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Abstract We analyze the behavior of positive solutions of parabolic equations with
a class of degenerate logistic nonlinearity and Dirichlet boundary conditions. Our
results concern existence and strong localization in the spatial region in which
the logistic nonlinearity cancels. This type of nonlinearity has applications in the
nonlinear Schrödinger equation and the study of Bose–Einstein condensates. In
this context, our analysis explains the fact that the ground state presents a strong
localization in the spatial region in which the nonlinearity cancels.

1 Introduction

In this paper we analyse the behavior of positive solutions of parabolic equations
with a degenerate logistic nonlinearity and Dirichlet boundary conditions

8
<

:

ut � �u D �u � n.x/u� in ˝; t > 0;

u D 0 on @˝; t > 0;

u.0/ D u0 � 0;
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where ˝ � RN , N � 1, is a bounded domain, � > 1, � 2 R and n.x/ � 0

in ˝ . Assume also that n.x/ remains strictly positive near the boundary of ˝ and
therefore

K0 D fx 2 ˝ W n.x/ D 0g � ˝ is a nonempty compact set. (2)

The parabolic problem (1) degenerates into a linear equation on K0, there the
growth rate is exponential and a solution could be expected to be unbounded. In
the region where n.x/ > n0 > 0; the growth is logistic, and a solution could be
expected to be bounded. The question is what kind of behavior could be expected
in the whole domain ˝ , and how the solution will ‘glue’ the different behavior in
those subregions. Hence K0 plays a crucial role in the dynamical properties and the
asymptotic behavior of solutions of (1), as we will show below.

There is a large amount of mathematical literature in this kind of logistic
equations, see below. This type of nonlinearity has also applications in the nonlinear
Schrodinger equation and the study of Bose-Einstein condensates. In this context,
assumption (2) implies the fact that the ground state presents a strong localization
in the spatial region K0, see [12] and references therein.

Throughout this paper we shall assume that the compact set K0 and the function
n.x/ satisfy the following hypotheses

(H1) K0 D K1 [ K2 � ˝ , where K1 and K2 are compact sets and

K1 D ˝0; is the closure of a regular connected open set ˝0 ¤ ;;

K2 has zero Lebesgue measure.

In some cases (H1) will be strengthened to
(H10) K0 satisfies (H1) and

K2 is a closed regular d�dimensional manifold, with d � N � 1:

(H2) n.x/ is a Hölder continuous function and

n.x/ � C
�
d0.x/

��
for some � > 0; where d0.x/ WD dist.x; K0/:

When the set K0 is empty, that is, if n.x/ is strictly bounded away from
zero, the parabolic problem (1) is classical and well understood, see e.g. [13] and
references therein. Also, when K0 is “smooth” in the sense that in (H1) we have
K0 D K1 D ˝0 where ˝0 is a smooth open set, and K2 D ;, this problem has also
been studied in [3–5, 9, 11] and further developments in [6, 8], see also references
therein. Therefore here we focus on the effect on the solutions of the presence of the
part with empty interior K2.
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Let us consider the stationary associated problem, see [1]. We will denote by
�1.!/ the first eigenvalue of the Laplace operator defined in an open set !, with
Dirichlet boundary conditions on @!. As � crosses the value �1.˝/, a bifurcation
phenomena takes place and a unique positive solution emanates from the trivial one.
This solution can be continued in � up until it reaches a critical value �c D �1.˝0/,
see [1, Theorem 2.3]. Note that this is precisely the same situation as when K0 is
“smooth”, i.e. K2 D ;. On the other side, when K0 is empty, the picture is also as
above, with �c D 1. In [1] we give a detailed description of the behavior of this
branch of solutions for � 2 .�1.˝/; �1.˝0// and specially as � ! �1.˝0/.

For any � 2 .�1.˝/; �1.˝0//, there exists a unique classical positive stationary
solution, denoted by '�, which is globally asymptotically stable for positive
solutions of (1). Moreover, inside ˝0, the pointwise limit of '� as � " �1.˝0/

is unbounded, see Theorem 1 for a precise statement and see [1, Theorem 1.1] for
a proof. This result is already know in the particular case when n.x/ is a smooth
function, K2 D ;, and K0 D K1 D ˝0, an open set with regular boundary, see
[3, 4, 11].

In K2 we have two competing mechanisms: on one hand the fact that n.x/ � 0

in K2 “pushes” the solution towards C1 while the fact that K2 is not “fat” enough
means that this effect may not have enough room to force the solution to go to
infinity.

Roughly speaking, our main result state that if

(H3) � C 2 < .� � 1/.N � d/

then any positive equilibrium remains bounded on compact sets of ˝ n K1 and, in
particular, at each point of K2 nK1, see Theorem 1 below, see also [1, Theorem 1.1].

We will distinguish two situations for which we will be able to show that the
solutions remain bounded in K2. In case K2 \K1 D ;, any solution will be bounded
in K2, actually it will be so in a neighborhood of K2. In case K2 \ K1 ¤ ;, it will
turn out that a balance between the geometry of K2 and the strength of the logistic
term, given by the exponent � and the behavior of the function n.x/ near K2, will
determine the behavior of the solution, see the following theorem.

Theorem 1 Assume K0 satisfies (H1) and n.x/ satisfies (H2). Then for any � 2
.�1.˝/; �1.˝0// there exists a unique classical positive equilibrium, denoted by
'�, which is globally asymptotically stable for nonnegative nontrivial solutions of
(1), that is, for every u0 � 0; the solution of (1) satisfy

lim
t!1 u.t; xI u0/ D '�.x/:

Also we have

lim
�"�1.˝0/

'�.x/ D 1; for all x 2 ˝0; (3)
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with uniform limit in compact sets of ˝0. Moreover, we have the following two
cases:

(i) If K1 \ K2 D ;, then there exists a ı > 0 and M > 0 such that

j'�.x/j � M; 8x W d.x; K2/ � ı; 8 � 2 .�1.˝/; �1.˝0//:

(ii) If K1 \ K2 ¤ ;, K0 satisfies (H10) and hypothesis (H3) holds, then '� remains
uniformly bounded on compact sets of ˝ nK1. In particular it remains bounded
at each point of K2 n K1.

Turning back to the parabolic problem, we have the following result:

Theorem 2 Assume (H1)–(H2) hold. Let u0 � 0 be a bounded initial data for (1).
Then for any � > �1.˝0/ any positive solution of (1) satisfy

lim
t!1 u.x; t/ D 1; for all x 2 ˝0; (4)

and the limit is uniform in compact sets of ˝0. Moreover, we have the following:

(i) If K1 \ K2 D ;, then there exists a ı > 0 and M D M.u0; �; ı/ > 0 such that

ju.x; t I u0/j � M; 8x W dist.x; K2/ � ı; 8 t > 0:

(ii) If K1 \ K2 ¤ ;, K0 satisfies (H10), and hypothesis (H3) holds, then for any
� � �1.˝0/ any solution of (1) remains uniformly bounded on compact sets
of ˝ nK1 as t ! 1. In particular it remains bounded at each point of K2 nK1.

The proof of this result relies on the following argument. If we denote by u a
nonnegative solution of (1), then we obtain first an upper bound of u, independent
of �, in compact sets of ˝ n K0. If NB.x0; a/ � ˝ n K0, where n.x/ � ˇ in
this ball, we may compare the solution u with radial solutions of singular Dirichlet
problems, posed in B.x0; a/, going to infinity at the boundary, see [5, 7, 10]. By
radial symmetry, the minimum of the singular solution is attained at the center of
the ball (that is in x0), and can be estimated in terms of ˇ, a, � and the dimension N .
Translating this result to our problem, we can move those balls for points in ˝ n K0

next to the boundary of K0, and state some rate for the upper bounds in terms of
some inverse power of the distance to the boundary of K0. This estimates provide
an upper rate at which the solution may diverge to infinity as we approach K0. See
Lemma 2, Proposition 1 and Lemma 3.

Once this estimate is obtained, we realize that the rate obtained with the argument
above may imply that the solution u is a solution of a parabolic problem with
an Lr trace at the boundary. Parabolic regularity will imply that the solution u is
bounded, independent of �, in compact sets of ˝ n K1. Therefore, we may obtain
conditions on �, the dimensions N and d and the rate � at which n.x/ approaches
to zero, see (H2), which may guarantee that the solution is bounded in K2 n K1, see
Theorem 2.(ii).
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This paper is organized as follows. We first show that the solutions are uniformly
bounded in compact sets of ˝ n K0 (see Proposition 1 below). Next, we prove that
for � � �1.˝0/, any solution of the parabolic problem (1) start to grow up in K1 as
t ! 1, see Theorem 2. Also, if the two parts K1 and K2 of K0 are disjoint, then
all solutions remain globally bounded on K2 as t ! 1, see Theorem 2.(i). Finally,
when K1 \ K2 ¤ ;, provides sufficient conditions ensuring that all solutions of (1)
remain bounded in K2 n K1, see Theorem 2.(ii).

2 Boundedness and Unboundedness of Solutions

We analyze where and how solutions of (1) become unbounded. The first thing we
can say is that the blow-up is a complete blow-up at every point in ˝0.

Lemma 1 Assume K0 satisfies (H1). Let u be a solution of the parabolic problem
(1). If � > �1.˝0/, then

lim
t!1 u.x; t/ D 1; for all x 2 ˝0:

Proof Let z.x; t/ be the solution of

8
<

:

zt � �z D �z; in ˝0; t > 0;

z D 0 on @˝0; t > 0;

z.0/ D z0 � 0 in ˝0

with z0 � u0. Then, by comparison and due to n.x/ � 0 in K0; z.x; t/ � u.x; t/ for
x 2 ˝0. Since � > �1.˝0/ then z.x; t/ grows exponentially in ˝0.

To get upper bounds on the solutions outside ˝0 we will use the following
Lemma, see [5]. This Lemma analyzes the minimum of a radially symmetric
solution of a singular logistic equation with constant coefficients and going to
infinity at the boundary, see [7, 10].

Lemma 2 Assume � > 1 and �; ˇ > 0 and consider a ball in RN of radius a > 0

and the following singular Dirichlet problem

��z D �z � ˇz� in B.0; a/I z D 1 on @B.0; a/:

Then, there exists a unique positive radial solution, za.x/. Moreover za satisfies

�
�

ˇ

� 1
��1

� za.0/ D inf
B.0;a/

za.x/ �
�

�.� C 1/

2ˇ
C B

ˇa2

� 1
��1

for some constant B D B.�; N / > 0, B independent of �.
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The above Lemma gives a local upper bound for the parabolic problem, out of K0.

Proposition 1 Let x0 2 ˝ n K0 and let u0 � 0 be a bounded initial data for (1).
Then for any given � � �0.K0/ there exists b > 0 and M > 0 such that

0 � u.t; xI u0/ � M; x 2 B.x0; b/; t > 0;

where B.x0; b/ denotes the ball centered at x0 with radius b:

Proof Let x0 2 ˝ n K0 and let a > 0 be such that B.x0; a/ � ˝ n K0. Denote
ˇ D inffn.x/; x 2 B.x0; a/g > 0 and consider z.x/ the translation to B.x0; a/ of
the function in Lemma 2.

Given u0, for a sufficiently small we have that u0.x/ � z.x0/ � z.x/ for x 2
B.x0; a/. Hence z.x/ is a supersolution for u.x; t/ and then

u.x; t/ � z.x/; x 2 B.x0; a/; t > 0:

Now in B.x0; a=2/, z.x/ remains bounded and we conclude the proof with b D a=2.

Next we discuss the behavior of the solutions in K0: First we give a universal
(and singular) bound.

Lemma 3 Let u0 � 0 be a bounded initial data for (1). Then, there exists a constant
A D A.u0; �/ such that the following holds

0 � u.t; xI u0/ � h.x/ D
�

A

d 2
0 .x/ infx2B0 n.x/

� 1
��1

;

where B0 WD B
�
x0;

d0.x/

2

�
; and d0.x/ D dist.x; K0/.

Proof Let x0 2 ˝ nK0, hence B0 � ˝ nK0. Denote ˇ.x0/ D inffn.x/; x 2 B0g >

0 and consider z.x/ the translation to B0 of the function in Lemma 2.
Let u0 � M in ˝ . Using the continuity of n.x/, we can assume that ˇ.x0/ �

�
M ��1 for all x0 close enough to K0. Then, using Lemma 2 we have

u0.x/ � M �
�

�

ˇ.x0/

� 1
��1

� z.x0/ � z.x/; 8x 2 B0:

Hence z.x/ is a supersolution for u.x; t/ and then u.x; t/ � z.x/; for all x 2 B0,
t > 0. In particular, for x D x0 we get, from Lemma 2 that for all t > 0,

u.x0; t/ � z.x0/ �
�

�.� C 1/

2ˇ.x0/
C B

ˇ.x0/d0.x0/2

� 1
��1
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for some constant B > 0. Since x0 is close enough to K0 we can assume

u.x0; t/ � z.x0/ �
�

A

ˇ.x0/d0.x0/2

� 1
��1

for all t > 0 and some A > 0.
From previous results, far from K0, u.x; t/ remains bounded, and for x0 2 K0

the result is obvious.

Next we want to distinguish the behavior of the solutions in K1 and on K2: The
following result gives a criteria to check whether a function that is infinity on a
compact set of measure zero is integrable. As shown below, this criteria depends on
the dimension of the set and on the form the function diverges on the compact set.

Lemma 4 Assume K � R
N is a compact set with zero Lebesgue measure and

dimension d � N � 1 and consider a function defined on a bounded neighborhood
! of K of the form

f .x/ D .dist.x; K//�˛ ; for some ˛ > 0; f jK D 1:

If r˛ < N � d for some r � 1, then f 2 Lr.!/.

Proof Note that

Z

!

jf .x/jr dx D
Z 1

0

jAsj ds

where As D fx 2 !; jf .x/jr � sg: But

jf .x/jr � s iff dist.x; K/ � s� 1
˛r :

Therefore jAsj D j!ı.s/j where

!ı D fx 2 !; dist.x; K/ � ıg and ı.s/ D s� 1
˛r :

From the assumption on the dimension of K we get j!ıj � CıN �d : Moreover, due
to jAsj � j!j, R 1

0
jAsj ds � j!j C R 1

1
jAsj ds: Therefore,

Z

!

jf .x/jr dx � j!j C C

Z 1

1

�
1

s

� N �d
˛r

ds < 1 whenever 1 <
N � d

˛r
;

and the result follows.

We prove now Theorem 2.
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Proof of Theorem 2 From Lemma 1, any positive solution is unbounded in ˝0; and
so (4) holds. Moreover, with the comparison argument used in the proof of Lemma 1
we get that the limit is uniform in compact sets of ˝0.

(i) Since K1 \ K2 D ; and jK2j D 0, we can construct a set of the form Vı D
fx 2 ˝ W d.x; K2/ < ıg with ı > 0 small enough so that K1 \ NVı D ; and
�1.Vı/ is large enough, say �1.Vı/ > �. Moreover, from Proposition 1, juj is
bounded uniformly in t > 0 in @Vı , by a constant, say M .

Hence, the solution U of

8
<

:

Ut � �U D �U in Vı; t > 0;

U D M on @Vı; t > 0;

U.0/ D u0 � 0 in Vı

becomes a supersolution of ju.x; t/j in Vı. Since � < �1.Vı/ then U.x; t/ and
therefore ju.x; t/j, remains bounded in Vı.

(ii) From Proposition 1, for any given solution of (1) we have L1 bounds on
compact sets of ˝ n K0.

Let K be an arbitrary compact set in ˝ n K1, such that K \ K2 ¤ ;. Let
B be a “transversal isolating box” for K , that is B is an open bounded set such
that K � B � ˝ n K1 and dim.K2 \ @B/ � d � 1. Then, from Lemmas 3, 4
and condition (H3), we have that there exists a function h 2 Lr .@B/ such that
ju.x; t/j � h.x/ for all x 2 @B . Hence, the solution of

8
<

:

Ut � �U D �U in B; t > 0;

U D Qh.x/ on @B; t > 0;

U.0/ D u0 � 0 in B

becomes a supersolution of ju.x; t/j in B .

Now, if � � �1.˝0/ we can shrink B to be close enough to K2 such that � <

�1.B/. Then, standard parabolic regularity gives L1 bounds for U.x; t/ for all time,
on compact subsets of B . Hence, u.x; t/ remains bounded on K2 as t ! 1. ut
Remark 1 It is an interesting open problem to determine whether we always obtain
that the solution of the parabolic problem (1) are bounded in compact sets of ˝ nK1

or, in the contrary, that we have cases in which u becomes infinity in K2 as t ! 1.

Remark 2 This work is still in progress, and we refer to [2] for details and more
general results, including more general configurations for the set K0.
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