yields that NK (x)
is a linear subspace of X≤, it follows that x̄≤ ∗ NK (x), too, i.e. ∞x̄≤, y − x≥ ≤ 0
for all y ∗ K . This yields ∞x̄≤, y≥ = 0 for all y ∗ K , consequently K0 = ∅. �

Remark 1 If the convex cone K is also closed one has qiK = K0, so K0 ≡= ∅
means actually qiK ≡= ∅, that yields qiK = qriK . Conditions that guarantee that
K0 ≡= ∅ were proposed in the literature to the best of our knowledge only for this
case, for instance [9, Theorem 3.38]. Similarly, the inclusion in Proposition 1(b) was
previously known only under the additional hypothesis cl(K −K) = X, which yields
qiK = qriK , as done for instance in [3, Theorem 3.10] or [10, Lemma 2.5].

A convex cone K √ X induces on X the partial ordering relation “�K ” defined
by x �K y if y − x ∗ K , where x, y ∗ X. Denote also x ≤K y if x �K y and x ≡= y.
When qriK ≡= ∅ we write x <K y if y − x ∗ qriK , extending the notation usually
considered in the literature for the case intK ≡= ∅ (or qiK ≡= ∅, as done in [7]).

We define now some notions that extend the classical monotonicity to functions
defined on partially ordered spaces, followed by illustrative examples.
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Definition 1 Let be a convex cone K √ X, a nonempty set U √ X and a function
f : X → R. When f (x) ≤ f (y) for all x, y ∗ U such that x �K y, the function f is
called K-increasing on U. If, additionally, qriK ≡= ∅ and for all x, y ∗ U fulfilling
x <K y follows f (x) < f (y) the function f is called relatively strictly K-increasing
on U. When U = X we call these classes of functions simply K-increasing and
relatively strictly K-increasing, respectively.

Example 2 (see also [6]) If X is partially ordered by the convex cone K √ X, then
any x≤ ∗ K≤ is a K-increasing function. If K0 ≡= ∅, then Proposition 1 yields
qriK = K0 ∧ K and thus every x≤ ∗ K≤ \ {0} is relatively strictly K-increasing on X.

3 Relatively Minimal Elements

Let X be a separated locally convex vector space partially ordered by the pointed
convex cone K √ X with qriK ≡= ∅, and U √ X a nonempty convex set. Let us recall
the definition of the relatively minimal elements of the set U.

Definition 2 An element x ∗ U is said to be a relatively minimal element of U
(regarding the partial ordering induced by K) if (x − qriK) ∧ U = ∅. We denote by
RMin(U, K) the set of all relatively minimal elements of the set U.

Remark 2 Minimal elements defined by means of the quasi-relative interior can be
found for instance in [2, 8, 10], where they are called quasi relative minimal or
weakly minimal, respectively. However, as the quasi-relative interior collapses into
the relative interior in finite-dimensional spaces, we opted for the name given in
Definition 2. Note also that in the literature minimal elements defined by means of
other generalized (relative) interiors were also considered in works like [2, 7, 8].

Analogously, x ∗ U is a relatively maximal element of U (regarding the partial
ordering induced by K) if (x + qriK)∧ U = ∅. We denote by RMax(U, K) the set of
all relatively maximal elements of the set U (regarding the partial ordering induced
by K). One can prove that RMin(U,−K) = −RMin(−U, K) = RMax(U, K).

Recall also that an element x ∗ U is a minimal element of U (regarding the partial
ordering induced by K) if there exists no u ∗ U satisfying u ≤K x. The set of all
minimal elements of U is denoted by Min(U, K).

Remark 3 The relation (x − qriK) ∧ U = ∅ in Definition 2 can be equivalently
rewritten as (U − x) ∧ (−qriK) = ∅. If K is nontrivial, considering also the cone
K̂ = qriK ∪ {0} one has x ∗ RMin(U, K) if and only if x ∗ Min(U, K̂).

Employing Lemma 2(a), one can easily prove the following statement.

Proposition 2 If clK is pointed, then Min(U, K) √ RMin(U, K), while when K = X
it holds RMin(U, K) = ∅.
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Now let us compare the relatively minimal elements of U and U + K .

Proposition 3 It holds RMin(U + K, K) ∧ U √ RMin(U, K) √ RMin(U + K, K).

Proof If x ∗ RMin(U + K, K) ∧ U, then (x − qriK) ∧ (U + K) = ∅. As (x −
qriK)∧U √ (x −qriK)∧ (U +K) it follows that (x −qriK)∧U = ∅, too, therefore
x ∗ RMin(M, K).

If x ∗ RMin(U, K)\RMin(U+K, K), then there exist y ∗ (x−qriK)∧(U+K) ≡=
∅ and u ∗ U such that y − u ∗ K . Then x − y ∗ qriK , thus Lemma 2(b) yields
x−u ∗ qriK+K = qriK , consequently u ∗ (x−qriK)∧U. Hence, x /∗ RMin(U, K),
contradiction. �

Remark 4 In Propositions 2 and 3 is not necessary to take U convex.

If A and B are convex subsets of X, recall that int(A + B) = A + intB. Moreover,
in all the situations known to us where qiB ≡= ∅, but its interior is empty, it holds
A + qiB = qi(A + B). This motivates us to consider the following notion. We say
that the sets A and B have the property (QS) if

(QS) A + qriB = qri(A + B).

There exist pairs of sets that have the property (QS) and pairs that do not satisfy it.

Example 3 If X = R
2, the sets A = (0, 1)×{0} and B = {0}×R+ have the property

(QS), while C = [0, 1] × {0} and the same B do not. Note that qiB = intB = ∅.

Next we formulate some necessary and sufficient characterizations via linear
scalarization of the relatively minimal elements of U with respect to K .

Theorem 1 If the sets U and K have the property (QS) and x ∗ RMin(U, K) then
there exists an x≤ ∗ K≤ \ {0} such that ∞x≤, x≥ ≤ ∞x≤, u≥ for all u ∗ U.

Proof As x ∗ RMin(U, K) one gets that u /∗ x − qriK for all u ∗ U. Thus, x /∗
u + qriK for all u ∗ U, consequently x /∗ U + qriK = qri(U + K). As x ∗ U + K
but x /∗ qri(U + K), Lemma 3 grants the existence of an x≤ ∗ X≤ \ {0} such that

∞x≤, x≥ ≤ ∞x≤, u + k≥ ∀u ∗ U ∀k ∗ K . (1)

Because K is a cone, it follows from (1) that x≤ ∗ K≤ \ {0}. Taking in (1) k = 0, one
obtains ∞x≤, x≥ ≤ ∞x≤, u≥ for all u ∗ U. �

In case X = R
n the hypotheses of Theorem 1 can be simplified as follows.

Theorem 2 If X = Rn and x ∗ RMin(U, K) then there exists an x≤ ∗ K≤ \ {0} such
that ∞x≤, x≥ ≤ ∞x≤, u≥, for all u ∗ U.
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Proof As x ∗ RMin(U, K), Proposition 3 yields x ∗ RMin(U + K, K), i.e.
(x − riK) ∧ (U + K) = ∅. Then, ri(x − K) ∧ ri(U + K) = ∅ and Rockafellar’s
Separation Theorem (cf. [6, Theorem 2.1.7]) yields the existence of an x≤ ∗ X≤ \ {0}
such that

∞x≤, x − p≥ ≤ ∞x≤, u + k≥ ∀u ∗ U ∀k, p ∗ K . (2)

As K is a cone, (2) implies x≤ ∗ K≤ \ {0} and taking there p = k = 0, one obtains
∞x≤, x≥ ≤ ∞x≤, u≥ for all u ∗ U. �

Theorem 3 Consider a function f : X → R that is relatively strictly K-increasing
on U. If there is an element x ∗ U fulfilling f (x) ≤ f (u) for all u ∗ U, then
x ∗ RMin(U, K).

Proof If x /∗ RMin(U, K), then there exists an u ∗ (x − qriK) ∧ U. This implies
f (u) < f (x), which contradicts the hypothesis. �

Using Theorem 3 and Example 2 one can prove the next statement.

Theorem 4 If K0 ≡= ∅ and there exist x≤ ∗ K≤ \ {0} and x ∗ U such that for all
u ∗ U it holds ∞x≤, x≥ ≤ ∞x≤, u≥, then x ∗ RMin(U, K).

Combining Theorem 1 and Theorem 4 we obtain an equivalent characterization
via linear scalarization for the relatively minimal elements of U with respect to K .

Theorem 5 Let x ∗ U, K0 ≡= ∅ and assume that the sets U and K have the property
(QS). Then x ∗ RMin(U, K) if and only if there exists an x≤ ∗ K≤ \ {0} satisfying
∞x≤, x≥ ≤ ∞x≤, u≥ for all u ∗ U.

In case X = Rn, combining Theorem 2 and Theorem 4 one obtains the following
characterization via linear scalarization for the relatively minimal elements of U with
respect to K .

Theorem 6 Let X = Rn, x ∗ U and K0 ≡= ∅. Then x ∗ RMin(U, K) if and only if
there exists an x≤ ∗ K≤ \ {0} satisfying ∞x≤, x≥ ≤ ∞x≤, u≥ for all u ∗ U.

Remark 5 Note that if qiK ≡= ∅ the investigations from above rediscover our earlier
results from [7], while if intK ≡= ∅ different statements from the literature (see, for
instance, [6, Sects. 2.4.2 and 2.4.4]) are recovered as special cases.
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An MBLP Model for Scheduling
Assessment Centers

Joëlle Grüter, Norbert Trautmann and Adrian Zimmermann

Abstract Firms aim at assigning qualified and motivated people to jobs. Human
resources managers often conduct assessment centers before making such personnel
decisions. By means of an assessment center, the potential and skills of job applicants
can be assessed more objectively. For the scheduling of such assessment centers, we
present a formulation as a mixed-binary linear program and report on computational
results for four real-life examples.

1 Introduction

The management of a firm’s human capital is an important factor for its performance
(cf., e.g., [2]). The development of human capital is challenging, as it requires man-
agers to assess the potential and the skills of job applicants (referred to as candidates).
To help them with this task, managers often conduct assessment centers.

In an assessment center, the candidates complete several exercises, during which
they are observed and evaluated by assessors, usually managers or psychologists.
The planning problem at hand consists of finding a schedule, i.e., determining the
start times of all exercises and other activities, such as lunch breaks, and of assigning
assessors to exercises, such that the assessment-center duration is minimized.

To the best of our knowledge, this problem has not been treated in the literature.
Project scheduling under resource constraints and multiple modes (cf., e.g., [1, 4])
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and scheduling of batch processes (cf., e.g., [3]) are related problems, but none
captures all the elements of the planning problem presented here, e.g., the specific
requirements to the assessor assignment.

In this paper, we formulate this planning problem as a mixed-binary linear pro-
gram. For four real-life assessment centers, we obtain good feasible solutions within
reasonable CPU time.

The remainder of this paper is structured as follows. In Sect. 2, we illustrate the
planning problem with an example. In Sect. 3, we present our MBLP formulation. In
Sect. 4, we report our computational results. In Sect. 5, we provide some concluding
remarks and some directions for further research.

2 Planning Problem

In this section we present the planning problem as reported to us by a Swiss service
provider in the human resources sector. The planning of an assessment center requires
to decide when to perform each exercise type for each candidate and to assign a
predefined number of assessors and, if the exercise is designed as a role-play, an actor
to these exercises. In order to ensure the objectivity of the overall evaluation, but to
avoid time-consuming discussions between the assessors, the candidates should be
observed by approximately half of all available assessors. In addition, there may be
no-go relations that prohibit an assessor from observing certain candidates. Hence,
for each candidate a subset of assessors without no-go relations must be selected.
When scheduling an exercise for a candidate, only assessors from this subset can be
assigned.

To illustrate the planning problem, we present an example (cf., Table 1). In this
example, three candidates have to perform three different exercise types E1, E2
and E3. There are five assessors and one actor. E1 requires two assessors and one
actor. E2 and E3 require two assessors and one assessor, respectively, but do not
require an actor. These requirements can vary over the course of an exercise. E.g.,
for a candidate, the total duration of E2 is 27 time units; 19 time units are used for
preparation without an assessor, and the subsequent 8 time units are reserved for
the exercise’s execution in the presence of two assessors. The remaining 2 units of
the assessors’ duration (10) are spend recording the observations made during the
exercise. Furthermore, the lunch breaks have to be scheduled between periods 20
and 46.

3 Model Formulation

In this section we present our MBLP formulation. The MBLP is based on the model
of [3] for a machine-scheduling problem. We extend that model by constraints to
control the assignment of assessors to candidates; moreover, we increase the model’s



An MBLP Model for Scheduling Assessment Centers 163

Table 1 Data of the illustrative example

Total duration (5 min) Preparation time (5 min) No-go
E1 E2 E3 Lunch E1 E2 E3 Lunch relations

Candidates {C1, C2, C3} 16 27 12 6 8 19 0 0 (C2, A4)
Assessors {A1,…,A5} 10 10 16
Actors {R1} 9

performance by adding lower bounds, redundant constraints, and symmetry-breaking
constraints.

We model the candidates, assessors and actors as machines and the exercises and
lunch breaks as activities that are to be processed by these machines. We split the
activities into ordered tasks, one for each resource required. The first task always
requires the candidate, and the second task always an assessor (see Fig. 1). The
remaining tasks require an assessor and, in the case of a role-play, an actor. We use
the following notation.

A, C Set of assessors and candidates
E Set of different exercise types
I Set of activities
I C
c Set of activities that require the same candidate c

I E
e Set of identical activities that belong to exercise type e

I 1, I 2 Set of activities that require one (I 1) or two (I 2) assessors, respectively
I L Set of lunch breaks
Jik Set of resources which can perform task k of activity i
Ki Set of tasks of an activity i (Ki = {1, . . . , | Ki |})
dik Duration of task k of activity i
kl

i Last task of activity i
le, ll Earliest (le) and latest (ll ) start time for the lunch breaks
oik Negative time lag between finish of task k ≤ Ki \ {kl

i } and start of k + 1
∞ D Duration of the assessment center
∞ Fik Finish time of task k of activity i
∞ Sik Start time of task k of activity i
∞ Xii ≥ = 1 (= 0), if activity i is (not) executed before activity i ≥ > i , and any task of i and

any task of i ≥ are executed by the same resource
∞ Yik j = 1, if task k of activity i is executed by resource j ; = 0, else
∞ Zca = 1, if assessor a is assigned to candidate c at least once; = 0, else

For i = i ≥, variables Xii ≥ are introduced as auxiliary variables. For i ≥ > i and if
none of the tasks of i and i ≥ are executed by the same resource, Xii ≥ has no specific
meaning, but is required for modeling reasons. For i > i ≥, variables Xii ≥ are not
introduced.

With this notation the model reads as follows.
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Candidate

Assessor

Actor

Fig. 1 An exercise split into tasks for each required resource

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎛

Min. D (1)

s.t.
⎜

j≤Jik

Yik j = 1 (i ≤ I ; k ≤ Ki ) (2)

dik = Fik − Sik (i ≤ I ; k ≤ Ki ) (3)
Fik − oik = Si,k+1

⎝
i ≤ I ; k ≤ Ki \ {kl

i }
⎞
(4)

Si ≥k≥ ∗ Fik − M(1 − Xii ≥) − M(2 − Yik j − Yi ≥k≥ j )
⎝
i, i ≥ ≤ I ; k ≤ Ki ;

k≥ ≤ Ki ≥ ; j ≤ (Jik √ Ji ≥k≥) : (i < i ≥) or (i = i ≥ and k < k≥) ) (5)
Sik ∗ Fi ≥k≥ − M Xii ≥ − M(2 − Yik j − Yi ≥k≥ j )

⎝
i, i ≥ ≤ I ; k ≤ Ki ;

k≥ ≤ Ki ≥ ; j ≤ (Jik √ Ji ≥k≥) : (i < i ≥) or (i = i ≥ and k < k≥) ) (6)
Fik ∩ D (i ≤ I ; k ≤ Ki ) (7)⎜

i≤I C
c

⎜

k≤Ki

Yika/ |E | ∩ Zca ∩
⎜

i≤I C
c

⎜

k≤Ki

Yika (c ≤ C; a ≤ A) (8)

≡|A| /2∧ ∩
⎜

a≤A

Zca ∩ 
|A| /2� + 1 (c ≤ C) (9)

le ∩ Si1 ∩ ll
⎝
i ≤ I L

⎞
(10)

Sik , Fik ∗ 0 (i ≤ I ; k ≤ Ki ) (11)
Xii ≥ , Yik j , Zca ≤ {0, 1} (i, i ≥ ≤ I : i ∩ i ≥; k ≤ Ki ; j ≤ Jik; c ≤ C; a ≤ A) (12)

Constraint (2) ensures that each task is executed by exactly one resource; no-go
relations are taken into account implicitly by the definition of the set Jik of resources
that can perform task k. (3) ensures that the difference between the start and finish
time of a task equals its duration. (4) establishes the time relations between the tasks
of an activity i . For each pair of activities i, i ≥ ≤ I : i ∩ i ≥ one general-precedence
variable Xii ≥ is defined that determines the relative execution sequence. If some of the
tasks of those two activities are executed by the same resource (Yik j = Yi ≥k≥ j = 1),
then either constraint (5) or constraint (6) will become active. (8) determines whether
an assessor a has been assigned to a candidate c at least once. (9) limits the number
of different assessors that can be assigned to a candidate, which should be close to
|A| /2. (10) ensures that each candidate’s lunch break starts within the predefined
time window. The objective function (1) in combination with (7) minimizes D.

We formulate additional constraints that eliminate some of the symmetrical solu-
tions and explicitly establish relations between the sequencing variables:
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Xii ≥≥ ∗ Xii ≥ + Xi ≥i ≥≥ −1
⎝
i, i ≥, i ≥≥ ≤ I : i < i ≥ < i ≥≥

⎞
(13)

Sik ∩ Si ≥k
⎟

i, i ≥ ≤ I E
e ; k ≤ Ki : i < i ≥, e = 1

⎠
(14)

Equation (13) sets the value of Xii ≥≥ = 1 if Xii ≥ = 1 and Xi ≥i ≥≥ = 1. Since the activities
of any of the sets I E

e are identical, we impose an arbitrary sequence with (14).
Eventually, we add two lower bounds for the duration D:

D ∗
⎡

⎢⎢⎢

⎜

i≤I 2

di2/≡|A| /2∧ +
⎜

i≤I 1

di2/ |A|
⎤

⎥⎥⎥
(15)

D ∗
⎜

i≤I C
1

di1 (16)

From the perspective of the assessors a lower bound for the duration of an assessment
center can be derived by (15). In the case of exercises which require two assessors,
we can get a tighter lower bound by dividing the total duration of the second tasks
by the largest integer smaller than half the number of assessors; otherwise, we divide
by the number of assessors. Equation (16) states that D must be greater or equal to
the sum of the durations of all tasks that require the same candidate.

4 Computational Results

We implemented the model presented in Sect. 3 in AMPL, and used version 5.5 of
the Gurobi Solver. All computations were performed on a workstation with 2 Intel
Xeon CPU with 3.1 GHz and 128 GB RAM.

4.1 Illustrative Example

Figure 2 shows an optimal schedule for the illustrative example (cf., Sect. 2); this
schedule has been found within less than 1sec of CPU time. The duration equals
65, and the lower bound (16) is 61. The assessor assignments yield feasible assessor
subsets for each candidate. E.g., A1 and A3 are assigned twice (activities 1 and 4),
and A5 is assigned once (activity 7) to C1. Hence, the corresponding subset for C1
consists of {A1, A3, A5}.
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Fig. 2 Optimal schedule for
the illustrative example

Table 2 Data and results for the four real-life assessment-center examples

Example |C | |A| |R| No-go Duration (hh:mm) Difference MIP gap (%)
relations MBLP Benchmark

1 7 10 2 No 07:20 09:30 −02:10 9.1
2 11 11 3 No 09:55 10:10 −00:15 7.6
3 9 11 3 Yes 08:30 08:55 −00:25 11.8
4 6 9 3 No 06:50 08:35 −01:45 2.4

4.2 Real-Life Examples

We applied our model to four real-life assessment centers, which were performed
for a client of the service provider. To ensure comparability, the different assessment
centers comprised the same set of five exercises; each required two assessors and one
actor in the case of two role-plays. The data of the examples and the results of our
analysis are shown in Table 2. The sixth and the seventh column indicate the duration
of the schedule devised by the MBLP and the schedule constructed manually by the
service provider, respectively. For all instances, the MBLP solution outperformed
the latter. In particular, the schedules of examples 1 and 4 are around 2 h shorter.
Both examples have a relatively small number of candidates and, thus, activities than
examples 2 and 3. We stopped the solver after 1 h of CPU time; the resulting MIP
gaps are indicated in the last column of Table 2.

5 Conclusion

In this paper we presented an MBLP formulation for scheduling assessment centers,
which includes symmetry-breaking and redundant constraints and lower bounds. We
have applied this model to four real-life examples. Even though finding an optimal
solution is computationally intractable for these examples, the MBLP provides good
feasible solutions with shorter durations than the benchmark solutions.

Sometimes assessment centers comprise group exercises, that are executed by
multiple candidates simultaneously in the presence of several assessors. Moreover,
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various types of assessors are considered. In our future research, we will extend the
MBLP formulation presented in this paper to consider these requirements. Another
direction for future research is the development of heuristic solution methods.
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DEA Modeling for Efficiency Optimization
of Indian Banks with Negative Data Sets

Pankaj Kumar Gupta and Seema Garg

Abstract Indian banking has experienced exponential growth after reforms of 1990s
that helped to improve the profitability, performance and efficiency. However, still
there are conflicting concerns of operating efficiency and risk management across
the major bank categories particularly after the global financial crisis. We have used
Data Envelopment Analysis (DEA) for measuring the efficiency of a set of decision
making units (DMUs) which traditionally assumes that all the input and output values
are non-negative. Quantitative measures of bank performance like net profits, growth
rates and default portfolios frequently show negative values for output variables. We
draw motivation from some studies done in other developing countries for handling
the negative data sets. We cross examine the approaches for dealing with variables
that are positive for some DMUs and negative for others and test the validity of Range
Directional Measure Model (RDM) for examining cases when some inputs and/or
outputs can take negative as well as positive values. We find some support for the
RDM in handling data negative sets without the need for any transformation (conver-
sion of the negative values with small positive values) as a measure of efficiency akin
to the radial measures in traditional DEA. Our preliminary investigation indicates no
significant difference between the operational efficiency and profitability of public
and private banks modeled for negative data and undesirable output.

1 Introduction

The measurement and evaluation of performance is a fundamental aspect of manage-
rial planning and control. However, determination of appropriate measures to provide
an overall ranking of performance is the most difficult task. Although a ranking can
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be obtained with a single measure of performance, it may fail to capture the relevant
dimensions of performance needed for planning and control, and provides a valid
excuse for the claims of underperforming units that the measure does not fully reflect
their activities and results. Benchmarking to achieve international benchmarks with
best practices has become essential since Indian banks are venturing on global expan-
sion and foreign banks are looking at India. To introduce efficiency and competition
into the financial system, Reserve Bank of India (RBI) has initiated many reforms
like deregulation of interest rates, entry deregulation, branch delicensing and permit-
ting public sector banks to sell equity up to 49 % in the capital market. These factors
created competitive pressure in the banking industry, which results in the greater use
of ATMs increase in housing and consumer credit, more transparent balance sheet,
product diversification but also raised concerns of non-performing assets (NPA).
Conglomeration and diversification has further increased the risk for the banks and
made the task of performance evaluation more difficult given complex structures.
Traditionally, operating efficiency of banks has been analyzed by using traditional
tools such as return on equity, return on assets etc., but they have methodological lim-
itations. The ratio based CAMEL approach is also inferior to evaluating performance
according to many research studies. A relatively new non-parametric mathematical
approach namely DEA has proved to be a better efficiency measurement to handle
situation in measuring efficiency of banks and other organizations.

DEA has grown into a powerful quantitative, analytical tool for measuring and
evaluating performance and its efficiency. It uses Linear Programming and is a non-
parametric method of measuring the efficiency of a Decision- making Units (DMU)
with multiple inputs and multiple outputs in the absence of market prices evolved
by Charnes et al. [8]. The original CCR model was applicable only to technolo-
gies that exhibit variable returns to scale. There is a lot of literature for CCR and
Banker, Charnes and Cooper (BCC) models. DEA has emerged as a result orient-ed
alternative to regression analysis for efficiency measurement. Moving away from the
assumption of non-negativity of inputs and outputs, our paper deals with a general-
ized efficiency measure using directional distance formulation of DEA.

As a special case of DEA in the presence of undesirable outputs, however technolo-
gies with more good (desirable) outputs and less bad (undesirable) outputs relative to
fewer inputs is considered as efficiency. However, in real situations like the banks data
can be negative and therefore it is of interest that tools for efficiency measurement
and productivity change analysis are developed to deal with such data. Negative data
may arise due to the use of input-output variables like changes in clients or accounts
from one period to the next in case our bank branches, or due to use of variables, like
profit, that may take positive and negative values, like [16] is an example of appli-
cations with negative data. Profit measures are used very commonly in the banking
literature in particular for measuring profit efficiency like in [5]. To measure effi-
ciency under negative data we use the approach named as Range Directional Model
(RDM) developed by Portela et al. [17]. This approach handles the negative outputs
like Non-Performing Assets (NPAs), Losses, Liquidity Crunches etc.
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2 Literature Review

The literature on the efficiency of financial institutions is extensive, despite its
relatively new origin. In developed countries, numerous attempts have been made
to study the efficiency of banks. For developing countries like India, there are fewer
studies. Saha and Ravishankar [18] suggest DEA is better for measuring the rela-
tive efficiency of Indian banks. On East Asian banking data we find papers by Refs.
[10, 14] etc. The important studies among the attempts are those by Refs. [2–4, 19,
20, 22]. All have applied DEA with the exception of [19]. References [2, 3, 22]
show that technical efficiency has improved in the 1980s but declined in the early
1990s. Sathye [19] reports that allocative inefficiency of banks is lower than techni-
cal inefficiency. Applying Malmquist Productivity Indices (MPI), Avkiran [4] finds
productivity progress over time in Australian banks, however, Refs. [20, 22] show
productivity regress. In Indian context, Bhattacharyya et al. [7] have used DEA to
study the impact of liberalizing measures taken in 1980s on the performance of vari-
ous categories of banks and find that Indian public sector banks were best performing
and new private sector banks yet to emerge fully in the Indian bank-ing scenario. Das
et al. [9] on the other hand investigated the efficiency of Indian commercial banks dur-
ing the reform period 1992–1999, using a parametric methodology and observes that
the state and foreign banks are more efficient than nationalized and privately owned
domestic banks. Mukherjee et al. [15] used DEA and Multiple Correlation Clustering
to examine performance of Indian banks for efficiency of converting resource inputs
to transaction generating outputs and they obtained strategic homogeneous clusters
or groups having uniform efficiency measures. In subsequent literature, there have
been various approaches to enable DEA to deal with negative data like Range direc-
tional Model and Modified Slack based Model. Selection of input/outputs and sample
size produce varied results [1].

3 Methodology

Failure of banks in the scenario of financial crisis is an important issue for the central
banks and governments. We analyze the negative outputs like NPAs and losses of
27 Indian commercial banks for 2010–2011 obtained from the RBI and present the
results. We compute the technical efficiency and decomposed into pure technical and
scale efficiencies using DEA models with constant returns to scale (CRS) and variable
returns to scale (VRS) as proposed by Charnes et al. [8]. If there is a difference in
the two technical efficiency scores for a particular bank, then this indicates that the
bank has scale inefficiency. We use SDM oriented model and determine the slacks
representing the excess and shortage of input and output which is impossible by
using the ordinary DEA model. Selection of variables for DEA process is debated
among researchers. Researchers have used inputs as labor expenses [11, 21] interest
expense and operating expense on advances, deposits and investments [6] demand
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deposits, service transactions [12, 13], Maverick Index to determine strategic groups
[15]. We use number of employees (+), capital (+) and deposits (+) as inputs and
advances (+), total assets (+) and NPAs (−) as outputs. We pretest the inputs and
outputs based on the specification of [2] that requires a correlation value of 0.80 to
be satisfactory and find that correlation is robust to proceed with the analysis.

4 The Model

We use the DEA Range Directional Model introduced by Portela et al. [17].

max βo (1)

where Rio = Xio-mie(Xi j ; j = 1, 2, . . . n); i = 1, 2 . . . m and Rro = max (Yr j ;
j = 1, 2, . . . n)−Yro, r = 1, 2, . . . s. Directions (Rio, Rro) are used in two alternative
ways. For improving worst area measured by distance from the efficient boundary,
RDM+, and improve in areas where it performs best RDM−. RDM models (RDM+
and RDM−) are better than additive models since they yield targets which attempt
to reflect the priorities for improvement of inputs and outputs of a DMU while
the additive model yields targets which are furthest from DMUjo to the efficient
boundary and they yield efficiency measures similar to those obtained from radial
models while the additive models yield no efficiency measure. We use the slack-
based measures (SBM) of efficiency introduced by Tone [23] since (1) it is invariant
with respect to the unit of measurement of each input and output item and (2) is
monotone decreasing in each input and output slack where slacks are input excess

and output shortfalls. Min
1− 1
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i ≥ 0, r = 1, 2, . . . s; λ j ≥ 0, j = 1, 2, . . . n. Further this slack
based model can be transformed into an undesirable output model
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where s− ≥ 0, sg ≥ 0, sb ≥ 0, λ≥ 0, the vectors s−εRm and vectors sbεRs2 corre-
spond to excesses in inputs and bad outputs, respectively, while expresses shortages
in good outputs.
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5 Analysis and Results

Using the Slack based model (SBM) we find efficiency score of 10 of the 27 Public
sector banks is 1, which suggests that these banks are relatively effective among the
group (Table 1). Many of these banks are publicized as efficient or comparable private
banks. Our results are consistent with the argument that the top ranked banks have
the highest interest spreads because of low fund mobilization and disbursement cost.
Results have some exceptional banks that have a relative efficiency score of 1 may
also indicate some excess inputs like in case of PSB representing excess capital. This
may be due to the market timing of the equity resource mobilization and exceptional
performance on other frontiers. That deposit mobilization by UCO bank and Union
Bank of India is higher may be due to the conventional bank strategies and lower
level of advances.

Interestingly these banks have high liquidity and poor profitability but visible
high credit and default risk. It can be seen that in case of banks like syndicate bank
and UCO bank excess employees are far higher than other banks like SBI, which
has efficiency score of 1. Similarly there is capital infusion in excess of economic
capital requirements in case of Central bank of India followed by UCO bank and
others. This calls for examination by the RBI and government machinery to explore
the cause and take appropriate action. It is seen that in terms of aggressiveness the
efficient banks are at par with the inefficient banks. This indicates that efficiency
problem is in the business model of the bank that may be sub optimal.

6 Conclusion

We examine the efficiency of banks with DEA using negative data for Indian banks
because of the limitation of using standard models for efficiency assessment of DMU
with negative data. The additive model, undesirable output DEA model, Modified
slack based model could be used for such cases with certain limitations. The additive
model cannot give an efficiency measure. The main drawback of RDM+ model
is failure to guarantee projections on the Pareto efficient frontier. Semi-Oriented
Radial Model will generally lead to improved targets and while not worsening inputs
or outputs. Results of the study indicates existence of inefficiency in some banks
i.e. they are not operating at the optimal level and give the slacks i.e. input excess
and output shortfalls for the further improvement. Our results differ from the earlier
studies on Indian banks. We, therefore, suggest the policy makers to consider this
framework in order to have a better understanding of the problem and correlating the
variables.
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The Inventory Management of Fresh
Vegetables Using Inventory Balance
and Across of Its Supply Chain

Adi Djoko Guritno, Henry Yuliando and Endy Suwondo

Abstract A wider application of the Integrated Planning Support Framework (IPSF)
model can provide more practical basis for benchmarking of real case studies. This
study is aimed to determine the opportunity loss and cost of excess inventory of fresh
vegetables, the optimal inventory level, and the inventory management based on the
types of distribution lead-time. An extensive observation over six-month supply chain
tracking from several point of sales of fresh vegetables was conducted to employee
the proposed IPSF. The result showed an inefficient supply chain due to an imbalance
of customer service and inventory levels. Each tier within the supply chain indicated
a dissimilar of inventory size that influenced the inventory decision of each tier. In
further, it suggests that the losses of fresh vegetables in term of cost and quality could
be reduced by using inventory balance and policies in levelling inventory.

1 Background

Supply Chain Management (SCM) deals with a management of business activities
in order to obtain raw materials, transformation (processing), a work in process,
inventory of finished product, and the distribution system in delivering the products
to the consumers [6]. One of the main objectives of SCM is to ensure that the product
is available at the right place and the right time to meet consumer demand without
creating excess or shortage of stock (inventory).
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Fujianti et al. [3] describe that among the important factors of supply chain
performance are supply chain costs and employed capital. For the fresh vegetable
products, a guaranntee that the products purchased by the next tier (middleman) in
its supply chain is necessary due to the deterioration of the product that cause a sal-
vage. Perishability of fresh vegetables in term of quality and quantity have confirmed
by Kusumaputri et al. [7]. Therefore, it is necessary to manage the flow of product
appropriately by determining the best service level. The lack or excess supply cause
a negative impact on supply chain performance.

Concerning to a need for inventory management of fresh vegetable product in
accordance to the lack of treatment facilities owned by farmers, a trade off between
understock versus overstock situation should be prompted. Important to note that
the inventory management decisions will affect the performance of the supplier.
However, in managing the flow of materials/products at point to point in the supply
chain is constrained to several aspects. According to Blos et al. [1], the issue of
Supply Chain Risk Management (SCRM) includes two factors e.g. (1) supply chain
risks (e.g. operational risks or disruption risks), and (2) mitigation approaches (e.g.
supply management, demand management, product management, or information
management). Before selecting a proper strategy of supply chain, it is necessary to
determine previously which part of the network that is perceived facing an uncertainty
of demand, and what policy to anticipate such uncertainty [2].

When farmers or suppliers of fresh vegetables have three channels to deliver their
yield either to the supermarkets, traditional markets and restaurants, definitely they
are facing an uncertainty regarding to the demand level of each channel. Here, the
stock volume affects the barganing position. Therefore, it necessaries to suggest a
decision regarding to inventory level inventory balancing of those farmers.

2 Materials and Method

This study was based on a survey over fresh vegetable supply chain in Yogyakarta
Province, Indonesia. Four grouped of suppliers were classified e.g. supplier A (those
who supplies supermarkets), supplier B as a competitor of supplier A, supplier C as
a wholesaler supplier, and supplier D as a restaurant supplier. The product supplied
includes several fresh vegetables such as bitroot, broccoli, green beans, radish, chives,
spring onions, cauliflower, cabbage, and so on.

The analysis includes both qualitatively and quantitatively. At first, the type of
inventory is determined on a base of demand characteristics. Incorporated by the
analyis of a decision on how much the inventory should be provided. It is approached
by plotting each supplier according to his interest in the supply chain network. Those
suppliers could have a specific goals regarding to how are they treat the inventory.
Combined with their storage system, the inventory could be aimed for speculation,
postponement, consignment or reverse consignment.

Inventory balancing is associated with whether the suppliers have an excess
inventory or even a stockout. The formula to find the balance is based on
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SL = Cs/(Cs + Ce), where SL is service level, Cs is the cost of having stock-
out and Ce is the cost of having excess inventory. Optimal SL in percentage is SL
with minimum cost. When SL is found, the Z value (normal distribution value) is
used to calculate the amount (Q) of stock level. This value (Q) is in comply with
P [D ≤ Q] = SL. Since it can be always assumed normally distributed then the
condition is valid for D ∼ N(μD, σD). To calcultate the inventory balance is as
follows:

Inventory Balance = μD + zSL × σD (1)

where:

μD demand during lead time
zSL z value times SL
σD demand standard deviation.

The common factors underlying the selection of decision-making in inventory man-
agement includes the purpose of usage, the nature of supply chain, and bargaining
power. These three factors should be considered carefully when choosing the right
approach to inventory management. Particularly for the lead time factor, it can be
divided into several aspects in comply with customer order to fulfillment lead time
(CLT), supplier order to fulfillment lead time (SLT), cycle time (CT), and delivery to
customer lead time (DTC). The combination of these aspects against lead time lead
to an option that aiming to inventory management. Improving transformation process
and shortened lead time are key activities in bioproduction system. Bioproduction
system is identical to the development of plant factory. It involves technologies such
as process control for the plant growth environment, mechanization for material han-
dling, system control for production and computer applications [5]. Wallin et al. [10]
has proposed a tabulation that can lead to the right decision in inventory management
as presented in Fig. 1.

3 Result and Discussion

Research was conducted in the central of vegetable production areas in Central Java,
and the market areas spread out in southern part of Central Java and Yogyakarta
province. The source of fresh vegetables from group of farmers have two distinctive
order and harvetsing types, namely OBP (Order Before Planting) and OBH (Order
Before Harvesting) with different impact of transportation aproach used. Fresh veg-
etables with OBP approach tend to use LTL (Less Than Truckload) and OBH use
TL (Truck Load) transportation [4]. Description of supply chain stages captured by
IPSF shows some stages flow of fresh vegetables from the sources area to the point of
sales that consist of 4 arrangements: order type and transportation, distribution and
market, cost of inventory and order lead time, and inventory practices arrangement
in each stage across supply chain (Fig. 2). Based on the analysis, a summary of the
results are presented as follows. Based on the tables, it can noted that supplier A has



180 A. D. Guritno et al.

Fig. 1 Factors that influencing the decision in inventory management

Fig. 2 IPSF model for fresh vegetable supply chain

an average demand level and inventory balancing that significant. This indicates that
their demand prompts a high fluctuation. When the stockout occured, the inventory
balancing provide an advantages due to the product availability, and vice versa. It
can be analyzed that the excess demand is projected to be above of the level of safety
stock at a particular time. A shortage also occured at several products means that
the opportunity losses of profit will also occur. Theoretically, insurance is an option
of risk mitigation by definition. But other way out can be used, such as to include
information sharing schemes [8, 9] (Tables 1, 2, 3, 4).
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Table 1 Inventory balancing for supplier A

Stock keeping
unit

Cs
(Rupiah)

Ce
(Rupiah)

SL z value μ demand
(kg)

σ demand
(kg)

Inv balance
(kg)

Cabbage 1,000 228 0.8143 0.89 96.98 30.53 124.15
Brocoli 2,000 325 0.8602 1.08 38.46 29.02 69.80
Chicory 1,000 293 0.7734 0.62 43.28 43.82 70.45
Tomato 1,000 163 0.8598 1.08 32.75 19.91 54.26
Squash 1,000 65 0.9390 1.54 32.87 20.44 64.35
Pakcoy 1,000 130 0.8850 1.20 15.42 8.52 25.64
Lettuce 2,000 325 0.8602 1.08 16.84 24.54 43.34
Spring onion 1,000 163 0.8598 1.08 7.06 4.51 11.93
Celery 2,000 195 0.9112 1.35 7.48 2.33 10.63
Green lettuce 2,000 260 0.8850 1.20 7.40 5.79 14.35
Kucay 2,000 163 0.9246 1.43 03.18 1.23 4.94
Parsley 2,000 325 0.8602 1.08 2.40 0.56 03.01

Note US$ 1=Rp 11,500.00

Table 2 Inventory balancing for supplier B

Stock keeping
unit

Cs
(Rupiah)

Ce
(Rupiah)

SL z value μ demand
(kg)

σ demand
(kg)

Inv balance
(kg)

Spinach 2,000 195 0.9122 1.34 26.60 0.29 26.99
Kale 2,500 244 0.9111 1.34 17.60 1.44 19.53
Caysim 2,000 260 0.8850 1.20 17.16 3.40 21.24
Spring onion 2,000 260 0.8850 1.20 9.05 2.85 12.47
Green lettuce 3,000 423 0.8764 1.15 18.60 1.53 20.36
Bean 3,000 309 0.9066 1.32 79.50 34.77 125.40
Tomato 3,500 423 0.8922 1.23 15.60 2.67 18.89
Brocoli 4,000 488 0.8913 1.22 53.00 10.58 65.91
Red spinach 3,000 390 0.8850 1.20 16.90 1.23 18.38
Kailan 2,500 325 0.8850 1.20 31.16 0.50 31.76

Note US$ 1= Rp 11,500.00

Table 3 Inventory balancing for supplier C

Stock keeping
unit

Cs
(Rupiah)

Ce
(Rupiah)

SL z value μ demand
(kg)

σ demand
(kg)

Inv balance
(kg)

Brocoli 1,300 342 0.7917 0.81 55.50 0.35 55.79
Pakcoy 800 147 0.8448 1.11 35.40 0.50 35.96
Cabbage 800 244 0.7663 0.72 33.80 0.29 34.01
Bean 1,000 33 0.9681 1.86 22.80 1.04 24.74
Bitroot 2,000 390 0.8368 0.98 21.80 1.04 22.82
Green lettuce 1,200 293 0.8038 0.85 16.10 0.29 16.35
Spring onion 800 179 0.8172 0.90 10.10 0.20 10.36

Note US$ 1=Rp 11,500.00
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Table 4 Inventory balancing for supplier D

Stock keeping
unit

Cs
(Rupiah)

Ce
(Rupiah)

SL z value μ demand
(kg)

σ demand
(kg)

Inv balance
(kg)

Lettuce 1,100 358 0.7545 0.68 18.00 1.00 18.68
Bean 900 228 0.7979 0.83 16.00 0.50 16.42
Spring onion 1,200 195 0.8602 1.80 4.60 0.36 5.25
Celery 1,500 228 0.8681 1.11 4.20 0.29 4.52
Green lettuce 1,500 293 0.8366 0.98 1.60 0.36 1.95

Note US$ 1=Rp 11,500.00

In contrast, the inventory balancing of supplier B, C and D behaved oppositely.
The resulting inventory balancing was not significant. This indicates that demand
was fairly constant. This indicates also that suppliers did not need to have an excess
inventory to anticipate the product shortages. In this case, each supplier has different
inventory balancing. Refer to the expected inventory balancing, the supplier can
optimize the return of their sale. Thus, this is an optimal point where the supplier can
earn optimum profit and optimum service to consumers. In further, optimal service
to consumers determine the service level.

4 Conclusion

The given lead time for all fresh vegetable products of each supplier studied here
are relatively short, but few commodities. This proved that in general, the nature
of the supply chain of each supplier can be reliable, both in quantity and timely
delivery. Suppliers (farmers/middleman/distributor) who supply both types of non-
unique and unique products obtain a strong bargaining position. Inventory decisions
that fit to this case study are aiming for speculation and postponement. Inventory
balance of suppliers B, C and D are significant compared to the average demand
available for supplier A who were facing the fluctuation demand. The results showed
no significant differences regarding to the demand characteristics or can assumed
relatively constant.
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Moving Bins from Conveyor Belts
onto Pallets Using FIFO Queues

Frank Gurski, Jochen Rethmann and Egon Wanke

Abstract We study the combinatorial FIFO stack-up problem. In delivery industry,
bins have to be stacked-up from conveyor belts onto pallets. Given k sequences
q1, . . . , qk of labeled bins and a positive integer p, the goal is to stack-up the bins
by iteratively removing the first bin of one of the k sequences and put it onto a pallet
located at one of p stack-up places. Each of these pallets has to contain bins of only
one label, bins of different labels have to be placed on different pallets. After all bins
of one label have been removed from the given sequences, the corresponding place
becomes available for a pallet of bins of another label. The FIFO stack-up problem
is NP-complete in general. In this paper we show that the problem can be solved in
polynomial time, if the number k of given sequences is fixed.

1 Introduction

We consider the combinatorial problem of stacking up bins from a set of conveyor
belts onto pallets. This problem originally appears in stack-up systems that play an
important role in delivery industry and warehouses. A detailed description of the
practical background of this work is given in [2].

The bins that have to be stacked up onto pallets arrive at the stack-up system
on the main conveyor of an order-picking system. At the end of the main conveyor
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storage conveyor

conveyors
buffer

stack−up
places

Fig. 1 A real stack-up system

they enter a cyclic storage conveyor, see Fig. 1. From the storage conveyor the bins
are pushed out to buffer conveyors, where they are queued. The bins are picked-up
by stacker cranes from the end of a buffer conveyor and moved onto pallets, which
are located at some stack-up places. There is one buffer conveyor for each stack-up
place. Automatic driven vehicles take full pallets from stack-up places, put them onto
trucks and bring new empty pallets to the stack-up places.

In real life, the cyclic storage conveyor is necessary to enable a smooth stack-
up process irrespective of the real speed the cranes and conveyors are moving. Such
details are unnecessary to compute an order in which the bins can be palletized. So, in
our model we neglect the cyclic storage conveyor, and the number of stack-up places
is not correlated to the number of sequences. Logistic experiences over 30 years lead
to such high flexible conveyor systems in delivery industry. So, we do not intend to
modify the architecture of existing systems, but try to develop efficient algorithms to
control them. Figure 2 shows a sketch of a simplified stack-up system with 2 buffer
conveyors and 3 stack-up places.

The FIFO stack-up problem has important practical applications. Many facts are
known on stack-up systems that use a random access storage instead of buffer queues.
The stack-up problem with random access storage is NP-complete, but can be solved
efficiently if the storage capacity s or the number of stack-up places p is fixed. It
remains NP-complete as shown in [5], even if the sequence contains at most 9 bins
per pallet. A polynomial time off-line approximation algorithm is introduced in [5]
that yields a processing that is optimal up to a factor bounded by log(p). In [6] the
performances of some simple on-line stack-up algorithms are compared with optimal
off-line solutions by a competitive analysis [1, 4].

The FIFO stack-up problem is NP-complete even if the number of bins per pallet is
bounded [3]. In this paper we show by dynamic programming that the FIFO stack-up
problem can be solved in polynomial time for a fixed number k of sequences.
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Fig. 2 A FIFO stack-up
system

2 Preliminaries

Let k and p be two positive integers. We consider sequences q1 = (b1, . . . , bn1), . . . ,

qk = (bnk−1+1, . . . , bnk ) of pairwise distinct bins. These sequences represent the
buffer queues in real stack-up systems. Each bin b is labeled with a pallet symbol
plt(b). We say bin b is destined for pallet plt(b). In examples we often choose
characters as pallet symbols. The set of all pallets of the bins in some sequence qi

is denoted by plts(qi ) = {plt(b) | b ≤ qi }. For a list of sequences Q = (q1, . . . , qk)

we denote plts(Q) = plts(q1) ∞ · · · ∞ plts(qk). For some sequence q = (b1, . . . , bn)

we say bin bi is on the left of bin b j in sequence q if i < j . A sequence q ≥ =
(b j , b j+1, . . . , bn), j ∗ 1, is called a subsequence of sequence q = (b1, . . . , bn),
and we write q − q ≥ = (b1, . . . , b j−1).

Let Q = (q1, . . . , qk) and Q≥ = (q ≥
1, . . . , q ≥

k) be two lists of sequences of bins,
such that each sequence q ≥

j , 1 √ j √ k, is a subsequence of sequence q j . Each
such pair (Q, Q≥) is called a configuration. A pallet t is called open in configuration
(Q, Q≥), if a bin of pallet t is contained in some q ≥

i ≤ Q≥ and if another bin of pallet
t is contained in some q j − q ≥

j for q j ≤ Q, q ≥
j ≤ Q≥. The set of open pallets in

configuration (Q, Q≥) is denoted by open(Q, Q≥). A pallet t ≤ plts(Q) is called
closed in configuration (Q, Q≥), if t ∩≤ plts(Q≥), i.e. no sequence of Q≥ contains a
bin for pallet t .

3 The FIFO Stack-up Problem

Consider a configuration (Q, Q≥). The removal of the first bin from one subsequence
q ≥ ≤ Q≥ is called transformation step. A sequence of transformation steps that trans-
forms the list Q into empty subsequences is called a processing of Q.
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Given a list Q = (q1, . . . , qk) of sequences and a positive integer p, the FIFO
stack-up problem is to decide whether there is a processing of Q, such that in each
configuration (Q, Q≥) during the processing at most p pallets are open.

It is often convenient to use pallet identifications instead of bin identifications
to represent a sequence q. For n not necessarily distinct pallets t1, . . . , tn let
[t1, . . . , tn] denote some sequence of n pairwise distinct bins (b1, . . . , bn), such that
plt(bi ) = ti for i = 1, . . . , n. We use this notion for lists of sequences as well. For
the sequences q1 = [t1, . . . , tn1 ], . . . , qk = [tnk−1+1, . . . , tnk ] of pallets we define
q1 = (b1, . . . , bn1), . . . , qk = (bnk−1+1, . . . , bnk ) to be sequences of bins such that
plt(bi ) = ti for i = 1, . . . , nk , and all bins are pairwise distinct.

Consider a processing of a list Q of sequences. Let B = (bΦ(1), . . . , bΦ(n)) be
the order in which the bins are removed during the processing of Q, and let T =
(t1, . . . , tm) be the order in which the pallets are opened during the processing of Q.
We call B a bin solution of Q, and T is called a pallet solution of Q.

During a processing of a list Q of sequences there are often configurations (Q, Q≥)
for which it is easy to find a bin b that can be removed from Q≥ such that a further
processing with p stack-up places is still possible. This is the case, if bin b is destined
for an already open pallet. Consider a processing of some list Q of sequences with p
stack-up places. Let (bΦ(1), . . . , bΦ(i−1), bΦ(i), . . . , bΦ(l−1), bΦ(l), bΦ(l+1), . . ., bΦ(n))

be the order in which the bins are removed from the sequences during the process-
ing, and let (Q, Qi ), 1 √ i √ n denote the configuration such that bin bΦ(i) is
removed in the next transformation step. Suppose bin bΦ(i) will be removed in
some transformation step although bin bΦ(l), l > i , for some already open pallet
plt(bΦ(l)) ≤ open(Q, Qi ) could be removed next. We define a modified process-
ing (bΦ(1), . . . , bΦ(i−1), bΦ(l), bΦ(i), . . . , bΦ(l−1), bΦ(l+1), . . . , bΦ(n)) by first remov-
ing bin bΦ(l), and afterwards the bins bΦ(i), . . . , bΦ(l−1) in the given order. Obviously,
in each configuration during the modified processing there are at most p pallets open.
A configuration (Q, Q≥) is called a decision configuration, if the first bin of each
sequence q ≥ ≤ Q≥ is destined for a non-open pallet. FIFO stack-up algorithms will
only be asked for a decision in such decision configurations, in all other configura-
tions the algorithm automatically removes a bin for some already open pallet.

If we have a pallet solution computed by any FIFO stack-up algorithm, we can
convert the pallet solution into a sequence of transformation steps, i.e. a processing
of Q by some simple algorithm not shown here because of space restrictions [3].

4 Main Result

Our aim in controlling FIFO stack-up systems is to compute a processing of the
given sequences of bins with a minimum number of stack-up places. Such an optimal
processing can always be found by computing the processing graph and doing some
calculation on it. Before we define the processing graph let us consider some general
graph problem, that is strongly related to the FIFO stack-up problem.
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Let G = (V, E, f ) be a directed acyclic vertex-labeled graph. Function f :V ≡ Z

assigns to every vertex v ≤ V a value f (v). Let s ≤ V and t ≤ V be two vertices.
For some vertex v ≤ V and some path P = (v1, . . . , vρ) with v1 = s, vρ = v and
(vi , vi+1) ≤ E we define valP (v): = maxu≤P ( f (u)). Let Ps(v) denote the set of
all paths from vertex s to vertex v. We define val(v): = minP≤Ps (v)(valP (v)).
A solution of this problem can be found by dynamic programming and solves
also the FIFO stack-up problem. For some vertex v ≤ V let N−(v): = {u ≤
V | (u, v) ≤ E} be the set of predecessors of v in graph G. Then it holds:
val(v) = max{ f (v), minu≤N−(v)(val(u))}. If we compute the value of val(v) recur-
sively, subproblems often would be calculated several times. So, we use dynamic
programming to calculate each subproblem only once, and put them together by
already calculated sub-solutions. This is possible, since the graph is directed and
acyclic.

Let topol:V ≡ N be a topological ordering of the vertices of the graph G, i.e. an
ordering of the vertices such that topol(u) < topol(v) holds for every (u, v) ≤ E .

The value val(t) can be computed in polynomial time. We need some additional
terms, before we show how the above procedure can solve the FIFO stack-up problem.
For a sequence q = (b1, . . . , bn) let left(q, i): = (b1, . . . , bi ) denote the sequence
of the first i bins of sequence q, and let right(q, i): = (bi+1, . . . , bn) denote the
remaining bins of sequence q after removing the first i bins. It can be seen that
a configuration is well-defined by the number of bins that are removed from each
sequence. The position of the first bin in some sequence qi destined for some pallet t
is denoted by first(qi , t), similarly the position of the last bin for pallet t in sequence
qi is denoted by last(qi , t).

Example 1 Consider list Q = (q1, q2) of the sequences q1 = [a, b, c, a, b, c] and
q2 = [d, e, f, d, e, f, a, b, c]. Then we get left(q1, 2) = [a, b], right(q1, 2) =
[c, a, b, c], left(q2, 3) = [d, e, f ], and right(q2, 3) = [d, e, f, a, b, c].

If we denote q ≥
1: = right(q1, 2), and q ≥

2: = right(q2, 3), then, in Example 1,
there are 5 pallets open in configuration (Q, Q≥) with Q≥ = (q ≥

1, q ≥
2) : a, b, d,

e, and f . We generalize this for a list Q = (q1, . . . , qk) of sequences and we
define the cut cutQ(i1, . . . , ik): = {t ≤ plts(Q) | ∧ j, j ≥, b ≤ left(q j , i j ), b≥ ≤
right(q j ≥, i j ≥):plt(b) = plt(b≥) = t} at some configuration (i1, . . . , ik) to be the set
of pallets t such that one bin for pallet t has already been removed and another bin
for pallet t is still contained in some sequence. Let #cutQ(i1, . . . , ik) be the number
of elements in cutQ(i1, . . . , ik).

The intention of a processing graph G = (V, E, h) is the following. Suppose
each vertex v ≤ V of graph G represents a configuration (i1, . . . , ik) during the
processing of some set of sequences Q. Suppose further, an edge (u, v) ≤ E repre-
sents a transformation step during this processing, such that a bin b is removed from
some sequence in configuration u resulting in configuration v. Suppose also that
each vertex v is assigned the number of open pallets in configuration v, i.e. number
#cutQ(i1, . . . , ik). If vertex s represents the initial configuration (0, 0, . . . , 0), while
vertex t represents the final configuration (|q1|, |q2|, . . . , |qk |), then we are searching
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Fig. 3 Dynamic
programming

Algorithm OPT

val[s] := f (s)
for every v ≥= s in order of topol do

val[v] :=∞
for every u ∈ N−(v) do

if( val[u]< val[v])
val[v] :=val[u]
pred[v] :=u

if (val[v]< f (v))
val[v] := f (v)

Fig. 4 The processing graph
of Example 1
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a path P from s to t such that the maximal number on path P is minimal. Thus, an
optimal processing of Q can be found by Algorithm OPT given in Fig. 3.

The processing graph has a vertex for each possible configuration. Each vertex v
of the processing graph is labeled by the vector h(v) = (v1, . . . , vk), where vi denotes
the position of the bin that has been removed last from sequence qi . There is a directed
edge from vertex u labeled by (u1, . . . , uk) to vertex v labeled by (v1, . . . , vk) if and
only if ui = vi −1 for exactly one element of the vector and for all other elements of
the vector u j = v j . The edge is labeled with the pallet symbol of that bin, that will
be removed in the corresponding transformation step. For the sequences of Example
1 we get the processing graph of Fig. 4. The processing graph is directed and acyclic,
and we use this graph to compute the values of #cutQ(i1, . . . , ik) iteratively in the
following way.

First, since none of the bins has been removed from any sequence, we have
#cutQ(0, . . . , 0) = 0. Since the processing graph is directed and acyclic, there exists
a topological ordering topol of the vertices. The vertices are processed according
to the order topol. In each transformation step we remove exactly one bin for some
pallet t from some sequence q j , thus

#cutQ(i1, . . . , i j−1, i j , i j+1, . . . , ik) = #cutQ(i1, . . . , i j−1, i j − 1, i j+1, . . . , ik) + c j
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Table 1 Additional
hash-tables to perform all
operations efficiently

Pallet t a b c d e f

first(q1, t) 1 2 3 . . .
first(q2, t) 7 8 9 1 2 3
last(q1, t) 4 5 6 . . .
last(q2, t) 7 8 9 4 5 6

where

c j =
⎧
⎨

⎩

1, if first(q j , t) = i j and (t ∩≤ plts(qρ) or first(qρ, t) > iρ) ∀ ρ ∩= j
−1, if last(q j , t) = i j and (t ∩≤ plts(qρ) or last(qρ, t) √ iρ) ∀ ρ ∩= j

0, otherwise.

That means, c j = 1 if pallet t has been opened in the last transformation step,
and c j = −1 if pallet t has been closed in the last transformation step. Otherwise,
c j is zero. Thus, the calculation of value #cutQ(i1, . . . , ik) for the vertex labeled
(i1, . . . , ik)depends only on already calculated values. Figure 4 shows such a process-
ing for the sequences of Example 1. To efficiently perform this processing, we have
to store for each pallet the first and last bin in each sequence. We use hash-tables
to efficiently store such values without the need of initializing the values of absent
pallets. Table 1 shows such hash-tables for the sequences of Example 1.

The calculation of those tables can be done in time O(|q1| + · · · + |qk |) = O(k ·
max1√i√k |qi |) = O(max1√i√k |qi |), since k is fixed. Afterwards, the computation
of each value c j can be done in time O(k). After the computation of each value
#cutQ(i1, . . . , ik), we can use Algorithm OPT to compute the minimal number of
stack-up places necessary to process the given FIFO stack-up problem. If the size
of the processing graph is polynomial bounded in the size of the input, the FIFO
stack-up problem can be solved in polynomial time.
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A Generalization of Odd Set Inequalities
for the Set Packing Problem

Olga Heismann and Ralf Borndörfer

Abstract The set packing problem, sometimes also called the stable set problem,
is a well-known NP-hard problem in combinatorial optimization with a wide range
of applications and an interesting polyhedral structure, that has been the subject of
intensive study. We contribute to this field by showing how, employing cliques, odd
set inequalities for the matching problem can be generalized to valid inequalities for
the set packing polytope with a clear combinatorial meaning.

1 Introduction and Terminology

The set packing problem, sometimes also called the stable set problem, is a well-
known NP-hard [4] problem in combinatorial optimization with a wide range of
applications. Its weighted version can be formulated as follows. Given a finite set
V and some set E ≤ 2V with weights assigned to each set in E , find a subset of
pairwise disjoint sets from E , called a packing, with a maximum sum of weights.
Although many classes of facets for the set packing problem polytope are known
(see, e.g., [1]), there is still no complete polyhedral description known and further
facet classes have to be researched.

A polynomially solvable special case of the set packing problem, where all sets in
E have size two, is the matching problem. For this problem, the polytope can be com-
pletely described by adding so-called odd set inequalities to the canonical description
[3]. In this paper, we show how, employing cliques, the odd set inequalities can be
generalized to valid inequalities for the set packing problem polytope with a clear
combinatorial meaning. For the hypergraph assignment problem [2], a partitioning
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problem on bipartite hypergraphs, inequalities from this class can be facet-defining.
We also relate the presented inequality class to a different generalization of odd set
inequalities for the stable set problem called general clique family inequalities [5].

After summarizing the basic terminology needed in what follows, we present a
combinatorial derivation of the inequality class. In the end, we show a comparison
with the general clique family inequalities.

Definition 1 A hypergraph G = (V, E) is a pair of a vertex set V and a set E ≤
2V \ ∞ of subsets of V called hyperedges. A packing H ≤ E in G is a subset of
pairwise disjoint hyperedges, i. e., e1 ≥ e2 = ∞ for all e1, e2 ∗ H with e1 √= e2.

If all hyperedges have size k, i.e., |e| = k for all e ∗ E , G is called k-uniform. A
two element hyperedge is also called an edge. If all hyperedges are edges, i.e., the
hypergraph G is 2-uniform, G is also called a graph.

The set packing problem can then be stated as follows:

Problem 1 (Set Packing Problem)

Input: A pair (G, cE) consisting of a hypergraph G = (V, E) and a cost function
cE : E ∩ R.

Output: A maximum cost packing in G w.r.t. cE , i.e., a packing H≡ in G such that

∑

e∗H≡
cE (e) = max

{ ∑

e∗H

cE (e): H is a packing in G
}
.

The set packing problem can also be formulated as an integer linear program. The
canonical formulations is the following.

maximize
x∗RE

∑

e∗E

cE (e)xe (SSP)

subject to
∑

e∗δ(v)

xe ∧ 1 ∀v ∗ V (i)

x ≥ 0 (ii)

x ∗ Z
E . (iii)

Let P(SSP) := conv{x ∗ R
E : (SSP) (i)–(iii)} and PLP(SSP) := {x ∗ R

E :
(SSP)(i)–(ii)} be the polytopes associated with the integer linear program (SSP) and
its LP relaxation, respectively.

At the end of our generalization procedure, we will substitute vertices by hyper-
edge cliques. They are defined as follows.

Definition 2 A hyperedge clique in a hypergraph G = (V, E) is a set Q ≤ E of
hyperedges such that every two hyperedges e1, e2 ∗ Q have at least one vertex in
common, i. e., e1 ≥ e2 √= ∞.

Associated with the hyperedge clique Q is the clique inequality
∑

e∗Q xe ∧ 1.
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2 Generalizing Odd Set Inequalities

Consider the set packing problem for the hypergraph G = (V, E).
In the special case that G is a graph, the set packing problem becomes an edge

packing problem which can be completely described by the following system of
inequalities [3]:

∑

e∗δ(v)

xe ∧ 1 ∀v ∗ V (MP i)

∑

e∗E :e←V ′
xe ∧ |V ′| − 1

2
∀V ′ ≤ V, |V ′| ≥ 3, |V ′| odd (MP ii)

x ≥ 0 ∀e ∗ E (MP iii)

The inequalities (MP ii) are called odd set inequalities. Their combinatorial meaning
is that for every odd set V ′ ≤ V of |V ′| = 2k + 1 vertices there can be at most⌊ |V ′|

2

⌋
= |V ′|−1

2 = k edges connecting pairs of them in a matching. This holds since

every edge is incident to two vertices in k, every vertex can be incident to at most
one edge in a matching, and k +1 edges would need therefore already 2k +2 > |V ′|
distinct vertices.

A formal proof of validity for odd set inequalities can be interpreted as a Chvátal-
Gomory procedure with coefficient 1

2 for all inequalities of type (SSP) (i) for v ∗ V ′
and 0 for all others.

We will generalize these inequalities for the set packing problem, i.e., from graphs
to hypergraphs, in three steps. The first one will adapt the odd set inequalities to
p-uniform hypergraphs, i.e., to hypergraphs which have hyperedges all of size p,
where p can be greater than two. Then, we will tackle hypergraphs with hyperedges
of arbitrary size by viewing them as combinations of hyperedges of size p in the
second step. The third step will generalize sets of hyperedges incident to one vertex
to hyperedge cliques.

Odd set inequalities can be also written as

∑

e∗E

⌊ |{v ∗ V ′ : e ∗ δ(v)}|
2

⌋
xe ∧

⌊ |V ′| − 1

2

⌋
,

which is a more useful representation for our generalization procedure.
Step 1. Let G be p-uniform. Applying the idea of odd set inequalities to this

situation yields that for every set V ′ ≤ V of |V ′| = pk + r , 0 ∧ r ∧ p − 1 vertices

there can be at most
⌊ |V ′|

p

⌋
= |V ′|−r

p = k hyperedges, each connecting p of them,

in a packing. For an example see Fig. 1.
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Fig. 1 A packing in a 3-
uniform hypergraph G =
(V, E) with nine vertices and
a vertex subset V ′ surrounded
by an ellipse. There can be
at most ∅ 5

3 � = 1 hyperedge
which is a subset of the
five vertices in V ′. All other
hyperedges in the packing
have to have at least one
vertex from V \ V ′

This leads to the inequality

∑

e∗E

⌊ |{v ∗ V ′ : e ∗ δ(v)}|
p

⌋
xe ∧

⌊ |V ′|
p

⌋
∀V ′ ≤ V .

The coefficients
⌊ |{v∗V ′:e∗δ(v)}|

p

⌋
all have value 0 or 1.

The inequality can be also derived using a Chvátal-Gomory procedure with coef-
ficient 1

p for all inequalities of type (SSP) (i) for v ∗ V ′ and 0 for all others.
Step 2. Let G be an arbitrary hypergraph. Choose some p ∗ N, p ≥ 2. Contrary

to the previous case, where all hyperedges had size p, there now might be hyperedges
in the packing that contain more than p vertices from V ′. The inequality from Step
1, however, is still true. A hyperedge that contains kp + r vertices from V ′ can be
viewed as k hyperedges of size p that are contained in V ′. For an example see Fig. 2.

This idea leads to the inequality class

∑

e∗E

⌊ |{v ∗ V ′ : e ∗ δ(v)}|
p

⌋
xe ∧

⌊ |V ′|
p

⌋
∀V ′ ≤ V

for arbitrary hypergraphs. The coefficients
⌊ |{v∗V ′:e∗δ(v)}|

p

⌋
may now have a value

greater than 1.
As in the last step, a Chvátal-Gomory procedure with coefficient 1

p for all inequal-
ities of type (SSP) (i) for v ∗ V ′ and 0 for all others yields these inequalities.

Step 3. For the third step, observe that for every vertex v in a graph or hypergraph,
δ(v) is a hyperedge clique. To get the odd set inequalities or their generalizations in
Steps 1 and 2, the Chvátal-Gomory procedure could be applied to the inequalities
of type (SSP) (i), which are clique inequalities. In a graph, δ(v) is the only type of
maximal edge cliques. However, there may be other maximal hyperedge cliques and
therefore also other valid clique inequalities for a hypergraph. Applying the previous
ideas to also other types of hyperedge cliques for some hyperedge clique setQ′ ≤ Q
we get the the inequalities
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Fig. 2 A packing in a hypergraph G = (V, E) with eleven vertices and a vertex subset V ′ sur-
rounded by an ellipse, p = 2. There can be at most ∅ 7

p � = 3 edges which are subsets of both

the seven vertices in V ′ and some hyperedge in the packing. All other possible edges that would
connect two vertices that are contained in some hyperedge in the packing have to have at least one
vertex from V \ V ′

∑

e∗E

⌊ |{Q ∗ Q′ : e ∗ Q}|
p

⌋
xe ∧

⌊ |Q′|
p

⌋
∀Q′ ≤ Q, p ∗ N, p ≥ 2.

We remark that for the hypergraph assignment problem (HAP) [2], a partitioning
problem on bipartite hypergraphs, for which all inequalities valid for the correspond-
ing set packing relaxation are valid, these inequalities can be facet-defining. In the
HAP polytope for a certain “complete bipartite hypergraph with three parts in each
of the two vertex sets, all parts having size two”, one half of the 30 facet classes (this
is modulo symmetry, they contain all together 14049 facets) can be described in this
way with p = 2.

3 Comparison with General Clique Family Inequalities

Pêcher and Wagler [5] propose a different generalization of odd set cuts of the set
packing problem. These inequalities, “general clique family inequalities”, have a
similar structure (division by some p ∗ N, rounding, coefficient for a hyperedge
variable depends on the number of hyperedge cliques that contain this hyperedge),
however, the resulting inequality is different. Also, to the best of our knowledge
no combinatorial interpretation was developed for general clique family inequalities
so far.

General clique family inequalities are defined as follows. Let Q′ ≤ Q be a set
of at least three edge cliques for the hypergraph G = (V, E). Choose an integer
p with 2 ∧ p ∧ |Q′|, define R := |Q′| mod p and choose an integer J with
0 ∧ J ∧ p − R. Now define Ei := {

e ∗ E : |{Q ∗ Q′ : e ∗ Q}| = i
}

for i ∗
{1, 2, . . . , |Q′|} to be the set of hyperedges that are contained in exactly i hyperedge
cliques in Q′. The general clique family inequality
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Table 1 Coefficient of xe, e ∗ E on left hand sides of the inequalities (3) derived in Step 3
and general clique family inequalities (4) depending on the number i := |{Q ∗ Q′: e ∗ Q}| of
hyperedge cliques in Q′ that contain e

(3) (4)

0 ∧ i < p − J 0 0
p − J ∧ i < p 0 i−R

p−R

p ∧ i ∧ |Q′|
⌊

i
p

⌋
1

|Q′|∑

i=p

(p − R)
∑

e∗Ei

xe +
J∑

j=1

(p − R − j)
∑

e∗E p− j

xe ∧ b

is valid if b ≥ (p − R)
⌊ |Q′|

p

⌋
.

To compare the general clique family inequalities to our inequalities we rewrite
Step 3 as

|Q′|∑

i=0

⌊
i

p

⌋ ∑

e∗Ei

xe ∧
⌊ |Q′|

p

⌋
, (3)

and divide both sides of the general clique family inequalities with strongest allowed
b by (p − R) to get the valid inequality

|Q′|∑

i=p

∑

e∗Ei

xe +
J∑

j=1

p − R − j

p − R

∑

e∗E p− j

xe ∧
⌊ |Q′|

p

⌋
. (4)

Now the right hand sides are equal. The coefficients of xe, e ∗ E on the left hand
sides are summarized in Table 1 depending on the number i := |{Q ∗ Q′ : e ∗ Q}| of
edge cliques inQ′ that contain e. The table shows that the inequalities concentrate on
coefficients for different kinds of hyperedge variables although they employ similar
objects. The inequalities derived in this paper have non-zero coefficients only for
hyperedges of size ≥ p. These coefficients may differ depending on the hyperedge
size and be > 1, whereas the corresponding coefficients in the general clique family
inequalities are all equal to 1. General clique family inequalities, however, have
non-zero coefficients for smaller hyperedges.

Thus, the inequality class presented in this paper is different from the general
clique family inequalities.
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New Lower Bounds for the Three-Dimensional
Strip Packing Problem

Kirsten Hoffmann

Abstract In this paper, we study the three-dimensional strip packing problem
(SPP3) which involves packing a set of non-rotatable boxes into a three-dimensional
strip (container) of fixed length and width but unconstrained height. The goal is to
pack all of the boxes orthogonal oriented and without overlapping into the container,
minimising its resulting height. We present new lower bounds derived from differ-
ent relaxations of the mathematical formulation of the SPP3. Furthermore, we show
dominance relations between different bounds and limit the worst case performance
ratio of some bounds.

1 Introduction

In production and transportation, growing scarcity of resources and competition
pressure will force companies into efficient management of raw material or storage
area. Such optimisation problems can be modelled as bin or strip packing problems.

These problems are NP-hard in the strong sense and, therefore, lower bounds
are necessary to limit the optimal solution and to estimate the performance of some
heuristic solutions.

For some more details about the mentioned problems, we refer to the typologies of
[13, 21]. Lower bounds for the two-dimensional bin packing problem are proposed
by [2, 6, 7, 10, 19], whereas the three-dimensional case is discussed in [5, 18].
Surveys concerning lower bounds for the two-dimensional strip packing problem
can be found in [1, 8]. See [17] for lower bounds based on geometric considerations
and [4] for lower bounds based on relaxations of the original problem. General
bounds applicable for several packing problems are given in [14]. Considerably
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less literature exists for the three-dimensional strip packing problem (also known as
container loading problem), especially concerning lower bounds.

Therefore, this article is intended to fill this gap by proposing new lower bounds
for SPP3. Therefore, the remainder is organized as follows: In the next section we
specify some definitions and simple lower bounds. Lower bounds based on relaxation
of the original problem are presented in Sect. 3. The main findings as well as possible
directions of future research are summarized in Sect. 4.

2 Problem Description and Simple Bounds

We consider the three-dimensional strip packing problem (SPP3): Given a three-
dimensional strip (container) of fixed length L and width W but unconstrained height
and a list L = {R1, R2, . . . , Rn} of items (boxes) of length li ≤ L, width wi ≤ W , and
height hi (i∞I = {1, . . . , n}), the goal is to pack the boxes into the container minimis-
ing its resulting height. Additional constraints are that the boxes must not overlap and
must be packed orthogonally and non-rotatable. All given informations (dimensions
of the container and boxes) are associated with the related SPP3-instance.

Definition 1 Let E be an instance of SPP3, H≥(E) the corresponding minimal strip
height of the optimal packing, and b(E) the value provided by the lower bound b.
The absolute worst-case performance ratio (WCPR) of b is

sup
E

H≥(E)

b(E)
. (1)

Definition 2 Given two different lower bounds b1 and b2, b1 dominates b2 if and
only if b1(E) ∗ b2(E) for all instances E.

Two simple lower bounds for SPP3 are the continuous lower bound b1 and the height
of the tallest box b2:

b1 =
⌈

1

LW

∑

i∞I

liwihi

⌉
and b2 = max

i∞I
{hi} . (2)

Each bound separately is arbitrarily bad for some instances, but by combining, we
get the improved bound

b0 = max{b1, b2}. (3)

We hazard a guess that the WCPR of b0 equals 4, but we can proof:

Theorem 1 The absolute WCPR of b0 is between 4 and 6.

Proof Consider an instance with m boxes (m is a factor of 4) with li = L/2 + ε,
wi = W/2 + ε and hi = 1 for some small ε > 0. Therefore, the minimal container
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height equals m and b0 = b1 = m/4 + 1 for ε √ 0. For sufficient large m the
quotient H≥/b0 is arbitrarily close to 4. On the other hand, H≥ ≤ 6b0 follows from
H≥ ≤ 4b1 + 2b2 that is proved in [12]. �

3 Lower Bounds Based on Mathematical Formulations

For SPP3 there are several mathematical models that observe the constraints con-
cerning non-overlapping, orthogonality and non-rotation. See [2, 3, 11, 20] for more
details. In practical matters these models can barely be solved optimal. Thus, relax-
ations are used to approximate the optimal solution.

In optimisation relaxation is a strategy to reduce the difficulty of the original
problem in such way that the relaxed problem provides a lower bound (in case
of minimisation problems) for the solution of the original problem. For the strip
packing problem we can relax the box geometry in one or two dimensions (slice or
bar relaxation). Furthermore, we can distinguish between the kind of patterns. For
the slice relaxation we can generate feasible two-dimensional patterns or (maybe
infeasible) patterns satisfying the knapsack condition. In case of bar relaxation the
original problem is reduced to a (contiguous) cutting stock problem.

Exemplary, we observe the slice relaxation along the height H. Either aj∞{0, 1}m,
j∞J , denotes a feasible two-dimensional pattern or a one-dimensional pattern satis-
fying the knapsack condition ∑

i∞I

aijliwi ≤ LW (4)

for a slice with length L and width W . xj represents the quantity of pattern j in the
solution, J all possible patterns. The slice relaxation concerning the height is:

∑

j∞J

xj √ min (5)

s.t.
∑

j∞J

aijxj = hi, i ∞ I, (6)

xj ∞ N, j ∞ J. (7)

Let zb−H identify the optimal value of (5)–(7) with feasible 2D-patterns, zks−H with
knapsack-patterns.

Theorem 2 The optimal values zb−H and zks−H as well as the optimal values of their
linear programming (LP) relaxation of (5)–(7) denoted by zb−H

LP and zks−H
LP dominate

b0.

Proof We have to show that all optimal values of the relaxations dominate both b1
and b2. The transformation of constraint (6) yields to
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∑

j∞J

liwiaijxj = liwihi, i∞I

∑

j∞J

xj

∑

i∞I

aijliwi =
∑

i∞I

liwihi.

For both kind of patterns the inequality
∑

i∞I aijliwi ≤ LW stays true. Therefore, we
have zb−H ∗ b1 and zks−H ∗ b1. Furthermore, with

∑

j∞J

xj ∗
∑

j∞J

aijxj = hi ∗ hmax, i∞I

we can show zb−H ∗ b2 and zks−H ∗ b2. Because these relations hold for both
xj ∞ N and xj∞R+ (LP relaxation) we complete the proof. �

Theorem 3 For the absolute WCPR we have

2 ≤ sup
E

H≥

zb−H
≤ 6 and 3 ≤ sup

E

H≥

zks−H
≤ 6. (8)

Proof Because of theorem 1 and 2 we have

H≥ ≤ 6b0 ≤ 6zb−H and H≥ ≤ 6b0 ≤ 6zks−H .

Consider the instance with k + 1 boxes, li = 1, wi = hi = k and L = W = k. The
ratio H≥/zb−H = 2k/(k + 1) is arbitrarily close to 2 for sufficient large k. Consider
now the instance with m(m is a factor of 3) boxes, li = L/2 + ε, wi = W/2 + ε

for small ε > 0 and hi = 1. We have H≥/zks−H = m/(m/3) = 3 for sufficient
small ε. �

For further relaxation we can group the boxes by the dimensions of their base area.
Let m be the number of different base areas ln ×wn and In = {i ∞ I:li = ln, wi = wn}
for n ∞ I = {1, . . . , m}. aj ∞ Z

m+ either denotes a feasible two-dimensional pattern
or a one-dimensional pattern satisfying the knapsack condition

∑

n∞I

anjlnwn ≤ LW (9)

for a slice with length L and width W . The slice relaxation concerning the height
with grouping the boxes is:
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∑

j∞J

xj √ min (10)

s.t.
∑

j∞J

anjxj =
∑

i∞In

hi, n ∞ I, (11)

xj ∞ N, j ∞ J, (12)

where xj represents the quantity of pattern j in the solution, J all potential patterns.
Let zg−H and zgks−H denote the optimal value of (10)–(12) with feasible 2D-patterns
and knapsack-patterns respectively.

The relaxation of the original problem has been pushed so far that these bounds
are arbitrarily bad, i. e., the absolute worst-case performance cannot be determined.
However, we can make a proposition about the asymptotic worst-case behaviour.

Theorem 4 Let m be the number of different base areas of boxes L and hmax =
maxi∞I {hi} the height of the tallest box. For the minimal strip height we have

H≥ ≤ zg−H + mhmax. (13)

Proof Note that in any basic (extreme point) solution to (10)–(12) the number of
non-zero coordinates of the solution is at most the number of constraints, excluded
the non-negativity constraints. Let (x1, . . . , x|J|) denote the solution of (10)–(12),
thus, we have m∩ non-zero coordinates x1, . . . , xm∩ with m∩ ≤ m. The algorithm, that
generates a feasible three-dimensional strip packing of height zg−H + mhmax, works
as follows: Starting at j = 1, create a level of height xj + hmax for each j with xj > 0.
For each n with anj ≡= 0 draw anj columns with length ln and width wn covering the
total height. Afterwards fill all columns with length ln and width wn with boxes of
In in a greedy manner.

Suppose that all boxes fit into the container. The proof is by contradiction. Assume
a box s with length ln and width wn does not fit in any column with such dimensions.
The height of s is at most hmax, whereas the height of the columns equals xj + hmax
for some xj. Since box s does not fit, all columns must be filled up to more than xj.
The cumulative height of all boxes already placed in these columns with length ln

and width wn is more than
∑

j∞J anjxj = dn, which leads to a contradiction.
The proposed algorithm yields a feasible strip packing for all boxes. The

total height equals (x1+hmax)+ · · ·+(xm∩+hmax) = zg−H+m∩hmax ≤ zg−H+mhmax.
�

Notice that if hmax and m are bounded, the WCPR converges asymptotically to one.
A related theorem for the two-dimensional case can be found in [16].

Theorem 5 Consider bins of size L × W and a list of rectangular items with
maxi∞I li ≤ L and maxi∞I wi ≤ W. Then all items can be packed into at most
three bins, if

∑
i∞I liwi ≤ LW.

Proof See [9, 15]. �
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Theorem 6 Let m be the number of different base areas of boxes i ∞ I and hmax =
maxi∞I {hi} the height of the tallest box. For the minimal strip height we have

H≥ ≤ 3(zgks−H + mhmax). (14)

Proof Theorem 5 proved that the base areas of a subset K of boxes that satisfy the
knapsack condition

∑
i∞K liwi ≤ LW , can be packed into at most three bins of size

L × W . Further steps are analogous to the proof of theorem 4 with the exception that
for each j with xj > 0 now three levels of height xj + hmax are created. �

4 Conclusion

The three-dimensional strip packing problem considered in this paper has several
important applications to practical problems, e. g., the container loading problem. It
is NP-hard and, therefore, optimal solving is fairly complicated or even impossible.
We propose new lower bounds for this problem. Furthermore, this paper provides
results on the worst-case performance ratio (absolute or asymptotic) of the proposed
bounds. Further research should ask for more and improved lower bounds and per-
form computational tests.
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A New Method for Parameter Estimation
of the GNL Model Using Real-Coded GA

Yasuhiro Iida, Kei Takahashi and Takahiro Ohno

Abstract In this paper, a new parameter estimation method is proposed for the
generalized nested logit (GNL) model using real-coded genetic algorithms (GA). We
propose a method to recalculate and verify whether the offsprings violate constraints.
In addition, we improve the selection and mutation operators in order to find the
higher log likelihood. In the numerical experiments, the log likelihood of our method
is compared to that obtained by the Quasi-Newton method and the normal real-coded
GA, which use SPX and JGG, and not the mutation operator, with the actual point
of sales data. Thus, we prove that our method finds a higher log likelihood than
conventional methods.

1 Introduction

The generalized nested logit (GNL) model is a discrete choice model used in trans-
portation, route choice, and brand choice to represent a selection of one among a set
of mutually exclusive alternatives [3]. When we perform the parameter estimation
of the GNL model, the log likelihood maximization is usually used. Furthermore,
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in the log likelihood maximization algorithm, the Quasi-Newton method or steepest
descent method is widely used. The log likelihood function of the GNL model is
multimodal. Therefore, when we use those methods, the result of the parameter esti-
mation depends on its initial settings and we may find the local optima [4]. In this
study, we improve the real-coded GA for parameter estimations of the GNL model
in order to find the quasi-optima in each estimation for different initial settings.

2 The GNL Model

The choice probability of the GNL model for which consumer i chooses alternative
n assigned to nest m can be expressed as

Qi
n =

∑

m

Pi
m Pi

n|m, (1)

Pi
m =

(∑
n≤∞Nm

(
αn≤m exp(V i

n≤)
) 1

μm

)μm

∑
m

(∑
n≤∞Nm

(
αn≤m exp(V i

n≤)
) 1

μm

)μm
, (2)

Pi
n|m =

(
αnm exp(V i

n )
) 1

μm

∑
n≤∞Nm

(
αn≤m exp(V i

n≤)
) 1

μm

, (3)

where Pi
m denotes the choice probability of nest m, Pi

n|m is the choice probability of

alternative n if nest m is selected, V i
n is the utility for each alternative n, Nm is the set

of all alternatives included in nest m, μm is the logsum parameter for nest m and αnm

is the allocation parameter that characterizes the portion of alternative n assigned to
nest m. Furthermore, in order to be consistent with random utility maximization μm

and αnm must satisfy the following conditions 0 < μm ≥ 1, αnm ∗ 0, and

∑

m

αnm = 1. (4)

The log likelihood function of the GNL model can be expressed as

ln L =
∑

i

∑

m

∑

n

1i
mn

(
ln Pi

n|m + ln Pi
m

)
, (5)

where 1i
mn is a 0-1 variable denoting whether the alternative n assigned to nest m is

chosen (0) or not chosen (1).
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3 Real-Coded GA

In this section, we introduce real-coded GA. A real-coded GA has three operators,
(1) crossover operator, (2) selection operator and (3) mutation operator.

3.1 Crossover Operator

We apply simplex crossover (SPX) to the parameter estimation of the GNL model.
Conventional studies show that SPX optimizes the various test functions efficiently
and its performance is independent of any linear coordinate transformation [2]. In
SPX, the offsprings are generated by the following five-step procedure:

1. Select n + 1 parents x0, . . . , xn randomly from the current population.
2. Let the gravity point of the parents be g.

3. Generate random number rk as rk = (u(0, 1))
1

k+1 , where u(0, 1) is a uniform
random number.

4. Calculate pk and ck as, respectively,

pk = g + α(xk − g), for k = 0, 1, . . . , n,

ck =
{

0 for k = 0,

rk−1(pk−1 − pk + ck−1) for k = 1, . . . , n.

5. Generate an offspring xc as xc = pn + cn .

However, when we apply SPX to the parameter estimation of the GNL model that
has constraints in allocation and logsum parameters (Eq. 4), there is a possibility
of generating offsprings that may violate the constraints. Therefore, we propose
a method to recalculate and verify whether the offsprings satisfy constraints. The
procedure is shown in Fig. 1.

3.2 Selection Operator

We propose reJGG based on just generation gap (JGG). In reJGG, parents and off-
springs are selected by the following three-step procedure:

1. Select n p parents randomly from the current population.
2. Apply the crossover operator and generate nc offsprings.
3. Replace the parents that were used with the crossover operator with the top n p

parents and offsprings.
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Fig. 1 The procedure for recalculating if offsprings do not satisfy constraints

3.3 Mutation Operator

We propose the use of mutation operator, which is not generally used in real-coded
GA, to maintain diversity and not for the purpose of finding the local optima. The
GNL model involves allocation parameters that have constraints in each alternative,∑

m αnm = 1. When we perform parameter estimation of the GNL model, some
allocation parameters converge quickly, whereas others do not. Therefore, some
allocation parameters that almost converge might not be global optima. In the first
step, we apply a uniform mutation to the parameter estimation process and prove
the significance of using a mutation operator. In the second step, we improve the
uniform mutation.

1. Generate a new real-valued number randomly with mutation rate p
2. Generate a new real-valued number randomly with mutation rate p if the ratio of

the area made by parents to that made by constraints falls below the area rate pa .

4 Numerical Experiment

We test the performance of our method and compare it with that of the Quasi-Newton
method and normal real-coded GA, which use SPX and JGG, and not the mutation
operator. In this study, we use the scanner-panel data in a supermarket. The data
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Fig. 2 Structure of GNL model. The upper level indicate the nest that groups the alternatives in
the same category and the lower level is the alternatives assigned to each nest

Table 1 Parameters for
real-coded GA

Parameter Value

Number of parameter 34
Initial population 340
Iteration number of

crossover operator
340

Mutation rate 0.1
Number of trials 20

includes 5,269 purchases and the GNL model structure is shown in Fig. 2. In the
GNL model, the utility for each alternative n can be represented as

V i
n = β1 X1n + β2 X2n + β3 X3n + β4 X4n + β5 X5n, (6)

where X1n denotes the price of alternative n, X2n is a 0-1 variable that denotes
whether the consumer i chooses CocaCola, X3n is the volume of alternative n, X4n

is a 0-1 variable that denotes whether the alternative n’s content is nonsugar, X5n is
a 0-1 variable that denotes whether the consumer i purchases the same alternative
previously and βi is utility parameter. Table 1 shows the log likelihood and calculating
time of the Quasi-Newton method and that of the real-coded GA. We can not find
the optima using the Quasi-Newton method. Owing to the application of real-coded
GA, the log likelihood is increased. The result indicates superiority in performance
of real-coded GA. Next, we compare the combination of JGG or reJGG along with
the use of mutation operator and without its use with each real-coded GA. Due to
the application of reJGG, the log likelihood is increased and the calculating time
is reduced. This is because reJGG does not discard the parent that has good utility.
Therefore, it is easy to generate offsprings that speed up the convergence and have
a better value. By applying uniform mutation, the log likelihood and calculating
time are increased. This is because the mutation operator searches a wider area. This
makes the convergence slow and it is easy to find offsprings that have a better value.
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Table 2 Comparison the Quasi-Newton method with the real-coded GA. In the Quasi-Newton
method, we test 40 trials from different initial settings

Method Log likelihood Time (min)

Quasi-Newton method −5820.54 –
SPX + JGG −5803.03 47.29
SPX + reJGG −5801.00 42.14
SPX + JGG + Mutation −5802.45 47.08
SPX + reJGG + Mutation −5800.90 44.95

Fig. 3 The average of the best values obtained when mutation rate is changed

Fig. 4 The average of the best values obtained when mutation operator is changed. The dash line
indicates the result of Step 1 when mutation rate p = 0.1 and the continuous line indicates the
result of Step 2

We observed that our method, which uses SPX, reJGG, and uniform mutation,
finds a higher log likelihood compared to conventional methods. Therefore, we con-
tinued with this method and changed some parameters. First, we changed the mutation
rate p. Figure 3 shows the result. As seen in Fig. 3, we obtained the best value at
p = 0.1. If we use a very small mutation rate, we can find the lower log likelihood
because a very small mutation rate is similar to no mutation operator. Furthermore,
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if we use a very large mutation rate, we can find the lower log likelihood because
a very large mutation rate is similar to random searching. Next, we implement the
second step. Figure 4 shows the result. As seen in 4, we obtained the best value for
pa = 1. We can also find the local optima if we use a very small or large area rate.

5 Conclusion

We introduced a parameter estimation method for the GNL model using real-coded
GA. To improve the accuracy of the estimation, we proposed two algorithms, reJGG
and mutation operator. Using our method, the log likelihood is increased and the
calculating time is reduced. Further investigations into the calculating time and other
methods are needed to obtain more precise outcomes.

References

1. Fish, K. E., Johnson, J. D., Dorsey, R. E., & Blodgett, J. G. (2004). Using an artificial neural
network trained with a genetic algorithm to model brand share. Journal of Business Research,
57, 79–85.

2. Higuchi, T., Tsutsumi, S., & Yamamura, M. (2000) Theoretical analysis of simplex crossover
for real-coded genetic algorithms. In Parallel problem solving from nature (pp. 365–374).

3. Wen, C. H., & Koppelman, F. S. (2001). The generalized nested logit model. Transportation
Research Part B, 63(2), 627–641.

4. Zhuang, X. Y., Fukuda, D., & Yai, T. (2007). Analyzing inter-regional travel mode choice
behavior with multi nested generalized extreme value model. Journal of the Eastern Asia Society
for Transportation Studies, 7, 686–699.



Inventory Control with Supply Backordering

Marko Jakšič

Abstract We study the inventory control problem of a retailer working under
stochastic demand and stochastic limited supply. The unfulfilled part of the retailer’s
order is backordered at the supplier and that the retailer has a right to cancel the
replenishment of the backordered supply, if desired. We show the optimality of the
a base-stock type type policy and derive the threshold inventory position over which
it is optimal to cancel the replenishment of the backordered supply. We carry out a
numerical analysis to quantify the benefits of supply backordering and the value of
the cancelation option.

1 Introduction

The importance of time as a competitive weapon in supply chains has been recognized
for some time. Suppliers venture into lead time projects to improve the ability to meet
the demands of customers for shorter lead times. However, such undertaking often
results in, at least in a short term, worse supply performance, characterized mainly
by delayed and/or partial replenishment.

In this paper we study the inventory control problem of a retailer working under
stochastic demand from the market, where he tries to satisfy the demand by making
orders with a supplier. The supply capacity available to the retailer is assumed to
be limited and stochastic as a result of a supplier’s changing capacity and capacity
allocation policy. The order placed by the retailer might therefore not be delivered in
full, depending on the currently available capacity. The novel feature of our model
is that the unfulfilled part of the retailer’s order is backordered at the supplier. We
assume that the replenishment of the backordered supply is certain, meaning that it
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is delivered in full in the following period (together with replenishment of the next
period’s regular order). As the supply backorder is a result of the supplier’s inadequate
supply service, this gives the retailer an option (a moral right) to cancel the replen-
ishment of the backordered supply if necessary. Therefore, in each period the retailer
has to make two decisions. Apart from the regular ordering decision to the supplier,
he needs to decide whether he wants the supplier to replenish the backordered supply
or not. We denote the case where the backordered supply is always replenished as the
Full backordering (FB) policy, and compare it to the No backordering (NB) policy,
where there is no supply backordering, to establish the value of supply backordering.
We are also interested in whether full supply backordering can be counterproductive
in specific situations. Therefore, we quantify the effect of the retailer’s ability to
cancel the supply backorder at the supplier (through implementing a Cancelation
option (CO) policy) on the reduction of inventory costs.

The way we model the supply availability is inline with the work of [1–3], where
the random supply/production capacity determines a random upper bound on the
supply availability in each period. A general assumption in capacitated inventory
models is that the part of the order above the available supply capacity in a certain
period is lost to the customer. We believe this might not hold in several situations
observed in practice.

While demand backordering a strategy extensively used on the demand side, sup-
ply backorders have not been considered in the literature. For instance, in [4], supplier
gives priority to satisfying the backordered part of the demand from previous periods.
Again considering the demand side, a stream of research deals with the problem of
demand or order cancelation. In [5] they assume a constant fraction of customers are
canceling their backorders. Therefore they do not consider the cancelation of back-
orders as a decision variable, but as a preset system parameter, which effectively
reduces the demand the supplier is facing. Such treatment is essentially similar to
so called partial backordering that is considered in the inventory literature for cases
where part of the demand is backordered while the remainder is lost, as in [6, 7].
In this paper we include the option to cancel backorders on the supply side as an
integral part of the optimal ordering decision policy.

In Sect. 2 we present our dynamic programming model incorporating supply
backordering. The structure of the optimal policy is given in Sect. 3, and the results
of a numerical study are presented in Sect. 4. Finally we summarize our findings in
Sect. 5.

2 Model Formulation

In this section, we present the dynamic programming model to formulate the problem
under consideration. The model assumes a periodic-review inventory control system
with non-stationary stochastic demand and limited non-stationary stochastic supply
with a zero supply lead time. The supply capacity is assumed to be exogenous to
the retailer and the exact capacity realization is only revealed upon replenishment.
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Unused capacity in a certain period is assumed to be lost. In the case when currently
available supply capacity is insufficient to cover the whole order, a retailer has an
option to backorder the unfilled part of the supply at the supplier and it will be
delivered to him together with the replenishment of the next order.

We assume the following sequence of events:

(1) At the start of period t , the decision maker reviews the inventory position xt , and
the ordering decision is made, which is composed of two decisions: (1) supply
backorder βt−1bt−1 from the previous period, where the backorder parameter β

attains a value of 1 when the backordered supply bt−1 is to be replenished, and
0 if it is canceled, and (2) regular order zt .

(2) The previous period’s supply backorder βt−1bt−1 and the current period’s regular
order zt are replenished.

(3) At the end of the period the decision maker observes the previously backordered
demand and the current period’s demand dt , and tries to satisfy it from the
available inventory yt − bt . Unsatisfied demand is backordered, and inventory
holding and backorder costs are incurred based on the end-of-period inventory
position, xt+1 = yt − bt − dt .

The system’s costs consist of inventory holding ch and backorder cb costs charged
on end-of-period on-hand inventory. The expected single-period cost charged at the
end of period t is expressed as Ct (yt , zt ) = αEQt ,Dt C̃t (yt −bt − Dt ), where C̃(x) =
ch

⎧ x
0 (x − Dt )gt (Dt )dDt + cb

⎧ ∞
x (Dt − x)gt (Dt )dDt is the regular loss function

and gt (Dt ) is a probability density function of demand.
The dynamic programming formulation minimizing the relevant inventory

costs over finite planning horizon T from time t onward and starting in the initial
state (xt , bt−1) characterized by the inventory position before the decision making
xt and the backordered supply bt−1, can be written as:

ft (xt , bt−1) = min
βt−1={0,1},zt ≥0

⎪
Ct (yt , zt ) + αEQt ,Dt ft+1(yt − bt − Dt , bt )

⎨
, for 1 ≤ t ≤ T, (1)

where the ending condition is defined as fT +1(·) ≡ 0.

3 Structure of the Optimal Policy

In this section, we focus on the optimal policy characterization of the inventory
system that permits cancelation of the replenishment of the backordered supply. We
define the cost function Jt as Jt (yt , zt ) = Ct (yt , zt )+αEQt ,Dt ft+1(yt −bt −Dt , bt ).

In Part 1 of Theorem 1, we show that the inventory policy which minimizes (1)
under the FB policy, is a base-stock policy characterized by the optimal inventory
position after ordering ŷt . Finding the optimal order size ẑt requires searching for
the global minimum of the auxiliary cost function Jt (yt , zt ), which exhibits a qua-
siconvex shape and thus has a unique minimum. The quasiconvexity is preserved
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through t as the underlying single-period cost function C(yt , zt ) is also quasiconvex
in zt and function ft+1(xt+1, bt ) for bt = 0 is convex in xt . The latter holds due
to the fact that the first partial derivative of Jt with regard to zt is independent of
bt . This means that in its general form the problem equals the stochastic capacitated
inventory problem studied by [1], where they show the optimality of the base-stock
policy.

Theorem 1 Let ŷt be the smallest minimizer of Jt (yt , zt ) and the starting state is
(xt , bt−1):

1. The optimal FB policy is a base-stock policy with the optimal base-stock level ŷt

and the optimal order size is ẑt = [ŷt − xt − bt−1]+.
2. The threshold inventory position ȳt = xt + b̄t−1 ≥ ŷt , where b̄t−1 is a threshold

supply backorder level, is a solution to Jt (xt , b̄t−1, 0) = Jt (xt , 0, ẑt ), where
ẑt = ŷt − xt is the optimal order size.

3. Under the optimal CO policy, yt (xt , bt−1) is given by:

yt (xt , bt−1) =

⎛
⎜⎜⎝

⎜⎜⎞

xt , ŷt ≤ xt , βt−1 = 0, zt = 0,

xt + zt = ŷt , xt < ŷt < ȳt ≤ xt + bt−1, βt−1 = 0, zt > 0,

xt + bt−1, xt < ŷt ≤ xt + bt−1 < ȳt , βt−1 = 1, zt = 0,

xt + bt−1 + zt = ŷt , xt + bt−1 < ŷt , βt−1 = 1, zt > 0,

(2)

4. The optimal CO policy is a base-stock policy with the optimal base-stock level
ŷt , which is equal to the optimal base-stock level of the FB policy, for any t.

We move to the analysis of the supply backorder cancelation option. In Part 2,
we define a threshold inventory position ȳt above which it is optimal to cancel
the replenishment of the supply backorder, as it represents the point at which the
costs of either solely replenishing the supply backorder and only placing an optimal
regular order up to the optimal base-stock level are equal. Observe that placing a
regular order generally results in the inventory position after replenishment ŷt − bt ,
which is below the base-stock level due to potential capacity unavailability. On the
other hand, replenishing the backordered supply overshoots the base-stock level. As
Part 3 suggests, the decision maker should replenish the backordered supply if it is
below the threshold size bt−1 ≤ b̄t−1, and in this case no regular order is placed
(βt−1 = 1, zt = 0). When bt−1 > b̄t−1 it is optimal to cancel the replenishment of
the backordered supply and place a regular order up to the optimal base-stock level
instead (βt−1 = 0, zt > 0). In Part 4, we show that the optimal base-stock levels are
the same for the CO policy and the FB policy, which is a consequence of the fact that
in both cases the optimal base-stock level is independent of the backordered supply.

4 The Value of Supply Backordering and Cancelation Option

To evaluate the benefits of supply backorder replenishment and the value of the
option to cancel the backordered supply, we carried out a numerical analysis. Cal-
culations were done by solving the dynamic programming formulation given in (1),
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Table 1 The value of supply backordering and the cancelation option (T = 12, α = 0.99,

cb/ch = 20)

Util CVQ CVD %VF B %VC O

0.00 0.14 0.37 0.61 0.00 0.14 0.37 0.61

∞ 100.0 97.1 93.7 90.9 – 0.0 19.2 40.6
2 0.00 100.0 94.8 89.6 87.2 – 7.1 44.4 47.3
2 0.14 96.9 93.4 89.1 87.0 0.0 8.6 39.9 45.0
2 0.37 91.6 90.0 87.5 86.0 0.0 4.6 25.1 35.5
2 0.61 87.4 86.9 85.6 84.7 0.0 1.5 13.8 24.8
1 0.00 – 78.7 80.4 80.6 – 22.9 19.6 23.4
1 0.14 75.7 70.8 77.8 79.3 0.0 3.0 10.8 19.1
1 0.37 71.5 71.0 72.9 75.4 0.0 0.4 2.7 8.3
1 0.61 70.4 71.5 71.7 72.9 0.0 0.1 1.3 3.9
0.67 0.00 – – 44.9 69.1 – – 2.0 12.7
0.67 0.14 – – 34.4 62.4 – – 0.0 5.8
0.67 0.37 34.3 37.7 46.9 55.9 0.0 0.0 0.0 1.9
0.67 0.61 53.3 54.8 55.7 58.2 0.0 0.0 0.2 0.8

and are presented in Table 1. The value of supply backordering is assessed based on
a comparison between the NB policy and the FB policy (%VF B), while the value of
cancelation option is quantified based on the comparison of the CO policy and the
FB policy (%VC O ). The relative value %V is defined as the difference in cost of the
policies under consideration relative to the costs of the infinite capacity scenario.

The relative value of supply backordering %VF B changes considerably over the set
of experiments, ranging from scenarios for some of the low utilization experiments
denoted with “–”, where the three strategies have the same costs, to practically 100 %
for high utilization. Due to supply capacity shortages the NB policy is unable to cope
with the demand, which results in high cost mainly attributed to a high share of
backordered demand. The replenishment of supply backorders effectively decreases
the system’s utilization through the full, albeit postponed, replenishment of orders.

While the value of supply backordering exhibits monotonic behavior with the
change in the system’s utilization, this is not the case when we consider the effect of
demand and/or capacity uncertainty. When the utilization is high (Util = 2), %VF B

decreases with the increase in demand uncertainty. In this case, the potentially high
supply backorder is fully replenished through FB policy, which is not optimal if a
low demand period just occurred. For lower utilizations, %VF B generally increases
with CVD . Here, more stockouts are the result of the target inventory level being
insufficient to cover the unusually high demand, and not due to the capacity shortage.
The supply backorders are smaller and it is therefore less likely that the replenishment
of the supply backorder will be counterproductive in the low demand periods.

The higher the system utilization the higher the value of the cancelation option,
where %VC O for the two high utilization scenarios reaches up to 50 %. As the period-
to-period optimal base-stock levels need to be high enough to cover potential future
supply shortages, they are sensitive to changes in future period-to-period utilization.
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With the flexibility that the CO policy offers, it becomes more likely that the opti-
mal base-stock levels will be attained. As low demand periods are more likely to
happen when demand uncertainty is high (and these may lead to excessive inventory
levels), the costs can be lowered through exercising the cancelation option, however
only if the capacity uncertainty is low enough to guarantee a reasonably reliable
replenishment of the regular order.

5 Conclusions

In this paper we establish the optimal inventory control policies for a finite horizon
stochastic capacitated inventory system in which the unfilled part of an order is
backordered at the supplier and delivered in full in the following period; a concept
we denote as supply backordering. For both policies, the Full backordering and the
Cancelation option, we show that the structure of the optimal inventory policy is a
base-stock policy where the base-stock levels are equal in both cases. We characterize
the threshold inventory position above which it is optimal to cancel the replenishment
of the backordered supply and place a new order instead. We show that the relative
cost savings achieved through supply backordering can be substantial already at
moderate system utilization. However these also depend on demand and capacity
variability in a complex non-monotonic manner, which requires the decision maker
to consider them in an integrated manner. We also establish the following conditions
in which exercising the cancelation option is optimal: high system utilization, high
demand uncertainty and low capacity uncertainty.
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Sequencing Problems with Uncertain
Parameters and the OWA Criterion

Adam Kasperski and Paweł Zieliński

Abstract In this paper a class of sequencing problems with uncertain parameters is
discussed. The uncertainty is modeled by using a discrete scenario set. The Ordered
Weighted Averaging (OWA) aggregation operator is used to choose an optimal sched-
ule. The OWA operator generalizes traditional criteria in decision making under
uncertainty, such as the maximum, average, median or Hurwicz criterion. In this
paper a general framework is proposed and some positive and negative results for a
sample problem are presented.

1 Preliminaries

In a sequencing problem, we are given a set of jobs J = {J1, . . . , Jn} which can be
partially ordered by some precedence constraints. The notation i ≤ j means that
job Jj must be processed after job Ji . We will assume that all the jobs are ready
for processing at time 0 and preemption of jobs is not allowed. Thus, a schedule
is a feasible permutation of the jobs π which represents an order in which the jobs
are processed. We will use Π to denote the set of all feasible schedules. In the
classical deterministic case the following parameters for each job J j can be specified:
a nonnegative processing time p j , a nonnegative due date d j and a nonnegative
weight w j . We will use C j (π) to denote the completion time of job J j in schedule
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π . Let f (π) be a cost of schedule π . In a deterministic sequencing problem P , we
seek a schedule π ∞ Π which minimizes the cost function f (π).

Suppose that the parameters of the problem are not precisely known. Every
possible realization of the problem parameters, denoted by S, is called a scenario. We
will use p j (S), d j (S) and w j (S) to denote the processing time, due date and weight of
job J j under scenario S, respectively. Without loss of generality we can assume that
all these parameters are nonnegative integers. Let scenario set Γ = {S1, . . . , SK }
contain all possible, explicitly listed scenarios. Now the job completion time and the
cost of schedule π depend on scenario S ∞ Γ , and we will denote them by C j (π, S)

and f (π, S), respectively. Let v1, . . . , vK be numbers such that vi ∞ [0, 1], i ∞ [K ],
and v1 + · · · + vK = 1. Given schedule π , let σ be a permutation of [K ] such that
f (π, Sσ(1)) ≥ f (π, Sσ(2)) ≥ · · · ≥ f (π, Sσ(K )). The Ordered Weighted Averaging
aggregation operator (OWA for short) is defined as follows [6]:

OWA(π) =
∑

i∞[K ]
vi f (π, Sσ(i)).

In this paper we will study the Min- Owa P problem in which we wish to find a
schedule π ∞ Π minimizing OWA(π ). The choice of particular numbers vi , i ∞ [K ],
leads to well known criteria in decision making under uncertainty. Namely, if v1 = 1
and vi = 0 for i ∗= 1, then we obtain the maximum criterion and the problem is
denoted asMin- MaxP . This is a typical problem considered in robust optimization
(see, e.g. [4]). If vi = 1/K for i ∞ [K ], then we get the average criterion and the
problem is denoted as Min- Average P . If v1 = α, vK = 1 − α and vi = 0
for i = 2, . . . , K − 1, then we get the Hurwicz pessimism - optimism criterion
and the problem is denoted as Min- Hurwicz P . Finally, when v√K/2∩+1 = 1 and
vi = 0 for i ∗= √K/2∩ + 1, then we obtain the median and the problem is denoted as
Min- MedianP .

2 The Maximum Weighted Tardiness Cost Function

Let Tj (π, S) = [C j (π, S)−d j (S)]+ be the tardiness of job j in π under scenario S,
where [x]+ = max{0, x}. The cost of schedule π under S is the maximum weighted
tardiness, i.e. f (π, S) = max j∞J w j Tj (π, S). The deterministic counterpart P is
denoted by 1|prec| max w j Tj . We will also discuss a special cases of the problem,
with no precedence constraints between jobs and unit job weights, i.e. 1||Tmax.

Theorem 1 Min- average 1||Tmax is strongly NP-hard and not approximable
within 7/6 − ε for any ε > 0 unless P = NP; Min- Median 1||Tmax is strongly
NP-hard and not at all approximable unless P = NP.

Proof We show a polynomial time approximation preserving reduction from the
Min k- SAT problem, which is defined as follows. We are given boolean variables
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x1, . . . , xn and a collection of clauses C1, . . . , Cm , where each clause is a disjunction
of at most k literals (variables or their negations). We ask if there is a an assignment to
the variables that satisfies at most L < m clauses. This problem is strongly NP-hard
even for k = 2 and its optimization (minimization) version is hard to approximate
within 7/6 − ε for any ε > 0 when k = 3 (see [2]). Given an instance of Min
3- Sat, we construct the corresponding instance of Min- average in the following
way. We create two jobs Jxi and Jxi for each variable xi . The processing times and
weights of all the jobs under all scenarios are equal to 1. The due dates of Jxi and Jxi

depend on scenario and will take the value of 2i − 1 or 2i . We form m scenarios as
follows. Scenario Sk corresponds to clause Ck = (l1 ≡ l2 ≡ l3). For each q = 1, 2, 3,
if lq = xi , then the due date of Jxi is 2i − 1 and the due date of Jxi is 2i ; if lq = xi ,
then the due date of Jxi is 2i and the due date of Jxi is 2i − 1; if neither xi nor xi

appears in Ck , then the due dates of Jxi and Jxi are set to 2i . Finally, we fix vi = 1/m
for all i ∞ [K ]. Define a subset of the schedules Π ∧ ⊆ Π such that each schedule
π ∞ Π ∧ is of the form π = (J1, J ∧

1, J2, J ∧
2, . . . , Jn, J ∧

n), where Ji , J ∧
i ∞ {Jxi , Jxi }

for i ∞ [n]. Observe that Π ∧ contains exactly 2n schedules and each such a schedule
defines an assignment to the variables such that xi = 0 if Jxi is processed before
Jxi and xi = 1 otherwise. Assume that the answer to Min 3- Sat is yes. So, there
is an assignment to the variables that satisfies at most L clauses. Consider schedule
π ∞ Π ∧ which corresponds do this assignment. It is easy to check that if clause Ck

is not satisfied, then all jobs in π under Sk are on-time and the maximum tardiness
in π under Sk is 0. On the other hand, if clause Ck is satisfied, then the maximum
tardiness of π under Sk is 1. In consequence 1

K

∑
i∞[K ] f (π, Si ) ≤ L/m. Assume

now that there is a schedule π such that 1
K

∑
i∞[K ] f (π, Si ) ≤ L/m. Notice that

L/m < 1 by the nonrestrictive assumption that L < m. We first show that π must
belong to Π ∧. Suppose that π /∞ Π ∧ and let Ji (J ∧

i ) be the last job in π which is
not placed properly, i.e. Ji , (J ∧

i ) /∞ {Jxi , Jxi }. Then Ji (J ∧
i ) is at least one unit late

under all scenarios and 1
K

∑
i∞[K ] f (π, Si ) ≥ 1, a contradiction. Since π ∞ Π ∧ and

all processing times are equal to 1 it follows that f (π, Si ) ∞ {0, 1} for all i ∞ [K ].
Consequently, the maximum tardiness in π is equal to 1 under at most L scenarios
and the assignment corresponding to π satisfies at most L clauses.The reduction is
approximation-preserving and the inapproximability result immediately holds.

In order to prove the hardness of Min- Median 1||Tmax, it is enough to modify the
above reduction. Assume first that L < √m/2∩. We then add to Γ additional m − 2L
scenarios with the due dates equal to 0 for all the jobs. So the number of scenarios
is 2m − 2L . We fix vm−L+1 = 1 and v j = 0 for the remaining scenarios. Now, the
answer to Min 3- SAT is yes, if and only if there is a schedule π whose maximum
tardiness is positive under at most L + m − 2L = m − L scenarios. According to
the definition of the weights, we have OWA(π) = 0. Assume that L > √m/2∩. We
then we add to Γ additional 2L − m scenarios with the due dates equal to n for all
the jobs. The number of scenarios is then 2L . We fix vL+1 = 1 and v j = 0 for all the
remaining scenarios. Now, the answer to Min 3- SAT is yes, if and only if there is
a schedule π whose cost is positive under at most L scenarios. The definition of the
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weights implies OWA(π) = 0. We thus can see that it is NP-hard to check whether
there is a schedule π such that OWA(π) ≤ 0 and the theorem follows. �

We first discuss the minmax version of the problem and extend the polynomial
algorithm for the weighted case proposed in [1]. We will use some ideas from
[3, 5]. Let us define F(π) = maxS∞Γ f (π, S). We can express the value of F(π) as
max j∞J maxS∞Γ [w j (S)(C j (π, S)−d j (S))]+. Fix a nonempty subset of jobs D ⊆ J
and set Fj (D) = maxS∞Γ [w j (S)(

∑
i∞D pi (S)− d j (S))]+. All job processing times

are nonnegative, which implies

Fj (D1) ≥ Fj (D2) if D2 ⊆ D1 (1)

Let pred(π, j) be the set of jobs containing job j and all the jobs that precede
j in π . Since C j (π, S) = ∑

i∞pred(π, j) pi (S), we can rewrite F(π) as F(π) =
max j∞J Fj (pred(π, j)). Consider the algorithm shown in the form of Algorithm 1.

Algorithm 1: The algorithm for solving Min- Max 1|prec| max w j Tj

D ← {1, . . . , n}, p(S) ← ∑
j∞D p j (S); S ∞ Γ1

for r ← n downto 1 do2
Find j ∞ D, which has no successor in D and has the minimum value of Fj (D)3
π(r) ← j , D ← D \ { j}; p(S) ← p(S) − p j (S), S ∞ Γ4

return π5

Theorem 2 Algorithm 1 solves Min- Max 1|prec| max w j Tj in O(K n2) time.

Proof Let π be the schedule returned by the algorithm. It is clear that π is feasible.
Let us renumber the jobs so that π = (1, 2, . . . , n). Let σ be an optimal minmax
schedule. Assume that σ( j) = j for j = k + 1, . . . , n, where k is the smallest posi-
tion among all the optimal minmax schedules. If k = 0, then we are done, because
σ = π is optimal. Assume that k > 0, and so k ∗= σ(k) = i . Let us move the
job k just after i in σ and denote the resulting schedule as σ ∧ (see Fig. 1). Sched-
ule σ ∧ is feasible, because π is feasible. We need only consider three cases: (1) If
j ∞ P∪R, then pred(σ ∧, j) = pred(σ, j) and Fj (pred(σ ∧, j)) = Fj (pred(σ, j)).
(2) If j ∞ Q ∪ {i}, then pred(σ ∧, j) ⊆ pred(σ, j) and, according to (1),
Fj (pred(σ ∧, j)) ≤ Fj (pred(σ, j)). (3) If j = k, then Fj (D) ≤ Fi (D) from
the construction of Algorithm 1. Since pred(σ, i) = pred(σ ∧, j) = D, we have
Fj (pred(σ ∧, j)) ≤ Fi (pred(σ, i)).

From the above three cases we conclude that F(σ ∧) = max j∞J Fj (pred(σ ∧, j)) ≤
max j∞J Fj (pred(σ, j)) = F(σ ), so σ ∧ is also optimal, which contradicts the
minimality of k. Computing Fj (D) in line 3 of Algorithm 1 requires O(K ) time
if the sums p(S), S ∞ Γ , are used. Thus, the overall running time is O(K n2). �
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Fig. 1 Illustration of the proof of Theorem 1

Let fmax be an upper bound on the cost of any schedule under any scenario. For
example, fmax = wmax[npmax − dmin]+, where pmax is the largest processing time,
wmax is the largest weight and dmin is the minimum due date in an input instance.

Theorem 3 Min- Owa 1|prec| max w j Tj is solvable in O( f K
max K n2) time, which

is pseudopolynomial if K is constant.

Proof Let ttt = (t1, . . . , tK ) be a nonnegative integer vector and define owa(ttt) =∑
i∞[K ] vi tσ(i), where σ is a sequence of [K ] such that tσ(1) ≥ · · · ≥ tσ(K ). Let Π(ttt)

be a subset of Π such that π ∞ Π(ttt) if f (π, Si ) ≤ ti for all i ∞ [K ]. Consider the
following auxiliary problem: given a vector ttt , check if Π(ttt) is not empty and if so,
return any schedule πttt ∞ Π(ttt). This problem can be solved in O(K n2) time. Indeed,
given ttt , we first form scenario set Γ ∧ by specifying the following parameters for each
Si ∞ Γ and j ∞ J : p j (S∧

i ) = p j (Si ), d j (S∧
i ) = maxC≥0 w j (Si )(C − d j (Si )) ≤ ti

(C = ti/w j (Si ) + d j (Si )), w j (S∧
i ) = 1. This can be done in O(K n) time. We then

solve the min-max version of the problem for the scenario set Γ ∧ by Algorithm 1 in
O(K n2) time obtaining schedule π . If F(π) over Γ ∧ is 0, then π(ttt) = π ; otherwise
Π(ttt) is empty. We now show that there exists a vector ttt∅ = (t∅1 , . . . , t∅K ), where
t∅i ∞ {0, . . . , fmax}, i ∞ [K ], such that each πttt∅ ∞ Π(ttt∅) minimizes OWA(π).
Let π∅ be an optimal schedule and let ttt = (t1, . . . , tK ) be a vector such that ti =
f (π∅, Si ) for i ∞ [K ]. Clearly, ti ∞ {0, . . . , fmax} for each i ∞ [K ] and π ∞ Π(ttt).
By the definition of ttt , we have owa(ttt) = OWA(π∅). For any π ∞ Π(ttt) it holds
f (π, Si ) ≤ ti = f (π∅, Si ), i ∞ [K ]. From the monotonicity of OWA we conclude
that each π ∞ Π(ttt) must be optimal. The algorithm enumerates all possible vectors
ttt (at most f K

max vectors) and computes πttt ∞ Π(ttt) if Π(ttt) is nonempty. A schedule
πttt with the minimum value of owa(ttt) is returned. Hence the problem is solvable in
O( f K

max K n2). �

Theorem 4 Min- Hurwicz 1|prec| max w j Tj is solvable in O(K 2n4) time.

Proof The Hurwicz criterion with α ∞ [0, 1] can be expressed as OWA(π) =
α maxi∞[K ] f (π, Si )+(1−α) mini∞[K ] f (π, Si ).Let Hk(π) = α maxi∞[K ] f (π, Si )+
(1−α) f (π, Sk). Hence minπ∞Π OWA(π) = mink∞[K ] minπ∞Π Hk(π) and the prob-
lem reduces to solving K problems consisting in minimizing Hk(π) for a fixed
k ∞ [K ]. Fix k ∞ [K ] and set Π(t) = {π ∞ Π : f (π, Sk) ≤ t} ⊆ Π ,
where t ≥ 0. Let t be the minimum value of t such that Π(t) ∗= ∅. Define
Ψ (t) = minπ∞Π(t) maxi∞[K ] f (π, Si ), t ≥ t . Hence
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min
π∞Π

Hk(π) = min
t∞[t,t]

αΨ (t) + (1 − α)t, (2)

where t = minπ∞Π maxi∞[K ] f (π, Si ), which is due to the fact that maxi∞[K ] f (π, Si )

≥ f (π, Sk). Computing the value of Ψ (t) for a given t ∞ [t, t] can be done by a
slightly modified of Algorithm 1 in the same running time. It is enough to replace
line 3 of Algorithm 1 with the following line: 3’ Find j ∞ D(t), which has no
successor in D, and has the minimum value of Fj (D), where D(t) = {i ∞ D :
wi (Sk)[p(Sk)−di (Sk)]+ ≤ t}. The proof of the correctness of the modified algorithm
is almost the same as the proof of Theorem 2. Note that Ψ is a nonincreasing step func-
tion on [t,∞), i.e. a constant function on subintervals [t1, t1)∪[t2, t2)∪· · ·∪[t l ,∞),
tv−1 = tv, v = 2, . . . , l, t1 = t . Thus, αΨ (t) + (1 − α)t , α ∞ (0, 1), is a piecewise
linear function on [t,∞), a linear increasing function on each subinterval [tv, tv),
v ∞ [l], and attains minimum at one of the points t1, . . . , t l . We now show how
these points can be determined. Clearly t1 = minπ∞Π f (π, Sk) and let π1 be an
optimal schedule corresponding to Ψ (t1) computed by the modified Algorithm 1.
Let us renumber the jobs so that π1 = (1, 2, . . . , n). Consider the iteration of the
modified algorithm in which job j is placed at the j th position. At this iteration
D = {1, . . . , j}, t1, and j satisfies the condition in line 3’. We can now compute
the smallest value of t for which job j violates this condition. In order to do this it
suffices to try all values ti = wi (Sk)[p(Sk) − di (Sk)]+ for i ∞ [ j − 1] and fix t∅j
as the smallest among them which violates the condition in line 3’ (if the condition
holds for all ti , then t∅j = ∞). Repeating this procedure for each job we get a set of
values t∅1 , . . . , t∅n and t2 is the smallest value among them. The value of t3 can be
found in the same way. We compute a schedule π2 corresponding to Ψ (t2) and repeat
the previous procedure. Let us now estimate the value of l. Observe that schedule πi

can be obtained from πi+1 by decreasing the position of at least one job violating
the condition in line 3’ (as it must be processed earlier). Furthermore, if the position
of such a job in πi+1 is k, then its position must be less than k in all schedules
π1, . . . , πi . Hence, l = O(n2) and problem (2) can be solved in O(K n4) time and
in consequence Min- Hurwicz 1|prec| max w j Tj is solvable in O(K 2n4) time.

�

Theorem 5 Suppose that v1 > 0 and let π̂ be an optimal solution to the Min-
Max1|prec| max w j Tj problem. Then OWA(π̂) ≤ (1/v1)OWA(π) for eachπ ∞ Π .

Proof Let σ be a sequence of [K ] such that f (π̂, Sσ(1)) ≥ · · · ≥ f (π̂, Sσ(K )) and ρ

be a sequence of [K ] such that f (π, Sρ(1)) ≥ · · · ≥ f (π, Sρ(K )). It holds OWA(π̂) =∑K
j=k v j f (π̂, Sσ( j)) ≤ f (π̂, Sσ(1)). From the definition of π̂ and the assumption

that v1 > 0 we get f (π̂, Sσ(1)) ≤ f (π, Sρ(1)) ≤ 1
v1

∑
j∞[K ] v j f (π, Sρ( j)) =

1
v1

OWA(π). Hence OWA(π̂) ≤ (1/v1)OWA(π). �

Theorem 5 allows us for better approximation of some special cases of the problem.
Consider the case of nondecreasing weights, i.e. v1 ≥ v2 ≥ · · · ≥ vK . Since
in this case it must hold v1 ≥ 1/K , we get that Min- Owa 1|prec| max w j Tj is
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approximable within a factor not less than K . Finally, we immediately get that Min-
Average 1|prec| max w j Tj is approximable within K .
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Application of Scheduling Theory
to the Bus Evacuation Problem

Corinna Kaufmann

Abstract We consider the problem of scheduling a fleet of buses to evacuate people
from a fixed set of gathering points to a fixed set of shelters. In case of uncapacitated
shelters this can be modeled as a well-known scheduling problem. Since there are no
efficient exact solution methods for this problem, we propose a customized branch-
and-bound procedure and compare the performance to a commercial IP solver.

1 Introduction

In the past years a growing number of natural and man-made disasters has made
it necessary to develop good algorithms to calculate evacuation plans and estimate
evacuation time. In this paper we consider the Bus Evacution Problem (BEP) which
was introduced in [3] and considered in a simplified version by [8, 9]. In this paper
we consider the special case of the uncapacitated bus evacuation problem (UBEP).
To solve this problem we have to schedule a fleet of B buses B = {1, . . . , B} to
evacuate a number of evacuees given in J bus loads J = {1, . . . , J } out of an
incident-affected area. Each bus load j is located at a fixed gathering point s j of
the set S = {1, . . . , S} and transported along the shortest paths ds j t to a shelter
location t in set T = {1, . . . , T }. Because we consider shortest paths we know that
the triangle inequality for the distances holds. To simplify the model, we assume that
capacities on shelters are unlimited. This can be motivated by the case of a no-notice
evacuation where it is important to get the people out of the affected area as quickly
as possible and subsequent transportation between shelters is not as time-critical and
therefore not the first objective. There is one bus depot D given and initial traveling
times dDs from the depot to the gathering points S . We will focus on the case with
dDs = 0 for all s, but will also indicate the changes necessary for dDs > 0. Buses
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travel alternating between gathering points and shelters and do not travel to several
gathering points before going to a shelter. We look for a schedule for each bus such
that all people are evacuated and the latest arrival time at a shelter is minimized. We
will consider urban instances of the problem, i.e., instances with a large number of
evacuees and a small number of gathering points.

We will model the UBEP as the well-known scheduling problem PM |sij|Cmax,
i.e., the problem of scheduling N jobs j = 1, . . . , N on M parallel machines k =
1, . . . , M with sequence-dependent setup times sij for i, j ≤ {1, . . . , N } satisfying
the relaxed triangle inequality sij ∞ sik + pk + skj, while minimizing the maximum
completion time Cmax. This problem has been extensively studied in the literature.
There are two IP formulations developed in [10, 11], as well as a large number
of heuristics available (e.g., in [7, 10, 11]). For surveys on scheduling literature
concerning setup times see, e.g., [1, 2, 15]. However, to the best of our knowledge,
there is no efficient exact solution procedure. Therefore, we will develop a customized
branch-and-bound algorithm for the scheduling problem, which will also solve the
UBEP. This algorithm will be compared to a commercial IP solver.

In Sect. 2, the UBEP will be modeled as a classical machine scheduling prob-
lem. Section 3 gives details on the branch-and-bound algorithm for the scheduling
problem as well as improvements for the special case of the urban UBEP. In Sect. 4
computational results are provided and in Sect. 5 further research topics are indicated.

2 Problem Formulation

BEP was shown to be NP-hard in [8]. UBEP can be shown to be NP-hard even in case
of just one bus by reduction from the Hamiltonian Path Problem, i.e., the problem
of finding a minimum path in a network that contains each node exactly once.

To solve the UBEP as introduced in Sect. 1 we formulate it as a PM |sij|Cmax
scheduling problem. To do so, we assume that bus loads of evacuees are jobs (i.e.,
each job is associated with a gathering point) and buses are machines. Therefore,
we have N = J and M = B. Let Ns for s ≤ S be the number of bus loads in
gathering point s. All evacuees are transported to safety iff each job is processed on
one machine. To model the travel time we introduce processing and setup times. A
job should be processed by traveling the shortest possible distance from its gathering
point s j to any shelter, i.e., p j = mint=1,...,T ds j ,t . Since there are likely only a
small number of buses, but a large number of evacuees, we assume that N > M .
Therefore, buses will have to travel back and forth between gathering points and
shelters several times. If the job sequence (i, j) is fixed, the best way to do so is
to travel the minimum tour from si to s j through an arbitrary shelter t . We will
model this as setup times by taking the minimum tour minus the processing time of
job i : sij = mint=1,...,T

⎧
dsi,t + dsj,t

⎪ − pi . To model initial traveling times dDs we
introduce a dummy job 0 with p0 = 0 that is processed first on each machine and an
initial setup time s0j = dDsj for all j = 1, . . . , N .
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Since there are IP formulations and many heuristics in the literature (see Sect. 1),
we already have a large toolbox for solving this problem. However, there are no
efficient exact algorithms. That is why in the next section we introduce a branch-
and-bound algorithm for the scheduling problem PM |sij|Cmax and several improve-
ments that can be used for the urban UBEP because of the special structure of the
corresponding instances.

3 Branch-and-Bound Algorithm

In this section the branch-and-bound algorithm for the general scheduling problem
PM |sij|Cmax will be introduced and a few improvements for the special structure of
the bus evacuation instances will be presented.

Branching: As was proven in [13] there is an optimal schedule among the list sched-
ules for parallel machine problems with setup-times optimizing a regular objective
function if the following allocation rule is applied: The next job in the list is put
on the machine where it is finished first. For the branch-and-bound algorithm that
means that branching on the set of jobs suffices. Therefore, in each iteration we will
introduce at most J new nodes, one for each unscheduled job.

Lower Bounds: For the problem with initial setup times we will use the following
lower bound:

LB1 = 1

M

⎨
⎛

⎜

n⎝

j=1

⎞
pj + min

i≤{0,...,N } sij

⎟⎠
⎡

⎢ .

This is in fact a corrected version of the lower bound proposed in [11] which had a
mistake in it.

In the case without intial setup times, i.e., s0 j = 0 for all j = 1, . . . , n, this bound
is far from optimal. A better lower bound can be obtained by excluding s0 j from the
calculation of the minimum in L B1. But then we include M unnecessary setup times
because the last job on each machine is not succeeded by a setup time. That means,
by subtracting the M largest among the minimum setup times, we obtain a valid
lower bound for the problem without initial setup times. Let MS be the set of indices
j such that mini≤{1,...,N } s ji is among the M largest setup times. The improved lower
bound can be calculated as

LB2 = 1

M

⎨
⎛

⎜

N⎝

j=1

⎞
pj + min

i≤{1,...,N } sji

⎟
−

⎝

j≤MS

min
i≤{1,...,N } sji

⎠
⎡

⎢ .

This can also be easily calculated for a given partial solution: Let lk, k =
1, . . . , M be the load scheduled on machine k in the partial schedule. A lower bound
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for this partial solution is obtained by calculating the lower bound LB2 for the set of
unscheduled jobs J ≥ and adding it to the average scheduled load

⎤
lk/M .

Upper Bounds: We will calculate the upper bound by appending the yet unscheduled
jobs to the partial list and applying the allocation rule by [13] as for the branching.
Several sorting criteria were tested and appending the unscheduled jobs to the partial
list in order of non-decreasing average setup-times performed best for most instances.
Note that any heuristic based on list scheduling can be used as an upper bound.

Pruning: The search tree can be further reduced by some pruning rules: It is clear that
various lists may lead to the same schedule. If in a branching step the allocation rule
will put job i on machine k and job j on machine l ∗= k we know that when branching
from the node of job i in the next step, job j will again be scheduled on l ∗= k (since
the triangle inequality holds). This means we get two equivalent schedules from the
lists (. . . , i, j, . . .) and (. . . , j, i, . . .) and we can eliminate one of the corresponding
branches. We tested a few simple rules that will find such equivalences in reasonable
time with little storage requirements. Preliminary experiments showed the following
rule to perform best comparing the number of pruned branches against additional
computational time and storage requirements:

In the branching step we create M equivalence lists, one for each machine. When
branching on one job j which will be scheduled on machine k we will add job j to
equivalence list k and store all equivalence lists obtained in this branching step so far
except for the k-th in the node of job j . In the following branching step we will prune
all branches belonging to jobs in the equivalence list of the corresponding node.

An additional rule can only be applied in case of no initial setup times: In this
case the first M jobs will be scheduled as first job on the M machines. Therefore, we
require those jobs to be scheduled in lexicographical ordering. All other orders will
lead to equivalent schedules where only machines are interchanged.

Improvements for Bus Evacuation Instances For the special structure of UBEP
instances we can improve upon the search tree size: In the UBEP setting for urban
instances we suppose that there are few gathering points and shelters, but many
people, i.e., bus loads to evacuate. All jobs in the same gathering point have the same
processing and setup times. Therefore, we will treat them as one job with magnitude
Ns . This means, that each node in the tree is branched into at most S new nodes,
one for each gathering point, significantly reducing the breadth of the search tree.
Furthermore, we will stop branching if in a node there is only one job with magnitude
Ns > 0. In this case the upper bound will give the optimal solution of this sub-tree.

4 Computational Experiments

The branch-and-bound algorithm presented in Sect. 3 was implemented in C++ and
compiled by gcc-Version 4.6.3. Computational performance was compared to the
commercial IP solver Cplex using the IP formulation of [11], which was imple-
mented in Python 2.7.3. using Cplex 12.4.0.1. Tests were run on a Dual Intel



Application of Scheduling Theory to the Bus Evacuation Problem 235

Xeon 3.6 GHz processor with 128 GB RAM. 50 randomly generated instances
for the general scheduling problem PM|sij|Cmax with up to 50 jobs were tested.
The branch-and-bound algorithm was able to solve 46.00 % of the problems to opti-
mality within a time-limit of 10 min, while Cplex could only solve 22.00 %. The
average gap of 57.97 % for Cplex was improved to 1.50 % for the branch-and-bound
algorithm.

For the special structure of the UBEP, 90 instances were randomly generated
with up to 10 gathering points and 10 shelters similar to the instances in [9]. The
branch-and-bound algorithm again clearly outperformed Cplex, solving 48.89 % of
the instances to optimality within a time-limit of 10 min, while Cplex could only
solve 14.40 %. The average gap of 68.91 % for Cplex was improved to 3.91 % for
the branch-and-bound algorithm. Furthermore, performance was compared to that
of the branch-and-bound algorithm developed for BEP in [9]. This algorithm solved
38.89 % of the instances to optimality (all of them were also solved to optimality
by the new algorithm) and obtained an average gap of 6.94 %. For the instances
both algorithms solved to optimality the average runtime of the BEP algorithm was
25.56 s and that of the new algorithm was 6.47 s. These results clearly show that
for the special case of uncapacitated shelters the new branch-and-bound algorithm
should be favored.

A last test run was made with the five different scenarios of evacuating the city of
Kaiserslautern, Germany introduced in [9]. While the branch-and-bound algorithm
could solve four of the instances in a 10 min time-limit, three of which in less than
1 s, Cplex could not solve any of the scenarios within the same limit. For the one
scenario which the branch-and-bound algorithm could not solve to optimality, the
optimality gap was improved from 75.00 % for Cplex to 4.50 % for the branch-and-
bound algorithm. Again performance was compared to that of the algorithm in [9]. It
also solved 4 of the 5 scenarios to optimality within the given time-limit, but needed
an average computation time of 103.10 s compared to 0.73 s for the new algorithm.

5 Conclusion

We modeled the UBEP as the scheduling problem PM|sij|Cmax and proposed a
branch-and-bound algorithm to solve this scheduling problem. For the special
structure of the bus evacuation instances improvements for the branch-and-bound
algorithm were proposed. Computational results show that this algorithm clearly
outperforms the commercial IP solver Cplex and the branch-and-bound algorithm
for the capacitated bus evacuation problem developed by [9].

In a next step the proposed algorithm can be extended to solve the capacitated
BEP. Also IP formulations and heuristics for the scheduling problem can be adapted
to solve the capacitated problem.

Furthermore, this new approach to modeling evacuation problems as well-known
scheduling problems offers lots of modeling possibilities: The problem can be mod-
eled with different objective functions such as the total completion time to model
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the total evacuation time. It is also possible to include release dates and due dates
to model the point in time when evacuees are ready for evacuation and when sick
people should arrive at emergency shelters at the latest. Via resource-constrained
scheduling it is possible to include constraints of the type: How many police forces
or fire-fighters are needed to achieve some target evacuation time or how fast can a
given region be evacuated with the help of a given number of rescue forces.

Acknowledgments Partially supported by the Federal Ministry of Education and Research
Germany, grant DSS_Evac_Logistic, FKZ 13N12229.
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Modelling Delay Propagation in Railway
Networks

Fabian Kirchhoff

Abstract In this paper we study the accumulation and propagation of delays in
(simplified) railway networks. More precisely, we want to estimate the total expected
arrival delay of passengers as a cost criterion to be used in a timetable optimi-
sation. Therefore, we want to determine the delay distributions analytically from
given source delay distributions. In order to include accumulation and propagation
of delays, the source delay distribution must belong to a family of distributions that
is closed under appropriate operations. This is the case if we can represent the dis-
tribution functions by so called theta-exponential polynomials. A drawback of this
representation is the increasing number of parameters needed to describe the results
of the operations. A combination with moment approximations allows to solve this
problem with sufficient accuracy. Generally, the calculation of propagated delays
requires a topological sorting of arrival and departure events. That excludes cyclic
structures in the network. We present a relaxation of the topological sorting that
allows to (approximately) calculate long run delays in cycles.

1 Related Work

This paper can be assigned to the area of other approaches for the analytical cal-
culation of delay distribution functions. Bueker [2] studied the delay propagation
intensively in his dissertation. So far, he hasn’t considered the possibility of iterative
calculation of delay distributions in cyclic structures of the network. Berger et al. [1]
use deterministic delay distributions. In their model there are no cyclic structures.
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2 Modelling Delay Distributions

We use random variables to model source delays and the delays of arrivals and
departures in certain stations. First of all, we have to fit the empirical distribu-
tion of source delays with sufficient accuracy. We use an approach by Thuemmler
et al. [6]. They introduce an algorithm that adapts Hyper-Erlang distributions to given
empirical data. We modified their model slightly to be able to fit distributions with
P(X = 0) > 0, i.e. the event of no delay.

It is a matter of common knowledge [5] that you need three operations to analyse
delay propagation in (railway) networks. Let X, Y be two continuous and stochastic
independent random variables with P(X ≤ 0) = P(Y ≤ 0) = 1.

1. Z := X + Y : FZ = FX ∞ FY (convolution)
2. Z := max{X, Y }: FZ = FX · FY (multiplication)
3. Z := max{X − s, 0}, s ≥ R+: FZ (t) = FX (t + s) · 1[0,∗)(t) √ t ≥ R+ (excess

beyond)

The first operation is needed if you want to add source delays to current departure
or arrival delays. The second operation is used to calculate the delay propagation
in connection stations. If you want to subtract buffer times you will use the third
operation. It requires the assumption of non-negative delays.

So you need a family of distributions that is closed under these operations. There-
for, we represent delay distribution functions (ddf) as theta-exponential polynomials,
introduced in [7]. It is a well-known problem that the complexity of the represen-
tation increases very fast. Hence, we need a method to reduce the complexity if it
reaches an unacceptable dimension. This is the case if there are numerical problems
or too long calculating time.

To reduce the complexity we make use of results by [3, 4]. They searched for
solutions for the moment matching problem using Hyper-Erlang distributions with
two branches of common order. They showed how to determine the parameters of
the Hyper-Erlang distribution. For our purpose this closed-form solution proved to
approximate ddfs with sufficient accuracy (Fig. 1).

3 Joined Cycles

In this section we use a graph that is based on a given route network. It represents
the relations between feeder and connection lines.

Definition 1 A route network is a directed, connected Graph G = (S ,T ) with

• S being the set of vertices representing the stations,
• T being the set of edges representing the tracks.

Paths in G are called lines. The set of all lines is denoted by L . We assume that for
all S ≥ S there exists a line L ≥ L that contains S.



Modelling Delay Propagation in Railway Networks 239

Fig. 1 Analytical calculation
of delay distribution functions
with the help of complexity
reduction theta-

exponential
polynomials

Hyper-Erlang
distributions

Reducing
complexity
(moment
matching)

Transformation

Arithmetic
operations

We want to calculate ddfs of all (periodic) arrivals and departures analytically.
Therefor we need to order them. The crucial point here are the departures in connec-
tion stations.

Definition 2 Let G = (S ,T ) be a route network with set of lines L . The
corresponding connection graph is denoted by C(G) = (V ,E ). Let VL =
{VL ,1, . . . , VL ,n}, L ≥ L , be an ordered set with the following properties:

• VL ,1 ≥ S represents the first station of line L ≥ L . VL ,n ≥ S represents the last
station of line L ≥ L .

• For 1 < i < n the elements VL ,i ≥ S represent the connection stations between
first and last station of line L ≥ L .

• The elements are ordered with respect to their position in the line.

Then we define

V = {VL = (VL ,i , VL ,i+1) | VL ,i , VL ,i+1 ≥ VL , L ≥ L }

and

E = {
(VL , VL ∩) ≥ V × V | VL = (VL ,i , VL ,i+1), VL ∩ = (VL ∩, j , VL ∩, j+1),

VL ,i+1 = VL ∩, j } .

So in the connection graph we merge segments of lines that are located between
two connecting stations. This graph provides the information how the delays propa-
gate and how they depend on each other. There is a feasible order for the calculation
of the above mentioned arrivals and departures if and only if there exists a topological
sorting for the vertices of the connection graph.

Let K be the set of cycles of a connection graph C and VK be the set of vertices
of the cycle K ≥ K . We define R = {(Ki , K j ) ≥ K × K | VKi ≡ VK j ∧= ∅}. The
transitive closure of R is denoted by R+. So R contains all pairs of cycles that share
at least one vertex. Delays in one of these two cycles influence the delays in the other
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Fig. 2 a Joined cycle, b joined
cycles and singular vertices

(a) (b)

cycle. In the following, sets M ⊂ K with M = {K ≥ K | ← K ∩ ≥ K : KR+ K ∩}
are called joined cycles. The set VM denotes the disjunct union of all vertices of
cycles K ≥ M . Of course, not all vertices of the connection graph have to be a
member of some joined cycle. We call them singular vertices. It is easy to verify
that there always exists a topological sorting for the set of joined cycles and singular
vertices (see Fig. 2). But we still have to order the vertices inside of the joined cycles.

Let us assume that there are cycles in the connection graph. The idea of our
approach is the following. In the first step we build the joined cycles (see Fig. 2a).
Next we determine the topological sorting of these joined cycles and the singular
vertices (see Fig. 2b). The calculation of the ddfs will follow this order. If the next
element of the topological sorting is a singular vertex, we will just calculate the ddfs
of this vertex. Otherwise, if the next element of the sorting is a joined cycle, we
will calculate the ddfs inside of this joined cycle iteratively. In the rest of this paper
we assume that we always reach convergence of the ddfs. In fact, this is an open
problem.

For the vertices inside of the joined cycles we introduce a pseudo-topological
sorting (see Algorithm 2). While (strict) topological sorting allows to visit a vertex
only after all of its predecessors have been visited, we visit all vertices in an order
respecting the relative number of unvisited predecessors. This number is denoted

Algorithm 1: Pseudo-topological sorting

Input:
• Set of unsorted vertices Vu
• √ V ≥ VM : calculated values of αV
• Empty list of already sorted vertices L

Vu = VM ;1
while Vu ∧= ∅ do2

Vmin = {V ≥ Vu | √ V ∞ ≥ Vu, V ∧= V ∞ : αV ≤ αV ∞ };3
Choose V ≥ Vmin ;4
L ∅ V ;5
Vu = Vu \ {V };6
forall the V ≥ Vu do7

Update αV ;8
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Fig. 3 Connection graph
containing 5 cycles, 1 joined
cycle and 1 singular vertex
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by αV ≥ [0, 1], V ≥ VM . We start at a vertex with minimal αV < 1. Algorithm 2
requires a vertex V with αV < 1 at the beginning. The reason for this restriction is
just the simplification of the pseudocode. Generally, if there isn’t a vertex V with
αV < 1, i.e. this joined cycle has no predecessors (joined cycle or singular vertex), we
start at a vertex with minimal (absolute) number of predecessors. If there are vertices
with equal αV (or equal absolute number of predecessors), the order is chosen at
random. Then we mark the chosen vertex as visited. Before we visit the next vertex
with minimal αV , we have to update the values αV for all unvisited successors of the
current vertex.

Generally, in the first step of the iteration we must calculate ddfs of vertices with
predecessors whose ddfs haven’t been calculated yet. In this case we neglect those
predecessors. In the following step of the iteration the ddfs of all vertices have been
calculated at least once. Additionally, we test if there is a vertex whose ddfs already
reached convergence. In this case we delist it and won’t calculate it again in any of
the following steps of the iteration.

4 Results

For showing first results we consider the connection graph in Fig. 3. There are 10
vertices. The graph contains 5 cycles. Only vertex V10 is not member of a cycle. So
V10 is the only singular vertex. The vertices V1, . . . , V9 are all member of the same
joined cycle M . In the first step we determine (V10,M ) as the topological sorting
of the set of joined cycles and singular vertices. Hence, the ddfs of V10 will always
be calculated previous to the vertices of M . So we obtain αV3 = 1

2 and can start
algorithm 2.
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Table 1 Influence of different sortings on convergence

Sorting Average number of calculations (per vertex)

S1 V3, V4, V5, V9, V8, V0, V1, V2, V7, V6 39.6
S2 V5, V9, V8, V7, V6, V0, V1, V2, V3, V4 39.6
S3 V0, V1, V2, V3, V4, V5, V9, V8, V7, V6 40.1
S4 V1, V3, V5, V8, V6, V2, V4, V9, V7, V0 55.8
S5 V6, V7, V8, V9, V5, V4, V3, V2, V1, V0 84.7

To test the influence of different sortings we choose a setting (e.g. timetable) that
provides

• all vertices the same source delays and buffer times,
• all connections the same buffer times.

The first sorting in Table 1, i.e. S1, is the pseudo-topological sorting we get by
algorithm 2. The idea of sorting S2 is to calculate the predecessors of the apparently
most important vertex V0 first. Following sorting S3 means calculating the most
important vertex first. S4 distinguishes form the others in the fact that it doesn’t
follow the idea of an approximated topological sorting. Instead of that it “jumps” in
a way. Sorting S5 could be considered as the contrary of a topological sorting.

All sortings of Table 1 resulted in convergence of the ddfs. We obtained even
the same limiting distributions. But there are differences concerning the speed of
convergence. So far, the pseudo-topological sorting does not use any information
about the timetable. So it won’t be the “best” sorting for all settings. However, in the
majority of cases it should be an efficient procedure. Against the background of this
work, i.e. optimising timetables with reference to a given network, it could be useful
that we don’t have to redetermine the sorting for every timetable.
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Sensitivity Analysis of BCC Efficiency in DEA
with Application to European Health Services

Andreas Kleine, Andreas Dellnitz and Wilhelm Rödder

Abstract The CCR model by Charnes et al. [4] on the one hand and BCC model
by Banker et al. [3] on the other hand are the most common used approaches of data
envelopment analysis (DEA). If we measure efficiency of decision making units
(DMUs) by the BCC model, technology is characterized by variable returns to scale.
If the inputs and outputs of a DMU are scaled by two parameters such that the BCC
(in)efficiency score is unchanged we call this adaptation a bicentric scaling (BS). We
introduce a linear program to calculate the BS stability region of all DMUs, efficient
or inefficient. Moreover we determine the scale efficiency within the stability region.
The new approach is illustrated by a numerical example of European health services.
We demonstrate the BS stability region for various states and illustrate consequences
on scale efficiency. It is shown that some states can improve scale efficiency without
losing BCC efficiency.

1 Introduction

Data envelopment analysis (DEA) measures the relative efficiency of decision mak-
ing units (DMUs). Charnes et al. [4] introduce a linear program to evaluate the
efficiency of DMUs. The so called CCR model assumes constant returns to scales
whereas the BCC model by Banker et al. [3] assume variable returns to scale. In the
meantime we find numerous extensions and manifold applications of these initial
approaches [8, 10].
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Articles in DEA on sensitivity analysis examine variations of inputs and/or out-
puts. A stability region is determined within which the efficiency of a specific effi-
cient DMU remains unchanged [5–7, 15]. This paper investigates the sensitivity of
BCC efficiency for a given DMU. For a simultaneous shift of inputs and outputs—a
bicentric scaling (BS)—we determine a BS stability region such that BCC efficiency
is unchanged. Within the BS stability region a DMU can improve or worsen CCR
efficiency without losing BCC efficiency.

The article proceeds as follows: The next section briefly summarizes notations of
BCC and scale efficiency. Section 3 introduces a bicentric scaling and presents a linear
program determining the stability region. Finally Sect. 4 illustrates the approach by
a numerical example of the European health service.

2 BCC and Scale Efficiency

A DMU j is characterized by a vector of positive inputs x j = (x j1, . . . , x jm)≤
and outputs y j = (y j1, . . . , y jn)≤. All feasible inputs and outputs constitute the
production possibility set [12]. The well-known BCC model [3] assumes a technology
with variable returns to scale. Applying nonnegative scalars λk j convex combinations
of DMUs build the data envelopment. We focus on input oriented models and thus
efficiency of DMU k is calculated by the envelopment form (1) or its dual problem
(2). The multiplier form (2) uses input weights v j = (v j1, . . . , v jm) and output
weights u j = (u j1, . . . , u jn). The dual variable uk corresponds to the convexity
restriction:

envelopment form
min θk

s.t.
∑

j λk j x j ∞ θk xk∑
j λk j y j ≥ yk∑
j λk j = 1

λk j ≥ 0 ∗ j, θk free

(1)

multiplier form
max gk = uk yk + uk

s.t. uk y j + uk − vk x j ∞ 0 ∗ j
vk xk = 1
uk, vk ≥ 0, uk free

(2)

A DMU k is BCC efficient if the optimal solution θ√
k = g√

k = 1, i.e. if we do not find
a production possibility which dominates activity of DMU k. Increasing (decreasing)
returns to scale prevail if all optimal values of u√

k are positive (negative). If we neglect
convexity constraint in envelopment form (1) or set uk = 0 in multiplier form (2) we
calculate CCR efficiency [4]. The optimal efficiency score of CCR model is denoted
θ√√

k .
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Since the CCR model assumes constant returns to scale the resulting CCR effi-
ciency is always less or equal than BCC efficiency [12]: θ√√

k ∞ θ√
k ∞ 1. A full

efficient DMU θ√√
k = θ√

k = 1 operates in the most productive scale size (mpss) [2].
Scale efficiency is defined by the ratio of CCR and BCC efficiency scores [3]:

SEk = θ√√
k /θ√

k ∞ 1. If efficiencies both coincide a DMU is scale efficient (SEk = 1).
In this particular case inefficiencies are due to deviations from the most productive
scale size.

3 Sensitivity Analysis with Bicentric Scaling

In the following we vary inputs and outputs of a DMU by radial shifts, a bicentric
scaling. Using sensitivity analysis we calculate a BS stability region such that BCC
efficiency score is unchanged. In doing so, we are able to identify consequences of
bicentric scaling for a given BCC efficiency score. By this means DMUs receive
information about potential improvements of their scale efficiency or get indications
of undesired change for the worse.

Given an optimal solution of (2) we have

g√
k = u√

k yk + u√
k

v√
k xk

∩≡ u√
k yk + u√

k − g√
k v√

k xk = 0. (3)

Next, inputs are adjusted by a shift parameter δk and outputs by shift parameter
εk , respectively. Then DMU k’s bicentric scaling forms a trajectory (4) on a hyper-
plane [11]:

u√
k (1 + εk) yk + u√

k − g√
k v√

k (1 + δk) xk = 0. (4)

Solving and rearranging Eq. (4) yields

εk = u√
k yk + u√

k

u√
k yk

δk . (5)

For a given BCC efficiency the shift parameter εk directly depends on δk . Hence, we
calculate the BS stability region for shift parameter δk , only. Applying envelopment
form (1) and Eq. (5) we get a linear program (6) for DMU k

min / max δk

s.t.
∑

j λk j x j ∞ θ√
k xk (1 + δk)

∑
j λk j y j ≥ yk

(
1 + u√

k yk + u√
k

u√
k yk

δk

)

∑
j λk j = 1

λk j ≥ 0 ∗ j, δk free

(6)

with optimal values δ−
k = min δk and δ+

k = max δk , respectively.
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Fig. 1 Bicentric scaling of
DMU 3 and DMU 4

The shaded area in Fig. 1 illustrates the production possibility set constituted by
DMU 1 to DMU 4 with one input and one output each. The dashed lines represent
BCC efficiency hyperplane (4) of DMU 3 and DMU 4. Here, DMU 4 operates under
increasing returns to scale (irs) and DMU 3 under decreasing returns to scale (drs).
A bicentric scaling of DMU 4 yields point A—with shift δ−

4 —or point B—with
shift δ+

4 . In the latter case DMU 4 becomes scale efficient by a bicentric expansion
of inputs and outputs. DMU 3 which is BCC efficient yields mpss with a bicentric
reduction δ−

3 , i.e. bicentric scaled inputs and outputs match those of DMU 2.

4 Efficiency of European Health Services

In this section bicentric scaling is applied to European health services. We consider
health services of 32 European nations—to enhance comparability, only members
of European Union or Organization for Economic Cooperation and Development
(OECD). Inputs are the number of physicians (phy), nurses (nurs) and beds per 10,000
people. The output is measured by infant survival rate (surv) and live expectancy (exp)
(cf. for example [1, 13]). Table 1 summarizes numbers of the countries from World
Health Statics 2012 which “represent the best estimates … available in 2011” [14,
p. 49].

The results of BCC and CCR efficiency analysis illustrate that six states operate
under constant returns to scale (crs) (θ√

k = θ√√
k , k = 4, 11, 24, 27, 29, 31). BS

stability region of these mpss countries is fix: δ−
k = δ+

k = 0 and SE(δ−
k ) = SE−

k =
1 = SE+

k = SE(δ+
k ). Some countries are BCC efficient but scale inefficient (1 =

θ√
k > θ√√

k , k = 13, 15, 16, 19, 28, 32). For example, Luxembourg (k = 19) operates
under decreasing returns to scale (drs). A bicentric scaling with an 9.2 % decrease
of inputs (δ−

19 = −0.092) and a corresponding adaption of outputs increases scale
efficiency.
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Table 1 BS stability region of European health services

k Phy Nurs Beds Surv Exp θ√
k θ√√

k δ−
k δ+

k SE−
k SE+

k rts

1 Austria 48.5 78.8 77 249 80 0.515 0.488 −0.065 0.057 1.000 0.908 drs
2 Belgium 30.1 142.0 65 249 80 0.800 0.661 −0.077 0.072 0.884 0.781 drs
3 Bulgaria 37.3 47.0 66 90 74 0.622 0.613 −0.008 0.001 0.905 1.000 irs
4 Cyprus 25.8 43.0 38 332 81 1.000 1.000 0.000 0.000 1.000 1.000 crs
5 Czechia 36.7 87.4 71 332 77 0.626 0.618 −0.228 0.013 0.704 1.000 irs
6 Denmark 34.2 160.9 35 332 79 0.824 0.813 −0.020 0.002 1.000 0.986 drs
7 Estonia 33.3 65.5 54 249 75 0.643 0.627 −0.223 0.020 0.611 1.000 irs
8 Finland 29.1 239.6 62 499 80 0.907 0.869 −0.048 0.000 0.995 0.958 drs
9 France 34.5 80.0 69 332 81 0.748 0.682 −0.114 0.000 1.000 0.911 drs
10 Germany 36.0 111.0 82 332 80 0.681 0.602 −0.146 0.051 1.000 0.851 drs
11 Greece 61.7 36.0 48 332 80 1.000 1.000 0.000 0.000 1.000 1.000 crs
12 Hungary 30.3 64.0 71 199 74 0.630 0.615 −0.142 0.016 0.713 1.000 irs
13 Iceland 37.3 158.8 58 499 82 1.000 0.748 −0.178 0.000 0.899 0.748 drs
14 Ireland 31.7 156.7 49 332 80 0.774 0.734 −0.001 0.051 0.949 0.913 drs
15 Israel 36.5 51.8 35 249 82 1.000 0.903 −0.029 0.000 0.926 0.903 drs
16 Italy 34.9 65.2 36 332 82 1.000 0.924 −0.054 0.000 0.970 0.924 drs
17 Latvia 29.9 48.4 64 124 72 0.640 0.613 −0.050 0.013 0.789 1.000 irs
18 Lithuania 36.1 71.7 68 199 73 0.540 0.521 −0.188 0.023 0.600 1.000 irs
19 Luxembourg 27.7 96.0 56 499 81 1.000 0.919 −0.092 0.000 0.989 0.919 drs
20 Malta 31.1 69.1 45 199 80 0.788 0.665 −0.096 0.059 0.917 0.807 drs
21 Netherlands 28.6 146.0 47 249 81 0.902 0.720 −0.144 0.000 0.909 0.799 drs
22 Norway 41.6 319.3 33 332 81 0.878 0.836 −0.009 0.000 0.959 0.952 drs
23 Poland 21.6 58.0 67 199 76 0.839 0.838 −0.150 0.000 0.484 1.000 irs
24 Portugal 38.7 53.3 33 332 79 1.000 1.000 0.000 0.000 1.000 1.000 crs
25 Romania 22.7 58.8 66 90 73 0.687 0.670 −0.012 0.004 0.900 1.000 irs
26 Slovakia 30.0 66.0 65 142 75 0.560 0.557 −0.083 0.001 0.626 0.998 irs
27 Slovenia 25.1 83.9 46 499 79 1.000 1.000 0.000 0.000 1.000 1.000 crs
28 Spain 39.6 51.1 32 249 82 1.000 0.970 −0.085 0.000 1.000 0.970 drs
29 Sweden 37.7 118.6 28 499 81 1.000 1.000 −0.107 0.000 1.000 1.000 crs
30 Swiss 40.7 164.6 52 249 82 0.857 0.577 −0.164 0.000 0.800 0.673 drs
31 Turkey 15.4 29.0 25 82 75 1.000 1.000 0.000 0.000 1.000 1.000 crs
32 U Kingdom 27.4 101.3 33 199 80 1.000 0.816 0.000 0.000 0.816 0.816 drs

A lot of countries are BCC and CCR inefficient, e.g. Germany (θ√√
10 < θ√

10 < 1)

that has the opportunity of achieving scale efficiency. With the optimal scores of (2)
for DMU 10

v√
10 = (0.0277, 0, 0), u√

10 = (0.0003, 0.0353), u√
10 = −2.2491

the BS linear program (6) yields δ−
10 = −0.1456 and corresponding ε10 = −0.034.

Thus, Germany becomes scale efficient (SE−
k = 1) with 14.45 % reduction of inputs

and a moderate 3.4 % decrease of outputs. Then BCC and CCR efficiencies coincide,
but keep in mind health service of Germany remains still inefficient.
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5 Summary

As the example in Sect. 4 illustrates DMUs gain valuable information from bicentric
scaling. In addition to traditional analysis DMUs are informed about a numerical
measure of adaption. If a DMU does not operate under constant returns to scale then
bicentric scaling helps to estimate necessary adaption.

This paper investigates variations of inputs and outputs without loosing BCC
efficiency. In addition it is possible to analyze variations of inputs or outputs with-
out changing CCR efficiency [9], so called monocentric scaling. This monocentric
scaling results in similar stability regions. This will be subject of further research.
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Competition for Resources

The Equilibrium Existence Problem
in Congestion Games

Max Klimm

Abstract Congestion games are an elegant model to study the effects of selfish
usage of resources. In my thesis—of the same title as this note—we characterized
the maximal conditions for which the existence of a pure Nash equilibrium can
be guaranteed for four variants of congestion games: weighted congestion games,
congestion games with resource-dependent demands, congestion games with vari-
able demands, and bottleneck congestion games. This note reviews the main results
obtained there.

1 Introduction

Infrastructure networks are the lifelines of our civilization. From the first irrigation
systems in Egypt and Mesapotamia, over the Roman roads and the first railways to the
latest generation of fiber-optic network cables—infrastructure systems continue to
have a tremendous impact on the fortunes of humankind. A common characteristic of
infrastructure networks is that they are used by a large number of selfish individuals
who strive to minimize their private cost of using the network rather than optimizing
the global state of the system. Such interactions between selfishly acting individuals
are modeled and analyzed with the theory of non-cooperative games.

Rosenthal [18] proposed a particularly elegant and simple model to study the
effects of selfish resource usage which he called congestion games. In such a game,
we are given a finite set of resources. Each player is associated with a set of feasible
allocations, where each allocation is a subset of the resources, and strives to choose
an allocation so as to minimize the sum of the cost of all resources used. The cost
of a resource depends on the number of players using that resource and is given as
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a resource-specific function of the demand for that resource. An allocation vector
constitutes a pure Nash equilibrium if no player can decrease her cost by a unilateral
deviation. Rosenthal proved that each such a game always possesses a Nash equi-
librium in pure (i.e., deterministic) strategies. This is a remarkable result since for
general games by John F. Nash’s famous theorem c.f. [16] only a Nash equilibrium
in mixed (i.e., randomized) strategies is guaranteed.

Congestion games model a variety of strategic interactions, most prominently
traffic in street networks. Here, the set of resources corresponds to the set of street
segments of a network. Each player is associated with an origin and a destination in
the network, and her set of feasible allocations corresponds to the set of paths from
the origin to the destination. The cost functions on the resources are used to model
transit times which typically increase as the usage of a street segment increases.

2 Weighted Congestion Games

While obviously important, congestion games do not take into account that the users
may contribute to a different extent to the congestion on the resources. In traffic
networks, e.g., a truck clearly contributes more to the utilization of the street than a
regular car. Such interactions are captured more realistically by weighted congestion
games. In such a game, each player has a strictly positive demand that she places on
the chosen resources and the cost of each resource is a function of the aggregated
demand of all players using that resource. Hence, unweighted congestion games are
a special case of weighted congestion games in which all players have unit demand.
In contrast to unweighted congestion games, weighted congestion games may fail to
admit a pure Nash equilibrium c.f. [7, 8, 15]. On the positive side, it is known that
for affine resource cost functions or exponential resource cost functions a pure Nash
equilibrium always exists c.f. [7, 11, 17].

These positive results establish the existence of a pure Nash equilibrium inde-
pendent of the underlying structure of the game, i.e., independent of the number
of players, the combinatorial structure of their strategies, and their demands. Such
independence is desirable because the number of players and their types (expressed
in terms of their demands and their strategies) are only known to the players and
subject to frequent changes. Thus, it is natural to study the existence of equilibria
with respect to the cost functions of the resources.

It was an open problem which maximal sets of cost functions guarantee the exis-
tence of a pure Nash equilibrium in weighted congestion games. In my thesis [14,
Chap. 3], we give a complete answer to this question. Specifically, we show that a set
C of continuous cost functions guarantees the existence of a pure Nash equilibrium
in all weighted congestion games if and only if one of the following two cases holds:
(i) C only contains affine functions; (ii) C only contains exponential cost functions
with the property that there is a constant φ ∈ R and for each c ∈ C two constants
ac, bc ∈ R such that c(x) = ac eφx + bc for all x ≥ 0. The necessity of these
conditions is even valid for games with three players. This implies in particular that
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for every non-affine and non-exponential function c there is a three-player weighted
congestion game where all resources have cost function c and that does not possess
a pure Nash equilibrium.

We provide a similar characterization for two-player weighted congestion games.
Here, a set C of continuous cost functions guarantees the existence of a pure Nash
equilibrium in all two-player weighted congestion games if and only if C contains
only monotonic functions and each two non-constant functions c1, c2 ∈ C are linear
transformations of each other, i.e., there are a, b ∈ R such that c1(x) = a c2(x) + b
for all x ≥ 0.

These characterizations precisely explain under which maximal conditions a pure
Nash equilibrium is guaranteed to exists. Thus, they may help to predict and explain
unstable traffic distributions in infrastructure networks. In telecommunication net-
works, e.g., relevant cost functions are the so-called M/M/1-delay functions and
in road networks frequently used functions are monomials of degree four put for-
ward by the US Bureau of Public Roads. Our characterizations imply, that for these
types of cost functions, there is always an instance with three players and identical
cost functions that is unstable in the sense that a pure Nash equilibrium does not
exist. On the other hand, our characterizations can be used to design a stable system:
e.g., uniform M/M/1-delay functions are consistent for two-player games. For the
formal statements and the proofs of these results for weighted congestion games,
see also [10].

3 Congestion Games with Resource-Dependent Demands

In a weighted congestion game, each player has a unique demand that she places on
all the resources contained in her strategy. Dropping the assumption that the demand
of a player is equal for all resources we obtain congestion games with resource-
dependent demands. Among others, such games may be used to yield a much more
accurate model of traffic networks that incorporates the fitness of different vehicle
types w.r.t. the physical properties of road segments, such as slopes, terrain, and so
on. Although congestion games with resource-dependent demands allow to model
a much broader scope of applications than weighted congestion games, they have
not received a similar attention in the literature, in the past. Most previous work
concentrated on the special case of scheduling games where each allocation consists
of exactly one resource e.g. [2, 3, 5].

There are two natural ways of defining the players’ private cost functions. In the
first variant, called proportional games, the cost of the resources is interpreted as
a monetary per-unit cost. In this regime, it is natural to assume that each player
incurs a cost equal to the sum of the cost of the used resources multiplied with her
respective demand. We also study a slightly different class of games, called uniform
games. They differ from proportional games solely in the fact that in the definition of
the players’ private cost, the cost of the resources is not multiplied with the player’s
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demands. Such cost structure occurs when the resource cost is interpreted as latencies
or travel times and thus are the same for each user, regardless of their demands.

Building on the results obtained for weighted congestion games, in my thesis
[14, Chap. 4], we give a complete characterization of the existence of pure Nash
equilibria in these games. Specifically, a setC of continuous cost functions guarantees
the existence of pure Nash equilbria in proportional games if and only if C only
contains affine functions. Furthermore, C guarantees the existence of a pure Nash
equilibrium in uniform games if and only if C only contains constant functions. This
characterization is even valid for three-player games. For the formal statements and
the proofs of these results for congestion games with resource-dependent demands,
see also [9].

4 Congestion Games with Variable Demands

Although congestion games with resource-dependent demands capture the main fea-
tures of many interesting applications, they do not take into account the elasticity
of the demand due to price changes. Such elasticity is an intrinsic property of many
applications, most prominently the flow control problem in telecommunication net-
works. Here, the players strive to establish an unsplittable data stream in a network.
The sending rate is reduced if the latency increases and is increased if the latency
decreases. To model elasticity of demands, in my thesis [14, Chap. 5], we initiate the
study of congestion games with variable demands. It is assumed that each player is
associated with an interval of feasible demands and a non-decreasing and concave
utility function modeling the utility received from satisfying a certain demand. In
every strategy profile, each player chooses both a feasible demand and exactly one
feasible subset of resources. The private payoff of each player then is defined as the
difference between the utility received from the chosen demand and the cost incurred
on the used resources.

As before, we obtain a complete characterization of the existence of pure Nash
equilibria in congestion games with variable demands in the proportional and uni-
form cost model, respectively. Specifically, we prove that a set C of continuous and
non-negative cost functions guarantees the existence of a pure Nash equilibrium in
proportional congestion games with variable demands if and only if at least one of
the following two cases holds: (i) there is a constant φ > 0 and for each c ∈ C a
constant ac > 0, such that c(x) = ac eφx for all x ≥ 0; (ii) for each c ∈ C there are
constants ac > 0 and bc ≥ 0 such that c(x) = ac x + bc for all x ≥ 0. In addition,
we prove that C is consistent for uniform congestion games with variable demands
if and only if (i) holds. For the formal statements and the proofs of these results for
congestion games with variable demands, see also [9].
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5 Bottleneck Congestion Games

So far, it is assumed that the players strive to minimize the sum of the cost on the
chosen resources. In many scenarios, however, sum-objectives do not represent the
players’ incentives correctly. An example of such a situation is data streaming in
telecommunication networks where the delay of a data stream is restricted by the
available bandwidth of the links on the chosen path. The total delay experienced by a
selfish user is closely related to the performance of the link with the least bandwidth.
To capture this situation more realistically, Banner and Orda [4] introduced bottleneck
congestion games. They differ from weighted congestion games in the fact that in
each strategy profile the private cost of each player is the maximum of the cost of all
chosen resources. Banner and Orda proved the existence of a pure Nash equilibrium
for non-decreasing cost functions on the resources.

In my thesis [14, Chap. 6], we generalize the existence result of Banner and
Orda by weakening the assumptions on the cost functions, assuming that the cost
of the resources may even depend on the set of players using them. Even for these
more general cost functions, we prove the existence of a strong equilibrium for this
class of bottleneck congestion games with set-dependent cost. Strong equilibria are a
strengthening of the pure Nash equilibrium concept that is even resilient to deviations
of coalitions of players that decrease the private cost of each of its members. Each
strong equilibrium is a pure Nash equilibrium, but not conversely.

Further, we study splittable bottleneck congestion games. In such a game, each
player is associated with a strictly positive demand that she is allowed to split frac-
tionally over the sets of resources available to her. For continuous and non-decreasing
cost functions on the resources, we show that splittable bottleneck congestion games
admit a strong equilibrium.

The existence of strong equilibria in bottleneck congestion games raises some
important questions regarding the computability of equilibria in such games. While
for unweighted congestion games with sum-objective the complexity of computing
pure Nash equilibria is relatively well understood [1, 6], the complexity status of
computing equilibria under bottleneck-objectives remained open. In my thesis [14,
Chap. 7], we give first results in this direction.

First, we propose a generic algorithm that computes a strong equilibrium for any
unweighted bottleneck congestion game with non-decreasing cost functions. This
algorithm crucially relies on a strategy packing oracle that decides for a given vector
of resource capacities whether there exists a strategy profile that obeys the capacity
constraint on each resource, and that outputs such a strategy profile if it exists.
The running time of this algorithm is essentially determined by the running time of
the oracle. This implies that the problem of computing a strong equilibrium in an
unweighted bottleneck congestion game with non-decreasing cost can be reduced to
solving the strategy packing problem. As a characterization, we prove the converse
direction, i.e., solving a strategy packing problem is reducible to computing a strong
equilibrium in an unweighted bottleneck congestion game with non-decreasing cost.
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There are a number of important classes of bottleneck congestion games for
which a strategy packing oracle can be implemented in polynomial time, including
single-commodity networks, branchings, and matroids. In all these cases, a strong
equilibrium can be determined efficiently using the generic algorithm. For general
games, however, we show that the computation of a strong equilibrium is NP-hard.
This holds even for two-commodity networks. For unweighted bottleneck congestion
games with single-commodity network or matroids strategies we show an interesting
dichotomy. Although for both classes of games an efficient algorithm calculating a
strong equilibrium exists, the recognition of a strong equilibrium is coNP-hard. For
the formal statements and the proofs of these results for bottleneck congestion games,
see also [12, 13].
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Measurement of Risk for Wind Energy Projects:
A Critical Analysis of Full Load Hours

André Koukal, Stefan Lange and Michael H. Breitner

Abstract In scientific literature, profitability analyses of on- and offshore wind
energy projects and assessments of general conditions for such projects usually make
use of the full load hours (FLH) key figure to determine the annually produced
energy. They also serve for the calculation of the project value and other financial
key figures. This procedure leads to accurate results if only the expected value of
each parameter is taken into account. However, it is difficult to choose an adequate
type of distribution and to define suitable distribution parameters for the FLH when
project risks are considered. In this paper, a different approach using the more basic
parameter of the average wind speed and a Weibull distribution in combination with
the technical availability and other discounts is provided. It aims at estimating the
annual electricity generation by simultaneously taking uncertainties into account.
This approach is integrated into a discounted cash flow (DCF) model on which a
Monte Carlo simulation is applied. Finally, a case study for a fictitious offshore
wind park in the German North Sea is conducted. It is shown that the application of
the presented approach leads to more precise distributions of the outcomes than the
standard analysis with FLH.

1 Introduction and Research Background

The development of renewable energy technologies and in particular the wind energy
as a major part of it has been increasingly furthered by governments in various coun-
tries in order to expand electricity generation capacities and also reduce greenhouse

A. Koukal (B) · S. Lange · M. H. Breitner
Leibniz Universität Hannover, Hannover, Germany
e-mail: koukal@iwi.uni-hannover.de

S. Lange
e-mail: stefan.lange89@gmail.com

M.H. Breitner
e-mail: breitner@iwi.uni-hannover.de

D. Huisman et al. (eds.), Operations Research Proceedings 2013, 255
Operations Research Proceedings, DOI: 10.1007/978-3-319-07001-8_35,
© Springer International Publishing Switzerland 2014



256 A. Koukal et al.

gas emissions. The establishment and improvement of methods to assess the eco-
nomic potential and to quantify risks of certain projects are required to support these
targets. In previous research of Madlener et al. [3] and Koukal and Breitner [4] the
FLH key figure is used to determine the generated electricity of an offshore wind
park. Respective values for a specific region are taken from publicly available reports.
These values are discounted to consider shadowing effects, technical availability, and
other effects and are integrated into a DCF model. This approach leads to accurate
results when only the expected values of financial key figures are assessed within the
model.

In order to consider project risks, they extend their financial models with prob-
ability distributions for every risky parameter in combination with an application
of a Monte Carlo simulation (MCS). As they discuss, this approach results only in
a rough approximation of the distribution of every target key figure. However, the
assignment of a specific probability distribution for the FLH key figure is especially
critical for multiple reasons:

1. The FLH key figure is a highly aggregated measure that combines various aspects
with different levels of influence on the measure.

2. Any of the aggregated aspects has a different probability distribution that describes
the specific risk.

3. Due to the inhomogeneous influences and the diverse probability distributions of
the individual aspects it is even harder to set up a suitable probability distribution
for the aggregated FLH key figure.

2 Estimating the Generated Electricity

To avoid the difficulties of setting up probability distributions for the FLH key figure,
we discard this measure and consider all previously aggregated aspects separately.
In detail, we use a sequence of the aspects which results in an electricity generation
chain of a wind park (Fig. 1).

Wind speed and Weibull distribution In current literature, the Weibull distribution
is used to describe the distribution of wind speed which is the most basic parameter
of the energy production chain. The Weibull distribution function is presented by

P(v < vi < v + dv) = P(v > 0)

(
k

c

) (vi

c

)k−1 ∗ exp

[
−

(vi

c

)k
]

dv, (1)

where c is the scale factor (in m/s), k is the unitless Weibull shape factor that varies
between 1 and 4, v is the wind speed, vi is a particular wind speed and dv is an
incremental wind speed [5]. The relationship between the average wind speed and
the two Weibull parameters is given by

v̄ = c ∗ Γ

(
1 + 1

k

)
, (2)
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Fig. 1 Electricity generation chain after discarding the FLH key figure

with v̄ as the average wind speed and Γ () as the gamma function [5]. The scale factor
c can be determined by a transformation of the Eq. 2 by

c = v̄

Γ
(
1 + 1

k

) (3)

In order to measure the amount of energy generated by a wind park, the Weibull
parameters have to be determined first. One approach uses the wind power density
(WPD) [6]. This measure indicates how energetic the winds are. As long time series
of wind data exist for many regions this approach suits best to approximate the values
of the Weibull parameters. The WPD is defined by

WPD = 1

2
ρv̄3, (4)

with the WPD measured in W/m2, v̄ as the average wind speed and ρ as the air
density, which can be approximated by

ρ = 1.225 − (1.1194 × 10−4) × z, (5)

with z as the location’s elevation above sea level in m. To determine the Weibull
parameters, the average WPD is derived from an observed data set, e.g. for one year.
Next, this value is matched to the average WPD from the Weibull distribution by
varying the scale factor. Based on the Weibull distribution, the time at each wind
speed within a specified period is described by

hi = ti
T

, (6)

with T as the total time of an observed period, e.g. 8,760 h for one year, and ti as the
number of occurrences of wind speed i within the observed period.

Power curve Every type of wind energy plant has its individual power curve that
describes the power output for any wind speed. The same applies to an entire wind
park. Multiplying the number of occurrences of one wind with the respective power
output results in the electricity generation at any wind speed i , which is determined
by

Ei = hi ∗ Pi ∗ T, (7)
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where Pi is the power output of the wind energy plant or wind park. In order to get
the theoretical maximum electricity generation of a wind energy plant or wind park
for an observed period, the sum of the electricity generation of every wind speed i
has to be calculated by

Etotal =
∑

Ei = T ∗
∑

hi ∗ Pi (8)

Energy losses After the theoretical maximum electricity production is determined,
additional factors have to be considered. Shadowing effects reduce the average power
output in dependence of the distances between the individual wind energy plants [7].
Time lags are the second factor that discount the generated electricity. They result
from the huge area of a wind park with varying wind speeds within the park [7].
The third discount is the technical availability. Faulstich et al. [1] outline a bathtub
curve for the failure rates of wind turbines that results in different availability levels
over time. They outline high failure rates in the early life period, lower and constant
failure rates in the useful life period and increasing failure rates at the end of the
life-cycle in the “wearout period”. The technical availability is the complementary
probability of the failure rate. The fourth discounts are losses based on the transfer
of the electricity. The efficiency of voltage converters and cables affect this discount.

Probability distributions for risk measurement The approach of setting up prob-
ability distributions for every risky key figure applied by [3] and [4] is retained but
modified due to the replacement of the FLH key figure. To consider uncertainties
regarding the wind speed, the average wind speed parameter of the Weibull distri-
bution is defined as risky parameter. A normal distribution can be derived from the
historical wind data and is assigned to this parameter. While shadowing effects, time
lags, and electricity transfer losses are assumed to be fixed, a normal distribution is
applied to the yearly values of the technical availability.

3 Case Study: Offshore Wind Park in the German North Sea

Our case study is based on the research of Koukal and Breitner [4]. We use their DCF
model with the same assumptions for every parameter and probability distribution,
except the FLH key figure. This key figure is replaced by the aspects of the electricity
generation chain presented in Sect. 2.

To derive Weibull parameters we use wind data from the FINO1 research platform
[2] from a period of 9 years. We estimate an average wind power density of 955 w/m2,
an average wind speed of 9.85 m/s, a Weibull shape factor of k = 2, 36 and a scale
factor c = 11, 12 m/s. To consider discounts of shadowing effects and time lags,
we follow the argumentation of [7] and apply discounts of 5 and 6 %. The technical
availability starts with 80 % [1] and increases in the early life period to 85 % after
5 years. In the wearout period after 10 years of operation it decreases with 1 % in
every following year.
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Table 1 Comparison of key results

Mean Std. Dev. 95 % percentile Prob. CF ≥ 0 Kurtosis

Model with electricity
generation chain

e 23.9 m e43.1 m e-47.5 m 71.2 % 3.00

Model with FLH key
figure [4]

e 96.7 m e67.0 m e-34.9 m 87.8 % 2.57

Fig. 2 Distribution of the project value (millions of e , 100,000 simulations)

3.1 Results

All assumptions about the electricity generation chain are implemented in a modified
cash flow model of [4]. The key results are presented in Table 1 while the distribution
of the project value is presented in Fig. 2.

The results allow several statements about the project and the applied model:

1. Our new approach results in a lower mean value than the old model with FLH.
However, both approaches result in positive expected project values.

2. The standard deviation is lower although more input factors are considered and
thus, possible values are more concentrated around the mean value.

3. The kurtosis of the project value distribution with the new approach is higher.
More results are in the tails of the distribution and more extreme, but rare events
are projected
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4. The project value at a 95 % confidence level is negative in both cases but signifi-
cantly lower with the new approach.

4 Discussion, Limitations and Conclusion

While previous research of [3] and [4] draws a pretty favorable conclusion with
regards to corporate and project finance of offshore wind parks, our findings illustrate
that respective projects are more risky than previously anticipated. The lower mean
value of e 23.9m in combination with the project value at a 95 % confidence level of
only −47.5 m indicates that the use of FLH results in an overestimation of returns an
investor can achieve. The aggregation of several factors with different inherent risks
and probability distributions to the FLH key figure leads to distortions of results.
There is no linear connection between the average wind speed and the FLH. Thus,
using the Weibull distribution function and technical availability in order to derive
the probability distribution of the project value generally provides a more realistic
approach.

However, there are some limitations. Firstly, the average wind speed and the
Weibull shape factor are used as input variables. While it is possible to derive these
values from historical wind data for many regions, it might be difficult to get adequate
data for any possible location. Nevertheless, it is still possible to use approximate
values and estimations. Secondly, there are few approximations about the technical
availability and other limiting factors, e.g. the bathtub curve and the applied standard
deviation for the technical availability. In general, the usage of more input variables
increases the chance of errors. However, further research needs to be conducted
in order to verify whether the results of the introduced method with the electricity
generation chain are still more realistic compared to simply using FLH.

It can be concluded that the approach presented in this paper helps to improve the
consideration and measurement of risks when assessing wind energy projects. The
replacement of the aggregated FLH key figure by the wind speed, its distribution,
and other factors offers a more detailed analysis and leads to more specific results.
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An Integer Programming Approach
to the Hospitals/Residents Problem with Ties

Augustine Kwanashie and David F. Manlove

Abstract The classical Hospitals/Residents problem (HR) models the assignment
of junior doctors to hospitals based on their preferences over one another. In an
instance of this problem, a stable matching M is sought which ensures that no block-
ing pair can exist in which a resident r and hospital h can improve relative to M by
becoming assigned to each other. Such a situation is undesirable as it could naturally
lead to r and h forming a private arrangement outside of the matching. The original
HR model assumes that preference lists are strictly ordered. However in practice,
this may be an unreasonable assumption: an agent may find two or more agents
equally acceptable, giving rise to ties in its preference list. We thus obtain the Hospi-
tals/Residents problem with Ties (HRT). In such an instance, stable matchings may
have different sizes and MAX HRT, the problem of finding a maximum cardinality
stable matching, is NP-hard. In this paper we describe an Integer Programming (IP)
model for MAX HRT. We also provide some details on the implementation of the
model. Finally we present results obtained from an empirical evaluation of the IP
model based on real-world and randomly generated problem instances.

1 Introduction

The Hospital Residents Problem (HR) has applications in a number of centralised
matching schemes which seek to match graduating medical students (residents) to
hospital positions. Examples of such schemes include the National Resident Match-
ing Program (NRMP) in the US [1], and the Scottish Foundation Allocation Scheme
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(SFAS), which ran until recently in Scotland.. The challenges presented by these and
other applications have motivated research in the area of algorithms for matching
problems.

Formally an instance I of HR involves a set R = {r1, r2, ..., rn1} of residents and
H = {h1, h2, ..., hn2} of hospitals. Each resident ri ≤ R ranks a subset of H in strict
order of preference with each hospital h j ≤ H ranking a subset of R, consisting of
those residents who ranked h j , in strict order of preference. Each hospital h j also has
a capacity c j ≤ Z

+ indicating the maximum number of residents that can be assigned
to it. A pair (ri , h j ) is called an acceptable pair if h j appears in ri ’s preference list
and ri on h j ’s preference list. A matching M is a set of acceptable pairs such that
each resident is assigned to at most one hospital and the number of residents assigned
to each hospital does not exceed its capacity. A resident ri is unmatched in M if no
acceptable pair in M contains ri . We denote the hospital assigned to resident ri in M
as M(ri ) (if ri is unmatched in M then M(ri ) is undefined) and the set of residents
assigned to hospital h j in M as M(h j ). A hospital h j is under-subscribed in M
if |M(h j )| < c j . An acceptable pair (ri , h j ) can block a matching M or forms a
blocking pair with respect to M if ri is either unmatched or prefers h j to M(ri )

and h j is either under-subscribed or prefers ri to at least one resident in M(h j ).
A matching M is said to be stable if there exists no blocking pair with respect to M .

We consider a generalisation of HR which occurs when the preference lists of
the residents and hospitals are allowed to contain ties, thus forming the Hospi-
tal/Residents Problem with Ties (HRT). In an HRT instance a resident (hospital
respectively) is indifferent between all hospitals (residents respectively) in the same
tie on its preference list. In this context various definitions of stability exist. We
consider weak stability [2] in which a pair (ri , h j ) can block a matching M if ri is
either unmatched or strictly prefers h j to M(ri ) and h j is either under-subscribed
or strictly prefers ri to at least one resident in M(h j ). A matching M is said to be
weakly stable if there exists no blocking pairs with respect to M . Henceforth we will
refer to a weakly stable matching as simply a stable matching.

Every instance of the HRT problem admits at least one stable matching. This can
be obtained by breaking the ties in both sets of preference lists in an arbitrary manner,
thus giving rise to a HR instance which can then be solved using the Gale-Shapley
algorithm for HR [3]. The resulting stable matching is then stable in the original HR
instance. However, in general, the order in which the ties are broken yields stable
matchings of varying sizes [4] and the problem of finding a maximum weakly stable
matching given an HRT instance (MAX HRT) is known to be NP-hard [4]. Various
approximation algorithms for MAX HRT can be found in the literature [5, 6] with
the best current algorithm achieving a performance guarantee of 3/2.

Due to the NP-hardness of MAX HRT and the need to maximize the cardinality
of stable matchings in practical applications, Integer Programming (IP) can be used
to solve MAX HRT instances to optimality. This paper presents a new IP model for
MAX HRT (Sect. 2). In Sect. 3 we provide some details on the implementation of
the model. Finally Sect. 4 summarises some of the results obtained by evaluating
the model against real-world and randomly generated problem instances. Proofs and
more detailed empirical results can be found in [7].
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2 An IP Model for MAX HRT

In this section we describe an IP model for MAX HRT which is a non-trivial extension
of an earlier IP model for a 1–1 restriction of MAX HRT due to Podhradskỳ [8].
Let I be an instance of HRT consisting of a set R = {r1, r2, ..., rn1} of residents
and H = {h1, h2, ..., hn2} of hospitals. We denote the binary variable xi, j (1 ∞ i ∞
n1, 1 ∞ j ∞ n2) to represent an acceptable pair in I formed by resident ri and
hospital h j . Variable xi, j will indicate whether ri is matched to h j in a solution or
not: if xi, j = 1 in a given solution J then ri is matched to h j in M (the matching
obtained from J ), else ri is not matched to h j in M . We define rank(ri , h j ), the rank
of h j on ri ’s preference list, to be k + 1 where k is the number of hospitals that ri

strictly prefers to h j . An analogous definition for rank(h j , ri ) holds. Obviously for
HRT instances agents in the same tie have the same rank. We define rank(ri , h j ) =
rank(h j , ri ) = ≥ for an unacceptable pair (ri , h j ). With respect to a pair (ri , h j ),
we define the set Ti, j = {rp ≤ R : rank(h j , rp) ∞ rank(h j , ri )} and Si, j = {hq ≤
H : rank(ri , hq) ∞ rank(ri , h j )}. We also define the set P(ri ) to be the set of
hospitals that ri finds acceptable and P(h j ) to be the set of residents that h j finds
acceptable. The resulting model is presented below. Constraint 1 ensures that each
resident is matched to at most one hospital and Constraint 2 ensures that each hospital
does not exceed its capacity. Finally Constraint 3 ensures that the matching is stable
by ruling out the existence of any blocking pair.

max
n1⎧

i=1

⎧

h j ≤P(ri )

xi, j

subject to

1.
⎧

h j ≤P(ri )

xi, j ∞ 1 (1 ∞ i ∞ n1)

2.
⎧

ri ≤P(h j )

xi, j ∞ c j (1 ∞ j ∞ n2)

3. c j

⎪

⎨1 −
⎧

hq≤Si, j

xi,q

⎛

⎜ −
⎧

rp≤Ti, j

x p, j ∞ 0 (1 ∞ i ∞ n1, h j ≤ P(ri ))xi, j ≤ {0, 1}

Theorem 1 Given a HRT instance I modeled as an IP using model1, a feasible
solution to model1 produces a weakly stable matching in I . Conversely a weakly
stable matching in I corresponds to a feasible solution to model1.
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3 Implementing the Model

In this section we describe some techniques used to reduce the size of the HRT model
generated and improve the performance of the IP solver. Techniques were described
in [9] for removing acceptable pairs that cannot be part of any stable matching from
HRT instances with ties on one side of the preference lists only. The hospitals-offer
and residents-apply algorithms described identify pairs that cannot be involved in
any stable matching, nor form a blocking pair with respect to any stable matching,
and remove them from the instance. This produces a reduced HRT instance that
would yield fewer variables and constraints when modelled as an IP thus speeding
up the optimisation process. The original instance and the reduced instance have the
same set of stable matchings.

A number of steps were taken to improve the optimisation performance of the
models. These include placing a lower bound on the objective function and providing
an initial solution to the CPLEX solver. Both can be obtained by executing any of the
approximation algorithms [9] on the HRT instance (the 3/2-approximation algorithm
for HRT with ties on one side only due to Király [10] was chosen).

4 Empirical Evaluations

An empirical evaluation of the IP model was carried out. Large numbers of random
instances of HRT were generated by varying certain parameters relating to the con-
struction of the instance and passed on to the CPLEX IP solver. Data from past SFAS
matching runs were also modelled and solved. This section discusses the methodol-
ogy used and some of the results obtained. Experiments were carried out on a Linux
machine with 8 Intel(R) Xeon(R) CPUs at 2.5 GHz and 32 GB RAM.

Although the theoretical model has been proven to be correct, it is still important to
verify the correctness of the implementation. The system was tested to ensure a high
degree of confidence in the results obtained. The correctness of the pre-processing
steps and the IP solution were evaluated by generating multiple instances (100,000)
of various sizes (with up to 400 residents) and testing the stability and size of the
resulting matching against both the original and the trimmed problem instance. For
all the instances tested, the solver produced optimal stable matchings.

Random HRT problem instances were generated. The instances consist of n1 res-
idents, n2 hospitals and C posts where n1, n2 and C can be varied. The hospital posts
were randomly distributed amongst the hospitals. Other properties of the generated
instance that can be varied include the lengths of residents’ preference lists as well
as a measure of the density td of ties present in the preference lists. The tie density
td (0 ∞ td ∞ 1) of the preference lists is the probability that some agent is tied to
the agent next to it in a given preference list. At td = 1 each preference lists would
be contained a single tie while at td = 0 no tie would exist in the preference lists
of all agents thus reducing the problem to an HR instance. We define the size of the
instance as the number of residents n1 present.
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Fig. 1 Mean runtime versus td

Since ties cause the size of stable matchings to vary, an obvious question to
investigate is how the variation in tie density affects the runtime of the IP model
and the size of the maximum stable matchings found. These values were measured
for multiple instances of MAX HRT while varying the tie density td of hospitals’
preference lists. This was done for increasing sizes (n1 = 200, 250, 300) of the
problem instance with the residents’ preference list being kept strictly ordered at
5 hospitals each. A total of 10,000 instances were randomly generated for each tie
density value (starting at td = 0 % to td = 100 % with an interval of 5 %) and
instance size. For each instance C = n1 and n2 = ∗0.07 × n R√.

To avoid extreme outliers skewing the mean measures, we define what we regard
as a reasonable solution time (300 s) and abandon search if the solver exceeds this cut-
off time. In most cases this cut-off was not exceeded: in [7] we show the percentage
of instances that were solved before the cut-off was exceeded for the values of n1
and td considered (the lowest of which was 97.76 %).

From Figs. 1 and 2 we see that the mean and median runtime remain significantly
low for instances with td < 60 % but then steeply increase until they reach their
peaks (in the region of 80–90 %) before falling as the tie density approaches 100 %.
From a theoretical perspective, it is known that the problem is polynomially solvable
when the tie density is at both 0 and 100 % and it is easy to see how the IP solver will
find these cases trivial. As the tie density increases the number of stable matchings
that the instance is likely to admit also increases, explaining the observed increase
in the runtime. The hospitals-offer and residents-apply algorithms used to trim the
instance also play their part in this trend with limited trimming done for higher tie
densities.

We also looked to answer the question of how scalable the IP model is by increas-
ing n1 and measuring the mean and median time taken to solve multiple random
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Fig. 2 Median runtime versus td

Fig. 3 Mean and median runtime versus n1

instances. The tie densities of the hospitals’ preference lists were set to 0.85 on all
instances. The instance size n1 was increased by 50 starting at n1 = 100. A total
of 100 instances for each instance size was generated. The number of hospitals n2
in each instance was set to ∗0.07 × n1√. No cut-off was set for this experiment.
Figure 3 shows how the mean computational time increases with n1. We assume the
increasingly sharp difference between the mean and median is due to the presence
of outliers due to exceptionally difficult instances.

Another question worth asking is whether the IP model can handle instance sizes
found in real-world applications. In [9], various approximation algorithms and heuris-
tics were implemented and tested on real datasets from the SFAS matching scheme
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Table 1 SFAS IP results

Year n1 n2 td (%) Time (s) |M | |M ∩| from [9]

2006 759 53 92 92.96 758 754
2007 781 53 76 21.78 746 744
2008 748 52 81 75.50 709 705

for 2006, 2007 and 2008 where the residents’ preferences are strictly ordered with
ties existing on the hospitals’ preference lists. With the IP model, it is now possible
to trim the instances using the techniques mentioned in Sect. 3, generate an optimal
solution and compare the results obtained with those reported in [9]. Results from
these tests showed that, while some algorithms did marginally better than others, all
the algorithms developed generated relatively large stable matchings with respect
to the optimal values. Table 1 shows this comparison where M ∩ denotes the largest
stable matching found over all the algorithms tested in [9].
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Learning in Highly Polarized Conflicts

Sigifredo Laengle and Gino Loyola

Abstract Negotiations are often conducted in highly polarized environments, which
are also uncertain and dynamic. However, the intense rivalry involved in these con-
flicts does not always prevent an agreement from being reached. A recently proposed
static model sets out the conditions under which either an agreement is achieved or
negotiations break down in this environment [4]. Nevertheless, important aspects
related to partial mutual knowledge of players in a dynamic context are not yet been
studied. To fill this gap, we develop an extension of the static game to modelling
highly polarized conflicts in an uncertain, asymmetric and dynamic environment.
In this extension both parties bargain multiple negotiation rounds under uncertain
threats that are materialised only if an agreement is not reached. If a negotiation break-
down occurs, each party learns about these threats from the outcome observed in the
previous round. This paper presents the most important results, and a short discussion
about possible applications. In particular, we provide the conditions that characterise
different paths for negotiations held under polarized environments, which matches
the observed evolution of many of these conflicts in the real world.

1 Introduction

Since the pioneering work of [5], two important questions remain open in distrib-
utive bargaining theory. First, what are the conditions under which a negotiation
breakdown can emerge as an outcome. Second, in case of reaching an agreement,
what and how source of bargaining power of parties shape the properties of the deal.
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Indeed, in the original game proposed by Nash (the so-called Nash demand game),
whereas disagreement is not possible, there is a multiplicity of equilibria that implies
a continuum of agreements. Subsequent literature on negotiation games has explored
both issues, but in general through the high sophistication of the original game or
the proposition of a new game at all. In fact, this literature has offered answers to
these questions by either introducing perturbations into the original game, adopting
an incomplete information environment, or using a dynamic approach to model a
distributive bargaining situation.

In an attempt to address both issues under an even simpler approach, a model
of distributive negotiation was constructed [4] in which bargainers suffer a negative
externality proportional to the surplus captured by their rival. The paper does an
extensive analysis of the related literature (which are not cited here) and examines
the impact of negative externalities on equilibrium properties of the classic Nash
demand game.

Nevertheless, important aspects related to partial mutual knowledge of players in
a dynamic context are not yet been studied. To fill this gap, we develop an extension
of the static game to modelling highly polarized conflicts in an uncertain, asymmetric
and dynamic environment. In this extension both parties bargain multiple negotiation
rounds under uncertain threats that are materialised only if an agreement is not
reached. If a negotiation breakdown occurs, each party learns about these threats
from the outcome observed in the previous round.

Related contributions to our work are [2, 3], which also study the role played
by externalities among several buyers in negotiations held with a seller in a multi
period context, but the base model has several differences to our model. Other inter-
esting contribution is [1], but it differs to our work that the first-mover player is the
seller. Under this set-up, it is shown that large enough negative externalities can be
a source of bargaining delays, irrespective of the existence of a deadline. The gen-
eral framework of this literature is not able, however, to yield a complete bargaining
disagreement, or alternatively, an indefinite delay.

This paper presents the most important mathematical results. In particular, we
provide the conditions that characterise different paths for negotiations held under
polarized environments, which matches the observed evolution of many of these
conflicts in the real world. Section 2 presents a generalized static model of [4],
which is extended to the dynamic bargaining under uncertainty in Sect. 3.

2 An Extended Static Model

Let us considerer the following distributive negotiation game with externalities
extended from [4]. It consists of a 2-agent non-cooperative game with players named
as Emil and Frances. Emil and Frances choose simultaneously strategies x, and y
respectively. The agents try to maximize the function utility given by f (x, y)

.=
x −γE y and g(x, y)

.= y−γF x for Emil and Frances respectively, where γE , γF ≤ 0
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are constants, which represent the externalities. Let π ≤ 0 be the pie to be distributed
among the players.

Let u and v be constants, which represent the outside opportunities of Emil and
Frances respectively, which satisfy −γEπ ∞ u ∞ π, −γFπ ∞ v ∞ π. We say that
the strategy pair (x, y) is a Nash equilibrium of the game if and only if

f (x, y) = max
x

{ f (x, y) : x ≤ 0, x + y ∞ π, and x − γE y ≤ u};

and
g(x, y) = max

y
{g(x, y) : y ≤ 0, x + y ∞ π, and y − γF x ≤ v}.

Theorem 1 If πγEγF + (u(1 + γF ) + v(1 + γE )) ∞ π, then the strategies pair
(x, y) is a Nash equilibrium satisfies x + y = π,

(u + γEπ)/(1 + γE ) ∞ x ∞ (π − v)/(1 + γF ), and

(v + γFπ)/(1 + γF ) ∞ y ∞ (π − u)/(1 + γE ).

Proof If (x, y) is a Nash equilibrium strategy pair,1 then x is an optimum of Emil’s
optimization problem, given y, and must therefore satisfy the KKT conditions. More-
over, since the problem is concave, x is a global optimum. In other words, there exist
λ1E , λ2E , λ3E ≥ R that satisfy the following properties: (1) stationarity:

d

dx
( f (x, y)+λ1E x−λ2E (x+y−π)+λ3E (x−γE y−u)) = 1+λ1E−λ2E+λ3E = 0;

(2) primal feasibility: (2a) x ≤ 0, (2b) x + y ∞ π and (2c) x − γE y ≤ u; (3) dual
feasibility: λ1E , λ2E , λ3E ≤ 0; and (4) complementary slackness: (4a) λ1E x = 0,

(4b) λ2E (x + y − π) = 0 and (4c) λ3E (x − γE y − u) = 0. Analogously, y is an
optimum for Frances’ optimization problem, given x . There then exist multipliers
that satisfy equations (1) through (4) above in which the corresponding substitutions
have previously been made (subscript F for E, y for x and x for y). We now compute
the strategies x, y that satisfy the Nash equilibrium. First, let us assume that λ2E = 0.

Then λ1E +λ3E = −1 by (1), which contradicts (3). Thus, λ2E must be not equal to
0, therefore x +y = π by (4b). Second, the equality x +y = π and the condition (2c)
x −γE y ≤ u prove that x and y must satisfy the conditions x ≤ (γEπ +u)/(1+γE )

and y ∞ (π −u)/(1+γE ) respectively. Likewise in the Frances’ case, since λ2F ∗= 0
implies x + y = π, thus y ≤ (γFπ +v)/(1+γF ) and x ∞ (π −v)/(1+γF ). In other
words, x must be in the closed interval [(u +γEπ)/(1 +γE ), (π − v)/(1 +γF )] and
y in the closed interval [(v+γFπ)/(1+γF ), (π −u)/(1+γE )]. Given these results,
it is not difficult to prove that both interval strategy are not empty (by calculating the
difference between the upper bound and the lower bound of both intervals) if only
if πγEγF + (u(1 + γF ) + v(1 + γE )) ∞ π. Third, let us note that the lower bound

1 We write x for x and y for y for simplifying the notation.
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of x must be between 0 and π, which is equivalent to −γEπ ∞ u ∞ π. The same
equivalence is obtained from the upper bound of y. Likewise, in the case of the lower
bound of y an the upper bound of x, which are each one equivalent to condition
−γFπ ∞ v ∞ π. √∩

3 A Dynamic and Uncertain Bargaining Process

3.1 Bargaining Under Uncertainty

Asymmetric Information Let us suppose that the pie is π
.= 1, and the Frances’s

outside opportunity v is a random variable that takes two possible values 0 < vH ∞ 1
(high) and vL

.= 0 (low) with probability θ and 1 − θ respectively (with θ ≥ ]0, 1[).
The Emil’s outside opportunity is u

.= 0. Furthermore, Frances observes her outside
opportunity (v) and the Emil’s outside opportunity (u) completely. Instead, Emil does
not observe the Frances’s outside opportunity, but he observes his outside opportunity
completely.

Emil chooses a strategy x, and yH , yL respectively for Frances. The agents try to
maximize the function utility given by f (x, yH , yL)

.= x −γE (θyH +(1−θ)yL) and
g(x, yH , yL)

.= θ(yH −γF x)+(1−θ)(yL −γF x) for Emil and Frances respectively.
We say that the strategies tuple (x, y H , yL) is a Nash equilibrium of the game if

and only if

f (x, y H , yL)
.= max

x

{
f (x, y H , yL) : x ≤ 0, x + θ yH + (1 − θ)yL ∞ 1, and

x − γE (θ yH + (1 − θ)yL) ≤ 0
};

and

g(x, y H , yL)
.= max

yH ,yL

{
g(x, yH , yL) : yH , yL ≤ 0, x + yH ∞ 1, x + yL ∞ 1,

yH − γF x ≤ vH , and yL − γF x ≤ 0
}
.

To solve this problem, we apply the Theorem 1 by distinguishing three cases,2

which are outlined in Fig. 1: (1) Let us suppose that the nature plays H, Frances
observes H, and γEγF + vH (1 + γF ) ∞ 1. From her point of view, if Emil plays
x ∞ (1 − vH )/(1 + γF ), then she plays yH ≤ (vH + γF )/(1 + γF ) satisfying
x + yH = 1. Thus, the outcome game is agreement, otherwise, the negotiation
breaks down. (2) Let us suppose that the nature state is L , Frances observes L , and
γEγF ∞ 1. From her point of view, if Emil plays x ∞ 1/(1+γF ), then she plays yL ≤
γF/(1+γF ) satisfying x +yL = 1. Thus, the outcome game is agreement, otherwise,
the negotiation breaks down. (3) Let us suppose that γEγF + θvH (1 + γE ) ∞ 1 for

2 We eliminate the overline x, y H and yL writing x, yH , yL for simplifying the notation.
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Fig. 1 Asymmetric information. Frances observes her outside opportunity and the Emil’s outside
opportunity completely. Instead Emil does not observe the Frances’s outside opportunity, but he
observes his outside opportunity completely. They play simultaneously

any nature state, which Emil does not observe. From Emil’s point of view, if Frances
plays yH , yL such that θyH +(1−θ)yL ∞ 1/(1+γE ), then he plays x ≤ γE/(1+γE )

satisfying x+θyH +(1−θ)yL ∞ 1. Thus, the outcome game is agreement, otherwise,
the negotiation breaks down.

In summary, the behavior of the players and the outcome of the game heavily
depends on inequality γEγF + θvH (1 + γE ) ∞ 1. (1) When γEγF > 1, i.e. there is
not a probability θ satisfying the inequality, then the achievement of an agreement is
not possible. (2) When γEγF ∞ 1, then there exists a number θ̂ ≤ 0 (not necessarily
∞ 1) such that γEγF + θ̂vH (1+γE ) = 1, thus for all probability 0 ∞ θ ∞ max{θ̂ , 1}
the agreement is obtained only if the nature plays L and disagreement otherwise.
(3) Let us observe that, if γEγF ∞ 1 and θ̂ > 1, then an agreement is guarantied
independent of what the nature plays.

Example 1 Let us suppose that γE
.= γF

.= 3/4. The random variable v takes the
values vH

.= 3/4 and vL
.= 0 with probability θ and 1 − θ respectively. (1) Let us

suppose that nature state is H. From Frances’s point of view, as γEγF +vH (1+γE ) =
15/8 > 1, negotiation breaks down. Thus, Frances obtains yH = vH = 3/4 and
Emil obtains x = 0. (2) Let us suppose that the nature state is L . From Frances’s
point of view, as γEγF = 9/16 ∞ 1, she plays yL ≤ γF/(1 + γF ) = 3/7, if Emil
plays x ∞ 1/(1 + γF ) = 4/7 satisfying x + yL = 1. The outcome is agreement.
(3) The parameter θ̂ = (1 − γEγF )/(vH (1 + γE )) = 1/3, then for all θ ∞ θ̂ = 1/3,

the outcome game is agreement if the nature plays L and, otherwise, disagreement.
A particular case is θ

.= 1/4 ∞ θ̂ = 1/3, thus from Emil’s point of view, as
γEγF + θvH (1 + γF ) = 57/64 ∞ 1, he plays x ≤ γE/(1 + γE ) = 3/7 if
Frances plays yH , yL satisfying θyH + (1 − θ)yL ∞ 1/(1 + γE ) = 4/7 and
x + θyH + (1 − θ)yL = 1. The outcome is agreement if the nature plays L (with
probability 1 − θ = 3/4) and, otherwise, disagreement.

Symmetric and Complete Information Let us suppose that Frances’s outside oppor-
tunity v is a random variable that takes two possible values 0 < vH ∞ 1 (high) and
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Fig. 2 Symmetric and complete information. Frances and Emil observe their outside opportunity
and the outside opportunity of the other player completely. Both players play simultaneously

0 (low) with probability θ and 1 − θ respectively (with θ ≥ ]0, 1[). Emil’s outside
opportunity is u

.= 0 and the pie is π
.= 1. Both players have complete information

of all game parameters.
Emil chooses strategies xH , xL , and yH , yL respectively for Frances, depending

if the nature plays H or L . The agents try to maximize the function utility given by
f (xH , xL , yH , yL)

.= θ(xH −γE yH )+(1−θ)(xL −γE yL) and g(xH , xL , yH , yL)
.=

θ(yH − γF xH ) + (1 − θ)(yL − γF xL) for Emil and Frances respectively, where
γE , γF ≤ 0 represent the externalities (Fig. 2).

In this case we say that the strategy tuple (x H , x L , y H , yL) is a Nash equilibrium
of the game if and only if

f (x H , x L , y H , yL ) = max
xH ,xL

{ f (xH , xL , y H , yL ) :xH , xL ≤ 0, xH + y H ∞ 1, xL + yL ∞ 1,

xL − γE yL ∞ 0 and xH − γE y H ≤ 0};

and

g(x H , x L , y H , yL ) = max
yH ,yL

{g(x H , x L , yH , yL ) :yH , yL ≤ 0, x H + yH ∞ 1, x L + yL ∞ 1,

yL − γF x L ∞ 0 and yH − γF x H ≤ vH };

To solve this problem, we apply Theorem 1 by distinguishing four cases: (1) The
nature plays H, Emil and Frances observe H, and γEγF + vH (1 + γF ) ∞ 1. From
Frances’s point of view, she plays yH ≤ (vH + γF )/(1 + γF ), if Emil plays xH ∞
(1 − vH )/(1 + γF ). The outcome game is agreement satisfying xH + yH = 1, and
disagreement otherwise. (2) The nature plays L , Emil and Frances observe L , and
γEγF ∞ 1. From Frances’s point of view, she plays yL ≤ γF/(1 + γF ) if Emil plays
xL ∞ 1/(1 + γF ) satisfying xL + yL = 1. The game outcome is agreement and,
otherwise, disagreement. (3) The nature plays H, Emil and Frances observe H, and
γEγF + vH (1 + γE ) ∞ 1. From Emil’s point of view, he plays xH ≤ γE/(1 + γE ),

if Frances plays yH ∞ 1/(1 + γE ), satisfying xH + yH = 1. The game outcome is
agreement and, otherwise, disagreement. (4) The nature plays L , Emil and Frances
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observe L , and γEγF ∞ 1. From Emil’s point of view, he plays xL ≤ γE/(1 + γE ),

if Frances plays yL ∞ 1/(1 + γE ), satisfying xL + yL = 1. The game outcome is
agreement, and disagreement otherwise.

Example 2 Let us suppose that γE
.= γF

.= 1/2. The random variable v takes the
values vH

.= 3/4 and vL
.= 0 with probability θ and 1 − θ respectively. (1) The

nature plays H, Emil and Frances observe H, and γEγF + vH (1+γF ) = 11/8 ≤ 1.

Therefore, the negotiation breaks, thus Frances obtains yH = vH = 3/4 and Emil
obtains x = 0. (2) The nature plays L , Emil and Frances observe L , and γEγF =
1/4 ∞ 1. From Frances’s point of view, she plays yL ≤ γF/(1 + γF ) = 1/3 if
Emil plays xL ∞ 1/(1 + γF ) = 2/3 satisfying xL + yL = 1. The game outcome is
agreement and disagreement otherwise. (3) The nature plays L , Emil and Frances
observe L , and γEγF ∞ 1. From Emil’s point of view, he plays xL ≤ γE/(1+γE ) =
1/3, if Frances plays yL ∞ 1/(1 + γE ) = 2/3, satisfying xL + yL = 1. The game
outcome is agreement and disagreement otherwise. (4) Because (2) and (3), the game
outcome is agreement.

3.2 Dynamic Bargaining Under Uncertainty

Now we extend the model developed in the last section into the dynamic case. Let us
suppose that the Frances’s outside opportunity are random variable vt , which follows
a stochastic process taking in each period t ≥ {0, 1, . . .} the value 0 < vH ∞ 1 (high)
or vL = 0 (low). The initial probability is θ0 of the value vH and 1 − θ0 of vL . In
each period, this probability is updated according to the following Markov process
p(vt |vt−1) given by the matrix

(
α 1 − α

1 − β β

)
where α, β ≥ ]0, 1[.

From the Markov process theory, we know that the marginal probability p(vt ) for
the period t is given by the product

p(vt ) = p(v0)p(vt |vt−1)
t = (

θ0 1 − θ0
) (

α 1 − α

1 − β β

)t

for t ≥ {0, 1, . . .}.

The square matrix p(vt |vt−1) can be computed by using the product QDQ−1, where
D is the 2 × 2-diagonal matrix of the eigenvalues of p(vt |vt−1) and Q is the
2 × 2-matrix, where the columns are the corresponding independent eigenvectors.
Therefore, the power matrix p(vt |vt−1)

t is given by Q Dt Q−1. In this case, the
eigenvalues are α +β − 1 and 1 and the corresponding eigenvectors are the columns
(1, (1 − β)/(1 − α)) and (1, 1) respectively.

Thus, we can compute the marginal probability p(vt ), by using the expression
Q Dt Q−1. Therefore, p(vt ) is given by
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Table 1 Behavior patterns

Behavior pattern Condition

1 Possible agreement θ0 ∞ θ≡ ∞ θ̂ or θ≡ ∞ θ0 ∞ θ̂

2 Only disagreement θ̂ ∞ θ0 ∞ θ≡ or θ̂ ∞ θ≡ ∞ θ0

3 Possible agreement ∧ only disagreement θ0 ∞ θ̂ ∞ θ≡
4 only disagreement (delay) ∧ possible agreement θ≡ ∞ θ̂ ∞ θ0

The game has different outcome patterns depending heavily on the inequality γE γF +θvH (1+γE ) ∞
1. If θ̂ is such that γEγF + θ̂vH (1 + γE ) = 1, θ0 is the start probability, and θ≡

.= limt∧≡ θt of
evolution of θt , then, for all t such that θt ∞ max{θ̂ , 1}, the outcome game is an agreement and
disagreement otherwise

(
θt

1 − θt

)
= 1

2 − (α + β)

(
(α + β − 1)t ((2 − (α + β))θ + β − 1) + 1 − β

(α + β − 1)t (−(2 − (α + β))θ − β + 1) + 1 − α

)
.

Furthermore, we can obtain the stationary probability when t ∧ ≡, which is inde-
pendent of the initial state, is given by3

θ≡
.= lim

t∧≡ θt = 1 − β

2 − (α + β)
and 1 − θ≡ = 1 − α

2 − (α + β)
,

which there exists if α + β ≤ 1.

Now, let us consider the sequence of probabilities {θt } and the case when there
exists a number θ̂ that satisfies the equality γEγF + θ̂vH (1 + γE ) = 1. Applying the
results of Sect. 3.1, for all period t that θt > θ̂, the game breaks down independently
of the nature state in each period (only disagreement pattern). Otherwise, for all
period t such that θt ∞ θ̂ , the game breaks down if the nature plays H and it reaches
an agreement otherwise (possible agreement pattern). To sump up, depending on the
initial state θ0 and on the evolution of θt [given by the Eq. (3.2)], the players can
have several behavior patterns, which are showed on Table 1.
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Marginal Cost of Capacity for the Case
of Overlapping Capacity Investments

Christian Lohmann

Abstract We examine a setting where the owner of a company delegates the author-
ity to make overlapping capacity investments to an impatient manager. If the man-
ager’s internal interest rate exceeds the owner’s cost of capital, a discrepancy arises
between the owner’s and the manager’s perceived marginal cost of capacity, which is
based on future cash flows associated with new capacity investments. This, however,
leads the manager to capacity underinvestment. We argue that by using the perfor-
mance measure residual income, in conjunction with particular depreciation rules,
such as the relative practical capacity (RPC) depreciation rule, it is possible to avoid
creating an underinvestment incentive for the manager. We begin by examining the
effect direction of a deviation from the RPC depreciation rule on the manager’s per-
ceived marginal cost of capacity, which is based on future cost charges associated
with new capacity investments. We then analyze the magnitude of the distortion of
the manager’s perceived marginal cost of capacity if the most convenient straight-line
depreciation rule and the annuity depreciation rule are used.

1 Introduction

The present analysis of performance measures that prompt managers to make
capacity investment decisions is based on the framework of overlapping capacity
investments that was analytically examined for the first time by [1]. On the basis of
specific assumptions, [1] calculated the cost for one unit of capacity made available
for one period of time, even though capacity investment expenditures are commonly
incurred for capacity that can be used over multiple periods. References [2, 3] recently
analyzed the relationship between the marginal and historical cost of capacity when
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there is a sequence of overlapping capacity investments. Their studies show that the
marginal cost of capacity corresponds to the average historical cost of capacity if
particular depreciation rules, like the relative practical capacity (RPC) depreciation
rule, are used.

In the following, we analyze managerial performance measures for this type of
overlapping capacity investments. According to the scenario that we consider here,
the owner of a company delegates the authority to make capacity investments to the
manager. This scenario is realistic, provided that the manager has superior infor-
mation about future demand on capacity and future attainable revenues from that
capacity. The calculus of the investment decision follows the equation that marginal
revenue of capacity is equal to marginal cost of capacity. If the manager has the
same time preferences as the owner, then the manager will have appropriate capac-
ity investment incentives to make optimal investment decisions by calculating the
marginal cost of capacity on the basis of future cash flows associated with new
capacity investments.

In our setting, we consider an impatient manager whose internal discount rate
exceeds the owner’s cost of capital. Due to the discrepancy in the time preferences,
the manager’s perceived marginal cost of capacity exceeds the owner’s marginal cost
of capacity when both marginal costs are calculated on the basis of future cash flows
associated with new capacity investments. In that case, a serious underinvestment
problem arises because the manager’s perceived marginal cost of capacity exceeds
that of the owner. However, if the manager is paid a constant share in the obtained
residual income in each period, the owner may have the opportunity to determine the
depreciation rule so that the manager’s perceived marginal cost of capacity, which
is based on future cost charges associated with new capacity investments, coincides
with the owner’s marginal cost of capacity.

The analysis of the RPC depreciation rule indicates that the manager’s perceived
marginal cost of capacity (which, as explained, is based on future cost charges asso-
ciated with new capacity investments) coincides with the owner’s marginal cost of
capacity so the manager is offered the desired investment incentives. In contrast to
that, the straight-line depreciation schedule can induce overinvestment or underin-
vestment incentives due to higher or lower manager’s perceived marginal cost of
capacity. In view of that, the objective of our paper is to quantify the magnitude
of distortions in the manager’s perceived marginal cost of capacity that are caused
by the performance measure residual income in conjunction with the straight-line
depreciation schedule.
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2 Marginal Cost of Capacity Based on Future Cash Flows
Associated with New Capacity Investments

The marginal cost of capacity c(r) based on future cash flows associated with new
capacity investments is given by Eq. (1) if the no-excess capacity condition holds
(see [2, 3]).

c(r) = v
∑T

t=1
xt

(1+r)t

(1)

A new investment in one unit of capacity requires the investment expenditure v
and increases the available capacity xt for the following periods 1 ≤ t ≤ T of the
entire useful life of the asset T . For the special case of linear decay in capacity, xt

is given by xt = 1 − β · (t − 1), where the parameter β indicates the decay of one
period and β = 0 corresponds to the one-hoss-shay setting. The marginal cost of
capacity c(r) is constant in time, decreasing in the useful lifetime T and increasing
in the cost of capital r .

We now turn to a firm that is managed by an impatient manager. The manager’s
performance measure is cash flow and he or she is paid a constant share in the cash
flow achieved in each period. The impatient manager calculates the marginal cost
of capacity from his or her point of view on the basis of the internal interest rate
rM , which exceeds the owner’s cost of capital r . According to Eq. (1), the manager
perceives a higher marginal cost of capacity (c(rM ) > c(r)) as a result of his or her
internal interest rate (rM > r ). That result indicates underinvestment behavior on
the part of the manager. That result is constant in time as the deviation between the
owner’s marginal cost of capacity c(r) and the manager’s perceived marginal cost of
capacity c(rM ) is also constant in time.

In the following, we focus on the deviation in the marginal cost of capacity c(rM )−
c(r) to estimate the magnitude of the underinvestment problem. For that purpose,
we have to calculate the percentage deviation Δc.

Δc = c(rM ) − c(r)

c(r)
(2)

Figure 1 shows the percentage deviation Δc for a specific setting with linear decay
in capacity xt = 1−β · (t −1). If rM = r , the percentage deviation is given by Δc =
0 %. The percentage deviation Δc escalates rapidly if the manager’s internal interest
rate increases. In the common one-hoss-shay setting with β = 0.0, if the manager’s
internal interest rate is rM = 0.2, this leads to a percentage deviation of about
Δc = 47 % and may cause a significant underinvestment problem. Furthermore,
we can also see that increasing (linear) decay in capacity decreases the percentage
deviation Δc. In contrast to that, the manager has an incentive to overinvest if his or
her internal interest rate drops below the owner’s cost of capital and the manager’s
performance measure is cash flow.
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Fig. 1 Level sets of the percentage deviation Δc for different combinations of the manager’s internal
discount rate rM and linear decay in productive capacity β. The parameters for this numerical
simulation are: cost of capital r = 0.1 and useful life of assets T = 10 periods

3 Manager’s Perceived Marginal Cost of Capacity Based
on Future Cost Charges Associated with New Capacity
Investments

The manager’s perceived marginal cost of capacity c(rM , d) is determined by the cost
charges zt (r, d) associated with a new investment in one unit of capacity. The cost
charges zt (r, d) consist of depreciation and interest charges. The depreciation sched-
ule d is described by the vector d = (d0, d1, . . . , dT ) with the property

∑T
t=0 dt = 1,

where dt denotes the depreciation charge in period t after investment as a share in
the investment expenditure v = BV0. The book value at the end of period t is given
by BVt = v · (1−∑t

t=0 dt ). Note that d0 > 0 reflects partial direct expensing, while
d0 < 0 can be interpreted as an initial write-up of the capacity asset. Thus, each cost
charge can be calculated by zt (r, d) = dt · BV0 + r · BVt−1(d) with BV−1 = 0,
where zt (r, d) = d0 · BV0 corresponds to the partial direct expense charge for the
investment expenditure v. If the manager’s performance measure is residual income,
the manager’s perceived marginal cost of capacity c(rM , d) is given by Eq. (3).

c(rM , d) =
∑T

t=0
zt (r,d)

(1+rM )t

∑T
t=1

xt
(1+rM )t

(3)
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If the manager’s internal interest rate coincides with the owner’s cost of capital
(rM = r ), we can prove that

∑T
t=0

zt (r,d)
(1+r)t = ∑T

t=0
dt ·BV0+r ·BVt−1(d)

(1+r)t = v and there-
fore c(rM , d) = c(r). This equality is a direct consequence of the fundamental
accounting identity, which shows that discounted future cash flows coincide with
the sum of current book value and discounted future residual incomes (see [4, 5]).
Furthermore, previous research has shown that there exists a depreciation schedule
d∗ for which the manager’s perceived marginal cost of capacity c(rM , d∗), which is
based on cost charges associated with new capacity investments, coincides with the
owner’s marginal cost of capacity c(r). The depreciation schedule d∗ is the result of
the RPC depreciation rule (see [2, 3]).

If the manager’s performance measure is residual income, the manager’s perceived
marginal cost of capacity c(rM , d) depends on the depreciation schedule d. If the
depreciation schedule d is more accelerated or more decelerated than the RPC depre-
ciation schedule d∗ , the manager’s perceived marginal cost of capacity c(rM , d) does
not coincide with the marginal cost of capacity c(r).

Straight-line depreciation schedules are most common in financial accounting and
differ in the fraction dsl

0 ≥ 0 of the investment that is expensed immediately. The
straight-line depreciation schedule is described by the vector d = (dsl

0 , dsl
1 , . . . , dsl

T )

with the properties
∑T

t=0 dsl
t = 1 and dsl

t = 1−dsl
0

T for all 1 ≤ t ≤ T . In the
following, we analyze the straight-line depreciation schedule dsl with dsl

0 = 0.
Under the assumption that the capacity xt linearly decays over time and is given
by xt = 1 − β · (t − 1), [6] shows that the straight-line depreciation schedule dsl

coincides with the RPC depreciation schedule d∗ if dsl
0 = d∗

0 = 0 and the linear
decay parameter β is equal to β∗ = r

1+r ·T .

Lemma 1 The straight-line depreciation schedule dsl is more accelerated, or decel-
erated, than the RPC depreciation schedule d∗ if β < β∗ or β > β∗ respectively.

Proposition 1 If the straight-line depreciation schedule dsl is more accelerated than
the RPC depreciation schedule d∗, then

c(rM , dsl) =
{

≥c(r) if rM ≥ r

≤c(r) if rM ≤ r
.

If the straight-line depreciation schedule dsl is more decelerated than the RPC depre-
ciation schedule d∗, then

c(rM , dsl) =
{

≤c(r) if rM ≥ r

≥c(r) if rM ≤ r
.

The magnitude of the underinvestment and overinvestment incentives depends on
the deviation in the marginal cost of capacity c(rM , dsl) − c(r). Consequently, we
have to calculate the percentage deviation Δc(dsl) of the manager’s perceived mar-
ginal cost of capacity c(rM , dsl) relative to the owner’s marginal cost of capacity c(r).
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Fig. 2 Level sets of the percentage deviation Δc(dsl ) for different combinations of the manager’s
internal discount rate rM and linear decay in productive capacity β (β∗ = 0.05). The parameters
for this numerical simulation are: cost of capital r = 0.1 and useful life of assets T = 10 periods

Δc(dsl) = c(rM , dsl) − c(r)

c(r)
(4)

Figure 2 shows the percentage deviation Δc(dsl) of the straight-line depreciation
schedule for different combinations of the manager’s internal discount rate rM and
linear decay in productive capacity β. For the given parameter values, the percent-
age deviations are remarkably low. That means that the straight-line depreciation
schedule itself does not have a large impact on the manager’s perceived marginal
cost of capacity. Figure 2 suggests that the percentage deviation Δc(dsl) is zero if
rM = r or β = β∗. In the case of rM = r , any depreciation schedule does not
affect the manager’s perceived marginal cost of capacity according to Proposition 1,
and in the case β = β∗, the straight-line depreciation schedule corresponds to the
RPC depreciation schedule according to Lemma 1. For the percentage deviations to
increase by more than 5 % it would take an extremely impatient (or patient) manager
and extreme decay parameters.

The main contribution of this paper to the literature on managerial incentives is
that it analyzes the common straight-line depreciation schedules and its effect on
the manager’s perceived marginal cost of capacity, as well as their ability to achieve
a periodic performance measure in terms of residual income, which provides an
impatient manager with the desired investment incentives. The analysis shows that
the structure of the depreciation schedule during the useful lifetime of an asset does
not seem to be crucial to the periodic residual income performance measure for the



Marginal Cost of Capacity for the Case of Overlapping Capacity Investments 285

analyzed overlapping capacity investment setting. In particular, the distortions in the
manager’s perceived marginal cost of capacity, which follows from the performance
measure residual income, remain small for a wide range of parameter constellations.
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Supply Chain Coordination Under Demand
Uncertainty: Analysis of General Continuous
Quantity Discounts

Hamid Mashreghi and Mohammad Reza Amin-Naseri

Abstract Quantity discount (QD) contracts are commonplace in theory and prac-
tice with different complexities. There exist two classes of QD contracts: continuous
versus discrete schemes. Under continuous QD schemes, a general differentiable
wholesale-price function is considered as a decreasing function of ordering quantities
while in discrete QD schemes there is a price list with decreasing wholesale-price lev-
els such as all-unit QD or incremental QD contracts. In this paper, we aim to analyze
the structure of general continuous quantity discounts to coordinate a two-tier sup-
ply chain with additive demand uncertainty. We demonstrate sufficient coordination
conditions based on joint-optimization of ordering and pricing decisions. Consider-
ing prerequisites for achieving coordination, the specific case of linear QD contract
is analyzed and some applicable non-linear continuous QD schemes are introduced.
Moreover application of such non-linear schemes is discussed for implementation
of QDs (continues and discrete schemes) in real cases.

1 Introduction and Preliminary Review

Quantity discount (QD) contracts are frequently analyzed and implemented in theory
and practice for supply chain (SC) management. QDs can be assumed as continuous
or discrete schemes providing smaller wholesale-prices for larger ordering sizes. In
the case of discrete QDs, literature mainly focuses on All-unit (AQD) or Incremental
(IQD) schemes [4] while for the case of continuous QDs, the majority of the literature
concentrate on Linear QDs (LQD) [2].
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Herein we assume a general continuous QD (GCQD) scheme for analyzing the
possibility of SC coordination. Under GCQD the wholesale-price is defined as a gen-
eral continuous decreasing function with respect to ordering quantity. Such compre-
hensive QD schemes are useful from both sides of analysis and practice. Analyzing a
GCQD not only can provide better understanding about the familier continuous QDs
such as LQD, but also enriches the design process of novel non-linear QD schemes
for achieving coordination. Moreover, it can be useful for redesigning discrete QD
contracts with diferent discrete levels instead of analytical continuous QD functions.
In these cases, decision making for practitioners will become easier when a unique
rule can be defined all over the price spectrum.

2 The Profit Maximization Model

Assume a two-tier SC with a GCQD contract i.e. the supplier charges wd = wd(q) for
every unit sold to the retailer as a wholesale-price which has a decreasing function in
ordering quantity, q. Assume cr and cs as the retailer’s and the supplier’s unit marginal
costs. Similarly consider gr and gs for the retailer’s and the supplier’s unit goodwill
penalty costs when shortages occur. In addition if leftover would occur, the overages
has disposal cost h and its negative measures where cr < h < 0 can be interpreted
as salvage value. Demand has additive uncertainty i.e. D(ε, p) = a − bp + ε where
a, b > 0 and p is the selling price. The term ε as the additive random part has
pd f , f (.), and cd f , F(.). The stocking decision is defined as z = q − y(p) where
y(p) = a − bp and wd is rearranged in z and p as wd = wd(z, p) = wd(z + y(p)).

Define ẇz = ∂wd (z,p)
∂z , ẇp = ∂wd (z,p)

∂p , ẅzz = ∂2wd (z,p)

∂z2 , ẅpp = ∂2wd (z,p)

∂p2 , ẅzp =
∂2wd (z,p)

∂z∂p , ẅpz = ∂2wd (z,p)
∂p∂z , and Δw = ẅzzẅpp−ẅzpẅpz where Δw is the determinant

of Hesian matrix of wd(z, p). Proposition 1 demonstrates the general properties for
any continuous QD under additive demand uncertainty.

Proposition 1 Under any GCQD contract with additive demand uncertainty:

1. ẇz = ẇq and therefore ẇz < 0.
2. ẇp > 0. Thus wd(z, p) = f (p) i.e. the wholesale-price is a function of selling

price and therefore a price transmission from SC downstream is occured.
3. ẅzz = ẅqq , ẅpp = b2ẅqq = b2ẅzz , and therefore ẅpp and ẅzz have similar

sign.
4. ẅzp = ẅpz = −bẅqq .
5. Δw = b2ẅ2

zz − ẅ2
zp.

Proof Since q = a − bp + z, ∂q
∂z = 1 and ẇz = ẇq due to ∂w

∂z = ∂w
∂q .

∂q
∂z . Thus as

ẇq < 0 we can show the statement (1). In addition, regarding ∂w
∂p = ∂w

∂p .
∂q
∂p , we have

ẇp = −bẇq = −bẇz because ∂q
∂p = −b and since ẇq < 0 we have ẇp > 0 which

results in part (2). Moreover statements of (3)–(5) are proved based on the direct
definitions of second derivatives, ẇp = −bẇq > 0, and ẇz = ẇq . �
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Defining Λ(z) = ∫ z
A(z − u) f (u)du and Θ(z) = ∫ B

z (u − z) f (u)du, the retailer’s
expected profit function become E[(πr (z, p)] = p[y(p) + μ] − hΛ(z) − (p +
gr )Θ(z) − (wd(z, p) + cr )[y(p) + z]. Similarly, the expected profit function for the
supplier and the SC become E[(πs(z, p)] = (wd(z, p) + cs)[y(p) + z] − gs)Θ(z)
and E[(πSC(z, p)] = (p − c)[y(p) + μ] − (c + h)Λ(z) − (p + g − c)Θ(z).

Assuming demand cases with non-decreasing hazard rates for their probability
density functions [1], the SC’s expected profit function is strictly concave in z and p
and the centralized optimal solution can be determined based on the first optimality
conditions which results in p0 = p0

c − Θ(z)
2b and F(z0) = p+g−c

p+g+h where p0
c is the

SC’s riskless optimal pricing decision.

3 General Conditions to Achieve Coordination

In order to achieve coordination with price-dependent demand, joint-optimization
should be considered. Seeking the optimal decisions we solve simultaneously two
first-order optimality conditions for the retailer. In addition, it is important to know
whether these optimality conditions forces the retailer to stop ordering process.
Morevoer, if such conditions allow the retailer to order more than zero, it should
be asked that do these condisions allow the supplier to achieve nonzero profit? By
answering to the first question the possibility of having a regular SC can be proved and
by answering to the second question the occurrence of Double Marginalization [3]
problem can be verified. Thus, checking q > 0 and wd > cs provides the possibility
of having optimal ordering or pricing decisions in order to achieve coordination.

3.1 Analysis of the Retailer’s Optimality Conditions

The retailer’s first optimality conditions are as follows:

∂ E[(πr (z, p)]
∂z

= −hF(z)+(p+gr )[1−F(z)]−(wd +cr )−ẇz[y(p)+z] = 0 (1)

∂ E[(πr (z, p)]
∂p

= a + μ − 2bp − Θ(z) + b(wd + cr ) − ẇp[y(p) + z] = 0. (2)

3.1.1 Coordination by Aligning Optimal Stocking Decisions

Assume z0 satisfies the condition (1). Rearranging the condition with gr = g − gs

follows that ∂ E[(πr (z0,p)]
∂z = gs .

p+g−c
p+g+h +(cr −w−gr )−ẇz[y(p)+z0] = 0 which leads

to w = cs − gs (h+c)
p+g+h − ẇz[y(p) + z0]. As ẇz < 0 for having a profitable supplier
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(w > cs), the condition − gs (h+c)
ẇz(p+g+h)

< q0 has to be satisfied by SC’s ordering

decisions where q0 = y(p0) + z0 ≥ 0. It shows that having profitable supplier to
prevent double marginalization is obtained by setting optimal ordering decision (or
equivalent stocking decision) larger than this parametric threshold − gs (h+c)

ẇz(p+g+h)
.

3.1.2 Coordination by Aligning Optimal Pricing Decisions

The optimal pricing can coordinate SC if p0 satisfies the condition (2) follows that
∂ E[(πr (z,p0)]

∂p = a+μ−2bp0
c +b(wd +cr )−ẇpq(p0) = 0. Since a+μ−2bp0

c = −bc,

bw = bcs +ẇpq(p0) and consequently w = cs + ẇpq(p0)

b . Thus if q0 = y(p0)+z0 ≥
0 we have w > cs because ẇp > 0 and b > 0. It shows that ordering by the retailer
can guarantee having profitable supplier and coordination can be achieved by aligning
optimal pricing decisions.

3.1.3 Coordination by Joint Optimization of Ordering and Pricing

Previously, coordination was achieved separately by ordering and pricing decisions
if w − cs = α(p0, z) = ẇp

b [y(p0) + z] and w − cs = β(p, z0) = − gs (h+c)
p+g+h −

ẇz[y(p)+ z0]. With joint optimal pair of stocking and pricing, (p0, z0), y(p0)+ z =
y(p)+z0 = y(p0)+z0 = q0. Moreover, since ẇp = −bẇz , α(p0, z0) = β(p0, z0).
Therefore, seeking the necessary condition to achieve coordination by simultaneous
optimization results in gs (h+c)

p0+g+h
= 0. Since h > −cr , h > −c and h + c > 0.

Consequently SC coordination by joint optimization is obtained by gs = 0. Therefore
under coordinating GCQD contract, the whole responsibility of underage costs is
assigned to the retailer to prevent non-profitable supplier and double marginalization.

3.2 Analysis of the Supplier’s Optimality Conditions

The supplier’s first optimality conditions are as follows:

∂ E[(πs(z, p)]
∂z

= ẇz[y(p) + z] + (wd − cs) + gs[1 − F(z)] = 0 (3)

∂ E[(πs(z, p)]
∂p

= ẇp[y(p) + z] − b(wd + cs) = 0 (4)

The condition (3) shows that q = y(p)+ z = − gs (1−F(z))+(wd−cs )
ẇz

. Since ẇz < 0
we have q > 0 only if (wd − cs) > −gs(1 − F(z)). Therefore it is reasonable
to have (wd − cs) < 0 where q > 0 and the optimal ordering cannot prevent
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Table 1 Some possible non-linear continues QD schemes

Name w(q) w(z, p) ẇz < 0

Power-n w − dqn w − d(z + y(p))n −nd(z + y(p))n−1

Adjusted power-n w − dq − y(p)n w − dzn −ndzn−1

Exponential w − deq w − dez+y(p)) −dez+y(p))

Logarithmic w − dLn(q) w − dLn(z + y(p)) −d
z+y(p)

double marginalization. However, (4) shows that (wd − cs) = ẇp[y(p)+z]
b . Since

ẇp = −bẇz > 0 and wd = f (p), q = b(wd−cs )
ẇp

= − b(wd−cs )
ẇz

> 0 if wd > cs .
Thus the optimal pricing can prevent double marginalization. Moreover considering
the results under ẇp = −bẇz follows that gs (1−F(z))

ẇz
= 0. It shows that the joint

optimization is possible when gs = 0 or ẇz → 0 which means GCQD contract
changes into a price-only contract which contradicts the assumptions.

4 Analysis of Linear and Non-linear QDs

The majority of the literature concentrates on LQDs as a continuous QD scheme.
With a LQD scheme we have wd(q) = w − dq = wd(z) − dy(p) where w and
d are positive constant parameters. The term d (the QD’s slope in q) increases
the retailer’s expected profit and decreases the supplier’s expected profit functions.
Assuming LQD as a GCQD it can be seen that w(z, p) = w − ad + bdp − dz,
ẇz = −d, ẇp = bd > 0, and ẅzz = ẅpp = ẅzp = ẅpz = Δw = 0. As ẇp = −bẇz ,
the coordination can be achieved only by gs = 0.

Moreover, regardless of assuming linear functions we can choose other kinds
of continuous schemes as volume discounts for the retailers and the end customers
(Table 1). For instance, with n-degree NCQD scheme (n > 0) the amount of discount
grows faster in comparison to the linear fashion. With non-linear functions, the main
assumption that should be considered is ẇz < 0. In addition, larger n makes larger
discount rate. Similarly, the exponential schemes can be interpreted as a poly-nominal
discount using tailor-series. On the other hand, with a logarithmic QD scheme the
seller wants to decrease the rate of discounting in comparison to the linear, polynomial
or exponential cases. Thus, we can use other qualities for a GCQD contract under
the main condition, ẇp

ẇz
= −b.

5 Concluding Remarks and Further Research

According to the coordination analysis it can be seen that achieving coordination
is possible by aligning the retailer’s ordering or pricing optimal decisions with the
centralized decisions. In order to achieve coordination by joint optimization the SC’s
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goodwill penalty cost should be compensated by the retailer i.e. g = gr . For the the
supplier’s decisions, achieving coordination is merely possible by aligning optimal
pricing decisions, or aligning optimal ordering decisions with gs = 0. This condition
is sufficient to achieve coordination by joint optimization of pricing and ordering de-
cisions. Therefore, the scenario gs = 0 can provide a negotiable parameter-setting
for the SC partners toward achieving coordination by ordering, pricing or joint op-
timization from both sides of the retailer and the supplier.

Although the literature focuses on achieving coordination by synchronizing order-
ing decisions and assumes the supplier as an price-taker, it seems that the possibility
of achieving coordination by pricing decision or joint optimization can provide bet-
ter collaborative space to motivate and involve the supplier in pricing and marketing
decisions. Such assumption introduces the supplier as an effective SC’s agent in
price-setting process, provides reinforced partnership with long-term relationships,
and promotes SC’s brand in the market. For this reason, these contractual mechanisms
should be analyzed by further numerical studies.

Moreover, the analysis of LQD contract as well-known continuous QD contracs
can be used to achieve coordination based on the introduced scenarios of GCQD
scheme. Moreover, introducing some possible non-linear continuous QD schemes
compared to the case of LQDs shows that they can be implemented to achieve
coordination for a two-tier SC where using them would be easier by adjusting discrete
levels of price lists for real practitioners. Finally, for future research, it is necessary to
develop and analyze non-linear QD schemes based on their practical interpretations
in actual cases.
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An Integer Programming Model for the
Hospitals/Residents Problem with Couples

Iain McBride and David F. Manlove

Abstract The Hospitals/Residents problem with Couples (hrc) is a generalisa-
tion of the classical Hospitals/Residents problem (hr) that is important in practical
applications because it models the case where couples submit joint preference lists
over pairs of (typically geographically close) hospitals. In this paper we give a new
NP-completeness result for the problem of deciding whether a stable matching exists,
in highly restricted instances of hrc. Further, we present an Integer Programming
(IP) model for hrc and extend it the case where preference lists can include ties.
Further, we describe an empirical study of an IP model for HRC and its extension to
the case where preference lists can include ties. This model was applied to randomly
generated instances and also real-world instances arising from previous matching
runs of the Scottish Foundation Allocation Scheme, used to allocate junior doctors
to hospitals in Scotland.

1 Introduction

The National Resident Matching Program (NRMP) matches graduating medical
students to hospitals in the US, matching 25,526 students in 2012. Similarly, in
Scotland, until recently, medical graduates were matched to Foundation Programme
places via the Scottish Foundation Allocation Scheme (SFAS). Centralised matching
schemes such as NRMP and SFAS have had to evolve to accommodate linked couples
who wish to be allocated to (geographically) compatible hospitals. The requirement
to consider the joint preferences of couples has been in place in the NRMP context
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since 1983 and more recently in the case of SFAS. The underlying allocation problem
for NRMP and SFAS can modelled by the so called Hospitals/Residents Problem
with Couples (hrc).

An instance of the Hospitals Residents Problem with Couples consists of a set
of hospitals H and a set of residents R. The residents in R are partitioned into two
sets, S and S≤. The set S consists of single residents and the set S≤ consists of those
residents involved in couples. There is a set C = {(ri , r j ): ri , r j ∞ S≤} of couples
such that each resident in S≤ belongs to exactly one pair in C .

Each single resident ri ∞ S expresses a linear preference order over some subset
of the hospitals in H , representing the hospitals that resident ri finds acceptable;
any hospital not in this subset is therefore unacceptable to ri . Each pair of residents
(ri , r j ) ∞ C expresses a joint linear preference order over a subset A of H × H
where (h p, hq) ∞ A represents the joint assignment of ri to h p and r j to hq . The
hospital pairs in A represent those joint assignments that are acceptable to (ri , r j ),
all other joint assignments being unacceptable to (ri , r j ).

Each hospital h j ∞ H expresses a linear preference order over those residents
who find h j acceptable, either as a single resident or as part of a couple. Also, each
hospital h j ∞ H has a capacity, c j , its maximum number of available posts.

The preferences expressed in this fashion are reciprocal: if a resident ri is
acceptable to a hospital h j , either as a single resident or as part of a couple, then h j

is also acceptable to ri , and vice versa. A many-to-one matching between residents
and hospitals is sought, which is a set of acceptable resident-hospital pairs such that
each resident appears in at most one pair and each hospital appears in a number of
pairs that does not exceed its capacity. Further, each couple (ri , r j ) is either jointly
unmatched, meaning that both ri and r j are unmatched, or jointly matched to some
pair (hk, hl) that (ri , r j ) find acceptable.

In an hrc instance we seek a stable matching, which guarantees that no resident
and hospital, and no couple and pair of hospitals, has an incentive to deviate from
their assignments and become matched to each other.

Roth [8] considered stability in thehrc context although did not define the concept
explicitly. However, a variety of stability definitions do exist in the hrc context
[2, 3, 5]. The definition of stability applied in the work which follows is that given
by McDermid and Manlove in [5], shown below in Definition 1, which gives those
mutually acceptable pairs, (ri , hk) and ((ri , r j ), (hk, hl)), whose existence would
block a matching in hrc.

Definition 1 A matching M is stable if none of the following holds:

1. The matching is blocked by a hospital h j and a single resident ri , as in the classical
HR problem.

2. The matching is blocked by a couple (ri , r j ) and a hospital hk such that either

(a) (ri , r j ) prefers (hk, M(r j )) to (M(ri ), M(r j )), and hk is either undersub-
scribed in M or prefers ri to some member of M(hk)\{r j } or

(b) (ri , r j ) prefers (M(ri ), hk) to (M(ri ), M(r j )), and hk is either undersub-
scribed in M or prefers r j to some member of M(hk)\{ri }
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3. The matching is blocked by a couple (ri , r j ) and (not necessarily distinct)
hospitals hk ≥= M(ri ), hl ≥= M(r j ); that is, (ri , r j ) prefers the joint assignment
(hk, hl) to (M(ri ), M(r j )), and either

(a) hk ≥= hl , and hk (respectively hl ) is either undersubscribed in M or prefers
ri (respectively r j ) to at least one of its assigned residents in M ; or

(b) hk = hl , and hk has at least two free posts in M , i.e., ck − |M(hk)| ∗ 2; or
(c) hk = hl , and hk has one free post in M , i.e., ck −|M(hk)| = 1, and hk prefers

at least one of ri , r j to some member of M(hk); or
(d) hk = hl , hk is full in M , hk prefers ri to some rs ∞ M(hk), and hk prefers r j

to some rt ∞ M(hk)\{rs}.

An instance of hrc need not admit a stable matching [9]. Also an instance may admit
stable matchings of differing sizes [1]. Further, the problem of deciding whether there
exists a stable matching in an instance of hrc is NP-complete, even in the restricted
case where there are no single residents and all of the hospitals have only one available
post [6, 7].

Let (α, β)-hrc denote the restriction of hrc in which each single resident’s pref-
erence list contains at most α hospitals, each couple’s preference list contains at most
α pairs of hospitals and each hospital’s preference list contains at most β residents.
In many practical applications the residents’ preference lists are short. However, the
problem remains hard even in this case and Manlove and McDermid [5] showed that
(3, 6)-hrc is NP-complete.

In Sect. 2 of this paper we present a new NP-completeness result for the problem
of deciding whether there exists a stable matching in an instance of (2, 3)-hrc and a
summary of an Integer Programming (IP) model for finding a maximum cardinality
stable matching in an instance of hrc. Further, in Sect. 3 we present an empirical
study of this model as applied to randomly generated instances and also real-world
instances arising from previous matching runs of SFAS. Some conclusions are given
in Sect. 4.

2 Complexity of HRC and IP Model

In a technical report by the same authors [4] we prove the following new result; for
space reasons the details of the proof are omitted.

Theorem 1 Given an instance of (2, 3)-hrc, the problem of deciding whether the
instance supports a stable matching is NP-complete. The result holds even if there
are no single residents and each hospital has capacity 1.

In [4] we give an IP model for finding a maximum cardinality stable matching in
hrc. Each model has O(m) binary-valued variables and O(m + cL2) constraints
where m is the total length of the hospitals’ preference lists, c is number of couples
and L is the maximum length of a couple’s preference list. The space complexity
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of each model is O(m(m + cL2)) and each model can be built in O(m4) time. For
space reasons the details of the models are omitted.

3 Empirical Results

We ran experiments on a Java implementation of the IP model as described in [4]
applied to both randomly-generated and real data. We present data showing (1) the
average time taken to find a maximum cardinality stable matching or report that no
stable matching exists, and (2) the average size of a maximum cardinality stable
matching where a stable matching did exist. All experiments were carried out on a
desktop PC with an Intel i5-2400 3.1 GHz processor, with 8 Gb of memory running
Windows 7. The IP solver used in all cases was CPLEX 12.4 and the model was
implemented in Java using CPLEX Concert.

To test our implementation for correctness we used a brute force algorithm which
recursively generated all possible matchings admitted by anhrc instance and selected
a maximum cardinality stable matching from amongst those matchings or reported
that none of the generated matchings was stable. Due to the inefficiency of this
algorithm it may only be realistically applied to relatively small instances. When
solving several thousand hrc instances involving up to 15 residents our implemen-
tation agreed with the brute force algorithm when reporting whether the instance
admitted a stable solution and further our implementation returned a stable matching
of the same size as a maximum cardinality stable matching output by the brute force
algorithm.

Experiments with randomly generated instances—In our first experiment, we
report on data obtained as we increased the number of residents while maintaining
a constant ratio of couples, hospitals and posts to residents. For various values of
x (100 √ x √ 1,000) in increments of 30, 1,000 randomly generated instances were
created containing x residents, 0.1x couples and 0.1x hospitals with x available posts
which were unevenly distributed amongst the hospitals.

The data in Fig. 1 show that the mean time to find a maximum cardinality stable
matching increased as we increased the number of residents in the instance. Figure 1
also shows that the percentage of hrc instances that admit a stable matching does not
appear to be correlated with the number of residents involved in the instance and that
as the number of residents in the instances increased, the mean size of the maximum
cardinality stable matching supported by the instances increased linearly with the
number of residents involved the instance. In the second experiment, we report data
as we increased the the percentage of residents involved in couples while maintaining
the same total number of residents, hospitals and posts. For various values of x (0 √
x √ 250) in increments of 25, 1,000 randomly generated instances were created
containing 1000 residents, x couples (and hence 1,000 − 2x single residents) and
100 hospitals with 1,000 available posts which were unevenly distributed amongst
the hospitals.
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Fig. 1 Data obtained when attempting to find a maximum cardinality stable matching in randomly
generated instances from experiment 1
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Fig. 2 Data obtained when attempting to find a maximum cardinality stable matching in randomly
generated instances from experiment 2

The data in Fig. 2 show that the mean time to find a maximum cardinality stable
matching increased as we increased the number of residents involved in couples.
Further, Fig. 2 shows that the percentage ofhrc instances admitting a stable matching
fell as the percentage of residents in the instances involved in couples increased. When
50 % of the residents in the instance were involved in a couple, 832 of the 1,000
instances admitted a stable matching. Figure 2 also shows that as the percentage of
residents in the instances involved in couples increased the mean size of a maximum
cardinality stable matching tended to decrease.
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Table 1 Results obtained from the previous 3 years’ SFAS data

Number of
residents

Number of
couples

Number of
hospitals

Number of
posts

Max cardinality
stable matching

Time to
solution
(s)

2012 710 17 52 720 681 9.62
2011 736 12 52 736 688 10.41
2010 734 20 52 735 681 33.92

Performance of the model with real world data—The Hospitals/Residents
Problem with Couples and Ties (hrct) is a generalisation of hrc in which
hospitals (respectively residents) may find some subsets of their acceptable residents
(respectively hospitals) equally preferable. Residents (respectively hospitals) that are
found equally preferable by a hospital (respectively resident) are tied with each other
in the preference list of that hospital (respectively resident). It is straightforward to
adapt Definition 1 to the hrct case.

SFAS assigned junior doctors to two-year training posts in Scotland. In this process
the hospitals’ preferences were derived from the residents’ scores, where a junior
doctor’s score was derived from their previous academic performance. If two resi-
dents received the same score, they were tied in a hospital’s preference list. Thus,
the underlying SFAS matching problem may be correctly modelled by hrct.

Hence, we further extended our implementation to solve instances of hrct as
described in [4] and were able to find a maximum cardinality stable matching
admitted by the real data obtained from the SFAS context. The sizes of the max-
imum cardinality stable matchings obtained in the SFAS context for the 3 years to
2012 are shown in Table 1 alongside the time taken to find these matchings.

4 Conclusions

We conclude that the IP model presented in this paper performs well when finding a
maximum cardinality stable matching in instances that are similar to those that arose
from the SFAS application. It remains to investigate the performance of the model
as we increase the size of the instance beyond that of the SFAS application.

Acknowledgments Iain McBride: Supported by a SICSA Prize PhD Studentship. David F.
Manlove: Supported by Engineering and Physical Sciences Research Council grant GR/EP/
K010042/1.

References

1. Aldershof, B., & Carducci, O. M. (1996). Stable matching with couples. Discrete Applied Math-
ematics, 68, 203–207.

2. Biró, P., Irving, R. W., & Schlotter, I. (2011). Stable matching with couples: An empirical study.
ACM Journal of Experimental Algorithmics, 16, Section 1, article 2, 27 p.



An Integer Programming Model 299

3. Gusfield, D., & Irving, R. W. (1989). The stable marriage problem: Structure and algorithms.
Cambridge: MIT Press.

4. McBride, I., & Manlove, D. F. (2013). The hospitals/residents problem with couples: Complexity
and integer programming models. Technical Report, Computing Research Repository, Cornell
University Library.

5. McDermid, E. J., & Manlove, D. F. (2010). Keeping partners together: Algorithmic results for
the hospitals/residents problem with couples. Journal of Combinatorial Optimization, 19(3),
279–303.

6. Ng, C., & Hirschberg, D. S. (1991). Three-dimensional stable matching problems. SIAM Journal
on Discrete Mathematics, 4, 245–252.

7. Ronn, E. (1990). NP-complete stable matching problems. Journal of Algorithms, 11, 285–304.
8. Roth, A. E. (1984). The evolution of the labor market for medical interns and residents: A case

study in game theory. Journal of Political Economy, 92(6), 991–1016.
9. Roth, A. E. (1990). New physicians: A natural experiment in market organization. Science, 250,

1524–1528.



Techno-economic Analysis and Evaluation
of Recycling Measures for Iron
and Steel Slags

Christoph Meyer, Matthias G. Wichmann and Thomas S. Spengler

Abstract Iron and steel production involves the generation of numerous different
by-products. An essential group of by-products are iron and steel slags which can
be recycled to obtain secondary resources. In order to decide how slags are to be
recycled, a large number of technical, economic and ecological variables has to
be considered. An approach to recycling planning taking all relevant variables into
account is not known. This contribution introduces a recycling planning approach
for slags based on a techno-economic analysis and evaluation of recycling measures.

1 Introduction

With a total of 1.5 billion tons of crude steel in 2012 worldwide steel production
has reached its highest level to date. This requires to deal with large amounts of
by-products. In Germany, the production of 42.7 million tons of crude steel led to
13.4 million tons of iron and steel slags in 2012. Slags perform important metallur-
gical tasks and are inevitable for iron and steel production processes. Although slag
production is inevitable, slags are not considered waste and can be used as secondary
resources, e.g. road construction material, cements and fertilizers.

For slag recycling there is a variety of alternative recycling measures strongly
depending on a multitude of technical, economic and ecological variables. For exam-
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ple the chemical and mechanical composition of recycled slags is subject to laws and
also influences the attainable product price. From the perspective of an iron and steel
producer who is legally obliged to deal with accruing by-products this leads to the
question how slags are to be recycled.

This contribution introduces an operative recycling planning approach for slags
considering technical, economic and ecological variables. In Sect. 2 the planning
task and problem characteristics are addressed in more detail. In Sect. 3 a model
formulation incorporating a techno-economic analysis and evaluation of recycling
measures is developed. In Sect. 4 the model is illustrated using a numerical example.
The contribution closes with a conclusion and an outlook in Sect. 5.

2 Planning of Slag Recycling

Planning slag recycling needs to incorporate three dimensions. These are slag pro-
duction, slag recycling and the usage of recycled slags as secondary resources. Slags
are produced in different sources and vary in composition and amount, e.g. blast
furnace slag or steelmaking slag. According to composition and amount slags can
be recycled in different ways. Depending on how slags are recycled different sinks,
e.g. road construction or cement production can be addressed.

The three dimensions can be regarded as elements of a network structure consisting
of sources, recycling measures and sinks. For this network the aim of operative
recycling planning is to determine the relevant material and energy flows from sources
to recycling measures to sinks with regard to quantities and values. In order to
determine the material and energy flows three categories of requirements have to be
considered. These are technical, economic and ecological requirements.

From a technical perspective, slag recycling is based on mechanical and chem-
ical process engineering [1]. Therefore the allocation of material and energy flows
requires a sufficiently detailed representation of mechanical and chemical processes.
In order to illustrate this, an example of a common recycling measure is given below.
First, liquid slag is led into a slag pit where it continually solidifies. Second, the solid
slag is processed through a configuration of crushers and screens. Depending on the
production units and operating points technical parameters of the slag such as the
grain size distribution can be altered. Varying with the grain size there are different
applications for the resulting secondary resources, e.g. road construction material or
coarse aggregates in concrete. Although existing approaches in recycling planning
comprise descriptions of mechanical and chemical processes, e.g. the recycling of
construction waste in [4] or electric arc furnace dusts in [2], the specifics of recycling
iron and steel slags have not yet been considered.

From an economic perspective, slag recycling is characterized by recycling costs
and revenues from sales of secondary resources. Determining recycling costs requires
information on the relevant cost categories and their manifestation in a management
accounting system. Determining revenues requires information on the target market
for the secondary resources produced. The target market is characterized by regional
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sales depending on the local supply of secondary resources and seasonality. There-
fore the attainable price for secondary resources depends on the quantities to be
sold and the current season. Examples of planning approaches incorporating these
characteristics can be found in [4].

From an ecological perspective, slag recycling must comply with versatile
regulations, e.g. legislation and standardization. Among others, these regulations
specify the chemical composition of recycled slags. Examples of production plan-
ning approaches considering chemical composition limits can be found in [3] and [2].

As described above, existing approaches show congruencies with the mentioned
requirements, e.g. concerning the representation of revenues for secondary resources
or their chemical composition. Nevertheless there is no approach fulfilling all nec-
essary requirements in technical, economic and ecological regard at the same time.
In particular this applies to the incorporation of technical specifics of slag recycling
into a planning approach. Therefore a mathematical model of the planning problem
is formulated in the next section.

3 Model Formulation

The aim of recycling planning for slags is to determine the relevant material and
energy flows in the recycling network with regard to quantities and values. Therefore
the model formulation is based on a techno-economic analysis and evaluation of
recycling measures.

Since the recycling measures for slags are primarily based on mechanical and
chemical process engineering a sufficiently detailed but flexible process representa-
tion is needed for the quantity structure of the model. A flexible approach appropriate
for the representation of such processes is activity analysis [4]. Activity analy-
sis allows for modeling by-production of several fractions of secondary resources
through crushing and screening as mentioned above. Besides, activity analysis can
also be combined with approaches such as flowsheet simulation resulting in a detailed
process representation [5]. Based on the process representation in the quantity struc-
ture a value structure comprising recycling costs and revenues of secondary resources
is formulated.

Due to clarity reasons only a simplified model with emphasis on activity analysis
and variable revenues is presented below. Therefore aspects such as the transportation
of secondary resources are omitted from the formulation. The notation of the resulting
model is as follows.

The material flows in the recycling network are represented as quantities of
objects j , determined for a considered period t . Object j can refer to input as well
as output objects. The transformation of input objects (slags) to output objects (sec-
ondary resources) is represented by recycling activities i . These recycling activities
provide different operating points m. The objects representing secondary resources
are allocated to compatible sinks k. On this basis the following model is derived.
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Max CM =
T∑

t=1

K∑

k=1

pk,t
(
zk,t

) · zk,t −
T∑

t=1

J∑

j=1

cs
j · s j,t −

T∑

t=1

I∑

i=1

M∑

m=1

cr
i,m ·λi,m,t (1)

subject to

zk,t =
J∑

j=1

z j,k,t ∀ k, t (2)

z j,k,t ≤ a j,k · (
s j,t−1 − s j,t + y j,t

) ∀ j, k, t (3)

s j,t = s j,t−1 + y j,t −
K∑

k=1

z j,k,t ∀ j, t (4)

s j,t ≤ Smax
j ∀ j, t (5)

y j,t = x j,t +
I∑

i=1

M∑

m=1

vi, j,m · λi,m,t ∀ j, t (6)

M∑

m=1

ui,m · λi,m,t ≤ U max
i ∀ i, t (7)

z j,k,t , s j,t , λi,m,t ≥ 0 ∀ i, j, k, m, t (8)

s j,0 = 0 ∀ j (9)

The objective function (1) aims at maximizing the contribution margin of the consid-
ered secondary resources. The contribution margin is the difference between revenues
for secondary resources and cumulated inventory and recycling costs. The revenues
are obtained by multiplying the price pk,t

(
zk,t

)
with product quantity zk,t allocated

to sink k in period t . Due to the mentioned market characteristics the revenue gained
for a product depends on the product quantity allocated to a sink. The inventory
costs for products are obtained by multiplying specific inventory costs cs

j with the
inventory quantity s j,t of object j in period t . The recycling costs are obtained by
multiplying specific recycling costs cr

i,m with an activity level λi,m,t for activity i in
operating point m and period t . In addition to the objective function (1) the model
incorporates constraints (2)–(9) which are explained below.

Constraint (2) describes the total product amount zk,t allocated to sink k in period t
as sum of product amounts z j,k,t , whereby z j,k,t represents the specific amount of
object j allocated to sink k in period t . Hence, the overall demand zk,t of one sink k
can be satisfied by multiple product amounts z j,k,t .

Constraint (3) ensures that only compatible products are allocated to respective
sinks. Here, the allocation of product amounts z j,k,t to a sink k is limited due to
technical and ecological reasons using a binary parameter a j,k . The parameter is
multiplied with a large number

(
s j,t−1 − s j,t + y j,t

)
which is composed of possible

inventory changes s j,t−1 − s j,t and the object quantity y j,t produced or consumed
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in the recycling network. Because of j representing input as well as output objects,
y j,t represents quantities of input as well as output objects in period t .

Constraint (4) is the inventory equation. Thus, inventory quantities s j,t of object j
in period t are equal to the inventory quantity in the previous period plus the produc-
tion or consumption of object quantities y j,t minus the object quantities allocated to
the entirety of sinks. Constraint (5) ensures that the maximum inventory capacity is
not exceeded.

Constraint (6) describes the connection of the produced or consumed object quan-
tities with an input parameter x j,t and the recycling activities. Therefore a recycling
coefficient vi, j,m is multiplied with the activity level λi,m,t thereby connecting the
object quantities to the extent of activity usage.

Constraint (7) ensures that the extent of activity usage does not exceed a given
capacity. Therefore the activity level λi,m,t is multiplied with a utilization factor ui,m .

Constraint (8) ensures that z j,k,t , s j,t and λi,m,t are nonnegative and Constraint (9)
initializes the inventory quantities to be zero.

Apart from pk,t
(
zk,t

)
not specified here, the model formulation yields a linear

model and allows for a simple representation of the underlying recycling planning
problem. Depending on the actual choice of function for pk,t

(
zk,t

)
the model can

become nonlinear.

4 Numerical Example

In order to illustrate the model a numerical example is given. The model was imple-
mented in LINGO 14 and solved using a standard PC with 2.67 GHz and 4 GB RAM.
The example network consists of one source, two recycling measures and three sinks,
whereby two consecutive months are considered. The data used is oriented towards
real quantities and values.

The source is given through a quantity of 90,000 t/month of blast furnace slag
( j = 1) to be completely recycled. For recycling two activities can be used. Recycling
activity 1 (i = 1) leads to the production of granulated blast furnace slag ( j = 2)
whereas recycling activity 2 (i = 2) produces air-cooled blast furnace slag in a coarse
( j = 3) and a fine fraction ( j = 4). Therefore activity 2 features two operating
points. Using the first (second) operating point 60 % (40 %) coarse and 40 % (60 %)
fine fraction are produced. According to the activity and the operating point used
specific recycling costs cr

i,m ranging from 2 to 3 EUR/t are considered. The secondary
resources produced are allocated exclusively to one sink representing potential buyers
such as the cement industry. In order to incorporate an attainable price pk,t depending
on the total product amount zk,t the linear function in Eq. (10) is considered, therefore
yielding a quadratic objective function.

pk,t = pmax
k,t − bk,t · zk,t (10)
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Table 1 Results of numerical example

Sink k Price Quantity Sink k Price Quantity
(t = 1) pk,t zk,t (t) (t = 2) pk,t zk,t (t)

1 2.29 EUR/t 14,152 1 4.04 EUR/t 26,101
2 1.58 EUR/t 42,326 2 2.33 EUR/t 41,521
3 2.09 EUR/t 27,081 3 2.84 EUR/t 28,817

bk,t is determined by maximum prices pmax
k,t ranging from 3 to 6 EUR/t (zk,t = 0) and

maximum product amounts zk,t ranging from 60,000 to 100,000 t/month (pk,t = 0).
In order to comprise a possible disposal of superfluous product quantities also neg-
ative prices are allowed. Apart from allocation to a sink, product quantities can also
be stored in the first period for specific inventory costs of 0.5 EUR/(t·month). An
excerpt of the results of this numerical example is given in Table 1.

Table 1 shows the allocated product amounts and the corresponding prices.
Because of a simplified quantity structure that does not involve material losses it
can be derived from the table that the input quantities of blast furnace slag are almost
completely allocated to the three sinks in the first month. Merely a combined amount
of 6,440 t of the three considered products is stored and allocated in the second
month. This can be explained by slightly higher maximum prices assumed for the
second month on account of seasonality. The solution of the numerical example leads
to a contribution margin of 37,716 EUR.

5 Conclusion and Outlook

This contribution introduces a recycling planning approach for the recycling of iron
and steel slags. The planning task and the problem characteristics are discussed.
Based on this a mathematical formulation of the planning problem considering tech-
nical, economic and ecological variables is developed. In order to validate the model
a numerical example is given.

Further research is necessary concerning a sufficiently detailed representation of
the mechanical and chemical processes used for recycling iron and steel slags. In
order to incorporate more complex process representations into the techno-economic
analysis and evaluation, an approach based on flowsheet simulation is promising.
Depending on the actual price function used in the mathematical formulation, the
solubility of the model needs to be considered for practical problem sizes.
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Dynamical Supply Networks for Crisis and
Disaster Relief: Networks Resilience and
Decision Support in Uncertain Environments

Silja Meyer-Nieberg, Erik Kropat and Patrick Dolan Weber

Abstract Recent natural disasters affected many parts of the world and resulted in an
extensive loss of life and disruption of infrastructure. The randomness of impacts and
the urgency of response efforts require a rapid decision making in an often uncertain
and complex environment. In particular, the organization and controlling of efficient
humanitarian supply chains are challenging the operational analyst from both the
theoretical and practical perspective. A far-sighted and comprehensive emergency
planning can alleviate the effects of sudden-onset disasters and facilitate the efficient
delivery of required commodities and humanitarian aid to the victims. Methods from
computational networks and agent-based modelling supported by sophisticated data
farming experiments allow a detailed analysis of network performance measures
and an evaluation of the vulnerability of infrastructure and supply networks. These
approaches can be used for relief planning as well as for a simulation of continuous
aid work threatened by severe disruptions. This paper presents a first step towards
an integrated dynamic network optimization approach which combines forecasting
models and simulation.

1 Introduction

On January 12, 2010, a devastating earthquake struck Haiti near the capital Port-au-
Prince. An estimated three million people were affected by the quake and approx-
imately 250,000 people died. Camps for displaced people sprang up throughout
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Port-au-Prince and other cities and at the peak 1.5 million people were living in
refugee camps [2]. Within the first days after the disaster, the United Nations cluster
coordination system was activated [1] and the international community launched a
massive humanitarian response that was considered by the International Federation of
Red Cross and Red Crescent Societies as “the largest humanitarian operation carried
out in a single country” [5, p. 2]. Besides many other factors the logistical obsta-
cles were immense: The Port-au-Prince seaport was damaged and non-functional
and the international airport was operated initially with line-of-sight landings on one
runway. The traffic infrastructure was severely damaged and hampered the response
efforts considerably. The situation in the densely populated camps became even
more complicated in October 2010, when a cholera outbreak threatened the health of
refugees [6]. Though most cases of symptomatic cholera cases are considered as mild
or moderate, an estimated 20 % of the total infections can cause severe dehydration
from watery diarrhea that can kill within hours if left untreated [3].

This paper is a first step towards an investigation on how optimization coupled
with forecasting and simulation models can contribute to the development of dynamic
humanitarian supply networks. Humanitarian supply chains differ in many aspects
considerably from the traditional commercial logistic chains [4]. For example, for-
profit logistics tries to minimize transportation costs, usually based on stable and
predictable demand patterns, whereas humanitarian supply chains aim at maximizing
the demand satisfaction of the affected population while minimizing delivery times.
The development of a distribution system is exacerbated by the fact that a dynamic
change of parameters such as the state of the infrastructure (roads, airport, seaport),
the availability and storage of goods, and the number of healthy and sick refugees in
the camps has to be taken into account. In addition, several interconnected problems
have to be addressed simultaneously, e.g., vehicle routing, truck assignment, demand
forecasting, and epidemic modelling.

This paper describes a first approach towards an integrated dynamic supply net-
work optimization. It provides the means to incorporate the results from forecasting
and simulation in the process of supply network optimization in case of a major dis-
aster. The corresponding evolving computational supply networks aim to maximize
the assistance to the affected population and it explores how to ward off diseases by
adapting the distribution patterns of the supply chain.

This paper is structured as follows. The next section introduces the scenario we
considered. Afterwards the mathematical optimization model is described before
presenting the results from some scenario calculations.

2 The Scenario

In the scenario under consideration, we address a dynamical multi-commodity supply
network consisting of refugee camps, distribution centers, and main entry points to
the country or region. The goal is to optimize the distribution of goods such as water,
food, medicine and shelters with regard to the population in need, and the health status
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of the people. As sometimes a huge number of people is living in relatively small
area, the outbreak of diseases such as acute diarrhea and cholera has to considered.
Such a situation changes the priority of goods to be delivered at the camps and
has to be taken into account for the dynamic distribution planning. In our model, the
distribution policy prioritizes camps where the gap between the demand and resource
is the largest while it also reflects the current priority of the goods in the camp.

For the supply network, a homogeneous fleet of trucks is shipping the goods
between the facilities. The actual input at the main entry points (airports, seaports,
main roads) depends on the state of the infrastructure can increase with ongoing
reconstruction efforts. For each type of good, standardized pallets are used for the
transport between the sites, where each pallet can hold one type of good. Each facility
is able to store goods up to a maximal storage capacity.

3 Relief Distribution

This section describes a first optimization model. The model will be coupled with
forecasting and simulation models which give estimates for the population develop-
ment inside the refugee camp and may model the outbreak of diseases. The aim is
two-fold. On the one hand, it is possible to analyze the robustness of the supply chain
plan by varying the model parameters. On the other hand, the simulation can be used
for forecasting during relief operations. The model introduced here, represents a first
step of the way. At present, we are interested in demonstrating the general feasibility
of the approach.

The model considers a multi-stage approach with T time intervals (ti) of duration
td . We consider the distribution of four goods: shelters (s), food (f), water (w), and
medical supplies (m). The approach can of course be used for a general number of
goods. Let G: = { f, w, m, s} be the set of goods under consideration. There are K
refugee camps with a population pk(t) at time t . The demand of the camps depends
on number of people inside the camp and the current state of the population. Healthy
people require fh amounts of food (kg/time interval), whereas sick people need fs

(kg/time interval). Similarly, the requirements for water read wh (Φ/time interval)
for healthy and ws (Φ/time interval) sick persons. We also consider medical supplies
with mh (kg/time interval) and ms (kg/time interval). In the case of shelters, we
assume a maximal number of persons per shelter ns . The requirements give raise to
the demands d f

k (t), dw
k (t), dm

k (t), and ds
k (t).

Since we consider T time intervals, we have to derive estimates of future states,
either by modelling using dynamical systems, agent-based simulation, or by applying
forecast models.

The aim of the optimization is to meet the demand—especially if there are many
sick people for instance during an epidemic. If an outbreak of a dangerous disease
occurs, the priorities of fulfilling the single demands may change: In the case of
a cholera outbreak, water and medical supplies (IV bags, salient solutions) may
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become more important. To incorporate changing priorities in the model, we consider
priority coefficients ρ

f
k (t), ρw

k (t), ρm
k (t), and ρs

k (t) which depend on the state of the
population and can also be used to include the uncertainty of future states.

The refugee camps have a storage area with maximal capacities for the considered
goods caprk with presently stored supplies grk(t) for each good g ∈ G. This leads
to the requirement

0 ≤
∑

g∈G

grk(t) ≤ caprk (1)

for t ∈ {1, . . . , T + 1}. The shipping and distribution of the goods will be modeled
by assuming standardized pallets of size. Each pallet takes one type of good with
nog units of good g ∈ G per palette.

There are J distribution centers the location of which has been fixed beforehand.
Similarly to the refugee camps, the distribution centers have maximal capacities
capd j for the goods under consideration and stored supplies

0 ≤
∑

g∈G

gd j (t) ≤ capd j (2)

for t ∈ {1, . . . , T + 1}. The I primary points of entries for supplies are airports,
seaports, and main roads. If there is a road, a storage area may be associated with it
at a location outside the disaster area. All ports have a time dependent input Ing

pi (t)
for a good g ∈ G. and also a maximal storage capacity. The actual input depends on
the state of the infrastructure at time t . We assume that the amount Ing

pi (t) of good
g ∈ G can be distributed in the time interval t . Since the storage of supplies is given
by gpi (t), 0 ≤ ∑

g∈G gpi (t) ≤ cappi for t ∈ {1, . . . , T + 1}, the maximal amount

that a primary entry point can provide is Ing
pi (t) + gpi (t) for all g ∈ G. We assume

that the amount of incoming goods cannot be influenced. The model, however, can
be easily adapted to this situation. We need to address the transport between the sites.
We assume that it is possible to derive an estimate for the travel time tlh(t) between
site l and site h. The estimate—for instance the mean travel time—could be based
on data from the previous time intervals considering also newly arrived information
on the state of the road network. We are considering a fleet of homogeneous vehicles
(trucks) which is based at a site. In our first approach, we assume that each vehicle
must return at the end of the interval and will travel just once. This leads to the
following formulation. Goods can be transported between sites if tlh(t) ≤ ct td with
td the length of the time interval and ct a constant with ct ∈]0, 0.5[. In this case, the
sites are directly connected. For the remainder of the paper, 1{tlh(t)≤cd td }(h) is the
corresponding indicator function.

Each site l can assign a maximal number of trucks N truck
l for the transport. Each

truck can be assigned exactly once for a transport to a site h leading to



Dynamical Supply Networks for Crisis and Disaster Relief 313

∑

h

ylh(t) ≤ N truck
l (3)

with ylh the decision variable counting the number of trucks assigned for the transport
between l and h. Goods can only be transported between sites if two conditions are
met. First, there must be trucks assigned for transport and the sites must be reachable
in the time interval. First, the next series of decision variables is introduced with
xg

lh(t) the number of pallets with good g ∈ G transported at t between site l and site
h. By introducing the constraint

xg
lh(t) ≤ 1{tlh(t)≤cd td }(h)maxpal N truck

l ∀ g ∈ G (4)

with maxpal the maximal number of pallets a vehicle can load, transport between
sites that are too far away is precluded, while

∑

g∈G

xg
lh(t) ≤ maxpal ylh (5)

allows only to transport goods within the capacity of the trucks assigned. The amount
of goods that can be assigned to shipments depends to the stored amount and the
delivered amount

∑

h

xg
lh(t) ≤ g∗l(t − 1) +

∑

k

xg
kl(t − 1) (6)

with ∗ standing for either a primary point of entry, a distribution center, or possibly a
refugee camp if they are allowed to operate as distribution centers. The stored amount
is then updated according to

g∗l(t) ≤ g∗l(t − 1) +
∑

k

xg
kl(t − 1) −

∑

h

xg
lh(t). (7)

In the case of the primary entry points, the equations read

∑

h

xg
ph(t) ≤ gp(t − 1) + Ing

p(t) ∀ g ∈ G (8)

gp(t) ≤ gp(t − 1) + Ing
p(t) −

∑

h

xg
p(t) ∀ g ∈ G (9)

For refugee camps k, define first the differences between current resources and the
demand

π
g
k (t) := grk(t) +

∑

l

xg
lk(t − 1) − dg

kpal(t) ∀ g ∈ G (10)
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with dg
kpal(t) denoting the number of required pallets of good g. It is the aim to

improve the delivery of the important goods to the camps. Therefore, we consider
the camps where the gap between demand and resource is largest—weighted by the
current priority for the good in the camp. The optimization strives to make the gap
as small as possible. One formulation for the objective function therefore reads

max
T∑

t=1

∑

g∈G

min
k

{
ρ

g
k (t)11{πg

k (t)<0}
(
π

g
k (t)

)
π

g
k (t)

}
. (11)

4 The Scenario

In a first basic scenario, two million people are evacuated to five refugee camps
for the course of 14 days. There is a logistic growth of the camp population within
14 days and the population is equally divided among the five camps. We assume
the following model for the required supply for person and time unit: (a) food: 3
units per person and day, (b) water: 1 unit per person and day, (c) shelters: 6 persons
per shelter. The goods are transported by standard US trucks with a maximum load
capacity of 24 pallets per truck. Each pallet can hold either 8,500 units of food, 750
units of water, 750 medical supplies or 4 shelters. In the basic scenario, we assume
that there are unlimited storage capacities and that each site of the supply network can
be reached by each other facility. There are two distribution centers and two ports.
Each port can provide 150 shipments by trucks per time unit and each distribution
center can ship at most 75 truck loads per time unit.

The GAMS solver with CPLEX needs 1,000 s on a Core i7 CPU with four 2.7 GHz-
processing units to obtain a feasible solution with the quality of 14.5 % of the upper
bound. The absolute value of the objective function reads 13,467. In total 65 solutions
were obtained.

5 Conclusions and Outlook

This paper presented a first approach aimed at the integrated dynamic supply net-
work optimization. A first model was obtained and solved for a specific evacuation
scenario. In future studies, the present work will be extended combining the opti-
mization with simulation and forecasting. We will investigate further optimization
models, for instance vehicle routing, facility location and assignment problems under
different types of uncertainty. To solve these tasks, heuristics and metaheuristics will
be explored.
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A Column Generation Approach
to Home Care Staff Routing and Scheduling

Susumu Morito, Daiki Kishimoto, Hiroki Hayashi, Atsushi Torigoe,
Shigeo Okamoto, Yuki Matsukawa and Nao Taniguchi

Abstract Daily route generation of home care staff is considered and a column
generation heuristic is developed. Constraints considered include staff working
hours, time window for each visit, means of transportation (bicycle/car), maximum
allowable idle time between visits, patient/staff compatibility, among others. Since
it is desired to generate compact routes in the geographically scattered area, the min-
imization of total travel time is used. Computational results based on real data will
be presented. To further reduce CPU time, pre-processing of input data is performed
to reduce the solution space by narrowing the time window of visits and by limiting
candidate staff members who could be assigned to a specific visit. The pre-processing
is performed by solving two small 0–1 programs. It is shown how the pre-processing
cuts down the CPU time of the column generation algorithm.

1 Introduction

In home care medical services, nurses and physical therapists (we call them staff)
visit homes of patients (we call them customers) and provide necessary medical
services. Demand for home care services is increasing rapidly due to aging popu-
lation. Currently, most of home care staff schedules are made manually. A feasible
schedule is required to satisfy time windows for customer visits together with many
other constraints, and its generation is difficult and takes long time. Needs for a
computer-assisted planning system have increased for generating efficient routing
and scheduling of home care staff.
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Studies on routing and scheduling of home care medical as well as home helper
services are recently performed in various countries. Eveborn et al. [1] is one of the
early studies which formulated the problem as a set partitioning form and applied
a heuristic algorithm. Therapist routing and scheduling has been studied by Shao
et al. [4] and GRASP was used to solve the problem. Ikegami et al. [3] developed
a min-cost flow-based efficient algorithm for home helper routing and scheduling,
based on which a web-based scheduling system has been implemented.

2 Home Care Staff Routing and Scheduling

We seek a routing schedule of home care staff for a single day. The goal is to find
routes for staff with minimum total travel time. Major assumptions are listed below:

1. A given set of customer visits must be all executed.
2. Service time and time window of each visit are given.
3. Each route starts and ends at the station.
4. Starting and ending times of a staff’s work day are given.
5. The maximum and minimum number of visits are given for each route.
6. Total amount of service time for a day must be at most a given upper bound.
7. Those staff capable to handle a particular customer visit may be limited due to

their capability and other reasons.
8. Idle time between consecutive visits should be less than a given upper bound.
9. Travel time between two locations depends on the method of transportation.

10. Available transportation modes, either car or bicycle, for each staff are given.
11. Certain customers far away from the station must be visited by car.

3 Set Partitioning Formulation and a Column
Generation Heuristic

Set of customer visits is denoted by N = {1, 2, ..., n}, set of staff, R, and set of
assignment of visits to staff r ∈ R, Kr . A constant ar

ki takes value 1 when assignment
k ∈ Kr of staff r ∈ R includes visit i ∈ N , value 0 otherwise. The total travel time
is denoted by cr

k when the set of customers are visited so that the total travel time is
minimized. A variable xr

k takes value 1 when staff r ∈ R selects assignment k ∈ Kr .
A home care staff routing and scheduling problem is now formulated:

(SPP) min
∑

r∈R

∑

k∈Kr

cr
k xr

k (1)

s.t.
∑

k∈Kr

xr
k = 1, r ∈ R, (2)
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∑

r∈R

∑

k∈Kr

ar
ki xr

k = 1, i ∈ N , (3)

xr
k ∈ {0, 1}, r ∈ R, k ∈ Kr , (4)

Each column of the set partitioning problem corresponds to a feasible route of some
staff. The number of possible feasible routes is astronomical, and thus we apply
the column generation algorithm to solve the LP relaxation of the set partitioning
problem, which provides the lower bound of the optimal objective value. We then
solve a set partitioning problem with the generated columns to obtain an upper
bound. The column generation subproblem to generate a route of a particular staff
with negative reduced cost is a resource-constrained shortest path problem, and we
apply the labeling algorithm of Feillet et al. [2].

4 Numerical Experiments

The column generation heuristic was tested on 5 days corresponding to 5 days of
a week (Monday through Friday), and their performance was compared with the
actual schedule produced by the experienced staff. Performance of the algorithm is
evaluated by the value of objective function (total travel time) and by the duality gap.
Experiments were performed on a PC with Intel Xeon (2.27 GHz), 12 GB of main
memory run on Windows 7 Professional (64 bit). Optimization was performed by
AMPL Gurobi Version 4.0.

Instances used and the numerical results are summarized in the upper and lower
parts of Table 1, respectively. “Number of soft time windows” in Table 1 means the
number of visits whose duration of time window is more than its service time, namely,
those “flexible” visits whose start time can be adjusted within the time window. In
Table 1, utilization is computed as (total service time + total travel time)/total time,
where total time is the time between start and return times of the station.

We make the following observations from the experimental results:

1. Duality gap is roughly less than 1 %, which implies the quality schedules are
generated by the algorithm.

2. Computational experiments showed that some instances could be solved very
quickly whereas some other instances (such as Monday and Friday) required
non-trivial amount of time.

3. Monday and Friday instances take more CPU time, which seems to reflect higher
percentage of flexible visits, whose start time can be adjusted within the given time
window, for these instances. On the other hand, instances with lower percentage
of flexible visits can be solved quickly.

4. Almost 98–99 % of CPU time of these difficult instances is used for the labeling
algorithm. The integer program with the generated columns is solved immediately
to generate an upper bound.
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Table 1 Instances for experiments and numerical results

Monday Tuesday Wednesday Thursday Friday

Number of staff 11 10 11 11 12
Number of visits 27 23 22 25 32
Number of soft time windows 17 7 11 7 14
Initial # of columns 6329 1243 3818 4023 5217
# of generated columns 2522 51 59 534 1711
Total # of columns 8851 1294 3877 4557 6928
Total CPU time (s) 5072 22 100 1232 10027
Total travel time (min) 222.8 236.8 226.6 235.4 249.5
Duality GAP (%) 0.66 0.06 0.01 0.2 1.48
Staff utilization (%) 86 90 92 89 91
Actual total travel time (min) 223.4 260.0 264.1 240.0 265.2

5. Naturally total travel time of the generated solution was shorter than that of the
the actually used schedule in practice for each day of the week.

6. Utilization of the generated schedule was also higher than that of the actual sched-
ule. This appears to be due to the maximum limit of time between consecutive
visits.

5 Algorithm Speed-Up by Pre-processing Input Data

Computational experiments have shown that CPU time to solve some instances must
be reduced. A natural approach to reduce CPU time is to improve the algorithm.
Considering the fact that some instances are solved quickly, we took an another
approach to “make the instance easier” by “reducing the solution space.” Reduction
of solution space is done by reducing the flexibility inherent in the input data. The
idea is based on a natural observation that when a human scheduler faces difficulties
in finding a schedule due to too much freedom, he/she often reduces freedom by
fixing a part of the schedule one way or other. Fixing is one way to obtaining a
feasible schedule, but arbitrary fixing tends to give negative effects on schedule
performance. We propose an attempt to pre-process given input data via two simple
integer programs (IPs) to reduce freedom of schedules to speed up the algorithm.

Upon checking input data, we decided to focus on (1) a candidate set of staff who
could be assigned to each visit (which we call candidate staff), and (2) time window
of each visit. In fact, we confirmed that CPU time to solve the problem is reduced
substantially by limiting freedom in candidate staff and time window of each visit.

The first simple IP tries to limit candidate staff. The idea behind the model is to
make staff i a part of candidate staff for visits of customer j so that the maximum
of total service time of individual staff is minimized under the restriction of the
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minimum number of candidate staff for visits of customer j , and the minimum
number of potential customers assigned to each staff.

Variable xi j is 1 if staff i becomes a part of candidate staff for visits of patient
j , 0, otherwise. Those unskilled staff who could handle only a very limited number
of customers would be excluded from considerations and we only consider those
staff denoted as Ra ⊂ R who can handle at least moderate number of customers. U
denotes the set of customers, al

j the smallest number of staff who must be assigned

to visits of customer j , bl
i the smallest number of customers to whom staff i becomes

a candidate staff, t j total service time of visits of customer j , pi skill level of staff
i , q j minimum skill level required for visits of customer j . Note that skill level of
staff i should be at least that of minimum skill level of visit j in order for staff i to be
a member of candidate staff for visits of customer j . ci j is 1 if visits of customer j
exists during the working hours of staff i , 0 otherwise. Finally, d j denotes the number
of unskilled staff who can handle customer j .

min y (5)

s.t. y ≥
∑

j∈U

xi j t j , i ∈ Ra (6)

∑

i∈Ra

xi j + d j ≥ al
j , j ∈ U (7)

∑

j∈U

xi j ≥ bl
i , i ∈ Ra (8)

xi j ≤ max(pi − q j + 1, 0), i ∈ Ra, j ∈ U (9)

xi j ≤ ci j , i ∈ Ra, j ∈ U (10)

xi j ∈ {0, 1}, i ∈ Ra, j ∈ U (11)

The second simple IP model is developed to narrow down soft time windows. The
model tries to reduce the freedom of start time for these flexible visits. The room
of flexibility for a visit is the length of original soft time window minus its service
time. Reduced time windows of flexible visits would be determined so that room
of flexibility of the new time windows is reduced to the user-specified proportion
(denoted as β, and called “reduction ratio”) of the original room of flexibility. The
objective of the model is to minimize the maximum number of visits that may be
performed at the same time. Details of the model are omitted due to limited space.

6 Effects of Pre-processing Input Data

To measure the effects of limiting flexibility of solutions using the above two simple
IPs, we solve the original scheduling problem (Friday instance) using the original
and the pre-processed input data. Both CPU time and the best objective value of the
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Table 2 Effects of limiting the flexibility of solutions

β(%) Same as orig-
inal data

50, 42, 25 45, 42, 25 42, 42, 25 42, 42, 24

100 1.00 1.00 1.00 1.01 1.01
1.00 0.78 0.26 0.21 0.21

70 1.06 1.06 1.08 1.09 1.09
1.14 0.31 0.17 0.12 0.12

65 1.05 1.06 1.06 1.06 1.06
0.31 0.21 0.17 0.08 0.08

60 1.06 1.07 1.09 1.08 1.08
0.19 0.19 0.11 0.05 0.05

55 1.05 1.11 0.89 – 1.10
0.37 0.22 0.11 – 0.06

scheduling problem are compared by their ratio. The CPU time ratio of 0.2 indicates
that CPU time was 1/5 of the original time after input data pre-processing. Note that
both of the two simple IPs for pre-processing can be solved immediately and thus the
additional computational burden is negligible and omitted in the ratio calculation.
Similarly the objective ratio of 1.05 indicates that the objective value gets worse
by 5 % after pre-processing. Note that reducing solution flexibility generally gives
adverse effects on the objective value.

Parameters adjusted are the smallest number of customers to whom staff i becomes
a candidate staff, i.e., bl

i in (8), to limit candidate staff, and time window reduction
ratio β to narrow down time windows. Parameters bl

i are set by grouping staff in Ra

into 3 groups, (1) administrator who can take care all customers, (2) skilled staff, and
(3) other staff. In Table 2, a column headed by 50, 42, 25, e.g., indicates that bl

i is set
to 50 customers for the administrator, 42 and 25 customers for the second and third
groups, respectively. Each row corresponds to a particular value of the reduction
ratio β. For each combination, the upper entry shows the ratio of objective values of
the scheduling model, and the lower entry the ratio of CPU times. For example, for
a combination of bl

i = (42, 42, 24) and β = 0.65, CPU time is reduced to 8 % of the
original CPU time at the cost of 6 % increase in the objective value.

7 Conclusions

A column generation heuristic was developed for home care staff routing and schedul-
ing of a single day. CPU times required to solve the original problems were non-
trivial for some days of a week. Pre-processing of input data via two simple IPs was
successful to substantially reduce CPU time to solve difficult instances.
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A Dynamic Customer-Centric
Pricing Approach for the Product
Line Pricing Problem

Michael Neugebauer

Abstract In this paper, we address a service provider’s product line pricing problem
for substitutable products. We consider a market that is composed of different cus-
tomer segments of various sizes. The customers belonging to a segment have the same
segment-specific preference rankings. The seller is able to adopt a dynamic pricing
strategy and offer different prices for the products to different customer segments. We
introduce a mixed-integer linear programming formulation for this problem which
is solved by means of IBM ILOG CPLEX. We conduct several computational exper-
iments and present some preliminary results.

1 Introduction and Problem Description

In the literature, the problem of determining optimal prices for a product line has been
discussed from multiple points of view and a number of optimization models and
procedures have been proposed. Among those, the most prominent models derive
from [1–3]. In general, the standard product line pricing problem can be described as
follows: A monopolistic seller offers his products i ≤ {1, ..., I } at prices pi for each
product i that are selected from a pre-defined set of price points pia (a = 1, . . . , Ai ),
i.e. pi ≤ {pi1, . . . , pi Ai } in order to maximize his revenue. We consider an extended
version of this standard problem by addressing a service provider’s product line
pricing problem for substitutable products in services. The products are sold during
a common selling season at the end of which the corresponding services are delivered.
During the selling season the seller is allowed to update the prices for the products at
points in time t ≤ {0, . . . , T }. The costs of supplying a single unit of a service are not
constant but depend on the total amount of service units sold. For this purpose, we
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Table 1 Products and price
points

i a pia

0 1 e0
1 1 e2
1 2 e5
2 1 e4
2 2 e6

Table 2 Preference lists (PL)
Φs(B) PL of segment 1 PL of segment 2

5 Product 1 for e2 Product 2 for e4
4 Product 1 for e5 Product 1 for e2
3 Product 2 for e4 No purchase
2 No purchase Product 2 for e6
1 Product 2 for e6 Product 1 for e5

introduce piecewise linear cost functions with l ≤ {0, . . . , Li } intervals affiliated with
the total amount of service units sold. An easy example might be a service provider
who has a certain internal capacity at free disposal and is able to buy additional
units at a spot market. Finally, we assume that the market is composed of different
customer segments with different segment specific preference rankings. The seller
can exploit these differences by offering not only time dependent but also segment
specific prices for the products. An example might be an online service provider who
has identified different customer segments based on their booking history and wants
to offer them different prices.

In Sect. 2 we present the demand model. The mathematical modelling is intro-
duced in Sect. 3. After the presentation of some computational experiments in
Sect. 4 the paper ends with a conclusion in Sect. 5.

2 Demand Model

Customer behavior is modeled by using a general non-parametric approach (see,
e.g., [5]). We consider a market that is composed of different customer segments
s ≤ {1, . . . , S} of various sizes. The customers belonging to a segment have the same
preference ranking (or preference list) Φs(B) with B = {I × Pi : i ≤ {1, . . . , I }} ∞
{(0, p0)} = {(i, pi ) : i ≤ {0, . . . , I }, pi ≤ {pi1, . . . , pi Ai }} for all product–price
point–combinations (PPPC) including the no-purchase option, “product” i = 0 that
is always offered at p01 = e0. Φs(B) : B ≥ 1, . . . , |B| is a bijective mapping
with the following property: If customer segment s prefers combination b1 ≤ B to
combination b2 ≤ B then Φs(b1) > Φs(b2) holds. Based on the decision of the service
provider which PPPCs B ∗ √ B to offer, the customers of segment s will choose the
combination b∩ = (i∩, p∩

i ) ≤ B ∗ with the highest valued Φs(b∩). Preference rankings
are assumed not to change during the selling season. In Tables 1 and 2, a short example
is given.
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There are I = 2 products with A1 = A2 = 2 price points and S = 2 customer
segments with different preference lists Φ1(B) and Φ2(B). Assume that the service
provider sets the prices p12 = e5 for i = 1 and p22 = e6 for i = 2, i.e. B ∗ = {(0,

e0), (1, e5), (2, e6)}. All available PPPCs B ∗–including the no-purchase option–
are printed in bold face in Tables 1 and 2. In this example, all customers belonging
to segment s = 1 decide to purchase i = 1 for p12 = e5 because Φ1(1, e5)
> Φ1(0, e0) > Φ1(2, e6). All segment 2 customers accordingly choose the no-
purchase option (0, e0). We call the set B ∗ a price list. Following this definition,
the seller alternatively could have offered one of the following three price lists:
{(0, e0), (1, e2), (2, e4)}, {(0, e0), (1, e2), (2, e6)}, and {(0, e0), (1, e5),
(2,e4)}. The service provider has the option to define up to K price lists with K ≡ S.
For each customer segment he has to decide which of the price lists k ≤ {1, . . . , K }
he wants to assign to it. The seller is able to adopt a dynamic pricing strategy with
a number of price list updates h ≤ {0, . . . , H} at points in time t with H < T − 1.
At each price list update the seller has the possibility to reassign price lists to the
customer segments. Relating to the example given above, assume that H = 1 price
list update takes place and K = 2 different price lists can be chosen. That means that
the service provider can assign different price lists to the two customer segments at
the beginning of the selling season (h = 0 at t = 0). At some point in time during
the selling season, the seller is allowed to update these price list assignments.

3 Mathematical Modelling

We introduce a mixed-integer linear programming formulation for this problem. The
notation is given below.

Input Parameters:

phkia : ath price point of product i (= pia) in price list k at price list update h
Φsia : preference value of segment s for product i at price point pia

ρst : expected total demand of segment s customers which arrive in [0, . . . , t]
Qil : end point of interval l of the piecewise linear cost function of service i
mil : gradient of interval l of the piecewise linear cost function of service i

ρ fil : jump of the piecewise linear cost function of service i at the left endpoint
of interval l

M : sufficiently large number

Decision Variables:

zskh ≤ {0, 1} = 1, if price list k is assigned to segment s at price list update h
μht ≤ {0, 1} = 1, if price list update h takes place in t (with μ00 = 1 and

μH+1,T = 1)
xshkia ≤ {0, 1} = 1, if customer segment s chooses product i at price point pia in

price list k after price list update h
πhkia ≤ {0, 1} = 1, if product i is offered at price point pia in price list k after

price list update h
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Γil ≤ {0, 1} = 1, if the total amount of services i sold extends into interval l
dil ∧ 0 total amount of services i sold in interval l

θshkia ∧ 0 expected demand of segment s customers which buy product
i at price point pia in price list k and which arrive between
price list update h and price list update h + 1

The objective function aims to maximize total profits:

Max F(z, μ, x, π , δ, d) =
S⎧

s=1

H⎧

h=0

K⎧

k=1

I⎧

i=1

Ai⎧

a=1

(

T⎧

t=0

μh+1,tρst −
T⎧

t=0

μhtρst)xshkia phkia

−
I⎧

i=1

Li⎧

l=1

(ρ filΓil + dil mil ) . (1)

The revenue is calculated in the first term by multiplying the expected demand of
customer segments between two price list updates with the respective price points
of the assigned price lists. In the second term, the costs are captured by determining
the respective points of the services’ cost functions.

To linearize the objective function, we follow the approach by [4] and introduce
a continuous auxiliary variable θshkia such that

θshkia =

⎪
⎨⎛

⎨⎜

T⎝
t=0

μh+1,tρst −
T⎝

t=0
μhtρst , if xshkia = 1

0, otherwise
.

The constraints enforcing this linearization are omitted. The remaining constraints
can be divided into three groups.

The first couple of constraints, constraints (2) and (3), determine the points in
time for the price updates:

T⎧

t=0

μht = 1 for all h = 1, . . . , H (2)

T⎧

t=0

μh+1,t t ∧
T⎧

t=0

μht (t + 1) for all h = 0, . . . , H − 1 . (3)

The auxiliary variables μht are used to determine the points in time when price list
updates take place. Constraints (2) ensure that every price list update is made at
exactly one point in time. Note, if less than H price list updates were optimal, the
model would determine points in time for the price list updates but the price lists
would not change. A chronological ascending order of the price list updates is assured
by constraints (3), i.e. price list update h + 1 takes place after price list update h.

The second group of constraints, constraints (4–8), are the essential constraints
for the product line pricing problem with price points and different price lists.
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K⎧

k=1

zshk = 1 for all s = 1, . . . , S, h = 0, . . . , H (4)

I⎧

i=0

Ai⎧

a=1

xshkia = zshk for all s = 1, . . . , S, h = 0, . . . , H, k = 1, . . . , K (5)

Ai⎧

a=1

πhkia = 1 for all h = 0, . . . , H, k = 1, . . . , K , i = 0, . . . , I (6)

xshkia ≡ πhkia for all s = 1, . . . , S, h = 0, . . . , H, k = 1, . . . , K ,

i = 0, . . . , I, a = 1, . . . , Ai (7)
I⎧

j=0

Ai⎧

p=1

Φs jpxshk jp ∧ Φsiaπhkia − (1 − zshk)M for all s = 1, . . . , S,

h = 0, . . . , H, k = 1, . . . , K , i = 0, . . . , I, a = 1, . . . , Ai . (8)

The following five sets of constraints hold for all price list updates. One price list
is assigned to every customer segment (see constraints (4)). Constraints (5) ensure
that each customer segment chooses one PPPC of the price list it is assigned to.
Constraints (6) enforce that for every product exactly one price point is chosen in
every price list, i.e. all customers get a complete price list for all products. It is ensured
by constraints (7) that customers can only choose from PPPCs that are offered.
Constraints (8) represent the well-known incentive compatibility constraints: Every
customer segment chooses the available PPPC that ranks highest in its preference list.
Besides, it is ensured that only the PPPCs of the respective price lists are considered.

The last group of constraints, constraints (9–11), determine the costs of the ser-
vices that are sold.

S⎧

s=1

H⎧

h=0

K⎧

k=1

Ai⎧

a=1

θshkia =
Li⎧

l=1

dil for all i = 1, . . . , I (9)

dil ≡ ρQilΓil for all i = 1, . . . , I, l = 1, . . . , Li (10)

di,l−1 ∧ ρQi,l−1Γil for all i = 1, . . . , I, l = 2, . . . , Li . (11)

Constraints (9) ensure that costs are captured for all services that are sold. In every
interval of the linear cost function the total amount of service units sold is restricted
by the interval length ρQil = Qil − Qi,l−1 with ρQi Li = ∞ for all i ≤ {1, . . . , I }.
Furthermore, if the total amount of services extends into an adiacent interval l + 1
of the cost function, the total amount of service units sold in the previous interval l
is enforced to ρQil . That holds for every service (see constraints (10) and (11)).
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Table 3 Computation times
in seconds

K = 1 K = 2 K = 3

H = 0 <1 <1 <1
H = 1 <1 2 8
H = 2 <1 6 587
H = 3 1 12 32
H = 4 9 37 >150000

Table 4 Improvements of
total profits

K = 1 K = 2 K = 3

H = 0 – 43.75 % 43.75 %
H = 1 59.03 % 70.92 % 70.92 %
H = 2 64.84 % 74.13 % 74.13 %
H = 3 65.63 % 74.91 % 74.91 %
H = 4 65.71 % 74.91 % 74.91 %

4 Computational Experiments

We implemented the mixed-integer linear program in IBM ILOG OPL and solve
small instances by means of IBM ILOG CPLEX 12.5 to optimality. All of the tests
were performed on a server architecture with an Intel(R) Core(TM) i7 CPU at 2.80
GHz, 8 GB RAM, and Windows 7 Enterprise. In the computational experiments
we focus on the effects of some essential contributions to the product line pricing
literature on the demand side: We allow the seller to adopt a dynamic pricing strategy
and offer different prices for the products to different customer segments. That means,
the seller is able to offer K price lists to the customer segments and make H price list
updates. We fix the number of customer segments to 5, consider 5 products with 5
price points, a selling season with a length of 12 and piecewise linear cost functions
with two intervals. We vary the number of price lists K from 1 to 3 and the number of
price updates H from 0 to 4. The computation times are given in Table 3. Referring
to the total profits, the model with K = 1 and H = 0 serves as a benchmark.
Table 4 shows the improvements of the total profits in percentage terms.

For our computational experiments, we chose an instance where the flexibility
for the seller gained by the incorporation of more price lists and price list updates
helps to allocate the demand in a way to avoid the high costs of the spot market.
Hence, total profits increase significantly as the number of price lists as well as price
list updates is raised. Furthermore, the computing times are increasing significantly
as well. As the instances are getting bigger in practice, the service provider has to
decide how much (computing) time he wants to invest in order to make his pricing
decisions. Furthermore, he must determine how many price lists and price list updates
are applicable from a marketing and from a technical point of view.
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5 Conclusion

In this paper, we address a service provider’s product line pricing problem. Our
approach differs from the standard product line pricing problem introduced in the
literature in multiple ways. The main contributions on the demand side are the mod-
elling of customer behavior by using preference lists, the incorporation of dynamic
pricing and the possibility for the seller to set different prices for the products for
different customer segments. On the supply side, the costs of supplying a single unit
of a service are not constant but depend on the total amount of service units sold.
For this purpose, we introduce piecewise linear cost functions affiliated with each
service total amount of units sold.
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Mathematical Formulations for the Acyclic
Partitioning Problem

Jenny Nossack and Erwin Pesch

Abstract This paper addresses the problem of partitioning the vertex set of a
given directed, edge- and vertex-weighted graph into disjoint subsets (i.e., clusters).
Clusters are to be determined such that the sum of the vertex weights within the clus-
ters satisfies an upper bound and the sum of the edge weights within the clusters is
maximized. Additionally, the digraph is enforced to partition into a directed, acyclic
graph, i.e., a digraph that contains no directed cycle. This problem is known in the
literature as acyclic partitioning problem and is proven to be NP-hard in the strong
sense. Real-life applications arise, e.g., at rail-rail transshipment yards and in Very
Large Scale Integration (VLSI) design. We propose two model formulations for the
acyclic partitioning problem, a compact and an augmented set partitioning model.

1 Introduction

Graph partitioning problems are, in general, concerned with the partitioning of the
vertex set of an undirected or directed graph into disjoint subsets (also referred
to as clusters) such that the sum of the edge weights within the clusters is max-
imized (or equivalently the sum of the edge weights between different clusters is
minimized). Most graph partitioning problems are formally defined based on the
following framework: Let G = (V , E) denote an undirected (or directed) graph with
vertex set V = {v1, . . . , vn} and edge set E. We associate with each edge (vi, vj) ≤ E
an edge weight cij ≤ R and optionally with each vertex vi ≤ V a vertex weight
wi ≤ R. A partition P = {V1, . . . , Vk} of G is defined as the collection of k disjoint
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(a) (c)(b)

Fig. 1 Example. a Digraph. b Acyclic partition. c Partition

subsets of vertices, V1, . . . , Vk , such that
⋃k

s=1 Vs = V and Vs ∞ Vt = ≥ for all
s, t = 1, . . . , k and s ∗= t. We refer to Vs, s = 1, . . . , k, as clusters of the partition P.
The set of edges connecting vertices of different clusters is called a cut and is denoted
by δ(P) := {

(vi, vj) ≤ E|vi ≤ Vs, vj ≤ Vt; s, t = 1, . . . , k; s ∗= t
}
. Moreover, the sum

of the edge weights defined within clusters and within a cut are denoted as value,
val(P) := ∑

(vi,vj)≤E\δ(P) cij, and cost, cost(P) := ∑
(vi,vj)≤δ(P) cij, of a partition P,

respectively. The graph partitioning problem is to find a partition P√ = {V1, . . . , Vk}
of G such that the value of P√ is maximized (or equivalently the cost of P√ is min-
imized). Variants of the graph partitioning problem impose side-constraints on this
framework.

We consider in this research a constraint variant of the graph partitioning problem,
namely the acyclic partitioning problem. Given is a directed graph D = (V , A) with
vertex weight wi ≤ N

+
0 for all vi ≤ V and edge weight cij ≤ N

+
0 for all (vi, vj) ≤ A.

We furthermore assume that D is loopless and without multiple edges. Throughout
this paper n denotes the number of vertices (n := |V |) and m the number of directed
edges (m := |A|). A partition P = {V1, . . . , Vk} of digraph D is called an acyclic
partition, if the sum of the vertex weights of each cluster (also denoted as the size
of a cluster) is bounded from above by an upper bound B ≤ N

+
0 and if digraph D

partitions into a directed, acyclic graph DP = (VP, AP). We will further refer to DP

as our partitioning digraph of the partition P and formally define it as follows: The
partitioning digraph DP includes a vertex for each cluster, i.e., VP = (v̄1, . . . , v̄k),
and defines a directed edge (v̄s, v̄t) ≤ AP if and only if a directed edge (vi, vj) ≤ A
exists in digraph D for any pair of vertices vi ≤ Vs, vj ≤ Vt with s ∗= t. In summary,
the acyclic partitioning problem searches for an acyclic partition P√ = {V1, . . . , Vn}
of D with at most n clusters (i.e., k := n) such that the value of P√ is maximized.
An example of an acyclic partition and its associated acyclic partitioning digraph
is depicted in Fig. 1b for the digraph illustrated in Fig. 1a. Figure 1c illustrates a
digraph partition that induces a directed cycle in the partitioning digraph.

The acyclic partitioning problem is—in accordance with most graph partition-
ing problems—NP-hard in the strong sense [2]. An exact solution algorithm for
the acyclic partitioning problem on general digraphs has been presented by [7]. The
proposed solution approach is based on a branch-and-bound framework that
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integrates constraint propagation. A pseudo-polynomial time solution algorithm for
the acyclic partitioning problem on a tree graph topology has been considered by [5].
If all edge weights [4], equivalently, if all vertex weights are equal [2], the acyclic
partitioning problem on trees can be solved in polynomial time. Finally, [1] suggest
a heuristic procedure for the acyclic partitioning problem on directed graphs with
unit vertex and unit edge weights.

2 Properties of the Acyclic Partitioning Problem

In the succeeding section, we will propose two model formulations for the acyclic
partitioning problem. These model formulations are based on feasibility conditions
formulated in [7]. For the sake of completeness, we will summarize the most relevant
feasibility statements and refer the reader to [7] for detailed discussions and proofs.

Theorem 1 [7]

(i) Let S1, . . . , Sr denote the strong components of digraph D = (V , A). If partition
P = {V1, . . . , Vn} is an acyclic partition of D, all vertices that belong to the
same strong component lie within the same cluster.

(ii) Let P = {V1, . . . , Vn} denote an acyclic partition of D = (V , A) and let W
denote a directed path from vi ≤ V to vj ≤ V. If vi and vj belong to cluster Vs,
vi, vj ≤ Vs, all intermediate vertices on the directed path W belong to Vs.

(iii) Let P = {V1, . . . , Vn} denote an acyclic partition of D = (V , A). If there exists
a directed path from vi ≤ V to vj ≤ V and vi and vj belong to different clusters,
vi ≤ Vs, vj ≤ Vt, s ∗= t, all vertices that can be reached from vertex vj cannot
lie in cluster Vs.

On account of Theorem 1 (i), the acyclic partitioning problem can be solved
on a reduced graph by replacing each strong component by a single vertex and
by adjusting the vertex weights. This particular digraph reduction is known in the
literature as a condensation of a digraph and has the property of being acyclic. We can
thus topologically order the vertices of the condensation digraph such that directed
edges go from lower-numbered to higher-numbered vertices (refer, e.g., to [7]).

3 Mathematical Formulations

Based on Theorem 1 (i), we assume from now on that digraph D is acyclic with
topological ordered vertices. Next, we will present two model formulations for the
acyclic partitioning problem, a compact model and an augmented set partitioning
model.

For the compact model, we incorporate four types of decision variables. Binary
variable xis denotes whether (xis = 1) or not (xis = 0) vertex vi ≤ V is assigned
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to cluster Vs. Furthermore, binary variable zij indicates if vertices vi, vj ≤ V , i ∗= j
belong to the same cluster (zij = 1) or not (zij = 0). To ensure that digraph D
partitions into an acyclic partitioning digraph DP = (VP, AP), we incorporate a
binary decision variable yst ≤ {0, 1} to identify if at least one directed edge (v̄s, v̄t) ≤
AP is induced between the vertices of clusters Vs and Vt with s ∗= t (yst = 1) or
not (yst = 0). The Miller-Tucker-Zemlin subtour elimination constraints, initially
introduced for the well-known traveling salesman problem by [6], are applied to the
y-variables to enforce the acyclic property of DP. To formulate the Miller-Tucker-
Zemlin constraints, we include an auxiliary variable πs ≤ Z for each cluster Vs.
Moreover, we introduce parameters pij which denote whether a directed path exists
from vertex vi to vj in the digraph D (pij = 1) or not (pij = 0). The model formulation
is then given by the following integer programming problem.

max
∑

(vi,vj)≤A

cijzij (1)

s.t.
n∑

s=1

xis = 1 ∩1 ≡ i ≡ n (2)

n∑

i=1

wixis ≡ B ∩1 ≡ s ≡ n (3)

zij + xis − xjs ≡ 1 ∩1 ≡ i < j ≡ n, 1 ≡ s ≡ n (4)

xis + xjt − 1 ≡ yst ∩(vi, vj) ≤ A, 1 ≡ s ∗= t ≡ n (5)

2zij ≡ zih + zhj ∩1 ≡ i < h < j ≡ n with pih = phj = 1 (6)

zih ≡ zij ∩1 ≡ i < j < h ≡ n with pih = phj = 1 (7)

zij + zjh − zih ≡ 1 ∩1 ≡ i < j < h ≡ n (8)

zij − zjh + zih ≡ 1 ∩1 ≡ i < j < h ≡ n (9)

−zij + zjh + zih ≡ 1 ∩1 ≡ i < j < h ≡ n (10)

πs − πt + nyst ≡ n − 1 ∩1 ≡ s ∗= t ≡ n (11)

xis ≤ {0, 1} ∩1 ≡ i ≡ n, 1 ≡ s ≡ n (12)

zij ≤ {0, 1} ∩1 ≡ i < j ≡ n (13)

yst ≤ {0, 1} ∩1 ≡ s ∗= t ≡ n (14)

πs ≤ Z ∩1 ≡ s ≡ n (15)

Objective function (1) maximizes the value of the digraph partition. Constraints
(2) and (3) ensure that each vertex is assigned to exactly one cluster and that the
cluster size upper bound B is respected, respectively. Inequalities (4) connect the
x-variables and the z-variables. Moreover, constraints (5) connect the x-variables
and the y-variables by enforcing yst equal to 1 if at least one directed edge is defined
between the vertices of clusters Vs and Vt , and 0 otherwise. Constraints (6) and (7)
enforce the cluster to fulfill Theorem 1 (ii) and (iii), respectively. In case of zij := 1, it
is enforced by constraints (6) that the intermediate vertices that lie on all directed paths
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between vertices vi and vj belong to the same cluster. In case of zij := 0, constraints
(7) ensure that the vertices which can be reached from vertex vj cannot lie in the same
cluster as vertex vi. The triangle inequalities (8)–(10), originally proposed by [3] for
the clique partitioning problem, verify the transitivity relation: If vertices vi and vj

belong to the same cluster, as well as vertices vj and vh, we may follow that vi and vh
also belong to this cluster, i.e., if zij := 1 and zjh := 1, it follows that zih := 1. The
Miller-Tucker-Zemlin constraints are formulated by inequalities (11) and impose the
acyclic condition on the partitioning digraph. Finally, constraints (12)–(15) define
the domains of the decision variables. Note that the presented formulation is similar
to the model proposed in [7]. Instead of using a three-index formulation, we apply a
two-index formulation.

For the augmented set partitioning formulation, let Δ denote the set of all clusters.
A cluster fulfills Theorem 1 (ii) and (iii), as well as the cluster size capacity B. Let
σγ = (σ

γ
i |i = 1, . . . , n) denote an incidence vector of a cluster γ ≤ Δ, where

σ
γ
i = 1 if vertex vi ≤ V is contained in cluster γ and 0 otherwise. The value of a

cluster γ ≤ Δ is denoted by cγ ≤ N
+
0 and is defined by cγ := ∑

(vi,vj)≤A cijσ
γ
i σ

γ
j .

Moreover, three types of decision variables are incorporated in the set partitioning
formulation. The binary decision variable θγ takes the value 1 if cluster γ ≤ Δ

is part of an acyclic partition and 0 otherwise. To ensure that digraph D partitions
into an acyclic partitioning digraph DP = (VP, AP), we incorporate—in accordance
to the compact formulation—a binary decision variable yγsγt ≤ {0, 1} to identify
if at least one directed edge is induced between the vertices of clusters γs and γt

with γs, γt ≤ Δ, γs ∞ γt = ≥, s ∗= t. Auxiliary variables πγ ≤ Z are introduced to
formulate the Miller-Tucker-Zemlin subtour elimination constraints. The augmented
set partitioning model is then given by the following integer programming model.

max
∑

γ≤Δ

cγ θγ (16)

s.t.
∑

γ≤Δ

σ
γ
i θγ = 1 ∩1 ≡ i ≡ n (17)

σ
γs
i θγs + σ

γt
j θγt − 1 ≡ yγsγt ∩(vi, vj) ≤ A, γs, γt ≤ Δ, γs ∞ γt = ≥, s ∗= t

(18)

πγs − πγt + nyγsγt ≡ n − 1 ∩γs, γt ≤ Δ, γs ∞ γt = ≥, s ∗= t (19)

θγ ≤ {0, 1} ∩γ ≤ Δ (20)

yγsγt ≤ {0, 1} ∩γs, γt ≤ Δ, γs ∞ γt = ≥, s ∗= t (21)

πγ ≤ Z ∩γ ≤ Δ (22)

The objective function (16) corresponds to the maximization of the value of the
digraph partition. Constraints (17) ensure that each vertex is assigned to exactly one
cluster. Inequalities (18) enforce yγsγt equal to 1 if at least one directed edge is defined
between the vertices of clusters γs and γt . The Miller-Tucker-Zemlin constraints are
given by inequalities (19). The variable domains are defined by (20)–(22).
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Both of these model formulations have their assets and drawbacks. The disadvan-
tages of the compact formulation are twofold. The LP-relaxation of (1)–(15) provides
a poor upper bound on the acyclic partitioning problem. A further weakness of the
formulation is the variable symmetry in the x-variables. A feasible solution can be
represented by n! identical solutions, since the cluster labeling is arbitrary. The poor
upper bound, as well as the model symmetry cause LP-based branch-and-bound algo-
rithm, generally implemented in standard solvers like CPLEX, to perform poorly.
These disadvantages are discarded by the augmented set partitioning model. How-
ever, model (16)–(22) contains a numerous number of rows and columns, such that
it is impossible to generate and store the entire constraint matrix for large graph
partitioning problems.

4 Conclusion and Future Research

We have presented two model formulations for the acyclic partitioning problem and
briefly discussed their characteristics. Future work needs to design algorithms that
capture the basic properties of these formulations. The compact model (1)–(15) is
to be addressed by solution approaches that reduce the symmetric nature of the
suggested model formulation. The augmented set partitioning formulation (16)–(22)
points to a solution approach based on column and cut generation. Branch-and-
price-and-cut, for instance, is designed for (mixed) integer programming problems
in which the constraint matrix contains an enormous number of rows and columns.
This method basically combines the strengths of branch-and-price and branch-and-
cut. Synthesizing column and row generation is, however, a nontrivial task. A cru-
cial requirement for successful application of this approach is that the structure of
the pricing and the separation problem remains unchanged during the algorithm
execution.
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Minimizing Risks for Health at Assembly Lines

Alena Otto

Abstract Reduction of ergonomic risks is one of priorities at assembly lines. In this
article, we claim that operational and tactical planning have a significant potential
in mitigation of ergonomic risks. We illustrate this on the example of assembly line
balancing. For this mid-term planning problem, we show that reduction of ergonomic
risks is possible without increasing cycle times or introducing new workstations. We
observed that by diversifying tasks assigned to individual workers according to the
risks measurement function, we not only balance ergonomic risks among workers,
but also achieve their reduction. With help of a two-stage heuristic, developed by us,
we were able to find an assembly line balance with acceptable risks for each worker
without increasing the number of stations for about 50 % of instances.

1 Mitigation of Ergonomic Risks Is a Priority Objective
at Assembly Lines

It has been done a lot for the well-being of workers since the introduction of assem-
bly lines about two hundred years ago for the manufacturing of muskets [12]. The
work has been enriched and workers have been empowered by implementation of
team work and quality circles. Various specialized equipment and tools are currently
applied to facilitate mounting operations and reduce possibility of failures. How-
ever, even nowadays a high prevalence of occupational diseases is observed among
assembly line workers. Assembly line workers are especially vulnerable to work-
related musculoskeletal disorders, where they take the third place in prevalence after
construction workers and health care assistants [8].

Presence of high ergonomic risks, or risks for health of workers, is closely con-
nected to the core principles of work organization at assembly lines. The success of
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Fig. 1 Illustrative example of an assembly line

assembly lines is based on a high degree of specialization. Thus, each worker receives
a set of tasks V = {1, . . . , n} to be performed repetitively on each workpiece. The
workpieces are transported along sequentially arranged workstations manned by one
or several workers. As a rule, a workpiece is available at a workstation for a fixed
amount of time—cycle time c, and it is moved to the next workstation afterwards. The
cycle time is often as low as one minute (e.g., at the final assembly of automobiles)
and may even reach 20–40 s. For example, at an assembly line with homogeneous
products, cycle time of c = 20 s and shift with seven working hours, each worker
has to repeat the same set of tasks 1,260 times within a shift.

Therefore, high repetitivity of work is the most important physiological risk factor
at assembly lines. This was also confirmed by a survey conducted among German
automotive firms [13]. Because of high repetition frequency, even moderate weights
and moderate levels of force may pose high hazards for health. Indeed, high risks
in categories forces and manual material handling are often detected at assembly
line workplaces. Another frequent risk factor is awkward postures. For example,
mounting operations on undercarriage are performed overhead or above shoulders,
whereas tasks in the engine compartment may involve severe bending (see Fig. 1).

Reduction of ergonomic risks is one of high-priority topics in the agenda of both
politicians and management of companies. Work-related musculoskeletal disorders
bring significant losses to the economy as a whole due to, e.g., lost production
output because of the days away of work. Therefore a number of legislative acts and
standards were issued to oblige employers to monitor and mitigate ergonomic risks
at workplaces (e.g., EU Machinery directive, 2006/42/EC, 89/391/EEC). For factory
management, ergonomic risks translate not only into the high compensation costs to
be paid to workers, but also into higher failure rate and lower productivity (e.g., [4]).
Thus, looking at the failure rates at a Swedish car assembly plant, Eklund [3] found
that about 50 % of quality defects stem from (just a few) workplaces with significant
ergonomic risks. Because of aging of the workforce in the developed countries, as
well as because of an observed tendency for further reduction in cycle times, we
expect that ergonomics will receive even more attention in the future.

In [6], we discuss and analyze the ways to reduce ergonomic risks at assembly
lines already at the planning stage. The planning stage offers a significant degree of
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Fig. 2 Illustrative example of a precedence graph

flexibility in designing and changing of processes, therefore ergonomic risks can be
mitigated at low costs. Moreover, such improvements often go along with raises in
productivity and quality of production.

For this article, we selected one of the important problems of mid-term production
planning: assembly line balancing. In the following, we point out the main drivers that
can be used to decrease ergonomic risks (Sect. 2). Section 3 describes the model and
sketches the solution algorithm. Section 4 reports on major computational results,
whereas Sect. 5 provides conclusion and outlook.

2 Drivers Behind the Reduction of Ergonomic Risks

An elegant way to summarize information on tasks at assembly line is the precedence
graph G = (V, E, t) (e.g., Fig. 2). Set E summarizes precedence relations between
tasks; (i, j) ≤ E means that task i must be performed before task j . For example, a
sit cannot be mounted before the cable has been laid into the undercarriage of the car.
Each task j ≤ V is also characterized by task time t j , which is calculated according
to some of (deterministic) time measurement techniques, established in the industry
(e.g., MTM [1]). By assembly line balancing, the industrial engineer partitions a set
of tasks V into subsets of tasks Sk , called station loads, that have to be performed
on each station. Thereby precedence relations must be respected and the sum of task
times in each station load should not exceed the cycle time. Below, we refer to such
partition as a feasible balance. The usual objective is to minimize the number of
stations. For example, for precedence graph in Fig. 2 and cycle time c = 15, an
optimal feasible balance is {{1,2,5,6}, {3,8}, {4,7,12}, {9,10,11,13}} (see Fig. 3).

Ergonomic risks depend on the station load. In many firms, evaluations of
ergonomic risks are already performed on routinely basis. A predicate “green”
(ergonomic risks are at acceptable level), “yellow” (ergonomic risks are present)
or “red” (significant ergonomic risks are present) is assigned to each station depend-
ing on this value. Let in our example, station 4 be “red” with task 13 being particularly
strenuous. It can be, for example, some operation at undercarriage of a car, which is
performed overhead or above shoulder.
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Fig. 3 Example of optimal balances

Even without introducing additional stations, ergonomic risks can be mitigated
with help of appropriate assembly line balancing. Three effects can be exploited for
this purpose: the targeted distribution of the idle time, the targeted combination of
tasks and avoidance of cumulative effects.

The targeted distribution of the idle time. The not scheduled time during the cycle,
called idle time itk = c − ∑

j≤Sk
t j , provides to the worker opportunity to relax and

assume the most favorable posture. The total amount of idle time at the assembly line
can be increased only by increasing the number of stations. However, even keeping
the number of stations unchanged, we can look for an assembly line balance, where
idle time is mostly concentrated at stations containing especially strenuous tasks. In
our example, in the first balance, just 20 % of cycle time at “red” station 4 is idle.
In balance two, the whole available idle time is concentrated at station 4 to provide
to the worker adequate rest time (i tk = 11 or 73 % of c). In our example, station 4
turned “yellow”.

The targeted combination of tasks. There are several components in evaluation of
ergonomic risks. For example, the required energy to perform tasks (physiological
component) or whether tasks are perceived as exhausting (psychophysical compo-
nent). An important role at assembly lines plays biomechanical stress, or forces
exerted on musculoskeletal structure. In practice, the risks, which are primarily con-
nected with biomechanical stress, are evaluated independently for each anatomical
segment. For example, in OCRA-index [5], which is ergonomic method for estima-
tion of risks for upper extremities, postural index is calculated separately for shoulder,
elbow, wrist and hand. Thereby, the worst among these separate indices is taken into
the final evaluation of the ergonomic risks. Hence, to provide muscles, tendons and
bones appropriate relaxation, we have to avoid combining tasks having exposure on
the same anatomical segment, in a single station load.

Avoidance of cumulative effects. In some cases, ergonomic risks increase not
linearly in the number of repetitions or in the duration of exposure.

Note, that effect two and effect three help not only to smooth the distribution
of ergonomic risks among stations and workers, but also to reduce the total sum of
ergonomic risks at the assembly line.



Minimizing Risks for Health at Assembly Lines 345

3 Ergonomic Assembly Line Balancing: Model and Solution
Procedure

Ergonomic Simple Assembly Line Problem (ErgoSALBP), can be formulated as
follows:

Min Φ = |{Sk |Sk ∞= ≥}| + ω · ξ({Sk}), (1)

s.t. {Sk} is a partition of V , which is feasible balance (2)

Ergonomic risks for the whole balance are calculated via an aggregation function
ξ . It relies on some ergonomic risk evaluation function to estimate ergonomic risks
for a single station, e.g. OCRA-index or EAWS [7]. Further, ξ aggregates ergonomic
risks over stations; it may calculate for example, a simple average, some smoothness
index or the number of “red” and “yellow” stations.

The objective (1) is to minimize the number of stations and ergonomic risks for
the assembly balance as a weighted sum. Depending on the weighting parameter
ω, ergonomic risks may be enforced as constraints (for very large values of ω) or
reduced as a second-tier objective (for very small values of ω). Note that further
industry-specific constraints can be added to the definition of the feasible balance,
for example zoning or incompatibility constraints (see [2]).

As a more general version of the simple assembly line balancing problem, ErgoS-
ALBP is NP-hard [10]. Since treating ergonomic objective as a second-tier objective
is most relevant for manufacturing [7], we propose a two-stage metaheuristic based
on simulation annealing to solve ErgoSALBP.

On the first stage, we find an optimal (or sufficiently near-to-optimum) solution of
the correspondent simple assembly line balancing problem, SALBP (i.e., we set the
expression for Φ in (1) as |{Sk |Sk ∞= ≥}|). We fix the number of stations at the found
value. Afterwards, we apply simulated annealing metaheuristic to reduce ergonomic
risks without introducing additional stations. We generate a neighboring solution
by a shift (with probability q) of a task to another station or by swapping (with
probability 1 − q) two tasks. Thereby, we favor selection of tasks from the stations
with excessive ergonomic risks. Each time, the incumbent solution is updated, we
perform a local search procedure, in order not to miss the (local) optimum. However,
we do not change the incumbent solution after the local search procedure is applied; if
simulated annealing would be “pushed” into the local optimum, it would be harder for
it to overcome the local optimality. The details on the algorithm can be found in [7].

4 Computational Results

As we discussed above, there are several levers that can be used in the planning to
reduce ergonomic risks. In our experiments, we investigated whether such improve-
ment is practically meaningful and whether it can be achieved with our algorithm in
reasonable time.
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For our data set, based on the benchmark data set of Scholl [9] and with ergonomic
parameters of tasks similar to those observed and reported in practice, in 90 % of
cases, we could achieve an ergonomically better assembly line balance, than the first-
stage-solution found by SALOME [11], without increasing the number of stations.
For 50 % of instances, a balance with only “green” stations was found.

5 Discussion

Assembly line balancing has a practically meaningful potential to further mitigate
ergonomic risks at assembly lines. Currently our approach is being implemented at
our cooperation partner.
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A Multi-Objective Online Terrain
Coverage Approach

Michael Preuß

Abstract This paper introduces a new multi-objective optimization approach in the
field of terrain coverage. With the help of the multi-objective online terrain coverage
model, a decentralized autonomous swarm is able to cover an unknown environ-
ment. This innovative terrain coverage model has a high impact on autonomous
vehicle applications because it considers conflicting objective functions during the
coverage process. This important improvement opens up new possibilities for real
world applications. The design methodology is based on combining an auction based
algorithm with a multiple ant colony optimization route planning algorithm. Exper-
imental analysis is performed on the presented online terrain coverage model which
includes the multi-objective route optimization and also a single-objective route opti-
mization. The analysis shows that a multi-objective approach can reduce the repeated
coverage and therefore the total coverage time.

1 Introduction

Online terrain coverage models enable an individual agent or a swarm to cover an
environment completely without any a priori information about it. A complete cov-
erage requires that every location is visited at least once. This problem is known
as NP-hard for the multi-agent case [9]. There are different real world applications
for [8], search and rescue [3], or military mine hunting [7]. This paper presents
a new multi-objective optimization approach in the field of terrain coverage. The
studied terrain coverage model can be used for a decentralized autonomous swarm.
The self-coordination of the autonomous swarm is organized by an auction based
approach [6, 10]. The primary advantage of using an auction based model for an
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autonomous swarm is the decentralized and robust behavior of the partial subsystems,
each agent tries to maximize their individual profit in an opportunistic way. By doing
this the global efficiency is increased. This newly introduced multi-objective terrain
coverage model enables consideration of conflicting objective functions during the
coverage process. This is a significant improvement for real world applications which
are faced with multiple objectives like finding the shortest, the safest, the most eco-
nomical or most informative route. For example there are applications in the fields
of logistics, search and rescue or public transportation. In this paper the multiple
route planning problem is solved with the help of a multiple ant colony optimization
algorithm [1].

This paper is structured as follows. Firstly, the model assumptions and a general
overview of the model are presented. Secondly, the use of multiple ant colony opti-
mization for the route planning problem is described. Thereafter the experimental
analysis is presented. The last section summarizes the results by using multi-objective
optimization in the field of terrain coverage.

2 Online Terrain Coverage Model

Firstly, the model assumptions are presented. The environment is divided into cells,
each cell is either free or an obstacle. A free cell can contain a search object. The
object will be discovered by visiting the related cell. Each cell is represented by one
task. The quadtree decomposition is used for dividing the environment into cells
which have the same size as the sensor range [4]. The resulting order of the cells is
used to determine the coverage task list. Furthermore there is a search object task
list. Both task lists are disjoint.

Every agent is updating both lists individually. If an obstacle is encountered on
the agents route, the agent will go left or right around the obstacle in a randomized
manor, as long as the agent is on the previous planned route. If the agent circles the
obstacle, consequently all tasks represented by the obstacle cells will be deleted. The
agents have an obstacle sensor range of one cell in eight directions and in each time
unit the agent can move to one of the eight adjacent cells.

Referring to the two task lists, the swarm is separated into two dynamic sub teams.
One coverage team which accomplishes coverage tasks and one search object team
which discovers object tasks. The maximum size of the search object team has to be
defined. For each located object, every unknown adjacent cell will be listed in the
object task list. If the agent is a member of the coverage team (search object team),
the tasks will be added at the end (to the beginning) of the object task list. The agents
can communicate within a defined range and the same mobile ad hoc communication
network. Obstacles do not interfere.

Next the self-coordinating auction based approach is explained. As long as an
agent does not have an assigned task, auctions will be initiated. If there are unac-
complished object tasks and the search object team is not complete, object tasks will
be offered first. Every agent within the same communication network participates
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with a bid. Before the agents determine their bids, they exchange information about
the environment and accomplished tasks. The agent with the best bid concerning the
objective function wins the auction, taking account of the sub teams. Agents which
perform a task or have already won other tasks, are including such tasks into the bid.

The determination of the route is implemented in two ways. The implementation
of the multi-objective optimization for the multi-objective terrain coverage model
(MOOTCM) is explained in Sect. 3. There is a reference single-objective optimization
for the multi agent quadtree terrain coverage model (MAQTCM), as well. The aim of
the single-objective optimization is the minimization of the route length. Afterwards
the quality of each route G(ri ) is evaluated with regard to the sum of the costs and
the number of known cells. At this G(ri ) has to be minimized.

3 Multi-Objective Route Planning

The ant colony optimization metaheuristic was developed by Dorigo [2] and which
is based on the behavior of an ant colony finding a short route between their lair and
a food source. The ants leave behind pheromones on their routes and succeeding ants
are attracted. Consequently the probability to follow the same route is increased.

The presented model studies a multi-objective route planning problem. On one
hand the route length has to be minimized, whilst on the other hand the maximization
of the information gain has to be considered. The information gain is represented by
the quantity of unknown cells. For the presented route planning problem the MACO1
algorithm is used [1]. There are m + 1 colonies and m pheromone matrices, where
m is the number of objectives. Each single-objective colony discovers the solution
space with the help of the referenced pheromone matrix. In addition there is one
multi-objective colony which uses all pheromone matrices to find solutions. The
pheromone factor rk

S(ci, j ) which is considered by the kth single-objective colony
encodes information about the objective function fk . The multi-objective colony
considers one of the rk

S(ci, j ) pheromone factors randomized. The decision probability
for a cell ci, j is determined for the first colony which is trying to find the shortest
route by

p1
S(ci, j ) =

[
r1

S(ci, j )∑
ci, j ∈Φ r1

S(ci, j )

]Hρ [
1

dS(ci, j )

]Hπ

∑
ch

i, j ∈Φ

[
r1

S(ci, j )∑
ch
i, j ∈Φ

r1
S(ci, j )

]Hρ [
1

dS(ch
i, j )

]Hπ

. (1)

The heuristic information dS is the target range. The neighborhood Γ contains all
adjacent cells which have to be considered for the next move. The determined prob-
abilities are used to choose a cell with the Monte-Carlo selection. The second colony
which tries to find routes with a high information gain uses a similiar equation in
respect to the heuristic information reflecting the priority of a cell, either known or
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Fig. 1 Environments used for experimentation. In a free environment, b outdoor-like environment,
c indoor-like environment

unknown. The pheromone matrices are updated after each cycle. The fitness of the
best solution Sk in the current cycle and the overall best solution Sk

best of the kth

single-objective colony are used to determine the amount of pheromones which are
laid on ci, j ∈ Sk . The pheromone matrix r1 is updated by the first colony with

θr1(ci, j ) =
{ PA

1+Zρ( f1(Sbest )− f1(S))
, if ci, j ∈ S1

0, else
(2)

with f1 denoting the costs of the route. The second colony updates the referring
pheromone matrix r2 dependent on the ratio between the information gain and the
costs. The multi-objective colony updates both pheromone matrices rk with respect
to the amount of pheromones for both single-objective colonies.

4 Experiment

To assess the quality of the new approach, experiments were conducted. The experi-
ments run on three well known environments which can be classified as free, outdoor
like and indoor like [9]. The initializations used are shown in Fig. 1. Both obstacle
environments reduce the total coverage environment by 14 %.

This paper claims to be a proof of concept. Nevertheless, a design of experiments
approach [6] was used to determine the following parameter set. The MACO1 algo-
rithm is used with 120 generations and 80 ants. The best route of the pareto-front
is selected with the objective function G(ri ) introduced in Sect. 2. Both weighting
factors are 0.5. The heuristic factors are determined for the pheromone value and
target range by Hρ = Hπ = 0.2 and the information gain by Hδ = 0.6. The constant
factor PA is set to three. The pheromone evaporation factor is 0.05.

For comparison the single-objective MAQTCM introduced in Sect. 2 and an
extended node counting terrain coverage model (NCTCM), are used. The original
NCTCM [5] is adapted for a communication structure of the swarm of agents.
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(a) (b)

(c) (d)

Fig. 2 a Influence of the swarm size. b Influence of the communication range. c, d Influence of
the environment

The models are compared with the help of the performance metrics called total
coverage time, the percentage of coverage and the total number of revisits. Objects
of study are the influences of the obstacle structures, the communication range and
the swarm size.

5 Results

The results show the averages of 30 runs for the single-objective MAQTCM and
NCTCM. The multi-objective MOOTCM runs only 10 times for each experiment
because of the high computational cost.

The swarm size has no significant influence on the number of revisits for the
MOOTCM and NCTCM. For the MAQTCM an increasing number of revisits is
observable, shown in Fig. 2a. An assumption for the reason is that because of the
quadtree decomposition the agents have to cross the center more often.

An increasing communication range has a positive influence on the total coverage
time of all three models. More information can be considered for the planning and
optimization of the routes. The results show that for the MOOTCM the redundant
coverage is increased by 71.7 % for a decreasing communication range by 32 to 4.
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In comparison the MAQTCM has an increasing redundant coverage of 34.1 % and the
NCTCM of 53.3 %. Nevertheless for each communication range the total coverage
time is the best for the MOOTCM. Figure 2b sums up the observations.

The MOOTCM and the NCTCM show no significant differences in the total
exploration for the outdoor and indoor like environment. Both models perform
slightly better on the outdoor like environment for the first ≈90 % of the cover-
age process. Thereafter the exploration time converge concerning the indoor like
environment. The MOOTCM and NCTCM show a similar exploration behavior.
Both are robust towards the analysed obstacle structures. The first results show that
the MAQTCM is not robust towards obstacles.

The observation referring to the standardized exploration time of the searching
objects shows that there is no significant difference between the MOOTCM and
MAQTCM towards the analysed obstacle structures. The MOOTCM and MAQTCM
can find the first ≈75 % of the objects faster on the free and outdoor like environment
than on the indoor like environment. Furthermore the MOOTCM can find objects
fastest on the free environment. Figure 2c, d shows the exploration behaviour for the
environment structures.

6 Conclusion

This paper studies a multi-objective terrain coverage approach for a decentralized
swarm. For the very first time the multi-objective MOOTCM enables the consid-
eration and adaption of different or even conflicting objective functions during the
coverage process. Besides the swarm can exploit the changing environmental con-
ditions in a more flexible way. The analysis shows that the MOOTCM can reduce
the repeated coverage and therefore the total coverage time by ≈65 % concerning
the node counting NCTCM. For each experiment the MOOTCM yielded the best
results. The improvement from the basic single-objective MAQTCM through to the
MOOTCM is significant, especially difficult obstacle structures can be treated in a
robust way.
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Hot Strip Mill Scheduling Under Consideration
of Energy Consumption

Karen Puttkammer, Matthias G. Wichmann and Thomas S. Spengler

Abstract In steel industry hot rolling is an energy-intensive process as steel slabs
need to be heated to about 1,250 ◦C before being rolled on the hot strip mill. Due to
time-dependent piecewise energy demand, the total energy consumption for heating
is determined by the hot rolling schedule. However, there is no modeling approach
known which incorporates the interdependencies between the schedule, the charging
time of the slabs, their charging temperature and the energy requirement for heating.
We present a MILP formulation for the hot strip mill scheduling problem (HSMSP)
under consideration of energy consumption. It takes into account the mentioned
interdependencies as well as setups and makespan.

1 Introduction

Hot rolling is one of the most important production processes in steel production. It
is the first reshaping process of solid pre-products, so-called slabs. A slab is a steel
cuboid that is produced out of liquid steel in the casting process. For reshaping on the
hot strip mill the slab needs to be heated in a furnace first. Then the width is reduced
on the width compactor and the slab is rolled into a steel strip, that is wound to a coil
at the end of the process. Each slab is assigned to a customer order. The customer
order determines the final dimensions of the steel strip after hot rolling.
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Hot rolling is an energy-intensive process, which primarily results from the
heating process. Because of rising energy prices, the CO2 certificate trading in the
European Union and hard competition due to production overcapacity in the world
market, European steel manufacturers strive for a reduction of the specific energy
consumption.

The task of production planning at the hot strip mill is to generate a schedule of
a given portfolio of production orders. This schedule may consist of one or more
rolling turns. Thereby, the specific characteristics of the production process need to
be taken into account.

In this paper we present a scheduling model for the introduced planning situation
where energy consumption is considered as an objective. Therefore, in Sect. 2 the
problem characteristics and the resulting impact on the constraints as well as on the
objective function are described in more detail. A modeling approach is discussed in
Sect. 3, which incorporates the aspects covered in Sect. 2. An illustrative example is
given in Sect. 4. The paper closes with a conclusion and an outlook.

2 Hot Strip Mill Scheduling

In this section the problem characteristics of the hot rolling process are described. In
general, there are four characteristics to be considered: slab temperature and energy
requirement, the order portfolio, batching in rolling turns with a typical width profile
and jumps between adjacent orders.

The first characteristic concerns the slab temperature and the energy requirement.
For hot rolling the slabs need to be heated to about 1,250 ◦C. They are typically
charged into the furnaces at a temperature below 500 ◦C. The temperature results
from the previous casting process. The slabs leave the casting process at a temper-
ature of about 1,000 ◦C. They cool down during the following transportation and
storage processes. The cooling curve is a regressive function over time. Thus, the
temperature loss is highest in the first hours after casting. The colder a slab is charged
into the furnace the more energy is required to reheat it to a given discharging tem-
perature. The charging time of a slab and thereby the energy required for reheating
is determined by the production schedule. In the literature there are a few papers that
do consider energy consumption in the hot strip mill scheduling problem (HSMSP).
Nevertheless, the interdependencies between schedule, charging time, slab age as
the time between casting and charging into the furnace, charging temperature and
energy requirement are abstracted using highly aggregated cooling assumptions
[2, 6, 7]. To cover the interdependencies, the charging time of each slab needs to be
calculated dynamically depending on the order sequence.

Second, the order portfolio considered for scheduling contains two kinds of orders.
First, there are slabs already waiting in the slab yard for processing. Second, there are
virtual slabs. These are slabs en route to the slab yard or slabs which have not been
produced yet but have already been scheduled for casting [7]. Either way, virtual
slabs must not be scheduled before they are available for hot rolling. The moment a
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slab becomes available is determined by the casting time plus the time necessary for
transportation to the hot strip mill.

Third, the hot rolling schedule is composed of rolling turns with a characteristic
width profile. Due to equipment wear the working rollers of the hot strip mill need to
be changed regularly in a setup. The batch of production orders scheduled between
two setups is called a turn (also rolling unit or program). The width profile of a
turn follows the coffin shape. The coffin shape consists of two sections, the warm-
up section and the staple section. In the warm-up section a few slabs are arranged
from narrow to wide while in the staple section the slabs are arranged from wide to
narrow [4, 5]. In some scheduling approaches the warm-up section is not included
into the scheduling task but planned manually [2, 3]. When considering energy
consumption, the warm-up section should be part of the planning approach so that
the potential of scheduling hot slabs at the beginning of a turn does not get lost. In
the warm-up section the number of slabs [7] as well as the width jump between two
adjacent orders [4] are limited. Both the cumulated rolling length at the same width
within the staple section and the cumulated rolling length of a turn are restricted to
ensure surface quality [1, 6].

Fourth, restrictions concerning adjacent orders need to be respected to guarantee
good quality with respect to strip flatness. These restrictions include maximal jumps
in hardness, in rolling temperature and in thickness where the limits differ for a
thickness increase or decrease. Common approaches use penalty cost to allow for
these restrictions [1, 7]. For the sake of objectivity of the objective function value
they are formulated as hard constraints in our approach.

The objective of scheduling at the hot strip mill is to minimize the production-
related cost relevant for the decision. These comprise three types of cost. The first
type are setup cost [2, 3]. They involve material cost as the rollers need to be ground
after every use. The second type are the cost of energy consumption. Total energy
consumption involves the energy required for heating the slabs and efficiency losses.
The required energy for one slab equals the specific enthalpy difference of the slab
at the discharging and charging temperature multiplied by the slab weight. Given an
empiric regressive cooling function and temperature-dependent specific heat capac-
ity, the specific enthalpy difference can be described as a function of the slab age. The
resulting enthalpy difference function is concave but can be approximated by piece-
wise linearization without loss of generality. The third type of cost are opportunity
cost. They arise from an extension of the makespan as compared to a minimum neces-
sary time since a longer makespan is related to lost demand. The makespan comprises
the time the hot strip mill is occupied due to the scheduled order portfolio. This is the
sum of setup times and intermediate charging times. The intermediate charging time
of an order is a parameter indicating the time passing between the charging of this
order and the succeeding order. Only the time exceeding the minimum makespan is
evaluated.
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3 Model

In this section the specifics of the mathematical formulation for the scheduling prob-
lem are discussed. The objective function of the model is presented and the constraints
are described.

The introduced planning problem is an assignment problem. Given an order
portfolio of n orders and a schedule with the length of n positions each order i is to
be assigned to a position j. Three classes of binary and two classes of continuous
variables are used to formulate the model. The binary decision variable xij indicates
whether order i is assigned to position j or not. The binary decision variable yj is
set to one if the warm-up section starts at position j. Equally, zj indicates the start

of the staple section at position j. The continuous decision variable tcharge
i describes

the charging time, e.g. the processing start of order i. To approximate the specific
enthalpy difference function by piecewise linearization, a λ-formulation is used. The
continuous decision variable λiu denotes the nonnegative weight of breakpoint u.
A breakpoint is defined by its abscissa au and the corresponding function value
fi(au). Each specific enthalpy difference value of an order i can then be represented
by a linear combination of the breakpoints’ function values. Multiplied with the slab
weight wgi it yields the energy demand of the order.

MinZ = Ctotal = csetup ·
n⎧

j=1

yj + cenergy · 1

η
·

n⎧

i=1

wgi ·
⎪

U⎧

u=1

λiu · fi(au)

⎨

+ copp ·
⎛

⎜

⎝

⎞
n⎧

i=1

interi +
n⎧

j=1

yj · Tsetup

⎟

⎠ − LBmakespan

⎡

⎢ (1)

The objective function (1) minimizes the relevant production-related cost Ctotal,
consisting of setup cost, opportunity cost and energy cost. Setup cost arise from
the number of setups evaluated with the setup cost factor csetup. Energy cost arise
from energy consumption evaluated with the energy cost factor cenergy. Energy con-
sumption equals the energy required for heating over all slabs divided by the effi-
ciency factor η. Opportunity cost result from the makespan, calculated by the sum of
intermediate times interi and setup time Tsetup. The exceedance of the makespan’s
lower bound LBmakespan is evaluated with the opportunity cost factor copp.

Eight categories of constraints have to be considered. The first category of con-
straints defines λiu. It needs to be ensured that the linear combination of the break-
points’ abscissas equals the age of order i. Further requirements are that at most two
adjacent lambdas are greater than zero and that their sum equals one. The second
category are assignment constraints. Here, all orders are assigned to a position and
vice versa. The third category of constraints defines the charging time. The charging
time of an order is obtained by adding the intermediate charging times of all pro-
ceeding orders and the incurred setup times. Additionally, virtual slabs must not be
scheduled before they are available for rolling. The fourth category of constraints
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defines the turn sections within the schedule. They require that the warm-up and
the staple section alternate and that at one position either the warm-up or the staple
section may start. The fifth category concerns the width profile and the sixth category
the jumps between adjacent slabs. They correspond to the requirements specified in
Sect. 2. The seventh category of constraints initializes the model. The start of the
first warm-up section is fixed at the first position of the schedule. The last category
comprises binary and nonnegativity constraints. They define the range of the decision
variables.

All the mentioned model constraints can be formulated as linear constraints. Thus,
the resulting model can be categorized as a MILP (mixed-integer linear problem).
Nevertheless, due to the binary decision variables, the problem is combinatoric and
thus hard to solve.

4 Illustrative Example

In this section, the effect of considering energy consumption as an objective is demon-
strated. For verification and validation the model was implemented in CPLEX 12.4.
A few test instances were solved on a 2.67 GHz CPU with 4GB RAM. Here we
present the results of a test instance with 12 orders. The relevant order characteristics
are randomly generated based on real world parameter values. The width and thick-
ness, both measured in millimeter, the slab weight measured in tons and the casting
time measured in hours with respect to start of production are given in Table 1. The
relevant process characteristics are set as follows. The maximal number of orders
in the warm-up section is 4 and the maximal increasing (decreasing) width jump
is 0.5 mm (0.3 mm). The intermediate time is set very high (1 h) to induce cooling
over time. The setup time is set to 1 h, too. All orders are available when planning
starts. First, following classical approaches, the setup cost are optimized. Note that
because of the deterministic intermediate charging times, the minimization of setups
equals the minimization of makespan. Second, the production-related cost relevant
for the decision are optimized. In Fig. 1a the solution of the classic approach and
in Fig. 1b the solution of the new approach are given. In both solutions two turns
are scheduled. Thus, setup cost and opportunity cost are the same in both solutions.
However, energy cost are 4.29 % lower when minimizing the production-related cost.
The potential for saving energy rises with the length of the planning horizon and the
flexibility of assigning orders to alternative positions. Moreover, a small percentage
improvement means considerable absolute savings measured against the total energy
consumption.
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Table 1 Order characteristics of a problem instance with 12 orders

Order Width Thickness Weight Casting time

1 1,721 2.92 31 −16
2 1,952 1.86 12 −16
3 1,077 1.76 16 −16
4 1,248 2.50 20 −18
5 1,874 2.34 27 −8
6 1,530 1.76 30 −16
7 1,798 2.50 22 −8
8 1,734 2.16 12 −8
9 966 2.00 29 −8

10 1,549 2.50 12 −12
11 1,416 2.50 17 −8
12 1,932 2.26 29 −16
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Fig. 1 Optimal solution schedule for problem instance with 12 orders, a optimization of setup cost,
b optimization of total cost

5 Conclusion and Outlook

In this paper we present the HSMSP under consideration of energy consumption.
The characteristics of the problem are discussed with focus on the interdependencies
between the schedule and the energy requirement for heating. For the first time, a
modeling approach that incorporates these characteristics is introduced and a small
illustrative example is presented. Further research on adequate solution methods is
necessary in order to solve instances of practical problem size within acceptable
time.
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Capacitated Network Design

Multi-commodity Flow Formulations,
Cutting Planes, and Demand Uncertainty

Christian Raack

Abstract This article provides an overview about the main results and findings
developed in the dissertation of the author [8]. In this thesis, we develop methods in
mathematical optimization to dimension networks at minimal cost. Given hardware
and cost models, the challenge is to provide network topologies and efficient capacity
plans that meet the demand for network traffic (data, passengers, freight). We incor-
porate crucial aspects of practical interest such as the discrete structure of available
capacities as well as the uncertainty of demand forecasts. The considered planning
problems typically arise in the strategic design of telecommunication or public trans-
port networks and also in logistics. One of the essential aspects studied in this work is
the use of cutting planes to enhance solution approaches based on multi-commodity
flow formulations. Providing theoretical and computational evidence for the efficacy
of inequalities based on network cuts, we extend existing theory and algorithmic
work in different directions.

1 Introduction

In this work, we focus on several aspects arising in the context of optimizing and
planning the core of nation-wide telecommunication networks. Most of the models
and methodology, however, are based on the general notion of capacitated networks
and multi-commodity flows such that the main findings and new approaches are also
useful for applications in public transport and logistics. More generally, we were
able to enhance some of the most successful approaches to the level of general
optimization software handling all kinds of different applications. Solvers such as
Cplex [5], Scip [10], and Gurobi [4] now scan the problem structure and apply our
methods or similar techniques in case they can find network design substructures.
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The results in this work have been developed within the German research project
Eibone–Efficient Integrated Backbone and the Matheon project Integrated plan-
ning of multi-layer telecommunication networks at the Zuse Institute Berlin, partially
in cooperation with industry partners such as IBM-ILOG, Nokia-Siemens Networks,
Deutsche Telekom, and Ericsson.

In the meanwhile, most of the results in this thesis have been published in different
Journals: Achterberg and Raack [1], Raack et al. [9], Dash et al. [3], Koster et al. [6]
and Poss and Raack [7].

2 The Problem: Capacitated Network Design

The Internet is evolving as the common platform for all classical communication
services such as telephony, mailing, and broadcasting TV or radio. Due to its
immense flexibility, it has also created new multi-media services, as for instance
online-gaming, video-on-demand, (video) instant messaging, and file sharing. This
has resulted in an ever increasing demand for higher bit-rates putting pressure on
telecommunication network operators to increase network capacity and to efficiently
design their infrastructure. In general one has to face the following trade-off: On the
one hand, as end-users, we are interested in high Quality of Service (QoS), that is,
we want fast connections, high throughput, no latency, no packet loss, and no inter-
rupts when using applications that require constant data streams. On the other hand,
resources are limited. Network carriers are interested in minimizing capital expendi-
tures (capex) for the necessary technology and equipment but also expenditures for
operating the network (opex). In particular, the energy consumption of telecommu-
nication infrastructure has recently moved more into the focus of political and public
attention.

This situation creates the classical capacitated network design problem: Planning
telecommunication networks essentially means to connect locations in a given region
and to provide enough capacity at nodes and links in the resulting network in order
to meet the demand for bandwidth.

Both in the network engineering community and in the mathematical optimization
community, dimensioning networks is known to be extremely challenging already
in the setting described so far, that is, the task to create a capacitated network and
a network flow supporting a single matrix of traffic demands. However, from the
practical point of view, we cannot completely ignore the following additional aspect
that gets particular attention in this thesis and even increases the complexity of
capacitated network design.

We can never expect to have full knowledge of the traffic demand at the time
the design capacity decisions are made. In long-term planning, networks should be
dimensioned to meet the future demand. This demand is uncertain. As a consequence,
decisions about the actual capacity design are typically made based on traffic estima-
tions, and very often, to avoid bottlenecks and shortages, the traffic is over-estimated.
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Over-estimated demand creates over-provisioned networks which in turn results in
costly designs and a wastage of resources.

In order to create and operate more resource- and cost-efficient networks the
uncertainty of future demand has to be taken into account already in the strategic
capacity design process. Robust network design tries to address this issue and over-
come the mentioned problems. Instead of (over-)estimating a single deterministic
traffic scenario, a set of realistic traffic scenarios is assumed. Network solutions are
then only accepted if they are robust, that is, they are feasible for all the considered
scenarios.

3 The Methodology: Mixed Integer Programming

To solve different problems in the design of networks we develop techniques in
mixed integer programming. Demand and capacity constraints are modeled as linear
inequalities and equations, while integrality constraints model discrete choices with
respect to equipment and/or flow alternatives.

State-of-the-art MIP solvers integrate a cutting plane algorithm into linear pro-
gramming (LP) based branch-and-bound. There is a trade-off between improving the
dual bound by adding more cutting planes and deteriorating the LP re-optimization
by adding too many additional constraints which typically slows down the overall
algorithm. At this point it is crucial to provide strong cutting planes that cut off large
infeasible portions from the relaxation without cutting off feasible points.

Large parts of this thesis concentrate on cutting plane techniques and polyhedral
studies applied to network design problems. We provide cutting planes that incor-
porate the different variables in network design, capacity and flow, and that exploit
aspects such as discrete capacity models and demand uncertainty as described above.
We thereby study the strength of the developed inequalities theoretically and com-
putationally, that is, we show that the studied inequalities define facets but we also
evaluate their algorithmic impact. Our approach is two-fold. We provide cutting
plane techniques that can be used to design tailored algorithms to solve specific net-
work design problems. On the other hand, we aim at improving general purpose MIP
solvers by including successful special purpose cutting techniques stemming from
network design.

Most of the strong inequalities in network design have been derived by studying
the problem for very small networks or network substructures. The main idea is to
fully understand the mathematical structure and the problem-defining polyhedra for
these small instances and to describe (all) important facet-defining inequalities. In
a second step, these inequalities are generalized and made available for the original
problem.

Following this approach, the inequalities in this thesis are mostly based on network
cuts. A network cut is a set of links connecting two independent parts of the network,
meaning that taking away these links disconnects the network. A cut-based inequality
essentially states a restriction on the capacity and/or flow on the links defining the
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network cut. It might for instance force sufficient cut-capacity. Shrinking each side
of a cut to a single node obviously results in a two-node network. In this respect,
deriving strong cut-based inequalities is related to understanding network design
polyhedra for problems with only two-nodes, also known as cut-set polyhedra. We
highlight that the concept of studying the facial structure of cut-set polyhedra leads to
the well-known and strong cut-set inequalities, flow cut-set inequalities, flow-cover
inequalities, or Steiner cut inequalities. We study cut-set polyhedra in different con-
texts incorporating side-constraints such as demand uncertainty, thereby enhancing
and generalizing some of the mentioned cut-based inequalities to these contexts.

4 Main Contributions

This thesis consists of three major parts.
In Part I, we introduce the general concepts and notation. On the one hand we

formally introduce the notion of capacity, routing, and multi-commodity flows in net-
works and describe variations of capacitated network design problems. We present
mixed integer programming formulations as well as cutting planes used to tighten
the corresponding linear prigramming relaxations. We start with a basic link-flow
formulation and integral link capacity variables. We then show how the models
can be extended or modified to handle different requirements on the network flow
and capacity such as fractional, integral, and single-path flows, unidirectional and
bidirectional capacities, as well as multiple link or node capacity modules. For all
of these variations we show how to formulate strong cutting planes and review
the corresponding literature. The focus is on cut-based inequalities. In this respect,
so-called single-node flow sets and cut-set polyhedra are introduced. It is highlighted
that cut-based inequalities define facets and can be very effective computationally.
That is, the average time to solve network design problems can be reduced substan-
tially and there are many instances that can only be solved in a reasonable amount
of time if the mentioned strong inequalities are used as cutting planes.

On the other hand, we focus on solution technology to deal with mixed inte-
ger programming formulations in general. As most of the results in this work are
related to cutting planes we introduce this methodology in a more general form.
We work out how strong inequalities that can be obtained by constraint aggregation
techniques in combination with rounding techniques such as mixed integer rounding
(MIR). We introduce the concept of complemented mixed integer rounding (c-MIR)
as implemented in state-of-the-art MIP solvers. We review crucial known facts but
also provide some new insights about the size of MIR aggregations. In particular, we
give a short proof of a recent result of Anderson et al. [2] that any MIR cut can be
obtained from a subset of linearly independent constraints of the given system.

Part II provides the detailed algorithmic framework of the MCF separator (MCF
stands for multi-commodity flow) which combines both areas, that is, successful
cutting planes for special purpose network design problems as well as aggregation
and separation techniques for general purpose MIP. The MCF separator is now an
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integral part of the MIP solvers Cplex [5] and Scip [10]. A similar approach based
on single-commodity flows and so-called network inequalities is now also available
in Gurobi (Gu, Chief Technical Officer of GUROBI, 2011, Personal communica-
tion). The MCF separator integrates network design specific methodology into these
optimization tools which is of particular importance for practitioners that tend to use
MIP solvers as black boxes.

The key idea of the MCF-separator is to scan the constraint matrix of general
MIP formulations in order to find a substructure that is common to many models
for network design problems. This structure consists of a series of similar blocks
corresponding to network matrices defining a multi-commodity flow and a coupling
of these flow-blocks by capacity constraints. In case of a successful detection, the
MCF-separator constructs a network from the obtained information and applies sepa-
ration methods similar to those introduced in Part I. To obtain inequalities defined on
cuts in the detected network, rows of the original system are aggregated accordingly.
In this respect, the MCF-separator essentially provides an alternative aggregation
framework that is used to provide cut-based base inequalities. These base inequal-
ities are then strengthened by mixed integer rounding. We answer the question of
how to detect and construct a network from a multi-commodity flow formulation as
well as the question of how to generate valid cut-based inequalities without precisely
knowing the network structure. We also report on the computational success of the
separator using Scip andCplex. Through extensive computational tests we show that
the proposed separation scheme speeds-up the computation for a large set of network
design problems by a factor of two on average. Many of these problems can only
be solved if the separator is switched on. In roughly 9 % of general MIP instances
we find consistent embedded networks and generate violated inequalities. For these
instances the computation time is decreased by 18–30 % on average, depending on
the solver and test set. For all other instances there is almost no degradation of the
optimization performance.

In Part III we study the problem of designing networks without precisely knowing
the traffic demand. We discuss how this demand uncertainty can be modeled and
review and discuss different demand uncertainty sets. It is shown how the concept of
uncertainty affects the methodology to solve capacitated network design problems.
Assuming polyhedral uncertainty sets, we highlight that there are different ways of
solving the corresponding robust network design problems based on dualization or
decomposition techniques. In detailed polyhedral studies we work on the resulting
models and robust counterparts. In this respect, we extend the approaches from
Part I to the design of robust networks, thereby generalizing and strengthening the
strong inequalities from Part I and II. We extend the concept of cut-set polyhedra to
robust network design and present facet-defining cut-based inequalities. We provide
computational insights comparing different solution approaches, showing progress
by separating cutting planes, but also evaluating the robustness of solutions using
real-life measurements from IP networks.

Since there is a set of traffic scenarios to be considered, robust network design is
a two-stage process. In the first stage we determine capacities. In the second stage
we are allowed to change the flow observing realized demands. The flexibility in
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the second stage, known as recourse actions or recovery, can be restricted leading
to different routing schemes, static and dynamic routing being the most extensively
studied. Following this line, we embed robust network design into the more general
framework of two-stage robust optimization with recourse.

The chosen recourse defines a routing scheme which influences the theoretical
and computational complexity, but it also influences the price of robustness, that is,
depending on the allowed flexibility, the cost for optimal robust network solutions
might vary. Static routings are easier to handle computationally as polynomial size
reformulations are available. The static routing scheme, however, is very restrictive
such that the resulting networks tend to be conservative. Dynamic routings, being the
most flexible, produce cheap network designs but lead to hard optimization problems.
We introduce a new routing scheme which we call affine. Affine routing can be seen
as a generalization of static routing allowing for more flexibility. We show that affine
routing provides a reasonable alternative in between static and dynamic routing as it
still yields polynomial size reformulations. We compare static, affine, and dynamic
routing schemes theoretically and discuss their implications. We state necessary and
sufficient conditions on polyhedral uncertainty sets under which the three schemes
coincide producing the same network cost. Based on realistic network data and
demand polytopes, we also compute the cost gap between static, affine, and dynamic
solutions. We conclude that for the chosen instances the solutions based on affine
routings tend to be as cheap as two-stage solutions with dynamic recourse. In this
respect the affine routing principle allows for enough flexibility to almost capture
fully flexible dynamic routings. We may hence use affine routing to approximate
fully flexible recourse using tractable robust counterparts.
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Robustness Analysis of Evolutionary
Algorithms to Portfolio Optimization
Against Errors in Asset Means

Omar Rifki and Hirotaka Ono

Abstract The Mean-Variance (MV) optimization is a well-studied model for
portfolio optimization. Although the main focus is primarily on finding the best
efficient portfolios, the MV model is known to be extremely sensitive to pertur-
bations in asset means. This paper investigates the robustness of MV optimization
when solved by Evolutionary Algorithms (EA), in the case of linear constraints, i.e.,
budget constraints and holding constraints. To this end, comparisons were made on
Quadratic Programming (QP), Genetic Algorithms (GA) and Evolution Strategies
(ES). In order to identify, for EA, robust portfolios, which are supposed to exhibit low
sensitivity to small changes in assets means, we proceed by exploiting the population
aspect of EA and computing the performance of some selected ‘good’ individuals
under multiple runs subject to perturbations. Comparison of portfolios follows two
procedures, the first measures the loss in terms of utility functions, while the sec-
ond is more practical enabling the decision maker to incorporate a preferred level
of robustness. The experimental results using real-world data show that EAs have
stronger robustness than QP; many individuals of EA’s population outperform the
QP-based optimal portfolio.
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1 Introduction

The portfolio optimization problem aims to find an optimal allocation of financial
capital among a set of available assets. The problem is mostly based on two criteria:
minimizing the risk while maximizing the expected return of the investment. Among
all the models, the Mean-Variance (MV) analysis has become a classical theoretical
framework for portfolio optimization since the pioneering work of Markowitz [7].
Its general formulation according to a risk tolerance level λ for N risky assets can be
stated as:

maximize
w

{μp(w) − λ σ 2
p (w)} =

N∑

i=1

wiμi − λ

N∑

i=1

N∑

j=1

wiwjσij (1)

subject to
N∑

i=1

wi = 1, (C1) and ≤i ∞ [|1, N |], li ≥ wi ≥ ui (C2)

where wi is the weight corresponding to the fraction held in the ith asset. The expected
return of the ith asset and the covariance between the returns of the ith and jth assets
are respectively denoted by μi and σij, such that σii = σ 2

i is the variance of the ith
asset. Although many hard restrictions can be added to the model such as cardinality
constraints, we only consider linear constraints, namely budget constraint (C1), i.e.,
the entire budget is invested, and holding constraints (C2). In this (linear) case, the
MV model is commonly solved by Quadratic Programming (QP) procedures.

In the literature, there is a large number of papers on the benefits and limitations
of the MV analysis [8]. One of the salient limitations is that the MV model is quite
sensitive to errors in the inputs: means (expected returns), variances and covariances.
These factors are de facto containing errors, hence sensitivity is an issue. In fact, as
the true future probability distributions of returns are unknown, the used factors
are based on statistical estimators, which may contain errors. Best and Grauer [2]
explored the sensitivity of optimal portfolios to variations of one asset mean. Their
computational results show that a small increase in the mean of one asset can result in
large changes in the portfolio’s weights, whereas portfolio’s return and risk remain
slightly affected. On the other hand, Chopra and Ziemba [4] made a distinction
between the impact of errors in means, in variances and in covariances. According
to the investor’s risk tolerance, errors in means can be 10 times or more important
than errors in covariances. This value increases with a higher risk tolerance level.
Following this result, we focus exclusively on errors of means. Therefore, variances
and covariances are supposed exempt from noises.

The sensitive issue does not necessarily imply that the MV framework is flawed.
To come across this limitation, researchers considered alterations of the classical
model in order to achieve some degree of robustness and reliability mainly by using
robust optimization techniques [5]. These techniques aim to incorporate the underly-
ing uncertainty of estimations directly into the optimization process, for instance by
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using robust statistical estimators of inputs. The intent of this paper is to consider the
sensitivity problem from another angle by using a heuristic solving approach, namely
Evolutionary Algorithm (EA), which is a collective term describing a family of sto-
chastic algorithms based on the natural selection principle—survival of the fittest.
EAs have been remarkably and widely adopted in recent years to solve optimization
problems in various domains, in particular those computationally intractable in the-
oretical sense. In fact, many empirical studies have reported that for MV model, EAs
can find good approximate solutions with lower computational costs. The main idea
behind these algorithms is to keep evolving a population of candidate solutions one
generation after another, using crossover and mutation operators, to hopefully find a
global optimum or a suboptimal solution in the worst case.

Outline: The objective of our simulation-based evaluation is to measure accu-
rately how much weight vector w deviates, when assets means are slightly and
stochastically perturbed. The proposed robustness measure assess, for QP and two
‘dialects’ of EA: Genetic Algorithm (GA) and Evolution Strategy (ES), the perfor-
mance of the nominal portfolios under multiple independent noisy runs. We shall
refer to nominal portfolios as optimal portfolio allocations computed prior to any
perturbation. The first approach measures the loss in terms of utility function, while
the second is more pragmatic, allowing the decision maker to incorporate a user-
defined robustness tolerance. The matter of robustness assessment will be discussed
in detail in the next section. The empirical study and results are presented in Sect. 3,
while Sect. 4 concludes this study.

2 Robustness Assessment

Solutions of real-world optimization problems are expected not only to be optimum
but also insensitive to small changes affecting the problem variables. Otherwise,
a sensitive solution may not be attainable in practice, mainly due to the difficulty of
meeting the theoretical assumptions. In this section, we shall present the notion of
robustness, and how to assess such concept within the MV framework.

Related work: There are several aspects to evaluate robustness for an optimization
process, as indicated in the survey [3]. One important way is to use a robust coun-
terpart of the objective function. This latter one, when used instead of the original
function, enhances the robustness of the optimal solution, however, this comes at cost
of a performance degradation.1 This function, so-called expectation of the objective
function, is sometimes combined with an additional robustness metric also widely
used, known as the variance of the objective function. Another common method for
robustness evaluation is Sensitivity Analysis (SA). Once the problem is solved, input
parameters are perturbed and output are captured again. If output deviation from the
first run is large, this may indicate a lack of robustness.

1 Robustness and performance are usually conflicting objectives.
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Table 1 Nominal portfolios

QP EA1 EA2 EA3

(I0) Nominal case EUI0 (wQP) EUI0 (wEA1) EUI0 (wEA2) EUI0 (wEA3)

(I1) Perturbations 1 EUI1 (wQP) EUI1 (wEA1) EUI1 (wEA2) EUI1 (wEA3)

… … … … …
(Ir) Perturbations r EUIr (wQP) EUIr (wEA1) EUIr (wEA2) EUIr (wEA3)

Total

Adopted Approach: In our simulation-based evaluation, assessments are per-
formed after optimization, as in SA. However, instead of comparing portfolio’s
weights w directly the output of our model, portfolio’s expected utilities EU(w)

are examined. We do not refer to Cash Equivalent (CE),2 since all investors of our
model have the same quadratic utility function, i.e. EU(w) = μp(w) − λ σ 2

p (w).
For our first approach, we start by saving nominal portfolios computed for QP and
EA. In case of EA, several nominal individuals w are saved according to a tolerance
level α, such that, EU(w) ∗ α EUmax, where EUmax is the best utility achieved
in the run, QP and EA included. If negative expected utilities are present, all the
EU(w) are scaled by a constant, in order to shift them to the positive domain. Next,
we study the behaviour of these saved portfolios under multiple perturbed runs. For
each perturbed run, all asset means μi are subject to independent standard Gaussian
noise according to,

μ√
i = μi + μi ∩ K ∩ Xi, Xi ≡ N (0, 1) ≤i ∞ [|1, N |],

where the parameter K refers to the magnitude of the noises Xi. We have thereafter
a new asset means environment. We use this environment to recalculate EU(w) for
all nominal portfolios, as shown in Table 1. This latter operation is repeated for r
different environments of asset means. We shall refer to (I0) as the nominal run,
and (I1), (I2), . . . , (Ir) as the perturbed contexts. The last line of Table 1, counts
the number of times each solution, given an environment, is optimal, i.e. best among
nominal solutions. Solutions coming up much often might be considered more robust.
The second approach, more user-friendly, is shown in Table 2. A solution is accepted
or rejected, given a preferred level of robustness β, such that EU(w) ∗ β EUmax,
e.g. β = 0.95. The last line of Table 2, counts the number of times each solution is
accepted (times of �).

2 CE of a risky portfolio is the certain amount that provides the same utility as the portfolio [4].
Therefore, U(CE) = EU(w). CE is mainly used for comparisons independent of utility units.
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Table 2 Preferred level of
robustness

QP EA1 EA2 EA3

(I0) � � × ×
(I1) � � � ×
… … … … …
(Ir) × � × ×
Total

3 Experimental Simulations

This paper provides, through real-world data, simulations of a robustness evaluation.
Following description of data, methodology and some experimental results.

Data: We consider data from the OR-library [1].3 It involves stock values of five
stock indices, weekly sampled from March 1992 to September 1997. The data used
is for the three major stock indices as follows:

Stock index Country Number of assets

1. Hang Seng Hong Kong 31
2. S&P 100 USA 98
3. Nikkei 225 Japan 225

Methods: Picking the appropriate settings for genetic parameters is a hard prob-
lem, due to the huge number of possibilities. We have relied on parameter tuning for
setting these parameters, as described in the tables below. We wrote a Java program
using ECJ framework [6] for GA/ES simulations, and ILOG CPLEX 12.5 for QP
solving with a smallest convergence tolerance, namely ε = 10−12. Since we noticed
that too many nominal EA individuals are stored for the tolerance level α = 0.99,
only the 10 best EA individuals are picked. For both GA and ES a real-valued rep-
resentation is adopted. Simulations were run for the risk tolerance λ ∞ {2, 3, 4} and
for four different values of magnitude K ∞ {0.05, 0.10, 0.15, 0.20}. For each λ and
K and algorithm, r = 1,000,000 perturbed runs are performed.

GA Parameter Value ES Parameter Value

Population size 300 Population size 300
Generations 1,000 Generations 1,000
Selection Tournament Survival selection (μ + λ) =
Crossover Simulated binary (50 + 250)

Crossover (SBX) Crossover SBX
Mutation Polynomial Mutation Gaussian
Crossover probability 0.25 Crossover probability 0.25
Mutation probability 0.01 Mutation probability 1 (per gene)

3 A publicly available benchmark data sets at http://people.brunel.ac.uk/~mastjjb/jeb/info.html.

http://people.brunel.ac.uk/~mastjjb/jeb/info.html.
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Fig. 1 Repartition of solutions within perturbed runs for GA and λ = 2

Fig. 2 Varying risk tolerance for GA using S&P index data

Results and discussion: The first set of simulations are based on GA. Figure 1
summarises the results obtained for λ = 2. These results indicates that for indices
with small number of items, Hang Seng and S&P 100, GA-based portfolios provide
much better robustness compared with QP solution which is coming up less than
20 % as optimal. The gain in robustness for QP portfolio increases with an increase
of the value K , but it is still very low. However, concerning Nikkei 225 index, it is
clear that GA-based portfolios are far from being robust. Almost 100 % of the repar-
titions goes to QP solution. One probable explanation is that GA-based approach
does not provide a good solution for the MV problem in case of many assets, as in
Nikkei 225. Figure 2 takes into account the variation of the risk tolerance λ. It shows
that for the S&P 100 index, QP-based solutions remain too sensitive comparing with
GA portfolios, especially for λ ∞ {3, 4} where the percentage of QP-based solution
being optimal does not exceed 0.2 %. For ES, the following table gives the results
for λ = 2 and K ∞ {0.05, 0.10, 0.15, 0.20}, for the three considered indices. These
results suggest that ES-based solutions are very sensitive. Only the case of Hang Seng
index and K = 0.20 exhibits some robustness, with a best ES solution at 15.83 %.

K = 0.05 (%) K = 0.10 (%) K = 0.15 (%) K = 0.20 (%)

Hang Seng GP = 99.89 GP = 94.65 GP = 92.03 GP = 70.39
ES1 = 0.1 ES1 = 5.3 ES1 = 7.81 ES1 = 15.83

ES2 = 0.03 ES2 = 0.14 ES2 = 9.25
ES3 = 1.51

S&P 100 GP = 100 and ES = 0
Nikkei 225 GP = 100 and ES = 0
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4 Conclusions

In this paper we compared robustness of QP, GA and ES to MV optimization when
all assets are slightly and stochastically perturbed. Results using OR-library data [1]
show that in case of indices of small assets, many GA individuals outperform the
QP-based solution in term of robustness. ES solutions are however more sensitive.
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Two-Stage Robust Combinatorial Optimization
with Priced Scenarios

Roman Rischke

Abstract Two-stage robust combinatorial optimization is an established methodol-
ogy for handling combinatorial optimization problems with uncertain input. Without
knowing the actual data, a partial solution needs to be fixed in the first stage which is
then extended to a feasible solution in the second stage at higher cost once the data
is revealed. The overall goal is to construct a solution that is feasible in all scenarios,
i.e., robust against uncertainty, and minimizes the worst-case cost. Since considering
all possible scenarios usually leads to a robust solution that is too conservative and
too expensive, a central question is to decide on a subset of scenarios to be taken
into account. Restricting the set of possible scenarios is a common approach, but this
usually depends on subjective decision criteria like the willingness to take risks or
the expectation on the future. We propose an alternative concept. Instead of restrict-
ing the set of scenarios we price all scenarios, which affects the objective function
in such a way that we receive a certain scenario-dependent reward that reduces the
overall cost. This leads to new two-stage robust optimization problems. We study
complexity and devise approximation algorithms for such problems.

1 Introduction

Practical applications of combinatorial optimization often require decision making
under data uncertainty. Reasons for that are usually measurement errors or simply
the impossibility of precisely predicting the future. Data uncertainty in optimization
problems is usually represented by a set of possible scenarios, where a scenario is
a particular realization of the uncertain input parameters. Two-stage robust com-
binatorial optimization is an established methodology for handling combinatorial
optimization problems with uncertain input. The methodology was introduced by
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Dhamdhere et al. [3] and subsequently used by different authors [4–7]. Two-stage
robust combinatorial optimization is based on a two-stage decision process that we
want to illustrate with the following example.

In a frequently flooded region, high restoration cost needs to be paid if a town is
under water. In order to avoid these costs, we want to equip some towns with flood
protection systems that prevent any damage in case of a flood event. In the first stage
we do not know whether a town will be flood-affected or not. That is, the set of
flood-affected towns is uncertain in the first stage. We only have information about
possible scenarios, where in this example a scenario is a particular set of affected
towns. In the second stage a scenario is revealed to us and we have to pay the cost
for the restoration of all flood-affected towns that are not equipped with a protection
system. We assume, that the cost for the restoration of a town is much higher than
the investment in a flood protection system. Our goal is to find a set of towns that
we equip with protection systems in the first stage such that we minimize the total
cost (first stage cost and second stage cost) in the worst-case scenario. We remark
that the worst-case scenario depends on our first stage decision. This means that we
want to solve a min-max problem, where we minimize over our possible first stage
choices and maximize over our underlying set of scenarios. We can think of a malign
adversary, who, once we have taken the first stage decision, picks a scenario which
is worst possible with respect to our decision.

We can extend the described two-stage decision process to a decision process with
multiple stages. Optimization problems of that kind are called multi-stage robust
(combinatorial) optimization problems. However, in this work we restrict our atten-
tion to the two-stage model and refer the interested reader to [1, Chap. 14] and the
references therein.

2 Priced Scenarios

The goal of robust optimization problems is to construct a solution that is feasible
in all scenarios of an underlying scenario set, i.e., robust against uncertainty, and
we want to minimize the worst-case cost of the constructed solution. In the above
example, feasibility of a solution means that either we have equipped a flood-affected
town with a protection system in the first stage or we pay the cost for the restoration of
that town in the second stage. If we take all possible scenarios into account, then, by
the cost assumption, this will cause us to equip every town with a protection system
which is very conservative. Aiming for a more reasonable solution, we firstly have
to answer the following central question: Which scenarios do we take into account?
The more scenarios we take into account the more expensive our robust solution
usually is. This is often called “the price of robustness” [2]. Restricting the set of
all possible scenarios to a set of reasonable scenarios is a common approach. Note
that in robust combinatorial optimization we usually are able to express the set of all
possible scenarios in a compact way. In the above example, it is the power set of the
set of all considered towns.
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In two-stage robust combinatorial optimization, the discrete scenario approach
(see [3, 8]) and the Γ -scenario approach (see [2, 4]) have become the two main
approaches for representing the scenario set in the input. In the discrete scenario
approach, all scenarios that we want to take into account are explicitly given as part
of the input. This approach is appropriate for problems where the number of possible
scenarios is manageable. In the Γ -scenario approach, we implicitly describe the
scenario set by a parameter Γ which is part of the input. Let us illustrate this by the
above example. Suppose, we only want to be robust against situations where at most
Γ many towns are flood-affected. One reason for that might be that we expect the
number of affected towns to be no greater than Γ , though we do not know the exact
set of affected towns. In this case, we only need the set of all towns and the parameter
Γ to describe our scenario set. This approach allows us to consider an exponential
number of scenarios without listing them all as in the discrete scenario approach.

Both approaches enable us to restrict the set of all possible scenarios, but restricting
the scenario set usually depends on subjective decision criteria like the willingness to
take risks or the expectation on the future. We propose an alternative approach. Instead
of restricting the scenario set we price all scenarios. That is, we define a function that
assigns a nonnegative price to each scenario of the unrestricted scenario set. Those
prices affect the objective function and lead to new two-stage robust combinatorial
optimization problems. We want to illustrate this new approach by the introductory
example.

In the new approach, we consider the unrestricted scenario set. In other words,
our scenario set is the power set of the set of all considered towns. We extend our
example by an insurance company. With this insurance company we negotiate in
advance a scenario-dependent price which is paid out to us in the second stage. That
is, we agree a price for each scenario that we get paid if the scenario materializes. Our
new goal is to find a set of towns that we equip with protection systems in the first
stage such that we minimize the balance (first stage cost and second stage cost minus
insurance payout) in the worst-case scenario. We assume the insurance premium (fee
paid by us to the insurer) to be constant and therefore we can ignore it in the objective
function. Again, we want to solve a min-max problem, but now we have a different
objective function and we do not have to restrict the scenario set.

Before we give an overview of our results with the new approach, we observe
that the new approach generalizes both the discrete scenario approach and the
Γ -scenario approach. We can set the price of the scenarios that we want to “exclude”
from the scenario set to infinity and thus the adversary has no incentive to choose
those scenarios.

3 Results

In this section we give an overview of our results with the new approach. We study
complexity and approximation algorithms for a generalization of the afore-mentioned
example. This more general problem is called two-stage robust weighted disjoint
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hitting set problem. The deterministic version of that problem is a special case of
many different combinatorial optimization problems, e.g. the set cover problem and
the Steiner tree problem. This also holds for the two-stage robust versions of those
problems. Let us first describe the deterministic weighted disjoint hitting set problem
(WDHS problem). We are given a set of n elements E := {e1, . . . , en}, a collection
M := {M1, . . . , Mm} of m pairwise disjoint subsets of E, i.e., Mi ≤ Mj = ∞ for all
i, j ≥ {1, . . . , m} with i ∗= j, and a cost function c : E √ N. A feasible solution
for the WDHS problem is a set F ∩ E that has at least one element in common
with every set M ≥ M , i.e., |F ≤ M| ≡ 1 for all M ≥ M . Thus, the set of feasible
solutions can be defined as F := {F ∩ E | ∧M ≥ M : |F ≤ M| ≡ 1}. The goal is to
find a feasible solution F ≥ F that minimizes the total cost f (c, F) := ∑

e≥F c(e).
The WDHS problem can be solved in polynomial time by selecting the cheapest
element out of each set M ≥ M .

Based on this, we can describe the two-stage robust WDHS problem. As in the
deterministic version, we are given the set E, the collectionM and the cost function c

as defined above. Additionally, we are given a vector λ := (
λe1, . . . , λen

)T ≥ Q
n

with λe ≡ 1 for all e ≥ E and a scenario set S , where a scenario S is a subset
of M . That means that every scenario S ≥ S defines a set of feasible solutions
F S := {F ∩ E | ∧M ≥ S : |F ≤ M| ≡ 1}. In the following, a set M ≥ M is called
active in scenario S if M ≥ S. In the first stage we do not know which scenario S ≥ S
will materialize in the second stage, but we already can buy elements e ≥ E in order
to “hit" sets. A set M ≥ M is hit if we buy at least one element of the set M. In
the first stage, the cost of an element e ≥ E is c(e). If we hit a set M ≥ M already
in the first stage, we do not have to hit M in the second stage in case M is active in
the realized scenario. In the second stage a scenario S ≥ S is revealed to us and
we need to hit all sets M ≥ S that were not already hit in the first stage. Hitting a
set in the second stage is costlier than in the first stage. Every element e ≥ E has
its own given inflation factor λe ≡ 1 and costs in the second stage λec(e). Let us
formulate the goal. We buy a set of elements F1 ∩ E already in the first stage and
pay f (c, F1) := ∑

e≥F1
c(e). In the second stage we augment the set F1 by buying

an additional set of elements FS ∩ E, where S is the realized scenario, and we pay
f (λc, FS) := ∑

e≥FS
λec(e). Our solution (F1, FS) is feasible in the scenario S if

F1 ∪ FS ≥ F S . The goal is to find a set F1 and sets FS , S ≥ S , such that we
minimize the total cost in the worst-case scenario. That is, we want to find a solution
for the following min-max problem:

min

{
f (c, F1) + max

S≥S
{f (λc, FS)} | ∧S ≥ S : F1 ∪ FS ≥ F S

}
. (1)

Following the discrete scenario approach, we can show that the two-stage robust
WDHS problem is NP-hard, even if we are given only two scenarios. This is shown
by a reduction from the NP-complete decision problem minimum knapsack. Ideas
from the reduction can be used to formulate the problem as a dynamic program that
can be solved in pseudo-polynomial time if the cardinality of the scenario set is
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constantly bounded from above. By using known methods from two-stage stochastic
programming [9], we can show that there is a 2-approximation algorithm for the
two-stage robust WDHS problem with discrete scenarios.

However, if we follow the Γ -scenario approach, the two-stage robust WDHS
problem can be solved in polynomial time. In this case the scenario set is defined
by S := {S ∩ M : |S| ≤ Γ }, where Γ ≥ {1, . . . , m} is part of the input. We obtain
this result by narrowing down the solution space and greedily selecting sets M ≥ M
to be hit already in the first stage.

Using the new approach, we slightly need to modify the objective function in (1).
We need to incorporate the given price function p : S √ Q

+ that reduces the second
stage cost as described in Sect. 2. This leads to the following min-max problem:

min

{
f (c, F1) + max

S≥S
{f (λc, FS) − p(S)} | ∧S ≥ S : F1 ∪ FS ≥ F S

}
, (2)

where S := 2M . In the following, we consider two different price functions p. To
define them we need the following additional input. For each set M ≥ M we are
given a price γM ≥ Q

+. Based on this, we say that the price function p is sum-based
if p(S) := ∑

M≥S γM and we called it extremum-based if p(S) := maxM≥S γM for all
S ≥ S . To explain the following results we introduce the values αM := mine≥M c(e)
and βM := mine≥M λec(e) for all M ≥ M .

Let us first consider the case that we are given a sum-based price function p. In
this case the two-stage robust WDHS problem (as defined in (2)) can be solved in
polynomial time. Let us examine why this is the case and therefor we let M ← ∩ M
be the collection of all sets that we hit already in the first stage. The collection M ←
depends on F1. First of all, we observe that the adversary will confront us with
the worst-case scenario S∗ := {

M ≥ M \ M ← | βM − γM > 0
}
. Thus we pay∑

M≥M ← αM in the first stage and
∑

M≥S∗ (βM − γM) in the second stage. It is not
hard to see that we minimize that payment if we hit all sets M ≥ M (at minimum
cost) already in the first stage that fulfill αM ≤ βM − γM . This is in line with what
intuition tells us.

However, the situation changes drastically if we consider the case that we are
given an extremum-based price function p. We can show that the corresponding two-
stage robust WDHS problem is NP-hard. This is also shown by a reduction from
the NP-complete decision problem minimum knapsack. We can also show that the
problem can be formulated as a dynamic program which can be transformed into an
FPTAS by using [10].

4 Conclusion

Pricing scenarios instead of restricting the set of scenarios is an alternative way for
dealing with two-stage robust optimization problems. In this work we have motivated
and introduced the new approach and we have studied complexity and approximation
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algorithms for the two-stage robust WDHS problem. In particular, we have seen that
the complexity significantly depends on the pricing method. In this work we have
presented our first results with the new approach and we hope to foster further research
in this fascinating area.
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Workload Balancing in Transportation
Crew Rostering

Güvenç Şahin and Fardin Dashty Saridarq

Abstract In crew rostering, balanced workload allocation is a critical issue and an
important planning phenomenon that affects both the quality of crew schedules and
personnel satisfaction. We focus on workload balancing in transportation systems
where deadheading of crew is possible. A network flow formulation of the prob-
lem is developed, and an optimal solution method is proposed. We compare the
computational performance of the optimal solution method with the solution of the
problem with a commercial solver only. We present the results of our computational
experiments with well-known problem instances from the crew scheduling literature.

1 Problem Definition

Crew-related costs have a significant share in transportation systems. Especially
in railways, this cost constitutes a high portion of the operational expenses. Crew
planning at the operational level is concerned with the final assignment of crew
members to duties for a finite short planning horizon which is also known as rostering.
Rostering is not only concerned with preparing crew schedules that cover all duties
but also interested in managerial issues such as fairness in duty assignments and
balancing the workload (and associated payments).

Research on workload balancing in transportation crew scheduling is limited.
Burke et al. [3] consider the fairness issue as a soft constraint in nurse rostering
which ensures distributing duties of various types -morning, night, waiting shifts,
etc.- uniformly over the personnel. Bellanti et al. [2] introduce evenly assigned
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working shifts and days off during the weekends as well as a balanced assignment of
morning, afternoon and night shifts as operational requirements. We study the work-
load balancing problem in transportation crew scheduling, where fairness issue is
studied in terms of the workload of crew members.

From a methodological point of view, our work follows the footsteps of both
[4, 5]. The balanced bath problem in [4] works with node-disjointness of the path.
This idea, however, is not directly applicable on the more generic network repre-
sentation in [5]. In particular, the existence of deadheading in transportation crew
schedules necessiates a further adaptation of the modelling approach in [4] according
to the network representation in [5].

2 Mathematical Formulation

The integer programming formulation of the problem is a network flow problem
based on the space-time network representation in [5]. In this network, nodes contain
time and location information and represent the beginning and ending of events:

• on-duty nodes denote the beginning time and location of a duty;
• tie-up nodes denote the end time and location;
• source node is the origin of all crew members at the home station at the beginning

of the planning time horizon;
• a sink node is the final destination of all crew representing the home station at the

end of the planning horizon.

Arcs connect the end of events to beginning of other mostly and include six types:

• source arcs emanating from the source node and entering the on-duty nodes at
home station represent the origin of crew at the beginning of the planning horizon;

• sink arcs emanating from tie-up nodes and entering the sink node send all crew
back to home station at the end of planning horizon;

• duty arcs emanating from an on-duty node and entering a tie-up node represent
duties while flow on duty arc represents the coverage of a duty;

• rest arcs represent rest periods which connect a tie-up node to an on-duty node at
the same location;

• direct arcs connect two successive duties which have a total time duration less
than a predefined time period, these arcs represent the coverage of an excess duty
by a crew member where an excess duty covers the first duty, the waiting period
between the two duties, and the second duty;

• deadhead arcs from an away tie-up node to a home tie-up node is used to transfer
a crew member from the away station to the home station.

A space-time network is accordingly constructed taking into account the rules and
restrictions imposed by labor unions, laws and company itself. On this space-time
network, a source-sink path is composed of consecutive arcs which represent duties,
rest periods and deadheading that correspond to a feasible schedule for a crew
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member from the beginning of the planning horizon until the end. As a result, each
source-sink path would correspond to a feasible crew schedule. G = (N, A) denotes
the network with node set N and arc set A. Wij denotes the workload of arc (i, j); it
is zero for all arcs other than duty and deadhead arcs. For a duty arc (i, j), cij is the
number of crew members required to cover the duty. If the sufficient number of crew
members to cover all duties in the region is K and the maximum total workload is
WT , then we formulate the corresponding workload balancing problem as follows:

Minimize Zmax − Zmin (1)

subject to
∑

(s,i)∈A

xh
si = 1 ∀h ∈ {1, . . . , K} (2)

∑

(i,t)∈A

xh
it = 1 ∀h ∈ {1, . . . , K} (3)

∑

(j,i)∈A

xh
ji −

∑

(i,j)∈A

xh
ij = 0 ∀h ∈ {1, . . . , K},∀i ∈ N − {s, t} (4)

∑

h

xh
ij ≥ cij ∀(i, j) ∈ A (5)

∑

(i,j)∈A

Wijx
h
ij ≤ Zmax ∀h ∈ {1, . . . , K} (6)

∑

(i,j)∈A

Wijx
h
ij ≥ Zmin ∀h ∈ {1, . . . , K} (7)

∑

h

∑

(i,j)∈A

Wijx
h
ij ≤ WT (8)

xh
ij ≥ 0 ∀h ∈ {1, . . . , K},∀(i, j) ∈ A (9)

where xh
ij denotes the amount of flow over arc (i, j) on a source-sink path h, and

Zmax (Zmin) denote the maximum (minimum) amount of workload in a schedule
corresponding to a source-sink path.

Formulation (1)–(9) finds K source-sink paths corresponding to feasible sched-
ules that are sufficient to cover all duties while minimizing the workload difference
(Zmax −Zmin) between the maximum workload schedule and the minimum workload
schedule.

In a (crew) rostering environment where deadheading is allowed (or indeed neces-
sary), it is possible to add unnecessary workload to crew just for the sake of avoiding
the imbalance. However, this increases the total workload, and thus the total costs
due to time-based compensation payments. Comparing the network flow problem
(1)–(9) with the balanced path problem in [4], it is quite easy to observe the major
differences:
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• there is no disjointness in our problem as it might limit the addition of necessary
deadheads;

• our problem requires that every duty is covered with a given number of sufficient
crew members.

In this respect, constraint (8) is crucial as it avoids the addition of unnecessary
workload. In the original balanced path formulation in [4], there is no such consid-
eration. WT can be found by solving a crew scheduling problem as in [5] with the
objective of minimizing the total workload with a given number of available crew or
heuristically set based on expert opinion.

3 An Exact Algorithm

As even the restricted versions of the problem are NP-hard, we propose a binary
search algorithm where each iteration solves a feasibility version of the problem on
a smaller feasible region. In essence, we first find a search interval where the optimal
value of the objective function (1) lies in. Then, we check if the midpoint value of
this interval provides a feasible solution. If so, we bisect this interval and continue
with the left half of the interval; otherwise, we continue with the right half of the
interval.

In a feasibility check for a given value α, we look for a set of feasible paths
(corresponding to a set of feasible schedules) on a sub-graph of the cost expanded
version of the network G = (N, A), say Gα

q = (Nα
q , Aα

q ) where the shortest source-
sink path on G has a cost of q and the longest source-sink path has a cost of q + α.
If there are K paths covering all duties on Gα

q , then problem is feasible for α. For
a fixed binary search interval and α, we may repeat this feasibility check procedure
for several values of q starting with smallest possible value.

In Fig. 1, a flowchart for the algorithm is given. We set the initial values of the
left hand side (LHS) and right hand side (RHS) values of the search interval to 0
and U, respectively, where U denotes the cost of the longest path on G = (N, A). q0
denotes the cost of the shortest path on G = (N, A) and F1 refers to the feasibility
check procedure. As seen on the flow chart, when F1 does not yield a positive result,
the algorithm checks the subgraph with larger cost paths. If F1 does not yield a
positive result for a particular α value, then LHS of the search interval is updated. In
our implementation of the binary search algorithm, we decrease the computational
time of the algorithm by narrowing down the search interval [LHS,RHS]. LHS is
replaced by a value ZLB

max − ZUB
min where ZLB

max (ZUB
min) denotes a lower (upper) bound

for the workload of a feasible schedule with the maximum (minimum) workload
schedule. RHS is replaced by a value ZUB

max −ZLB
min where ZUB

max (ZLB
min) denotes a lower

(upper) bound for the workload of a feasible schedule with the maximum (minimum)
workload schedule.
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Fig. 1 Flowchart for the binary search algorithm

4 Computational Results and Concluding Remarks

We test the computational performance of the algorithm against the performance of
CPLEX in directly solving the integer programming formulation of the problem. Both
methods are implemented with C++ while the problems are solved using Concert
Technology. Beasley and Cao [1] propose a set of crew scheduling instances which
are also used in [4]. In the original instances, any of the duties can be the first or the
last duty of a schedule (I). For each instance, we create a limited version (II) where
only duties without any predecessor duties can be the first duty of a schedule and
only duties without any successor duties can be the last duty of a schedule. Again in
the original instances, for any pair of duties, there is a transition cost if it is possible
for a crew to perform these two duties consecutively. For each version, we solve one
problem with transition costs only and one problem where duties are also attributed
with costs proportional to their length in addition to transition costs. As a result, we
solve four problem instances generated from an original instance in [1].

Table 1 shows the results. We have set a predetermined time limit of 24 hours for
the solution of a problem. In the problem name, the first field denotes the number of
duties, the second field denotes the number of paths (K), the third field denotes the
version of the problem (I or II) and the last field shows if duties also have costs (c).
Under the CPLEX heading, we show the minimum workload (Zmin) and maximum
workload (Zmax) along with the difference (OFV) in the final solution by CPLEX and
the computation time (Time). Under the Binary Search Algorithm heading, we show
the parameter values that specify the search interval and the final solution (OFV)
along with the computational time (Time).The exact optimal solution by CPLEX
fails in two instances. In ‘80-20-II-c’, CPLEX terminates with insufficient memory.
In ‘100-20-I-c’, the time limit is reached with no feasible solution found. The binary
search algorithm narrows down the interval to [485,492] in ‘80-20-II-c’ while it fails
to find any solution in ‘100-20-II-c’. In essence, neither of these methods dominate
the other.
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Table 1 Results

Problem CPLEX Binary Search Algorithm
Zmin Zmax OFV Time ZLB

min ZUB
min ZLB

max ZUB
max OFV Time

50-13-I 0 993 993 9 s 0 0 993 993 993 14 s
50-13-II 307 993 686 14 s 307 307 993 1,190 686 11 s
50-13-I-c 161 1,660 1,499 24 s 161 161 1,660 1,705 1,499 1.11 m
50-13-II-c 712 1,660 948 28 s 572 712 1,660 1,794 948 2.36 h
80-20-I 0 536 536 3.16 m 0 0 536 647 536 3.56 m
80-20-II 229 737 508 20.56 m 202 229 737 737 508 27.31 m
80-20-I-c 34 1,194 1,160 42.6 m 34 34 1,194 1,299 1,160 2.25 m
80-20-II-c – – – – 512 734 1,222 1,401 [485,492] L:24 h
100-20-I 0 658 658 6.93 m 0 0 658 804 658 2.01 h
100-20-II 321 990 669 39.15 m 229 321 990 990 669 2.81 h
100-20-I-c – – – L:24 h 34 34 1,574 1,672 1,540 33.45 m
100-20-II-c 1,030 1,596 566 5.38 h 707 1,030 1,596 1,805 – L:24 h

We focus on the workload balancing problem in transportation systems where
deadheading is used. In the previous work by [4], the problem where there is no
option for deadheading is investigated as an example for balanced path problems.
Our mathematical formulation demonstrates that the problem is significantly different
when deadheading is considered. In addition, our early computational results on the
same problem instances used in [4] show that the problem is highly difficult from a
computational point of view. As some instances cannot even be solved in reasonable
time, it requires development of specialized algorithms or heuristic methods.
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An Optimal Placement of a Liaison
with Short Communication Lengths
Between Two Members of the Same
Level in an Organization Structure
of a Complete K-ary Tree

Kiyoshi Sawada

Abstract This paper proposes a model of placing a liaison which forms relations
to two members in the same level of a pyramid organization structure when lengths
between the liaison and the other members are less than those between members
except the liaison in the organization such that the communication of information
between every member in the organization becomes the most efficient. For a model
of adding a node of liaison which gets adjacent to two nodes with the same depth in
a complete K -ary tree of height H where the lengths of edges between the liaison
and the other members are L(0 < L < 1) while those of edges between members
except the liaison are 1, an optimal pair of two nodes to which the node of liai-
son gets adjacent is obtained by maximizing the total shortening distance which is
the sum of shortening lengths of shortest paths between every pair of all nodes in the
complete K -ary tree.

1 Introduction

The pyramid organization structure can be expressed as a rooted tree, if we let
nodes and edges in the rooted tree correspond to members and relations between
members in the organization respectively. Then the pyramid organization structure
is characterized by the number of subordinates of each member, that is, the number
of children of each node and the number of levels in the organization, that is, the
height of the rooted tree [3, 7]. Moreover, the path between a pair of nodes in the
rooted tree is equivalent to the route of communication of information between a
pair of members in the organization, and adding edges to the rooted tree is equivalent
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to forming additional relations other than that between each superior and his direct
subordinates [6].

Liaisons [2] which have roles of coordinating different sections are also placed as
a means to become effective in communication of information in an organization. We
have proposed some models of placing a liaison which forms relations to members
in the same level of a pyramid organization structure which is a complete K -ary
(K = 2, 3, . . .) tree of height H(H = 2, 3, . . .) [4, 5]. When a node of liaison
which gets adjacent to nodes with the same depth is placed, an optimal depth is
obtained by minimizing the sum of lengths of shortest paths between every pair of
all nodes in the complete K -ary tree. These models are expressed as all edges have
the same length. However, we should consider that edges between the liaison and
the other members are shorter than those between members except the liaison in the
organization.

This paper proposes a model of placing a liaison which forms relations to two
members in the same level of a pyramid organization structure which is a complete
K -ary tree of height H when lengths between the liaison and the other members are
less than those between members except the liaison in the organization. The lengths
of edges between the liaison and the other members are L(0 < L < 1) while those of
edges between members except the liaison are 1. This paper obtains an optimal pair
of two members to which the liaison forms relations such that the communication of
information between every member in the organization becomes the most efficient.
This means to obtain an optimal pair of two nodes to which the node of liaison gets
adjacent minimizing the sum of lengths of shortest paths between every pair of all
nodes when an added node of liaison gets adjacent to two nodes with the same depth
of a complete K -ary tree of height H(H = 1, 2, . . .). A complete K -ary tree is a
rooted tree in which all leaves have the same depth and all internal nodes have K
children [1].

If li, j (= l j,i ) denotes the distance, which is length of the shortest path from a
node vi to a node v j in the complete K -ary tree of height H , then

∑
i< j li, j is the

total distance. Furthermore, if l ≤i, j denotes the distance from vi to v j after getting
adjacent in the above model, li, j − l ≤i, j is called the shortening distance between vi

and v j , and
∑

i< j (li, j − l ≤i, j ) is called the total shortening distance. Minimizing the
total distance is equivalent to maximizing the total shortening distance.

2 Formulation of Total Shortening Distance

This section formulates the total shortening distance when a node of liaison is added
and gets adjacent to two nodes with the same depth N (N = 1, 2, . . . , H) in a
complete K -ary (K = 2, 3, . . .) tree of height H(H = 1, 2, . . .). The lengths of
edges between the node of liaison and the two nodes to which the node of liaison
gets adjacent are L(0 < L < 1) while those of edges between nodes except the node
of liaison are 1. Since we don’t consider efficiency of communication of information
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between the liaison and the other members, the total shortening distance doesn’t
include the shortening distance between the node of liaison and the other nodes in a
complete K -ary tree.

The node of liaison can get adjacent to two nodes with the same depth N of a
complete K -ary tree in N ways that lead to non-isomorphic graphs. Let RH (N , D)

denote the total shortening distance by getting adjacent to two nodes, where D(D =
0, 1, 2, . . . , N − 1) is the depth of the deepest common ancestor of the two nodes to
which the node of liaison gets adjacent. For the case of D = 0, the total shortening
distance is denoted by SH (N ). Since getting adjacent to two nodes shortens distances
only between pairs of descendants of the deepest common ancestor of the two nodes
to which the node of liaison gets adjacent, we obtain

RH (N , D) = SH−D(N − D). (1)

We formulate SH (N ) in the following. Let vX
0 and vY

0 denote the two nodes to which
the node of liaison gets adjacent and assume that D = 0. Let vX

k and vY
k denote

ancestors of vX
0 and vY

0 , respectively, with depth N − k for k = 1, 2, . . . , N − 1. The
sets of descendants of vX

0 and vY
0 are denoted by V X

0 and V Y
0 respectively. (Note that

every node is a descendant of itself [1].) Let V X
k denote the set obtained by removing

the descendants of vX
k−1 from the set of descendants of vX

k and let V Y
k denote the set

obtained by removing the descendants of vY
k−1 from the set of descendants of vY

k ,
where k = 1, 2, . . . , N − 1.

Since getting adjacent to two nodes doesn’t shorten distances between pairs of
nodes other than between pairs of nodes in V X

k (k = 0, 1, 2, . . . , N − 1) and nodes
in V Y

k (k = 0, 1, 2, . . . , N − 1), the total shortening distance can be formulated by
adding up the following three sums of shortening distances:

1. The sum of shortening distances between every pair of nodes in V X
0 and nodes

in V Y
0 .

2. The sum of shortening distances between every pair of nodes in V X
0 and nodes

in V Y
k (k = 1, 2, . . . , N − 1) and between every pair of nodes in V Y

0 and nodes
in V X

k (k = 1, 2, . . . , N − 1).
3. The sum of shortening distances between every pair of nodes in V X

k (k = 1, 2, . . . ,

N − 1) and nodes in V Y
k (k = 1, 2, . . . , N − 1).

The sum of shortening distances between every pair of nodes in V X
0 and nodes in

V Y
0 is given by

AH (N ) = 2 {M(H − N )}2 (N − L), (2)

where M(h) denotes the number of nodes of a complete K -ary tree of height h(h =
0, 1, 2, . . .). The sum of shortening distances between every pair of nodes in V X

0 and
nodes in V Y

k (k = 1, 2, . . . , N −1) and between every pair of nodes in V Y
0 and nodes

in V X
k (k = 1, 2, . . . , N − 1) is given by
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BH (N ) = 4M(H − N )

N−1∑

i=1

{(K − 1)M(H − i − 1) + 1} (i − L), (3)

and the sum of shortening distances between every pair of nodes in V X
k (k =

1, 2, . . . , N − 1) and nodes in V Y
k (k = 1, 2, . . . , N − 1) is given by

CH (N ) = 2
N−2∑

i=1

{(K − 1)M(H − i − 2) + 1}

×
i∑

j=1

{(K − 1)M(H − N + j − 1) + 1} (i − j − L + 1), (4)

where we define
∑0

i=1 · = 0 and
∑−1

i=1 · = 0. From the above equations, the total
shortening distance SH (N ) is given by

SH (N ) = AH (N ) + BH (N ) + CH (N ). (5)

3 An Optimal Depth D∗ for Each Depth N

This section shows an optimal depth D∞ of the deepest common ancestor of the two
nodes which maximizes RH (N , D) for each depth N . From Eqs. (1) and (5) we have

RH (N , D) = 2 {M(H − N )}2 (N − D − L)

+ 4M(H − N )

N−D−1∑

i=1

{(K − 1)M(H − D − i − 1) + 1} (i − L)

+ 2
N−D−2∑

i=1

{(K − 1)M(H − D − i − 2) + 1}

×
i∑

j=1

{(K − 1)M(H − N + j − 1) + 1} (i − j − L + 1). (6)

Theorem 1 D∞ = 0 maximizes RH (N , D) for each N.

Proof If N = 1, then D∞ = 0 trivially. If N ≥ 2, then D∞ = 0 since

RH (N , D + 1) − RH (N , D)

= − 2 {M(H − N )}2 − 4M(H − N ) {(K − 1)M(H − N ) + 1} (N − D − L − 1)
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− 4M(H − N )

N−D−2∑

i=1

(K − 1) {M(H − D − i − 1) − M(H − D − i − 2)} (i − L)

− 2
N−D−3∑

i=1

(K − 1) {M(H − D − i − 2) − M(H − D − i − 3)}

×
i∑

j=1

{(K − 1)M(H − N + j − 1) + 1} (i − j − L + 1)

− 2 {(K − 1)M(H − N ) + 1}
N−D−2∑

j=1

{(K − 1)M(H − N + j − 1) + 1}

× (N − D − L − j − 1)

< 0 (7)

for D = 0, 1, 2, . . . , N − 2. �

Theorem 1 shows that the most efficient way of forming relations to two members
in each level is that to two members which doesn’t have common superiors except
the top.

Since the number of nodes of a complete K -ary tree of height h is M(h) =(
K h+1 − 1

)
/ (K − 1), SH (N ) of Eq. (5) becomes

SH (N ) = 1

(K − 1)3

{
(−2N L + 2N )K 2H−N+2 + (4N L − 2N − 2L)K 2H−N+1

+ (−2N L + 2L)K 2H−N + 4K H−N+1 + (4L − 4)K H+1 − 4L K H

+ (2N − 2L)K − 2N + 2L
}
. (8)

4 An Optimal Depth N∗

This section seeks an optimal depth N∞ of two nodes which maximizes the total
shortening distance SH (N ) in Eq. (8).

Let ΦSH (N ) ∗ SH (N + 1) − SH (N ), so that we have

ΦSH (N ) = 1

(K − 1)2

[{
(2N L − 2N )K 2 + (−4N L + 2N + 2)K + 2N L

}
K 2H−N−1

− 4K H−N + 2
]

(9)

for N = 1, 2, . . . , H − 1.

Lemma 2 If N ≥ 2, then ΦSH (N ) < 0.

Proof Let Q H (L) ∗ ΦSH (N ). Since
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d Q H (L)

d L
= 2N K 2H−N−1 > 0 (10)

and

Q H (1) = 1

(K − 1)2

[{
2(K − 1)

(
K

K − 1
− N

)}
K 2H−N−1 − 4K H−N + 2

]
< 0

(11)
for N ≥ 2, we have Q H (L) < 0 for N ≥ 2. �

Let

ρ = 1 −
(

1 − K −H+1

K − 1

)2

, (12)

so that we have Lemma 3.

Lemma 3 If N = 1, then we have the following:

(i) If L < ρ , then ΦSH (N ) < 0.
(ii) If L = ρ , then ΦSH (N ) = 0.

(iii) If L > ρ , then ΦSH (N ) > 0.

Proof (i) If L < ρ , then

SH (2) − SH (1) = 1

(K − 1)2
[{

(2L − 2)K 2 + (−4L + 4)K + 2L
}

K 2H−2 − 4K H−1 + 2
]

< 0. (13)

(ii) If L = ρ , then SH (2) − SH (1) = 0.
(iii) If L > ρ , then SH (2) − SH (1) > 0. �

From Lemma 2 and Lemma 3 we have the following theorem.

Theorem 4 (i) If L < ρ , then N∞ = 1.
(ii) If L = ρ , then N∞ = 1, 2.
(iii) If L > ρ , then N∞ = 2.
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Clustering for Data Privacy
and Classification Tasks

Klaus B. Schebesch and Ralf Stecking

Abstract Predictive classification is a part of data mining and of many related
data-intensive research activities. In applications deriving from business intelligence,
potentially valuable data from large databases often cannot be used in an unrestricted
way. Privacy constraints may not allow the data modeler to use all of the existing
feature variables in building the classification models. In certain situations, pre-
processing the original data can lead to intermediate datasets, which hide private or
commercially sensitive information but still contain information useful enough for
building competitive classification models. To this end, we propose to cooperatively
use both unsupervised Clustering and supervised Support Vector Machines. For an
instance of real-life credit client scoring, we then evaluate our approach against the
case of unrestricted use of all data features.

1 Introduction

The most convenient situation for predictive classification tasks which occur in many
applications of business intelligence and of data mining in general is to use a large
database in an unrestricted way, allowing to deploy classical supervised statistical
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learning like LDA, LogReg or SVM in order to determine a separation functions
between classes which are induced by feature variables of the data. However, in
many such classification tasks there are privacy constraints. Such constraints may be
such that the modeler is not allowed to use some of the existing feature variables,
like e.g. race, religion, personal identification or commercially sensitive data. In
general, a modeler may not be permitted to reveal the explicit content of the data
altogether. Both, Clustering and SVM can address this problem in attractive ways.
Both have the means to produce a restricted number of representatives for large data
sets they are working on. While SVM achieves this by forwarding support vectors,
clusterings return cluster representatives. Support vectors are selected representative
data points describing the boundaries between classes, while the cluster centers are
often averaged quantities, but they each come with a set of cluster members, which
confer further information for using other representatives. In the paper we propose
using Clustering and SVM cooperatively, in order to test a privacy scheme applied
to empirical data sets where all informations are available but where their use is
restricted. We compare the predictive performance of such restricted models to those
trained on the full data. A relevant privacy-constrained situation is when a modeler
cannot gain access to the full case wise data for different reasons including restricted
information disclosure (for a critique of anonymization see [3]), but can nevertheless
provide the compression procedure to be applied by the data owner before handing
over any training data set. Here the aim is then to recommend or to configure the
compression procedure while choosing a forecasting model, which can maximally
exploit these compressed data. In our empirical application of credit scoring the
data are highly imbalanced, i.e. there are much more non defaulting than defaulting
credit clients (for a survey see [7]). A successful approach separates main behavioral
classes into a number of more homogeneous subclasses by using k-means clustering
[1], recasting the original problem into a multi-class learning task. The resulting
multiple models then have to be combined using voting. More recently [2] introduce
a Support Cluster Machine (SCM) as an extension of the standard Support Vector
Machine (SVM) with RBF kernel where information about cluster sizes and cluster
covariances is used by the kernel function. Experiments on large data sets show
that SCM do reduce training time, leading only to slightly higher validation error
when compared to full set SVM training. In the sequel we propose a highly scalable
combination of standard models for clustering and classification in credit scoring
which can be readily adopted by practitioners.

2 Training of SVM on Cluster Representatives

In credit scoring practice we are given a set of N > 0 training examples {xi , yi },
i = 1, . . . , N , with xi ≤ R

m the vector of m input features or attributes of credit
client i (like income, age, profession, etc.) as well as the associated labels yi ≤
{−1, 1}. Think of yi = −1 as describing a “non-defaulting” and of yi = 1 as a
“defaulting” credit client, respectively. As this is past observed behavior, a sufficiently
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large number N of such observed data pairs {xi , yi } of clients as training examples
from an unknown but sufficiently stationary generating distribution should allow the
faithful estimation of a forecasting model s(x), which predicts the behavior y of a
new client described by feature vector x . Models s(x) depend on parameters and their
flexibility may be regularized by setting hyperparameters. For LDA the forecasting
function is a separating hyperplane in R

m , which is coded by an expression like
w∞

0 + w∞
1x1 + · · · + w∞

j x j + · · · + w∞
m xm , where x j refers to the feature j of credit

clients (suppressing client index) and vector w∞ is the result of optimally separating
the classes by a hyperplane, making s(x) depend on parameter w. Nonlinear SVM
depend on parameters and hyperparameters. A popular variant of the SVM finally
produces a forecasting rule (a class separating function) of the type

y pred = sign(s(x)) = sign
( N∑

i=1

yiα
∞
i k(xi , x) + b∞),

with parameters 0 ≥ α∞
i ≥ C and b∞ the result of the dual SVM optimization [5].

Here xi refers to the m-dimensional feature vector of client i , while x is the feature
vector of a new client with as yet unknown defaulting behavior y. Support vectors are
training examples located near the class boundaries of a SVM solution, which permit
training of a classifier with the same expected out-of-sample performance as the same
classifier trained on all the other training examples as well. The hyperparameter
C > 0 controls the amount of misclassification (or “softness”, potentially avoiding
over-training) of the SVM model by means of which to activate the learning examples
via α∞

i > 0 in s(x). Hence, C implicitly selects the effective functional form of s(x).
Note that α∞

i > 0 actively contribute to the forecasting function by invoking the i th
training example via a user defined kernel k(., .), for instance by the RBF kernel

k(u, v) = exp
(

− σ ||u − v||2
)

for any two client feature vectors u and v, with

||.||2 being the Euclidean distance between u and v. The hyperparameter σ > 0
controls the locality of the function s(x), that is the distance-dependent contribution
of training examples to forecast the label of new clients x .

Our goal is to replace the full or “extensive” training data set {xi , yi }, i = 1, . . ., N
by n ∗ N cluster representatives of clusters computed on that data. Such cluster
representatives can assume a large variety of forms. They can be one or a few points
from the cluster or some computed average over cluster members to name a few.
We use clustering in order to find a shorter (compressed) description of the original
training set, and, for simplicity, we also stick to non-overlapping clusterings. As
a consequence, our cluster representatives should be usable as (surrogate) training
points fully commensurable with the original training data as are for instance cluster
centers. Hence, the kth cluster center may be computed by

∑

j≤J (k)

λk
j (x j , y j ), producing cluster center (x̄, ȳ),
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Fig. 1 Varying the number of clusters may allow even the basic clustering methods like k-means
to realize via their cluster representatives an “approximation” of essential support vectors an SVM
with RBF kernel would otherwise produce by training on the full data set. Clusterings of class A
and class B data are produced independently, i.e. regardless of any information about the other
class, respectively. Note that this is especially the case when we consider a soft margin SVM for a
problem with class overlap in feature space which allows for a certain amount of misclassification
(see main text)

with λ j √ 0 and
∑

j≤J (k) λk
j = 1. The more difficult part is of course about how to

select the respective cluster member index sets J (k) and the corresponding weighting
schemes {λk

j }. A standard clustering procedure, which groups similar points into non-
overlapping clusters and which can be used for extremely large data sets without
requiring the beforehand computation of all mutual client distances is the widely
accessible k-means algorithm. When employing clustering for data compression,
using as many cluster centers as required is recommended [6]. The two (upper and
lower) clustering situations from Fig. 1 may lead one to assert that one will find
“intermediate” cluster numbers for which realizing the more advantageous upper
situation will prevail. However, extrapolating such concepts from low dimensional
intuition to higher dimensions is risky [4], hence empirical validation is in demand.
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Table 1 Area under curve (AUC) statistics computed for ten randomly selected validation sets with
N = 46,650 each

No. of Clusters SVM RBF (C = 4, σ = 2.58)
AUC (Validation Set, N =46,650)
Mean Std. Dev. Minimum Maximum

10 0.634 0.031 0.584 0.665
20 0.669 0.014 0.649 0.693
60 0.694 0.007 0.685 0.703
100 0.699 0.007 0.687 0.708
140 0.702 0.006 0.693 0.711
200 0.705 0.009 0.686 0.716
240 0.707 0.010 0.687 0.720
300 0.708 0.006 0.696 0.717
400 0.712 0.009 0.699 0.728
500 0.712 0.008 0.701 0.722
600 0.710 0.008 0.691 0.718
700 0.708 0.009 0.688 0.721
800 0.708 0.008 0.693 0.722
900 0.707 0.009 0.696 0.726
1,000 0.707 0.007 0.696 0.716

SVM Models with RBF kernel are trained on ten to one thousand cluster representations. The most
stable cases are n = 400 and n = 500 clusters (bold-faced)

3 Empirical Results

Our data set consists of information from N = 139,951 clients of a German building
and loan credit issuer. Within a time period of one year 3,692 clients refused to
repay the loan. Thus, the default rate, based on a definition of the building and
loan association, is 2.6 %. There are twelve variables per client of which eight are
categorical with two up to five categories and four are quantitative. Input variables
include loan related attributes like interest rate and credit amount, personal attributes
like employment status and object related attributes like house type.

Our data were randomly divided into ten different training sets containing 93,301
clients and ten associated validation sets with 46,650 clients. Each training set is
further subdivided into “good” and “bad” credit clients. Subsequently, standard unsu-
pervised k–means clustering is used, partitioning the large data set into equal num-
bers of clusters from each class respectively, while preserving the class labels. An
equal number of clusters are chosen to under-sample the much bigger class of non
defaulting credit clients. However, the number of clusters necessary to best represent
the training set must be determined experimentally: Too few large clusters may not
include important characteristics of the data, whereas too many small clusters may
inadequately highlight unpredictable regions in the data. Therefore, an ascending list
of cluster numbers is tested, starting with n = 10 up to n = 1,000 clusters.

For each clustering, the centers (Fig. 1) are the inputs of SVM models with RBF
kernel. The SVM hyperparameters for every single model from Table 1 are σ = 2.58
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Fig. 2 ROC curves comparing out of sample prediction performance of SVM with RBF kernels
trained on 400 cluster centers as shown in Table 1. Results do not differ significantly when the SVM
is trained on the full data. The attained AUC is 0.728, thus RBF-SVM shows superior performance
and is robust against our anonymization. When trained on the cluster centers, Linear Discriminant
Analysis (LDA) and Logistic Regression (LogReg) lead to an AUC of 0.676 and 0.672 (not shown),
while when trained on the full set their performance climbs significantly, to 0.703 (LDA), and 0.705
(LogReg), respectively

and C = 4. SVM models trained on cluster representatives can directly be used to
predict individual credit client default. In order to assess the performance of the
different models, ROC curves for all hold-out validation sets and the resulting area
under curve (AUC) statistics are reported (for ROC and AUC see Fig. 2). Table 1
shows the mean, standard deviation, minimum and maximum of the AUC for ten
randomly selected validation sets. The average AUC over the validation sets for the
smallest models with just ten training examples is 0.634. The mean AUC is then
rising continuously with growing cluster numbers, reaching a maximum of 0.712
with 400 and 500 clusters, respectively. Hereafter, the mean AUC decreases again,
which, at least for our credit client data, confirms the assertion from the end of
Sect. 2. Finally Fig. 2 also reports on the relative advantage of using RBF-SVM.

4 Conclusions

We have shown that certain privacy constraints posed on the data of classification
models for credit clients can be translated into a combined clustering and classifica-
tion approach which yields out-of-sample classification or forecasting performance
which is comparable to models trained on the full (unconstrained) data. Other ongo-
ing work on different credit client data sets confirms that out-of-sample performance



Clustering for Data Privacy and Classification Tasks 403

of k-means clustering and SVM using RBF kernels can even be at least that of SVM
trained on the full data, which is certainly owing to the characteristics of these high
dimensional empirical data. Hence it would be interesting to construct examples for
which competitive performance of soft margin classification based on cluster rep-
resentative is difficult to obtain. More specifically, one would be interested in an
integrated optimization procedure which simultaneously solves or narrows down the
solution alternatives for the combined clustering-classification problem.
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A Decision Support Concept for Advanced
Treatment Planning for Breast Cancer

Alexander Scherrer, Patrick Rüdiger, Andreas Dinges,
Karl-Heinz Küfer, Ilka Schwidde and Sherko Kümmel

Abstract Breast cancer is the most common and mortal carcinosis in women and
thus a major topic in clinical oncology. Treatment planning features a complex deci-
sion making about the various therapy concepts and their possible combinations. The
physician plans treatment of a patient based on therapy guide lines and knowledge
acquired in similar former patient cases. In particular the latter aspect requires the
processing of large amounts of information in order to identify the medically rel-
evant cases. This implies the urgent need for a decision support system in clinical
routine. This work introduces a model for description of patient cases in terms of
their crucial attributes and a mathematical function concept for the notion of medical
relevance. These concepts are then used for an automated search on the set of former
patient cases resulting in a comprehensive overview of the medically relevant ones
with the therapy steps carried out therein and the observed outcomes. Provided with
this information, the physician can conduct time-efficient planning of high quality
breast cancer therapies for each individual patient case.

1 Introduction

Empirically acquired knowledge and expertise are of high value for complex therapy
planning problems arising in clinical routine. In breast cancer therapy, physicians
therefore make strong use of the experiences made in similar former patient cases for
their decision making about the further treatment of a current patient case. However,
searching for these medically relevant former cases among the many cases treated
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over the years—Kliniken Essen-Mitte face several hundred breast cancer patients per
year—with their individual progress over long case histories is a very time-consuming
task, which is difficult to thoroughly conduct in stressful clinical routine. This work
introduces a mathematical model for breast cancer cases (Sects. 2 and 3), describes
methods for the automated search of relevant former cases and their beneficial use
for decision making in therapy planning (Sect. 4) and discusses the clinical benefit
aspired by physicians (Sect. 5).

2 Modeling of a Patient Case

The first modeling aspect is the specification of case data with relevance for the
decision making in breast cancer therapy planning. This crucial data is modeled as
status attributes Si with individual domains dom(Si ), whose overall number I is of
the order 102. Examples for these attributes, are:

• patient age given in years;
• menopausal status with values pre-, peri- and postmenopausal;
• tumor type with more than 70 values such as invasive ductal carcinoma, invasive

lobular carcinoma, ductal carcinoma in situ, flat epithelial atypia, …;
• tumor size T with about 60 values, where the prefix value (c, p, …) indicates the

type of medical finding and the suffix assigns the actual size to groups indexed
with 0, is, 1, 1mi, 1a, 1b, 1c, 2, …;

• status of local lymph nodes N with more than 50 values, namely a prefix analogous
to the one of T and a suffix indicating the number of affected nodes with the
classifications 0, 0 i+, 1 mi, 1, 1a, 1b, 1c, 2, 2a, …;

• status of distant metastasis M with two values, which indicate the non-existence
(0) and existence (1) of metastases in combination with their location (lung, bones,
liver, …);

• estrogen receptor ER and progesterone receptor PR classify the cells’ degree of
interference to structural changes by hormonal influence with the values + and −
derived from percentage values;

• human epidermal growth factor receptor 2 Her2 indicates the level of cell growth
with the values + and − and the underlying classifications 0, 1+, 2+ and 3+;

• Karnofsky index KI quantifies a patient’s physical performance status with values
ranging from 0 % (death) to 100 % (no ailment) in steps of 10 %;

• comorbidities list the already experienced or existing diseases like diabetes mel-
litus, heart insufficiency, lung embolism, eye disease, …. The overall number of
values has the order 102.

For more information on these and other attributes, see for example [6, 7]. These
attributes are organized in a hierarchy of semantic groups. For example, T, N, M and
some other attributes form the tumor classification, ER, PR and Her2 belong to the
immunohistochemistry, and these and other groups and also single attributes like the
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tumor type together form the semantic group main diagnosis. Karnofsky index and
comorbidities sort into the group secondary diagnoses.

The status of a patient case at some point of time n is then described by a vector

sn = (si,n)i ≤ S =
⎧

i

dom(Si )

containing the values of the different attributes.
The second modeling aspect is the specification of therapy components Tj with

mostly similar domains dom(Tj ), whose total number J is also of the order 102. The
components form semantic steps in clinical routine of breast cancer and their values
represent decisions about them such as rejection, approval or completion. Examples
specified e.g. in [2, 3] are:

• diagnostic examinations such as mammography, sonography of the breast or stag-
ing, a combination of bone scintigraphy, chest X-ray and liver ultrasound;

• surgical treatments like lumpectomy, a breast surgery, or axillary sentinel lymphec-
tomy, a surgery on the axillary lymph nodes;

• systemic therapies like the adjuvant (i.e. succeeding surgery) endocrine (anti-
hormonal) therapy TAM ∞ AI or the chemotherapy 4 × TC.

The history of a patient case at some point of time n is then described by a vector

tn = (t j,n) j ≤ T =
⎧

j

dom(Tj )

Altogether, this allows for a description of a patient case

(sn, tn)n≥N ≤ (S × T)N (1)

by means of the case status sn at the various points of time n ≥ N and the steps tn

in case history connecting between them.

3 The Notion of Medical Relevance

When deciding about next therapy steps for the current patient case, a physician also
relies on medically similar and thus relevant former patient cases. A former case is
considered relevant, if its case status attained at some point of time deviates only
slightly from the status of the current case in all attributes and the case histories
leading to these two statuses are also comparable. Then the physician faces the same
pre-conditions for his decision making about the next therapy steps in the current case
as he was confronted with in that particular former case, which can thus provide an
orientation for how to proceed for the current case. This notion of medical relevance
is modeled starting from the level of attributes with functions
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di : dom(Si ) × dom(Si ) −∞ [0, 1] (2)

which fulfill the property of half-metrics and measure the deviation between attribute
values. Exemplary functions are:

i = tumor size T: di (si , s∗
i ) =

⎪
⎨

⎛

0 : si , s∗
i have suffixes from the same group

{0}, {mi}, {1, 1mi, 1a, 1b, 1c}, {2}, . . .
1 : si , s∗

i have suffixes from different groups

i = Karnofsky index: di (si , s∗
i ) = |si − s∗

i |
100 %

These functions are aggregated over the attributes and time steps to a single function

dstatus : S
N × S

N −∞ [0, 1] (3)

which measures the overall relevance of a former patient case status with respect to
the current planning case. An exemplary function is

dstatus

⎜
(sn)n≥N ,

⎝
s∗

n∗
⎞

n∗≥N ∗
⎟

= min
n∗≥N ∗ max

i
di

⎜
si,N , s∗

i,n∗
⎟

which computes the maximum deviation over all attributes in order to ensure rele-
vance with respect to all aspects of a case status and then takes the minimum of the
obtained values over all time steps of the former case in order to identify the status
most similar to the current status of the current case.

The comparison of case histories happens analogously. Medical relevance is mod-
eled starting from the level of therapy components with half-metrics

d j : dom(Tj ) × dom(Tj ) −∞ [0, 1] (4)

Exemplary functions are

j = staging: d j (t j , t ∗j ) =
⎠

0 : ti = t ∗j
1 : ti √= t ∗j

j = lumpectomy: d j (t j , t ∗j ) =
⎠

0 : t ∗j = completion
1 : else

All these functions are aggregated over therapy components and time steps to a single
function

dhistory : TN × T
N −∞ [0, 1] (5)

Consider for example a former case whose status at time step N ∗∗ was identified
similar to the current status of the current case. A function for comparing case
histories leading to these two case statuses would be
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dhistory((tn)n≥N , (t∗n∗)n∗≥N ∗∗) = max
j

min
n≥N

min
n∗≥N ∗∗ d j (ti,n, t ∗i,n∗)

The expense of computing relevance values for a pair of patient cases grows linearly
in the number of attributes, therapy steps and considered time steps, see also [5], and
can thus be done quickly during interactive therapy planning.

The obtained function values quantify the medical relevance of a former patient
case for the current decision making situation. In the terminology of automated
classification, [1], functions (2) and (4) can be considered as dissimilarities and the
set of all relevant former cases as a sufficiently homogeneous cluster centered around
the current patient case. In the context of multi-objective decision making, [4], they
can be considered as coordinate-specific distance measures on the decision space (1)
and their aggregations (3) and (5) as scalarizations to an objective function.

4 The Search for Relevant Former Cases

Consider a patient case, whose current status and most recent history step in terms
of status attributes and therapy components reads

tN−1 = (lumpectomy = completion, axillary sentinel lymphectomy = completion, . . .)

sN = (74 years, postmenopausal, invasive ductal carcinoma,

pT1c (i: 17 mm, is: 19 mm), pN0 sn- (0/2), M0,

ER + (90 %), PR + (80 %), Her2- (0), KI 90 %, diabetes mellitus, . . . )

This 74-year-old postmenopausal woman suffers from a carcinoma, whose origin
is located in the ducts of the breast and has spread out into the surrounding tissue,
see the third entry in sN . The previous step in case history tN−1 indicates a surgical
treatment of this tumor with a lumpectomy and an axillary sentinel lymphectomy,
see [3]. These surgical treatments have led to a pathologically determined (prefix p)
tumor size T with a diameter of 17mm for the invasive part, which thereby falls into
category 1c, and 19 mm for the non-invasive in situ part. The lymph node status N
is also pathologically determined (prefix p) and shows 0 affected sentinel nodes of 2
examined ones (0/2), which yields a negative status (sn−) for the sentinel nodes and
gives the suffix the value 0. There are no distant metastases (M0), estrogen receptor
(ER) and progesterone receptor (PR) are positive, the human epidermal growth factor
receptor (Her2) is negative, which indicates a slow cell growth, the Karnofsky index
of 90 % assesses the patient to be in good physical shape and she suffers from diabetes
mellitus.

This information forms the starting point for the next treatment step, in which
the physician would proceed with a radiation therapy and essentially decide between
the two major systemic options of an endocrine therapy like TAM ∞ AI or some
combination with a suitable chemotherapy. However, the patient age above 65 and
presence of the comorbidity diabetes mellitus assign this case to a special patient
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population, for which medical literature lacks evidence [7]. The knowledge acquired
in former patient cases, which have at some time step featured a similar case status
and from there undergone one of these therapy concepts, is thus of very high value
for the physician. He/she then can take the further progression of these cases and
their observed outcomes as helpful orientation for his/her decision making for the
current patient case. First applying a suitable function (3) in a search run on a database
with former patient cases to all pairs of the current case and former cases yields those
former ones, which at some time step N ∗∗ feature a status similar to sN . Then applying
a suitable function of the form (5) to the histories of the current case and the found
ones prior to the specific time step N ∗∗ leaves the physician with the former cases
that are medically relevant for the current case. He/she obtains these cases sorted in
decreasing order of relevance, combined with a suitable statistic overview of their
outcome.

5 Conclusions

This research work introduces a novel concept for supported treatment planning in
clinical breast cancer therapy. The data model introduced in Sect. 2 allows for a uni-
form description of patient cases in terms of status and history. These descriptions
facilitate a functional model for medical relevance based on half-metrics and suit-
able aggregations, see Sect. 3. These functions can be used in an automated database
search, see Sect. 4, which yields all former cases similar to the current one. These
search results provide helpful reference information for therapy planning in the cur-
rent case in form of treatment decisions and observed progression. Altogether, this
decision support concept enables the physician to plan high-quality breast cancer
therapies for his/her patients in a more time-efficient and goal-oriented way.
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Comparison of Heuristics Towards
Approaching a Scheduling and Capacity
Planning MINLP for Hydrogen
Storage in Chemical Substances

Simon Schulte Beerbühl, Magnus Fröhling and Frank Schultmann

Abstract The need for scheduling and capacity planning of electricity and energy
storage technologies has risen in line with growing feed-in of intermittent wind
and solar power. Hydrogen-based storage technologies usually feature non-linear as
well as non-differentiable operating characteristics. This paper discusses different
approaches towards integrating consumption figures derived from engineering sim-
ulations into scheduling and capacity planning problems. The comparison of best-fit
functions to a heuristic-based approach of using comparably rapidly computable
functions in addition with adjustment calculations shows, that reduction in complex-
ity and calculation time leads to discrepancies at cost and furthermore at scheduling
and capacity size level. Cost effects can be minimized by the heuristics, but different
scheduling and capacity choice remains.

1 Introduction

Electricity storage technologies such as pumped hydro and compressed air storage
have been integrated into optimization models of electricity systems, which range
from regional to national levels, for example in [1] and [2]. Rasmussen et al. [3]
analyzed the total demand of hydrogen as storage option on a European level. Such
models, irrespective of technology, use mixed integer linear (MILP) approaches for
optimization, as the electricity system models, into which the storage technologies
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Fig. 1 Simplified flow diagram of a generalized hydrogen (H2) energy carrier production unit

are integrated, are formulated as LP or MILP. Performance indicators such as the
total efficiency have been linearized, though efficiency is usually load-dependent.
This is especially true for electro- and thermo-chemical processes such as hydrogen
generation by water electrolysis. Epe et al. [1], for example, introduced a piece-
wise linear approach to model the load-dependent efficiency and to keep the MILP
environment. Since hydrogen storage, in physical or chemical way, is similar, these
aspects are important for this paper. Within the scope of this paper, conversion of
hydrogen to hydrogen-rich chemicals, such as methane (CH4), methanol (CH3OH)
or ammonia (NH3) directly after production in a water electrolysis unit (see Fig. 1)
is considered.

The goal of this paper is to analyze the step of hydrogen conversion to an energy
carrier (final unit in Fig. 1) and implement it into a combined scheduling and capacity
planning model for determining optimal electrolysis and buffer size. We will discuss
and show different approaches of integrating the synthesis unit electricity consump-
tion into an optimization model and their influence onto the final results. Herein, these
approaches shall be either formulated in a MILP or in a convex but continuous non-
linear (NLP) way. Modeling hydrogen storage technologies stand-alone in a convex
NLP environment, i.e. not integrated in an electricity system model, is attractive, as
the hydrogen generation step contains highly non-linear but convex characteristics.
Optimization runs using these approaches will be carried out for analyzing the differ-
ences in the results. A heuristic approach with a post-optimization adjustment of the
consumption rate as a second step will be carried out for all simplifying approaches.

2 Methodology and Implementation

Integration of an electrolysis unit into linear or convex non-linear optimization mod-
els requires a high degree of simplification. Rasmussen et al. [3] chose an approach of
constant electrolyzer efficiency in order to implement the technology into an MILP
model. By focusing solely on the plant depicted in Fig. 1 within the considered
planning problem and its interfaces to the electricity and energy carrier market, it is
possible to refrain from the mixed integer constraints of the large electricity market
models and to use a convex and differentiable NLP model instead. Consequently, the
following analysis shall either result in MILP- or NLP-suitable approaches.

The objective is to maximize the annuity (EUR per year). Annualised capital
costs (linearly dependent on capacity) as well as water and electricity costs will be
subtracted from revenue for determining the annuity. Prices except for exogenously
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Table 1 Aggregated specific electricity consumption y in kWh/1,000 Nm3 hydrogen

Unit load (%) 100 90 80 70 60 50 40 30 25 20
Consumption y 236 235 231 228 227 228 233 245 253 263

y = -289.41x3 + 651.43x2 -485.54x + 123.36
R² = 1.00

y = 26.58x + 207.58
R² = 0.98
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Fig. 2 Specific electricity consumption of synthesis unit

given and hourly changing electricity prices, shall be constant. The electricity con-
sumption of the electrolysis can either be formulated in a linear (or MILP) or a
non-linear way. For the synthesis unit, engineering simulations have shown, that the
hydrogen-specific product yield and water consumption is constant across the load
profile. However, electricity consumption of the synthesis unit changes with load
(see Table 1 for details).

A detailed look into the consumption figures of individual units reveals two ten-
dencies, which explain these values. In Fig. 2 consumption units, which are needed
for thermal and pressure plant control are separated from the bulk of other con-
sumers. By isolating these groups, we could identify a linearly decreasing specific
consumption rate for the bulk consumers, which dominate total consumption. On
the other side, supplementary equipment for thermal and pressure plant control is
not needed at design load and only needed to a very small amount, when operating
near its design load. Of course, this changes when plant load decreases to values of
as low as 20–50 %. Simulation results have shown that this increase becomes appar-
ent at approximately 50 % and increases polynomial. A cubic best fit expression
of the specific consumption y per load x obtaines negligible errors. Consequently,
the composite curve could be simulated ideally with a composite function, combin-
ing a linear and a cubic function. This would imply a combined expression for the
objective, i.e. a MINLP.
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The tested approaches of integration reach from piecewise constant functions via a
linear up to a cubic function. In Figs. 3 and 4, all solid lines represent MILP suitable
approaches and all dashed lines continuous NLP suitable approaches. In all four
cases, the consumption at 100 % and 20 % load shall be met, as the plant operates
at either one of these points during the majority of the year and all other load stages
are transit points.

Using piecewise constant specific consumption rates, as [1] did, average devia-
tion depends upon the number of steps. Herein, we differentiate between a 5-step
and a 2-step approach, the first one being more detailed and including the specific
consumption minimum at 60 % load. An increase in steps leads to more binary
functions and therefore more variables. In this case, the number of binary functions
quadrupled and the number of variables in the reduced MILP grew by more than
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Table 2 Computational characteristics of exact and simplified modeling approaches

5-step MILP 2-step MILP x3-NLP x-NLP

# Non-zeros 411,715 157,671 280,321 245,281
# Iterations 371,762 49,133 301 203
Total time elapsed 3,569 s 74 s 703 s 559 s

Intel®Core™2 Duo CPU, 2.4 GHz and 4 GB RAM, GAMS 23.9 (64 bit), using IBM ILOG CPLEX
solver 12.4 resp. IPOPT 3.11

260 %, as Table 2 shows. With each step, computational time increased exponen-
tially, which of course limits the number of steps for large problems. Figure 4 shows
the hourly cost difference at the corresponding load, using an exemplary electricity
price of 60 EUR per MWh.

For non-linear modeling using the IPOPT solver, the objective needs to be convex.
Hourly electricity consumption, which is a component of the objective, is the product
of hydrogen consumption x for each hour and specific electricity consumption y at
that hour, expressed as a function of x. Therefore,−x2 and−x4 functions (costs have
a negative sign) are convex for maximizing problems, meaning that linear or cubic
functions for the specific consumption rate are acceptable. It is obvious, that the cubic
function provides a better fit and incorporates the consumption minimum at 60 %.
In contrast, the implemented linear function is a simple interpolation between the
end points, leading to a discrepancy of approx. 10 % at medium plant loads, which
translate into an overestimation of costs up to 5 EUR/hour. Comparing the problem
complexity, implications are similar to the MILP case, as the problem in the linear
case is reduced and therefore less time is needed.

As mentioned, the rapidly solvable approaches have been used to reduce exe-
cution time by accepting a higher degree of cost discrepancy. A post-optimization
adjustment algorithm has been written for both MILP and the x-NLP approach in
MATLAB. The algorithm uses the optimization results, derives actual unit load and
re-calculates the electricity consumption acc. to Table 1. Hourly costs, and thus
the annuity will be corrected. This procedure recovers accurate costs and reduces
differences between the approaches to scheduling and capacity choice.

3 Results

The optimization problem has been solved for all four approaches, using the hourly
day-ahead prices at the German electricity market EEX in 2012 as input. Deviations
compared to the cubic NLP approach are presented in Table 3. It is noteworthy, that
both MILP and NLP simplifications result in a closer approximation to the cubic NLP
objective value than the 5-step MILP function. The reason seems to be, that—for the
5-step case—loads are only scheduled at consumption function steps, whereas in all
other cases, loads are scheduled throughout the full load range from 20 % to 100 %.
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Table 3 Deviations in annuity (EUR per year) of combined scheduling and capacity planning
(upper part) as well as scheduling at 35 MW electrolysis (lower part) for the discussed approaches

2-step MILP 5-step MILP x-NLP

Combined optimization
Electrolysis (MW) 32.369 32.302 32.369
Deviation before adjustment (EUR) 1,432 1,145 1,897
Deviation after adjustment (EUR) 487 1,347 1,028
Scheduling (35 MW)
Deviation before adjustment (EUR) 1,457 560 1,850
Deviation after adjustment (EUR) 506 735 996

Scheduling differences in the 5-step MILP are therefore at highest and lead to the
largest difference in optimum capacity as well.

The heuristic closes a major part of the objective’s delta, but does not influence
scheduling and capacity decisions, as it corrects costs only. Scheduling differences
result from the fact that both simplified approaches do not consider the specific con-
sumption minimum at 60 %. As the adjustment does not influence scheduling and
capacity optimization, only calculation inaccuracies can be corrected. Scheduling
differences are mainly resulting from the fact, that both simplified approaches do not
consider the specific consumption minimum at 60 % and therefore offer a differing
scheduling decision, mainly more full-load operation and consequently more hydro-
gen production at times of medium level electricity prices, where load reductions to
60 or 70 % are optimal. The share of scheduling- to capacity-related effect can be
seen from optimization at fixed capacity (lower part of Table 3).

4 Conclusions

Consumption figures and efficiencies of chemical plants across its load profile are
usually characterized by a combination of influencing factors and therefore result in
complex functions, which are hardly implementable into linear or convex optimiza-
tion problems. In this paper, four approaches, ranging from linear to convex parabola
functions, from rather precise to more imprecise but rapid to solve functions has been
compared. A heuristic post-optimization adjustment procedure can correct the cost
estimates to precise results. Nevertheless, simplifying the consumption function can
lead to differences in scheduling and consequently in optimal capacity, both cannot
be corrected by the heuristic. The extent of difference is determined by the degree
of accuracy of the simplified function and its implication to scheduling. All these
aspects have to be borne in mind, when configuring faster computable optimization
models for plant concepts of hydrogen storage or chemical utilization in specific and
chemical plants in general.
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Influence of Fluctuating Electricity
Prices due to Renewable Energies
on Heat Storage Investments

Katrin Schulz, Matthias Schacht and Brigitte Werners

Abstract German electricity prices are highly influenced by the volatile and
stochastic residual power load due to renewable energies. This constitutes a major
challenge for energy providers, especially for municipal supply companies which
provide their customers with district heat as well. Efficient and flexible combined
heat and power (CHP) plants are used to fulfill the unsteady loads for heat and resid-
ual power. A heat storage offers the possibility to decouple generation from demand
with respect to time. This leads to additional flexibility as it allows a power price-
oriented operation of the CHP plant in order to realize profits by trading electricity
on the spot market. In order to support the investment decision of a municipal energy
provider, we quantify the influence of the value drivers for a heat storage which can
be determined by specific demand patterns and price developments in day-to-day
operations. Integrating a well-known linear model we optimize the different plant
operations and power trade in a generation portfolio with and without heat storage.
Results quantify the value of the storage depending on the extent and duration of
fluctuations in the feed-in of renewable energies and corresponding prices.

1 Introduction

The European energy policy comprises the idea of a united European energy
market as well as ambitious energy and climate policy objectives concerning the
increase in energy efficiency and renewable energies and the decrease of emissions.
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The promotion of renewable energies is converted into German legislation by the
Renewable Energies Act containing the priority feed-in of renewable energies into
the grid and a specified remuneration per kilowatt hour. This highly influences elec-
tricity prices on the spot market which are market clearing prices and therefore
depend on supply and demand. A large demand for power is accompanied by a high
electricity price and vice versa. Due to their priority feed-in renewable energies are
the first to fulfill the demand which leads to a residual load for the conventional power
plants. Since the generation of renewable energies mainly depends on weather con-
ditions, the residual load underlies high fluctuations. The resulting unsteady supply
of power on the spot market induces corresponding price fluctuations.

Power supply companies are therefore faced with volatile market situations. This
constitutes a challenge especially for municipal energy providers that are mainly
publicly owned and have to fulfill public services, resulting in a comprehensive
supply portfolio. For a detailed description of the decision situation see [6]. Within
this approach we focus on municipal supply companies which provide power and
district heat. Under the German law the latter is defined as heat from any source that
is delivered with the help of a carrier medium [7]—water in this case.

Power and heat can be generated in a coupled process using steam to drive a
turbine generating power and to feed a heat exchanger transferring heat. The so
called combined heat and power (CHP) plants excel in the high utilization rate of the
fuel and an increased efficiency by 10–40 % compared to separate generation which
contributes to the objective to decrease emissions [3]. Thus, CHP plants are pro-
moted by the German Co-Generation Protection Law which makes such plants even
more attractive for municipal energy providers that have to deal with an increasing
competitive pressure.

2 Heat and Power Generation in CHP Plants with a Heat Storage

If the supply of district heat and power belongs to the portfolio of a municipal supply
company, heat and power can either be generated separately or with higher efficiency
simultaneously in CHP plants. In general, a steady supply has to be guaranteed which
implies that the existing facilities have to be adjusted according to the specific pattern
of heat and power demand and technical capabilities. In case of power demand
municipal supply companies can also buy power from the spot market or act as
seller of excess power. Integrating demand and generation specifications, a linear
optimization model is used to determine the optimal plant deployment. In the context
of increasing competitive pressure, municipal supply companies aim at ensuring the
continued supply of heat and power at minimum overall net acquisition costs (1)
which are determined by the generation costs for heat and power and the difference
between purchase costs and revenues from power trading [5].
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Fig. 1 In the characteristic diagram of the back pressure turbine (unit A) and the extraction
condensing turbine (unit B) each extreme point Ei (with I as set of extreme points) is marked
with its corresponding costs Ci , power generation Pi and heat generation Qi

min
∑

t∈T

(
∑

i∈I

Ci · xit + AK · at + S Pt · (h+
t − h−

t )

)
(1)

For each period t it has to be decided how the CHP plant is operated (xit ) and whether
a start-up is necessary (at ). The power demand can be met by own generation or
purchase (h+) and excess power can be sold (h−) at a charge of S Pt on the spot
market. The trading results are considered in the minimization objective function (1)
of the optimization model as well as the hourly generation costs

∑
i∈I Ci · xit and

the start-up costs AK for each start-up (at = 1).
Two constraints ensure that power and heat demand are fulfilled in each period t

whereby the cogeneration of heat and power can take place in two different kinds
of CHP plants distinguished by the architecture of the extraction steam turbine.
The basic CHP type contains a back pressure turbine which uses a constant output
pressure of steam to generate heat. Therefore, power and heat are always gener-
ated at a constant ratio of power to heat and the output quantity depends on the
load. The corresponding characteristic diagram of the operating points is depicted in
Fig. 1 (unit A). A variable output ratio can be achieved with an extraction condens-
ing turbine which possesses an extraction valve. Via this valve the extraction steam
that is needed for the heat supply can be varied. The remaining steam is then con-
ducted through a subsequent condensing steam turbine into a condenser before the
two streams of steam are merged again. The resulting more flexible operating field
is shown in Fig. 1 (unit B). According to [2] the characteristic diagrams are used to
model the generation possibilities of CHP plants. The hourly power (pt ) and heat
generation (qt ) is defined as a convex combination (using xit for the plant operation)
of the extreme points Ei [(4) and (5)]. In each period the resulting costs

∑
i∈I Ci · xit

(1), heat generation (qt ) and power generation (pt ) can be determined [(2) and (3)].
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∑

i∈I

Qi · xit = qt ∀t ∈ T (2)

∑

i∈I

Pi · xit = pt ∀t ∈ T (3)

∑

i∈I

xit = 1 ∀t ∈ T (4)

xit ≥ 0 ∀i ∈ I, t ∈ T (5)
∑

i∈I

xit = yt ∀t ∈ T (6)

In order to consider the shutdown of a CHP plant a binary variable yt is introduced
with yt = 1 for operation and yt = 0 otherwise. Thus, (4) is replaced by (6).
According to [8], yt is used to model the start-up of a CHP plant in each period t
with the binary variable at (at = 1 for a start-up in period t).

The presented constraints are used to optimize the plant deployment for both
kinds of CHP plants which depends on the heat and power demand. The former
can be predicted more or less precisely as it is mainly influenced by season and
temperatures. In contrast, the power demand is volatile due to the priority feed-
in of renewable energies and furthermore accompanied by fluctuating electricity
prices on the spot market. Therefore, municipal energy providers face more and
more frequently asynchronous demand patterns which present a major challenge
concerning the plant deployment. As the generation of power and heat in CHP plants
occurs in a coupled process, its flexibility is restricted depending on the kind of CHP
plant (as described earlier).

In order to achieve further flexibility within the deployment planning, the invest-
ment into a heat storage with capacity L attached to the CHP plant is a strategic
option. Additional income can be gained if the heat demand is covered with charged
heat while the CHP plant generates excess power to sell on the spot market in times
of high electricity prices. We consider a pressure accumulator that is filled with
hot water at the top and cold water at the bottom of the tank which means that the
discharged hot water from the top has to be replaced by cold water at the bottom
immediately and vice versa [1]. Therefore, hot water can either be charged (s+

t ) or
discharged (s−

t ) in each period t which is modeled in (9) with ast , est ∈ {0, 1} as
binary variables for charging respectively discharging whereby maximum quantities
(S+ and S−) have to be considered [(7) and (8)].

est · S+ ≥ s+
t ∀t ∈ T (7)

ast · S− ≥ s−
t ∀t ∈ T (8)

est + ast ≤ 1 ∀t ∈ T (9)

The heat loss (V ) in such a storage is assumed to be proportional with 0.05 % per
hour (adapted according to [4]). The current storage level (Φt ) is determined by the
reduced storage level of last period plus charged or minus discharged hot water.
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3 Electricity Price Patterns as Value Drivers of a Heat Storage

The presented model allows to integrate a heat storage into the optimization of
the plant deployment planning. Its contribution concerning flexibility depends on
the existing CHP plant which is why two units namely unit A with a back pressure
turbine and unit B with an extraction condensing unit are examined. In order to deter-
mine the value drivers of a heat storage with respect to fluctuating electricity prices,
we analyze its use in day-to-day operations and make a comparison of the results
for the same scenario with and without storage. The selected scenarios from winter
months are characterized by certain demand and electricity price patterns whereby
the course of the heat demand is less volatile as it is mainly temperature-dependent.
Compared to that, the electricity price patterns differ clearly: While the electricity
price on the spot market fluctuates slightly in scenario 1 there are volatile electric-
ity prices with extreme upward swings to prices about e 180/MWh in scenario 2.
Scenario 3 shows a strong price deterioration with negative values for about 5 h.
The net acquisition costs for these three scenarios are depicted in Fig. 2 whereby
the costs are given in relation to the minimal costs (indicated with 100 %) for each
scenario. In general it can be stated that unit B causes less costs due to its flexible
extraction condensing turbine which allows the adaption to the electricity price. Unit
A can only operate price-oriented if a heat storage is used to store excess heat. This
is why the costs savings due to a heat storage are higher in this case compared to
unit B. The stable development of the electricity prices in scenario 1 leads to a lim-
ited benefit of the heat storage for both units. In scenario 2 the high electricity prices
make the surplus generation beneficial as additional revenues can be gained on the
spot market. Although the costs saving effect is significant with a heat storage for
unit A, the results show that unit B is more beneficial even without a heat storage
due to its flexible power to heat ratio. In contrast, the constant heat to power ratio of
unit A means that a high level of electricity is accompanied by a high level of heat
which has to be stored. Thus, the heat storage has a high impact on the cost optimal
operation for unit A. Scenario 3 is characterized by a strong price fall to negative
prices which makes the generation of power extremely unprofitable. For the hours
of negative or very low electricity prices the heat storage is used to supply the heat
demand so that the CHP plant can be shut down. Therefore, the heat storage has a
significant added value in this case especially for unit A but also for unit B. Figure 3
shows the high storage level shortly before negative electricity prices arise and its
decrease in the corresponding hours for unit A. A similar effect can be observed for
unit B in this scenario which explains the benefit of the heat storage in this case even
for a flexible CHP plant as unit B. The added value of a heat storage depends on
specific electricity price patterns and the existing CHP plant as well as the general
assumption on how often the scenario will occur.



426 K. Schulz et al.

scenario 1 scenario 2 scenario 3

100

120

140
co

st
s

(%
)

in
 r

el
at

io
n 

to
m

in
im

al
 c

os
ts unit A

unit A(H)

unit B

unit B(H)

Fig. 2 Net acquisition costs in scenarios 1–3 for unit A and B with (H) and without heat storage

20 40 60
0

200

400

600

800

he
at

st
or

ag
e 

an
d 

he
at

de
m

an
d 

in
 M

W
th

−100

−50

0

50

100

h

po
w

er
 p

ri
ce

in
/M

W
h

Fig. 3 Plant operation of unit A in scenario 2 with the given heat demand (thick line), power price
(dotted line) and resulting heat storage level (gray area)

4 Conclusion

The priority feed-in of renewable energies leads to a volatile residual power load
and corresponding prices which makes the plant deployment planning for munici-
pal supply companies more complicated. The power and heat demand can be met
with two technical divergent CHP plants which offer a different extent of flexibility.
A heat storage contributes to this flexibility which is needed in order to respond well
to fluctuating electricity prices in terms of an attuned trading strategy, i.e. buy (sell)
power in times of low (high) electricity prices. The resulting added value of a heat
storage for both kinds of CHP plants mainly depends on the particular scenario with
its electricity price pattern.

We analyzed different scenarios and demonstrated exemplarily how the heat stor-
age is used. Our results show that the benefit of the heat storage is significant with
fluctuating electricity prices, especially in times of low or even negative prices as
a pure generation of heat is not possible. With regard to the German objective to
increase the share of renewable energies to 80 % until 2050 it can be assumed that
scenarios with volatile power prices will occur more often. This will favor heat
storage investments.
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The Effects of Customer Misclassification
on Cross-Training in Call Centers

Andreas Schwab and Burak Büke

Abstract The benefits of cross-training in terms of increasing responsiveness to
demand fluctuations have been studied extensively in the literature. In this work,
we study another important advantage of cross-training due to customer misclassi-
fication, i.e. a caller declares to face a certain problem (e.g. a hardware problem)
where in fact another problem persists (e.g. a software problem). In call centers that
apply no cross-training, misclassified calls need to be rerouted to agents who are able
to serve the true problem, whereas cross-training enables agents to serve different
problem types which reduces cycle times. We introduce two-type queueing models
to study the effects of customer misclassification on cross-training in call centers.
We observe that, if only a third of the agents is cross-trained, high increases in model
performance can be confirmed, whereas little benefit is added by higher amounts of
cross-training. We also study the effects of routing policies on cycle times.

1 Introduction

Agriculture has been forming an integral part of the economic cycle since time
immemorial—today, call centers are bigger! Around 3 % of the total North American
and British labor force is employed in call centers, which makes more workers than
in agriculture [8]. Therefore, today’s world economy is unimaginable without the call
center industry. There exists a vast literature on call center operations. Akşin et al. [1]
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and Gans et al. [4] provide an excellent introduction to this literature. Call centers
are designed to handle different types of calls, and cross-training agents to handle
multiple types of calls is a common practice in the industry [2, 3, 5]. A well-studied
benefit of agent cross-training is the increase in responsiveness to demand fluctuations
(see e.g. [2, 6, 7, 10]).

Another important benefit of workforce cross-training may be realized due to
customer misclassification, where customers identify the problem they are facing
wrongly, e.g. a customer declares to face a hardware problem, where in fact a software
problem persists. In a call center without cross-training a customer spends a certain
time at the department of her/his choice until the problem is correctly identified and
s/he is rerouted to a different agent pool, where s/he goes through another problem
identification phase. However, if the workers are cross-trained, problems do not need
to be identified twice, which reduces the overall workload of the call center as well
as the cycle times of customers. In this paper, we study cross-training policies in
the light of this additional benefit. We observe that, if only a third of the agents is
cross-trained, high increases in model performance can be confirmed, whereas little
benefit is added by higher amounts of cross-training. This observation shows that
partial cross-training outperforms full cross-training, if the cross-trained pool size is
chosen with care. Moreover, the routing policies in partially cross-trained systems
strongly influence customer waiting times.

2 Model Description and Assumptions

We study three basic queueing systems through simulation experiments to analyze
the effects of customer misclassification on cross-training policies:

• Fully cross-trained system (McFullCT)
• System with no cross-training (McNoCT)
• Partially cross-trained system (McM)

The models are derivatives of the M/M/c queueing model with two types of calls,
0 and 1, where each type refers to a certain problem that inspires a customer to
contact the call center. The customers may misclassify their true problems with
positive probabilities, which depend on the type of problem they perceive (p0 or p1).
McFullCT indicates that the whole workforce is cross-trained, such that both

types of calls can be handled by any agent in the system. Correctly classified calls
experience an exponential(μ) service time, as usual in the Erlang-C model. For a
misclassified call, however, we assume a two-stage service. Its first service time
corresponds to the time an agent needs to identify the call as misclassified. We call
this problem identification phase, what takes only a fraction (q MC0 or q MC1) of
the regular exponential(μ) service time depending on the claimed type of the call.
After this first stage, the problem solution phase begins with the same agent. As the
employee is already familiar with the problem, the regular exponential(μ) service
time decreases and only the fraction q2nd is needed to serve the customer. This
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fraction also depends on the type of the incoming call, i.e., q2nd0 or q2nd1. Since
the true problem had been identified by the agent during the first service phase, the
fraction q2ndi is used if the true type is i .

In McNoCT, there are equal numbers of dedicated agents for each type and no
cross-trained agents. Incoming calls are therefore routed to the agent pool which
serves their type. As before, correctly classified calls experience an exponential(μ)
service time. A misclassified call, on the other hand, goes through the problem
identification phase as in the McFullCT model, and after termination of this first
service, it is rerouted to the other pool, which is able to serve its true type. If all
the agents are busy—due to congestion of appropriate servers—a rule specifies the
positioning of the call in its true queue. When an agent becomes idle, the rerouted
call is handled similarly to a correctly classified call newly arriving at this pool.
McM relates to a regular M-system, which possesses dedicated agent pools for

each type and a third cross-trained pool serving either type. This model character-
izes partial cross-training; hence, it is a mixture between McFullCT and McNoCT.
We need to decide whether an arriving or rerouted call shall be served by a ded-
icated or cross-trained agent, and this raises the agent selection/routing problem.
By default, we assume that calls are primarily routed to dedicated agents if there
exists any idle server, and if no dedicated capacity is available, the cross-trained
agent pool is utilized. However, this is subject to change as part of the analysis. The
call selection/scheduling problem is only relevant for the cross-trained agents. This
pool has decide which call type will be scheduled from the queue when an agent
becomes idle. By default, we assume that the call type possessing the longer queue is
taken into service. We also analyze the appropriateness of this policy later. Correctly
classified calls face an exponential(μ) service time as in the extreme models. How-
ever, the service rates may differ between cross-trained and type-dedicated agents.
For instance, the problem identification phase may be shorter in the shared service
station, as cross-training equips agents with expertise in both problem types. Mis-
classified calls are handled as in McFullCT or McNoCT, when they are served in
the cross-trained or dedicated pool, respectively.

We assume work-conservation in all models, i.e. when there are simultaneously an
agent idling and a call queueing, then the call is scheduled immediately. We assume
a first-come first-serve (FCFS) scheduling policy whenever possible. Further, we fix
the total number of servers in all models to 60; thus, each type is dedicated 30 in
McNoCT. In McM, the same amount of dedicated servers is used for each type, and
the missing number up to 60 belongs to the shared service facility. The arrival and
service rates for both call types, λi and μi with i = 0, 1, are chosen in a way that
ensures that all systems reach a steady state for all different experiment settings.
These restrictions as well as the chosen rates can be seen in [9], and as base time
units we use minutes.
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Fig. 1 Average cycle time of type 0 calls against cross-trained pool size in McM for various
misclassification probabilities

3 Numerical Results

The goal of this paper is to study the benefits of cross-training for call centers
particularly in the presence of customer misclassification. The main advantages of
cross-training in this spirit are (1) misclassified calls do not need to be rerouted,
(2) problems do not need to be identified twice, and (3) information of the prob-
lem identification phase can be further used in the problem solution phase, which
reduces service time. We proceed by comparing the models in terms of the following
standards1:

• Size of shared service station in partially cross-trained systems
• Routing policy for calls in partially cross-trained systems

3.1 Size of Shared Station in Partially Cross-Trained Systems

Based on simulation results, Fig. 1 plots the average cycle time of type 0 calls against
the number of cross-trained agents between 0 and 60 in McM with q MC = 0.7 and
q2nd = 0.7 for various misclassification probabilities 0.2 ≤ p ≤ 0.5.

We recognize the convex shape of the relations for cross-trained pool sizes between
0 and 20, i.e. diminishing marginal utility of cross-training further agents. Thereafter,
the average cycle time decreases roughly linear in the number of cross-trained agents
independent of the probability of misclassification, i.e. more or less constant marginal
utility. It indicates for our experiment, that cross-training up to a third of the workforce
is highly efficient, as we make full use of the initial big drops in average cycle time.
The other two thirds add little benefit in comparison to the first 20 cross-trained

1 The models were compared for more standards in [9]. This paper presents an extract of the whole
analysis.
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agents. The linear decrease of average cycle time from cross-trained pool sizes ≥20
indicates that the benefits of cross-training further workers are steady independent of
both the cross-trained pool size and the misclassification probability. However, the
decrease of the average cycle time in the cross-trained pool size is generally stronger
for higher than for lower probability of misclassification. The benchmark at one
third of the workforce might be different depending on specific call center settings.
Nevertheless, the value is relative to the total number of workers. Thus, we believe it
to be a reasonable starting point when sizing a shared service station. We conclude
that partial cross-training outperforms full cross-training, if the cross-trained pool
size is chosen carefully.

3.2 Routing Policy for Calls in Partially Cross-Trained Systems

Up to this point we assumed that calls are routed to dedicated agents primarily,
and only if no such capacity is available, the cross-trained agent pool is searched for
idleness. If no agent is free, the call is placed in queue. However, the routing decision
can also be made the other way around, i.e., that a call is preferably routed to a cross-
trained agent, but if no agent is available, it goes into dedicated service. Now, we
explore the impact of the latter approach on the partially cross-trained system. The
rerouted calls are still primarily routed to the dedicated pool, whereas incoming calls
are preferably routed to a cross-trained agent. This new approach seems particularly
promising for high misclassification probabilities, since misclassified calls do not
need to be rerouted, if they are served by a cross-trained agent. As of the call selection
problem, we now assume that non-rerouted calls are scheduled preferably, and only
if impossible, a rerouted call is taken into service. This scheduling policy matches
the agent selection policy of rerouted calls. The approaches are sensible, because
a rerouted call is necessarily correctly classified and is not to be rerouted again.
Simulations have been performed using this setting with cross-trained pool sizes
between 0 and 60.

Analog us to Fig. 1, the average cycle time for type 0 calls is plotted against
cross-trained pool sizes between 0 and 60, but now with a different routing and
scheduling policy. We are interested in whether the curves deviate between the two
model settings. Figure 2 displays the difference in average cycle time between the two
models, where a positive value indicates a smaller cycle time with the reconditioned
routing policy. The new setting improves model performance in terms of average
cycle time for all tested cross-trained pool sizes and misclassification probabilities;
of course, with the exception of sizes of 0 (no cross-training) and 60 (full cross-
training). In all cases, a higher misclassification probability is accompanied by a
greater magnitude in performance difference, which approves the above-mentioned
conjecture. The advantage of the new model reaches its maximum for cross-trained
pool sizes of 30 or 40 depending on the misclassification probability.
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Fig. 2 Difference in average cycle time of type 0 calls against cross-trained pool size in McM
between different routing policies

4 Conclusion

The essence of this paper is based on the effects of cross-training on call center
performance in the face of customer misclassification. To the best of our knowledge,
this field of research is largely untouched. This is dissatisfying, if we consider the
benefits of workforce cross-training combined with trends towards multi-type call
centers, that we believe to be a main driver of customer misclassification. We hope
that this work will initiate some motivation in further research on this topic.
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Inventory Management with Transshipments
Under Fill Rate Constraints

Andreas Serin and Bernd Hillebrand

Abstract Transshipments enable supply chains to reduce inventories while
maintaining fill rates by sharing stored goods between different locations. In this
paper, the supply chain is composed of the external manufacturer, the central ware-
house and three identical retail outlets. Transshipment lead times are assumed to be
negligible, while supply lead times are assumed to be deterministic as long as the
sender is not out of stock. Any demand that cannot be satisfied immediately or after
transshipments is lost or backlogged. A quick approximation method to estimate
the expected transshipment quantities is provided. Simulation results strongly sup-
port the fit of the approximation. Numerical studies confirm the effect of lead time
demand distributions on several performance measures.

1 Introduction

One approach to addressing the operating efficiency of distribution networks is to
allow lateral transshipments between stocking locations at the same level (see [3]).
By means of inventory pooling, stocking locations at the same echelon may reduce
their safety stocks while maintaining or improving fill rates. Thus, transshipments
reduce the costs of supply chain operations. The aim of this paper is to extend a
single-level model according to [4] and to provide a simple method to estimate the
expected transshipment quantities.
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2 The Model

We consider a single-product two-level supply chain (One Warehouse, N Retailer)
consisting of the external manufacturer, the central warehouse and three identical
retail outlets under periodic review inventory management. The transshipment lead
times are negligible, while the replenishment lead times are composed of deter-
ministic shipment times and stochastic delays caused by stockouts at the central
warehouse.

The incoming demand can lead to two consequences: If the pre-transshipment
stock on hand exceeds the demand, the retail outlet fulfills it immediately and keeps an
inventory surplus which can be offered to other retail outlets experiencing shortages.
If the local demand exceeds the pre-transshipment stock on hand, the retail outlet
requests an immediate lateral transshipment from the others.

Transshipments are subject to greedy policy constraints, cf. [2]. We utilize Risk
Balancing Policy (RBP) equalizing the next period stockout probability for both
sending or both receiving retail outlets to determine quantities to transship, cf. [4]. The
remaining demand, which can’t be fulfilled even by means of lateral transshipments,
is backlogged or lost. At the end of each review period, every retail outlet attempts
to increase its inventory position up to Sr . The central warehouse fills the orders as
far as possible and raises its own inventory position up to Sc. We also utilize RBP
at the central warehouse in case the central warehouse is unable to fulfill the orders
completely. At the end of the period, the stock on hand is forwarded to the next
period, while the backorders are backlogged or lost.

The objective function is to minimize the expected costs which are holding costs
and transshipment costs.

min
Sr ,Sc

EC = τET + ηcEI +
c +

∑

i≤I
ηr EI +

i (1)

s.t. βi ∞ br , i ≤ I ,I = {1, 2, 3}

We assume τ < ηc ≥ ηr with respect to the unit cost parameters, and br denotes
the desired end-customer fill rate after transshipments.

Considering the objective values from (1), we obtain the economic benefit of the
transshipment policy at any particular point of the solution space:

ΔEC(Sr , Sc) = τET + ηcΔEI +
c + 3ηrΔEI +

i (2)

Any transshipment flow decreases the end-of-period inventories at the retail outlets.
Consequently, these outlets have to order more from the central warehouse, so the
end-of-period inventories at the central warehouse are non-increasing, too. In order
to minimize (1), the initial order-up-to levels Sr and Sc are pre-specified.

Let EI +
i be the expected end-of-period on hand inventory, let EI −

i be the expected
backordered demand at the retail outlet i , and let X be the demand the retail outlet i is
experiencing. Clearly, EI +

i −EI −
i = Sr −EX . Assuming any stationary distribution



Inventory Management with Transshipments Under Fill Rate Constraints 439

for X , we have ΔEI +
i −ΔEI −

i = ΔSr . Analogously, we conclude ΔEI +
c −ΔEI −

c =
ΔSc − ΔEZ ∗, Z ∗ being the demand of three retail outlets addressed to the central
warehouse. If we consider lost sales, we expect |ΔEZ ∗| = |ΔEI +

i |. Otherwise, we
expect ΔEZ ∗ = 0.

First, let us consider ΔSc = ΔSr = 0. Every transshipment flow is triggered
by demand which can’t be fulfilled without transshipment. This demand can be
satisfied only once. As every transshipment flow has exactly one source or exactly
one destination, we expect |ΔEI +

i | = |ΔEI −
i | = |ΔEI +

c | = ET to be the case, if
Sc ∞ 3Sr .

At some particular points of the solution space lying on the line Sc = 3Sr , we
utilize analytic estimates of EI +

c , EI +
i in case transshipments are not allowed. With

an initial Sc being reasonably high and ΔSc being sufficiently small or Sc being still
increasing, we expect ΔEI −

c √ 0. Consequently, ΔEI +
c √ ΔSc.

Further, we expect |ΔEI +
i | = |ΔEI −

i | > ET > |ΔEI +
c | as a result of transship-

ment flows initiated to compensate the insufficient order-up-to level at the central
warehouse, if Sr ∞ EX , Sc < 3Sr .

Unfortunately, we are not able to find out EI +
i and EI +

c analytically due to the
limited supply from the central warehouse. Nonetheless, ΔEC(Sr , Sc) is expected
to be negative at any point of the solution space. As a result, the point of the solu-
tion space with the maximum transshipment quantity coincides with the minimum
objective value.

The expected quantity ET to transship at time t is dependent on both Sr and Sc.
For the desired end-customer fill rates br = {0.90, 0.95}, we expect to find minimum
objective values setting Sr ∞ EX , Sc < 3Sr . We look at ET and develop an analytic
approximation requiring no sophisticated computing efforts.

3 Approximation Procedure and Simulation Results

We are utilizing normal demand with parameters EX = {200, 400, 800} andσX = 75
as an initial point for our numerical studies. For gamma distributed demand, the
corresponding parameter values resulting in the same values for EX and σX are
identified. For the ease of the simulation, random demand values are rounded to the
nearest integer. Negative demand values, if any, are replaced by zero.

In our approximation approach, we need to differ between the following regions
of the solution space, as shown in Fig. 1. For three identical retail outlets, Sc = 3Sr

defines a reasonable upper bound for Sc. For a long-term view, Sc = 3Sr is sufficient
to establish a fill rate of 100 % at the central warehouse. Any order-up-to level
Sc > 3Sr would only increase the costs of the system and have no effect on ET . The
dash line represents the fill rate constraint bounding the feasible region to the bottom
and to the left.

Figure 2 depicts the expected transshipment quantities per period for particular Sr

and Sc values. Sr < EX is suppressed, as it leads to fill rates which are insufficient
for any reasonable application.
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S c

S r
EX

S c = 3 S r

β r ≥ br

Fig. 1 Solution space

Fig. 2 Expected transship-
ment quantities per period

ScEZ

ET
Sr =400
Sr =450
Sr =500
Sr =550

Normal Demand
EX=400, σX=75

Approximation

For Sr ≥ EX , Sc < 3Sr , the expected transshipment quantity is an increasing
s-shaped curve depending on Sc independently of Sr . For Sr > EX , Sc < 3Sr , it is
a unimodal first increasing and then decreasing curve in Sc which is dependent on
Sr , too. Above the diagonal, the expected transshipment quantity is constant in Sc

depending only on Sr .
This behaviour can be explained by demand-triggered versus supply-triggered

transshipment flows. Stockouts at the retail outlets can occur despite inventory posi-
tions as high as Sr . In this case, high demand triggers transshipment flows immedi-
ately. Stockouts at the central warehouse cause time-delayed transshipment flows as
a consequence of the fact that retail outlets are not able to raise their inventory posi-
tions up to Sr . The interaction between the central warehouse and the retail outlets
determines transshipment flows in the close neighbourhood of Sc = EZ , if Sc < 3Sr

and Sr ∞ EX , Z being the threefold convolution of the demand X . For this reason,
the horizontal (vertical) piece of the fill rate constraint can be approximated easily by
ignoring any interdependences from the interaction between the central warehouse
and the retail outlets.

For Sr ≥ EX , Sc < 3Sr , the expected quantities to transship are not sensitive
to changes in Sr . As a result, we consider the central warehouse as the only signif-
icant factor determining ET (·, Sc) in this part of the solution space. For the ease of
computation, we assume Sc

3 to be an appropriate order-up-to level for one of three
identical retail outlets.
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ET (·, Sc) √ 3
∫ ∩

Sc
3

(
x − Sc

3

)
d F(x) −

∫ ∩

Sc

(z − Sc)d F(z). (3)

Above the diagonal, the expected quantities to transship are not sensitive to changes
in Sc. These quantities are approximated in the same manner for each particular Sr

value.

ET (Sr , ·) √ 3
∫ ∩

Sr

(x − Sr )d F(x) −
∫ ∩

3Sr

(z − 3Sr )d F(z). (4)

For Sr > EX , Sc < 3Sr , we approximate ET (Sr , Sc) as the weighted average of
(3) for the particular value of Sc and (4) for the particular value of Sr . The weights
pn(α) versus 1 − pn(α) are calculated with nth-degree polynomials of α where n is
an odd number. Let α = P(Z ≥ Sc) denote the non-stockout probability of a single
stocking location serving the completely pooled demand Z , Sc being the particular
order-up-to level for the periodic review policy.

Polynomials with ≡n/2∧ binomial coefficients perform well for Sr values up to
Sr √ EX + 2σX . We suggest using 9th- or higher degree polynomials to improve
the fit of the approximation, especially where ET (Sr , Sc) is still increasing in Sc

for a given Sr . Though this approximation procedure doesn’t need sophisticated
computations, it establishes an impressive fit (R2 > 0.98) for enabling reliable
estimates of the expected transshipment quantities.

The solution of the entire model can be achieved by numerical methods which are
beyond the scope of this paper. Herer et al. [1] describe an optimization procedure
combining the advantages of simulation and stochastic optimization which can be
utilized to find the minimum objective value, taking into account the relevant fill rate
constraint.

4 Conclusion

Lateral transshipments lead to substantial cost benefits due to lower order-up-to levels
required to establish the desired end-customer fill rate. The economic benefits depend
strongly on the lead time demand distribution and unit costs under consideration. The
simulation confirms cost reductions of approximately {40.55 %, 25.50 %} at the
optima for br = {0.90, 0.95} referring to normal demand with EX = 200, σX = 75,
ηr = ηc and τ = 0.9ηr . Additionally, there are some marginal improvements in terms
of fill rates that the end-customers are the recipients of despite the lower order-up-to
levels.
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Solution Method for the Inventory
Distribution Problem

Takayuki Shiina

Abstract Previous research on inventory distributions between local warehouses or
retailers (bases) has focused separately on either of two types of stock transshipment
policies: preventive lateral transshipments or emergency lateral transshipments. Each
of these has its advantages and disadvantages, and combining these policies may well
enable merchandisers to achieve higher service levels. Thus, the combined use of
these policies is the focus of the present study. A stochastic programming problem
is formulated with demand as a stochastic variable, and the policy of using both
preventive and emergency lateral transshipment is examined for its effectiveness
while solution methods are examined for their efficiency.

1 Introduction

The approach to supply chain issues in recent years has been for suppliers to seek to
improve service levels while satisfying a broad spectrum of consumer needs and at
the same time to reduce inventory amounts and their associated expenses. However,
there is a trade-off between inventory volume and service levels. To improve both at
the same time, a supply chain must be carefully constructed from the planning stage,
which may involve a large investment.

Lateral transshipments between retail bases are viewed as effective method for
improving both inventory volume and service levels, and has come into use in some
operating businesses. Two inventory transfer policies have been investigated in pre-
vious research on distribution between bases: preventive lateral transshipment [5]
and emergency lateral transshipment [7]. Each has its own advantages and disadvan-
tages, and so it is reasonable to expect that combining these will allow higher service
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levels to be provided. For this reason, examining the combination of these policies
is the focus of the present study. Specifically, a stochastic programming problem is
formulated with demand as a stochastic variable, and the policy of combined pre-
ventive and emergency lateral transshipment is examined for its effectiveness and
solution methods for the formulated problem are examined for their efficiency.

2 Lateral Transshipments

In most supply chains, when a warehouse faces a stock-out situation, or when it
expects a stock-out situation, it sends an order upstream. It is possible, however,
that this order will have repercussions throughout the supply chain. Lateral trans-
shipments, which regularize the risk of stock-outs by transferring inventory between
bases at the retail level, are employed to reduce orders to the distribution center and
improve service levels. The following two policies for lateral transshipments exist.

Preventive transshipments: Made in response to future demand expected due to
inventory fluctuations prior to detecting demand increases.

Emergency transshipments: Made in response to emergencies occurring because
of empty inventories, after detecting demand increases.

According to Herer, Tzur and Yucesan [3], research on problems in transferring
inventory is classified into that on preventive lateral shipments, in which stock is
supplied when the demand is known in advance, and that on emergency lateral
shipments, in which urgent transfers are made after demand is known. Research on
the former has been carried out by Karmarkar and Patel [5] and others, whereas the
latter is has been studied by Tagaras [7] and others.

3 Stochastic Programming Formulation

Stochastic programming [2, 4] deals with optimization under uncertainty. A sto-
chastic programming problem with recourse is referred to as a two-stage stochastic
problem. To solve the problem, an L-shaped method [9] has been used. This approach
is based on Benders [1] decomposition. The expected recourse function is piecewise
linear and convex, but it is not given explicitly in advance. The L-shaped method was
used to solve stochastic programs having discrete decisions in the first stage [6, 8].
The following notations are employed in the problem.

Variables

oi Volume of order sent to the distribution center for base i
xi j Volume of preventive lateral transshipment from base i to base j
si Intended inventory volume at base i
ui 1 if order is sent from base i to the distribution center, otherwise 0
yk

i j Volume of emergency lateral transshipment from base i to base j in scenario k
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z+k
i Inventory at period end at base i in scenario k

z−k
i Shortage in inventory at base i in scenario k

Parameters

Ri Variable costs of orders to distribution center at base i
Ci j Variable costs of preventive lateral transshipment from base i to base j
S0

i Initial inventory at base i
Ei j Variable costs of emergency lateral transshipments from base i to base j
Li Losses due to inventory outage at base i
Hi Inventory storage cost at base i
Wi Fixed order cost at base i
pk Probability of scenario k
ξ k

i Demand at base i in scenario k
K Total number of scenarios
I Total number of bases

The stochastic programming problem is formulated as follows.

min
I∑

i=1

Wi ui +
I∑

i=1

Ri oi +
I∑

i=1

I∑

j ≤=i

Ci j xi j +
K∑

k=1

pk Q(s, ξ k)

subject to S0
i + oi +

I∑

j=1

x ji −
I∑

i=1

xi j = si , i = 1, . . . , I

oi ∞ Mui , i = 1, . . . , I (M : positive large number)
si ≥ 0, oi ≥ 0, xi j ≥ 0, ui j ∗ {0, 1}, i = 1, . . . , I, j = 1, . . . , I, i ≤= j

Q(s, ξ k) = min

{ I∑

i=1

I∑

j ≤=i

Ei j yk
i j +

I∑

i=1

Li z
k−
i +

I∑

i=1

Hi z
k+
i

∣∣∣∣

zk+
i +

I∑

j=1

yk
i j − (zk−

i +
I∑

j=1

y ji ) = si − ξ k
i , i = 1, . . . , I

zk+
i , zk−

i ≥ 0, yk
i j ≥ 0, i = 1, . . . , I, j = 1, . . . , I, i ≤= j

}
, k = 1, . . . , K

In the L-shaped algorithm, the following problem Master uses θ as the upper bound
of the expected value for the recourse function.

(Master): min
I∑

i=1

Wi ui +
I∑

i=1

Ri oi +
I∑

i=1

I∑

j ≤=i

Ci j xi j + θ

subject to S0
i + oi +

I∑

j=1

x ji −
I∑

i=1

xi j = si , i = 1, . . . , I

oi ∞ Mui , i = 1, . . . , I
si ≥ 0, oi ≥ 0, xi j ≥ 0, ui j ∗ {0, 1}, i = 1, . . . , I, j = 1, . . . , I, i ≤= j
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L-shaped algorithm for approximate solution

Step 1: Solve the continuous relaxation of Master, providing a solution in terms of
(û, x̂, ŝ, ô, θ̂ ).

Step 2: Solve the second stage problem for each scenario. Because the second stage
problem is feasible, the upper bound of the optimal value of the recourse
function is found as Q(ŝ, ξ k), k = 1, . . . , K .

Step 3: If θ̂ <
∑K

k=1 pk Q(ŝ, ξ k), the optimality cut θ ≥ ∑K
k=1 pk∑I

i=1(si −ξ k
i )μ̂k

i
is generated from the optimal dual solution μ̂k and added to the Master
problem. Return to Step 1.

Step 4: Find the solution (ū, x̄, s̄, ō, θ̄ ) for the MIP problem Master. Given this
solution, calculate

∑I
i=1 Wi ūi +∑I

i=1 Ri ōi +∑I
i=1

∑I
j ≤=i Ci j ¯xi j +∑K

k=1

pk Q(s̄, ξ k) and the upper bound for the value of the optimal objective
function of the original problem can be obtained.

In order to find an optimal solution with integer constraints of the original problem,
the recourse function must be approximated in a feasible solution to a first stage
problem satisfying the integer constraints. This must be done by solving the MIP
problem Master repeatedly, and so the calculation time is potentially extremely long;
however, an optimal solution is being sought for the original problem. Since the
solution method shown in this paper does not necessarily approximate a recourse
function completely, it provides an approximate solution for the original problem.
And, it can be expected to have advantages from the viewpoint of calculation time.

4 Numerical Experiments

This experiment employed examples of lateral shipments between 20 and 25 bases.
The bases were generated from a uniform distribution on a [0, 100] × [0, 100] grid.
The variable cost Ci j of a preventive lateral transshipment from base i to base j
was defined as 0.1 × (the distance between the bases), and the variable cost of an
emergency lateral transshipment was defined as Ei j = 1.5 × Ci j . The variable costs
of orders were set at Ri = 5, and other parameters were set with random numbers
obeying a normal distribution. Specifically, the demand at base i in scenario k,

ξ k
i , had mean 100 and variance 10; the fixed order cost at base i, Wi , had mean

200 and variance 10; the losses due to inventory outage at base i, Li , had mean
10 and variance 1; and the inventory storage cost at base i, Hi , had mean 4 and
variance 0.4.

The data sets for the different numbered scenarios (indicating problem scale)
were supplied for solution by deterministic equivalent MIP conversion and by the
L-shaped algorithm and the calculation times were compared. The computer used
for this experiment had a 3.2 GHz Core i7-2600K (8.0 GB of memory) main proces-
sor and ran the IBM ILOG AMPL-CPLEX System 11.0 branch-and-bound solver.
Both methods showed calculation times increasing with the problem scale, but the
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Table 1 Results of experiment (computing time)

Base Scenarios L-shaped Branch-and-bound Relative
error (%)locations K Optimal objective Computing Optimal objective Computing

I function value time (s) function value time (s)

20 10 12,420 8 12,298 28 0.99
20 20 12,424 12 12,298 63 1.02
20 30 12,502 18 12,390 233 0.90
25 10 15,574 11 15,454 747 0.77
25 20 15,449 35 15,385 1,759 0.42
25 30 15,426 51 15,365 5,979 0.40

Table 2 Results of experiment (comparing transshipment policies)

Base Scenarios Variance Preventive only Emergency only Combined policy
locations K Var[ξ̃ ] Optimal Shortage Optimal Shortage Optimal Shortage
I cost ratio (%) cost ratio (%) cost ratio (%)

20 10 10 12,738 9.9 13,865 4.6 12,298 3.3
20 10 20 13,367 23.4 13,723 14.1 12,381 5.8
20 10 30 14,012 29.7 13,779 10.0 12,608 7.5
20 20 10 12,877 9.0 13,999 5.4 12,476 3.2
20 20 20 13,502 20.6 13,993 8.0 12,650 6.0
20 20 30 14,426 33.3 13,840 16.0 12,680 10.5
20 30 10 12,862 9.5 13,937 5.7 12,420 2.9
20 30 20 13,579 19.4 14,020 7.7 12,720 7.1
20 30 30 14,054 32.1 13,803 18.0 12,706 9.7

L-shaped algorithm had shorter times. As shown, solving the problem using the direct
branch-and-bound algorithm for a deterministic equivalent MIP required a quite long
calculation time. Thus, the L-shaped algorithm is advantageous in terms of calcula-
tion time for large-scale problems. Also, the calculation errors in this method were
kept within almost 1 %, so the L-shaped method clearly provides highly accurate
solutions.

Next, the difference between the costs of sending emergency and preventive lateral
transshipments independently or together was compared and the effectiveness of the
policy of combining emergency and preventive shipments was validated (Tables 1, 2).

For comparison with the policy of combining emergency and preventive lateral
transshipments, the transfer policies restricting transshipments to either the emer-
gency or the preventive types were reformulated, and the effectiveness of the two
lateral transshipment policies was shown by comparing with the total costs of the
policy of combining transshipments. The reformulation of the policy of restrict-
ing transshipments to preventive was obtained from the formulation of the pol-
icy of combining transshipments, and then eliminating the two-stage variable yk

i j .

The reformulation of the policy of restricting transshipments to emergency ship-
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ments was obtained from the formulation of the policy of combining transshipments,
eliminating the firts stage variable xi j .

The optimal costs of the above policies and the policy of combining transship-
ments were compared. The numbers of demand scenarios and the standard deviations
were varied in a comparison experiment. The policy of combining transshipments
exhibited lower total costs than exercising policies independently, regardless of the
number of scenarios or the variance. When the variance was small, the “preventive
lateral transshipments only” policy had lower total costs than the “emergency lateral
transshipments only” policy, and the opposite was true at high variances. This was
due to the fact that the mean shortage ratio, which was defined as given below, was
high when there were large fluctuations in demand. In turn, this raised shortage costs,
making more emergency shipments required in order to avoid shortages.

Mean shortage ratio (%) =
K∑

k=1

pk

(
I∑

i=1

zk+
i /

I∑

i=1

ξ k
i

)
× 100. (1)

5 Summary

In the present study, stochastic programming was employed to formulate a lateral
transshipment problem, and two solution methods were examined for their efficiency
in providing solutions and in combining policies enforcing preventive or emergency
lateral transshipments.

The L-shaped algorithm and the direct branch-and-bound algorithm for an equiv-
alent MIP were compared in a numerical experiment. The L-shaped algorithm was
found to be advantageous in terms of calculation time for large-scale problems. It
was also shown that the total costs are lowered if preventive and emergency lateral
transshipment policies are combined, rather than exercising them independently.
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Application of Sampling Plan Methods:
Case of Indonesian Sugar Company

Endy Suwondo, Henry Yuliando and Adi Djoko Guritno

Abstract A study of sampling plan for controling the quality of bags in a sugar
company has been done. The data was taken from 25 random samples for several
methods applied including Variable Single Sampling, Quality Index Sampling, and
Attribute Proportion Sampling. It was found that the best sampling method is Variable
Single Sampling, that gives significant result for all tested parameter and offer an
efficient way for the company in doing the inspection and quality control.

1 Background

Inspection is one aspect of a quality assurance. When this inspection is carried out to
accept or reject a product, then this type of inspection is called acceptance sampling.
Gaspersz [5] revealed that quality assurance is an overall systematic activities imple-
mented within the quality system and it is done regarding to the products or services
to meet the requirements specified. Montgomery [12] defines quality assurance as a
set of activities that ensure the level of quality of products or services are maintained
correctly and resolve the quality in the view of the producers and consumers.

At present, there are a lot of reliability and accuracy test as the application of
acceptance sampling in a company. Jun et al. [10] did an assesment regarding to
the acceptance sampling based operating characteristics called sudden death life-
time testing. Kiermeier [11] conducted an assessment of the visualization using
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acceptance sampling with R programming language that aims to simplify user
interface for acceptance sampling. Deros et al. [3] conducted a research of the ac-
ceptance sampling on three electronic products manufacturing industry in Malaysia
with brackish respective case studies.

Various studies on the various types of acceptance sampling approach have been
done by scientists. Chang and Hsie [2] developed a method of acceptance sampling to
bridge painting quality. Graves et al. [6] evaluated the risk of producer and consumer
risks in acceptance sampling with Bayesian approach. Duarte and Saraiva [4] and
Jamkhaneh et al. [9] conducted an assessment of acceptance sampling method with
Poisson distribution approach. Khamseh et al. [1], Hsu [7], Hsu and Hsu [8], con-
ducted research on acceptance sampling approach that sound economically. Based on
these studies, the researchers tried to apply the same acceptance sampling methods
but in different areas and objects.

In this study, an acceptance sampling method applied in one of biggest Sugar
Manufacturers and Refiners in Indonesia, namely PT Sweet Indolampung (as part
of Sugar Group Companies), was conducted. The inspection method of white sugar
packaging with a container of 50 kg sack was analyzed. Some quality attributes for
each lot of sacks coming from vendors are required. In the receipt of the lot, the
company conducted quality testing inspection. Here, the purpose of this study is to
determine the best sampling method that can be used by the company with indica-
tors of evaluation tools including the probability of acceptance (Pa), the operation
characteristic (OC) curve, the average outgoing limit (AOL) curve, and the average
total inspection (ATI) curve.

2 Materials and Method

The data used in this study was taken on April 12, 2012 November 30, 2012. During
this period there were 14 lot orders of 50 kg sack for white sugar product. This lot
further denoted as S1–S14. Quality testing conducted consist of: sack webbing test,
dimension test, and inner thick test.

Data processing is done in accordance with the three different forms of sampling
methods, i.e., Variable Single Sampling (VSS), Quality Index Sampling (QIS), and
Attribute-Proportion-Sampling (APS). Phases of analysis was carried out by plot-
ting the results of these three methods into OC curve, AOQ curve and ATI curves
respectively.

VSS is a sampling method that is based on the variable product characteristics.
This method considers the value of the acceptable quality level (AQL ), the rejectable
quality level (RQL ), producer risk (α) and consumer risk (β). Here, AQL is the max-
imum percentage or proportion of nonconforming units in a lot that can be accepted.
Whereas RQL is for consumer protection against bad quality lots, defined as the
percentage or proportion of nonconforming units in a lot that unacceptable to the
consumer. In VSS method, W is the criteria used to examine the sample mean (X̄ )
which is used to accept or reject the lot. This is obtained by adjusting two points
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between the AQL dan RQL on the OC curve. The calculation is done by using thr
following equations:

k = Z(α) · Z(RQL) + Z(β) · Z(AQL)

Z(α) + Z(β)
(1)

n =
(

1 + k2

2

) (
Z(α) + Z(β)

Z(AQL) − Z(RQL)

)2

(2)

W = L + k × SD (3)

where k is the intermediate parameter, L is specified lower limit, SD is standard
deviation of sample, n is desired sample size, α and β are normal distribution value,
where mostly applied at the range of 5–10 %, Z () is value in normal distribution
table, and W is decision parameter.

Quality Index Sampling (QIS) is a method that estimate percentage of defect (PD)
using non central t distribution with Q value respresents the quality index, instead
of using Z value.

The Attribute-Proportion-Sampling Method (APS) is a method of considering the
value of AQL, RQL, producer risk (α) and consumer risk (β) with the additional para-
meter W as the decision parameters used to examine the estimated percent defective
(PD). The lot acceptance are determined by the ratio between the mean value of the
samples and the W value compared to the percentage of defective (PD). If PD ≤ W ,
then the lot is accepted, otherwise the lot should be rejected. Number of samples to
be taken in this sampling method is obtained by using Eq. (4).

n =
(

Z(α)
√

AQL(1 − AQL) + Z(β)
√

RQL(1 − RQL)

(AQL − RQL)

)2

(4)

W = AQL − Z(α)

√
AQL(1 − AQL)

n
(5)

or

W = RQL − Z(β)

√
RQL(1 − RQL)

n
. (6)

3 Result and Discussion

Number of samples required for the sampling plan with VSS method is 17 sheets of
sacks (maximum), with a value of k = 0.599. By using Eq. (5), the lot acceptance
probabilities are obtained at each level of quality to produce OC curve (see Fig. 1).
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Fig. 1 OC curve for sampling plan with VSS

Fig. 2 AOQ curve for sampling plan with VSS

Figure 2 shows that the worst AOQ is reached at the level of 0.2108 or 21 % of
a lot are defects. This indicates that in a lot of sugar sacks at least 80 % are in a
good condition (quality). This result was based on AQL and RQL values that was
employed at 0.14296 and 0.4050 or near to 15 and 40 %.

ATI curve as shown at Fig. 3 describes the average number of samples required in
an inspection. It is used as evaluation tools interpret the total number of inspections in
an acceptance sampling plan versus the lot fraction defective. The result for sampling
plan with VSS method based on AQL and RQL values applied by the company which
are 15 and 40 %, give ATI value = 703.8 for p = 0.15 (AQL = 15 %. For p = 0.4
(RQL = 40 %) the method present ATI value of 13481.4 as seen on Fig. 3.
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Fig. 3 ATI curve for sampling plan with VSS

The sampling plan method with APS revealed that to produce the OC curve takes
the value of revenue and number of samples needs. Value of acceptance number c
can be obtained by trial-error method that are tailored to the facing situation and the
level of quality in the lot. The c values in this method is 7 and the number of samples
needed as many as 24 sheets of sacks. Further, for the result of AOQ curve, APS
method gave the defect fraction of p = 0.23989 or 24 % at AOQ = 0.19192. This
shows that at least 81 % in a lot of good quality sacks (for AQL and RQL values
are 15 and 40 % respectively). Thus with the defect fraction at 0.15 and 0.4, it is
equivalent to the AOQ values as amount of 0.14687 and 0.07666.

Quality Index Sampling (QIS) method was applied by using 10 samples for each
lot. The quality index is determined by the formula Q = (U − X̄)/SD if the specified
upper limit is known, or Q = (X̄ − L)/SD when the specified lower limit known.
In this study we used the specified lower limit (L) = 0.035. The result is presented
in Table 1, showing the comparison of PD and APD against the existing of 14 lots.

The company (PT SIL) has set the amount of nonconforming level for all quality
attribute of sugar sack at 20–25 % (APD). Therefore, when the value of PD ≥
APD, the lot will be rejected (see Table 1). This method is quite simple as mostly
implemented by the company. However, since this method ignores the value of AQL
and RQL, the producer risk α and the consumer risk β as well, so that the probability
of lot acceptance only determined intuitively by tester.

Finally, to select the best decision for the acceptance sampling plan method for
the company it can be drawn from the tabulation of three methods employed in this
study for 14 lots tested (S1–S14) as seen on Table 2.
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Table 1 Decision result of 14 lots sample based on QIS method

Lot Mean Stdev Q PD (%) APD (%) Decision

S01 0.0385 0.0024 1.26 10.00 25 Accepted
S02 0.0370 0.0026 0.77 22.48 25 Accepted
S03 0.0385 0.0024 1.26 6.63 25 Accepted
S04 0.0380 0.0026 1.16 12.12 25 Accepted
S05 0.0385 0.0024 1.45 6.63 25 Accepted
S06 0.0360 0.0032 0.32 37.86 25 Rejected
S07 0.0370 0.0026 0.77 22.48 25 Accepted
S08 0.0365 0.0024 0.62 27,27 25 Rejected
S09 0.0360 0.0021 0.47 32.42 25 Rejected
S10 0.0345 0.0016 0.95 17.29 25 Accepted
S11 0.0355 0.0016 0.32 37.86 25 Rejected
S12 0.0365 0.0024 0.62 27.27 25 Rejected
S13 0.0360 0.0021 0.47 32.42 25 Rejected
S14 0.0370 0.0026 0.77 22.48 25 Accepted

Table 2 The tabulation of acceptance sampling plan methods

Methods Current QIS VSS APS

Sample amount 25 10 17 24
S01 Accepted Accepted Accepted Accepted
S02 Accepted Accepted Accepted Accepted
S03 Accepted Accepted Accepted Accepted
S04 Accepted Accepted Accepted Accepted
S05 Accepted Accepted Accepted Accepted
S06 Accepted Rejected Rejected Accepted
S07 Accepted Accepted Accepted Accepted
S08 Accepted Rejected Accepted Accepted
S09 Accepted Rejected Accepted Accepted
S10 Accepted Accepted Rejected Accepted
S11 Accepted Rejected Rejected Accepted
S12 Accepted Rejected Rejected Accepted
S13 Accepted Rejected Rejected Accepted
S14 Accepted Accepted Accepted Accepted

4 Conclusion

For the case of sugar company studied here, it can be concluded that based evidence
showed by OC, AOQ and ATI curve for both method analyzed in this study, it was
found that the best acceptance sampling plan method is Variable Single Sampling
(VSS). This choice recommends the company to take 17 samples for each lot and
receving 95.4 % acceptance level for each sampling
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Transportation Costs and Carbon
Emissions in a Vendor Managed
Inventory Situation

Marcel Turkensteen and Christian Larsen

Abstract Recently, there has been much focus on carbon emissions and fuel
consumption from road transport. In this paper, we consider a vendor deciding on
the degree to which deliveries to geographically dispersed retailers should be con-
solidated. The vendor can consolidate shipments over time and deliver infrequently
or deliver to many retailers simultaneously. We adapt models for determining the
vendor’s cost minimizing strategy and for computing emissions. We find that if the
per km transportation costs increase, the vendor mainly selects smaller zones to avoid
transportation, resulting in lower carbon emissions.

1 Introduction

The topic of sustainability has recently gained a great deal of attention in logistics
research. Many climate scientists agree that emission of greenhouse gases such as
CO2, methane, and CFCs leads to global warming through the enhanced greenhouse
effect; see [9]. Operations Research approaches can contribute to the analysis and
solution of the environmental challenges; see [5]. Road transportation is an important
source of emissions, responsible for about 15 % of all carbon emissions worldwide
[5]. Its other negative externalities include emissions of particulate matter, noise and
congestion.

Here, we consider carbon emissions resulting from joint inventory and transporta-
tion decisions. On this topic, the paper by Hoen et al. [7] discusses the relationship
between inventory decisions and the choice between transport modes with different
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carbon emission levels. The paper by Bouchery et al. [3] minimizes costs and emis-
sions from transport and perishing of products on inventory through the selection of
a delivery frequency.

In this article, we consider the relationship between inventory and routing deci-
sions, and the resulting environmental impact in the form of carbon emissions from
transportation. A vendor manages the inventory levels at retailers with stochastic
demand, a set-up called vendor managed inventory (VMI), by delivering from a cen-
tral warehouse. The vendor minimizes his total costs by jointly determining inventory
levels at the warehouse and the retailers, and the delivery routes to be taken to replen-
ish retailers.

We apply a model for developing the inventory and transportation policies of the
vendor and combine it with a so-called engine emission model for measuring the
resulting carbon emissions; see Sect. 2. In the numerical experiments in Sect. 3, we
vary the per km transportation costs and analyze distribution situations with frequent
and infrequent demand. Finally, the conclusions and future research directions follow
in Sect. 4.

2 Computation of Optimal Policies and Carbon Emissions

In this section, we outline models for determining optimal policies for the vendor,
given a certain level of per km transportation costs, and for the computation of the
resulting carbon emissions.

Firstly, the vendor determines inventory levels, both at the central depot and at
the retailers, and the routing decisions. Ideally, routing decisions are fully flexible.
The problem is then to determine simultaneously when to visit each retailer, on
which routes, and the inventory policies at each retailer. Generally, such situations
are modeled as Inventory Routing Problems (IRPs), but due to the complexity of
the IRP, only small instances can be solved, in particular when demand is uncertain;
see e.g. [1]. Joint Replenishment Problem (JRP) approaches, on the other hand,
can determine optimal inventory policies at the retailers and the depot analytically or
using simulation over very long to infinite time horizons, even with uncertain demand
(see e.g. [10]). However, JRP approaches tend to have a fixed cost for each delivery
plus a (fixed) component for each retailer visited. In order to relate decisions to
transportation costs per km and in order to compute carbon emission levels accurately,
it is necessary to determine or at least estimate the route lengths through retailers on
a delivery tour.

We select the JRP approach formulated in [8] that estimates the expected lengths
of delivery tours using a mathematical expression from continuous approximation;
see e.g. [4]. For this approximation to be accurate here, retailers should be more or
less uniformly located across an area (the service area) and they should have identical
Poisson demand distributions. For illustrative purposes, the retailers are said to be in
an area with a circular shape, but this is not necessary.
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In the model, the vendor can divide the service area into zones, where each zone
contains a fixed group of retailers to which deliveries are consolidated. For each zone,
the policy parameters (S, V ) are determined to minimize total costs, consisting of
inventory and transportation costs, but also of backorder costs. Here, S is the order-up
to level of each retailer in a given zone. If more than V units demand have accumulated
in the zone since the last delivery, a dispatch to the zone is made at the end of the
working day. Preliminary experiments have shown that zones should be as much as
possible of the same size, so to determine the optimal policy for a certain level of
per km transportation costs we can simply perform exhaustive search across values
of S, V , and the number of zones. When transportation costs increase, transportation
can be avoided in the model by increasing V or by having small, compact zones, in
both cases with lower delivery frequencies and thus higher inventory levels.

We evaluate the influence of the vendor’s decisions on the expected transport-
based carbon emission levels. Carbon emissions are related to distance, but also to
the degree of vehicle utilization: if shipments are consolidated and vehicles are better
utilized, there can both be emission savings on the distance covered by vehicles and
emission increases as items are transported over longer distances. For that reason,
we decompose the total average daily carbon emission into emissions depending on
distance alone on the additional mass of the vehicle resulting from its load. As a con-
sequence of this requirement off-the-shelf calculators such as the NTM calculator1

of the Swedish Network for Transport and Environment, cannot be used. We select
the engine emission model by Barth et al. [2] (pages 47–51), which is found to be
the generally most accurate model in the comparison paper by Demir et al. [6]. This
model relates fuel consumption and carbon emissions to several input parameters,
the values of which are listed in Table 1, along with those from the chosen JRP model.
The parameter values in the emission engine model are mostly as reported in [6].

We distinguish between a truck of 15 tonnes with a maximum load of 10 tonnes,
and a van of 8 tonnes with a maximum load of 5 tonnes. For the van, carbon emissions
per km for the empty vehicle are 0.436 kg and for transportation of an additional
tonne of load 0.030 kg; if fully loaded, the load causes 32 % of the emissions. For
the truck, carbon emissions per km of the empty vehicle are 0.719 kg and of each
tonne of load 0.030 kg; if fully loaded, the load causes 40 % of emissions. In general,
it holds that the larger the vehicle is, the smaller the share that is independent of the
vehicle load. Here, the velocity is set to 50 km/h and the acceleration to 0 m/s2.

In our numerical experiments we wish to compare carbon emissions of different
solutions relative to each other, rather than absolute levels. These relative levels
are determined by the division between load-based and distance-based emissions.
It turns out that when different velocities and accelerations are selected, the share
of load-based emissions increases with the degree of acceleration and peaks at a
velocity of 50 km/h. The share lies typically between 18 and 35 % for the van and
between 29 and 47 % for the truck for average accelerations smaller than 0.1 m/s2.
For larger accelerations, the share increases rapidly. Even though a constant velocity
of 50 km/h may appear to be a very special case, the resulting division in emissions

1 http://www.ntmcalc.org/Magellan/render/goodsLogistics

http://www.ntmcalc.org/Magellan/render/goodsLogistics
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Table 1 Used input parameter values of the selected fuel consumption and JRP models

Symbol Explanation Used values

Engine emission model [2]
m Vehicle mass 10,000 + 1,5000 (truck)

(load and vehicle, kg) 5,000 + 8,000 (van)
Cd Coefficient of aerodynamic drag 0.7
A Surface of front 3.2 (van), 5.6 (truck)
ρ Air density (kg/m3) 12.041
v Velocity in m per s. 13.89 (50 km/h)
g Gravitational constant 9.81
Cr Rolling resistance 0.01
a Acceleration (m/s2) 0
η Drive train efficiency 0.4
θ Inclination of the road (slope) 0
JRP model [8]
λ Demand rate 1 per day (commodity)
W Vehicle capacity 30 (comm.), 10 (spare p.)
TOP Open time 10 h a day
h R Holding cost retailer 0.5 (per hour)
hW Holding cost depot 0.4 (per hour)
γ0 Fixed cost delivery tour 50
γ1 Cost per driven km Varies
γ2 Cost per retailer visited 10
γ3 Inventory cost on vehicle 1.5 (per hour)
p0 (Stock-out cost at depot) 1,000
p1 Stock-out cost/occurrence 5
p2 Stock-out cost/time unit 5

is fairly typical. However, an interesting research direction is to consider emissions
on trips with accelerations and decelerations, over so-called driving cycles.

3 Numerical Experiments

In this section, we present the most relevant of our experimental results. As the
transportation costs are varied, the vendor can choose to keep more inventory to
avoid transportation or to lower inventory costs by allowing for more transportation,
thus changing the carbon emission levels. For a product with relatively frequent
demand (a ‘commodity’), one can expect that inventory levels can be changed more
easily than for a product with infrequent demand (a ‘spare part’).

The transportation costs per km, denoted by γ1, are varied between 10 and 300
units. We apply the JRP model with the settings of the parameter values as in Table 1
in a circular area with a radius of 7 units. In case of variations of these parameter
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Fig. 1 CO2 emissions (distance-based, load-based, and total) for various values of γ1; commodity
case and spare part case

values, we find that similar results are obtained as below. In the commodity case, the
vehicle capacity W = 30 products (weighing 10 tonnes) and there are 50 retailers
who each demand, on average, 1 unit per day. For the spare part case, transportation is
carried out with a van with small capacity (W = 10, weighing 8 tonnes) and average
daily demand at each of the 50 retailers is 0.1 unit. We assume that the weight of the
load limits the vehicle’s capacity; if space requirements limit the capacity and the
load weighs only Y % < 100 % of the maximum weight, the load-based emissions
are (100 − Y ) % smaller.

Figure 1 shows that as γ1 increases, carbon emissions decrease in the commodity
case, as transportation is avoided by keeping larger inventories. Not shown is that
the number of zones increases from 2 (γ1 = 20) to 10 (γ1 = 300) with little change
in the degree of vehicle utilization. As transportation costs increase, zones become
more compact and deliveries less frequent. For small intervals of γ1, we find that the
carbon emissions change shockwise: they stay at the same level for large intervals of
γ1 and change suddenly when the number of zones or, to a lesser degree, V changes.

For the spare part case, carbon emissions appear to decrease more slowly with γ1
than for the commodity case. A possible explanation is that the vehicle utilization
increases with γ1 in the spare case part but the vehicle is almost fully utilized in
all solutions to the commodity case. An increase in the number of zones reduces
both load-based emissions and distance-based emissions, whereas a higher vehicle
utilization reduces distance-based emissions mainly.

4 Conclusions and Future Research

In this paper, we consider a specific distribution situation from a vendor’s central
warehouse to dispersed retailers, where the vendor seeks minimum cost solutions.
Carbon emission levels are computed for these solutions. Generally, we observe
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that the amount of transportation and hence carbon emissions decrease as per km
transportation costs increase and vice versa. Even though the distribution situations
are different, results are similar for the spare part and commodity cases.

An interesting direction of future research is to extend our analysis to different dis-
tribution situations: with different types of vehicles, e.g. electric vehicles, retailers
with different demand distributions, multiple products, and multiple warehouses.
However, it may be very challenging to formulate and solve the appropriate mathe-
matical models.

Acknowledgments This work is supported by a grant from the Nordic Council, NordForsk, project
no. 25900 and entitled Management design and evaluation of sustainable freight and logistics
systems.
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Fuel Consumption Costs of Routing
Uncertainty

Stephan Unger and William Cheung

Abstract We solve a car driver’s routing decision problem under uncertainty
in terms of fuel consumption costs. Suppose a car driver can estimate his fuel
consumption for a given route between A and B. We study the optimal decision
regarding which route to take, given the possibility of travelling between A and
B using different routes, where each route is characterized by stochastic uncertain
fuel consumption due to unknown traffic at the time of decision. We show that the
cost of fuel consumption decreases significantly when taking routes with uncertain
knowledge about prevailing traffic.

1 Introduction

Traffic congestion is one of the most severe cost problems faced by most businesses.
A study from IBM [4] in 2010 showed that traffic congestion cost the European Union
more than one percent of the gross domestic product (GDP)—or over 100 billion
Euros—per year. Accordingly, U.S. drivers wasted 4.2 billion hours, 2.8 billion
gallons of fuel and USD 87.2 billion due to traffic congestion in 2007. Furthermore,
twenty percent of the CO2 emissions are the byproduct of transportation. Several
papers address the problem of routing and transportation optimization. Knittel [1]
looks at different ways to reduce fuel consumption in transportation, and Onada [3]
provides an overview of current car fuel efficiency in the largest countries.

The selected route determines how many miles per gallon a vehicle can get because
this value is highly dependent on distance and traffic volume. We assume that a car
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driver is rational and tries to minimize his cost per mile. Therefore, a car driver is
confronted with a decision problem as to which route to choose, knowing he has to
cover a certain distance from A to B. We assume that he is in charge of the estimated
fuel needed to cover this distance. What we are interested in are the costs he faces
if he decides to take a different route with uncertain traffic volume and unknown
distance.

In Sect. 2, we present a simple strategy that models the typical average car driver’s
behavior. In Sect. 3, we simulate new routings with uncertainty regarding the fuel
consumption he faces to cover the new distance. The simulations are conducted with
reference to lower and higher levels of traffic volume and shorter or longer distances
for the new route.

The results are presented in Sect. 3.3.

2 The Model

The model for determining the sensitivities of route changes is based on the assump-
tion that each route change is associated with a randomly generated consumption
from a sample space in ω ∈ Ω . We start with the assumption that the typical car
driver’s behavior can be modeled by a type of reluctant fueling behavior. That is, we
assume that each car driver only refuels his tank when it is empty, meaning that he
approaches a gas station when the tank approaches empty. The random cost asso-
ciated with choosing a different route is defined by the random number ε, where
ε ∼ N (0, 1). Because we are interested in the average cost generated by choosing
different routes, we need to average over all possible values of ε. Each value corre-
sponds to a route with its own characteristics, which includes a random distance and
a random traffic volume. Therefore, ε is our subject of interest. We look at different
ε j levels and their subsequent consumption costs. The various consumption costs
need to be compared to various days. Each reference day starts at t = 0. Thus, for
each month, we obtain (t = 0, t = 1, . . . , t = N ) the estimation for the car driver’s
average monthly cost if he started with a full tank at (t = 0, t = 1, . . . , t = N ). To
formalize the fuel consumption behavior according to the chosen route, we give the
following cost equation:

ct = 1 N∑

n=1

J∑

j=1

[
X
Y + ε j

J

]

t+n

= W

W · (Ft+n − Ft ) for t = 0, 1, 2 . . . , n, (1)

where W defines the tank size of the car, X defines the car driver’s estimated monthly
consumption, Y counts the number of days per month and F displays the fuel price.
We note that the mean error of the simulated fuel consumption is zero: we do not
add any drift or variation to the corresponding alternative routes.

The key in calculating the sensitivity of the fuel consumption cost to a particular
routing decision lies in simulating different ε. The aggregated distances with the
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given traffic volumes will lead to different refueling times for given fuel prices.
For a given data set of daily observed fuel prices, we test the proposed algorithm
to calculate the average cost for a car driver. Different routing decisions will lead
to different refueling times, which in turn will lead to different fueling costs. We
compare the savings per mile when taking a different route to the estimated cost per
mile when the car driver takes the planned route.

We show that by choosing an alternative route, fueling costs per unit decrease sig-
nificantly regardless of the times of refueling, knowledge about the effective distance
to cover or traffic volume.

3 Routing Uncertainty

3.1 Data and Methodology

3.1.1 Data

Our data set contains daily average gasoline prices for all gas stations in Austria from
1st October 2011 to 30th June 2012. The daily gasoline data are from the official
governmental e-control website for fuel price monitoring [2]. Our data set contains
271 daily summaries of gasoline prices. This sample period was chosen due to data
availability. We assume that a car driver in our model has constant absolute risk
aversion with an exponential utility function U (·).

3.1.2 Methodology

We assume that the expected total fuel used is X = 200 L per year. The size of the
gas tank is W = 77 L, which is equivalent to a size of gas tank of an SUV, e.g.,
a Ford Explorer.

We estimate empirically the saving of consumption costs by the following steps:

Step 1. Estimate the gas used in date t , (
X

Y
+ ε)t+n , where εN (0, σ 2) for route a.

Step 2. Estimate the cumulative use of gas up to any given day
∑t

n=1(
X
Y + ε)t+n ,

which is equal to the sum of gasoline used on the day in question plus the
amount of gas used since the previous trip to the gas station considering
different traffic conditions.

Step 3. Estimate the savings according to different traffic conditions (we assume a
repeated complete fill-up of the tank).

ct = 1 N∑

n=1

J∑

j=1

[
X
Y + ε j

J

]

t+n

= W

W · (Ft+n − Ft ) for t = 0, 1, 2 . . . , n. (2)
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3.2 Simulation of Refueling Times

Because each refueling time is associated with a different price, by simulation of
different ε levels for each day of the data set, we ensure that the results are general
and are not a particular random outcome due to the data structure. We can state
following theorem.

Theorem 3.1 For increasing routing uncertainty fuel costs tend to decrease.

Proof Given W as the tank size we can define a route by it’s costs cr :

cr = W (P1 + P2 + · · · + Pn), (3)

where (P1, P2, . . . , Pn) are the prevailing prices at gas station at the time of refueling.
Pricing routing costs in advance requires estimation of

E[cr ]. (4)

Further we define C(r1, r2, . . . , rn) as the characteristics of each route. This involves
factors such as distance, traffic volume, street condition, slope, etc. which are calcu-
lated in terms of estimated fuel consumption per distance respectively it’s associated
fuel costs. Therefore W

r gives us the cost for the distance a car is able to cover.
When we look at a specific route we can therefore calculate its estimated cost for
fueling by

E
[
cri

] = W

ri
. (5)

For the total estimated costs we have

E
[
cavg

] = E [W (P1 + P2 + · · · + Pn)]

E

[
W
r1

+ W
r2

+ · · · + W
rn

] , (6)

which means we are left with

E
[
cavg

] = E [P1 + P2 + · · · + Pn]

E

[
1
r1

+ 1
r2

+ · · · + 1
rn

] . (7)

We see that with increasing variance of the routing uncertainty, estimated costs for
fueling decrease. �

One important point for achieving a valid simulation is the required condition
that the estimated fuel consumption is proportional to our tank size W . Therefore,
cars with bigger tanks are assumed to consume more fuel per mile than smaller cars.
This assumption is necessary to ensure that our model is only dependent on one car-
specific factor. The tank size is also independent of the general result (Figs. 1 and 2).
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Fig. 1 Fuel costs per liter with historical prices for each σ -level for a Ford Explorer with tank size
W = 77 L

3.3 Results

We test our proposed model on an individual car, a 2013 Ford Explorer, using
historical price data as well as randomized price data for an OU process of the
form

d S = λ(μ − S)dt + σdWt , (8)

with chosen parameters λ = 0.2, σ = 0.2, μ = 0.1. We run 1,000 simulations for
each day and fix the tank size for the Ford Explorer.

On average, the fueling costs tend to decrease with increasing uncertainty about
the fuel consumption associated with each particular route for the Ford Explorer.
The results are highly significant for the historical as well as the randomized price
data. From additional testing, we can generalize our results for any random tank size.
Because the simulation runs for different σ s over the entire time frame, the results
demonstrate independence from any possible data structure due to fuel price trends.
The results imply a structural solution to car driver’s routing decision problem. If
a traffic jam is immanent, we know that the routing costs cr will increase with
probability one. By taking a different route the fuel costs per unit will tend to decrease.
Therefore the car driver’s decision problem is solved in that sense that it is never
optimal to stay in the traffic jam. For the search of alternative routings the car driver
is always better off.
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Fig. 2 Fuel costs per liter with random prizes for each σ -level for a Ford Explorer with tank size
W = 77 L

4 Conclusion

This study demonstrates that decision-making under uncertainty can have interesting
implications on optimality conditions. We examine a car driver’s routing behavior
under uncertain traffic conditions. A car driver who wants to drive from A to B can
choose to take route a or route b. Before making his decision, he is not aware of the
prevailing traffic conditions on each route. The goal of the car driver is to minimize
his fuel consumption cost per unit. By assuming natural boundaries such as tank
sizes and prevailing fuel prices, we determine his fuel consumption cost per unit for
his chosen route. He must refuel his tank if it is empty, which serves as a counter
for measuring his costs. We test our result for historical as well as randomized price
data to exclude possible price dependencies. The results have the same implications
for both data sets.

The key result of this study is that under certain traffic conditions, prespecified
routing decisions are not optimal. Our results also indicate that changing routes
increases cost savings in terms of fuel consumption per unit.
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Optimization of Sales and Operations
Planning at Shell Chemicals Europe

Thijs van Dongen and Dave van den Hurck

Abstract In the chemical industry, planning and scheduling are labor-intensive,
complex, rolling processes. Interdependent decisions have to be made around differ-
ent stages within the supply chain (purchases, production, distribution, exchanges,
storage levels, and sales). In taking these decisions the overall enterprise margin
needs to be maximized across the global supply chain. To support making these
decisions the chemicals supply chain has been modeled using GMOS/NetSim, an
AIMMS-based network optimization tool jointly developed by Shell Global Solu-
tions and ORTEC. Years of extensive collaboration with various customers have made
GMOS/NetSim a proven tool for strategic supply chain studies. For this project a
module was developed to calculate accumulated costs/margins throughout the supply
chain. The outcomes are used to do detailed margin analyses. The key challenge was
to integrate the model into the monthly S&OP at SCE. Input data needs to be obtained
from 15+ people around the world from various fields of expertise on a regular basis,
as market conditions constantly change. Moreover, actual data is used for model
validation purposes and margin analyses for past months. The key outcomes from
the optimization are shared with the user community twice every month. The main
benefit of this project is that we are able to establish a unified global base plan and a
unified approach for fact-based decision making. The complex mathematical model
behind this approach includes a great level of detail reflecting reality in everyday
SCE business. This improves both the quality and speed of business decisions at 3
months (S&OP) and multi-year (business plan) horizons across the global supply
chain.
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1 Introduction

In the chemical industry, planning and scheduling are labour-intensive, complex,
rolling processes. Interdependent decisions have to be made around different stages
within the supply chain (purchases, production, distribution, exchanges, storage lev-
els and sales). In taking these decisions the overall enterprise margin needs to be
maximized across the global supply chain.

To support integrated decision-making the chemicals supply chain has been mod-
elled using GMOS/NetSim, an AIMMS-based network optimization tool jointly
developed by Shell Global Solutions and ORTEC. Years of extensive collaboration
with various customers have made GMOS/NetSim a proven tool for strategic supply
chain studies within Shell. In order to be able to do detailed margin analysis a module
has been developed which provides breakdowns of the margins in the supply chain.
This information helps to understand where the actual profit is made and helps in
taking decisions without the necessity to re-run the model.

The key challenge is to integrate the model into the monthly S&OP processes at
Shell Chemicals Europe (SCE). Input data needs to be obtained from several people
around the world from various fields of expertise on a regular basis, as market condi-
tions constantly change. Moreover, the reporting needs to be in line with expectations
and the (sometimes different) business needs.

The main benefit of this project is that we are able to establish a unified global base
plan and a unified approach for fact-based decision making at SCE. The complex
mathematical model behind this approach includes a great level of detail reflecting
reality in everyday SCE business. This improves both the quality and speed of busi-
ness decisions at 3 months (S&OP) and multi-year (business plan) horizons across
the global supply chain.

2 Integrated Optimization in the Chemicals Supply Chain

The goal in the chemicals business is to maximize the integrated margin while
satisfying the operational constraints that are present in the supply chain. In order
to achieve this goal a lot of interdependent decisions have to be made on a regular
basis. These decisions have to be made on a regular basis as the market conditions
constantly change introducing new opportunities and risks.

In order to be able to make decisions information is needed from various people
at SCE representing different locations and different product groups. Meetings are
held on a regular basis where all the stakeholders participate and the decisions are
made for the coming months. These decisions are reflected in the S&OP plans for
future months.

Some examples of the decisions in the chemicals supply chain are:

• The purchase of extra feedstock—It can be decided to purchase extra feedstock
(if available on the market) in order to produce more product. An alternative for
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this could be to use more feedstock from stock, to use more feedstock produced
internally (if this is possible).

• Movement of feedstock/product—The margins constantly change and in some
cases it is worthwhile to transport feedstock/product to another location to make
more profit. Clearly, transportation cost (and capacity and time delay) will have to
be taken into account.

• Production rates—When there is excess capacity the production of a unit with
a high marginal value can sometimes be increased. In case a marginal value is
negative it might be better to reduce the production rate of a production unit. If we
decrease or increase the production rate operational constraints have to be taken
into account (e.g. production capacity or storage). Moreover it is important to note
that the production rates of productions units can be highly dependent on each
other: in some cases units need to run in a fixed production ratio.

• Marginal sales—After obtaining a product we want to sell it with the highest
possible margin. In order to do this we need to determine the (marginal) margin
per sales channel. An alternative to selling a product can be to keep the product
on storage to sell it in the future.

• Excess of feedstock—When there is an excess of feedstock available within a
production facility there might be more than one unit that uses this feedstock. In
this case we would like to move the feedstock to the production unit with the
highest margin. An alternative might be to sell the feedstock.

In order to be able to make these decisions it is important to bring all the relevant
information together. This information is needed in order to determine how SCE can
make the highest margin within the operational boundaries. One of the main chal-
lenges here is to bring all the data together in such a way that the same assumptions
are used everywhere. Below we provide some examples of information that is needed
to be able to make optimal decisions across the supply chain:

• Sales forecasts—How much product can you sell in each location and at which
price?

• Purchase forecasts—How much feedstock can you purchase in each location at
which price?

• Cost forecasts—How much will your (other) costs be (e.g. transportation or pro-
duction cost)?

• Capacity forecasts—What will the capacity of your production units be? Is main-
tenance planned next month?

• Storage forecasts—What is the storage capacity in the coming months?

Once the data have been obtained it remains challenging to create high-quality
plans for the different locations and product groups as there are various dependencies
and boundaries that need to be taken into account. An example of such a dependency
is a production unit that produces more than one product in a fixed ratio. One of these
products may have a very high margin, but one will be stuck with the low margin
product. It can be very time consuming to make such plans as the market conditions
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constantly change. Moreover, the plans for the different regions and product groups
need to be consistent with each other and preferably created within a unified approach.

In order to support decision-making and the quality of the plans the chemicals
supply chain has been modelled with the use of GMOS/NetSim. With a model of the
integrated supply chain it becomes a lot easier to make integrated optimal decisions
within reasonable time limits. Moreover, with the help of an integrated model it
is only a small step towards scenario analysis to assess the impact of the various
uncertainties in the supply chain.

3 Supply Chain Optimization with GMOS/NetSim

GMOS/NetSim is an AIMMS-based network optimization tool that has been jointly
developed by Shell Global Solutions and ORTEC. The tool is used within various
fields within Shell and is mostly used to do supply chain studies on a strategic or
tactical level.

GMOS/NetSim has been set up in such a way that the subject matter expert (SME)
can set up a network without extensive knowledge of the mathematical techniques
behind it. A dedicated team provides support and training such that the potential of
the tool is fully utilized by the SME. Moreover, project specific adjustments to the
model or user interface can be made in case this is required. In some cases the SME
is assisted by the GMOS/NetSim team to set up the model.

The underlying mathematical model is a MINLP which may become a MIP,
NLP or LP when parts of the mathematical model are not used. Only those parts
(constraints and/or variables) of the model are activated (or generated) for which
the user specifies the input parameters. Depending on the problem type the model is
solved with CPLEX (MIP/LP), CONOPT (NLP) or AOA (MINLP). In the case of
SCE we solve an NLP with CONOPT consisting of around 300.000 constraints and
300.000 variables.

3.1 Building Blocks

Like in most network models the main principle behind GMOS/NetSim is that the
sum of the flows that are used should be equal to the sum of the flows that become
available. In simple network models this usually means that the sum of transport into
a node should be equal to the sum of transport out of node. In GMOS/NetSim there
are multiple ways for flows to become available or to be used (the building blocks).
Due to this assumption we ensure that a correct mass-balance is always obtained.
This is particularly interesting for SCE as their goal is to create a consistent plan
across the entire supply chain.

The modeller decides which building blocks are activated at a specific location for
a stream in a certain time period. With the help of these building blocks the modeller
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is able to set up the network that represents the supply chain. Some examples of these
building blocks are:

• Supply—Used to model that a certain stream is produced (becomes available) at a
location in a given time period. Example: Purchase of a feedstock on the market;

• Storage—A stream can be put on stock (used) to use in a next time period or
a stream can be taken from stock (become available) from a past time period.
Example: Storage of a product on a production site;

• Transport—A stream can be transported into a location (become available) or
transported out of a location (used). Example: Transport between locations that
takes more than one month;

• Production—A stream can be produced during a process (become available) or it
can be consumed during a process (used). These processes normally have fixed
yields, i.e. the ratio in which streams are consumed and streams are produced
is fixed. However, for some processes the yields depend on the utilisation of a
production unit, which makes the model non-linear. Example: The production of
the various units on the various sites;

• Interchangeability—Some stream can be interchanged (used) to another stream
(become available). Example: More streams can be used for the same production
process (for example a fuel), so they are interchangeable;

• Demand—Some streams (e.g. end-products) can be used to fulfil customer demand
(used). Example: Demand for a product in certain demand areas.

At SCE the supply chain has been modelled with the above building blocks by
several SME(s). The building blocks are activated by specifying certain parameters
(usually a minimum a maximum or a cost/price). When modelling the supply chain
the main challenge was to find the right level of detail such that it sufficiently reflects
reality to provide answers, but also remains manageable (and solvable).

3.2 Operational Constraints

After setting up the supply chain various operational limits needed to be modeled. An
example of such a limit at SCE is the capacity of a production unit. There are various
ways to model these operational constraints in GMOS/NetSim. These constraints
are activated by specifying the input parameters relevant to that particular constraint.
Some basic examples of these constraints are:

• How much feedstock can we purchase? How much feedstock do we need to pur-
chase contractually? (Building block: Supply)

• How much can we store in a tank? Is there a minimum level required? (Building
block: Storage)

• How much can we transport to a location? How long does it take? Which types of
transport are available? (Building block: Transport)
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• What is the capacity of the production unit? Can it run on multiple modes? What
will my yields be? (Building block: Production)

• How much fuel can be used to heat a production unit? (Building block: Inter-
changeability)

• How much product can we sell in a location next month? Is there a mini-
mum/maximum? (Building block: Demand)

A lot of data is needed from several fields of expertise to model these constraints.
Moreover, the input data needs to be updated on a regular basis as the supply chain
changes over time. At SCE we succeeded to model the operational constraints for the
relevant parts of the supply chain. Some parameters are updated on a yearly basis,
where others are constantly monitored.

3.3 Economic Drivers

As the objective is to maximize the total integrated profit we have to assign costs
and revenues to the various decisions that can be taken in the model. Examples
are the cost for purchasing a feedstock, the revenue from selling a product or the
cost to keep something in storage. Clearly, these economic drivers heavily influence
the outcomes from the optimization. Moreover, the prices in the chemicals market
constantly change. As such the prices have to be updated on a regular basis.

3.4 Detailed Margin Analysis

At SCE there was a need to be able to analyze the margins made on a feedstock or
product on a more detailed level. In the main optimization we only focus on the total
profit and cost, but not necessarily on the margin per product or feedstock.

Suppose for example that a production unit uses multiple feedstocks for which
one feedstock may come from different sources (storage/market/internal production).
Then we would like to assign part of the total costs of these feedstocks to each product
produced in the production unit. These products might be used as a feedstock in
another production process for which also other feedstocks with different costs are
used. Again we would like to assign these costs in such a way that we know how
much it has cost us to produce one ton of a certain product. In the same way we are
interested in the total revenue that is eventually made on a certain feedstock after it
has been converted to one or more products. This is done with a similar logic where
revenues are assigned to the feedstocks. In such a way we are able to obtain a good
insight in the margins made on products and feedstocks.
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Please note that this analysis is done after the main optimization with a series of
LP’s. In the image below you can find an overview of the mathematical models that
are solved in sequence each using the output of former model.

After solving the integrated profit optimization model (NLP) an LP is solved that
helps us to determine how a feedstock (or product) flows through the network. This
is the source for our margin calculation and helps in understanding the flows through
the network. These flows through the network are determined on a more detailed
level (within a location) and do not influence the results in the main optimizations.

Based upon these flows we solve a second LP that is used to assign the costs
and revenues to the flows that have been determined. The key idea behind this LP is
that we forward track the (cumulative) cost and that we backward track the revenue
(minus cost) through the optimized network. Allocation of the costs is done with
business rules for which several extensions have been created over the years.

The detailed margin analysis module in GMOS/NetSim is crucial for SCE as
most of the decisions are made based on the margin of a feedstock or product. The
breakdown of the total margin gives the SME an idea of where the actual profit is
made and how we can enlarge that profit in future time periods. Moreover, due to the
breakdown of margins decisions can be taken without re-running the model.

4 Conclusions

In order to be able to make optimal decisions across the entire value chain rather
than local optimal decisions it was crucial to build a model for the entire supply
chain. With a global model we are able to optimize the entire supply chain taking
into account the same assumptions everywhere. We were able to model the supply
chain with GMOS/NetSim which is a network optimization tool developed by Shell
and ORTEC which is used in various businesses within Shell. A favorable feature of
the tool is that it is relatively easy for a SME to set up a mathematical model without
the need of extensive mathematical knowledge.

One of the key benefits of the model is that we are able to ensure a correct mass-
balance and provide unified reports for the entire supply chain. Moreover, as margins
are crucial for decisions-making at SCE a detailed margin analysis module has been
built in GMOS/NetSim, which further improves decision-making.

One of the main challenges that we faced is to get all the input data together with
sufficient quality. The input needs to be obtained from various people representing
different products and locations. Here it is crucial that the input data is of sufficient
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quality in order to take the right decisions. We were able to embed the model in the
S&OP processes at SCE such that decisions are made based on fact based mathemat-
ical analysis. As such we believe that the SCE model is a great example of adding
value by applying mathematical techniques in practice.



Time-Dependent Dynamic Location
and Relocation of Ambulances

Lara Wiesche

Abstract The rescue service is an important part of public health care, which is
provided to the general public by the state. A crucial aspect of the rescue service is
the first aid of patients provided by the local emergency medical service (EMS). Given
a limited budget, the available resources, e. g. ambulances, have to be used efficient in
order to ensure a high quality coverage. Empirical studies have shown temporal and
spatial variations of emergency demand as well as variations of travel times during
the day. Existing models do not sufficiently consider time-dependency of important
model parameters as demand and travel times for EMS vehicles. Especially the use
of flexible ambulance locations, e.g. hospitals or voluntary fire departments, can be
useful to reach a suitable coverage. A mixed-integer linear program is formulated in
order to explicitly model time-dependent demand and travel times. On an extensive
case study it is shown that the presented dynamic model outperforms existing static
models with respect to coverage and utilization of resources.

1 Introduction

The rescue service is an important part of public health care, which is provided to
the general public by the state. A crucial aspect of the rescue service is the first
aid of patients provided by the local emergency medical service (EMS). The eco-
nomic pressure of rising health care costs leads to cost-effective planning while a
high quality of medical care for the population has to be ensured. A key challenge
for emergency services planners is an efficient usage of the capacity that can be
realized by a high utilization of the available resources [1]. Especially in Germany
it is observable, that existing EMS systems are exposed to high economic pressure.
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Accordingly, it is necessary to modify existing systems without substantial budget
increases.

The quality of medical care in the emergency service is measured by a response
time interval: the time emergencies can be reached within a legal time frame. System
performance is measured as the number (or fraction) of calls that can be reached
within the fixed time frame, most commonly 90 % of calls in less than 9 min during
a year [2]. Requirement for the achievement of patients within the time limit is the
spatial and temporal availability of ambulances and qualified staff. The availability
is mainly influenced by the emergency demand, the travel speed and the service time
which cyclical vary during the day and influences the availability of ambulances.
A mixed-integer linear program is formulated in order to explicitly model time-
dependent demand and travel times. It is shown on large empirical data records that
the presented dynamic model outperforms existing static models with respect to
coverage and utilization of resources.

2 Time-Dependent Ambulance Location

On each planning level various approaches have been treated in the literature to
improve the quality of emergency care [3]. As a substitute for the respond time
threshold existing approaches in literature maximize the (double) coverage of emer-
gency demand areas within the legal time frame [4]. Depending on the emergency
demand and ambulance travel time an optimal allocation of ambulances must be
guaranteed. Empirical studies show that demand changes spatial, mainly caused by
the population density, as well as temporally, mainly caused by the activities of the
people at this time. In addition, ambulance travel time variations, especially caused
by varying the traffic volume, are observable which directly affects the availability of
emergency vehicles. The existing quantitative models for tactical EMS resource plan-
ning are too restrictive in this respect, since dynamic influences are not considered
sufficiently.

On the basis of the double standard model [5] and its extension [6] a new approach
is presented which explicitly considers demand and travel time variations throughout
the day. This enables a temporal differentiation of resources. Taking into account
different requirements, the coverage of EMS demand areas is maximized. The binary
decision variable xk

it indicates, if demand node i is covered k times in time period t
while y jt represents the number of ambulances located at node j . The time-dependent
travel time matrix is given through τi j t := τi j (t) = di j/vt . Corresponding to the time-
dependent travel time the set N k

i t := { j ∈ J | τi j t ≤ rk, k ∈ {1, 2}} indicates all
vehicle locations from which a demand site i can be reached within a (time) radius
rk (r1 ≤ r2) in period t , which represents the legal response time. The combination
of constraints (1)–(2) ensures the necessary coverage that a proportion α of the total
time-dependent demand (dit ) is covered within r1 and the whole demand area is
covered within r2. Constraints (3)–(4) express that a demand node is only covered if
there is an ambulance within the neighborhood N 1

i t and can only be covered k-times
if it is also covered k − 1-times.
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⎧

j∈N 2
i t

y j t ≥ 1 ∀i ∈ I , ∀t ∈ T (1)
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i∈I
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i t ≥ α
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i∈I
dit ∀t ∈ T (2)

⎧

j∈N 1
i t

y j t ≥ x1
i t + x2

i t ∀i ∈ I , ∀t ∈ T (3)

x1
i t ≥ x2

i t ∀i ∈ I , ∀t ∈ T (4)

The dynamic allocation of ambulances is modeled in constraints (5)–(8). On the one hand
dynamic allocation means relocation of ambulances during the day (ui j t ), but on the other hand
it means a time dependent ambulance fleet size (pt ). Thereby the length of the time periods
has to be chosen carefully, since they have to be small enough to aggregate an appropriate
demand and travel-time average as well as large enough to avoid excessive relocations every
hour.

Constraint (5) limits the total number of vehicles in period t to pt , beside the maximizing
of the coverage, provision costs are indirectly integrated in the new model. In order to model
the different numbers of vehicles in the system according to the time period t a (fictive) depot
node D is integrated. If an ambulance is placed at the depot it means, that the vehicle is not
manned with staff. Constraint (6) gather accumulates the number of vehicles located at the
depot in yDt . Equations (7) and (8) ensure resulting relocations of vehicles between different
locations that can take place accordingly.

⎧

j∈J
y jt ≤ pt ∀t ∈ T (5)

yDt = pges − pt ∀t ∈ T (6)

y jt +
⎧

i∈J ∪{D}
ui j t −

⎧

i∈J ∪{D}
u jit = y j (t+1) ∀ j ∈ J ∪ {D}, ∀t ∈ T \ {T } (7)

y jT +
⎧

i∈J ∪{D}
ui jT −

⎧

i∈J ∪{D}
u jiT = y j1 ∀ j ∈ J ∪ {D} (8)

In contrast to the Anglo-American EMS-system in the Franco-German EMS-system ambu-
lances are placed only at rescue stations [7] which are in general placed near the city center.
To increase the flexibility of the EMS-system, additional flexible locations e.g. volunteer fire
departments or hospitals are considered as potential ambulance locations. Constraints (9) and
(10) ensure the maximum capacity of vehicles (θ j ) at location j and prohibits the location at
flexible stations during the night.

y jt ≤ θ j ∀ j ∈ J , ∀t ∈ T (9)

y jT = 0 ∀ j ∈ F (10)

The double coverage is considered in the maximization function of the
optimization model (11) as well as the minimization of the relocations and use of flexible
ambulance locations. Integrating relocations and flexible ambulance locations lead to addi-
tional flexibility especially during rush hours. A trade-off between flexibility and practicability



484 L. Wiesche

Table 1 Dynamic optimization in relation to a static optimization, comparison of the coverage
degree and relocations

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

Dynamic model
Single coverage (%) 100 99.97 99.03 100 98.29 98.91

Double coverage (%) 100 99.97 98.95 100 98.21 98.64

Number of relocations 3 4 0 2 5 0

Static model
Single coverage (%) 100 99.97 99.75 100 98.29 98.91

double coverage (%) 100 99.97 99.32 100 98.21 98.64

Number of relocations 4 6 6 4 5 0

Coverage improvement (dynamic vs. static) 0 0 +1.09 % 0 0 0
Relocation avoidance (dynamic vs. static) +1 +2 +6 +2 0 0

of flexible sites is observable. The objective function guarantees that flexible locations and
relocations are only used if the influence on the demand coverage is high enough. The decision
maker can decide about the usage of flexible location and relocations directly in the model
through penalty costs (β and γ ).

max
⎧

t∈T

⎪

⎨
⎧

i∈I
dit x2

i t − β
⎧

i∈J

⎧

j∈J
ui j t − γ

⎧

j∈F
y jt

⎛

⎜ (11)

The proposed model supports local municipalities for locating ambulances on a tactical
decision level. With the objective of maximizing the double coverage taking into account
relocations and flexible locations, the presented model integrates the variation of the emergency
demand and ambulance travel speed, dynamic adjustments and flexible ambulance locations.
Through the simultaneous consideration of different dynamic aspects, the resources can be
temporally differentiated what leads to an efficient use of resources.

3 Application and Results

In the evaluation of the proposed tactical ambulance location model an extensive case study was
implemented. The advantages of the proposed model are shown in a real world case study form
the city of Bochum (Germany) with more than 20.000 anonymous annual operations in form
of a square grid (1 × 1 km2) aggregated data set. The total planing horizon of 24 h is equally
split into T = 6 time-periods with a length of 4 h. The division of the day allows to aggregate
an appropriate average of demand and travel time as well as integrating staff scheduling. On
the basis of various developed criteria for the evaluation of coverage models (including the
empirically required coverage degree of each planning squares) it is demonstrated, that the
presented dynamic optimization model with simultaneous maximization of the coverage and
minimizing the number of replacements should be preferred to the current allocation of the
ambulances (status quo).
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Fig. 1 Comparison of the coverage degree of each planning square in period 3 (8:00–12:00 a.m.),
for the currently used allocation (left) and the optimal allocation (right)

A brief summary of the main results is provided in Fig. 1. The figure shows the cover-
age degree of each planning square in peak hours (8:00–12:00 a.m.), associated with high
demands and low travel speed, for the currently used allocation of ambulances of the city of
Bochum (left graph), compared to the optimal allocation of the model (right graph). From
dark gray to light squares the number of coverage from zero to nine fold is visualized.
Whereas dark gray squares indicate that emergency demand cannot be reached within the legal
time frame (quality losses), the white squares represent an up to nine fold coverage which
implies a waste of expendable resources. The comparison shows that the optimal allocation of
ambulances in Bochum can achieve a much more uniform and thus more favorable coverage
especially at peak hours. Among other factors the use of flexible locations in Bochum ensures
an achievement of the outskirts during rush hours.

Additional flexibility of the solution is the permission of dynamic relocations during the
day. In contrast to a static optimization model interdependences (placement of ambulances
in an individual period will affect the placement in other periods) between the periods are
considered in the dynamic model. The advantages of the dynamic model in comparison to a
static model with T = 6 static period optimal solutions are shown in Table 1.

In contrast to the static (single) period model where the resulting number of
relocations are not considered explicitly, the proposed dynamic model takes into account
the cross-period relocations. As it can be seen the dynamic allocations correspond to the sta-
tic one in terms of the solution quality—but at a significantly lower number of relocations.
The analysis shows that the quality of the obtained solutions can be improved significantly
by explicitly taking into account time-dependent variations in travel time, flexible ambulance
locations and results in a better EMS supply.



486 L. Wiesche

4 Conclusion

With regard to the trend of increasing number of EMS operations, an efficient usage of existing
emergency service resources is crucial. The simultaneous consideration of various dynamics
and flexible ambulance locations, the resources can be temporally differentiated and used effi-
ciently. The structure of the objective function allows the decision maker to directly influence
the flexibility and therefore the solution of the EMS system. Especially the use of (existing)
flexible location is an easy and inexpensive approach to improve the solution significantly.
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Inventory Replenishment Models
with Advance Demand Information
for Agricultural Online Retailers

Haoxuan Xu, Yeming Gong, Chengbin Chu and Jinlong Zhang

Abstract This paper studies the inventory replenishment planning problems for
agricultural online retailers able to obtain advance demand information (ADI)
in an environment of time-varying demands. We incorporate ADI into dynamic
lot-sizing (DLS) models to formulate the replenishment planning problems for agri-
cultural online retailers. We consider three scenarios in this research. (1) Compa-
nies act as pure-play online retailers with customers homogeneous in demand lead
time. (2) Online customers are heterogeneous in demand lead time with priorities.
(3) Online retailers operate in a bricks-and-clicks structure, in which demands come
from both online and offline channels. These channels can be either independent or
interactive.

1 Introduction

This research is motivated by an inventory replenishment problem arising in an
agricultural online retailer. Since most of its produce (e.g., fruits and vegetables)
are perishable, this online retailer frequently procures them from a large agricul-
ture products trade center located near its fulfillment center. The location privilege
ensures timely and sufficient supply. In this environment of time-varying demands
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Fig. 1 Inventory model with ADI

for produce, we model the inventory replenishment plan of such agricultural online
retailers as an uncapacitated single item lot sizing problem.

Agricultural online retailers obtain advance demand information (ADI) when
customers place produce orders online, since these demands are usually be satisfied
periods after the order place time. The time from a customer’s order until the due
date is defined as demand lead time (see [1]). We consider dynamic lot-sizing (DLS)
models with ADI and flexible delivery under different online retailing scenarios
to solve the practical problems. This study focuses on the inventory replenishment
policy of the produce that can be easily ordered from suppliers or can be produced
by the online retailers themselves.

2 Problem Formulation

2.1 DLS Model with ADI

In a rolling horizon environment, we consider an agricultural online retailer selling a
kind of produce with timely and sufficient supply in the forthcoming periods from 1 to
N . Demands arriving in each period t (t = 1, . . . , N ) are supposed to be independent,
and denoted as dt . Given a standard demand lead time L , dt will be satisfied within
[t, t + L] without any backorder penalty (see [4]). It can also be delayed by a
maximum allowed time G, but with backlogging cost. Hence, the latest due date of
dt is t + L + G. We define vi

t (i = 0, . . . , L + G − 1) as the unsatisfied part of
the demand of i periods earlier at the end of period t . All such unsatisfied advance
demands will be transferred to the next period, and the total quantity is I −

t . Holding
inventory at the end of period t is I +

t .
In our model, dt are known and deterministic, vi

0 are input data. Without loss of
generality, we assume the holding inventory level at the beginning of the planning
horizon is equal to zero, i.e. I +

0 = 0. Figure 1 exhibits the inventory model with
ADI. We first assume L to be homogeneous for all customers (see [2]). In period
t , demands consist of two parts. One is the unsatisfied advance demands portfolio(
v0

t−1, v1
t−1, . . . , vL+G−1

t−1

)
, the other part is dt .
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We also define the following:

kt fixed cost of ordering (set-up cost) in period t ;
pt unit ordering/production cost in period t ;
ht unit holding cost in period t ;
bt unit backlogging cost in period t ;
ft fixed delay delivery cost in period t ;
xt amount replenished in period t ;
yt = 1 if xt > 0, and 0 otherwise;
M an arbitrarily large number;

Using this notation, we formulate the DLS problem with ADI as follows:

Model 1:

Min
N∑

t=1

(kt yt + pt xt + ht I +
t + ft v

L
t +

G−1∑

m=0

bt v
L+m
t ) (1)

subject to:
(I +

t − I −
t ) = (I +

t−1 − I −
t−1) + xt − dt , t = 1, . . . , N (2)

I −
t =

L+G−1∑

i=0

vi
t , t = 0, . . . , N (3)

I +
t−1 + xt − vL+G−1

t−1 ≤ 0, t = 1, . . . , N (4)

L+G−1∑

m=i

vm
t ≤

L+G−1∑

m=i−1

vm
t−1 − xt − I +

t−1, i = 1, . . . , L + G − 1 (5)

L+G−1∑

m=0

vm
t ≤

L+G−1∑

m=0

vm
t−1 − xt − I +

t−1 + dt (6)

vi
t ∞ vi−1

t−1, v0
t ∞ dt , i = 1, . . . , L + G − 1; t = 1, . . . , N (7)

0 ∞ xt ∞ Myt (8)

I +
N = I −

N = 0 (9)

vi
t ≤ 0, I +

t ≤ 0, I −
t ≤ 0, i = 0, . . . , L + G − 1; t = 0, . . . , N (10)

The objective function, Eq. (1), is to minimize the total cost. In our model, Once
an item is delivered after L periods, there is a fixed cost ft charged at the first
period of delay. For each period t during the delaying time, a cost bt is also charged.
constraints (2–3) are inventory balance equations, and (4) guarantees the unsatisfied
demands with maximum allowed delay in period t are satisfied. Constraints (5–7)
denote how the unsatisfied advance demands in period t − 1 transfer to be that in
period t . Difference is that when computing v0

t (unsatisfied demand in the current
period t), dt should be considered. Constraint (8) ensures the sufficient replenishment
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Fig. 2 Inventory model with online demand priority

quantity, and (9) guarantees all the demands be satisfied with no holding inventory
in the end. Constraint (10) defines the variable types.

2.2 Demand Priority

Some online retailers distinguish demands into different priorities. According to
delivery option, we assume orders to be high and low priority. The latter means
demands with standard delivery option, while the former signifies those demands
with urgent delivery option. The demand lead time of high priority demands (L2) is
shorter than that of low priority demands (L1), i.e. L2 < L1. Besides, High priority
orders can not be backlogged. Figure 2 exhibits the inventory model with demand
priority. Demands of period t come from two classes of customers. Each can be
divided into two parts, advance demands and demands arriving in period t .

Based on Model 1, we formulate the problem with demand priority as follows.

vi
t , v

≥ j
t at the end of period t , unsatisfied part of low priority demand of i periods

earlier, unsatisfied part of high priority demand of j periods earlier;
dt , d

≥
t demands arriving in t from low, high priority customers;

Model 2:

Min
N∑

t=1

(kt yt + pt xt + ht I +
t + ft v

L1
t +

G−1∑

m=0

bt v
L1+m
t ) (11)

subject to:
(I +

t − I −
t ) = (I +

t−1 − I −
t−1) + xt − dt − d

≥
t (12)

I −
t =

L1+G−1∑

i=0

vi
t−1 +

L2−1∑

j=0

v
≥ j
t−1, t = 0, . . . , N (13)

I +
t−1 + xt − vL1+G−1

t−1 − v
≥L2−1
t−1 ≤ 0 (14)
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Fig. 3 Inventory model with independent demand channel

L1+G−1∑

m=i

vm
t +

L2−1∑

m=i

v
≥m
t ≤

L1+G−1∑

m=i−1

vm
t−1 +

L2−1∑

m=i−1

v
≥m
t−1 − xt − I +

t−1,

i = 1, . . . , L2 − 1 (15)
L1+G−1∑

m=i

vm
t ≤

L1+G−1∑

m=i−1

vm
t−1 + v

≥L2−1
t−1 − xt − I +

t−1,

i = L2, . . . , L1 + G − 1 (16)
L1+G−1∑

m=0

vm
t +

L2−1∑

m=0

v
≥m
t ≤

L1+G−1∑

m=0

vm
t−1 +

L2−1∑

m=0

v
≥m
t−1 − xt − I +

t−1

+dt + d
≥
t (17)

vi
t ∞ vi−1

t−1, v0
t ∞ dt , i = 1, . . . , L1 + G − 1; t = 1, . . . , N (18)

v
≥ j
t ∞ v

≥ j−1
t−1 , v

≥0
t ∞ d

≥
t j = 1, . . . , L2 − 1; t = 1, . . . , N (19)

0 ∞ xt ∞ Myt (20)

I +
N = I −

N = 0 (21)

vi
t ≤ 0, v

≥i
t ≤ 0, I +

t ≤ 0, I −
t ≤ 0. (22)

2.3 Demand Channel

2.3.1 Independent Channel

In a bricks-and-clicks online retailing structure, we first consider a scenario of inde-
pendent demand channel. The aggregated demands in period t come from two inde-
pendent channels, one is online store, the other is physical (offline) store. Figure 3
shows the inventory management process of independent demand channel. Demands
in period t consist of advance demands from online customers and demands arriving
from both offline and online customers. We use wt to denote the offline demands,
which must be satisfied immediately. Model 2 is applicable to this scenario when
L2 = 0.
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Fig. 4 Inventory model with interactive demand channel

Table 1 Numerical example for model 1

t 0 1 2 3 4 5 6 7 8 9 10 11 12

v0
t 0 69 0 36 61 0 26 34 0 45 67 0 0

v1
t 0 0 0 0 36 0 0 26 0 0 45 0 0

v2
t 0 0 0 0 0 0 0 0 0 0 0 0 0

v3
t 0 0 0 0 0 0 0 0 0 0 0 0 0

dt – 69 29 36 61 61 26 34 67 45 67 79 56
xt – 0 98 0 0 158 0 0 127 0 0 247 0
I +
t 0 0 0 0 0 0 0 0 0 0 0 56 0

I −
t 0 69 0 36 97 0 26 60 0 45 112 0 0

2.3.2 Interactive Channel

In the scenario of interactive demand channel, customers have two options for deliv-
ery after placing orders online. (a) to wait for the delivery home; (b) to go to the
appointed physical store for the ordering products after being informed. Figure 4
shows such inventory management process.

We use dsel f
t to denote the demands with self-picking, and don

t to denote demands
of customers waiting for delivery. Different from advance demands online, the
demands transferring from online to offline can not be backlogged, and must be
satisfied within an allowed maximum waiting time S. We consider this scenario as
a combination of the scenarios of demand priority and independent demand chan-

nel. u j
t , j = 0, . . . , S − 1 (see Fig. 4) can be seen as v

≥ j
t in model 2. By adding

the demands coming from offline physical stores wt to the left side of constraint
(12), and the right side of constraints (14–17), we can use such modified model 2 to
formulate the problem in scenario of interactive demand channel.
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3 Solution and a Numerical Example

All the constraints in the models we formulate are linear. Hence, we use Cplex solver
to solve these models by a mixed integer linear programming method. In addition, we
can analyze the optimality properties to design polynomial algorithms to solve some
large scale problems. In a numerical example, we use the data from [3]. Furthermore,
we assume L = G = 2, ft = 1, bt = 1 in all periods, and the unsatisfied advance
demands at the beginning vi

0 = 0 . The result of model 1 is shown in Table 1.
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Coordinating a Three-Echelon Telecom
Supply Chain with Spanning and Pair-Wise
Revenue Sharing Contracts

Azarm Yeganehfallah, Hamid Mashreghi
and Mohammad Reza Amin-Naseri

Abstract Nowadays, competitions between supply chains forces members to
participate in strategic partnerships extending the isolated firm’s competitive advan-
tages. Contracting and in particular revenue sharing contract is one of the main
applicable partnership mechanisms being dramatically analyzed in the literature for
coordinating two-echelon supply chains. However there exist a handful of studies
based on multi-echelon supply chains. Reviewing the literature, revenue sharing
contracts can be developed through two approaches in multi-echelon supply chains:
spanning and pair-wise schemes. In this research we review first, the last devel-
opments in telecom industries providing a new model for telecom supply chains,
then we model different revenue sharing contracts in order to coordinate a three-
echelon telecom supply chain facing demand uncertainty. Finally we compare the
strengths and limitations for implementing different pair-wise and spanning revenue
sharing contracts in telecom industries which can be helpful for both academics and
practitioners.
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1 Introduction and Background

Concerning growing logistic activities in the new economic world, the concept of
coordination became interesting in practice as a paradigm to empower multi-echelon
supply chain (SC) partnership for the chains want to be a market-leader. Reviewing
the rich literature analyzing SC coordination, a handful of them were applied for
multi-echelon SC with practical view. In this regard we aim to study telecom SC with
its special features as a proved multi-echelon SC [1]. Supply chain coordination can
be defined as finding the optimized decentralized decisions for SC partners aligned
with optimized centralized SC. The main coordination mechanisms are classified by
[2] namely; contracts, joint decision making, information sharing and information
technology. Within this classification, contracts are one of the most relevant tools to
achieve coordination from both academic and practitioners’ point of view. Different
types of contracts are analyzed in the literature for achieving coordination such as [3]:
wholesale-price, returns-policy, revenue-sharing (RS), quantity discounts, quantity
flexibility and sales rebate. Although the main focus of the literature is on analyzing
two-echelon SC, we focus here on multi-echelon SCs.

1.1 Practical Relevancy in Telecommunication Industries

The rapidly changing atmosphere and landscape in telecommunication industry in
over a hundred years of modern telecom history made a lot of shifts in the telecom
supply chain. Telecommunication industry has a long history of focusing on relia-
bility and performance but in closed network with new applications coming out at a
snail’s pace. On the other hand, internet is a young service providing an open envi-
ronment producing a new model of communication full of innovative applications
but with poor performance in real-time applications. However, with emerging Inter-
net protocol multimedia subsystem (IMS) which merges internet world with telecom
world, a new communications network will be produced offering a reliable network
that will meet the needs of our real-time applications and at the same time provide
an environment for new and innovative applications to meet the needs of end users.
These new classes of services provides spaces for new entries [e.g. end-users service
providers (SP)] in the telecom SC [11].

From the SC point of view, the classical telecom SC consists of a series of sup-
pliers, an Electronics manufacturing service provider (EMS), an Original equipment
manufacturer (OEM), and an operator as the last echelon which provides final prod-
ucts and services to end users [1]. However regarding the presence of IMS another
final echelon can be considered between the classical last echelon, the operator, and
the end-users (Fig. 1). This new player has a completely different nature compared
to other ordinary telecom players. Firstly, this final echelon consists of multiple SP
configuring in a horizontal shape vice versa to the SC meaning a user can get service
from one to any number of them. Secondly, a variant of new services such as real-time
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Fig. 1 Mapping a telecommunication multi-echelon SC: classical versus modern point of view

Fig. 2 Spanning (upper arrows) versus pair-wise (dashed arrows) RS contracts

health care, weather application combined with user location and news applications
are available beside all renovated services of telecom and internet network. In this
paper for simplification we focused only on one SP added to the total SC. Concern-
ing the last three echelons of the telecom SC our model is based on the gray part
of Fig. 1.

1.2 Literature Review: Multi-Echelon Supply Chain
Contracting

Giannoccaro and Pontrandolfo [4] are the first ones who analyze RS contracts for
three-echelon SCs in a Pair-wise setting with stochastic demand which is called here
as PRS-1. Rhee et al. [9] argue that PRS-1 contract cannot coordinate SC and develop
spanning RS (SRS) contract for a multi-echelon SC to achieve coordination (Fig. 2).
Zhou and Yang [12] analyze three-echelon SC with a deterministic price-sensitive
demand. However, in this paper we compare SRS contract with PRS-1 and a novel
interpretation of pair-wise setting (PRS-2) under additive demand uncertainty. The
other relevant research for multi-echelon SCs focus on wholesale-price contracts
with tuning shortage cost [10], partial and complete information sharing [6], returns
policies [5], and cooperative gaming with demand updates [7].
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2 The Models and the Optimized Solutions

Assume a three-echelon telecom SC consisting of an OEM, an operator and a SP. This
serial SC faces price-dependent additive uncertain demand, D(p, x) = x + y(p),
where y(p) = a−bp, and x is the random part with pd f , f (x), and cd f , F(x). There
are many reasons for assuming demand uncertainty in telecom SC regarding emerg-
ing new operators, introducing new technologies, unpredictable growing demand,
and appearance of new consumers geographically or in consumer segments [1]. For
analysis of telecom services it can be assumed that any unmet demand is lost. Further-
more, no goodwill penalty cost is considered for shortages. Although risk analysis
is an important issue in telecom industries, we assume SC partners are risk-neutral
for simplification. Consider SP can order the quantity, q, before selling season starts.
For simplicity we analyze SC coordination when p is fixed endogenously by market
competition. Assume ci : 1 . . . 3 as unit marginal costs for procurement of ordering
quantity for SP, Operator, and OEM.

Defining stocking decision as z = q − y(p), the SP’s expected profit function
(EPF) can be developed as E(Π1(z, p)) = p[y(p) + μ] − (c1 + w2)[y(p) + z] −
pΘ(z) where Θ(z) = ∫ B

z (z − x) f (x)dx . It is interpreted as sum of riskless profit,
the procurement costs regarding the level of q, and the transaction costs shortages
occur. The EPF of the operator and the OEM become E(Π2(z, p)) = (w2 − w3 −
c2)[y(p) + z], and E(Π3(z, p)) = (w3 − c3)[y(p) + z]. Therefore the SC’s EPF
becomes E(ΠSC (z, p)) = p[y(p)+μ]−c[y(p)+ z]− pΘ(z) where c = Σi :1...3ci .
Considering a given p and strictly concavity of E(ΠSC (z, p)) for the most known
density functions have non-decreasing hazard rates [8], the SC’s first-optimality
condition in z results in F(z∗

SC ) = (p−c)
p . Similarly the SP’s optimal z is F(z∗

1) =
(p−(c1+w2))

p . To achieve coordination the sufficient condition z∗
SC = z∗

1 results in
c = c1 + w2. Thus the wholesale-price agreement between SP and the operator
cause w2 = c2 + c3. It means the operator and the OEM obtain nonzero profits as
a whole. However, it necessarily does not make the operator or the OEM having
nonzero profit because it is possible to have an operator with positive profit which
directs the entire negative profits to the OEM and vice versa. Nevertheless, this forces
us to seek other coordinating schemes.

2.1 The Spanning Revenue Sharing Contract

With SRS contract (Fig. 2) it is assumed that the retailer assigns a part of selling
revenue to the other partners [9]. Let φs

2, φs
3, and 1 − φs

2 − φs
3 as the revenue shares

for the operator, the OEM and the SP. SRS contract can redistribute the riskless
profits through the operator and the OEM transferring the risk of losses for the case
of shortages among all the partners. Let’s rearrange the SC partners’ EPFs:
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E(Π s
1(z, p)) = (1 − φs

2 − φs
3)p[y(p) + μ] − (c1 + ws

2)[y(p) + z]
− (1 − φs

2 − φs
3)pΘ(z),

E(Π s
2(z, p)) = [φs

2 p[y(p) + μ] − (c2 − ws
2 + ws

2)[y(p) + z] − φs
2 pΘ(z), and

E(Π s
3(z, p)) = [φs

3 p[y(p) + μ] − (c3 − ws
3)[y(p) + z] − φs

3 pΘ(z).

Thus regarding the first optimality conditions the optimal ordering quantities

become F(z∗
1,s) = ((1−φs

2−φs
3)p−(c1+ws

2))

(1−φs
2−φs

3)p , F(z∗
2,s) = (φs

2 p−(c2−ws
2+ws

3))

(φs
2 p)

, and F(z∗
3,s) =

(φs
3 p−(c3−ws

3))

(φs
3 p)

.

2.2 The Pair-Wise Revenue Sharing Contracts

Regarding the pair-wise RS setting (Fig. 2) two different cases can be interpreted
namely PRS-1 and PRS-2. Under PRS-1 which is introduced [4] and criticized [9] in
the literature, the SP assigns φ

p
2 share of the selling revenue to the operator and the

operator similarly assigns φ
p
3 shares of its total revenue to the OEM. The operator’s

total revenue includes the assigned selling revenue by the SP and also the earned
revenue by selling services to the SP before the selling season. Thus the revenue
shares of the SP, the operator and the OEM become respectively 1−φ

p
2 , (1−φ

p
3 )φ

p
2 ,

and φ
p
3 φ

p
2 and the EPFs can be rearranged as follows:

E(Π
p
1 (z, p)) = (1 − φ

p
2 )p[y(p) + μ] − (c1 + wp

2 )[y(p) + z] − (1 − φ
p
2 )pΘ(z),

E(Π
p
2 (z, p)) = (1 − φ

p
3 )φ

p
2 p[y(p) + μ] − (c2 − (1 − φ

p
3 )wp

2 + wp
3 )[y(p) + z]

− (1 − φ
p
3 )φ

p
2 pΘ(z), and

E(Π
p
3 (z, p)) = φ

p
3 φ

p
2 p[y(p) + μ] − (c3 − wp

3 − φ
p
3 wp

2 )[y(p) + z] − φ
p
3 φ

p
2 pΘ(z).

Accordingly the optimal ordering quantities become F(z∗
1,p) = ((1−φ

p
2 )p−(c1+wp

2 ))

(1−φ
p
2 )p

,

F(z∗
2,p) = ((1−φ

p
3 )φ

p
2 p−(c2−(1−φ

p
3 )wp

2 +wp
3 ))

((1−φ
p
3 )φ

p
2 p)

, and F(z∗
3,p) = (φ

p
3 φ

p
2 p−(c3−wp

3 −φ
p
3 wp

2 ))

(φ
p
3 φ

p
2 p)

.

Under another possible interpretation of pair-wise RS contracts which is named
here PRS-2, the SP assigns φ

g
2 share of the selling revenue to the operator. However,

in this case the operator only assigns φ
g
3 shares of its particular part of the SC’s selling

revenue to the OEM. Compared to PRS-1, the partners’ revenue shares and the SP’s
EPF remain the same whereas the operators’ and the OEM’s EPFs are changed as
follows:

E(Π
g
2 (z, p)) = (1 − φ

g
3 )φ

g
2 p[y(p) + μ] − (c2 − wg

2 + wg
3)[y(p) + z]

− (1 − φ
g
3 )φ

g
2 pΘ(z), and

E(Π
g
3 (z, p)) = φ

g
3 φ

g
2 p[y(p) + μ] − (c3 − wg

3)[y(p) + z] − φ
g
3 φ

g
2 pΘ(z).
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Thus the optimal stocking decisions become F(z∗
1,g)= ((1 − φ

g
2 )p − (c1 + wg

2))

(1 − φ
g
2 )p

,

F(z∗
2,g)= ((1 − φ

g
3 )φ

g
2 p − (c2 − wg

2 + wg
3))

((1 − φ
g
3 )φ

g
2 p)

, and F(z∗
3,g)= (φ

g
3 φ

g
2 p − (c3 − wg

3))

(φ
g
3 φ

g
2 p)

.

3 Analysis of Coordination

Toward finding the coordination conditions for SRS contract we should have
z∗

SC = z∗
1,s , z∗

SC = z∗
2,s , and z∗

SC = z∗
3,s which respectively results in (φs

2 + φs
3) =

(c2+c3−ws
2)

c , φs
2 = (c2−ws

2+ws
3)

c , and φs
3 = (c3−ws

3)

c . Thus it is feasible by set-
ting appropriate revenue shares to achieve coordination by SRS contract. Simi-

larly for PRS-1 contract we should investigate these conditions φ
p
2 = (c2+c3−wp

2 )

c ,

(1 − φ
p
3 )φ

p
2 = (c2−wp

2 (1−φ
p
3 )+wp

3 )

c , and φ
p
3 φ

p
2 = (c3−wp

3 −φ
p
3 wp

2 )

c . From the first

and the third conditions we have the sufficient condition φ
p
3 = (c3−wp

3 )

(c2+c3)
satisfy-

ing all of them. Moreover, for PRS-2 contract the conditions φ
g
2 = (c2+c3−wg

2 )

c ,

(1 − φ
g
3 )φ

g
2 = (c2−wg

2+wg
3 )

c , and φ
g
3 φ

g
2 = (c3−wg

3 )

c should be investigated. Accord-

ingly all the conditions are satisfied with the sufficient condition φ
g
3 = (c3−wg

3
(c2+c3−wg

2 )
.

4 Conclusion and Complementary Future Research

Coordination conditions shows for SRP and PRS-2 contracts, the SP and the OEM
will be respectively the focal points for decision making, while PRS-1 contract fails
coordination due to the separate optimization conditions of the partners. Therefore
using PRS-2 contract not only resolves the barriers of PRS-1 contract but also provide
a meaningful result for real SCs with dominant upstream partners. Based on the
different services of a Telecom SC, the power of the partners would be changed
over downstream to upstream. For instance, for high-tech services (e.g. IPTV, 3G
and 4G mobiles,) the upstream is the dominant SC partner where for public services
(e.g. healthcare, e-education, transportation,) the downstream i.e. SPs is the dominant
partner. Moreover PRS-2 needs tuning the partners relationships peer to peer which
is more convenient compared to SRS contract. Considering joint optimization of
ordering and pricing, SRPs are more concerned because literature assumes that the
retailer is responsible for setting selling price. Otherwise, if upstream partners can
participate in pricing process (e.g. for high-tech services), PRS-2 contracts can be
implemented to achieve coordination. Thus it is interesting to analyze the effect of
pricing decisions on the ability of different RS contracts to coordinate a multi-echelon
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SC. As another emerging issue, analyzing the competition between SPs should be
analyzed simultaneously with coordination goals in telecom SCs.
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The Material Loss and Failure Process
in Sugar Production in Indonesia: A Case

Henry Yuliando, Adi Djoko Guritno and Endy Suwondo

Abstract The sugar produced in Indonesia is mainly from sugarcane. In its produc-
tion, one of the problem is due to losses during the process. As found in this study, a
material loss of sugar occured mainly in the milling plant. Based on data taken from
a sugar plant in Yogyakarta, Indonesia, on May–June 2012, the left residue (bagasse)
was 32 % of total input. The main cause was identified stem from the old machines
and facilities that are used to experience a failure, and the lack of concern to the
maintenance activity. As a solution, the company addressed a plan for maintenance
that was divided into major and minor maintenance. Here, in this study, it propose
a measurement on material loss, and see it correlation to the mean time between
failure (MTBF) measurement. Since the milling plant is a continuous process, it is
necessary to define a utilization capacity. This measure employees the availability
schedule of the milling plant for every period (month) reduced by maintenance time
that should be done in the middle of the process due to the encountered failure as
estimated by MTBF. A correlation test was done to see whether there is a correlation
between material loss and a verified utilization time. The result shows that there is
a significant correlation, and discuss a need to put such problem in a platform of
reliability management.
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1 Background

Sugarcane processing plant is one of the most important industries in Indonesia,
mainly due to its role in the food safety for national consumption. Te industry tends
to experience a decreasing productivity due to several factors, including the increas-
ing plant age, a decline in the efficiency of plant equipment that requires replacement
is constrained by the limited availability of investment capital. In general, the prob-
lems faced by the sugar industry covering issues on-farm and off-farm. Directorate
General of Plantations (2010), states that on-farm problems are quite prominent, the
sugarcane harvesting reached only around 6 tonnes/ha, and the sugarcane farming
in the Java Island began to shift to other commodities. In the off-farm problem,
sugar plant efficiency levels (overall recovery) which was still far below the stan-
dard, exacerbated by a relatively high production costs, and low levels of factory
automation. The product quality is also relatively low, and yet the development of
sugarcane-based product diversification if left behind than other producer countries.
For instance, a sugar plant located Yogyakarta, PG Madukismo, as the only sugar
factory in Yogyakarta, has been facing such problems. In efforts to meet the demand,
PG Madukismo has been trying to increase sugar production by improving the per-
formance of his sugar factory. One things that has to be done is by maintaining the
difference between the material used (inputs) to output or commonly is referred to as
material loss. Here, the term of material loss if known as loss of sugar caused during
its processing.

Based on a preliminary observation, there were three major potential loss of sugar
during the production process, i.e. in the producing of bagasse (by-product from
milling process), filter cake (by-product from filtering), and mollase (by-product from
centrifuge process). The sugar loss in those residue can be traced by the increasing in
the value of the sugar content contained therein, stated with pol percentage value that
each has a standard (bagasse has a standard of ≤2 %). The complete sugar processing
diagram in PG Madukismo can be seen in Fig. 2.

During the period of 2012 (May–September) the material loss or sugar loss in PG
Madukismo had an increasing trend.

There is a very few literatures discussed about material loss in sugar processing.
Cauchan et al. [2] conducted a research on life cycle assesment of sugar industry.
His study resulted some input resources like power plant and distillery for optimal
utilization of waste produced in sugar industry regarding to the environmental effects.
Jorge et al. (2010) studied the evaporation of sugarcane juice in sugar production
where the failure performance of the process decreased the output. While Somsen
and Capelle (2002) conducted a research on yield analysis of food industry including
sugarcane as the case. A certain cause of sugar loss is quality of input material
(sugarcane).

As seen on Fig. 1, the increasing trend of material loss at PG Madukismo during
the year 2012 indicated a decline in the efficiency of plant performance. Those issues
should be handled properly since it can lead to the rising of production cost. The



The Material Loss and Failure Process in Sugar Production 505

Fig. 1 Total loss in periods at PG Madukismo, Yogyakarta

inital step in proper handling is to find out the causes of the loss so as to know the
steps in efforts to reduce material loss in sugar production.

As to the case of PG Madukismo, the material loss occurence is mainly caused by
the utilization of the processing machines and facilities. We saw this was a potential
cause due to the aging machine and facility used in the plant. In this matter the
maintenance need to be managed accurately. As found in the preliminary survey,
activities of maintenance in the company is divided into three types of maintenance,
namely preventive, breakdown and corrective maintenance.

Those three types of maintenance are distinguished by the time it is carried out. The
preventive maintenance is done prior processing activities, the breakdown mainte-
nance is undertaken during the process. The failure of the process during operates can
stop the process if it were fatal, and otherwise. Means that even it is said breakdown
maintenance, it does not necessary to stop the process, but a maintenance is done
while process continue. The sugar processing is type of continuous process. While
corrective maintenance is aimed to give a priority over machine or facilities that
according to the history data which had a high frequent to broken.

Here, as the purpose of this study, it is necessary for the company to determine
mean time between failure (MTBF). As known that in term of MTBF, it is a prereq-
uisite for the development of an effective preventive maintenance plan [1]. Smith [5],
in his book stated that the MTBF indicates the availability time of the machine or
facilities for processing with a constant rate of failure. And in this study the MTBF
is analyzed to determine its effect on availability time for milling plant and drawing
the correlation between the time of breakdown occured and the rate of material loss.
Further, as seen on Fig. 2, the area of this study is mainly in the sugarcane milling
process.

2 Materials and Method

In order to find the causes and measure the impact of the failure of the sugarcane
milling process and the material loss, at first, the data collection of the scheduled
preventive maintenance and the duration when the breakdown occured were recorded
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Fig. 2 The processing diagram of sugar plant at PG Madukismo, Yogyakarta, Indonesia

for periode May–September 2012. Over those data, MTBF is determined using a
formula suggested by [3].

FR = number of failures

number of unit tested
× 100 % (1)

FR(N) = number of failures

number of unit − hours of operating time
× 100 % (2)

MTBF = 1

FR(N)∞
(3)

where FR=product failure rate.
Next, converting every unit to its availability time (operating) is calculated from

total work days per period times 24 h. This amount then is reduced by the number of
expected failure multiplied by maintenance duration time (on average) to determine
the net operating time. The correlation is done between the rate of sugar loss against
the real utilization (hours) of the milling plant. This measurements is used to draw
a discussion in determining the causes of material loss, complemented by pareto
diagram. And in-depth interview is conducted to enrich the analysis.



The Material Loss and Failure Process in Sugar Production 507

Fig. 3 The correlation between loss versus utilization

3 Result and Discussion

Based on the correlation test (see Fig. 3), the coefficient between los and utilizatioin
is equal to −0.364 with a significance value of 0.301 (>0.05). It shows that the
occurrence of material loss and utilization in the milling station (process) consid-
erable influence each other in un-directional way, but not significant. This means
that both variables affect each other quite negatively, i.e. if there is an increase in
the utilization of the milling station, it will influence at 70 % degree to reduce the
amount of material loss that occurs though statistically insignificant. This indicates
other causes play the rest.

Based on the in-depth interview, the other factors that influence the occurrence
of material loss are material input, worker, and method. Material input (sugarcane)
consumed by the company has a wide variety that have a different properties. This
is because PG. Madukismo taking sugarcane from different areas, particularly from
surrounding regencies. The differences in variety and property of this material require
different treatment and handling. However, the problem is particularly on the milling
plant that cannot be adjusted to separate those material according to its properties
(stiffness, tenacity, etc.) Due to the conitnuous process of the factory, the sugar loss
varied in comply with the quality of the material.

Workers are also strongly assume affecting the rate of loss. Particularly in the
view of different skill and educational background. This factors affect the worker
performance. However since the process only run half a year, the company tend
to have temporary worker rather permanently. The effort is by providing in-house
for workers of fabrication and installation of each station before the milling season
begin.

The working method, in contrast with a good manufacturing process, has been
implemented in term of Standard Operating Procedure (SOP) that routinely updated
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for by the company. However, sometimes in the presence unexpected situation, so
that the SOP merely a formality because it is not able to resolve the existing problems.

Combining the above factors with the finding on MTBF in term of the process
failure as implied in the duration (hours) for maintenance/repairing, all causes of
material loss in sugar processing can be revealed. Here, achieving reliability, safety
and maintainability results from activities in sugar processing are what the company
should do. The reliability problem facing here can be categorized as realibility-
focused operations [5]. It is explained by the situation of the plant that often stops
and/or operates incorrectly, or beyond its operating limits, causes a higher failure rate.
A reliability-focused operations team is necessary to enforce well-conceived standard
operating procedures. The reliability-focused operations organization works closely
with the maintenance team, particularly to provide inspection and operating health
feedback on a regular basis. While not always maintenance can’t improve the relia-
bility of equipment, an inherent reliability should be recognized based upon design
and operating context. The company can employ modern techniques like Reliability-
Centered Maintenance (RCM), condition-based maintenance (CBM) and precision
maintenance techniques. The organization works hard to optimize maintenance activ-
ities, with a focus on running time activities. It also works closely with operations to
ensure that the equipment is available to produce as much product as required, and
meet quality goals.

4 Conclusion

Material or sugar loss in sugar processing plant strongly rely on the reliability of the
equipment used. The availability time of equipment should be adjusted by probability
of failure. This adjustment can be constructed using the method of MBPF. In various
way, the material input, worker and method also indicating an influence to the loss.
The effort on managing reliability of the process based on operations and maintenance
activities is necessary to overcome the loss, and can be supported by the program of
RCM and/or CBM.
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