
Analytic Approximations for Linear Differential
Equations with Periodic or Quasi-periodic
Coefficients

Ana Arnal and Cristina Chiralt

Abstract A perturbative procedure is proposed to compute analytic approxima-
tions to the fundamental matrix of linear differential equations with periodic or
quasi-periodic coefficients. The algorithm allows one to construct high-order ana-
lytic approximations to the characteristic exponents and thus analyze the stability of
the system. In addition, the approximate matrix solutions preserve by construction
qualitative properties of the exact solution.

1 Introduction

The linear system of differential equations

PY � dY

dt
D A.t/Y; Y.0/ D I; (1)

with A.t/ a T -periodic matrix, is an example of a reducible system: by means of the
transformation Y D P.t/Z, with P.t/ a non singular periodic matrix, a new system
PZ D KZ is obtained, where now the coefficient matrix K D P �1.t/A.t/P.t/ �

P �1.t/ PP .t/ is constant. This is the so-called Lyapunov transformation [1]. As a
consequence, the solution of the original system can be written globally as Y.t/ D
P.t/ exp.tK/. This is just a rephrasing of the well known Floquet theorem for linear
periodic differential equations [9].

From this result it is clear that the stability conditions of the solution Y.t/ only
depend on the matrix K , specifically on its eigenvalues (the characteristic exponents
of the system), whose real parts are uniquely determined. Thus, the trivial solution
of (1) is asymptotically stable if and only if the real part of the characteristic
exponents is negative, and it is stable if and only if all the characteristic exponents
have non positive real part, with the vanishing or purely imaginary characteristic
exponents being simple elementary divisors of the matrix K � �I , � 2 C [9]. From
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these properties, it is clear that computing the matrix K or the monodromy matrix
Y.T / D exp.TK/ is extremely useful. Unfortunately, although the Floquet theorem
gives us information about the structure of solution of the system (1), it does not
provide any practical method to get K and/or the transformation matrix P.t/.

Here we propose an algorithmic procedure to get approximations to both K

and P.t/, and therefore to the solution Y.t/ in the form prescribed by the Floquet
theorem when A.t/ D A0 C"A1.t/C"2A2.t/C� � � in terms of the parameter " > 0.
The algorithm is recursive and determines the periodic transformation P.t/ as the
exponential of a certain matrix ˝.t/. This property guarantees by construction that
the approximations preserve certain qualitative properties of the exact solution. In
addition the algorithm can be easily implemented with a symbolic algebra package.

If, on the other hand, the coefficient matrix A.t/ is quasi-periodic, the problem
of reducing (1) to a system with constant coefficients is far more difficult. When the
terms A1.t/; A2.t/; : : : are sufficiently small, Shtokalo [8] constructed asymptotic
expansions for the solution which allowed him to examine the stability of the
system. It turns out that the procedure we have developed for periodic systems can
also be generalized to this setting with only minor modifications.

2 Algorithm

Let us consider the d � d system

@

@t
Y.t; "/ D A.t; "/ Y.t; "/; Y.t0 D 0; "/ D I (2)

with

A.t; "/ D A0 C
X

j �1

"j Aj .t/ D A0 C "A1.t/ C "2A2.t/ C � � � (3)

and Aj .t C T / D Aj .t/, j � 1, for a certain T > 0. The goal is then to construct a
transformation P.t; "/ with inverse

Y.t; "/
P.t;"/���! Z.t; "/ D P �1.t; "/ Y.t; "/ P.0; "/ (4)

such that for the system in the new coordinates one has

@

@t
Z.t; "/ D K."/ Z.t; "/; Z.0; "/ D I; (5)

with a constant coefficient matrix given by

K."/ D P �1.t; "/A.t; "/P.t; "/ C @P �1.t; "/

@t
P.t; "/: (6)
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We construct P.t; "/ as a near-identity transformation, i.e., P.t; "/ D I C O."/, in
such a way that it satisfies an equation similar to (2) but now with respect to ". More
specifically, in view of Eq. (4), we impose

@

@"
P �1.t; "/ D L.t; "/P �1.t; "/; P �1.t; 0/ D I (7)

in terms of a (still unknown) generator L.t; "/. Alternatively,

@

@"
P.t; "/ D �P.t; "/L.t; "/; P.t; 0/ D I: (8)

Once L.t; "/ has been determined, it is possible to obtain P.t; "/ by formally
applying the Magnus expansion [3, 6] to the linear equation (7), so that

P �1.t; "/ D exp ˝.t; "/; (9)

where ˝.t; "/ is an infinite series depending L.t; "/ and its nested commutators.
To determine the generator L.t; "/, we differentiate Eq. (6) with respect to " and

use (7)–(8) to get

@K

@"
D ŒL; K� C P �1 @A

@"
P C @L

@t
; (10)

that is,

@K

@"
D ŒL; K� C ead˝

@A

@"
C @L

@t
; (11)

with

e˝ @A

@"
e�˝ D ead˝

@A

@"
D
X

n�0

1

nŠ
adn

˝

@A

@"
(12)

in terms of the adjoint operator ad: ad˝B � Œ˝; B� D ˝ B � B ˝ and adn
˝B �

Œ˝; adn�1
˝ B�.

Since A.t; "/ is given as a series in powers of ", (see Eq. (3)), we determine both
the generator L.t; "/ and the new coefficient matrix K."/ also as formal series in ":

K."/ D
1X

nD0

"nKn; L.t; "/ D
1X

nD0

"nLnC1.t/: (13)
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The successive terms Kn, Ln.t/ in (13) can be obtained from Eq. (11) by applying
the following procedure:

1. Insert the series L.t; "/ into Eq. (7) and compute the Magnus expansion of
˝.t; "/,

˝.t; "/ D
1X

nD1

"nvn.t/; (14)

in terms of Lk.t/. This step has been thoroughly analyzed in [4], where in
particular a recursive algorithm for the computation of vn.t/ is given. The first
terms in the series (14) read

v1 D L1;

v2 D 1

2
L2;

v3 D 1

3
L3 � 1

12
ŒL1; L2� (15)

v4 D 1

4
L4 � 1

12
ŒL1; L3�:

2. Insert the series (14) into Eq. (12) to express ead˝
@A

@"
as a power series in ",

ead˝
@A

@"
D

1X

nD0

"nwn.t/: (16)

In particular,

w0 D A1;

w1 D 2A2 C ŒL1; A1�; (17)

w2 D 3A3 C 2ŒL1; A2� C 1

2
ŒL2; A1� C 1

2
ŒL1; ŒL1; A1��:

Again, a recursive procedure for the computation of wn.t/ in (16) can be found
in [4]. In general, wn (n � 1) depends on Ak and Lm, with 1 � k � n C 1,
1 � m � n.

3. Finally, insert the series (13) and (16) into Eq. (11), and equate terms of the same
power in ". In this way we arrive at

K0 D A0

dLn

dt
C ŒLn; A0� D nKn � Fn; n � 1 (18)
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with

F1 � w0 D A1 (19)

Fn �
n�1X

j D1

ŒLn�j ; Kj � C wn�1; n > 1: (20)

For the first terms we have explicitly

dL1

dt
C ŒL1; A0� D K1 � A1

dL2

dt
C ŒL2; A0� D 2K2 � 2A2 � ŒL1; K1 C A1�

dL3

dt
C ŒL3; A0� D 3K3 � 3A3 � ŒL2; K1 C 1

2
A1� � ŒL1; K2 C 2A2 C 1

2
ŒL1; A1��:

These equations allow us to get Kn and Ln.t/ recursively once Km and Lm.t/

with m D 1; : : : ; n � 1 have been previously determined.

For later use, we notice that Eq. (18) can also be written as

dLn

dt
D adA0 Ln C nKn � Fn (21)

in terms of the linear operator adA0 .

3 The Lyapunov Transformation in Periodic Systems

Since our goal is to construct approximations to the solution of (2) according with
the Floquet theorem, we choose K."/ as a constant matrix and obtain the successive
terms Ln.t/ as periodic matrices in t : Ln.t C T / D Ln.t/ for all n � 1. In this way,
˝.t C T; "/ D ˝.t; "/ and Z.t; "/ D exp.tK."//.

To begin with, we integrate Eq. (18) over the period and divide by T :

Ln.T / � Ln.0/

T
D ŒA0;

1

T

Z T

0

Ln.t/dt� C nKn � 1

T

Z T

0

Fn.t/dt: (22)

Since L is periodic, then Ln.T / � Ln.0/ D 0, so that

nKn D hFni � ŒA0; hLni�; (23)
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where hFni and hLni denote the average of Fn and Ln over the interval Œ0; T �,
respectively:

hFni � 1

T

Z T

0

Fn.t/dt; hLni � 1

T

Z T

0

Ln.t/dt: (24)

On the other hand, the formal solution of Eq. (21) reads

Ln.t/ D et adA0 Ln.0/ C et adA0

Z t

0

e�s adA0 .nKn � Fn.s// ds: (25)

Now, inserting (23) into this expression we get

Ln.t/ D et adA0 Ln.0/ C .I � et adA0 /hLni C et adA0

Z t

0

e�s adA0 .hFni � Fn.s// ds;

where we have used the formal identity

Z t

0

e�s adA0 .�adA0hLni/ D .e�t adA0 � I /hLni:

If we denote by Gn.s/ the antiderivative of e�s adA0 .hFni�Fn.s//, i.e., Gn.t/ is such
that

dGn.t/

dt
D e�t adA0 .hFni � Fn.t//;

then clearly

Ln.t/ D et adA0 Ln.0/ C .I � et adA0 /hLni C et adA0 .Gn.t/ � Gn.0//: (26)

In summary, the new constant coefficient matrix and the generator of the transfor-
mation are given recursively by

nKn D hFni � ŒA0; hLni�
Ln.t/ D hLni C et adA0 .Ln.0/ � hLni C Gn.t/ � Gn.0//;

(27)

for n � 1, starting with K0 D A0. Notice that there are two undetermined
parameters at each step in these expressions, both related with the generator: its
initial value Ln.0/ and the average hLni. To construct explicitly the transformation
we have to fix these values. The problem then admits infinite solutions. Next we
consider just two different possibilities:
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1. We fix the initial condition Ln.0/ D 0. Then, Ln.T / D 0 by periodicity and (26)
evaluated at t D T leads to

0 D .I � eT adA0 /hLni C eT adA0 .Gn.T / � Gn.0//: (28)

In other words, we can choose hLni as an arbitrary solution of the matrix
equation (28) or alternatively,

Z T

0

e�s adA0 ŒA0; Cn� ds D Gn.T / � Gn.0/ D
Z T

0

e�s adA0 .hFni � Fn.s//ds;

(29)

where Cn denotes the unknown matrix. In this way, the problem is solved if we
take

nKn D hFni � ŒA0; Cn�

Ln.t/ D Cn C et adA0 .Gn.T / � Gn.0/ � Cn/ ;
(30)

with Cn any particular solution of Eq. (29). As a matter of fact, this is a
non-homogeneous system of d 2 linear equations with d 2 unknowns (the ele-
ments of Cn) that has a unique solution Cn if and only if �k � �l ¤ 0 mod 2�i

T
,

k ¤ l , where �k; �l are distinct eigenvalues of A0. Otherwise, some preliminary
transformations lead the matrix A0 to this situation [7].

In summary, if we impose the initial condition Ln.0/ D 0 and periodicity
for Ln.t/, then we can build explicitly the series ˝.t C T; "/ D ˝.t; "/, with
˝.0; "/ D 0, so that the solution is given by

Y.t; "/ D P.t; "/ etK."/ D e�˝.t;"/ etK."/ D exp

 
�
X

n�1

"nvn.t/

!
exp

 
t
X

n�0

"nKn

!

(31)

where K0 D A0 and Kn, n � 1, are constant matrices. In addition, the series
obtained for K."/ and P.t; "/ are convergent for sufficiently small values of "

[5].
2. As a second option, we construct Ln such that its average hLni D 0. In that case,

from (27),

Kn D 1

n
hFni: (32)

Then we determinate the value of Ln.0/ so that Ln.t/ in (27) is T -periodic, in
particular Ln.T / D Ln.0/. From (27) we get

Ln.0/ D eT adA0 .Ln.0/ C Gn.T / � Gn.0//
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or

Z T

0

d

ds

�
e�s adA0 Ln.0/

�
ds D Gn.T / � Gn.0/:

Since

d

ds

�
e�s adA0 Ln.0/

� D d

ds

�
e�sA0 Ln.0/esA0

� D e�sA0
�
Ln.0/A0 � A0Ln.0/

�
esA0 ;

it turns out that Ln.0/ has to satisfy Eq. (29). Therefore, the new coefficient
matrix and the corresponding generator are given by

Kn D 1

n
hFni (33)

Ln.t/ D et adA0.Cn C Gn.t/ � Gn.0//;

where Cn D Ln.0/ is any solution of (29). In general Ln.0/ ¤ 0 and therefore
˝.0; "/ ¤ 0, so that the solution of (2) reads

Y.t; "/ D e�˝.t;"/ etK."/ e˝.0;"/: (34)

Here ˝.t CT; "/ D ˝.t; "/ is computed with the generators Ln. In consequence

Y.t C T; "/ D Y.t; "/ e�˝.0;"/ eTK."/ e˝.0;"/:

We notice that, although the structure prescribed by Floquet’s theorem is no
longer reproduced, M � e�˝.0;"/ eTK."/ e˝.0;"/ is a monodromy matrix, with
the same eigenvalues as eTK."/. In other words, the eigenvalues of the new matrix
K."/ given by (33) are also the characteristic exponents of the system.

4 Generalization to the Quasi-periodic Case

Let us consider now Eq. (3) in the quasi-periodic case, i.e., when the matrices Aj .t/,
j D 1; 2; : : :, in (3) are of the form

Aj .t/ D
rX

lD1

Cj;l ei�l t : (35)

Here Cj;l are constant matrices, and �l are real numbers, so that the elements of the
matrices Aj .t/ are trigonometric polynomials with arbitrary frequencies �l . The
algorithm proposed by Shtokalo [8] for analyzing the stability of the trivial solution
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of system (2) consists essentially in constructing a change of variables that transform
Eq. (2) into (5),

@

@t
Z.t; "/ D

0

@A0 C
X

j �1

"j Kj

1

A Z.t; "/; (36)

where Kj are constant matrices. In Shtokalo’s procedure, the change of variables
and the matrix K."/ are constructed perturbatively, as power series of ", without
paying much attention to the approximations of the solution of (3) and the
preservation of the main qualitative properties if may possess [5, 8].

It turns out that the procedure developed in the previous sections for constructing
the Lyapunov transformation for periodic linear systems can also be applied in
this setting with only minor changes. To proceed, let us first recall that for a
quasi-periodic function f .t/, there exists the limit

lim
T !1

1

T

Z aCT

a

f .t/dt D hf i; (37)

uniformly with respect to a. The number hf i is called the mean value of the
quasi-periodic function f .t/. In addition, this mean value defined for quasi-periodic
functions coincides with the usual mean value over the period for periodic functions.
Moreover, if f .t/ is a trigonometric polynomial,

f .t/ D C0 C
rX

lD1

Cl ei�l t ;

where �l ¤ 0; l D 1; : : : ; r , the mean value hf i D C0.
Again, the starting point is Eq. (18). Integrating over the interval t 2 Œ0; T �, for

an arbitrary T > 0, and dividing by T , we get Eq. (22). Taking the limit T ! 1
results in

lim
T !1

Ln.T /

T
D ŒA0; hLni� C nKn � hFni:

Since we aim to construct the terms of the generator as trigonometric polynomials
we impose

lim
T !1

Ln.T /

T
D 0;

so that we recover in this setting the expressions (27) for Kn and Ln, where now h�i
denotes the mean value (37).
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At this point, at least two alternatives are possible:

1. Choose Ln.0/ D 0. Then, a trigonometric polynomial for Ln.t/ results as long
as hLni D �Gn.0/. In other words,

Kn D 1

n
hFni C 1

n
ŒA0; Gn.0/� (38)

Ln.t/ D �Gn.0/ C et adA0 Gn.t/:

2. Determine Ln as a trigonometric polynomial with zero mean value, hLni D 0.
This can be achieved by taking Ln.0/ D Gn.0/, and thus

Kn D 1

n
hFni (39)

Ln.t/ D et adA0 Gn.t/:

A detailed treatment of this case will be the subject of subsequent work [2].

5 Illustrative Example

We next illustrate the algorithm on a simple periodic example. In particular, we
consider the system

Py1 D ".�1 C 2 sin t/y1 C " y2

Py2 D �y2 C " y1 (40)

worked out by Malkin [1]. Here " is a real parameter and the period T D 2� . Using
the method of small parameters, he showed that the characteristic exponents of the
system are negative at least for " < 1=9, whereas in [9] the domain of values of "

that ensure asymptotic stability is extended up to " < 2=3.
The fundamental matrix Y.t; "/ corresponding to system (40) verifies Eq. (4) with

A.t; "/ D A0 C "A1.t/ �
�

0 0

0 �1

�
C "

��1 C 2 sin t 1

1 0

�
: (41)

First we carry out the first procedure by fixing Ln.0/ D 0, i.e., we determine Kn

and Ln by Eq. (30), up to n D 10 and compute the solution matrix (31). In Fig. 1 we
plot the difference between the Frobenius norm of our approximation, Y.t; "/, and
the exact result (as determined by numerical integration) when n D 5 and n D 10

terms are taken in the series.
Next we compute the eigenvalues of K."/ as a function of " by applying the

second alternative, i.e., by means of (33), and compare with the exact result (as
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Fig. 1 Error in the approximation (in logarithmic scale) between the approximation of order "5

(solid line) and order "10 (dashed line) with respect to the exact solution
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Fig. 2 One of the characteristic exponents of system (40), obtained by direct numerical integration
(solid line), and by the perturbative algorithm of order "2 (dot-dashed line), "4 (dashed line) and
"10 (dotted line), as a function of "

determined by the numerical integration of Eq. (40) with 25 digits of accuracy).
One of the eigenvalues turns out to be always negative, whereas the second one is
negative only for " < 0:745023, so that it is this value which determines the stability
region of the system.

In Fig. 2, we represent this exact eigenvalue (solid line) together with the results
rendered by the perturbative algorithm of order "2 (dot-dashed line), "4 (dashed line)
and "10 (dotted line).

Notice that higher order approximations provide results that are indistinguishable
from the exact value for increasingly larger values of the perturbation parameter ".
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