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Abstract Harten’s multiresolution has been successfully applied to the signal
compression using interpolatory reconstructions with nonlinear techniques. Here
we study the applicability of these techniques to remove noise to piecewise smooth
signals. We use two reconstruction types: interpolatory and least squares, and we
introduce ENO and SR nonlinear techniques. The standard methods adaptation to
noisy signals and the comparative of the different schemes are the subject of this
paper.

1 Introduction: Harten’s Multiresolution

Multiscale decompositions are efficient tools for analyzing the information con-
tained in a signal, providing various applications such as signal compression and
denoising. If f L represents a sampling of a signal, f .x/, in the finest resolution
level L, the multiresolution schemes rearrange this information leading to the
decomposition ff 0; e1; e2; : : : ; eLg, where f 0 corresponds to the sampling at the
coarsest resolution level and each sequence ek represents the information which is
necessary to recover f k from f k�1. If f .x/ is smooth the details ek have small
magnitude and we can remove them without a great loss of information, providing
excellent compression capabilities. Harten introduces its notion of multiresolution
in [5] and later generalizes it in [6, 7]. We start revising the basic aspects of this
formulation.

Let us consider V kC1 to be a k C 1 dimension linear space. The discretization
operator, DkC1 W F ! V kC1, allows to obtain the discrete values of a function,
f 2 F, while the reconstruction operator, RkC1 W V kC1 ! F, performs the reverse
operation, and it must satisfy the following property:

DkC1RkC1 D IV kC1 : (1)
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The reconstruction operator can be nonlinear. This allows the introduction of
techniques that improve the approximation in the presence of discontinuities (see
[1]), being this a fundamental difference from linear multiscale decompositions,
such as the wavelet transform (see [3]).

The connection between two levels of resolution (larger k, higher resolution) is
given by two operators: decimation, Dk

kC1 W V kC1 ! V k and prediction, P kC1
k W

V k ! V kC1, that must satisfy the consistency requirement: Dk
kC1P

kC1
k D IV k .

However, for the inverse composition P kC1
k Dk

kC1 ¤ IV kC1 . Then, we define the
prediction error: ekC1 D .IV kC1 �P kC1

k Dk
kC1/v

kC1, being vkC1 2 V kC1. If f�kC1
i g

is a basis of the null space of Dk
kC1, we can express ekC1 D P

i d kC1
i �kC1

i (see

[1]). We call d kC1
i the scale coefficients at level k.

Finally, decimation operators can be constructed from a sequence of discretiza-
tion operators, provided they are nested (see [1]):

DkC1f D 0 ) Dkf D 0; 8k 2 N; 8f 2 F: (2)

The most commonly used discretizations are point-value and cell average, [1].
Since our goal is noise removal and it is eliminated naturally by cell average
decimation, this will be used in what follows.

1.1 Cell Average Discretization in [0,1]

Consider a set of nested dyadic grids defined in [0,1]:

Xk D fxk
i gNk

iD0; Nk D 2kN0; xk
i D ihk; hk D 1

Nk
; k D 0; : : : ; L; (3)

where N0 2 N. If F D L1.Œ0; 1�/, the cell average discretization operator DkC1 W
F ! V kC1, is defined in [7] as:

Nf kC1
i WD .DkC1f /i D 1

hkC1

Z x
kC1
i

x
kC1
i�1

f .x/dx; 1 � i � NkC1: (4)

By integral properties is easy to see that Nf k
i D 1

2
. Nf kC1

2i C Nf kC1
2i�1/, defining this way

the decimation operator and satisfying (2).

2 Interpolatory Reconstruction for Cell Averages

We define the r-th order interpolatory reconstruction as:

IC
r�1

nl;nr.x; Nf k/ D gi .x/; x 2 Œxk
i�1; xk

i �; i D 1; : : : ; Nk; (5)
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where gi .x/ is the polynomial of degree r � 1 D nl C nr such that:

1

hk

Z xk
iCs

xk
iCs�1

gi .x/dx D Nf k
iCs; s D �nl; : : : ; nr; nl; nr 2 N: (6)

Prediction operator is calculated as follows:

.P kC1
k

Nf k/2i�j D
�

DkC1.IC
r�1

nl;nr.xI Nf k//
�

2i�j
D 1

hkC1

Z x
kC1
2i�j

x
kC1
2i�j �1

IC
r�1

nl;nr.xI Nf k/dx;

where j D 0; 1. Therefore 1
2
..P kC1

k
Nf k/2i�1 C .P kC1

k
Nf k/2i / D Nf k

i , satisfying (1).
Also ekC1

2i�1 C ekC1
2i D 0 and we can define d kC1

i D ekC1
2i�1, (see [1]).

Then, the multiresolution scheme is:
Codification, Nf L ! f Nf 0; d 1; d 2; : : : ; d Lg (Direct Transformation):

8
<

:

For k D L � 1; : : : ; 0
Nf k
i D 1

2
. Nf kC1

2i�1 C Nf kC1
2i /; i D 1; : : : ; Nk;

d kC1
i D Nf kC1

2i�1 � .P kC1
k

Nf k/2i�1; i D 1; : : : ; Nk:

(7)

Decodification, f Nf 0; d 1; d 2; : : : ; d Lg ! Nf L (Inverse Transformation):

8
<

:

For k D 0; : : : ; L � 1
Nf kC1
2i�1 D .P kC1

k
Nf k/2i�1 C d kC1

i ; i D 1; : : : ; Nk;
Nf kC1
2i D 2 Nf k

i � Nf kC1
2i�1 � .P kC1

k
Nf k/2i � d kC1

i ; i D 1; : : : ; Nk:

(8)

2.1 Nonlinear Techniques

Nonlinear techniques help us to improve the reconstructions in the presence of
discontinuities. Here, we will apply ENO and SR techniques.

2.1.1 ENO Technique

The ENO (Essentially Non-Oscillatory, [8]) interpolation technique consists in
choose for each interval, a stencil that do not cross a discontinuity. This is possible
if the working interval contains no discontinuities. Typically stencil is selected
according to the magnitude of the divided differences. However, if the function is
contaminated by noise, the information provided by divided differences is unreliable
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and we must seek an alternative. Inspired by [9] we use a choice that is not affected
by the presence of noise. If m D nl C nr C 1, we define the measure:

NE2.xi ; m; l/ D
mX

j D1

�
NqLSm�l;l�1

i .xk
i�.m�l/Cj �1I Nf k; s/ � Nf k

i�.m�l/Cj �1

�2

; (9)

where NqLSnl;nr
i .xI Nf k; s/ is the cell averages least squares polynomial of degree

s � 1 < nl C nr constructed from the stencil fxk
i�nl; : : : ; xk

iCnrg.
Now, we take:

NE2.xi ; m; l�/ D min
˚ NE2.xi ; m; 1/; NE2.xi ; m; 2/; : : : ; NE2.xi ; m; m/

�
; (10)

and the ENO stencil for I k
i D .xk

i�1; xk
i / is

˚
xk

i�nli
; : : : ; xk

iCnri

�
, with:

nli WD m � l�; nri WD l� � 1: (11)

2.1.2 SR Technique

With the technique SR (Subcell Resolution, [2, 4]) we can improve the approxima-
tion even in the interval containing the discontinuity. The idea is to properly extend
the adjacent interpolating polynomials to the point of discontinuity.

First, we define some useful concepts. If f .x/ has a jump in Œxk
i�1; xk

i � the
primitive function of f , F.x/ D R x

0
f .y/dy 2 C.Œ0; 1�/ has a corner (a

discontinuity in the derivative) there. Note that the sets f Nf k
i gNk

iD1 and F k D fF k
i gNk

iD0

are equivalents due to the relations F k
i D F.xk

i / D R xk
i

0 f .y/dy D hk

Pi
j D1

Nf k
j

and Nf k
j D 1

hk
.F k

j � F k
j �1/.

If m D nl C nr C 1, the SR technique is summarized as follows:

1. Taking stencils with m nodes, we calculate the ENO stencils by (11).
2. If nli�1 D m � 1 and nliC1 D 0 the stencils for the cells I k

i�1 and I k
iC1 are

disjoint. We label the cell I k
i as suspect of containing a discontinuity.

3. For each suspicious cell we define the function

GIC
i .x/ D qIP

iC1;0;m�1.xI F k; r/ � qIP
i�1;m�1;0.xI F k; r/; (12)

where qIP
j;nl;nr.xI F k; s/ is the polynomial of degree s that interpolates the point

values .xk
l ; F k

l /, j � nl � 1 � l � j C nr.

If GIC
i .xk

i�1/ � GIC
i .xk

i / < 0 we label the cell I k
i as singular.
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4. If GIC
i .xk

i�1/ �GIC
i .xkC1

2i�1/ < 0, the node xkC1
2i�1 lies at the right of the discontinuity.

Then the predicted values are obtained as follows:

.P kC1
k

Nf k/2i D qIP
iC1;0;m�1.x

kC1
2i I F k; r/ � qIP

iC1;0;m�1.x
kC1
2i�1I F k; r/

hkC1

; (13)

.P kC1
k

Nf k/2i�1 D 2 Nf k
i � .P kC1

k
Nf k/2i : (14)

In the other case, xkC1
2i�1 is located at the left of the discontinuity and:

.P kC1
k

Nf k/2i�1 D qIP
i�1;m�1;0.xkC1

2i�1I F k; r/ � qIP
i�1;m�1;0.xkC1

2i�2I F k; r/

hkC1

; (15)

.P kC1
k

Nf k/2i D 2 Nf k
i � .P kC1

k
Nf k/2i�1: (16)

3 Least Squares Reconstruction for Cell Averages

Schemes in this case are similar to those discussed in Sect. 2 but now we use least
squares fitting instead interpolation fitting. We define the r-th order least squares
reconstruction for cell averages as:

LSC
r�1

nl;nr.x; Nf k/ D gi .x/; x 2 Œxk
i�1; xk

i �; i D 1; : : : ; Nk; (17)

where gi .x/ is the polynomial of degree r � 1 < nl C nr such that:

1

hk

Z xk
iCs

xk
iCs�1

gi .x/dx D Nf k
iCs; s D �nl; : : : ; nr; nl; nr 2 N: (18)

The prediction operator is calculated as follows:

.P kC1
k

Nf k/2i�j D
�

DkC1.LSC
r�1

nl;nr.xI Nf k//
�

2i�j
D 1

hkC1

Z x
kC1
2i�j

x
kC1
2i�j �1

LSC
r�1

nl;nr.xI Nf k/dx;

with j D 0; 1. Note that we don’t have any interpolation condition and (1) is
not fulfilled because of 1

2
..P kC1

k
Nf k/2i�1 C .P kC1

k
Nf k/2i / ¤ Nf k

i . At this point we
suggest two options for (8):

• Forcing consistency: Nf kC1
2i D 2 Nf k

i � Nf kC1
2i�1 . We denote it as LSC � C .

• Losing consistency: Nf kC1
2i D .P kC1

k
Nf k/2i � d kC1

i . We denote it as LSC � NC.
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3.1 Nonlinear Techniques

We can apply the nonlinear techniques similarly to the exposed in Sect. 2.1, but
considering the following adaptations:

• In (9), s � r is allowed.
• The G function, (12), in this case is defined as follows:

GLSC
i .x/ D qLSP

iC1;0;m�1.xI F k; r/ � qLSP
i�1;m�1;0.xI F k; r/; (19)

where qLSP
j;nl;nr.xI F k; s/ is the s-th degree polynomial that approximates in the

least squares sense to the point values .xk
l ; F k

l / for j � nl � 1 � l � j C nr.

Since there are no interpolatory conditions, we can’t express GLSC
i in terms of

f Nf k
i g. To apply the SR technique for this reconstruction, we use the function

GIC
i .x/ to decide whether we are facing a singular cell. Obviously we need to

use in GIC
i .x/ polynomials with the same length that LSC.

4 Numerical Experiments

In this section we present some numerical experiments for denoising applying the
reconstructions studied in this paper.

We define the function:

g.x/ D
� � 4x�3

5
sin. 3

2
�. 4x�3

5
/2/ if 0 � x < 3�

29
;

jsin2�. 4x�3
5

/ C �
1000

j if 3�
29

� x � 1:
(20)

The work function is of the following type: f .x/ D g.x/ C n.x/; where g.x/

is defined in (20) and n.x/ is some white Gaussian noise.1 To measure the noise of
the signal, we consider the Signal-to-Noise Ratio, expressed in dB: SNR.g; f / WD
10log10.

PN
iD1 g2

i =
PN

iD1.gi � fi /
2/, where N is the signal length.

The experiment consists of: we fix SNR D 25 dB, and we consider a discretiza-
tion with NL D 26CL nodes, obtaining f Nf L

i gNL

iD1. First we decimate L levels for
cell averages to get f Nf 0

i g64
iD1. Then we apply L levels of an inverse transform (with

d k
i D 0 8i; k) using different reconstructions, obtaining f Of L

i gNL

iD1. For evaluate the
denoising goodness we use the Root Mean Squared Error:

RMSE. Of L; NgL/ D
v
u
u
t 1

NL

NLX

iD1

. Of L
i � NgL

i /2: (21)

1Generated using the function awgn of MATLAB R�.
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Fig. 1 Denoising with IC. Errors: (a) RMSE = 0.02196; (b) RMSE = 0.03206;
(c) RMSE = 0.03526; (d) RMSE = 0.07537

In Fig. 1 we can see the results that we obtain with IC C SR reconstruction. In
(a) (L D 3) we see that the noise removal is poor, due to we use few levels. Gibbs
phenomenon does not appear, thereby nonlinear techniques achieve their objective.
In (b) we increase the number of levels, L D 5, obtaining an efficient noise removal.
In Fig. 1c, d we show what happens if we raise the degree of IC. We can see that the
results are worse because we are using high degree polynomials with noisy data and
we obtain values with lower smoothness. The oscillations are amplified by raising
levels. Then we conclude that the degree of IC must be low.

In Fig. 2 we use least squares reconstruction for cell averages with SR technique.
In (a) we use LSC � C and, as expected, we do not get good results because by
forcing consistency we create oscillations which are transmitted and extended to
higher levels. However, if we use LSC � NC, with the same parameters, we obtain
smoother results (Fig. 2b). There is a problem with the non consistency: we lose the
connection between two consecutive levels and we could lose the correct location
of discontinuities, as we can see in Fig. 2c. Nevertheless there is an advantage with
respect to IC reconstruction: we can see in (d), only with three levels, that we achieve
remove noise efficiently. This fact is confirmed by the RMSE (shown in the figure
legend). For that, we need to use longer stencils and also we improve the reliability
of discontinuity detection. Remember that we can’t do it for IC because it involves
an increase of the degree and therefore worst reconstructions. Also using few levels
we reduce the computational cost and the effects of non consistency.
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Fig. 2 Denoising with LS. Errors: (a) RMSE = 0.07252; (b) RMSE = 0.03560;
(c) RMSE = 0.06847; (d) RMSE = 0.02271

Conclusions
We have studied the applicability of the Harten’s multiresolution with non-
linear techniques (ENO and SR) to the signal denoise, obtaining adaptations
to the standard schemes (using NE2 instead of divided differences for locating
discontinuities). We have used two reconstructions types: interpolatory and
least squares, and the latter with some adaptations (consistent and non
consistent) to improve the denoise.

Based on our numerical experiments we can conclude that with the IC
reconstruction we can remove efficiently noise and for it we must use low
degrees and high levels. If we use LSC reconstruction we must use a non
consistent version, causing that we lose the exact discontinuity position.
However, in some cases this may be advantageous over the interpolatory
reconstruction. For example, if there are insufficient number of initial data
to apply a large number of levels we can eliminate a significant amount of
noise using few levels of LSC reconstruction.

As future work, we plan to design consistent reconstructions combining
interpolation and least squares, in order to take advantage of both reconstruc-
tions.
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