
Stellar Atmospheres: Basic Processes
and Equations
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Abstract The content of this chapter is a very quick summary of key concepts
that concern the interaction between photons created in the stellar interior and
plasma, which is the basis of the physical processes occurring in stellar atmospheres.
The dominant mechanism of energy transport through the surface layers of a typ-
ical star is radiation. This is the reason why radiative transfer is our main focus
here. We start by setting up the differential equation describing the flow of radiation
through an infinitesimal volume and all the related quantities. We conclude with a
generic description of the equations used to compute an atmospheric model.
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1 Introduction

The main goal of this school was to provide students with the tools to analyse stellar
spectra with particular reference to the determination of the atmospheric parameters
of B, A, F, and G type stars. It is obvious that a careful spectral analysis is not
possible without knowledge of the theory of stellar atmospheres. So the purpose
of this introductory lesson on this important subject is to provide students with a
refresher on the main equations describing the physical processes that occur when
the radiation, generated in the interior of the star, interacts with the stellar matter
which composes the atmosphere.

If we consider a star as a succession of layers of gas, we know that going deep
in the atmosphere gas becomes opaque and our line-of-sight cannot penetrate into
the interior layers. We call the stellar atmosphere the ensemble of the outer lay-
ers to which the energy, generated in the nucleus, is carried, either by radiation,
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Fig. 1 The increment of area
ΔA of a radiating element
of material, is seen under an
increment of solid angle Δω

and tilted by an angle θ with
respect the direction of the
normal to the surface.

convection or conduction, before flowing away in the interstellar medium. Inter-
acting with the matter present in the outer layers, this energy finally produces the
observed electromagnetic spectrum.

In general, we can say that the theory of stellar atmospheres translates into the
study of how the radiation produced in the stellar interior propagates and interacts
with the external layers of the star. That is why, during the reading of this introductory
lecture on stellar atmospheres we must have always clear in mind this schematic
description:

• we call the stellar atmosphere the external layers of a star,
• these are the layers where radiation created in the stellar interior can escape freely
into the interstellar medium,

• the atmosphere is the only part from which we receive photons.

Of course, this lecture does not claim to be exhaustive of the topic, but rather a
quick recall of the main concepts and definitions. Please refer to specific texts, (i.e.
Gray 2005; Hubeny 1996; Mihalas 1978), for a complete and rigorous discussion. In
the next sections, before getting to the heart of our topic, we draw some important
definitions useful to properly describe light and its interaction with the atmospheric
material.

2 Basic Definitions

2.1 Specific Intensity

Looking at the situation represented in Fig. 1, the specific intensity is the quantity
of energy ΔEν that flows through the element ΔA toward the generic direction θ , in
the solid angle Δω, during the time Δt , in the interval of frequency Δν. When all
these increments become smaller, we can take the limit toward zero:

Iν = lim
ΔEν

cos θΔA Δω Δt Δν
= d Eν

cos θd A dω dt dν
. (1)
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The right side of this equation is the energy that flows through an element of area dA
in the unit of time dt, in the unit of solid angle dω, and in the unit of frequency dν.
Its physical dimensions are, for example, erg rad−1 cm−2 s−1 Hz−1.

Integrating Eq.1 over all the directions, we obtain the so-called mean intensity:

Jν = 1

4π

∮
Iνdω, (2)

where the integral is calculated over the whole solid angle.

2.2 Flux

Flux represents the total energy passing across an element of area ΔA over the unit
of time and frequency. As the specific intensity, we can consider the limit of all the
small quantities diminishing toward zero. In this case we will have:

Fν = lim

∑
ΔEν

ΔA Δt Δν
=

∮
ΔEν

ΔA Δt Δν
, (3)

where againwe consider a complete integration over all directions. Flux and intensity
could be easily related to each other. If we replace in the left side of Eq.3 the relation
for the energy derived from Eq.1, we obtain:

Fν =
∮

Iν cos θdω, (4)

that represents the component of the net flux in the direction θ .
We can develop this equation for an emitting point on the physical boundary, i.e.

the stellar surface. In this case the flux coming in from the outside is null, and if we
suppose that there is no azimuthal dependence for Fν , we get:

Fν =
2π∫

0

dφ

π/2∫

0

Iν sin θ cos θdθ = 2π

π/2∫

0

sin θ cos θdθ = π Iν . (5)

This is the equation that we must solve if we want to compute a theoretical spectrum
of a particular star. The importance of this equation is then obvious.

2.3 K-integral

It is useful to define another equation using the second moment of θ , that is, the
so-called K-integral:
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Kν = 1

4π

∮
Iν cos

2 θdω. (6)

It represents the z-component of the radiation stress tensor written in Cartesian
coordinates. Physically this integral is linked to the radiation pressure, and it is easy
to show the validity of the following equation:

PR = 4π

c

∞∫

0

Kνdν. (7)

3 Absorption Coefficient and Optical Depth

Let us consider a slab of plasma and let I 0ν be the specific intensity of the light before
the interaction with the slab and Iν + d Iν the intensity after the interaction. Let us
suppose that only true absorption and scattering give contribution to d Iν while no
emission is present. In this case, we can write:

d Iν = −κνρ Iνdx, (8)

where κν is the absorption coefficient that has units of area per mass ([κν]=cm2 g−1)
and is therefore amass absorption coefficient, ρ is the density inmass per unit volume
and dx is the slab thickness, that has units of length. At this point I have to stress
an important concept: the way in which the radiation propagates through the stellar
material depends both on the physical conditions of the plasma at a given frequency
and on the length of the path. We can say that at a given frequency, the radiation sees
the combination of these two factors, namely κνρdx . Define the optical depth along
the photon direction of propagation as follows:

dτν = κνρdx, (9)

which, integrated over some path length L , becomes:

τν =
L∫

0

κνρdx, (10)

where τν is the optical depth at a given frequency ν and x is the geometrical depth. It
measures a characteristic of matter and radiation coupled together, and corresponds,
for a given frequency and absorption coefficient, to the distance at which the intensity
is reduced by a factor of 1/e. Using optical depth, Eq.8 can be written as:

d Iν = −Iνdτν, (11)
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for which the trivial solution is given by

Iν = I 0ν e−τν . (12)

In a plasmaof astrophysical interest,we distinguish fromoptically thick, forwhich
τν � 1, and optically thin, for which τν � 1. I would like to stress again here the
importance of frequency: the same plasma (same chemical composition and physical
conditions) could be optically thick at a certain frequency, say ν1, but optically thin
for another frequency, say ν2.

4 Emission Coefficient

Like we did in the previous section, we consider the increase d Iν undergone by
the radiation when passing through a slab of plasma. We suppose now that the
processes contributing to d Iν are true emission and photons scattering into direction
of propagation,with no absorption. In this context, scattering refersmainly to photons
previously absorbed and then immediately re-emitted in the direction from the same
atomic transition.

If we denote by jν the emission coefficient (units [ jν]=erg rad−1 s−1 Hz−1 g−1),
we define the increment of the radiation as:

d Iν = jνρdx . (13)

5 Source Function and Its Physical Meaning

We can now introduce a new quantity given by the ratio between the absorption and
emission coefficients and called the source function:

Sν = jν
kν

. (14)

This quantity has the same units of the specific intensity and can be seen as the
specific intensity of a radiation emitted in some point in a hot gas.

To better understand the meaning of Sν , we can refer to Hubeny (1996) and con-
sider this example: Let us write the number of photons emitted in an volume element
dV = dx · d A, in all directions. From the definition of the emission coefficient, it
follows that:

Nem = 4π

hν
( jνρ dx d A dν dt), (15)
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where the quantity in parenthesis represents the energy emitted in the volume dV ,
the factor 4π comes from an integration over the solid angle, and hν transforms
energy to the number of photons. By using the definition of the optical depth and the
source function, and after some elementary algebra, we obtain

Nem = Sνdτν

4π

hν
ρ d A dν dt. (16)

In other words, we have:

Sν ∝ Nem

dτν

. (17)

Hence, the source function is proportional to the number of photons emitted per unit
of optical depth interval.

5.1 Two Simple Cases

In two “extreme” cases, the algebraic form of Sν is simple: pure isotropic scattering
and pure absorption.

5.2 Pure Isotropic Scattering

All the emitted energy is due to photons being scattered into the direction under
consideration. In this case the contribution to the emission d jν is proportional to the
solid angle dω facing the observer and to the energy “absorbed” κν Iν :

d jν = 1

4π
κν Iν dω, (18)

where 1
4π is the normalization factor for unit solid angle, valid under the hypothesis

that the energy is isotropically re-radiated.
To obtain all the contributions to jν , we proceed with an integration over the solid

angle, keeping in mind that κν is independent of ω, and using Eq.2, we can write:

jν = 1

4π

∮
κν Iνdω = κν

4π

∮
Iνdω = κν Jν . (19)

From this equation it is straightforward to show that:

Sν = jν
kν

= Jν . (20)
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In short, in the simple case of pure isotropic scattering, the source function is
the mean intensity. Moreover, when thermodynamic equilibrium holds, the radiation
intensity is equal to the Planck function, i.e. Jν = Bν .

5.3 Pure Absorption

Now we are assuming that all the absorbed photons are destroyed and all the emitted
photons are newly created with a distribution governed by the physical state of the
gas. The source function for this case is given by Planck’s radiation law:

Sν(T ) = 2hν3

c2
1

e
hν
kT − 1

= Bν(T ). (21)

This is the specific intensity emitted by a gas of a temperature T and for a given
frequency ν.

6 The Transfer Equation

In the previous sections we have discussed separately the cases of radiation travelling
in a slab of stellar material in which it is affected either by losses, expressed in the
absorption coefficient κν , or gains, expressed in the emission coefficient jν . Now
we consider the general case in which the change in specific intensity, d Iν , over an
increment of linear path length ds, is the sum of those losses and gains, expressed
as:

d Iν = −κνρ Iνds + jνρds. (22)

This equation can be written in a more useful form, by dividing both sides by κνρds,
and using the definition of source function (Eq.14):

d Iν
κνρds

= −Iν + jν
κν

= −Iν + Sν . (23)

Finally, we have the differential form of the equation of radiative transfer

d Iν
dτν

= −Iν + Sν . (24)

The integration follows from a standard integrating-factor scheme. After some
manipulation, we obtain the so-called integral form of the radiative transfer equation:

Iν(τν) =
τν∫

0

Sν(tν)e
−(τν−tν )dtν + Iν(0)e

−τν . (25)
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The meaning of this equation can be easily understood: radiation along the line at
the point τν is composed of the sum of intensities, Sν , originating at the generic points
tν along the line, but suffering extinction according to the optical-depth separation
τν − tν (first term of the sum), plus the radiation due to the original intensity Iν(0)
that has suffered an exponential extinction e−τν (second term of the sum).

Equation (24) holds along a line. In stellar atmospheres applications, it is useful to
define the optical depth relative to the star along a stellar radius, and not along the line
of sight. We are also assuming, in the following discussion, that as the atmosphere
is thin with respect to the radius, a plane-parallel approximation can be used.

Assuming spherical coordinates originating in the centre of the star and with the
z axis toward the observer, we write the transfer equation in the form:

1

κνρ

d Iν
dz

= −Iν + Sν . (26)

Let us write
d Iν
dz

according to spherical geometry; if we assume Iν has no azimuthal

dependence, we obtain:

1

κνρ

(
∂ Iν
∂r

dr

dz
+ ∂ Iν

∂θ

dθ

dz

)
= −Iν + Sν . (27)

We know, from geometrical consideration, that, dr = cos θdz and rdθ = − sin θdz.
Then, by substitution of these expressions, and keeping in mind that for a plane-
parallel atmosphere θ does not depend upon z, the transfer equation becomes:

1

κνρ

(
∂ Iν
∂r

cos θ

)
= −Iν + Sν . (28)

Adopting the convection of using a new geometrical depth variable, defined as dx =
−dr and writing dτν for κνρdx , we have the basic form of the radiative transfer
equation used in the stellar atmosphere applications:

cos θ
d Iν
dτν

= Iν − Sν . (29)

6.1 Elementary Solutions

Following the outline depicted in Hubeny (1996), in this section, we describe the
simplest solutions of the 1-D plane-parallel radiative transfer equation.
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6.2 No Absorption, No Emission

In this elementary case, κν = jν = 0, the transfer equation reads
d I

dz
= 0, which

has a trivial solution:
Iν = const. (30)

That is, in absence of any interactionwith themedium, the radiation specific intensity
remains constant.

6.3 No Absorption, Only Emission

In this case, κν = 0 and jν > 0, the solution is simply:

Iν(x, cos θ) = Iν(0, cos θ) +
x∫

0

jν(x ′) sec θdx ′. (31)

This equation is often used for describing an outgoing radiation from an optically
thin radiating slab. For instance, a forbidden line radiation from planetary nebulae,
or a radiation from the solar transition region and/or corona.

6.4 No Emission, Only Absorption

In this case, κν > 0 and jν = 0, the transfer equation becomes cos θ
d Iν
dτν

= Iν , and

the solution is simply:

Iν(0, cos θ) = Iν(τν, cos θ)e−τν . cos θ (32)

6.5 General Case: Absorption and Emission

The full intensity at the position τν on the line-of-sight through the photosphere is
factorized in the sum of two terms, radiation coming outward I outν (τν) and radiation
going inward I inν (τν):

Iν(τν) = I outν (τν) + I inν (τν)

=
0∫

τν

Sνe−(tν−τν) sec θ sec θdtν −
τν∫

∞
Sνe−(tν−τν) sec θ sec θdtν . (33)
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An important special case occurs at the stellar surface. In this case I inν (τν) = 0
and then:

Iν(0) =
∞∫

0

Sνe
−tν sec θ sec θdtν . (34)

Here we are assuming that intensity of the radiation coming from other stars, galaxies
and so forth, is completely negligible compared to the star’s own radiation. For most
stars, for which we do not resolve the disk, we must still integrate I outν over the star’s
disk, i.e. we observe the flux.

6.6 Special Case: Linear Source Function

A special case is an emergent intensity from a semi-infinite atmosphere, with a source
function being a linear function of optical depth:

Sν(τν) = a + bτν. (35)

In this case, substituting this form of Sν in the Eq.34, we obtain the solution given
by:

Iν(0) =
∞∫

0

(a + bτν)e
−tν sec θ sec θdtν = a + b cos θ, (36)

or more simply:
Iν(0, cos θ) = Sν(τν = cos θ). (37)

This important expression is called the “Eddington-Barbier relation”. It shows that
the emergent intensity, for instance in the normal direction (cos θ = 1) is given by
the value of the source function at the optical depth of unity. The values of emergent
intensity for all angles θ for which cos θ ranges between 0 and 1, map the values of
the source function between optical depths 0 and 1. Even though the source function
is not a linear function of τν , it can usually be well approximated by it in the vicinity
of τν = 1.

7 The Flux Integral

The transformation in spherical coordinates that we did for specific intensity, can
also be done for the integral flux, as already defined in Eq.3. Assuming there is no
azimuthal dependence in Iν , we can write:
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Fν = 2π

π∫

0

Iν cos θ sin θdθ

= 2π

π/2∫

0

I out
ν cos θ sin θdθ + 2π

π∫

π/2

I in
ν cos θ sin θdθ. (38)

Using the expressions for the specific intensity and assuming that Sν is isotropic
(no θ dependence), we obtain for the flux the following expression:

Fν(τν) = 2π

∞∫

τν

Sν(tν)E2(tν − τν)dtν − 2π

τν∫

0

Sν(tν)E2(tν − τν)dtν, (39)

where E2 is the exponential integral of second order.
At the stellar surface, where τν = 0, we have:

Fν(0) = 2π

∞∫

0

Sν(tν)E2(tν)dtν, (40)

which is the theoretical stellar spectrum.

8 Computing a Model Atmosphere

To solve the radiative transfer equation, we must know the source function Sν that,
as we have learnt previously, is the ratio between emission and absorption coeffi-
cients. These coefficients have a strong dependence on the physical properties of the
atmospheric layers: jν and κν depend on temperature, pressure, population of the
atomic levels, electronic density and so on. Hence, to compute Sν , and then solve
the radiative transfer equation, we must know the distributions of T , P , ni , ne, and
other quantities with optical depth. This process is what we commonly refer to as
the calculation of a model atmosphere.

By the term “model atmosphere” we indicate a specification of all the atmospheric
state parameters as functions of depth. Since the problem is very complex, we can-
not construct analytic solutions. Therefore, we discretize the depth coordinate and
consider a finite number of depth points (typically of the order of several tens to few
hundreds). A model atmosphere is then a table of values of the state parameters in
these discrete depth points.
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8.1 Basic Equations of Stellar Atmospheres

Let us summarize in this section the basic equations of stellar atmospheres for the
case of a horizontally-homogeneous, plane-parallel, static atmosphere.

8.1.1 Radiative Transfer Equation

The radiative transfer equation (see Eq.29) has been the topic of previous sections, so
we do not treat it anymore, butwe just remember that its solution gives us information
on the mean intensity of the radiation.

8.1.2 Hydrostatic Equilibrium Equation

By solving the hydrostatic equilibrium equation we get information on the total gas
pressure, and then on total particle density. If P is the total pressure, the equation
reads:

d P

dz
= ρg. (41)

Introducing the optical depth, the previous equation can be written as:

d P

dτν

= g

κν

. (42)

It should be kept in mind that the total pressure is generally composed of several
parts: the gas pressure, Pgas , the radiation pressure, Prad , the turbulent pressure,
Pturb, and if amagnetic field is present alsomagnetic pressure, PB , has a contribution.
In general, the equation is:

P = Pgas + Prad + Pturb + PB = NkT + 4π

c

∞∫

0

Kνdν + 1

2
ρv2turb + B2

8π
. (43)

Neglecting turbulent and magnetic pressure (that in general cases do not give a
significant contribution) the hydrostatic equilibrium equation may then be written
as:

d Pgas

dτν

= g

κν

− d Prad

dτν

. (44)

We may think of the right side of this equation as the effective gravity acceleration,
since it expresses the action of the true gravity acceleration (acting toward the centre
of the star) minus the radiative acceleration (acting outward).
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8.1.3 Radiative Equilibrium

The radiative equilibrium equation expresses the fact that the total flux is conserved,
and solving it we know the distribution of temperature along the atmosphere:

dF(x)

dx
= 0 −→ F(x) = F0, (45)

∞∫

0

Fν(τν)dν = F0. (46)

Other two important equilibrium equations are easily derived from the radiative
transfer equation. Let us write Eq.29 in this way:

cos θ
d Iν
dx

= κνρ Iν − κνρSν . (47)

Then, integrating first over solid angle and over frequencies, we have:

d

dx

∞∫

0

Fνdν = 4πρ

∞∫

0

κν Jνdν − 4πρ

∞∫

0

κν Sνdν. (48)

Considering condition expressed by Eq.45, we can write this as:

∞∫

0

κν Jνdν =
∞∫

0

κν Sνdν. (49)

If we multiply by cos θ and then we integrate over solid angle and over frequencies,
we obtain: ∞∫

0

d Kν

dτν

dν = F0

4π
. (50)

Equations (46), (49), and (50) are the so-called Milne equations.

8.1.4 Statistical and Charge Conservation Equations

Two other important ingredients of an atmospheric model are the distribution of the
level population, ni , and electronic density, ne. Statistical and charge conservation
equations are helpful to know how these quantities vary along optical depth.



22 G. Catanzaro

Let us consider two generic atomic levels, i and j , and if R and C are the radiative
and collisional rates, respectively, then the set of equations:

ni

∑
j �=i

(Ri j + Ci j ) = n j

∑
j �=i

(R ji + C ji ) (51)

expresses the equilibrium between the total number of transition out of level i (left
hand side) and the total number of transition into level i from all other levels (right
hand side).

Another important equation expresses the global electrically neutrality of the
medium: ∑

i

ni Zi − ne = 0, (52)

where Zi is the charge associated with the level i (i.e. equal to 0 for levels of neutral
atoms, 1 for levels for once ionized atoms, etc.). The summation extends over all
levels of all ions of all species. This equation is useful to obtain the distribution of
the electron density, ne, along the stellar atmosphere.

8.2 A Pedagogical Example: The Grey Atmosphere

A very simplified case is the so-called grey atmosphere model. The basic assumption
of this model is that the absorption coefficient is independent of frequency, that is,
κν = κ . Electron scattering is the only opacity source relevant to stellar atmospheres
that is grey, and it is usually a minor contributor to κν , at least in the case of cool
stars. The grey case is not very realistic, but nevertheless is useful to understand the
interplay between radiative equilibrium and radiative transfer, or in other words, to
understand the behaviour of temperature as a function of depth:

cos θ
d I

dτ
= I − S. (53)

Using the Milne’s equation re-formulated for the grey case, and skipping all the
mathematical steps, we arrive at the solution for the source function:

S(τ ) = 3F0

4π

(
τ + 2

3

)
. (54)

In this simple case, the source function varies linearly with optical depth. Using

the frequency-integrated form of Planck’s law, we can write S(τ ) = σ

π
[T (τ )]4 and

F0 = σ T 4
eff , so the previous equation in LTE becomes:
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T (τ ) =
[
3

4

(
τ + 2

3

)]1/4
Teff . (55)

At τ =2/3 the temperature is equal to the effective temperature (Teff )1, and T (τ )

scales in proportion to the effective temperature.

9 Conclusions

The conclusions of this lecture can be summarized according to the following outline:

• Modelling stellar spectrum means computing the flux emerging at the stellar sur-
face.

• To accomplish this task we need to know the radiation specific intensity along the
atmosphere.

• The calculation of how the radiation propagates within a stellar atmosphere
requires knowledge of the source function.

• The source function depends on emission and absorption coefficients.
• Both jν and κν depend on the physical conditions of the stellar material: T , P ,
electronic density and so on.

• We need to solve the equations of the model atmosphere.
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