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Abstract Runge-Kutta methods are used to integrate in time systems of differential
equations. Implicit methods are designed to overcome numerical instabilities
appearing during the evolution of a system of equations. We will present partially
implicit Runge-Kutta methods for a particular structure of equations, generalization
of a wave equation; the partially implicit term refers to this structure, where the
implicit term appears only in a subset of the system of equations. These methods
do not require any inversion of operators and the computational costs are similar to
those of explicit Runge-Kutta methods. Partially implicit Runge-Kutta methods are
derived up to third-order of convergence. We analyze their stability properties and
show the practical applicability in several numerical examples.

1 Introduction

The evolution in time of many complex systems, governed by partial differential
equations, implies, in a broad variety of cases, looking for the numerical solution of
a system of ordinary differential equations. The most commonly used methods to
integrate in time these systems are the well-known Runge-Kutta (RK) ones (see
e.g. [4, 9] for a general review). Several classifications of the RK methods can
be done, according to, e.g., their convergence order, the number of stages or their
explicit/implicit structure.

Implicit methods are designed to overcome numerical instabilities appearing
during the evolution of a system of equations. As an example, the so-called implicit-
explicit RK (IMEX) methods have been used to evolve conservation laws with stiff
terms or convection-diffusion-reaction equations (see, e.g., [1,2,12,13]). In our case,
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although we will not focus on equations with stiff source terms, a partially implicit
treatment of the source terms will avoid the development of numerical instabilities
in the numerical evolution of wave-like equations.

An implicit treatment offers a solution to get a stable evolution and involves,
in general, an inversion of some operators. Depending on the complexity of the
equations, the inversion can be even prohibitive in practice from a numerical point of
view. We will focus on a particular structure of equations which does not require any
analytical or numerical inversion. Therefore, these methods have a computational
cost similar to the explicit Runge-Kutta methods (ERK).

2 Structure of the Equations

Let us consider the following system of PDEs,

�
ut D L1.u; v/

vt D L2.u/ C L3.u; v/
; (1)

being Li ; i D 1; 2; 3, general non-linear differential operators. Let us denote by
Li their discrete operators. This particular structure is a generalization of a wave
equation, written as a first-order system in time. L1 and L3 will be treated into an
explicit way, whereas the L2 operator will be considered to contain the unstable
terms and, therefore, treated implicitly. The partially implicit term refers to this
structure, where the problematic term appears only in a subset of the system of
equations.

Each stage of the derived partially implicit RK (PIRK) methods will proceed
into two steps: (i) the variable u is evolved explicitly; (ii) the variable v is evolved
taking into account the updated value of u for the evaluation of the L2 operator. The
computational costs of the PIRK methods are comparable to those of the explicit
ones. The resulting numerical schemes do not need any inversion of operators.

Numerical methods based on a nonlinear stability requirement are very desirable.
Such methods are referred to as strong stability preserving (SSP) ones [8]. Given an
evolution equation @t U D L.U /, Gottlieb and Shu [7] proved that the classical
second-order method,

U .0/ D U n; U .1/ D U n C �t L.U n/; U nC1 D 1

2
U n C 1

2
U .1/ C �t

2
L.U .1//;

(2)

is the optimal second-order two-stage SSP ERK method, and that the third-order
one due to Shu and Osher [14],
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U .0/ D U n; U .1/ D U n C �t L.U n/; U .2/ D 3

4
U n C 1

4
U .1/ C �t

4
L.U .1//;

U nC1 D 1

3
U n C 2

3
U .2/ C 2�t

3
L.U .2//; (3)

is the optimal third-order three-stage SSP ERK method. The optimal adjective
refers, for a given number of stages, to a maximization of the corresponding
Courant-Friedrichs-Lewy (CFL) value (1 in both cases). In the derivation of the
PIRK methods, the previously described optimal SSP ERK methods are recovered
when the L2 operator is neglected, i.e., when implicitly treated parts are not taken
into account. The remaining coefficients associated to the L2 operator are chosen
according to stability criteria. The PIRK methods will minimize the number of
stages, two (three) for the second-order (third-order) method.

3 Numerical Methods and Stability Analysis

Let us denote by . N̨1u; N̨2v/, N�u and . N�1u; N�2v/ the associated linearized parts of the
L1, L2 and L3 operators, respectively. The linearized system (1) is rewritten as

�
ut D N̨1u C N̨2v;

vt D N�1u C N�2v C N�u:
(4)

Let us denote ˛i WD N̨ i �t , � WD N� �t and �i WD N�i �t . We assume that j!i j � 1,
where !i , i D 1; 2, denote the two eigenvalues of the following matrix

�
1 C ˛1 ˛2

�1 1 C �2

�
; (5)

which represents the explicit terms of the system. We are going to focus here in the
linear stability of the system; the analysis of the linear stability is the most simple
case regarding the study of the stability of the system of equations, but if a method
does not verify even this criteria it is obviously not stable in general. In most cases,
the linear part of the operators is the dominant one and the results obtained in the
analysis of the linear stability are reproduced in the numerical simulations. Previous
matrix determinant, dex, and trace, trex, are bounded by jdexj � 1 and jtrexj � 2.
Let us denote Mi the matrix which updates values for a i th-order method,

�
unC1

vnC1

�
D Mi

�
un

vn

�
: (6)

Stability thus requires that the absolute value of the two eigenvalues associated to
the matrix Mi are bounded by 1. However, in order to simplify the derivation of
the PIRK methods, we are going to relax this condition on the eigenvalues of the
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matrix Mi by a bound on its determinant, j det.Mi /j � 1. The restriction onto the
eigenvalues will be shown in the numerical experiments as the boundaries of the
stability region. Re.�˛2/ � 0 is also assumed; this condition is satisfied for general
wave-like equations written as a first-order system in time (see numerical example).

3.1 First-Order Method

The one-stage first-order method for the system (1) can be written in terms of one
coefficient, c1, as follows:

�
unC1 D un C �t L1.un; vn/;

vnC1 D vn C �t Œ.1 � c1/ L2.un/ C c1 L2.unC1/ C L3.un; vn/�:
(7)

This method is a particular case for the system (1) of the IMEX-� method (see,
e.g., [10]). The matrix M1 satisfies det.M1/ D dex�� ˛2 .1�c1/. c1 D 1 guarantees
j det.M1/j � 1; 8.� ˛2/.

3.2 Second-Order Method

The two-stages second-order method for the system (1), imposing SSP optimal two-
stages second-order method for the pure explicit parts, can be written in terms of two
coefficients, c1 and c2, as follows:

�
u.1/ D un C �t L1.un; vn/;

v.1/ D vn C �t Œ.1 � c1/ L2.un/ C c1 L2.u.1// C L3.un; vn/�:
(8)

8̂
ˆ̂<
ˆ̂̂:

unC1 D 1

2
Œun C u.1/ C �t L1.u.1/; v.1//�;

vnC1 D vn C �t

2
ŒL2.un/ C 2c2 L2.u.1// C .1 � 2c2/ L2.u

nC1/

CL3.un; vn/ C L3.u.1/; v.1//�:

(9)

Matrix M2 satisfies det.M2/ D 1
4
Œ.1 � dex/2 C trex2 C � ˛2 .1 � dex/ .1 � 2c1 C

2c2/�. j det.M2/j � 1 cannot be guarantee 8.� ˛2/. We restrict to real numbers and
consider the determinant of M2 as a polynomial in .� ˛2/; the extrema values of
its coefficients can be analyzed. For j� ˛2j � 1, the resulting optimal values for
the coefficients are c1 D 1=2 and c2 D 0; we will denote this method by PIRK2a.
For j� ˛2j � 1, the optimal values for the coefficients are c1 D 1 � p

2=2 and
c2 D .

p
2 � 1/=2; we will denote this method by PIRK2b. If j� ˛2j is not too big,

the choice .c1; c2/ D .1=2; 0/ is convenient since it avoids to compute the term
L2.u.1// to obtain vnC1 in the final stage. Otherwise, the PIRK2b method is better.
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3.3 Third-Order Method

The three-stages third-order method for the system (1), imposing SSP optimal
three-stages third-order method for the pure explicit parts, can be written in terms
of two coefficients, c1 and c2, as follows:

�
u.1/ D un C �t L1.un; vn/;

v.1/ D vn C �t Œ.1 � c1/ L2.un/ C c1 L2.u.1// C L3.un; vn/�:
(10)

8̂̂
<̂
ˆ̂̂:

u.2/ D 1

4
Œ3un C u.1/ C �t L1.u

.1/; v.1//�;

v.2/ D vn C �t

4
Œ 2.c1 C 2c2/ L2.u

n/ C 4c2 L2.u
.1// C 2.1 � c1 � 4c2/ L2.u

.2//

CL3.un; vn/ C L3.u.1/; v.1//�:
(11)8̂̂

<̂
ˆ̂̂:

unC1 D 1

3
Œun C 2u.2/ C 2�t L1.u.2/; v.2//�;

vnC1 D vn C �t

6
ŒL2.un/ C L2.u.1// C 4L2.u

.2//

CL3.un; vn/ C L3.u.1/; v.1// C 4L3.u.2/; v.2//�:

(12)

Matrix M3 satisfies

det.M3/ D 1

36
Œ14 C 2.trex � 1/3 C .dex � 2/3 C 6 trex2 C 3 dex ..trex � 1/2 � 2/�

C 1

24
� ˛2 .�1 C c1 � 4c2/Œ.dex � 2/2 C .trex � 1/2 � 2�

C 1

12
�2 ˛2

2 Œc1 � 4c2 C .dex � 1/.4c2 � c2
1 � 4c1c2/�

� 1

72
�3 ˛3

2 Œ�1 C 3.1 � 2c1/.c1 C 4c2/�: (13)

j det.M3/j � 1 cannot be guarantee 8.� ˛2/. We proceed as in the second-order
method. For j� ˛2j � 1, the resulting optimal values for the coefficients are
.c1; c2/ D .1=4; 1=16/; we will denote this method by PIRK3a. For j� ˛2j � 1,
the resulting optimal values for the coefficients are .c1; c2/ D ..3 � p

3/=6; .�1 Cp
3/=8/; we will denote this method by PIRK3b.

4 Numerical Experiments

In this section we show two examples of the application of PIRK methods to
ODEs and PDEs, demostrating that the stability properties of the method hold in
practice.
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4.1 System of ODEs

Let us consider a system of ODEs of the following form:

ut D c u C d v; vt D a u C b v; (14)

where a, b, c and d are real constants. This system is interesting because it coincides
with the linear part of the system of Eqs. (4) considered for our stability analysis,
with N̨1 D c, N̨2 D d , N�1 D 0, N�2 D b and N� D a.

In the case .b � c/2 C 4 a d < 0 and b C c � 0, this system of equations has
damped oscillatory solutions of the form,

u D
p�ad

a
v0 cos.!t C �/e�t ; v D v0 cos.!t/e�t ; (15)

being v0, ! � 1
2

p�4 a d � .b � c/2, � � bCc
2

and tan � � !
��b

a constant set by
the initial conditions, the frequency, decay rate and relative phase between u and v
of the solution, respectively. This system corresponds to (1), with L1.u; v/ D u C v,
L2.u/ D a u and L3.u; v/ D b v, and fulfills the applicability requirements of the
PIRK methods, i.e. N̨2

N� < 0, jdexj � 1 and jtrexj � 2.
For our numerical experiment we will consider the case ! D 1 and a D �d ,

without loss of generality, since it is equivalent to a rescaling of t and v. The remain-
ing coefficients depend only on the values of � and �. We have performed numerical
simulations for � D 0; �0:01; �0:1; �1, and �=	 D 1=2; 1=3; 1=4; 1=10, which are
representative of all possible solutions of this set of equations.

Figure 1 shows the results for a representative test, comparing the first-order
ERK with the PIRK. To estimate the relative error of the method we compute the
time-averaged L2-norm of the difference between the analytic and the numerical
solution

L2.u/.t/ D 1

t

sX
tn<t

Œunum.tn/ � uana.tn/�2�t2e�2� tn : (16)

For this test the ERK is unconditionally unstable (see left panel) and decreasing
the time step leads to an exponentially increasing amplitude, provided the inte-
gration time is sufficiently long. By comparison, the first-order PIRK is stable for
�t < 2, since juj . 1. For longer time steps (e.g. �t D 0:1) using the PIRK, the
solution losses accuracy (in this case a phase shift) but it is still bounded (even
at t D 1;000), and hence the numerical method is stable. We use the value of
the time-averaged L2-norm at time t D 100 as a measure of the stability of a
numerical method, for a particular numerical test with a given time step. Values
<1 (>1) usually indicate stability (instability). In Fig. 2 we compare the stability
properties of ERK and PIRK methods observed in our numerical experiments. In all
cases, the PIRK methods are superior to the ERK methods, as they can achieve
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Fig. 1 Numerical integration of the previous ODEs with � D � D 0, using a first-order ERK
(left panels) and a first-order PIRK (right panels). Upper panels show the time evolution of u,
10�4 � �t � 1. Dotted lines are the amplitude of the oscillatory analytic solution. Lower panels
show the time averaged L2-norm of the difference between the numerical and analytical solutions,
10�4 � �t � 2:1

stable numerical evolutions with significantly longer time steps. For small time
steps, all numerical methods follow the expected order of convergence. For first
and second-order methods, ERK methods are unconditionally unstable; despite L2-
norm< 1 for small values of �t , longer evolutions always lead to exponentially
growing amplitudes in all studied cases. In contrast, first and second-order PIRKs
are numerically stable in all simulations tested (up to t D 1;000), and only become
unstable for �t larger than a certain threshold. For the third-order methods, all the
schemes are stable for small �t , but the ERK becomes unstable at lower values of
�t than PIRK methods, which behave similar to the tested IMEX scheme.

A change of the value of � , fixed � D 0, introduces a damping in the oscillatory
solution, in a timescale of 1=� . As the parameters approach j�!j � 1, the system
becomes stiff, and the maximum time step providing stable evolutions decreases
as expected. In the case of third-order methods (see upper panel of Fig. 3), and
similarly for first and second-order ones, as we approach � D �1, both ERK and
PIRK methods behave almost identically. Despite of being partially implicit, the
terms in Eq. (14) responsible for the stiffness cannot be included in the L2 operator,
and both ERK and PIRK methods suffer from this stiffness.

In the case of varying �, fixed � D 0, all ERK schemes behave in an identical
way (see lower-right panel of Fig. 3 for third-order schemes; first and second-order
ones behave similarly). However, PIRK methods suffer from a significant reduction
of the maximum time-step as � � 0 (see lower-middle and right panels of Fig. 3 for
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Fig. 2 Numerical error integrating a system of ODEs with � D 0 and � D 0, using first (left
panels), second (middle panels) and third (right panels) order methods. Upper panels show the
transition between stable (L2 � 1) and unstable (L2 � 1) numerical evolutions. Lower panels,
in logarithmic scale, show the behavior for small time steps, compared to the expected scaling for
each method (dashed-dotted lines). As a reference, vertical dashed line at �t D 2 corresponds to
the maximum time step for the first-order PIRK to be stable
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third-order schemes; first and second-order ones behave similarly). This is the only
case in which ERK methods are superior to PIRK methods. Therefore, the class of
systems for which PIRK methods are a good alternative to classical ERK methods
are wave-like equations, in which the condition � � 	=2 is fulfilled.

4.2 Wave Equation in Spherical Coordinates

In this section, the PIRK methods are applied to the case of the time evolution of
a wave equation for a scalar, h, in spherical coordinates. The evolution equation
for h can be written as @t t h D 4h, where 4 denotes the Laplacian operator. This
equation can be rewritten as a first-order system in time, with the addition of an extra
auxiliary variable, A, as follows: @t h D A; @t A D 4h. In this case, according to
system (1), the variables can be identified as .u; v/ D .h; A/, and the operators as
L1.h; A/ D A, L2.h/ D 4h and L3.h; A/ D 0. Spherical coordinates are used.
This equation has solutions of the form h.r; �; '; t/ � jl .kr/ Ylm.�; '/ cos kt ,
being jl the spherical Bessel function of first kind of order l and Ylm the spherical
harmonics. The value of k 2 R

C is determined by imposing boundary conditions.
We search for solutions inside a sphere of radius unity imposing h.r D 1; �; '; t/ D
0. We have performed 1D, 2D and 3D simulations using as initial data solutions
with n D 1 at t D 0. We use .l; m/ D .0; 0/; .2; 0/; .2; 2/ for the 1D, 2D and 3D
cases, respectively. We use a finite difference scheme and an equally-spaced grid
with nr , n� and n' grid points in the coordinate directions. At r D 1 the analytical
solution is imposed as boundary condition. L2-norm is used as a measure of the
global absolute error,

L2.h/.t/ D 1

nrn� n'

sX
r;�;'

Œhnum.r; �; '; t/ � hana.r; �; '; t/�2.k r/2: (17)

We will analyze the numerical stability of the derived PIRK methods using
.n; l; m/ D .1; 2; 0/ for the initial data in 2D simulations with equatorial symmetry,
.nr ; n� / D .100; 32/ grid points and a fourth-order spatial discretization scheme
(see more details in [6]). Let us denote CFL factor = �t

�lmin
D �t

�tmax
.

We study stability properties of the numerical solution depending on the
coefficients of the methods and the time step �t . The bound for the determinant
is a necessary but not sufficient condition; the boundaries of the stability region
correspond to the bounds for the eigenvalues. For the first-order PIRK method, the
estimated optimal value of the coefficient, c1 D 1, lays inside the stability region
and is indeed the value such that the maximum CFL factor is achievable, as it can be
checked in Fig. 4. The ERK method corresponds to c1 D 0, and is always unstable.

We have studied the numerical stability of the second-order PIRK method.
Figure 5 shows the stability region on the .c1; c2/ plane, for c1; c2 2 Œ�0:5; 1:5� and
several CFL factors (0.5, 0.7, 0.8 and 0.9). The boundaries agree with the bounds
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Fig. 4 Stability of the first-order PIRK method. Left panel: time evolution of the L2-norm for
simulations with CFL factor 0.5 and c1 values of 0.9 (blue), 0.99 (magenta), 1 (red), 1.5 (orange),
2 (green) and 2.05 (black). Solid and dashed lines represent numerically stable and unstable
simulations, respectively. Right panel: stability region depending on the values for c1 and the CFL
factor. Solid lines are the boundaries of the stability region (orange area). The boundary of the
region j det.M1/j � 1 is also plotted (dashed lines)
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Fig. 5 Dependence of the numerically determined stability region (orange area) on the .c1; c2/

coefficients using a second-order PIRK method for several CFL factors. Boundaries (solid lines)
agree with the condition for the eigenvalues. The boundaries for the condition for the determinant
(dashed lines), the optimal values for the coefficients, .c1; c2/ D .1=2; 0/ (black circle) and
.c1; c2/ D 1=2.2 � p

2;
p

2 � 1/ (star symbol), and the ones corresponding to the second-order
ERK method (black triangle) are also plotted

for the eigenvalues, and the condition for the determinant overestimates this region.
The optimal values corresponding to the PIRK2b and PIRK2a methods lie in the
stability region almost for all the cases and all the cases, respectively, as it can be
checked in Fig. 5. The ERK method corresponds to .c1; c2/ D .0; 1=2/ and is always
unstable.

The same numerical stability analysis have been carried out for the third-order
PIRK method, shown in Fig. 6 for several CFL factors. The boundaries of the
stability region can be obtained in the same way as in the second-order method,
the condition for the determinant being less restrictive. The optimal values of the
coefficients lay inside the stability region for all CFL factors analyzed. For the
coefficients corresponding to the third-order ERK method, stability is achieved if
the CFL factor <0.751 (see Fig. 6).
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Fig. 6 Dependence of the numerically determined stability region (orange area) on the .c1; c2/

coefficients using a third-order PIRK method for several CFL factors. Boundaries (solid lines)
agree with the condition for the eigenvalues. The boundaries for the condition for the determinant
(dashed lines), the optimal values for the coefficients, .c1; c2/ D .1=4; 1=16/ (black circle) and
.c1; c2/ D ..3 � p

3/=6; .
p

3 � 1/=8/ (star symbol), and the ones corresponding to the third-order
ERK method (black triangle) are also plotted

We have studied the convergence of the PIRK methods by performing series of
1D, 2D and 3D simulations, with resolutions nr D 50, .n� ; n'/ D .50; 16/ and
.nr ; n� ; n'/ D .50; 8; 32/, respectively. We use CFL=0.8. The L2-norm is used as
an estimation of the error. Independently of the dimensionality of the simulation,
the error falls with decreasing time step as expected from the convergence order of
the PIRK method used.

Conclusions
PIRK methods, from first to third-order of convergence, have been derived to
evolve in time wave-like systems of non-linear partial differential equations.
Optimal SSP ERK methods are recovered when implicitly treated parts are
neglected. No inversion is required and the computational costs of the PIRK
methods are comparable to those of the ERK ones. The PIRK methods are sta-
ble for wave-like equations and larger time steps can be achieved. In contrast,
first and second-order ERK methods result to be unconditionally unstable;
third-order ERK method is stable, but the largest time step achievable is lower.
PIRK methods are appropriate to evolve generalized complex wave equations
in spherical coordinates, as it has been shown in [3, 5, 11] for the evolution of
Einstein equations.
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