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Preface

This volume of the SEMA/SIMAI Springer Series arose from the 23rd Congress
on Differential Equations and Applications (CEDYA)/13th Congress of Applied
Mathematics (CMA). The conference took place at the Universitat Jaume I in
Castelló (Spain) on 9–13 September 2013 and was sponsored by Generalitat
Valenciana, the Institut de Matemàtiques i Aplicacions de Castelló (IMAC) and the
Departament de Matemàtiques of the Universitat Jaume I. It was attended by more
than 200 participants, mainly from Spain but also from a further nine countries.

CEDYA has a long tradition in the Spanish applied mathematics community.
It was first held in 1978 in El Escorial (Madrid), serving as a meeting point for
mathematicians working in different research areas such as differential equations
(both ordinary and partial), numerical analysis, control and optimization, and
industrial mathematics. Nowadays, CEDYA is renowned as the congress of the
Spanish Society of Applied Mathematics (SEMA) and constitutes the main forum
and meeting point for applied mathematicians in Spain.

The organizers of the 23rd CEDYA/13th CMA are especially grateful to all
members of the Scientific Committee, plenary speakers, organizers of the Special
Sessions, and participants for their stimulating contributions, both verbal and written
and for providing a lively scientific atmosphere during the conference.

The congress took place at the premises of the Fundació Universitat Empresa
(FUE), Universitat Jaume I. The editors wish to acknowledge all the institutions
involved in its organization. They are particularly grateful for the assistance and
constant support received from the FUE personnel, with a special mention of
Begõna Andrés for her outstanding contribution in making the conference the
success that (we believe) it was.

The collection of papers in this volume is based on the contributions presented at
the conference. The papers were selected after a thorough refereeing process and
provide a good summary of the recent activity of the different groups working
mainly in Spain on applications of mathematics to various fields of science and
technology.
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vi Preface

The refereeing and editorial procedures have had to conform to a very specific
timetable, and so the editors would like to take this opportunity to thank all the
authors and referees for their understanding when coping with such an expedited
procedure. Special mention goes to Francesca Bonadei from Springer for her
enthusiastic support and encouragement during the different phases of the editorial
process.

The papers included in this volume fall into a number of distinct subject areas
covered by the conference and thus are arranged in accordance with this subdivision.

The first section is devoted to theoretical aspects of partial differential equations
and contains six papers. The second section deals with different aspects relating
to ordinary differential equations and dynamical systems, both from a qualitative
point of view and also in terms of the design of new numerical techniques for their
treatment.

The third section is entitled “Applications and Modeling” and covers topics such
as multiresolution, time series, controllability, and models of traffic flow and fire
propagation.

Finally, the fourth section, entitled “Numerical Analysis”, contains papers
presenting new numerical techniques designed to solve specific problems arising
in ordinary and partial differential equations as well as numerical linear algebra.

We hope that this volume will appeal to both researchers and practitioners in
analytical and numerical aspects of differential equations and numerical analysis as
a whole as well as some of their applications but also to the non-experts who wish
to gain a taste of the new developments in these areas of current interest.

Castelló, Spain Fernando Casas
July 2014 Vicente Martínez
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A Degenerate Parabolic Logistic Equation

José M. Arrieta, Rosa Pardo, and Aníbal Rodríguez-Bernal

Abstract We analyze the behavior of positive solutions of parabolic equations with
a class of degenerate logistic nonlinearity and Dirichlet boundary conditions. Our
results concern existence and strong localization in the spatial region in which
the logistic nonlinearity cancels. This type of nonlinearity has applications in the
nonlinear Schrödinger equation and the study of Bose–Einstein condensates. In
this context, our analysis explains the fact that the ground state presents a strong
localization in the spatial region in which the nonlinearity cancels.

1 Introduction

In this paper we analyse the behavior of positive solutions of parabolic equations
with a degenerate logistic nonlinearity and Dirichlet boundary conditions

8
<

:

ut ��u D �u � n.x/u� in ˝; t > 0;
u D 0 on @˝; t > 0;

u.0/ D u0 � 0;

(1)
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4 J.M. Arrieta et al.

where ˝ � RN , N � 1, is a bounded domain, � > 1, � 2 R and n.x/ � 0

in ˝ . Assume also that n.x/ remains strictly positive near the boundary of ˝ and
therefore

K0 D fx 2 ˝ W n.x/ D 0g � ˝ is a nonempty compact set. (2)

The parabolic problem (1) degenerates into a linear equation on K0, there the
growth rate is exponential and a solution could be expected to be unbounded. In
the region where n.x/ > n0 > 0; the growth is logistic, and a solution could be
expected to be bounded. The question is what kind of behavior could be expected
in the whole domain ˝ , and how the solution will ‘glue’ the different behavior in
those subregions. Hence K0 plays a crucial role in the dynamical properties and the
asymptotic behavior of solutions of (1), as we will show below.

There is a large amount of mathematical literature in this kind of logistic
equations, see below. This type of nonlinearity has also applications in the nonlinear
Schrodinger equation and the study of Bose-Einstein condensates. In this context,
assumption (2) implies the fact that the ground state presents a strong localization
in the spatial regionK0, see [12] and references therein.

Throughout this paper we shall assume that the compact set K0 and the function
n.x/ satisfy the following hypotheses

(H1) K0 D K1 [K2 � ˝ , where K1 and K2 are compact sets and

K1 D ˝0; is the closure of a regular connected open set ˝0 ¤ ;;

K2 has zero Lebesgue measure.

In some cases (H1) will be strengthened to
(H10) K0 satisfies (H1) and

K2 is a closed regular d�dimensional manifold, with d � N � 1:

(H2) n.x/ is a Hölder continuous function and

n.x/ � C
�
d0.x/

��
for some � > 0; where d0.x/ WD dist.x;K0/:

When the set K0 is empty, that is, if n.x/ is strictly bounded away from
zero, the parabolic problem (1) is classical and well understood, see e.g. [13] and
references therein. Also, when K0 is “smooth” in the sense that in (H1) we have
K0 D K1 D ˝0 where˝0 is a smooth open set, andK2 D ;, this problem has also
been studied in [3–5, 9, 11] and further developments in [6, 8], see also references
therein. Therefore here we focus on the effect on the solutions of the presence of the
part with empty interior K2.
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Let us consider the stationary associated problem, see [1]. We will denote by
�1.!/ the first eigenvalue of the Laplace operator defined in an open set !, with
Dirichlet boundary conditions on @!. As � crosses the value �1.˝/, a bifurcation
phenomena takes place and a unique positive solution emanates from the trivial one.
This solution can be continued in � up until it reaches a critical value �c D �1.˝0/,
see [1, Theorem 2.3]. Note that this is precisely the same situation as when K0 is
“smooth”, i.e. K2 D ;. On the other side, when K0 is empty, the picture is also as
above, with �c D 1. In [1] we give a detailed description of the behavior of this
branch of solutions for � 2 .�1.˝/; �1.˝0// and specially as � ! �1.˝0/.

For any � 2 .�1.˝/; �1.˝0//, there exists a unique classical positive stationary
solution, denoted by '�, which is globally asymptotically stable for positive
solutions of (1). Moreover, inside ˝0, the pointwise limit of '� as � " �1.˝0/

is unbounded, see Theorem 1 for a precise statement and see [1, Theorem 1.1] for
a proof. This result is already know in the particular case when n.x/ is a smooth
function, K2 D ;, and K0 D K1 D ˝0, an open set with regular boundary, see
[3, 4, 11].

In K2 we have two competing mechanisms: on one hand the fact that n.x/ � 0

in K2 “pushes” the solution towards C1 while the fact that K2 is not “fat” enough
means that this effect may not have enough room to force the solution to go to
infinity.

Roughly speaking, our main result state that if

(H3) � C 2 < .� � 1/.N � d/
then any positive equilibrium remains bounded on compact sets of ˝ n K1 and, in
particular, at each point ofK2nK1, see Theorem 1 below, see also [1, Theorem 1.1].

We will distinguish two situations for which we will be able to show that the
solutions remain bounded inK2. In caseK2\K1 D ;, any solution will be bounded
in K2, actually it will be so in a neighborhood of K2. In case K2 \K1 ¤ ;, it will
turn out that a balance between the geometry of K2 and the strength of the logistic
term, given by the exponent � and the behavior of the function n.x/ near K2, will
determine the behavior of the solution, see the following theorem.

Theorem 1 Assume K0 satisfies (H1) and n.x/ satisfies (H2). Then for any � 2
.�1.˝/; �1.˝0// there exists a unique classical positive equilibrium, denoted by
'�, which is globally asymptotically stable for nonnegative nontrivial solutions of
(1), that is, for every u0 � 0; the solution of (1) satisfy

lim
t!1 u.t; xI u0/ D '�.x/:

Also we have

lim
�"�1.˝0/

'�.x/ D 1; for all x 2 ˝0; (3)
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with uniform limit in compact sets of ˝0. Moreover, we have the following two
cases:

(i) If K1 \K2 D ;, then there exists a ı > 0 and M > 0 such that

j'�.x/j � M; 8x W d.x;K2/ � ı; 8� 2 .�1.˝/; �1.˝0//:

(ii) If K1 \K2 ¤ ;,K0 satisfies (H10) and hypothesis (H3) holds, then '� remains
uniformly bounded on compact sets of˝ nK1. In particular it remains bounded
at each point ofK2 nK1.

Turning back to the parabolic problem, we have the following result:

Theorem 2 Assume (H1)–(H2) hold. Let u0 � 0 be a bounded initial data for (1).
Then for any � > �1.˝0/ any positive solution of (1) satisfy

lim
t!1 u.x; t/ D 1; for all x 2 ˝0; (4)

and the limit is uniform in compact sets of ˝0. Moreover, we have the following:

(i) If K1 \K2 D ;, then there exists a ı > 0 and M D M.u0; �; ı/ > 0 such that

ju.x; t I u0/j � M; 8x W dist.x;K2/ � ı; 8 t > 0:

(ii) If K1 \ K2 ¤ ;, K0 satisfies (H10), and hypothesis (H3) holds, then for any
� � �1.˝0/ any solution of (1) remains uniformly bounded on compact sets
of˝ nK1 as t ! 1. In particular it remains bounded at each point ofK2nK1.

The proof of this result relies on the following argument. If we denote by u a
nonnegative solution of (1), then we obtain first an upper bound of u, independent
of �, in compact sets of ˝ n K0. If NB.x0; a/ � ˝ n K0, where n.x/ � ˇ in
this ball, we may compare the solution u with radial solutions of singular Dirichlet
problems, posed in B.x0; a/, going to infinity at the boundary, see [5, 7, 10]. By
radial symmetry, the minimum of the singular solution is attained at the center of
the ball (that is in x0), and can be estimated in terms of ˇ, a, � and the dimensionN .
Translating this result to our problem, we can move those balls for points in˝ nK0

next to the boundary of K0, and state some rate for the upper bounds in terms of
some inverse power of the distance to the boundary of K0. This estimates provide
an upper rate at which the solution may diverge to infinity as we approach K0. See
Lemma 2, Proposition 1 and Lemma 3.

Once this estimate is obtained, we realize that the rate obtained with the argument
above may imply that the solution u is a solution of a parabolic problem with
an Lr trace at the boundary. Parabolic regularity will imply that the solution u is
bounded, independent of �, in compact sets of ˝ n K1. Therefore, we may obtain
conditions on �, the dimensions N and d and the rate � at which n.x/ approaches
to zero, see (H2), which may guarantee that the solution is bounded in K2 nK1, see
Theorem 2.(ii).
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This paper is organized as follows. We first show that the solutions are uniformly
bounded in compact sets of ˝ nK0 (see Proposition 1 below). Next, we prove that
for � � �1.˝0/, any solution of the parabolic problem (1) start to grow up in K1 as
t ! 1, see Theorem 2. Also, if the two parts K1 and K2 of K0 are disjoint, then
all solutions remain globally bounded on K2 as t ! 1, see Theorem 2.(i). Finally,
whenK1 \K2 ¤ ;, provides sufficient conditions ensuring that all solutions of (1)
remain bounded in K2 nK1, see Theorem 2.(ii).

2 Boundedness and Unboundedness of Solutions

We analyze where and how solutions of (1) become unbounded. The first thing we
can say is that the blow-up is a complete blow-up at every point in ˝0.

Lemma 1 Assume K0 satisfies (H1). Let u be a solution of the parabolic problem
(1). If � > �1.˝0/, then

lim
t!1 u.x; t/ D 1; for all x 2 ˝0:

Proof Let z.x; t/ be the solution of

8
<

:

zt ��z D �z; in ˝0; t > 0;

z D 0 on @˝0; t > 0;

z.0/ D z0 � 0 in ˝0

with z0 � u0. Then, by comparison and due to n.x/ � 0 in K0; z.x; t/ � u.x; t/ for
x 2 ˝0. Since � > �1.˝0/ then z.x; t/ grows exponentially in ˝0.

To get upper bounds on the solutions outside ˝0 we will use the following
Lemma, see [5]. This Lemma analyzes the minimum of a radially symmetric
solution of a singular logistic equation with constant coefficients and going to
infinity at the boundary, see [7, 10].

Lemma 2 Assume � > 1 and �; ˇ > 0 and consider a ball in RN of radius a > 0
and the following singular Dirichlet problem

��z D �z � ˇz� in B.0; a/I z D 1 on @B.0; a/:

Then, there exists a unique positive radial solution, za.x/. Moreover za satisfies

�
�

ˇ

� 1
��1

� za.0/ D inf
B.0;a/

za.x/ �
�
�.�C 1/

2ˇ
C B

ˇa2

� 1
��1

for some constant B D B.�;N / > 0, B independent of �.
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The above Lemma gives a local upper bound for the parabolic problem, out of K0.

Proposition 1 Let x0 2 ˝ n K0 and let u0 � 0 be a bounded initial data for (1).
Then for any given � � �0.K0/ there exists b > 0 andM > 0 such that

0 � u.t; xI u0/ � M; x 2 B.x0; b/; t > 0;

where B.x0; b/ denotes the ball centered at x0 with radius b:

Proof Let x0 2 ˝ n K0 and let a > 0 be such that B.x0; a/ � ˝ n K0. Denote
ˇ D inffn.x/; x 2 B.x0; a/g > 0 and consider z.x/ the translation to B.x0; a/ of
the function in Lemma 2.

Given u0, for a sufficiently small we have that u0.x/ � z.x0/ � z.x/ for x 2
B.x0; a/. Hence z.x/ is a supersolution for u.x; t/ and then

u.x; t/ � z.x/; x 2 B.x0; a/; t > 0:

Now inB.x0; a=2/, z.x/ remains bounded and we conclude the proof with b D a=2.

Next we discuss the behavior of the solutions in K0: First we give a universal
(and singular) bound.

Lemma 3 Let u0 � 0 be a bounded initial data for (1). Then, there exists a constant
A D A.u0; �/ such that the following holds

0 � u.t; xI u0/ � h.x/ D
�

A

d20 .x/ infx2B0 n.x/

� 1
��1

;

where B0 WD B
�
x0;

d0.x/

2

�
; and d0.x/ D dist.x;K0/.

Proof Let x0 2 ˝ nK0, henceB0 � ˝ nK0. Denote ˇ.x0/ D inffn.x/; x 2 B0g >
0 and consider z.x/ the translation to B0 of the function in Lemma 2.

Let u0 � M in ˝ . Using the continuity of n.x/, we can assume that ˇ.x0/ �
�

M��1 for all x0 close enough to K0. Then, using Lemma 2 we have

u0.x/ � M �
�

�

ˇ.x0/

� 1
��1

� z.x0/ � z.x/; 8x 2 B0:

Hence z.x/ is a supersolution for u.x; t/ and then u.x; t/ � z.x/; for all x 2 B0,
t > 0. In particular, for x D x0 we get, from Lemma 2 that for all t > 0,

u.x0; t/ � z.x0/ �
�
�.�C 1/

2ˇ.x0/
C B

ˇ.x0/d0.x0/2

� 1
��1
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for some constant B > 0. Since x0 is close enough to K0 we can assume

u.x0; t/ � z.x0/ �
�

A

ˇ.x0/d0.x0/2

� 1
��1

for all t > 0 and some A > 0.
From previous results, far from K0, u.x; t/ remains bounded, and for x0 2 K0

the result is obvious.

Next we want to distinguish the behavior of the solutions in K1 and on K2: The
following result gives a criteria to check whether a function that is infinity on a
compact set of measure zero is integrable. As shown below, this criteria depends on
the dimension of the set and on the form the function diverges on the compact set.

Lemma 4 Assume K � R
N is a compact set with zero Lebesgue measure and

dimension d � N � 1 and consider a function defined on a bounded neighborhood
! of K of the form

f .x/ D .dist.x;K//�˛ ; for some ˛ > 0; f jK D 1:

If r˛ < N � d for some r � 1, then f 2 Lr.!/.
Proof Note that

Z

!

jf .x/jr dx D
Z 1

0

jAsj ds

where As D fx 2 !; jf .x/jr � sg: But

jf .x/jr � s iff dist.x;K/ � s� 1
˛r :

Therefore jAsj D j!ı.s/j where

!ı D fx 2 !; dist.x;K/ � ıg and ı.s/ D s� 1
˛r :

From the assumption on the dimension of K we get j!ıj � CıN�d : Moreover, due
to jAsj � j!j, R1

0
jAsj ds � j!j C R1

1
jAsj ds: Therefore,

Z

!

jf .x/jr dx � j!j C C

Z 1

1

�
1

s

�N�d
˛r

ds < 1 whenever 1 <
N � d
˛r

;

and the result follows.

We prove now Theorem 2.
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Proof of Theorem 2 From Lemma 1, any positive solution is unbounded in ˝0; and
so (4) holds. Moreover, with the comparison argument used in the proof of Lemma 1
we get that the limit is uniform in compact sets of ˝0.

(i) Since K1 \ K2 D ; and jK2j D 0, we can construct a set of the form Vı D
fx 2 ˝ W d.x;K2/ < ıg with ı > 0 small enough so that K1 \ NVı D ; and
�1.Vı/ is large enough, say �1.Vı/ > �. Moreover, from Proposition 1, juj is
bounded uniformly in t > 0 in @Vı , by a constant, say M .

Hence, the solution U of

8
<

:

Ut ��U D �U in Vı; t > 0;

U D M on @Vı; t > 0;

U.0/ D u0 � 0 in Vı

becomes a supersolution of ju.x; t/j in Vı. Since � < �1.Vı/ then U.x; t/ and
therefore ju.x; t/j, remains bounded in Vı.

(ii) From Proposition 1, for any given solution of (1) we have L1 bounds on
compact sets of ˝ nK0.

Let K be an arbitrary compact set in ˝ n K1, such that K \ K2 ¤ ;. Let
B be a “transversal isolating box” for K , that is B is an open bounded set such
that K � B � ˝ nK1 and dim.K2 \ @B/ � d � 1. Then, from Lemmas 3, 4
and condition (H3), we have that there exists a function h 2 Lr.@B/ such that
ju.x; t/j � h.x/ for all x 2 @B . Hence, the solution of

8
<

:

Ut ��U D �U in B; t > 0;

U D Qh.x/ on @B; t > 0;

U.0/ D u0 � 0 in B

becomes a supersolution of ju.x; t/j in B .

Now, if � � �1.˝0/ we can shrink B to be close enough to K2 such that � <
�1.B/. Then, standard parabolic regularity givesL1 bounds forU.x; t/ for all time,
on compact subsets of B . Hence, u.x; t/ remains bounded on K2 as t ! 1. ut
Remark 1 It is an interesting open problem to determine whether we always obtain
that the solution of the parabolic problem (1) are bounded in compact sets of˝ nK1

or, in the contrary, that we have cases in which u becomes infinity in K2 as t ! 1.

Remark 2 This work is still in progress, and we refer to [2] for details and more
general results, including more general configurations for the set K0.
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Fast and Slow Boundary Oscillations in a Thin
Domain

José M. Arrieta and Manuel Villanueva-Pesqueira

Abstract In this work we analyze the behavior of the solutions of the Laplace
operator with Neumann boundary conditions in a 2-dimensional thin domain with
order of thickness � which presents a high oscillatory behavior at the top and a weak
oscillatory behavior at the bottom boundary. We obtain the asymptotic homogenized
problem as � ! 0 and we are interested in understanding how the extremely
different order of the oscillations affects to the limit.

1 Introduction

We analyze the behavior of the solutions of the Laplace equation with homogeneous
Neumann boundary conditions

8

<̂

:̂

��u� C u� D f � in R�

@u�

@N �
D 0 on @R�

(1)

where f � 2 L2.R�/,N� is the unit outward normal to @R� andR� is the thin domain
with oscillating boundary,

R� D
n
.x1; x2/ 2 R

2 j x1 2 .0; 1/; �� h.x1=�ˇ/ < x2 < � g.x1=�˛/
o
; (2)

with ˇ > 1, ˛ < 1 and g; h W .0; 1/� R ! R are C1 periodic functions with period
L1 and L2 respectively. Moreover, there exist constants h0 D minx2Rfh.x/g and
h1; g0; g1 > 0 such that 0 � h0 � h.	/ � h1; and 0 < g0 � g.	/ � g1:
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Observe that the domain R� shrinks in the vertical direction and it has an
oscillatory behavior at the top and bottom boundary. Moreover, the bottom boundary
presents a much higher oscillatory behavior than the top boundary. Notice that the
period of the oscillations is order �˛ at the upper boundary, given by �g.x1=�˛/,
while the period at the lower boundary is �ˇ order, given by �h.x1=�ˇ/ and they do
not coincide with the order � of the height of the domain.

The existence and uniqueness of solutions for problem (1) for each � > 0, is
guaranteed by Lax–Milgram Theorem. We will analyze the behavior of solutions as
� ! 0. The fact that R� gets thinner and thinner as � ! 0 suggests that the family
of solutions u� will converge to a function of just one variable and that this function
will satisfy certain elliptic equation in one dimension.

The behavior of the solutions for elliptic partial differential equations in thin
domains is a subject that has been addressed in different works in the literature.
The purely periodic case was investigated in [3, 11] using standard techniques in
homogenization theory, as developed in [8, 9, 12]. In [4, 7] the authors treat the
problem in locally periodic thin domains. The case where the lower boundary is
not oscillatory, say h.	/ � 0, was treated in [2] and the limit equation is given by

8

<̂

:̂

� 1

M .g/M . 1
g
/
uxx C u D f; in .0; 1/

ux.0/ D ux.1/ D 0

(3)

where M .�/ denotes the mean value of a function � which is L-periodic, M .�/ D
1
L

R

.0;L/
� ds:

If the domain does not present oscillations in the upper boundary, we assume
that g.	/, independent of �, defines the upper boundary of the thin domain, and
h0 D minx2Rfh.x/g then the variational formulation of the limit problem is: 8' 2
H1.0; 1/

Z 1

0

n�
g.x/C h0

�
ux.x/ 'x.x/C p.x/

�
u.x/� f .x/� '.x/

o
dx D

Z 1

0

p.x/f .x/ ' dx;

(4)

where p.x/ D g.x/C 1
L2

R L2
0
h.s/ ds; for all x 2 .0; 1/:We refer to [5] for details.

Our case is a combination of the two cases described above since the thin domain
presents both kind of oscillatory boundary. We are interested in studying how the
extremely different order of oscillations affects to the limit problem. Notice that
we also consider thin domains with doubly oscillatory boundary in [6] but this
case can not be addressed by the same techniques since the difference between the
oscillations orders is much larger.

In this paper we will properly combine the techniques used in [5] and the
unfolding periodic method, introduced in [10], adapted to this situation. In this way,
we will able to pass to the limit and we obtain the following convergence result:
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Theorem 1 Let u� be the solution of problem (1). Assume to simplify that the non
homogeneous term f � is given by f �.x; y/ D f .x/ 8 x 2 .0; 1/, with f 2
L2.0; 1/: Then, there exists u0 2 H1.0; 1/ such that ��1=2jju� � u0jjL2.R�/ ! 0 and
it is the unique solution of the following Neumann problem

8

<̂

:̂

1

M
�

1
gCh0

��
M .g/C M .h/

�u0xx C u0 D f; x 2 .0; 1/

u0.0/ D u0.1/ D 0

(5)

Remark 1 Notice that in case h � 0we recover the homogenized limit problem (3).
On the other hand, if g is a constant function, g � g0, then the limit equation (5)
coincides with the equation obtained in [5, Corollary 2.3].

The paper is organized as follows. In Sect. 2, we fix the notation, introduce the
unfolding operator for this case and prove its main properties. In Sect. 3, we provide
the proof of the main theorem.

2 Notation and Unfolding Operator

The domain R� is composed of two parts: one of them, R��, presents high
oscillations and the other,R�C, is a weakly oscillating domain, that is,

R�� D f.x1; x2/ 2 R
2j x1 2 .0; 1/; ��h.x1=�ˇ/ < x2 < ��h0g (6)

R�C D f.x1; x2/ 2 R
2j x1 2 .0; 1/; ��h0 < x2 < �g.x1=�˛/g: (7)

We stress the fact that R� collapses to the interval .0; 1/ when � goes to 0.
Therefore, we will consider the following norms: for ' 2 L2.R�/ and  2 H1.R�/

jjj'jjjL2.R�/ D ��1=2jj'jjL2.R�/; jjj jjjH1.R�/ D ��1=2jj jjH1.R�/:

An important tool for the analysis below is the unfolding operator for functions
defined in R�C, thin domains where the order of height is larger than the order of the
oscillations. It will be used to interpret integrals over the domain R�C as integrals
over a fixed domain. In the sequel we denote:

• Y � D f.y1; y2/ 2 R
2 W 0 < y1 < L1; �h0 < y2 < g.y1/g:

• Œx1�L1 denotes the unique integer such that x1 2 �Œx1�L1L1; .Œx1�L1 C 1/L1
�
.

• 	� D Int
n N�[

kD0
Œ�˛kL1; �

˛L1.k C 1/�
o

where N� is the biggest integer such that

�˛L1.N� C 1/ 6 1.
• H1

L1
.Y �/ is the space of functions ' 2 H1.Y �/ which are L1 � periodic in the

first variable.
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Definition 1 For ' 2 L2.R�C/, the unfolding operator T�.'/ is defined as follows:

T�.'/.x1; y1; y2/ D
(
'
�
�˛
h
x1
�˛

i

L1
L1 C �˛y1; �y2

�
for .x1; y1; y2/ 2 	� � Y �

0 for .x1; y1; y2/ 2 .0; 1/n	� � Y �:

Remark 2 In order to simplify the proposed method we assume that for all �
considered there exists an integer,N� , such that 	� D .0; 1/:

Proposition 1 1. Unfolding criterion for integrals .u.c.i./:

1

L1

Z

.0;1/�Y �

T�.'/.x1; y1; y2/dx1dy1dy2 D 1

�

Z

R�
C

'.x1; x2/dx1dx2; 8' 2 L2.R�
C

/:

(8)

2. For every ' 2 L2.R�C/, T�.'/ 2 L2�.0; 1/�Y ��. In addition, the following rela-
tionship exits between their norms: kT�.'/k

L2
�
.0;1/�Y �

� D p
L1 jjj'jjjL2.R�

C

/:

3. For ' 2 H1.R�C/, one has ry1y2T�.'/ D �
�˛T�

� @'
@x1

�
; �T�

� @'
@x2

��
:

4. Let ' 2 L2.0; 1/. Then considering ' as a function defined in R�C we have
T�.'/ �! ' s � L2

�
.0; 1/� Y ��:

Theorem 2 Let '� be inH1.R�C/ for every �, with jjj'jjjH1.R�/ uniformly bounded.

Then, there exist a function ' inH1.0; 1/ and '1 2 L2�.0; 1/IHL1.Y
�/
�

with @'1
@y2

D
0 such that, up to subsequences:

T�.'
�/ * ' w�L2�.0; 1/IH.Y �/

�
; T�

�@'�

@x1

�
*

@'

@x1
C @'1

@y1
w�L2�.0; 1/�Y ��:

Proof We will give some ideas on how this result can be proved.
From Property 2 in Proposition 1 we know that there is a subsequence of

T�.'
�/, still denoted by T�.'

�/ such that T�.'
�/ * ' w �L2�.0; 1/�H1.Y �/

�
:

Moreover, as a consequence of Property 3 in Proposition 1 we have ' does not
depend on y1 and y2. In order to show that ' 2 H1.0; 1/ we use similar arguments
as in Theorem 2.9 in [1].

We can obtain the other convergence introducing the operator Z� WD
1
�˛

�
T�.'

�/� 1
jY �j

R

Y �

T�.'
�/ dy2dy1

�
and arguing in the same way as in the proof of

Proposition 3.5 in [10]. Observe that in this case @'1
@y2

D 0 since @Z�
@y2

D �1�˛T�

�
@'�

@x2

�

and 1 � ˛ > 0. ut
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3 Proof of the Main Result

Before we start with the proof of the Theorem 1 we will state a technical result
which will be used to define suitable test functions in order to pass to the limit.

Lemma 1 Let w� the unique solution of

8
ˆ̂
<̂

ˆ̂
:̂

4w� D 0 in Q�;

w�.x; 0/ D w0.x/; on 
�;

@w�

@�
D 0; on @Q� n 
�

(9)

where the domain Q� is a rectangle given by Q� D f.x; y/ 2 R
2 j � �ˇ < x <

�ˇ; 0 < y < 1g; with ˇ > 1; � is the outward unit normal to @Q�, 
� is the lower
boundary of Q� and w0 is a function in H1.��ˇ; �ˇ/. Then there exists a constant
C , independent of � and w0, such that

�
�
�
�
@w�

@x

�
�
�
�

2

L2.Q�/

C 1

�2

�
�
�
�
@w�

@y

�
�
�
�

2

L2.Q�/

� C�ˇ�1
�
�
�
�
@w0
@x

�
�
�
�

2

L2.��ˇ ;�ˇ/
: (10)

Proof See [5] for details. ut
Now, we are in conditions to prove the Theorem 1.

Proof The variational formulation of (1) is: find u� 2 H1.R�/ such that

Z

R�

n@u�

@x1

@'

@x1
C @u�

@x2

@'

@x2
C u�'

o
dx1dx2 D

Z

R�
f 'dx1dx2; 8' 2 H1.R�/:

(11)

Taking ' D u� in (11) and using that jjjf jjjL2.R�/ � C , with C independent of �,
we get that jjju�jjjL2.R�/ � C 8� > 0: Therefore, the compactness Theorem 2
implies that there exist u0 2 H1.0; 1/ and u1 2 L2..0; 1/IH1

L1
.Y �// with @u1

@y2
D 0

such that, up to subsequences:

T�.u
�/ * u0 w�L2�.0; 1/IH.Y �/

�
; T�

� @u�

@x1

�
*

@u0
@x1

C @u1
@y1

w�L2�.0; 1/�Y ��:
(12)

Taking into account the convergences above, using the change of variables
.x1; x2/ ! .x1; x2=�/ and the same argument as in [5] we obtain the convergence

jjju� � u0jjjL2.R�/ ! 0 as � ! 0: (13)
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Now we construct appropriate test functions which when used in the variational
formulation (11) will allow us to pass to the limit. We begin by the construction
of a partition of the interval Œ0; 1� which is essentially related to the oscillations
in the lower boundary. Therefore, let us denote by M� the largest integer such
that M�L2�

ˇ < 1, where L2 is the period of the function h. For a fixed �, we
consider the partition f�0;�; �1;�; : : : ; �M�C1;�g where �0;� D 0, �M�C1;� D 1 and
�n;� 2 Œ.n� 1/L2�ˇ; nL2�ˇ� a point where the minimum of h.	=�ˇ/ is attained, that
is, h.�n;�=�ˇ/ D h0:

We define the test function as follows. With � 2 H1.0; 1/, we consider '� 2
H1.R�/ defined as

'�.x1; x2/ D
	
X�
n.x1; x2/; .x1; x2/ 2 R�� \Q�

n; n D 1; 2; : : :

�.x1/; .x1; x2/ 2 R�C
(14)

where Q�
n is the rectangle Q�

n D f.x1; x2/ j �n;� < x1 < �nC1;�; ��h1 < x2 <

��h0g and the functionX�
n is the solution of the problem

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

�4X�
n D 0; in Q�

n

@X�
n

@N �
D 0; on @Q�

nn
 �
n

X�
n.x1; x2/ D �.x1/; on 
 �

n

(15)

with 
 �
n D f.x1;��h0/ W �n;� � x1 � �nC1;�g: It follows from estimate (10) that

ˇ
ˇ
ˇ

ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
@X�

n

@x1

ˇ
ˇ
ˇ

ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
2

L2.Q�
n/

C
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
@X�

n

@x2

ˇ
ˇ
ˇ

ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
2

L2.Q�
n/

� C�ˇ�1jj�0jj2
L2.�n;�;�nC1;�/

: (16)

Clearly, from the definition of '� we have '�.x1; x2/��.x1/ D R x2
0

@'�

@x2
.x1; s/ ds;

Thus, taking into account (16) we obtain

jjj'� � �jjjL2.R�/ ! 0 as � ! 0: (17)

We now pass to limit in (11) by making use of the test function '� defined above.
In order to accomplish this, we rewrite the variational formulation as follows and
we analyze the convergence of each integral as � ! 0.

��1
� Z

R�
C

n
ru�r'�

o
C
Z

R�
�

n
ru�r'�

o
C
Z

R�
u�'�

�
D ��1

Z

R�
f �'�: (18)



Fast and Slow Boundary Oscillations in a Thin Domain 19

• First integrand. Using the unfolding criterion for integrals (8) and the conver-
gences (12) we easily get:

��1
Z

R�
C

n
ru�r'�

o
dx1dx2 ! 1

L1

Z

.0;1/�Y �

�@u0
@x1

C @u1
@y1

� @�

@x1
dx1dy1dy2: (19)

• Second integrand. From the definition of '� , the Cauchy–Schwarz inequality and
the inequality (16) we have,

��1
Z

R�
�

n@u�

@x1

@'�

@x1
C @u�

@x2

@'�

@x2

o
dx1dx2 ! 0: (20)

• Third integrand

��1
Z

R�
u�'�dx1dx2 !

Z 1

0

�
M .g/C M .h/

�
u0� dx1: (21)

To prove this, observe that

��1

Z

R�
u�'�dx1dx2 D ��1

Z

R�
�

.u� � u0/'
� dx1dx2 C ��1

Z

R�
�

u0.'
� � �/ dx1dx2

C��1

Z

R�
�

u0� dx1dx2 C ��1

Z

R�
C

u�'�dx1dx2:

From (13) and (17) it follows that the first two terms in the right hand side above
go to 0. Moreover, the other two terms become

��1
Z

R�
�

u0� dx1dx2 C ��1
Z

R�
C

u�'�dx1dx2

D
Z 1

0

u0�
�
h
�x1

�˛

�
� h0

�
dx1 C 1

L2

Z

.0;1/�Y �

T�.u
�/T�.�/ dx1dy1dy2:

As the limit of T�.u�/ does not depend on y1 or y2 thanks to the Average
Convergence for Periodic Functions (see, e.g., [9, p. xvi]) we get (21).

• For the fourth integrand the computations are similar as the third one,

��1
Z

R�
f '�dx1dx2 !

Z 1

0

�
M .g/C M .h/

�
f � dx1 as � ! 0: (22)
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Therefore, using (19)–(22) we obtain the following equation:

1

L1

Z

.0;1/�Y �

�@u0
@x1

C@u1
@y1

� @�

@x1
dx1dy1dy2C

Z 1

0

�
M .g/CM .h/

�
.u0�f /� dx1 D 0:

(23)

Finally, we obtain an explicit expression for @u1
@y1

. To do this, we take as test
function in (11) the function  � given by:

 �.x1; x2/ D
	
Y �n .x1; x2/; .x1; x2/ 2 R�� \Q�

n; n D 1; 2; : : :

v�.x1/; .x1; x2/ 2 R�C
(24)

where v�.x1; x2/ D �˛�.x1/ .x1=�
˛/ with � 2 D.0; 1/ and  2 H1

L1
.0; L1/, and

the function Y �n is the solution of the problem

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

�4Y �n D 0; in Q�
n

@Y �n
@N �

D 0; on @Q�
nn
 �

n

Y �n .x1; x2/ D v�.x1/; on 
 �
n :

(25)

Observe that by definition Y �n satisfies the same estimates as (16). Then, we can
argue as in (17) and we obtain

jjj � � v�jjjL2.R�/ ! 0 as � ! 0: (26)

Taking  � as a function test in (18) and passing to the limit we get for the first term

��1
Z

R�
C

n
ru�r �

o
dx1dx2 ! 1

L1

Z

.0;1/�Y �

�@u0
@x1

C @u1
@y1

�
�
@ 

@x1
dx1dy1dy2:

(27)

While the other terms go to zero as � ! 0 by the properties of  �

��1
Z

R�
�

n@u�

@x1

@ �

@x1
C @u�

@x2

@ �

@x2
u� � � f  �

o
dx1dx2 ! 0 ! 0 as � ! 0: (28)

Due to (27) and (28) we get at the limit

Z

.0;1/�Y �

�@u0
@x1

.x1/C @u1
@y1

.x1; y1/
�
�.x1/

@ 

@y1
.y1/ dx1dy1dy2 D 0:
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By density, this equality holds true for all  2 L2
�
.0; 1/IH1

L1
.Y �/

�
with @ 

@y2
D 0:

Observe that all functions do not depend on y2. Then, we can write

Z

.0;1/�.0;L1/

� @u0
@x1

.x1/C @u1
@y1

.x1; y1/
��
g.y1/C h0

� @ 

@y1
.x1; y1/ dx1dy1 D 0:

Treating x1 as a parameter in the above equation we have:

� @

@y1

�@u1
@y1

.g C h0/
�

D @u0
@x1

@g

@y1
:

Consequently, it verifies that @u1
@y1

D � @u0
@x1

C C
gCh0 . Moreover, since u1 is L1-periodic

0 D
Z

.0;L1/

@u1
@y1

dy1 D �@u0
@x1

CC 1

L1

Z

.0;L1/

1

g C h0
dy1 D �@u0

@x1
CCM

� 1

g C h0

�
:

Then, we get

@u1
@y1

D
�

� 1C 1

.g C h0/M . 1
gCh0 /

�@u0
@x1

:

Replacing @u1
@y1

by its value in Eq. (23) we obtain:

Z

.0;1/

1

M . 1
gCh0 /

@u0
@x1

@�

@x1
dx1dy1dy2 C

Z 1

0

�
M .g/C M .h/

�
.u0 � f /� dx1 D 0:

(29)

From Lax-Milgram Theorem we know that u0 is the unique solution of (29), which
is the variational formulation of (5). This complete the proof of Theorem 1. ut
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A Corrector Result for the Wave Equation with
High Oscillating Periodic Coefficients

Juan Casado-Díaz, Julio Couce-Calvo, Faustino Maestre, and José Domingo
Martín-Gómez

Abstract In the homogenization of a wave problem with oscillating coefficients
in the diffusion term it is well known that the corresponding limit equation has
the same structure with a diffusion term which agrees with the elliptic homogenized
limit. Thus one can think that the oscillations of the solution of the wave equation are
similar to the ones of the corresponding elliptic problem and then that the corrector
for the elliptic problem is still a corrector for the wave problem. However in a paper
by Brahim-Otsmane, Francfort and Murat, 1992, it was proved that this only holds
if the initial data are “well posed”. In general, it is necessary to add to the elliptic
corrector another term depending on the initial data. In this paper we obtain this
term in the case of a wave problem posed in R

N with periodic coefficients. This
term is obtained using the two-scale convergence theory. It oscillates periodically in
the space variable but almost periodically in the time one.

1 Introduction

In the present paper we consider a wave problem in R
N with periodic oscillating

coefficients (see (1) below). The limit equation for this problem is well known
[4, 5, 9, 11, 12] and consists in replacing the oscillating term which multiplies the
second time derivative by its weak limit and the oscillating diffusion term by its
elliptic homogenization limit [1,4,14–17]. However, as it is proved in [5], the elliptic
corrector does not provides a corrector (i.e. an approximation of the solution in the
strong topology of H1) for the wave problem. Namely, it is necessary to add to
the elliptic corrector another term which depends non locally on the initial data.
However the structure of this new term is not know in general. The aim of this
paper is to characterize it for problem (1) (the results in [12] hold for more general
problems). This has been carried out in [10] for a more general problem where the
coefficients of the equation also oscillate in the time variable and contain a first order
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term which introduces a non-local term in the limit. In the case of (1), we show in
Theorem 2 that this term can be obtained as a Fourier series of the form

"
X

j2Znf0g

kjX

kD1
zkj .t; x/˚

k
j .
x

"
/ei�j

t
" ;

where, for every j 2 N, �j D ���j are the squared root of the eigenvalues of
problem (3) and the functions ˚k

j , k D 1; 	 	 	 ; kj , a basis of the corresponding

eigenfunctions space. For every j 2 Z n f0g, the functions zkj are obtained as the
solutions of a first order hyperbolic system. The proof of this result is obtained
using the two-scale convergence theory [1, 7, 8, 15]. Some related results are also
obtained in [6, 13]. We also refer to [2, 3], where the authors consider some other
problems relative to the obtention of correctors for a wave equation with oscillating
coefficients.

2 Homogenization and Corrector Results

The present section is devoted to the homogenization of a wave equation with
oscillating coefficients in R

N . Namely, for a real function � 2 L1
] .Y / and an

Hermitian matrix A 2 L1
] .Y /

N�N (the index ] means periodicity and Y is the

unitary cube Y D .0; 1/N ) such that there exists ˛ > 0 satisfying

�.y/ � ˛; A.y/� 	 N� � ˛j�j2; 8 � 2 C
N ; a.e. y 2 R

N ;

and functions f 2 L1.0; T IL2.RN //, with T > 0, u0 2 H1.RN /, u1 2
C1
] .Y IH1.RN //, v 2 C0

] .Y IL2.RN //. Let us consider the wave problem in

QT D .0; T / � R
N :

8
ˆ̂
<

ˆ̂
:

�.
x

"
/@2t tu" � divx

�
A.
x

"
/rxu"

�
D f in QT

u"jtD0 D u0.x/C "u1.x;
x

"
/; @tu"jtD0 D v.x;

x

"
/ in R

N

u" 2 L1.0; T IH1.RN //; @tu" 2 L1.0; T IL2.RN //:
(1)

Our work consists in describing the asymptotic behavior of the solutions of this
problem when " tends to zero. For this aim, we introduce the mean value

�m D
Z

Y

�.y/ dy;
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and the homogenized matrix Ah of A (see e.g. [1, 4, 15]) by

Ahej D
Z

Y

A.y/.ej C rywi / dy; 1 � j � N;

with e1; : : : ; eN the canonical basis in R
N and w1; : : : ;wN the solutions of

	 �divyA.ej C rywj / D 0 in R
N

wj periodic of period Y:
(2)

Moreover, we consider 
0 D 0 < 
1 < 
2 < 	 	 	 the eigenvalues of the problem

	 �divy .Ary˚/ D 
j �˚ in R
N

˚ periodic of period Y;
(3)

andWj the corresponding eigenfunctions space, with dimension kj .
For each Wj , we consider an ortonormal basis

˚k
j 2 Wj ; 1 � k � kj ;

Z

Y

�˚k
j ˚

l
j dy D ıjl ; 1 � k; l � kj :

Moreover, given an eigenvalue 
j , we denote

�j D p

j ; ��j D �p


j ; ˚k�j D ˚k
j ;

and

alk
j D

Z

Y

. NAry˚
l
j˚

k
j � Ary˚

k
j ˚

l
j / dy; 1 � l; k � kj ; j 2 Z n f0g; (4)

where NA is the conjugated matrix of A.
The limit problem corresponding to (1) is a classical result which we recall in the

following theorem (see e.g. [5, 9, 11]).

Theorem 1 The sequence of solutions u" of problem (1) satisfies

u"
�
* u0 in L1.0; T IH1.RN //;

with u0 the unique solution of the wave problem
8
ˆ̂
<

ˆ̂
:

�m@
2
t tu0 � divx

�
Ahrxu0

� D f in QT

u0jtD0 D u0; @tu0jtD0 D 1

�m

Z

Y

�.y/v.x; y/ dy in R
N

u0 2 L1.0; T IH1.RN //; @tu0 2 L1.0; T IL2.RN //:
(5)
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We observe that in the previous theorem, the matrix Ah is the same matrix which
appears in the homogenization of the elliptic problem

	 �divA.x
"
/ru" D f in ˝

u" D 0 on @˝;

where˝ is a bounded domain of RN . For this problem it is well known [1,4,14,15,
17] that for every f 2 H�1.˝/, the solution u" of (6) converges weakly in H1

0 .˝/

to the unique solution of

	 �divAhru0 D f in ˝
u0 D 0 on @˝:

Moreover, if u is smooth enough (assuming f is smoother) and defining u1 W ˝ �
Y ! R by

u1.x; y/ D
NX

jD1
@ju0.x/wj .y/;

with the functions wj given in (2), we have

u" � u0 � "u1.x;
x

"
/ ! 0 in H1.˝/:

This is a corrector result, i.e. an approximation of u" in the strong topology of
H1.˝/ and not only in the weak one. Since in problem (5) the matrix Ah is the
same that in the elliptic problem, one can think that the elliptic corrector is also a
corrector for the wave problem, i.e. that defining

u1.t; x; y/ D
NX

jD1
@xj u0.t; x/wj .y/; a.e. .t; x; y/ 2 QT � R

N

with u0 the solution of (5), and assuming u0 smooth enough, we also have

u" � u0 � "u1.t; x;
x

"
/ ! 0 in H1.QT /; (6)

where u" is the solution of (1). However, as it was observed in [5], this only holds
if the initial data are “well chosen”. In the case of problem (1), this means that the
functions u0, u1, v must satisfy

	 �divy
�
A.rxu0 C ryu1/

� D 0 in R
N

v is independent of y:
(7)
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In general (see [5]), a strong approximation in H1.QT / of the solutions for
problem (1) can be constructed by introducing the solution z" of the wave problem

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

�.
x

"
/@2t t z" � divx

�
A.
x

"
/rxz"

�
D 0 in QT

z"jtD0 D "

0

@u1.x;
x

"
/ �

NX

jD1
@j u0.x/wj .

x

"
/

1

A in R
N

@t z"jtD0 D v.x;
x

"
/�

Z

Y

v.x; y/ dy in R
N

z" 2 L1.0; T IH1.RN //; @t z" 2 L1.0; T IL2.RN //:

(8)

Then, we have

u" � u0 � "u1.t; x; x
"
/� z" ! 0 in H1.QT /: (9)

However (9) cannot be considered as a corrector result because the structure of z"
is not explicit. For each " we need to solve a partial differential equation to obtain
z". It is interesting to remark that z" only depends on the initial conditions and it
converges strongly to zero in H1.QT / when (7) is satisfied. This is in fact the proof
that (6) holds if and only if (7) holds such as we said above.

Our aim in the present paper is to obtain an explicit corrector for (8) and then,
thanks to (9) we get a corrector result for (1). More generally, we consider the
problem

8
ˆ̂
<

ˆ̂
:

�.
x

"
/@2t t z" � divx

�
A.
x

"
/rxz"

�
D 0 in QT

z"jtD0 D "�.x;
x

"
/; @t z"jtD0 D �.x;

x

"
/ in R

N

z" 2 L1.0; T IH1.RN //; @t z" 2 L1.0; T IL2.RN //;
(10)

where � 2 C1
] .Y IH1.RN //, � 2 C0

] .Y IL2.RN // and

Z

Y

�.x; y/ dy D 0; a.e. x 2 R
N :

Using that the functions ˚k
j , with 1 � k � kj , j > 0 are a basis of H1

] .Y /=R, we
can decompose

�.x; y/ D
1X

jD1

kjX

kD1
�kj .x/˚

k
j .y/ in L2.RN IH1

] .Y /=R/

�.x; y/ D
1X

jD1

kjX

kD1
�kj .x/˚

k
j .y/ in L2.RN IL2].Y //:
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We have

Theorem 2 Under the above conditions, we define z W QT � R � Y ! C by

z.t; x; s; y/ D
X

j2Znf0g

kjX

kD1
zkj .t; x/˚

k
j .y/e

i�j s; (11)

where for every j 2 Z n f0g, the coefficients zkj are the solution of the first order
hyperbolic system

2i�j ıkl@t z
k
j �

kjX

kD1
divx.a

lk
j zkj / D 0 in QT ; (12)

with alk
j defined by (4), combined to the initial conditions

8
ˆ̂
<

ˆ̂
:

zkj jtD0 D 1

2

�

�kj � i

�j
�kj

�

in R
N ; 1 � k � kj ; if j > 0

zkj jtD0 D 1

2

�

�k�j C i

��j
�kj

�

in R
N ; 1 � k � kj ; if j < 0:

Then, if � and � are smooth enough, we have

z" � "z
�

t; x;
t

"
;
x

"

�

! 0 in H1.QT /: (13)

Proof Since the initial conditions in (10) for z" and @t z" are bounded in H1.RN /

and L2.RN / respectively, we deduce that z" is bounded in L1.0; T IH1.RN // \
W 1;1.0; T IL2.RN //. Defining then L2].Y / as the space of functions in L2loc.R

N /,
which are periodic of period Y and

H1
] .R � Y / D

n X

p2Rnf0g
hp.y/e

ips W hp 2 H1
] .Y /;

X

p2Rnf0g

�
krhpk2

L2] .Y /
N C jpj2khpk2

L2].Y /

�
< 1

o
;

we deduce that up to a subsequence there exists a function z02L1.0; T IH1.RN //\
W 1;1.0; T IL2.RN // and a function z 2 L2.QT IH1

] .R � Y //, such that

z"
�
* z in L1.0; T IH1.RN // \W 1;1.0; T IL2.RN //

@t z"
2�s
* @t z0 C @sz (14)

rxz"
2�s
* rxz0 C ryz; (15)
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where we recall [1, 7, 8, 15] that a bounded sequence g" in L2.QT / is said that two-

scale converges to a function g 2 L2.QT IL2].R � Y //, and it is noted by g"
2�s
* g,

if for every function ' 2 C1
c .QT /, every ˚ 2 L2].Y / and every p 2 R, we have

Z

QT

g".t; x/'.t; x/˚.
x

"
/eip

t
" dxdt !

Z

QT �Y

Ms.g.t; x; y; s/e
ips/'.t; x/˚.y/ dtdxdy;

where

Ms.g.t; x; y; s/e
ips/ D lim

r!1
2

r

Z r

�r
g.t; x; y; s/eips ds:

The problem is to characterize these functions z0 and z. For this purpose, we use in
(10) two types of test functions (see [10] for the details).

Firstly, we take a test function of the form '0.t; x/ C "'1.t; x/˚.
x
"
/eip

t
" ; with

'0; '1 2 C1
c .QT /, to deduce

z0 D 0 a.e. in QT

�@2ssz � divy.Aryz/ D 0 in QT � R � R
N :

In particular, the second equation implies that z is of the form given by (11). The
problem is to characterize the functions zkj . For this purpose, we use a second class

of test functions, which are of the form '.t; x/˚k
j .

x
"
/ei�j

t
" , with ' 2 C1

c .QT /.

Denoting  .t; x; s; y/ D '.t; x/˚k
j .y/e

i�s , we get

Z

QT

Z

Y

Ms

� � 2�@su1@t C Aryz 	 rx � divx.Ary / z
�

dydtdx D 0:

From this equation, we conclude that the functions zkj satisfy (12).
On the other hand, we can also show that z satisfies the initial conditions

zjtD0 D � in L2.RN IH1
] .Y /=R/; @szjtD0 D � in L2.RN IL2].Y /=R/;

which gives the initial conditions (13) for the functions zkj .
We have then proved that the function z which appears in convergences (14),

(15) agrees with the function z defined in the statement of Theorem 2. From these
convergences and assuming � and � (and then z) smooth enough, we can now pass
to the limit in the energy identity corresponding to Eq. (10) to prove (13). ut
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Weak Solutions to a Nonuniformly Elliptic PDE
System in the Harmonic Regime

María Teresa González Montesinos and Francisco Ortegón Gallego

Abstract We study the existence of weak solutions to a nonlinear strongly coupled
parabolic–elliptic PDEs arising in the heating induction-conduction process of steel
hardening. In this setting, our major concern is to consider the case when the electric
conductivity is nonuniformly elliptic which, together with a right hand side in L1 in
the energy balance equation, yields to a difficult theoretical situation. The existence
result gives a weak solution to a similar PDEs system where the energy balance
equation has been perturbed by a measure term.

1 Introduction

The aim of this work is to analyze the existence of weak solutions to a nonlinear
PDEs system arising in the heating induction-conduction process of a steel work-
piece [7, 8, 10, 11, 13]. Since we are dealing with high oscillating sinusoidal in time
for both electric potential and magnetic vector potential, we introduce a change of
variables separating the two time scales. This leads us to a new PDEs system, the
so-called harmonic regime, namely

�r 	 .�.�/r'/ D i�!r 	 .�.�/A/C r 	 ��.�/r'0� in ˝T D ˝ � .0; T /; (1)

i!�.�/A C L.A/ D ��.�/r' in DT D D � .0; T /; (2)

' D 0 on 
0 � .0; T /; @'

@n
D �i�!A 	 n on 
1 � .0; T /; C b.c. on A, (3)
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�c"
d�

dt
� r 	 .�.�/r�/ D �.�/

2
ji!A C r'j2 CG in ˝T ; (4)

@�

@n
D 0 on @˝ � .0; T /; �.	; 0/ D �0 in ˝: (5)

In this context,˝; D � R3 are open, bounded, connected and Lipschitz-continuous
sets such that N̋ � D, @˝ D 
0 [ 
1 is a smooth partition of the boundary of
˝ . The unknowns are the electric potential, ', the magnetic vector potential, A,
and the temperature, � ; � and � stand for the electric and thermal conductivities,
respectively, ! is the frequency, �0 the initial temperature and L 2 L .X;X0/ is an
elliptic operator defined on a certain Hilbert space X with values on its dual space
X0. Also, � is the density and c" is the specific heat at constant pressure. Finally,
'0 2 L2.H1.˝// is a given function with zero flux gradient on 
1 and i is the
imaginary unity.

In this work we have included in (1) the divergence term i�!r 	 .�.�/A/, where
� 2 


0; 1 � 1
!

�
is a parameter. Usually, this term is not taken into account, that is

� D 0. Notice that in the original model we have � D 1 (cf. [2, 3]).
This work is organized as follows. In Sect. 2, we describe the notation used along

this paper, introduce some functional spaces, enumerate the hypotheses on data and
give the main result. In Sect. 3 we sketch the proof of the main result by introducing
approximate problems, deriving the necessary a priori estimates and, finally, passing
the limit.

2 Notation, Assumptions and Main Result

Let ˝1;˝2 � R3 be two open bounded, connected and Lipschitz-continuous sets
such that S D N̋

1 \ N̋
2 ¤ ; is a smooth surface. We then consider the set of

conductors ˝ D ˝1 [ ˝2 [ int.S/ where int.S/ means the interior of S within
the induced topology.˝1 is the steel workpiece whereas ˝2 is the copper inductor;
since S ¤ ;, the workpiece and the inductor are put in contact so that ˝ itself
becomes the coil. Let 
0 � @˝2 be a smooth surface.

For a normed linear space V , we put V D .V /3. Also, if X is a Banach space,
we write Lp.X/ D Lp.0; T IX/ and W 1;p.X/ D W 1;p.0; T IX/, where p0 is the
conjugate exponent of p. Let V be the complex valued Hilbert space V D f� 2
H1.˝/ = � D 0 on 
0g provided with the norm k�kV D �R

˝
jr�j2�1=2, which is

equivalent to the standard norm in H1.˝/ on V .
We also consider a complex valued Hilbert space X such that H 1

0.D/ � X �
H 1.D/where lies the magnetic vector potential A. Obviously, the space X is related
to the boundary conditions of A. For instance, it may take the form

X D fv 2 H 1.D/ = v D 0 on @Dg; or

X D fv 2 H 1.D/ =r 	 v D 0 in D; v � nD0 on @Dg where @D2C1;1 in this case.
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On the other hand, the elliptic operator L 2 L .X;X0/ is given by

L.v/ D r �
�
1



r � v

�

� ır.r 	 v/;

where 
 is the magnetic permeability (a positive bounded function) and ı > 0 a
constant value.

In the analysis of parabolic problems with right hand side in L1 it is useful the
next result (see [14])

Lemma 1 Let X , B and Y be three Banach spaces such that X ,! B ,! Y , all
embeddings being continuous and the injection X ,! B compact. For 1 � p; q <

C1 define W to be the Banach space W D ˚
v 2 Lp.X/ = dv

dt 2 Lq.Y /�. Then, the
embedding W ,! Lp.B/ holds and is compact.

The assumptions on data now follows.

(H.1) � W D � R ! R is given by

�.x; s/ D
8
<

:

�.1/.s/ if x 2 ˝1, s 2 R

�.2/.s/ if x 2 ˝2, s 2 R,
0 if x 2 D n N̋ , s 2 R,

where �.1/; �.2/ 2 C.R/, and there exist some constantC1; C2; K1; K2 > 0 and
0 < ˛ < 5=3 such that for all s 2 R we have

0 <
C1

1C jsj˛ � �.1/.s/ � C2; K1 � �.2/.s/ � K2:

(H.2) � D �i and c" D ci" in ˝i , i D 1; 2 where �1; �2; c1" ; c
2
" 2 R are positive

constant values.
(H.3) � W ˝ � R 7! R is a Carathéodory function and there exist two constant

values �1 and �2 such that, almost everywhere x 2 ˝ and for all s 2 R, we have
0 < �1 � �.x; s/ � �2:

(H.4) L 2 L .X;X0/ and there exists a constant value ˛ > 0 such that, for all
v 2 X,

hL.v/; NviX0;X � ˛kvk2X:

(H.5) � 2 
0; 1� 1
!

�
.

(H.6) '0 2 L2.H1.˝// and @'0

@n
D 0 on 
1 � .0; T /.

(H.7) G 2 L1.˝T /.
(H.8) �0 2 L1.˝/.
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The main result of this paper is the next

Theorem 1 Under the assumptions (H.1)–(H.8) there exist three measurable func-
tions '; � W ˝T 7! R, A W DT 7! R3, and a Radon measure � 2 M .˝T / such
that

' 2 Lr.W 1;r .˝//; for all r 2 Œ1; 10=.5C 3˛//I ; ' D 0 on 
0; (6)

�.�/1=2r' 2 L2.L2.˝//; A 2 L2.X/; (7)
Z

˝T

�.�/r' 	 r N�D�i!�
Z

˝T

�.�/A 	 r N�C
Z

˝T

�.�/r'0r N�; � 2 L2.V /; (8)

i!

Z

˝T

�.�/A 	 Nv C
Z T

0

hL.A/; NviX0;X D �
Z

˝T

�.�/r' 	 Nv; v 2 L2.X/; (9)

� 2 Lp.W 1;p.˝//\ C.Œ0; T �I .W 1;p0

.˝//0/; for all p 2 Œ1; 5=4/ ; (10)

�.	; 0/ D �0 in ˝ , (11)

�
Z

˝T

�c"��;t C
Z

˝T

�.�/r�r� D
Z

˝T

�
�.�/

2
ji!A C r'j2 CG




�

C
Z

˝T

�d� C
Z

˝

�0.x/�.x; 0/;

for all � 2 D. N̋
T / such that �.	; T / D 0 in ˝: (12)

Remark 1 Due to (H.1), the function � is not uniformly elliptic. In particular, we
cannot derive the regularity ' 2 L2.V /. This is also related with the “strange term”
� appearing in the equation for the temperature.

3 Proof of the Main Result

In order to prove the Theorem 1 we first introduce a sequence of approximate
problems then deduce some a priori estimates. The approximate problems regularize
the solution in three different ways: (1) introduction of a time derivative term
in the equations of ' and A to assure the measurability of both functions when
passing to the limit; (2) modification of the electric conductivity in order to deal
with uniformly elliptic operators; and (3) truncation of the L1 terms in the energy
equation.
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3.1 Approximate Problems

For k 2 N we introduce the approximate the function � as follows

�k.x; s/ D

8
ˆ̂
<

ˆ̂
:

�.1/.s/C 1

k
if x 2 ˝1, s 2 R,

�.2/.s/ if x 2 ˝2, s 2 R,
0 if x 2 D n N̋ , s 2 R.

We also use the truncation function Tk at height k > 0, that is

Tk.s/ D
8
<

:

�k; if s < �k,
s; if jsj � k,
k; if s > k.

The approximate problems of (1)–(5) are given by

'k 2 L2.V /; Ak 2 L2.X/; �k 2 L2.H1.˝//\ C �Œ0; T �IL2.˝/� ; (13)

1

k

d'k
dt

� r 	 .�k.�k/r'k/ D i�!r 	 .�k.�k/Ak/

Cr 	 ��k.�k/r'0
�

in ˝T D ˝ � .0; T /; (14)

1

k

dAk
dt

C !.i C !/�k.�k/Ak C .1 � i!/L.Ak/ D �.1 � i!/�k.�k/r'k in DT ;

(15)

'k D 0 on 
0 � .0; T / ; @'k
@n

D �i�!Ak 	 n on 
1 � .0; T /; (16)

Ak D 0 on @D � .0; T /, (17)

'k.	; 0/ D 0 in ˝; Ak.	; 0/ D 0 in D, (18)

�c"
d�k
dt

� r 	 .�.�k/r�k/ D Fk in ˝T ; (19)

@�k

@n
D 0 on @˝ � .0; T /; �k.	; 0/ D Tk.�0/ in ˝; (20)

where Fk D �k.�k/

2
Tk
�ji!Ak C r'kj2

�C Tk.G/ andDT D D � .0; T /.
For the system (13)–(20) it can be shown the following existence result [12].
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Lemma 2 For every k � 1, there exists a weak solution .'k;Ak; �k/ to prob-
lem (13)–(20).

Remark 2 Since we are dealing with complex valued function spaces, the key point
is to define the right bilinear elliptic form related to the system for .'k;Ak/ for a
given �k . From that point on, the proof of Lemma 2 is a straightforward application
of J. L. Lions’ theorem together with Schauder’s fixed point theorem.

3.2 A Priori Estimates

For the solution of (13)–(20) it is easy to obtain the following estimates

Z

˝T

�k.�k/jAkj2 � C2

!2

Z

˝T

�k.�k/jr'kj2: (21)

Z T

0

kAkk2X � C2

˛!

Z

˝T

�k.�k/jr'kj2: (22)

Z

˝T

�k.�k/jr'kj2 � C�k'0k2L2.H1.˝//
; (23)

where

lim
�!.1�1=!/� C� D C1:

From these estimates we deduce

�
�k.�k/

1=2Ak
�

is bounded in L2.L2.˝//; (24)

.Ak/ is bounded in L2.X/:

On the other hand, since X ,! L2.D/ there exists a constant C > 0 such that
kvkL2.˝/ � kvkL2.D/ � CkvkX, for all v 2 X. Thus,

.Ak/ is bounded in L2.L2.˝//:

From (23) and (24) it yields

.Fk/ is bounded in L1.˝T /,
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and thus, owing to (H.7), we obtain

.�k/ is bounded in Lp.W 1;p.˝//, for all 1 � p < 5=4; (25)

Remark 3 In [4] it was shown that (25) holds true when dealing with homogeneous
Dirichlet boundary conditions. In the case of homogeneous Neumann boundary
conditions, this result was shown by Clain in [6].

According to (H.1) and (25) we obtain that .�.�k/r�k/ is bounded in
Lp.Lp.˝//. Therefore .r 	 .�.�k/r�k// is bounded in L1..W 1;p0

.˝//0/. Since
1 � p < 5=4, Sobolev’s embedding implies in particular that

L1.˝/ ,! .W 1;p0

.˝//0

and, in conclusion,

�
d�k
dt

�

is bounded in L1..W 1;p0

.˝//0/, for all 1 � p < 5=4. (26)

3.3 Passing to the Limit

Choosing 1 � q < p� D 3p=.3 � p/, X D W 1;p.˝/, B D Lq.˝/ and Y D
.W 1;p0

.˝//0, and since the embeddings X ,! B and B ,! Y are continuous and
compact, respectively, from Lemma 1 it yields that the space

W D
	

v 2 Lp.W 1;p.˝// =
dv

dt
2 L1..W 1;p0

.˝//0/
�

is compactly embedded in Lp.Lq.˝//. Moreover, since 1 � p < 5=4 and 1 � q <

15=7, and thanks to (25) and (26), we deduce that the sequence .�k/ is relatively
compact in Lp.Lq.˝//, for 1 � p < 5

4
and 1 � q < 15

7
. Therefore, we may

extract a subsequence, still denoted in the same way, such that �k ! � strongly
in Lp.Lq.˝// and almost everywhere in ˝T . Consequently �k.�k/ * �.�/ in
L1.˝T /-weak–
 and almost everywhere in ˝T .

Since .�k/ is bounded in Lr.˝T /, for 1 � r < 5=3, and according to (H.1) it
yields that

�
�k.�k/

�1� is bounded in Lr.˝T /, for 1 � r < 5=.3˛/. Thus .r'k/ is
bounded in Lr.˝T /, for 1 � r < 10=.5C 3˛/, and, up to a subsequence, r'k *
r' in Lr.˝T /; ˚ D �.�/1=2r' in L2.˝T /:

As to .Ak/, we deduce the existence of an element A 2 L2.X/ such that, up to
a subsequence, Ak * A weakly in L2.L2.˝//, Ak * A weakly in L2.X/, and
thus �k.�k/1=2Ak * �.�/1=2A weakly in L2.L2.˝//. Finally, by making k ! 1
in (14) and (15) we obtain (8) and (9).
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All the properties deduced up till now are not enough in order to assure the strong
convergence of .Fk/ in L1.˝T /. Nevertheless, there exists a Radon measure � 2
M .˝T / such that Fk *

1

2
�.�/ji!ACr'j2CGC� in M .˝T /-weak–
. We can

pass to the limit in (19) to obtain (12).

Remark 4 Our future work consists in establishing under what conditions on � can
we assure that � D 0 or, in other words, how can one derive the strong convergence
�k.�k/

1=2r'k ! �.�/1=2r' in L2.˝T /.

Remark 5 The analysis of the uniqueness of a solution to (6)–(12) is a very complex
task even if we already know that � D 0. This is related to the low regularity of
the unknowns obtained in our existence result. Indeed, a system like (1)–(5) is a
generalization of the so-called thermistor problem [1, 5, 9] which involves only two
unknowns, namely, the electric potential and the temperature.
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Perturbation of Analytic Semigroups in Uniform
Spaces in R

N

Carlos Quesada and Aníbal Rodríguez-Bernal

Abstract We solve some linear parabolic equations obtained from perturbations of
parabolic equations given by operators defining analytic semigroups. We consider
several classes of initial data, in particular in low regularity spaces taken from the
uniform Bessel-Lebesgue scale of spaces. We make special focus on smoothing esti-
mates of the solution. Robustness and convergence with respect to the perturbation
are also obtained.

1 Introduction

In this paper we address the solvability of some second and fourth order linear
parabolic equations in R

N . In particular, we study the problems

(
ut ��u CPN

jD1 bj .x/@j u C c.x/u D 0 x 2 R
N ; t > 0

u.0; x/ D u0.x/ x 2 R
N ;

(1)
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and

	
ut C�2u C d.x/Dau D 0; x 2 R

N ; t > 0

u.0/ D u0 in R
N (2)

where in both cases, the lower order coefficients are assumed to have some local
integrability properties and no asymptotic decay as jxj ! 1 whatsoever. More
precisely they are assumed to belong to some locally uniform Lebesgue spaces. To
be more precise, let LpU .R

N / denote the locally uniform space composed of the
functions f 2 Lploc.RN / such that there exists C > 0 such that for all x0 2 R

N

Z

B.x0;1/

jf jp � C (3)

endowed with the norm

kf kLpU .RN / D sup
x02RN

kf kLp.B.x0;1//

(for p D 1, L1
U .R

N / D L1.RN /).
The initial data in (1) and (2) will be assumed to belong to some uniform Bessel

space PH2�;q
U .RN / and PH4�;q

U .RN / respectively; see Sect. 2 for further details. Our
goal in this paper is to show that both problems are well posed, with a unique
solution given by the analytic semigroup defined by the equation.

Furthermore, we study the smoothing properties of the solution, and the contin-
uous dependence with respect to changes in the coefficients.

Concerning (1) a similar result, without the continuity with respect of perturba-
tions in the coefficients, was proved in [3] and later recovered in Theorem 5.3 in [4],
assuming additionally that

pj � q > 1; for j D 0; : : : ; N :

That result was later recovered in [8] with different techniques. The result in [4,
8] just allowed for � � 0 in (15). Here, we remove such restrictions allowing in
particular a larger class of initial data, since in (15), � can be even negative. Also,
with the additional assumptions above, Theorem 1 recovers Theorem 5.3 in [4].

The paper is organized as follows. In Sect. 2 we briefly recall the main properties
of uniform Lebesgue and Bessel spaces that will be needed hereafter. Then in Sect. 3
we study the semigroup generated by �2 in the uniform spaces. Finally, Sects. 4
and 5 are devoted to the study of Eqs. (1) and (2).
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2 Uniform Spaces

We will study parabolic equations in large spaces which contain the Sobolev-Bessel
scale of spaces, namely the locally uniform spaces.

For this, consider the locally uniform space LqU .R
N /, composed of the functions

f 2 Lploc.RN / such that there exists C > 0 such that for all x0 2 R
N

Z

B.x0;1/

jf jp � C (4)

endowed with the norm

kf kLpU .RN / D sup
x02RN

kf kLp.B.x0;1//

(for p D 1, L1
U .R

N / D L1.RN /).
Now, for 1 � q � 1 defined as in (4) denote by PLqU .RN / the closed subspace

of LqU .R
N / consisting of all elements which are translation continuous with respect

to k 	 kLqU .RN /, that is

k�y� � �kLqU .RN / ! 0 as jyj ! 0;

where f�y; y 2 R
N g denotes the group of translations. Note that Lq.RN / �

PLqU .RN / for 1 � q < 1 and for q D 1 we get L1
U .R

N / D L1.RN / and
PL1
U .R

N / D BUC.RN /.

Thus we introduce the uniform Bessel-Sobolev spacesHk;q
U .RN /, with k 2 N, as

the set of functions � 2 Hk;q

loc .R
N / such that

k�k
H
k;q
U .RN /

D sup
x2RN

k�kHk;q .B.x;1// < 1

for k 2 N. Then denote by PHk;q
U .RN / a subspace of Hk;q

U .RN / consisting of all
elements which are translation continuous with respect to k 	 k

H
k;q
U .RN /

, that is

k�y� � �k
H
k;q
U .RN /

! 0 as jyj ! 0

where f�y; y 2 R
N g denotes the group of translations.

Consider the complex interpolation functor denoted by Œ	; 	�� , for � 2 .0; 1/, see
[9] for details. Then for 1 � q < 1, k 2 N [ f0g and s 2 .k; k C 1/ we define
� 2 .0; 1/ such that s D �.1Ck/C .1��/k, that is � D s�k. Then one can define
the intermediate spaces by interpolation as

H
s;q
U .RN / D ŒH

kC1;q
U .RN /;H

k;q
U .RN /�� ;
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and

PHs;q
U .RN / D Œ PHkC1;q

U .RN /; PHk;q
U .RN /�� :

For details on the construction of the interpolation scale, see [2].
Using Proposition 4.2 in [4] it is easy to see that the sharp embeddings of Bessel

spaces translate into

PHs;q
U .RN / �

8

<̂

:̂

PLrU .RN /; s � N
q

� �N
r
; 1 � r < 1 if s � N

q
< 0

PLrU .RN /; 1 � r < 1 if s � N
q

D 0

C
�

b .R
N / if s � N

q
> � � 0:

(5)

The uniform Bessel spaces can be extended to negative indexes by a general
extrapolation procedure as in [2]. In this way one can define the extrapolated space
PH�k
U .RN / as the completion of PLqU .RN / with the norm k.�� C I /�k=2uk PLqU .RN /.

Using complex interpolation, for 0 < s < k, k 2 N, the intermediate spaces are
given by

PH�s;q
U .RN / D Œ PLqU .RN /; PH�k;q

U .RN /�� ; with � D s

k
:

For the negative side of the scale, the following embedding holds

PLpU .RN / ,! PH�s;q
U .RN / if s � N

q0 � �N
p0 ; s > 0; (6)

see Proposition 3.1 in [7].
The heat equation has been studied in these spaces. In [4], the Laplace operator

was considered in the scale of spaces Hs;q
U .RN /, s � 0 and PHs;q

U .RN /, and it was
proved that �� defines an analytic semigroup S��.t/. However in the “undotted”
spaces the semigroup generated by �� is analytic but not strongly continuous.
These spaces are less convenient to use because smooth functions are not dense
in them; see [4].

3 Elliptic Estimates in Uniform Spaces

We now want to study the semigroup defined by �2 WD .��/.��/ in those
spaces. For it, we need a deeper knowledge of ��, thus we start with the following
Proposition.
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Proposition 1 (i) For 1 < q < 1, in the space PLqU .RN / the operator �� with

domainD.��/ D PH2;q
U .RN /, satisfies the estimate

k.�� � �/�1kL . PLqU .RN // � M j�j�1

for all � in a sector S0;� for � > 0 arbitrarily small where

Sa;� D fz 2 C W � � jarg.z � a/j � �; z ¤ ag: (7)

Furthermore, �.��/ D Œ0;1/.
(ii) For 1 < q < 1, in the space PLqU .RN / the operator�2 with domainD.�2/ D

PH4;q
U .RN /, satisfies the estimate

k.�2 � �/�1kL . PLqU .RN // � M j�j�1

for all � in a sector S0;2� for � > 0 arbitrarily small.
Furthermore, �.�2/ D Œ0;1/.

Sketch of the proof First recall from Theorem 2.1 in [4] that D.��/ D
PH2;q
U .RN /. To prove part (i), observe that, as in page 32–33 in [5], we can obtain an

expression for the operator .��C
I/�1, providedRe.
p

/ > 0, as a convolution

operator.
The expression is

u D .��C 
/�1f D 

 
 f; Re.
p

/ > 0

with



.x/ D p


N�2

G2.
p

x/; x 2 R

N ; Re.
p

/ > 0

where G2 is the Green’s function for .��C I /.
Now observe that if � 2 S0;� with � > 0 then for 
 D �� 2 C n .�1; 0� we

can choose Re.
p

/ > 0. For such � we are going to check that for f 2 PLqU .RN /

we have the following estimate for u D 

 
 f ,

kukLqU .RN / � C
1

j�jkf kLqU .RN /; � 2 S0;� � > 0:

Let fQig, i 2 Z
N , be a partition of RN in open disjoint cubes centered in i 2 Z

N

with edges of length 1, parallel to the axes. Thus Qi \ Qj D ; for i ¤ j and
R
N D [iQi .
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Then we fix i 2 Z
N and decompose f 2 PLqU .RN / in a far and a near region as

in Proposition 2.1 in [4]. For this we denote by N.i/ the set for indices j such that
Qi \Qj ¤ 0. That is, the set for which

dij WD inffdist.x; y/; x 2 Qi; y 2 Qj g

satisfies that dij D 0. Thus we can define, for each i 2 Z
N fixed

Qnear
i D [j2N.i/Qj and Q

far
i D R

N nQnear
i :

Hence, we decompose f WD f near
i C f

far
i WD f�Qnear

i
C f�

Q
far
i

, where � denotes

the characteristic function and u WD unear
i C ufar

i with

unear
i WD 

 
 f near

i ufar
i WD 

 
 f far

i :

The resolvent estimate will follow from the following estimates of the two terms
of the decomposition. For � as above, we have first,

kunear
i kLq.Qi / � kunear

i kLq.RN / � C

j�jkf
near
i kLq.RN / D C.N/

j�j kf kLq.Qnear
i / (8)

for all � 2 S0;� where we have used the resolvent estimate for �� in Lq.RN /.
It can also be proved, see [7]

kufar
i kL1.Qi / � C

j�jkf k
L1U .Q

far
i /
; � 2 S0;� (9)

for some C independent if i 2 Z
N .

Using (8) and (9), since the constants for the embedding L1.Qi / ,! Lq.Qi/

and the restrictions LqU .R
N / ,! Lq.Qnear

i /, LqU .R
N / ,! L1U .Q

near
i / depend on N

but can be chosen independent of p, q and i , (8) and (9) imply

kukLq.Qi / � C

j�j kf kLqU .RN /; � 2 S0;�

for each i 2 Z
N with C independent of i and � 2 S0;� , which gives the result.

For part (ii), we use (i) and [6, 10.5] and we get that �2 is sectorial with sector
S0;2� . Note that �.�2/ � Œ0;1/ because � > 0 is arbitrarily small.
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Also, note that u.x/ D ei!x , ! 2 R
N satisfies u 2 PLqU .RN / and

��u D �u �2u D �2u

for � D j!j2 � Œ0;1/.

�

4 Parabolic Equations in Uniform Spaces

It is known from [4] that �� defines an analytic semigroup S��.t/ which gives the
solution u.t/ D S��.t/u0 for the parabolic Laplacian problem

	
ut ��u D 0; x 2 R

N ; t > 0

u.0/ D u0; in R
N (10)

in the uniform Bessel spaces f PH2˛;q
U .RN /g˛2R that satisfies the smoothing estimates

kS��.t/u0k PH2˛;q
U .RN /

� M˛;ˇe

0t

t˛�ˇ ku0k PH2ˇ;q
U .RN /

; t > 0; u0 2 PH2ˇ;q
U .RN /

for 1 < q < 1, ˛; ˇ 2 R, ˛ � ˇ. In the Lebesgue spaces, PLqU .RN /, 1 < q < 1,
the semigroup satisfies

kS��.t/u0k PLrU .RN / � Mq;re

0t

t
N
2 .

1
q� 1

r /
ku0k PLqU .RN /; t > 0; u0 2 PLqU .RN /

for any 
0 > 0 and 1 < q � r � 1 and some Mq;r > 0. Notice that this also
follows from the estimate in Proposition 1, (i).

Furthermore, the semigroup is order preserving. Recall from [1] that if u0 � 0

then S0.t/u0 � 0 for all t � 0. Now, for u0 2 PHˇ;q
U .RN / take fun0gn2N regular such

that un0 ! u0 then S0.t/un0 ! S0.t/u0 and since S0.t/un0 � 0 for all n 2 N then
S0.t/u0 � 0. Note that this can be done because we are using the “dotted” spaces,
where regular functions are dense.

Using the resolvent estimates in Proposition 1 and semigroup theory as in [5] we
get the following result for the parabolic bi-Laplacian equation.

Lemma 1 Consider the problem

	
ut C�2u D 0 x 2 R

N ; t > 0

u.0/ D u0 in R
N :

(11)
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(i) Then for each 1 < q < 1, (11) defines an analytic semigroup, S�2.t/, in
PH4ˇ;q
U .RN /, ˇ 2 R, such that for any 
0 > 0 there exists C such that

kS�2.t/u0k PH4˛;q
U .RN /

� M˛;ˇe

t

t˛�ˇ ku0k PH4ˇ;q
U .RN /

; t > 0; u0 2 PH4ˇ;q
U .RN /

with ˛; ˇ 2 R; ˛ � ˇ.
(ii) The analytic semigroup S�2.t/, in PLqU .RN /, 1 < q < 1, satisfies

kS�2.t/u0k PLrU .RN / � Mq;re

0t

t
N
4 .

1
q� 1

r /
ku0k PLqU .RN /; t > 0; u0 2 PLqU .RN /

for any 
0 > 0 and 1 < q � r � 1 and some Mq;r > 0.

5 Perturbed Equations with Low Regularity Initial Data

We now study the parabolic equations with main operator �� and �2, adding
perturbations Pa 2 L . PHs;q

U .RN /; PH��;q
U .RN // to be specified below, where s; � �

0 and s C � < m wherem is the order of the main operator.
For such function consider the problem

u.t I u0/ D S.t/u0 C
Z t

0

S.t � �/P.�/ d�; t > 0; (12)

with u0 to be chosen below, and where S.	/ can be S��.	/ or S�2.	/.
In this situation, estimating (12), it can be proved that for u0 2 PHm�;q

U .RN / with
� 2 . s

m
�1; s

m
�, the unique map u.t I u0/ satisfying (12) defines an analytic semigroup

SP .t/u0 WD u.t; u0/ which furthermore satisfies

kSP .t/u0k PHm� 0;q
U .RN /

� C t�.��� 0/ku0k PHm�;q
U .RN /

where � 0 � � and � 0 2 Œ� �
m
; 1 � �

m
/. See [8] for details.

We now define in particular Pau D d.x/Dau with d 2 PLpU .RN / where Da

denotes any derivative of order a, which satisfies the above assumptions for some s
and � . We now calculate the set of admissible pairs .s; �/

Proposition 2 Let Pau D d.x/Dau with d 2 PLpU .RN /, a 2 f0; 1; 2; 3g. Let s � a,
� � 0. Then for 1 < q < 1, if

.s � a � N

q
/� C .� � N

q0 /� > �N
p0 (13)
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we have

Pa 2 L . PHs;q
U .RN /; PH��;q

U .RN //; kPakL . PHs;q
U .RN /; PH��;q

U .RN // � Ckdk PLpU .RN /:

Proof First note that u 2 PHs;q
U .RN /, thus Dau 2 PHs�a;q

U .RN /. Because of (13) we
can choose r; � � 1 such that .s � a � N

q
/� > �N

r
and .� � N

q0

/� > �N
�0

with
1
�

D 1
r

C 1
p

(and so r � p0).
Therefore we can use the inclusion PHs�a;q

U .RN / ,! PLrU .RN / and then Pau 2
PL�U .RN /. We now use the inclusion PL�U .RN / ,! PH��;q

U .RN / from (6) to get the
result. ut

Using the above proposition we can regard such lower order derivatives with
space dependence as a perturbations satisfying the framework in [8], so we can use
the perturbation techniques there and in [7]. In the case when the main operator is
�� we get

Theorem 1 Assume for j D 1; : : : ; N ,

kbj k PLpjU .RN /
� Rj and kck PLp0U .RN / � R0

where pj > N and p0 >
N
2

. Define a0 D 0, aj D 1 and for j D 1; : : : ; N and,
Qp D minfpj ; j D 1; : : : ; N g > N . If q0 < Qp and q > p0, we will also assume
p0 >

Nq

NCq .

Then for any 1 < q < 1 there exists non-empty interval I.q/ � .� 1
2
; 1/

containing .�1C maxj f aj
2

C N
2pj

g; 1� maxj f N
2pj

g/, such that for any � 2 I.q/, we

have a strongly continuous, order preserving, analytic semigroup S.t/ in the space
PH2�;q
U .RN /, for the problem

(
ut ��u CPN

jD1 bj .x/@j u C c.x/u D 0 x 2 R
N ; t > 0

u.0; x/ D u0.x/ x 2 R
N

(14)

with u.t I u0/ D S.t/u0, t � 0.
Moreover the semigroup has the smoothing estimate

kS.t/u0k PH2� 0;q
U .RN /

� M� 0;� e

t

t�
0�� ku0k PH2�;q

U .RN /
; t > 0; u0 2 PH2�

U .R
N / (15)

for every �; � 0 2 I.q/ with � 0 � � , and

kS.t/u0k PLrU .RN / � Mq;re

t

t
N
2 .

1
q� 1

r /
ku0k PLqU .RN /; t > 0; u0 2 PLqU .RN / (16)
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for 1 < q � r � 1 with some M� 0;� , Mq;r and 
 2 R depending on Rj and R0.
Furthermore,

I.q/ D .�1C max
jD0;:::;Nfaj

2
C N

2
.
1

pj
� 1

q
/Cg; 1 � N

2
.

1

minjD0;:::;N fpj g � 1

q
/C/:

(17)

Finally, if, as � ! 0

b�j ! bj in PLpjU .RN /; pj > N; j D 1; : : : ; N;

c� ! c in PLp0U .RN /; p0 > N=2

then for every T > 0 there exists C.�/ ! 0 as � ! 0, such that

kS�.t/ � S.t/k
L . PH2�;q

U .RN /; PH2� 0;q
U .RN //

� C.�/

t�
0�� ; 8 0 < t � T

for all �; � 0 2 I.q/, � 0 � � and for all 1 < q � r � 1,

kS�.t/ � S.t/kL . PLqU .RN /; PLrU .RN // � C.�/

t
N
2 .

1
q� 1

r /
; 8 0 < t � T:

Finally, when the main operator is �2 we get

Theorem 2 Let a 2 f0; 1; 2; 3g, d 2 PLpU .RN / such that kdk PLpU .RN / � R0 with

p > N
4�a . Then for any 1 < q < 1 and any Pa as in Proposition 2 there exists

an interval I.q; a/ � .�1 C a
4
; 1/ containing .�1 C a

4
C N

4p
; 1 � N

4p
/, such that

for any � 2 I.q; a/, we have a continuous, analytic semigroup, S.t/ in the space
PH4�;q
U .RN /, for the problem

	
ut C�2u C d.x/Dau D 0; x 2 R

N ; t > 0

u.0/ D u0 in R
N :

Moreover the semigroup has the smoothing estimate

kS.t/u0k PH4� 0 ;q
U .RN /

� M� 0;� e

t

t�
0�� ku0k PH4�;q

U .RN /
; t > 0; u0 2 PH4�

U .R
N /

for every �; � 0 2 I.q; a/ with � 0 � � , and

kS.t/u0k PLrU .RN / � Mq;re

t

t
N
4 .

1
q� 1

r /
ku0k PLqU .RN /; t > 0; u0 2 PLqU .RN /
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for 1 < q � r � 1 with someM� 0;� ,Mq;r and
 2 R depending on d only through
R0.

For each Pa, the interval I.q; a/ is given by

I.q; a/ D .�1C a

4
C N

4
.
1

p
� 1

q0 /C; 1 � N

4
.
1

p
� 1

q
/C/ � .�1C a

4
; 1/:

Finally, if, as � ! 0

d� ! d in PLpU .RN /; p >
N

4 � k

then for every T > 0 there exists C.�/ ! 0 as � ! 0, such that

kS�.t/ � S.t/k
L . PH4�;q

U .RN /; PH4� 0;q
U .RN //

� C.�/

t�
0�� ; 8 0 < t � T

for all �; � 0 2 I.q; a; b/, � 0 � � and for all 1 < q � r � 1,

kS�.t/ � S.t/kL . PLqU .RN /; PLrU .RN // � C.�/

t
N
4 .

1
q� 1

r /
; 8 0 < t � T:

Note that different perturbations can be combined together, although not all
combinations are allowed. Consider a finite family of perturbations Pi WD Pai with
kdikLpiU .RN / � R0, with pi > N

4�ai , i D 1; : : : ; J .
Denote P WD P

i Pi , then for any 1 < q < 1, if

max
i

fai C .
N

pi
� N

q0 /Cg C max
i

f.N
pi

� N

q
/Cg < 4 (18)

then the results in Theorem 2 hold for an interval I.q; P / � .�1 C maxi fai g
4

; 1/

containing .�1C maxi f ai4 C N
4pi

g; 1 � maxif N
4pi

g/, instead of I.q; a/.
In particular, if pi D p for all i , all possible perturbations can be combined,

since all Pi satisfy (18) and so does P as well.
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Nonlinear Nonlocal Reaction-Diffusion
Equations

Aníbal Rodríguez-Bernal and Silvia Sastre-Gómez

Abstract Let ˝ � R
N , and J be a nonnegative function defined in ˝ � ˝ . We

consider the problem

8
<

:

ut .x; t/ D
Z

˝

J.x; y/u.y; t/dy � h.x/u.x; t/C f .x; u.x; t//; x 2 ˝; t > 0
u.x; 0/ D u0.x/; x 2 ˝;

(1)

with h 2 L1.˝/, u0 2 Lp.˝/ and the function f defined as f W ˝ �R ! R, that
maps .x; s/ into f .x; s/. We assume f globally Lipschitz or f locally Lipschitz in
the variable s 2 R, uniformly with respect to x 2 ˝ , and f satisfies that there exist
C 2 R andD � 0 such that

f .	; s/s � Cs2 CDjsj; 8s 2 R:

The aim is to study the existence and uniqueness and we give some asymptotic
estimates of the norm L1.˝/ of the solution u of the problem (1), following the
ideas of [2], and we prove the existence of two ordered extremal equilibria, like
in [6], which give some information about the set that attracts the dynamics of the
solution of (1), for all u0 in L1.˝/.
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1 Introduction

Let ˝ � R
N be an open, bounded set. The problem we are going to work with is

the following

	
ut .x; t/D .K�hI/.u/.x; t/Cf .x; u.x; t//DL.u/.x; t/Cf .x; u.x; t//; x2˝; t>0
u.x; 0/D u0.x/; x 2 ˝;

(2)

with u0 2 Lp.˝/; h 2 L1.˝/, and K.u/.x; t/ D
Z

˝

J.x; y/u.y; t/dy, where

J.x; y/ is a nonnegative function defined as J W ˝ � ˝ ! R. We assume that J
satisfies that J 2 C.˝ �˝/; J.x; y/ D J.y; x/; and

J.x; y/ > 0; 8x; y 2 ˝ W dist.x; y/ < R; with 0 < R 2 R:

Under these conditions, we have that, for 1 � p � 1, the linear operator

L D K � hI 2 L .Lp.˝/;Lp.˝//:

The function f is defined as f W ˝ � R ! R, that maps .x; s/ into f .x; s/.
The equations like (2) have been mainly used to model diffusion processes, as

we can see in [1, 3–5]. In particular if u.x; t/ is thought of as the density of a single
population at the point x per unit time t; and J.x; y/ is thought of as the density of
probability of jumping from location y to location x; then the operator K.u/.x; t/
is the rate at which individuals are arriving to position x from all other places, and
f is the rate of local reaction.

We will start giving a result of existence and uniqueness of the solution associated
to (2), with f globally Lipschitz. We will also give some comparison results for the
solution with the f globally Lipschitz. After that, we will be able to prove the
existence and uniqueness of the solution associated to (2), with f locally Lipschitz
in the variable s 2 R, uniformly with respect to x 2 ˝ , plus other extra hypothesis.

Finally, we state some asymptotic estimates of the solution, and we will finish
proving under some hypotheses on f , the existence of two extrema equilibria 'm
and 'M . This means that all the solutions enter between the two extremal equilibria
when time goes to infinity.

2 Existence, Uniqueness, Positiveness and Comparison
Results for Lipschitz Nonlinearities

For 1 � p � 1, we have that L D K � hI 2 L .Lp.˝/;Lp.˝// is a linear
operator that generates a group

eL t 2 L .Lp.˝/;Lp.˝// 8t 2 R
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which does not regularize. The solutions of the initial value problem

ut .	; t/ D L.u/.	; t/; u.0/ D u0 2 Lp.˝/

are given by eL tu0, and they satisfy comparison results.
In this section we focus on the existence and uniqueness of solution of the

problem (2) with f globally Lipschitz, and the solution will be denoted as
u.x; t; u0/. Furthermore, the solution associated to Eq. (2) will be given by the
Variation of Constants Formula,

u.	; t; u0/ D eLtu0 C
Z t

0

eL.t�s/f .	; u.s// ds: (3)

To be able to prove the existence and uniqueness of solution of (2), we need first
to give the following definition.

Definition 1 For 1 � p � 1, the Nemitcky operator associated to f , is defined as
an operator

F W Lp.˝/ ! Lp.˝/; such that F.u/.x/ D f .x; u.x//:

We introduce the following problem, that is equal to (2) substituting the globally
Lipschitz function f with the associated Nemitcky operator F ,

	
ut .t/ D .K � hI/.u/.t/C F.u.t// t > 0
u.0/ D u0:

(4)

In the proposition below, we give the existence and uniqueness of the solution to
(4), with F globally Lipschitz.

Proposition 1 For 1 � p � 1, if F is globally Lipschitz then the problem (4) has
a unique global solution u for every u0 2 Lp.˝/, that is given by the Variation of
Constants Formula (3), and u 2 C1.R; Lp.˝// is a strong solution in Lp.˝/.

The solutions of the problem (4) have some monotonocity properties:

• Given two ordered initial data, the corresponding solutions of (4) remain ordered.
• If F.u/ � 0; 8u � 0. Given a nonnegative initial data, the corresponding

solution of (4) is nonnegative.
• Given F and G globally Lipschitz such that F � G. If we denote by uF .	; t; u0/

and uG.	; t; u0/ the solution to (4) with nonlinear terms F , and G respectively.
Then

uF .x; t; u0/ � uG.x; t; u0/:
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Definition 2 u is a supersolution to (4) if for t � s

u.	; t/ � eL.t�s/u.s/C
Z t

s

eL.t�r/F .u/.	; r/dr:

We say that u is a subsolution if the reverse inequality holds.

Proposition 2 For 1 � p � 1. Let u.	; t/ be a supersolution to (4), and u.	; t; u0/
be a solution to (4). If F is globally Lipschitz and u.0/ � u0, then

u.	; t/ � u.	; t; u0/;

as long as both exist. The same is true for subsolutions if the reverse inequality
holds.

3 Existence and Uniqueness of Solutions, with f Locally
Lipchitz

In this section we prove the existence and uniqueness of solutions of the problem

	
ut .x; t/D .K�hI/.u/.x; t/Cf .x; u.x; t//DL.u/.x; t/Cf .x; u.x; t//; x2˝; t >0
u.x; 0/D u0.x/; x 2 ˝;

(5)

with f locally Lipschitz satisfying the increasing property (8), needed to prove the
existence of solution.

Since the group eLt does not regularize, and f is locally Lipschitz we can not
prove with fixed-point argument the existence and uniqueness of the solutions of the
problem (5). To be able to prove the existence and uniqueness of solutions of (5),
with f locally Lipschitz, we introduce a truncated globally Lipschitz function, fk ,
associated to f , with k > 0 such that

fk.x; u/ D f .x; u/; for juj � k; for all x 2 ˝: (6)

We introduce the following problem, that is equal to (5) substituting the locally
Lipschitz function f with the associated truncated globally Lipschitz function fk ,

	
ut .t/ D .K � hI/.u/.t/C fk.	; u.t// D L.u/.t/C Fk.u.t//;
u.0/ D u0:

(7)

Since fk is globally Lipschitz, the associated Nemitcky operator is also globally
Lipschitz. Thus, thanks to Proposition 1, the problem (7) has a unique solution in
C1.R; Lp.˝// for any initial data u0 2 Lp.˝/.
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In the following proposition we prove the existence and uniqueness of solution
of (5), with f locally Lipschitz and initial data bounded.

Proposition 3 If f W ˝ � R ! R, sends .x; s/ to f .x; s/, is locally Lipschitz in
the variable s 2 R, uniformly with respect to x 2 ˝ , and f satisfies that there exist
C 2 R andD � 0 such that

f .	; s/s � Cs2 CDjsj; 8s 2 R; (8)

then the problem (5) with initial data u0 2 L1.˝/ has a unique global solution
u 2 C1.Œ0; T �; L1.˝//, for all T > 0.

Proof We set

h0.	/ D
Z

˝

J.	; y/dy 2 L1.˝/:

First of all, let us prove that .h0 � h/s C f .	; s/ satisfies the hypothesis (8). Since
f .	; s/s satisfies (8), then

.h0 � h/s2 C f .	; s/s � sup
x2˝

jh0.x/ � h.x/j s2 C Cs2 CDjsj
� C1s

2 CDjsj:
(9)

We denote C1 D C to simplify the notation.
Fix 0 < M 2 R. We introduce the auxiliary problem

	 Pz.t/ D Cz.t/CD

z.0/ D M:
(10)

There exists a unique solution to (10), z 2 C.R/, given by

z.t/ D �D
C

C eCtC2; with C2 D M C D

C
:

Let T > 0 be an arbitrary time, then

jz.t/j < max

	

�D
C

C ejC jT C2; M
�

8t 2 Œ0; T �: (11)

Let fk be the globally Lipschitz function associated to f . We denote by uk.t; u0/
the solution to the problem

	
.uk/t .x; t/ D .K � hI/.uk/.x; t/C fk.x; uk.x; t//; x 2 ˝ � R

N ; t 2 R

uk.x; 0/ D u0.x/; x 2 ˝:
(12)
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Thanks to Proposition 1, we have the existence and uniqueness of solutions of (12).
Moreover, the solution uk.t; u0/ is in C1.R; L1.˝//.

Given T > 0 and M > 0, we choose

k D max

	

�D
C

C ejC jT C2; M
�

:

Thanks to the definition of fk , (6), and (11) we have that

fk.z.t// D f .z.t//; 8t 2 Œ0; T �: (13)

In particular, since h; h0 2 L1.˝/, from (9) and (13) we have that

.h0 � h/z.t/2 C fk.	; z.t//z.t/ � QC z.t/2 CDjz.t/j : (14)

We denote QC D C to simplify the notation.
We prove below that z is a supersolution of (12) for every t 2 Œ0; T �.
The solution z.t/ is nonnegative for all t 2 Œ0; T �. Then, thanks to (14), and since

z.t/ is independent of the variable x, we have that K.z.t// D h0z.t/. Thus,

K.z/.t/ � hz.t/C fk.	; z.t// D .h0 � h/z.t/C fk.	; z.t//
� Cz.t/CD D Pz.t/; for all t 2 Œ0; T �:

Let us consider the auxiliary problem

	 Pw.t/ D Cw.t/CD

w.0/ D �M: (15)

The solution associated to (15) satisfies that

jw.t/j < max

	 ˇ
ˇ
ˇ
ˇ
D

C
C ejC jT C3

ˇ
ˇ
ˇ
ˇ ; M

�

8t 2 Œ0; T �: (16)

Analogously to z, we can prove below that w is a subsolution of (12) for every
t 2 Œ0; T �. Choosing now,

k D max

	

�D
C

C ejC jT C2;M;
ˇ
ˇ
ˇ
ˇ
D

C
C ejC jT C3

ˇ
ˇ
ˇ
ˇ

�

and thanks to Proposition 2, for all u0 2 L1.˝/, such that ku0kL1.˝/ � M , we
obtain that

w.t;�ku0kL1.˝// � uk.t; u0/ � z.t; ku0kL1.˝//; 8t 2 Œ0; T �: (17)
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Thanks to (11), (16) and (17) we have that

juk.t; u0/j � max

	

�D
C

C eCTC2;M;

ˇ
ˇ
ˇ
ˇ�
D

C
C eCTC3

ˇ
ˇ
ˇ
ˇ

�

D k for all t 2 Œ0; T �:

Therefore, juk.t; u0/j � k. Thanks to the definition of fk , we obtain that
fk.uk.t; u0// D f .uk.t; u0//. Thus,

uk.x; t; u0/ D u.x; t; u0/; for all t 2 Œ0; T � and x 2 ˝:

Thanks to Proposition 1, we have that uk.t; u0/ exists for all t 2 R. Hence, we have
proved the existence of a strong solution of (5) for all t 2 Œ0; T �, that satisfies the
Variation of Constants Formula. A continuation argument, leads us to the existence
of solution u.t; u0/ for all t � 0 for the problem (5).

Now, let us prove the uniqueness of solution. We consider a solution u 2
C.Œ0; T �; L1.˝// of the problem (5) with initial data u0 2 L1.˝/. Then
considering sup

t>0

sup
x2˝

ju.x; t; u0/j � QC < 1. Hence if we choose k � QC , then

fk.	; uk.t// D f .	; uk.t// for all t > 0. Thus, uk and u coincide. Furthermore,
from Proposition 1, we have the uniqueness of the solution u of (5) with initial data
bounded, for all t > 0. Thus, the result. ut
Remark 1 In the previous Proposition 3, we have proved that the solution u of the
problem (5), with initial data u0 2 L1.˝/ is in fact the solution of the problem (7),
with nonlinear term fk that is the globally Lipschitz function associated to f . Then
the solution u of (5) satisfies all the monotonocity properties that the solution of the
problem (7) verify.

In the following proposition we state the existence and uniqueness of solution of
(5) with initial data u0 2 Lp.˝/, and we state that the solution is strong in L1.˝/.

Proposition 4 For 1 � p < 1, we assume that f W ˝ � R ! R, sends .x; s/ to
f .x; s/, is locally Lipschitz in the variable s 2 R, uniformly with respect to x 2 ˝ .

If f satisfies that f .	; 0/ 2 L1.˝/, and

@f

@u
.	; u/ � ˇ.	/ 2 L1.˝/ (18)

and
ˇ
ˇ
ˇ
ˇ
@f

@u
.	; u/

ˇ
ˇ
ˇ
ˇ � C.1C jujp�1/; 1 < p < 1; (19)

then Eq. (5) with initial data u0 2 Lp.˝/ has a global unique solution u 2
C .Œ0; T �; Lp.˝// \ C1.Œ0; T �; L1.˝//; 8T > 0, and it is a strong solution in
L1.˝/.
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4 Asymptotic Estimates

In this section, we study the asymptotic estimates of the norm L1.˝/ of the
solution u of the problem

	
ut .x; t/D .K�hI/.u/.x; t/Cf .x; u.x; t//DL.u/.x; t/Cf .x; u.x; t//; x2˝; t >0
u.x; 0/D u0.x/; x 2 ˝;

(20)

with f locally Lipschitz satisfying some extra-conditions we will need to add. Our
aim in this section is to prove the existence of two ordered extremal equilibria,
'm; 'M , one minimal and another maximal, respectively, and we prove that all the
solutions with initial data in L1.˝/ enter between the two equilibria 'm and 'M ,
as time goes to infinity.

In this section we will consider that f in problem (20) satisfies that

f .x; u/u � C.x/juj2 CD.x/juj; x 2 ˝; u 2 R

with C 2 L1.˝/ and 0 � D 2 L1.˝/. In the following proposition we give
bounds of ju.t/j, where u is the solution to (20).

Proposition 5 For 1 � p � 1. We assume that f W ˝�R ! R is locally Lipschitz
and f satisfies that there exist C 2 L1.˝/ and 0 � D 2 L1.˝/ such that

f .x; u/u � C.x/juj2 CD.x/juj; x 2 ˝; u 2 R: (21)

Let U .t/ be the solution of

	
Ut .t/ D L.U .t//C C U .t/CD; t > 0

U .0/ D ju0j: (22)

Then the solution, u, of (20), with initial data in Lp.˝/ satisfies that

ju.t/j � U .t/; for all t � 0:

In the proposition below, we give an asymptotic estimate of the normL1.˝/ of the
solution of (20), that is given in terms of the norm of the equilibrium of the problem
(22).

Proposition 6 Let ˚ be the equilibrium solution of (22), satisfying

L.˚/C C.	/˚ CD.	/ D 0; (23)

with C 2 L1.˝/ and 0 � D 2 L1.˝/.
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If

inf �L1.˝/.�L � C/ � ı > 0; (24)

then ˚ 2 L1.˝/, and ˚ � 0.
If u0 2 L1.˝/, the solution u of the problem (20) satisfies that

lim
t!1ku.t; u0/kL1.˝/ � k˚kL1.˝/:

In the following proposition, we state the existence of two ordered extremal
equilibria, which gives information about the set that attracts the dynamics of the
solution of (20), with u0 2 L1.˝/.

Proposition 7 If the hypothesis of Proposition 6 are satisfied, then there exist two
ordered extremal equilibria, 'm � 'M , of (20), such that any other equilibria  of
(20) satisfies 'm �  � 'M . Furthermore, the set

fv 2 Lp.˝/ W 'm � v � 'M g

attracts the dynamics of the system, i.e., there exist u.t/ and u.t/ such that u.t/ �
u.t; u0/ � u.t/ for all u0 2 L1.˝/, and

lim
t!1 u.t/ D 'm and lim

t!1 u.t/ D 'M

in Lp.˝/ for all 1 � p < 1.
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Analytic Approximations for Linear Differential
Equations with Periodic or Quasi-periodic
Coefficients

Ana Arnal and Cristina Chiralt

Abstract A perturbative procedure is proposed to compute analytic approxima-
tions to the fundamental matrix of linear differential equations with periodic or
quasi-periodic coefficients. The algorithm allows one to construct high-order ana-
lytic approximations to the characteristic exponents and thus analyze the stability of
the system. In addition, the approximate matrix solutions preserve by construction
qualitative properties of the exact solution.

1 Introduction

The linear system of differential equations

PY � dY

dt
D A.t/Y; Y.0/ D I; (1)

with A.t/ a T -periodic matrix, is an example of a reducible system: by means of the
transformation Y D P.t/Z, with P.t/ a non singular periodic matrix, a new system
PZ D KZ is obtained, where now the coefficient matrix K D P�1.t/A.t/P.t/ �
P�1.t/ PP .t/ is constant. This is the so-called Lyapunov transformation [1]. As a
consequence, the solution of the original system can be written globally as Y.t/ D
P.t/ exp.tK/. This is just a rephrasing of the well known Floquet theorem for linear
periodic differential equations [9].

From this result it is clear that the stability conditions of the solution Y.t/ only
depend on the matrixK , specifically on its eigenvalues (the characteristic exponents
of the system), whose real parts are uniquely determined. Thus, the trivial solution
of (1) is asymptotically stable if and only if the real part of the characteristic
exponents is negative, and it is stable if and only if all the characteristic exponents
have non positive real part, with the vanishing or purely imaginary characteristic
exponents being simple elementary divisors of the matrixK � �I , � 2 C [9]. From
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these properties, it is clear that computing the matrix K or the monodromy matrix
Y.T / D exp.TK/ is extremely useful. Unfortunately, although the Floquet theorem
gives us information about the structure of solution of the system (1), it does not
provide any practical method to get K and/or the transformation matrix P.t/.

Here we propose an algorithmic procedure to get approximations to both K
and P.t/, and therefore to the solution Y.t/ in the form prescribed by the Floquet
theorem whenA.t/ D A0C"A1.t/C"2A2.t/C	 	 	 in terms of the parameter " > 0.
The algorithm is recursive and determines the periodic transformation P.t/ as the
exponential of a certain matrix ˝.t/. This property guarantees by construction that
the approximations preserve certain qualitative properties of the exact solution. In
addition the algorithm can be easily implemented with a symbolic algebra package.

If, on the other hand, the coefficient matrix A.t/ is quasi-periodic, the problem
of reducing (1) to a system with constant coefficients is far more difficult. When the
terms A1.t/; A2.t/; : : : are sufficiently small, Shtokalo [8] constructed asymptotic
expansions for the solution which allowed him to examine the stability of the
system. It turns out that the procedure we have developed for periodic systems can
also be generalized to this setting with only minor modifications.

2 Algorithm

Let us consider the d � d system

@

@t
Y.t; "/ D A.t; "/ Y.t; "/; Y.t0 D 0; "/ D I (2)

with

A.t; "/ D A0 C
X

j�1
"jAj .t/ D A0 C "A1.t/C "2A2.t/C 	 	 	 (3)

and Aj .t C T / D Aj .t/, j � 1, for a certain T > 0. The goal is then to construct a
transformation P.t; "/ with inverse

Y.t; "/
P.t;"/���! Z.t; "/ D P�1.t; "/ Y.t; "/ P.0; "/ (4)

such that for the system in the new coordinates one has

@

@t
Z.t; "/ D K."/Z.t; "/; Z.0; "/ D I; (5)

with a constant coefficient matrix given by

K."/ D P�1.t; "/A.t; "/P.t; "/C @P�1.t; "/
@t

P.t; "/: (6)
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We construct P.t; "/ as a near-identity transformation, i.e., P.t; "/ D I C O."/, in
such a way that it satisfies an equation similar to (2) but now with respect to ". More
specifically, in view of Eq. (4), we impose

@

@"
P�1.t; "/ D L.t; "/P�1.t; "/; P�1.t; 0/ D I (7)

in terms of a (still unknown) generator L.t; "/. Alternatively,

@

@"
P.t; "/ D �P.t; "/L.t; "/; P.t; 0/ D I: (8)

Once L.t; "/ has been determined, it is possible to obtain P.t; "/ by formally
applying the Magnus expansion [3, 6] to the linear equation (7), so that

P�1.t; "/ D exp˝.t; "/; (9)

where˝.t; "/ is an infinite series depending L.t; "/ and its nested commutators.
To determine the generator L.t; "/, we differentiate Eq. (6) with respect to " and

use (7)–(8) to get

@K

@"
D ŒL;K�C P�1 @A

@"
P C @L

@t
; (10)

that is,

@K

@"
D ŒL;K�C ead˝ @A

@"
C @L

@t
; (11)

with

e˝
@A

@"
e�˝ D ead˝

@A

@"
D
X

n�0

1

nŠ
adn˝

@A

@"
(12)

in terms of the adjoint operator ad: ad˝B � Œ˝;B� D ˝ B � B ˝ and adn˝B �
Œ˝; adn�1

˝ B�.
Since A.t; "/ is given as a series in powers of ", (see Eq. (3)), we determine both

the generator L.t; "/ and the new coefficient matrixK."/ also as formal series in ":

K."/ D
1X

nD0
"nKn; L.t; "/ D

1X

nD0
"nLnC1.t/: (13)
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The successive termsKn,Ln.t/ in (13) can be obtained from Eq. (11) by applying
the following procedure:

1. Insert the series L.t; "/ into Eq. (7) and compute the Magnus expansion of
˝.t; "/,

˝.t; "/ D
1X

nD1
"nvn.t/; (14)

in terms of Lk.t/. This step has been thoroughly analyzed in [4], where in
particular a recursive algorithm for the computation of vn.t/ is given. The first
terms in the series (14) read

v1 D L1;

v2 D 1

2
L2;

v3 D 1

3
L3 � 1

12
ŒL1; L2� (15)

v4 D 1

4
L4 � 1

12
ŒL1; L3�:

2. Insert the series (14) into Eq. (12) to express ead˝
@A

@"
as a power series in ",

ead˝ @A

@"
D

1X

nD0
"nwn.t/: (16)

In particular,

w0 D A1;

w1 D 2A2 C ŒL1; A1�; (17)

w2 D 3A3 C 2ŒL1; A2�C 1

2
ŒL2; A1�C 1

2
ŒL1; ŒL1; A1��:

Again, a recursive procedure for the computation of wn.t/ in (16) can be found
in [4]. In general, wn (n � 1) depends on Ak and Lm, with 1 � k � n C 1,
1 � m � n.

3. Finally, insert the series (13) and (16) into Eq. (11), and equate terms of the same
power in ". In this way we arrive at

K0 D A0

dLn
dt

C ŒLn; A0� D nKn � Fn; n � 1 (18)
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with

F1 � w0 D A1 (19)

Fn �
n�1X

jD1
ŒLn�j ;Kj �C wn�1; n > 1: (20)

For the first terms we have explicitly

dL1
dt

C ŒL1;A0� D K1 � A1

dL2
dt

C ŒL2;A0� D 2K2 � 2A2 � ŒL1;K1 C A1�

dL3
dt

C ŒL3;A0� D 3K3 � 3A3 � ŒL2;K1 C 1

2
A1� � ŒL1;K2 C 2A2 C 1

2
ŒL1;A1��:

These equations allow us to get Kn and Ln.t/ recursively once Km and Lm.t/
with m D 1; : : : ; n � 1 have been previously determined.

For later use, we notice that Eq. (18) can also be written as

dLn
dt

D adA0Ln C nKn � Fn (21)

in terms of the linear operator adA0 .

3 The Lyapunov Transformation in Periodic Systems

Since our goal is to construct approximations to the solution of (2) according with
the Floquet theorem, we chooseK."/ as a constant matrix and obtain the successive
termsLn.t/ as periodic matrices in t : Ln.t CT / D Ln.t/ for all n � 1. In this way,
˝.t C T; "/ D ˝.t; "/ and Z.t; "/ D exp.tK."//.

To begin with, we integrate Eq. (18) over the period and divide by T :

Ln.T / � Ln.0/

T
D ŒA0;

1

T

Z T

0

Ln.t/dt�C nKn � 1

T

Z T

0

Fn.t/dt: (22)

Since L is periodic, then Ln.T / � Ln.0/ D 0, so that

nKn D hFni � ŒA0; hLni�; (23)
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where hFni and hLni denote the average of Fn and Ln over the interval Œ0; T �,
respectively:

hFni � 1

T

Z T

0

Fn.t/dt; hLni � 1

T

Z T

0

Ln.t/dt: (24)

On the other hand, the formal solution of Eq. (21) reads

Ln.t/ D et adA0Ln.0/C et adA0

Z t

0

e�s adA0 .nKn � Fn.s// ds: (25)

Now, inserting (23) into this expression we get

Ln.t/ D et adA0Ln.0/C .I � et adA0 /hLni C et adA0

Z t

0

e�s adA0 .hFni � Fn.s// ds;

where we have used the formal identity

Z t

0

e�s adA0 .�adA0hLni/ D .e�t adA0 � I /hLni:

If we denote byGn.s/ the antiderivative of e�s adA0 .hFni�Fn.s//, i.e.,Gn.t/ is such
that

dGn.t/

dt
D e�t adA0 .hFni � Fn.t//;

then clearly

Ln.t/ D et adA0Ln.0/C .I � et adA0 /hLni C et adA0 .Gn.t/ �Gn.0//: (26)

In summary, the new constant coefficient matrix and the generator of the transfor-
mation are given recursively by

nKn D hFni � ŒA0; hLni�
Ln.t/ D hLni C et adA0 .Ln.0/� hLni CGn.t/ �Gn.0//;

(27)

for n � 1, starting with K0 D A0. Notice that there are two undetermined
parameters at each step in these expressions, both related with the generator: its
initial value Ln.0/ and the average hLni. To construct explicitly the transformation
we have to fix these values. The problem then admits infinite solutions. Next we
consider just two different possibilities:
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1. We fix the initial conditionLn.0/ D 0. Then,Ln.T / D 0 by periodicity and (26)
evaluated at t D T leads to

0 D .I � eT adA0 /hLni C eT adA0 .Gn.T / �Gn.0//: (28)

In other words, we can choose hLni as an arbitrary solution of the matrix
equation (28) or alternatively,

Z T

0

e�s adA0 ŒA0; Cn� ds D Gn.T / �Gn.0/ D
Z T

0

e�s adA0 .hFni � Fn.s//ds;

(29)

where Cn denotes the unknown matrix. In this way, the problem is solved if we
take

nKn D hFni � ŒA0; Cn�
Ln.t/ D Cn C et adA0 .Gn.T / �Gn.0/� Cn/ ;

(30)

with Cn any particular solution of Eq. (29). As a matter of fact, this is a
non-homogeneous system of d2 linear equations with d2 unknowns (the ele-
ments of Cn) that has a unique solution Cn if and only if �k � �l ¤ 0 mod 2�i

T
,

k ¤ l , where �k; �l are distinct eigenvalues of A0. Otherwise, some preliminary
transformations lead the matrix A0 to this situation [7].

In summary, if we impose the initial condition Ln.0/ D 0 and periodicity
for Ln.t/, then we can build explicitly the series ˝.t C T; "/ D ˝.t; "/, with
˝.0; "/ D 0, so that the solution is given by

Y.t; "/ D P.t; "/ etK."/ D e�˝.t;"/ etK."/ D exp

 

�
X

n�1

"nvn.t/

!

exp

 

t
X

n�0

"nKn

!

(31)

where K0 D A0 and Kn, n � 1, are constant matrices. In addition, the series
obtained for K."/ and P.t; "/ are convergent for sufficiently small values of "
[5].

2. As a second option, we constructLn such that its average hLni D 0. In that case,
from (27),

Kn D 1

n
hFni: (32)

Then we determinate the value of Ln.0/ so that Ln.t/ in (27) is T -periodic, in
particular Ln.T / D Ln.0/. From (27) we get

Ln.0/ D eT adA0 .Ln.0/CGn.T / �Gn.0//
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or

Z T

0

d

ds

�
e�s adA0Ln.0/

�
ds D Gn.T / �Gn.0/:

Since

d

ds

�
e�s adA0Ln.0/

� D d

ds

�
e�sA0Ln.0/esA0

� D e�sA0 �Ln.0/A0 � A0Ln.0/
�

esA0 ;

it turns out that Ln.0/ has to satisfy Eq. (29). Therefore, the new coefficient
matrix and the corresponding generator are given by

Kn D 1

n
hFni (33)

Ln.t/ D et adA0.Cn CGn.t/ �Gn.0//;

where Cn D Ln.0/ is any solution of (29). In general Ln.0/ ¤ 0 and therefore
˝.0; "/ ¤ 0, so that the solution of (2) reads

Y.t; "/ D e�˝.t;"/ etK."/ e˝.0;"/: (34)

Here˝.tCT; "/ D ˝.t; "/ is computed with the generatorsLn. In consequence

Y.t C T; "/ D Y.t; "/ e�˝.0;"/ eTK."/ e˝.0;"/:

We notice that, although the structure prescribed by Floquet’s theorem is no
longer reproduced, M � e�˝.0;"/ eTK."/ e˝.0;"/ is a monodromy matrix, with
the same eigenvalues as eTK."/. In other words, the eigenvalues of the new matrix
K."/ given by (33) are also the characteristic exponents of the system.

4 Generalization to the Quasi-periodic Case

Let us consider now Eq. (3) in the quasi-periodic case, i.e., when the matricesAj .t/,
j D 1; 2; : : :, in (3) are of the form

Aj .t/ D
rX

lD1
Cj;l e

i
l t : (35)

Here Cj;l are constant matrices, and 
l are real numbers, so that the elements of the
matrices Aj .t/ are trigonometric polynomials with arbitrary frequencies 
l . The
algorithm proposed by Shtokalo [8] for analyzing the stability of the trivial solution
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of system (2) consists essentially in constructing a change of variables that transform
Eq. (2) into (5),

@

@t
Z.t; "/ D

0

@A0 C
X

j�1
"jKj

1

A Z.t; "/; (36)

where Kj are constant matrices. In Shtokalo’s procedure, the change of variables
and the matrix K."/ are constructed perturbatively, as power series of ", without
paying much attention to the approximations of the solution of (3) and the
preservation of the main qualitative properties if may possess [5, 8].

It turns out that the procedure developed in the previous sections for constructing
the Lyapunov transformation for periodic linear systems can also be applied in
this setting with only minor changes. To proceed, let us first recall that for a
quasi-periodic function f .t/, there exists the limit

lim
T!1

1

T

Z aCT

a

f .t/dt D hf i; (37)

uniformly with respect to a. The number hf i is called the mean value of the
quasi-periodic function f .t/. In addition, this mean value defined for quasi-periodic
functions coincides with the usual mean value over the period for periodic functions.
Moreover, if f .t/ is a trigonometric polynomial,

f .t/ D C0 C
rX

lD1
Cl e

i
l t ;

where 
l ¤ 0; l D 1; : : : ; r , the mean value hf i D C0.
Again, the starting point is Eq. (18). Integrating over the interval t 2 Œ0; T �, for

an arbitrary T > 0, and dividing by T , we get Eq. (22). Taking the limit T ! 1
results in

lim
T!1

Ln.T /

T
D ŒA0; hLni�C nKn � hFni:

Since we aim to construct the terms of the generator as trigonometric polynomials
we impose

lim
T!1

Ln.T /

T
D 0;

so that we recover in this setting the expressions (27) forKn and Ln, where now h	i
denotes the mean value (37).
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At this point, at least two alternatives are possible:

1. Choose Ln.0/ D 0. Then, a trigonometric polynomial for Ln.t/ results as long
as hLni D �Gn.0/. In other words,

Kn D 1

n
hFni C 1

n
ŒA0;Gn.0/� (38)

Ln.t/ D �Gn.0/C et adA0Gn.t/:

2. Determine Ln as a trigonometric polynomial with zero mean value, hLni D 0.
This can be achieved by taking Ln.0/ D Gn.0/, and thus

Kn D 1

n
hFni (39)

Ln.t/ D et adA0Gn.t/:

A detailed treatment of this case will be the subject of subsequent work [2].

5 Illustrative Example

We next illustrate the algorithm on a simple periodic example. In particular, we
consider the system

Py1 D ".�1C 2 sin t/y1 C " y2

Py2 D �y2 C " y1 (40)

worked out by Malkin [1]. Here " is a real parameter and the period T D 2� . Using
the method of small parameters, he showed that the characteristic exponents of the
system are negative at least for " < 1=9, whereas in [9] the domain of values of "
that ensure asymptotic stability is extended up to " < 2=3.

The fundamental matrix Y.t; "/ corresponding to system (40) verifies Eq. (4) with

A.t; "/ D A0 C "A1.t/ �
�
0 0

0 �1
�

C "

��1C 2 sin t 1
1 0

�

: (41)

First we carry out the first procedure by fixing Ln.0/ D 0, i.e., we determine Kn

andLn by Eq. (30), up to n D 10 and compute the solution matrix (31). In Fig. 1 we
plot the difference between the Frobenius norm of our approximation, Y.t; "/, and
the exact result (as determined by numerical integration) when n D 5 and n D 10

terms are taken in the series.
Next we compute the eigenvalues of K."/ as a function of " by applying the

second alternative, i.e., by means of (33), and compare with the exact result (as
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Fig. 1 Error in the approximation (in logarithmic scale) between the approximation of order "5

(solid line) and order "10 (dashed line) with respect to the exact solution
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Fig. 2 One of the characteristic exponents of system (40), obtained by direct numerical integration
(solid line), and by the perturbative algorithm of order "2 (dot-dashed line), "4 (dashed line) and
"10 (dotted line), as a function of "

determined by the numerical integration of Eq. (40) with 25 digits of accuracy).
One of the eigenvalues turns out to be always negative, whereas the second one is
negative only for " < 0:745023, so that it is this value which determines the stability
region of the system.

In Fig. 2, we represent this exact eigenvalue (solid line) together with the results
rendered by the perturbative algorithm of order "2 (dot-dashed line), "4 (dashed line)
and "10 (dotted line).

Notice that higher order approximations provide results that are indistinguishable
from the exact value for increasingly larger values of the perturbation parameter ".
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Building Non Singular Morse-Smale Flows
on 3-Dimensional Lens Spaces

Beatriz Campos and Pura Vindel

Abstract Fat handles are flow manifolds diffeomorphic to tori; therefore, each
attractive (repulsive) fat handle can be identified along its boundary with a solid
torus with one repulsive (attractive) orbit in its core in such a way that a NMS flow
on a lens space L.p; q/ is obtained.

1 Introduction

Morse-Smale flows are the structurally stable flows on 2-dimensional manifolds,
forming a dense open subset of C1 -vector fields. For the three dimensional case,
Morse-Smale flows are not dense but they define an open set in the set of C1-vector
fields; in most cases they can be studied from Non-Singular Morse-Smale flows.

Non Singular Morse Smale flows (NMS for short) have been widely studied.
D. Asimov [1] showed that every manifold with Euler characteristic zero admits
this type of flows unless its dimension is three. J.W. Morgan [7] proved that a 3-
dimensional manifold prime to S2�S1 admits such flows if and only if it is a graph
manifold.

This kind of flows are characterized by their non-wandering set consisting of a
finite number of closed hyperbolic orbits and the transversal intersections of their
stable and unstable manifolds.

It is not easy to find a complete characterization of flows defined on three-
dimensional manifolds. Some achievements in this direction has been made by M.
Wada [8], who obtains the topological characterization of the links of periodic orbits
in S3. This characterization for NMS flows in the space S2�S1 have been obtained
by A. Cordero et al. in [6].

Despite these important results, different NMS flows can be characterized by the
same link. Therefore, to obtain the complete description of a flow it is necessary to
reproduce its phase space. To obtain the phase portrait is very hard for 3-manifolds,
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especially when the number of periodic orbits increases. In a previous paper [2], we
obtain some NMS flows on lens spaces, with only one saddle orbit.

We prove in [5] that flows with unknotted and unlinked saddle orbits, denoted
as FA

�
S3
�
, can be obtained from the identification of fat handles along their

boundaries.
From these results, in this paper we obtain flows on lens spaces by identifying fat

handles (Proposition 4): one attractive (repulsive) fat handle is identified with one
solid torus with one repulsive (attractive) orbit in its core in such a way that a flow
on a lens space L.p; q/ is obtained.

Now, we recall some definitions and results on which our work is based.
A non singular Morse-Smale flow (or NMS for short) is a flow without fixed

points, consisting of a finite number of hyperbolic periodic orbits where the
intersections of stable and unstable manifolds of the saddle orbits are transversal.

D. Asimov [1] and J.W. Morgan [7] established a correspondence between NMS
flows and round handle decompositions of the corresponding manifold. These flows
are defined on flow manifolds. A flow manifold is a pair .M; @�M/ where a
nonsingular vector field on M exists, pointing inwards on @�M and outwards on
@CM and satisfying @M D @�M [ @CM , @�M \ @CM D ;.

Proposition 1 (Morgan) Given a flow manifold (X,@�X) with a NMS flow, then
(X,@�X) has a round handle decomposition whose core circles are the closed orbits
of the flow.

For the case of dimension 3, the round handles are diffeomorphic to tori and
correspond to 0-handles when there is a repulsive periodic orbit in the core, to 2-
handles if there is an attractive periodic orbit in the core and to 1-handles if the orbit
is a saddle; 0; 1 and 2 are the indices of the periodic orbits. A set of indexed periodic
orbits is called an indexed link.

The round handle decomposition for a compact, orientable 3-manifold M was
modified by Morgan:

; D M0 � M1 � 	 	 	 � Mi � MiC1 � 	 	 	 � MN D M (1)

where each manifold Mi , called fat round handle, is obtained from Mi�1 by
attaching a round 1-handle by means of one or two attaching circles (see Fig. 1).

Fig. 1 Round 1-handle
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The round handle decomposition of a NMS flow gives the sequence of 1-handle
attachments. Each attachment on a fat round handle yields to a new fat round handle.
In the following section we show in detail these fat handles and we see the different
types of fat handles obtained when the number of saddle orbits increases.

2 Fat Handles

The 3-sphere S3 is obtained joining two solid tori, by identifying transversal circles
of one torus with longitudinal circles of the other.

Therefore, a polar NMS flow on S3 can be obtained by identifying properly one
repulsive and one attractive tori along their boundaries.

In [5] we obtain NMS flows on S3 with unknotted and unlinked saddle orbits,
denoted by FA.S

3/, by identifying one repulsive and one attractive tori along their
boundaries. These tori, with a flow going inwards or outwards, correspond to the fat
round handles.

Given a flow ' 2 FA.S
3/, a repulsive fat handle is obtained by removing one

attractive orbit and an attractive fat handle is obtained by removing one repulsive
orbit. The basic fat round handles are the fat handles with one saddle orbit (see
Figs. 2 and 3) and we denote them by describing the periodic orbits that contain. If
the fat handle has an attractive or repulsive orbit in its core we refer to it as thick
torus; if it has no orbit in its core, we refer to it as solid torus.

In the following, let h denote the Hopf link, let d denote a trivial separated knot
corresponding to an attractive or repulsive orbit, let u denote a trivial separated knot
corresponding to a saddle orbit and let 	 denote the separated sum of links.

a b c d

Fig. 2 Basic fat handles of class ŒI �. (a) Repulsive fat round handle: (h.d.u); (b) Attractive fat
round handle: (h.d.u); (c) Repulsive fat round handle: (d.d.u); (d) Attractive fat round handle:
(d.d.u)

Fig. 3 Basic fat handles of class ŒII� and ŒIII�
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We classify the fat handles obtained from FA.S
3/ flows in the following way:

• A repulsive (attractive) fat handle belongs to class ŒI � if it corresponds to a thick
torus with a repulsive (attractive) orbit filling the essential hole of the torus and
the invariant manifolds of the saddles orbits go outwards (inwards) the torus by
means of inessential circles.

• A repulsive (attractive) fat handle belongs to class ŒII� if it corresponds to a solid
torus, the invariant manifolds of the saddles orbits go outwards (inwards) the
torus by means of essential circles and there is not any attractive or repulsive
orbit in the canonical region of the identification.

• A repulsive (attractive) fat handle belongs to class ŒIII� if it corresponds to a solid
torus, the invariant manifolds of the saddles orbits go outwards (inwards) the
torus by means of essential and inessential circles and there is one attractive or
repulsive orbit, filling a non essential hole in the torus, in the canonical region of
the identification.

From the identification of one attractive and one repulsive basic fat handles
we obtain the FA.S

3/ flows with two saddle orbits; by removing one repulsive
(attractive) orbit in these flows we obtain iterated fat handles with two saddles.
Following this process we obtain fat handles with n saddle orbits (see [5]) and we
prove that they can be classified in one of these three classes defined above.

Proposition 2 For FA

�
S3
��flows, a fat handle with n saddle orbits belongs to

class ŒI � ; ŒII� or ŒIII� :

When there are not heteroclinic trajectories connecting saddles, a fat handle with
n saddle orbits is obtained by the iterated connected sum of tori [3]. Two examples
are showed in Fig. 4.

Let us remark that the identification along their boundaries of two fat handles
without any orbit in their cores yields to a transversal intersection of two invariant
manifolds of saddle orbits (see [4]).

Fig. 4 Fat handles of class ŒI � and [III]
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Fig. 5 Identification of one
fat handle of class ŒI � and one
of class ŒII�

Along the proof of these results, in [4], all the flows ' with n unlinked saddles
are obtained. Therefore,

Theorem 1 A flow ' 2 FA

�
S3
�

with n saddle orbits can be obtained by identifying
fat handles along their boundaries.

This result enables to build any flow on the 3-sphere with unlinked and unknotted
saddle orbits. We reproduce the complete phase space of these NMS flows on the
3-sphere when two fat handles are identified along their boundaries in such a way
that S3 is obtained; that is, by identifying longitudinal circles of one of the tori with
the transversal circles of the other torus. Let us remark that the fat handles must be
properly identified in order to reach a flow on S3. For example, a fat handle of class
ŒI � can not be identified with fat handle of class ŒII� because a bitorus is obtained
(see Fig. 5) and the boundaries of round handles embedded in S3 must be tori.

This method also permits to obtain NMS flows on different 3-manifolds if the
circles of the tori are identified in another way. Following the same process used on
S3 we build NMS flows on other lens spaces. Let us notice that, for the 3-sphere
all the orbits are local and we can obtain a flow by identifying the fat handles along
their boundaries. But for any L.p; q/ lens space there can be local and global orbits
and a very complicated picture may appear. So, we only can assure a NMS flow if
we identify one of the previous fat handles with one torus with one attractive (or
repulsive) orbit in its core.

3 Building Flows in Lens Spaces

The lens space L.p; q/ is the 3-manifold of Heegaard genus 1 whose Heegaard
diagram consists of a .p; q/�torus knot on the surface of a solid torus; namely,
L.p; q/ is the result of joining two solid tori �1 and �2 via a homeomorphism
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Fig. 6 S3

Fig. 7 S2 � S1

h W @�1 ! @�2 where h takes a meridian m on @�1 to a .p; q/-torus knot on @�2.
The 3-manifold resulting directly from this identification is difficult to visualize
except, perhaps, L.1; 0/ that corresponds to the 3-sphere and L.0; 1/, equivalent
to S2 � S1: As we have seen before S3 is obtained by identifying latitudes on @�1
with meridians on @�2 and vice versa. Similarly, S2 � S1 is obtained by identifying
longitudinal circles on @�1 with longitudinal circles on @�2 and transversal circles
with transversal circles. We can see these spaces in Figs. 6 and 7. In both cases, one
attractive and one repulsive orbit are in the core of each solid torus, and they are
linked. So, the easier flow in both spaces is a polar flow corresponding to the Hopf
link.

Proposition 3 A polar flow always can be obtained on a lens space.

Proof The polar flow is obtained by the identification along their boundaries
of one torus with an attractive orbit (a 2-handle) in its core and another torus
with a repulsive orbit in its core (a 0-handle). This identification is made via
a homeomorphism h W @�1 ! @�2 where h takes a meridian m on @�1 to a
.p; q/-torus knot on @�2. We have the simplest round handle decomposition and
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a b

Fig. 8 NMS flows on different lens spaces. (a) NMS flow defined on S3; (b) NMS flow defined
on S2 � S1

its corresponding NMS flow on a lens spaceL.p; q/ is obtained. This flow is called
polar flow and the set of its periodic orbits is the Hopf link. ut

The fat handles showed in Sect. 2 are flow manifolds diffeomorphic to tori;
therefore, each of these attractive (repulsive) fat handles can be identified with one
solid torus with one repulsive (attractive) orbit in its core in such a way that a flow
on a lens space L.p; q/ is obtained.

For example, we show in Fig. 8a the flow on S3 obtained by identifying
longitudinal circles of the repulsive basic fat handle h 	 d 	 u with transversal circles
of one attractive solid torus and we show in Fig. 8b the flow on S2 � S1 obtained
by identifying longitudinal circles of the repulsive basic fat handle h 	 d 	 u with
longitudinal circles of one attractive solid torus.

Let us observe that the link of periodic orbits is the same for both flows, h 	 h 	 u,
but the topology of the orbits is different. All the periodic orbits embedded in S3 are
local whereas in S2 � S1, some of them can be global. Recall that a local orbit is an
orbit that can be isolated in a three-dimensional diskD3 and an global orbit can not
be isolated in a D3.

Similarly, from the flows on S3 we can obtain NMS flows on different lens spaces
depending on the way the tori are identified.

Proposition 4 Given a flow on one attractive (repulsive) fat handle �1, a NMS flow
on a lens spaceL.p; q/ can be obtained by identifying meridians on @�1 with .p; q/-
torus knots on the boundary of a repulsive (attractive) solid torus �2.

Proof As we said before, L.p; q/ can be formed by the identification of two solid
tori �1 and �2, via a homeomorphism h W @�1 ! @�2 where h takes a meridianm on
@�1 to a .p; q/-torus knot on @�2.

We proved in [5] that the fat handles with n unknotted and unlinked saddles orbits
are tori. So, we can consider �1 as one repulsive (attractive) fat handle with n saddle
orbits and �2 as one solid torus with one attractive (repulsive) orbit in its core, i.e.,
�2 is a 2-handle (0-handle).



84 B. Campos and P. Vindel

These two tori are identified by means the homeomorphism previously defined
from @�1 onto @�2.

As �2 has only one attractive (repulsive) orbit in its core, the whole flow going
inwards through @�2 is collected by this orbit. The result is a NMS flow on the 3-
dimensional lens space L.p; q/. ut
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Parameterization Method for Computing
Quasi-periodic Reducible Normally Hyperbolic
Invariant Tori

Marta Canadell and Àlex Haro

Abstract We consider the problem of numerically computing quasi-periodic nor-
mally hyperbolic invariant tori (NHIT) with fixed frequency as well as their invariant
bundles. The algorithm is based on a KAM scheme to find the parameterization of a
torus with fixed Diophantine frequency (by adjusting parameters of the model), and
suitable Floquet transformations that reduce the linearized dynamics to constant
coefficients. We apply this method to continue curves of quasi-periodic NHIT of a
perturbed dynamical system and to explore the mechanism of breakdown of these
invariant tori. We observe in these continuations that the invariant bundles may
collide even if the Lyapunov multipliers remain separated.

1 Introduction

It is well known the importance of the study of dynamical systems, and how
the invariant objects help to describe the global dynamics. The goal of this work
is to present an efficient algorithm to compute one particular kind of invariant
objects: normally hyperbolic invariant tori with internal dynamics conjugated to
a (Diophantine) rotation. The convergence of the algorithm enters in the realm of
KAM theory [7].

The problem of finding quasi periodic normally hyperbolic invariant tori with
an specific set of frequencies has been already considered in the literature. The
necessity of external parameters to adjust the frequencies is considered, e.g., in [1].
However, these rigorous results have a perturbative nature and are hardly applicable
in numerical computations far from perturbative regime.

The usual numerical methods for computing invariant tori with quasi periodic
dynamics are based on solving a system of non-linear equations arising from a
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Fourier discretization of the invariance equation [8]. In this particular problem, [15]
use continuation methods without adjusting parameters (but having the frequency as
an unknown). However, the method fails when it crosses strong resonances. On the
other side, [16] uses the adjust of parameters, but the use of a large matrix method
cannot be go ahead because of the colossal computation time and the memory
needed to store the large matrices arising from the straightforward application of
a Newton method.

In this work, we describe a Newton-like method to compute an invariant torus
with fixed frequency based on reducibility of the normal dynamics, and the adjust
of parameters, which allows us to obtain accurate results up to parameter values
even very close to the torus breakdown.

2 The Setting

Let Fa W Td � R
n ! T

d � R
n, m D d C n, be a family of diffeomorphisms for

the parameter a 2 R
d . Let K be a d-dimensional (parameterized) torus, that is

K D K.Td / where K W Td ! T
d � R

n is an injective immersion.
We say that the torus parameterized by K , K , is Fa-invariant with a quasi-

periodic motion given by the frequency ! 2 R
d , if K satisfies the invariance

equation:

Fa.K.�// �K.� C !/ D 0: (1)

Note that (1) is an equation for K and a given the family Fa. The frequency of
the motion ! 2 R

d satisfies the Diophantine condition if j! 	 q � pj � � jqj��1 ,
q 2 Z

d n f0g, p 2 Z.
Heuristically, we say that K is a Normally Hyperbolic Invariant Torus (NHIT

for short) of Fa if it is Fa-invariant and the tangent bundle of Td � R
n restricted to

K , TK .Td � R
n/, splits into three continuous subbundles

TK .Td � R
n/ D NSK ˚ TK ˚ NUK (2)

such that DFa contracts NSK more sharply than TK and DFa expands NUK more
sharply than TK [9,14]. Bundles NSK and NUK are referred to as the stable and
the unstable subbundles of K , respectively.

Here, we consider the problem of numerically computing NHIT with a fixed
rotation of (Diophantine) frequency !, where it is needed to adjust parameters a to
keep the frequency fixed (as in [3]). Following [12], we find very useful to compute
the torus and the bundles at the same time by using a Newton method.

In particular, we look for invariant tori K parametrized byK that are homotopic
to the zero-section of Td � R

n, Td � f0g, that is

K.�/ D
�
�

0

�

CKp.�/;
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where Kp W Td ! R
d � R

n is 1-periodic in the �-variables. For each � 2 T
d , the

d column vectors of the m � d matrix DK.�/ provide a basis of the fiber TK.�/K
of the tangent bundle. Hence, the matrix-valued map L W T

d ! R
m�d defined

as L.�/ D DK.�/, provides a global frame for the tangent bundle. Also, NK is
defined by a matrix-valued map N W Td ! R

m�n generated by n vectors linearly
independents to L.�/ for each � 2 T

d , so that the column vectors of L.�/ joined
with the column vectors of N.�/ form a basis of TK.�/Td � R

n ' R
m. In other

words, the matrix valued map P W Td ! R
m�m, obtained by juxtaposing L and N

so that P.�/ D .L.�/ N.�//, provides an adapted frame around the torus.
From the definition of the invariance equation we get the tangent bundle TK

invariant, so that

DFa.K.�//L.�/ �L.� C !/ D 0: (3)

It is also desirable to work with a normal bundle NK which is also invariant. Using
global frames, this reads as

DFa.K.�//N.�/�N.� C !/	N.�/ D 0; (4)

for a suitable dynamics on the normal bundles 	N W Td ! R
n�n. In such a case,

the adapted frame P introduced above reduces the linearized dynamics to a block
diagonal matrix	 D blockdiag.Id; 	N / W Td ! R

m�m

P.� C !/�1DFa.K.�//P.�/ �	.�/ D 0: (5)

Under normal hyperbolicity properties, the invariant normal bundle decom-
poses into stable and unstable subbundles. Indeed, this is the case if N.�/ D
.N S.�/ N U .�// and 	N.�/ D blockdiag.	S.�/;	U .�//, with 	S contracting and
	U expanding.

Moreover, under Diophantine conditions on !, if the invariant normal bundle
decomposes into n one dimensional subbundles, then the normal dynamics is
reduced to a diagonal constant matrix 	N D diag.�dC1; : : : ; �dCn/, with real
eigenvalues j�j j ¤ 1. In such a case, the torus is said to be reducible. For the
sake of simplicity, we will consider in this paper that the eigenvalues have different
moduli. More general cases are considered in [5, 7].

Remark 1 If the bundles are non-orientable, we can consider P defined from QTd D
.R=2Z/d instead of Td by using a double covering trick [13].

Remark 2 (NHIT regardless the internal dynamics) There is the case when we do
not know which is the internal dynamics. Then, we have to proceed by taking
the internal dynamics as another unknown of the invariance equation instead of
adjusting parameters to fix the frequency. In other words, Eqs. (1) and (4) becomes:
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Fa.K.�// �K.f .�// D 0; (6)

DFa.K.�//N.�/�N.f .�//	N .�/ D 0; (7)

and they have to be solved for K , f , N and 	N . For more details on computations
of NHIT regardless the internal dynamics see [5, 6].

3 Specification of One Step of a Newton-Like Method

In the following, we explain how to perform one step of a Newton-like method to
solve invariance equations (1) and (4) above, in the reducible case. Starting with
an approximate parameterization of a NHIT K for a Fa, an approximate invariant
normal bundle N and its linearized dynamics 	N , the aim of one step of Newton
method is to compute their corresponding corrections. To do so, the parameter a is
adjusted in order to keep fixed the frequency !. When it is possible to reduce the
system, each step in the Newton-like method becomes very fast [13]. The procedure
is repeated until we achieve the desired error-tolerance. We will not consider here
the rigorous results on the convergence of the algorithm that hold under suitable
Melnikov conditions.

Remark 3 (Validation theorem) The theoretical framework of this algorithm is
based on KAM techniques that we are not going to detail here. To give a brief
idea of it, under normal hyperbolicity and additional non-degeneracy conditions
on an approximate invariant torus and on the adjusting parameter a, if the error
estimates are small enough (in suitable Banach spaces of real-analytic periodic
functions), the theorem ensures that there is a true invariant torus and an adapting
parameter nearby. Remarkably, the method of proving the theorem is similar to the
algorithm presented here. In [7] we obtain a validation theorem of existence of NHIT
with fixed Diophantine frequency !, based on KAM techniques, that proves the
convergence of the procedure.

Since we are dealing with periodic functions to represent the torus K and the
adapted frame P , it is natural to represent them in Fourier series. For a periodic
function f ,

f .�/ D
X

k2Zd
fke

2� ik� (8)

is its Fourier series. The average of f is < f >D f0.
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3.1 Substep 1: Correction of the Torus K and Parameter a

Let R W Td ! R
m and SN W Td ! R

m�n be the errors in the invariance equation of
the torus and in the invariance equation of the normal bundle respectively, that is

R.�/ D Fa.K.�// �K.� C !/; (9)

SN .�/ D DFa.K.�//N.�/�N.� C !/	N : (10)

We assume that both R and SN are “small”.
Then, the adapted frame P is approximately invariant, since S W Td ! R

m�m
defined by

S.�/ D DFa.K.�//P.�/ � P.� C !/	 (11)

is in fact S.�/ D �
DR.�/ SN .�/

�
, which is also “small”.

We consider the correction of the torus NK D K C �K of the form �K.�/ D
P.�/�.�/, being � W Td ! R

m a periodic function. The adjustment of a is given by
ı, Na D a C ı. Then, by substituting new approximations in (1) and using first order
Taylor expansion, we obtain

�R.�/ D @Fa

@a
.K.�//ıC P.� C !/	�.�/ � P.� C !/�.� C !/C O2; (12)

where we apply definitions (9) and (11) above, and O2 collect the quadratically
small terms. Multiplying (12) by P.� C !/�1 and neglecting quadratically small
terms, we obtain the cohomological equation

� QR.�/ D 	�.�/ � �.� C !/C B.�/ı; (13)

where QR.�/ D P.� C !/�1R.�/ is the error of the approximate solution in the
adapted frame and B.�/ D P.� C !/�1 @Fa

@a
.K.�//. Splitting (13) into tangent

and normal components, a Newton step reduces our equation to the block diagonal
system

� QRL.�/ D �L.�/ � �L.� C !/C BL.�/ı; (14)

� QRN.�/ D 	N�
N .�/ � �N .� C !/C BN.�/ı: (15)

Tangent component. Let r.�/ WD � QR.�/ � B.�/ı. We have to solve the
cohomological equation

�L.�/ � �L.� C !/ D rL.�/: (16)
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We chose ı as

ı D � < BL >�1< QRL >; (17)

to ensure rL has zero average, provided that< BL.�/ > invertible. Since ! satisfies
Diophantine conditions and rL has zero average, we can solve (16), and its solution
is obtained by solving order by order in terms of Fourier modes:

�Lk D rLk
1 � e2� ik!

; k ¤ 0: (18)

Notice that �L0 is free. In particular, we choose �L0 D 0.

Normal component. As 	N is diagonal, Eq. (15) splits into n equations, corre-
sponding to their n normal components. For each i D d C 1; : : : ; d C n, we solve
the equation term by term in Fourier modes:

ri .�/ D �i�
i .�/ � �i .� C !/ ! �ik D rik

�i � e2� ik!
; k 2 Z

d (19)

Since, by assumption, j�i j ¤ 1, there are no resonances in (19).

Remark 4 The absence of resonances in (19) is known as first Melnikov condition.
This is also important for dealing with complex eigenvalues of modulus 1, i.e.
elliptic eigenvalues.

3.2 Substep 2: Correction of the Floquet Transformations

We redefine the error in the invariance equation of the adapted frame for the new NK
and Na as S.�/ D DF Na. NK.�//P.�/ � P.� C !/	, which is close to the previous
S.�/. We consider the corrections of the normal bundle, NN D N C �N , and its
linearized dynamics, N	N D 	N C�	N , of the form:

�N.�/ D P.�/QN.�/; �	N D diag.ıdC1; : : : ; ıdCn/; (20)

where QN W Td ! R
m�n is a periodic matrix map. Doing similar computations as

in the substep 1, we obtain the cohomological equation:

� QSN .�/ D 	QN.�/ �QN.� C !/	N �
�
O

�	N

�

; (21)

where QSN .�/ D P.� C !/�1SN .�/.
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Using the matrix notation QN.�/ D .Qi;j .�//, i D 1; : : : ; n C d , j D d C
1; : : : ; d C n, Eq. (21) splits into m � n equations and we solve them in terms of
Fourier modes:

i � d; i ¤ j W � QSi;j .�/ D Qi;j .�/ �Qi;j .� C !/�j

! Q
i;j

k D
QSi;jk

�j e2� ik! � 1 ; 8k: (22a)

i > d; i ¤ j W � QSi;j .�/ D �iQ
i;j .�/ �Qi;j .� C !/�j

! Q
i;j

k D
QSi;jk

�j e2� ik! � �i ; 8k: (22b)

i > d; i D j W � QSi;i .�/ D �iQ
i;i .�/ �Qi;i .� C !/�i � ıi

! Qi;i
k D

( QSi;ik
�i .e2�ik!�1/ ; k ¤ 0;

0 ; k D 0;

ıi D QSi;i0 :
(22c)

Note that, since we assume j�i j ¤ j�j j ¤ 1, there are no resonances in (22a) and
(22b).

Summarizing, we have obtained new better approximations NK D K C P�, Na D
aC ı and NN D N C PQN and N	N D 	N C�	N .

4 Implementation

We consider as a toy example the 3D-Fattened Arnold Family [2], given by the
diffeomorphism Fa;� W R=2�Z � R

2 ! R=2�Z � R
2 defined as:

Fa;�

0

@
x

y

z

1

A D
0

@
x C aC �.sin.x/C y C z=2/

b.sin.x/C y/

c.sin.x/C y C z/

1

A (23)

where b < 1, c > 1 are fixed parameters, a 2 R is the adjusting parameter and
� 2 R is the perturbation parameter. This system has a constant determinant of the
Jacobian det.DFa;�/ D bc. In these implementations, we will continue curves of
saddle NHIT with respect to � with the same fixed frequency ! D .

p
5C 1/=2 up

to a critical value, for which the torus seams to be destroyed. Our computations are
done with an error-tolerance jjRjj < 10�10 and using as much as Fourier modes,
NF, we need to get the torus well approximated with this error tolerance (see last
column on the table of Fig. 1). We emphasize that reaching such an accuracy with
such a hight number of Fourier modes (here NF D 1;048;576 D 220) is much



92 M. Canadell and À. Haro

Fig. 1 Left: Curves of quasi-periodic NHIT in the parameter plane .a; �/. Right: 	 values, which
corresponds to Lyapunov multipliers, for the three different implementations

beyond the limits of large matrix methods based on full discretization of invariance
equations, which already suffer with, say, NF D 1;024 D 210.

We examine three examples, to be described below (see Fig. 1). For a better
understanding of the breakdown of the invariant torus, we consider as observables
the Lyapunov multipliers (the absolute values of the eigenvalues of the reduced
matrix	) and the minimum angles between bundles. These observables measure the
quality of normal hyperbolicity properties. The Lyapunov multipliers 	S D j�2j <
	L D 1 < 	U D j�3j are shown in the table of Fig. 1. The maximal Lyapunov

multiplier 	U and the minimum angles between bundles, 2L �NS , 2L �NU and
3NS �NU , appear in Fig. 2 along the continuation with respect to �. In Fig. 3 we

show the last computed torus and the angles between their invariant bundles as a
function of � . In previous works, different breakdowns due to collision of bundles
have been observed [4, 10, 11, 13].

Example 1 For parameters b D 0:3 and c D 2:4, the system is dissipative (bc D
0:72). During the continuation, the tangent and stable bundles approach till finally
collide and the torus is destroyed. Near the breakdown, there is a lineal decay to

zero of the angle 2L �NS . Despite that, the Lyapunov multipliers 	L and 	S are
moving away from each other. Notice that NU remains far from L and NS .

Example 2 For parameters b D 0:25 and c D 4, the system is conservative (bc D
1). As in Example 1, the breakdown of the torus is due to a bundle collision of the
tangent and stable bundle, while	L and	S do not collide even though their product
value is constant to 1, DFa;� D 1 D 	L	S	U .
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Fig. 2 Results for all � values of the continuation process. Top: Minimum angles between bundles.
Bottom: maximal Lyapunov multiplier	U , where 	S is just 	S D jbcj
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Fig. 3 Results for the last torus we can compute. Top: invariant torus. Bottom: angles between
bundles

Example 3 For parameters b D 0:5 and c D 2, the system is conservative (bc D 1)
and reversible. That is, Fa;� D I1I0 with involutions I0 and I1 given by:

I1

0

@
x

y

z

1

A D
0

@
�x C 2�

sin.x/ C y C 3
4
z

� z

1

A; I0

0

@
x

y

z

1

A D
0

@
�x C �y C �

4
z C aC 2�

y

2
C 3

8
z

2y � z
2

1

A:

Moreover, by the symmetries of the system, the breakdown of the torus is due to a

triple collision, all bundles collide together. All values 2L �NS , 2L�NU , 3NS �NU
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tend to zero, linearly, as we approach the breakdown. Notice also that, in this
example, the adjusting parameter a is fixed to the frequency, a D !, along the
continuation.
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Existence of Homoclinic and Heteroclinic
Connections in Continuous Piecewise Linear
Systems

Victoriano Carmona, Fernando Fernández-Sánchez,
and Elisabeth García-Medina

Abstract In the present work, the existence of global connections in a continuous
piecewise linear system is analytically proven. Concretely, by using a common
technique we prove the existence of a pair of homoclinic connections and a
reversible T-point heteroclinic cycle. The main ideas of this proof can be extended
to other piecewise linear systems.

1 Introduction and Statements of Main Results

The proof of the existence of a global connection in differential systems is generally
a difficult task, even in the case of continuous piecewise linear systems. Regarding
global connections in R3, in [3] the authors prove the existence of homoclinic
connections to saddle focus equilibria in the three-parameter unfolding of a nilpotent
singularity of codimension three. Some recents works [6, 7] have been devoted to a
different approach, which consists on the derivation of computer-assisted proofs for
the existence of global connections.

In [1, 2] the authors studied some global connections of system

8
<

:

Px D y;

Py D z;
Pz D 1 � y � �.1C �2/jxj;

(1)

where the parameter � is strictly positive. In the present work, we give a common
proof for the existence of a pair of homoclinic connections and a reversible T-point
heteroclinic cycle.
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System (1) is volume-preserving, time-reversible with respect to the involution
R.x; y; z/ D .�x; y;�z/ and it can be written in matrix form as

Px D
	
A�x C e3 if x � 0;

ACx C e3 if x � 0;
with A˙ D

0

@
0 1 0

0 0 1

��.1C �2/ �1 0

1

A;

x D .x; y; z/T and e3 D .0; 0; 1/T . It is formed by two linear systems separated
by the plane fx D 0g, called the separation plane, and it can be considered as a
piecewise linear version of the Michelson system [5].

The global connections of this system can be classified attending to the number
of intersections of the global connection and the separation plane. A homoclinic
connection of system (1) is direct if it intersects the separation plane at exactly two
points. On the other hand, a reversible T-point heteroclinic cycle is direct if the
heteroclinic connection corresponding to the one-dimensional invariant manifolds
has exactly three intersections with the separation plane while the heteroclinic
connection corresponding to the two-dimensional invariant manifolds has only one
intersection.

The main aim of the present work is to prove analytically the existence of these
global connections in system (1). The following result, which is the core of the
paper, establishes their existence.

Theorem 1 There exist two real values �h; �T 2
�
1=2;

p
3
�

such that for � D �h

the piecewise linear system (1) has two direct homoclinic connections (which are
symmetric with respect to the involution R) and for � D �T the system has a direct
T-point heteroclinic cycle.

Some numerical computations allow to obtain �h ' 0:66076 and �T ' 0:65154.
In Fig. 1, the projections onto the .x; y/-plane of the global connections given by
Theorem 1 are shown.

The rest of the paper is organized as follows. In Sect. 2, some properties of
the piecewise linear system (1) are presented. After that, a set of conditions for
the existence of a direct homoclinic connection and a direct reversible T-point

2 1 0 1 2

2

1

0

1

x

y

2 1 0 1 2

2

1

0

1

x

y

-2 -1 0 1 2

-2

-1

0

1

x

y

Fig. 1 Projections onto the .x; y/-plane of the two direct homoclinic connections and the direct
T-point heteroclinic cycle
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heteroclinic cycle is introduced. In Sect. 3, we show some results that allow us to
prove the existence of both global connections. Finally, Sect. 4 is devoted to prove
Theorem 1.

2 Geometric Elements and Conditions for the Existence
of Global Connections

In this section, some properties of system (1) are shown. These properties has been
described previously in [1, 2] but, for the sake of completeness, it is convenient to
remind them. After that, a set of conditions for the existence of a direct homoclinic
connection and a direct reversible T-point heteroclinic cycle is introduced.

To analyze the dynamical behavior of system (1) we will use some Poincaré half-
maps associated to this system. By means of the flow of the system Px D A�x C e3
with x � 0, some points p0, belonging to the separation plane, can be transformed
into points q0 of this plane, so a Poincaré half-map ˘� in the half-space fx � 0g
can be defined as q0 D ˘�.p0/. Analogously, we can define a Poincaré half-map
˘C in the half-space fx � 0g, so that a Poincaré map for system (1) is defined as
˘ D ˘C ı˘�.

Since � > 0, the eigenvalues of A� are �, ˛ ˙ iˇ, with

˛ D ��=2 and ˇ D
p
4C 3�2=2: (2)

By the reversibility with respect to R, the eigenvalues of AC are �� and �˛ ˙ iˇ:
Therefore, there exist two saddle-focus equilibria p˙ D .˙1=.�C �3/; 0; 0/T .

The unstable invariant manifoldW u.p�/ contains the straight half-line

L� D ˚
p� � 
 .1; �; �2/T W �1=.�3 C �/ � 
 < C1�

;

that intersects the separation plane at m� D �
0; 1=.�2 C 1/; �=.�2 C 1/

�T
. The

stable invariant manifold W s.p�/ is locally contained in the half-plane P� D˚
�.�2 C 1/x C �2y C �z D �1; x � 0

�
; that intersects the separation plane along

the straight-line D� D f�2y C �z D �1; x D 0g: Note that not every point in
D� belongs to W s.p�/. The straight-line D� and the z-axis intersect at the point
q� D .0; 0;�1=�/T , where the orbit is tangent to the separation plane. Hence, the
segment S� � D� with end points q� and˘�1� .q�/ is contained in W s.p�/.

By the reversibility, the geometric elements in the half-space fx � 0g
can be obtained. Thus, the invariant manifold W s.pC/ contains the straight
half-line LC D ˚

pC C 
 .1;��; �2/T W �1=.�3 C �/ � 
 < C1�
; that

intersects the separation plane at mC D �
0; 1=.�2 C 1/;��=.�2 C 1/

�T
: On

the other hand, the invariant manifold W u.pC/ is locally contained in PC D˚
�.�2 C 1/x � �2y C �z D 1; x � 0

�
, that intersects the separation plane along

the straight-line DC D f��2y C �z D 1; x D 0g. This straight-line and the
z-axis intersect at qC D .0; 0; 1=�/T . The straight-lines DC and D� intersect
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Fig. 2 Schematic picture of a direct homoclinic connection to the equilibrium p� and a direct
reversible T-point heteroclinic cycle

at q D �
0;�1=�2; 0�. In Fig. 2, a schematic picture of these global connections

together with the geometric elements that have been described above is shown.
At this point, we are able to introduce a set of conditions that characterize two

global connections: a direct homoclinic connection and a direct reversible T-point
heteroclinic cycle.

For every point p0 D .x0; y0; z0/T , we denote by x�.t I�;p0/ (resp. xC.t I�;p0/)
the solution of linear system Px D A�x C e3 (resp. Px D ACx C e3) with parameter �
and initial condition x.0I�/ D p0.

A direct homoclinic connection to p� has to intersect the separation plane at
point m�. On the other hand, this connection exists if the condition˘C.m�/ 2 S�
holds. Therefore, system (1) has a direct homoclinic connection to p� if and only if
there exist two real values th; �h > 0 such that

(H1) xC.thI�h;m�/ 2 D�,
(H2) xC.t I�h;m�/ > 0 for every t 2 .0; th/,
(H3) xC.thI�h;m�/ 2 S�.

By integrating system (1) taking into account the condition (H2), it is obvious
that the condition (H1) holds if and only if there exist two real values th; �h > 0

such that the pair .t; �/ D .th; �h/ is a solution of the system

	
E1.t; �/ D 0;

E2.t; �/ D 0;
(3)

where

E1.t; �/ D 2�2e
3t�
2 .2ˇ cos .ˇt/� 3� sin .ˇt//C 2ˇ.�2 � .3�2 C 1/et� C 1/;

(4)

E2.t; �/ D 2�2e
t�
2
�
2ˇ cos .ˇt/C � sin .ˇt/

�C 2ˇ.�2 C 1/ (5)

and ˇ is given in (2).
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Let us introduce a set of conditions for the existence of a direct reversible
T-point heteroclinic cycle. The heteroclinic connection corresponding to the one-
dimensional manifolds intersects necessarily the separation plane at m� and mC.
This connection is direct if the relationship˘C.m�/ D ˘�1� .mC/ holds. Due to the
reversibility, this fact occurs if ˘C.m�/ 2 fx D 0; z D 0g. Therefore, system (1)
has a one-dimensional heteroclinic connection if and only if there exist two real
values tT ; �T > 0 such that the following conditions hold:

(T1) xC.tT I�T ;m�/ 2 fx D 0; z D 0g,
(T2) xC.t I�T ;m�/ > 0 for every t 2 .0; tT /:

By integrating system (1) taking into account the condition (T2), it is obvious that
the condition (T1) is satisfied if and only if there exist two real values tT ; �T > 0

such that the pair .t; �/ D .tT ; �T / is a solution of the system

	
E1.t; �/ D 0;

F1.t; �/ D 0;
(6)

where the expression of E1 is given in (4),

F1.t; �/ D 2e
3t�
2
�
2.2�2 C 1/ˇ cos .ˇt/ � � sin .ˇt/

� � 2.�2 C 1/ˇ

and ˇ is given in (2).
The heteroclinic connection corresponding to the two-dimensional manifolds

must intersect the separation plane at the point q. Therefore, a condition for the
existence of a direct two-dimensional heteroclinic connection is

(T3) q 2 S�.

Note that the condition (T3) involves the condition (H3). From Proposition 3.3
in [2], it follows that there exists a unique real value �0 2 .0; 1=2/ such that if
� � �0, then the condition (T3) holds. Some numerical computations allow to obtain
�0 ' 0:41527.

Observe that the set of conditions for the existence of a pair of direct homoclinic
connections and of a direct reversible T-point heteroclinic cycle are similar.
Concretely, the conditions (H1) and (T1) lead to systems (3) and (6), that have a
similar structure. A generic system that includes both systems is

A 	 X D C; (7)

where X D .cos.ˇt/; sin.ˇt//T , C D .c1.t; �/; c2.t; �//
T and

A D
�
a.t; �/ b.t; �/

c.t; �/ d.t; �/

�

:
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3 Preliminary Results

This section is devoted to analyzing the existence of solutions of system (7) and a
result that allows us to prove the conditions (H2) and (T2).

In the following lemma, whose proof is direct, system (7) is reduced to other
equivalent system with two equations and one inequality, in which it is possible
to apply the Poincaré-Miranda Theorem [4]. One of these equations is a linear
combination of the equations of system (7) and the other is obtained by considering
X D cos .ˇt/ and Y D sin .ˇt/ and taking into account the trigonometrical identity
X2 C Y 2 � 1 D 0.

Lemma 1 Let Ai , for i D 1; 2, be the matrix obtained by replacing the i th-column
of A by the column matrix C . If det.A2/ 	 det.A/ < 0 for t; � > 0, then system (7) is
equivalent to the system

8
<

:

E.t; �/ D 0;

p.t; �/ D 0;

sin.ˇt/ < 0
(8)

where E.t; �/ D m.t; �/ cos.ˇt/C n.t; �/ sin.ˇt/ and

p.t; �/ D ..m.t; �//2 C .n.t; �//2/= .det.A//2 � 1;

with m.t; �/ D det.A2/ and n.t; �/ D � det.A1/.

In the following proposition, we give conditions for the existence of solution of
system (8).

Proposition 1 For k 2 N and � > 0, let us consider the interval Ik D

lk.�/; uk.�/

�
, where lk.�/ D 2.2k � 1/�=p3�2 C 4, uk.�/ D 4k�=

p
3�2 C 4: If

there exist two real values �1; �2 > 0 such that m.lk.�/; �/ 	 m.uk.�/; �/ > 0 for
all � 2 Œ�1; �2� and p.t; �1/ 	 p.t; �2/ < 0 for every t 2 Ik , then system (7) has a
solution in the open set ˝k D ˚

.t; �/ 2 R2 W lk.�/ < t < uk.�/; �1 < � < �2
�
:

Proof From Lemma 1, for t; � > 0 systems (7) and (8) are equivalent if and only
if the inequality det.A2/ 	 det.A/ < 0 holds. Note that for every .t; �/ 2 ˝k this
inequality is satisfied and so the inequality sin.ˇt/ < 0 holds.

Now, we are going to see that system (8) has solution in ˝k. The change of
variables 
 D �2, � D p

4C 3�2 t=2 transforms this system into the system

8
<

:

QE.�; 
/ WD E
�
2�=

p
4C 3
;

p


� D 0;

Qp.�; 
/ WD p
�
2�=

p
4C 3
;

p


� D 0;

sin.�/ < 0;
(9)

and the open set ˝k into Q̋
k D ..2k � 1/�; 2k�/ � ��21; �22

�
.
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From hypothesis of this proposition, it is obvious that the function QE takes
different signs at the vertical sides of the boundary of Q̋

k . On the other hand,
the function Qp takes different signs at the horizontal sides of the boundary of Q̋

k .
The conclusion of this proposition is followed by applying the Poincaré-Miranda
Theorem. ut

Now, we present a result that will allow us to verify that the conditions (H2) and
(T2) are fulfilled.

Proposition 2 Let f .t/ be a function such that its first derivative is given by

f 0.t/ D c1e
�t� C �

c2 cos .ˇt/C c3 sin .ˇt/
�
e
t�
2 ;

where � > 0 and c1 	 c2 > 0. If there exists t� 2 .0; 2�=ˇ/ such that f .0/ D
f .t�/ D 0, f 0.0/ > 0 and f 0.t�/ < 0, then f .t/ > 0 for every t 2 .0; t�/.
Proof In order to prove this result, it is enough to show that f .t/ ¤ 0 in .0; t�/,
since the conditions f .0/ D 0 and f 0.0/ > 0 holds.

Let us assume that there exists a real value Ot 2 .0; t�/ such that f .Ot / D 0. Then,
f 0.t/ must vanish in at least three values in .0; t�/. The change of variables � D ˇt

transforms the equation f 0.t/ D 0 in h.�/ D �1, with

h.�/ D �
c2 cos.�/C c3 sin.�/

�
e
3��
2ˇ c1

�1;

which must vanish in .0; 2�/ at least in three values. Since h.0/ D c2c
�1
1 > 0,

equation h.�/ D 0 must have at least three solutions in .0; 2�/, what is not possible
and the proof is concluded. ut

4 Existence of a Direct Homoclinic Connection and a Direct
Reversible T-Point Heteroclinic Cycle

In this section, we prove the main theorem of this work by using the results given in
the previous section.

Proof of Theorem 1 First, from Lemma 1 and Proposition 1, we prove that sys-
tems (3) and (6) has at least a solution and so the conditions (H1) and (T1) are
fulfilled. After that, by using Proposition 2, we check that the conditions (H2) and
(T2) are satisfied. As has been mentioned above, if there exists a unique real value
�0 2 .0; 1=2/ such that � � �0 then the condition (T3) follows from Proposition
3.3 in [2]. Note that this interval will contain the parameter values for which the
conditions (H1)–(H2) and (T1)–(T2) are satisfied.

Let us prove that systems (3) and (6) have a solution in the open set

˝ D
n
.t; �/ 2 R2 W 2�=

p
3�2 C 4 < t < 4�=

p
3�2 C 4; 1=2 < � <

p
3
o
:



102 V. Carmona et al.

Both systems can be written as A 	 X D C , with

A D
 
4�2ˇe

3t�
2 �6�3e 3t�2

c.t; �/ d.t; �/

!

and C D
��2ˇ ��2 � .3�2 C 1/et� C 1

�

�2ˇ.�2 C 1/

�

;

(10)

where c.t; �/ D ch.t; �/ WD 4�2ˇe
t�
2 and d.t; �/ D dh.t; �/ WD 2�3e

t�
2 in

system (3) and c.t; �/ D �.2�2 C 1/ ��2ch.t; �/et� and d.t; �/ D ��2dh.t; �/
in system (6). From Lemma 1, system (10) is equivalent to system (8) for every
t; � > 0.

In both system the functionsm.t; �/, defined in Lemma 1, can be written as

m.t; �/ D �4w1.�
2/
�
.�2 C 1/.k1e

t� � 1/C k1�
2et�

�
ek2t�

where the two real values k1, k2 and the function w1 change depending on the system
considered and it holds that k1; k2 > 0 and w1 is strictly positive at .0;C1/. For
every � > 0, it is easy to see that m.t; �/ < 0 and so the inequality m.�=ˇ; �/ 	
m.2�=ˇ; �/ > 0 is fulfilled.

On other hand, in both systems the sign of function p.t; �/, defined in Lemma 1,
coincides with the sign of the function

z.t; �/ D �4k1�6e3t� Ck3.�
2 C 1/2.3�2C 1/e2t� C .�2 C 1/w2.�

4/et� C .�2 C 1/3

where k3 > 0 and the function w2 changes depending on the system considered.
The change of variables 
 D �2, s D exp

�p

t
�

transforms the function z into

Qz.s; 
/ D �4k1
3s3 C k3.
C 1/2.3
C 1/s2 C .
C 1/2w2.

2/s C .
C 1/3;

defined for s � 1 and 
 > 0. Since the derivative of Qz.s; 3/ is negative in R

and Qz.1; 3/ < 0, we get Qz.s; 3/ < 0 for s � 1. On the other hand, we are going
to check that Qz .s; 1=4/ > 0 for certain values of the variable s. It is easy to
see that the derivative of Qz.s; 1=4/ is positive in Œ1; 27�. Taking into account that
Qz.1; 1=4/ > 0 it follows that Qz.s; 1=4/ > 0 for every s 2 Œ1; 27�. Thus, we conclude
that function z.t;

p
3/ < 0 for every t > 0 and that z.t; 1=2/ > 0 for every

t 2 I1 D
h
4�=

p
19; 8�=

p
19
i
, since this interval is contained in Œ1; 27�. From

Proposition 1, systems (3) and (6) have a solution in the open set ˝ .
Now, we prove that the conditions (H2) and (T2) are satisfied. Let us see that

if .t�; ��/ 2 ˝ is a solution of system (10), then x.t I��;m�/ > 0 for every t 2
.0; t�/. In order to do it, we check that the function f .t/ D x.t I��;m�/ satisfies the
hypothesis of Proposition 2. According to the equations of system (1), the equality
f 0.t/ D y.t I��;m�/ holds, where

y.t I��;m�/ D c1e
�t�

� C .c2 cos .ˇ�t/C c3 sin .ˇ�t// e
t�

�

2 ; (11)
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with

ˇ� D
p
4C 3�2�
2

; c1 D 1

3�2� C 1
; c2 D 2�2�c1

�2� C 1
; c3 D

�
3�2� C 2

�
c2

2��ˇ�
:

On the one hand, f .0/ D 0 and f 0.0/ D c1 C c2 > 0, since c1; c2 > 0.
On the other hand, since .t�; ��/ is a solution of system (10), we can obtain the
expressions of the trigonometric functions in terms of t� and ��. By substituting
these expressions in (11), we obtain that f 0.t�/ D .e�t

�

�
� �k1/=.k1��2/ < 0; with

k1 > 0. By applying Lemma 2 we conclude that f .t/ > 0 for every t 2 .0; t�/.
Therefore, the conditions (H2) and (T2) are fulfilled and the proof is concluded. ut

Acknowledgements This work has been partially supported by the Ministerio de Economía y
Competitividad, Plan Nacional I+D+I cofinanced with FEDER funds, in the frame of the projects
MTM2009-07849, MTM2010-20907-C02-01 and MTM2012-31821 and by the Consejería de
Innovación y Ciencia de la Junta de Andalucía (TIC-0130, P08-FQM-03770, P12-FQM-1658).

References

1. Carmona, V., Fernández-Sánchez, F., García-Medina, E., Teruel, A.E.: Existence of homoclinic
connections in continuous piecewise linear systems. Chaos 20(1), 013124 (2010)

2. Carmona, V., Fernández-Sánchez, F., Teruel, A.E.: Existence of a reversible T-point heteroclinic
cycle in a piecewise linear version of the Michelson system. SIAM J. Appl. Dyn. Syst. 7, 1032–
1048 (2008)

3. Ibáñez, S., Rodríguez, J.A.: Shil’nikov configurations in any generic unfolding of the nilpotent
singularity of codimension three on R3. J. Differ. Equ. 208, 147–175 (2005)

4. Kulpa, W.: The Poincaré–Miranda theorem. Am. Math. Mon. 6, 545–550 (1997)
5. Michelson, D.: Steady solutions of the Kuramoto–Sivashinsky equation. Physica D 19, 89–111

(1986)
6. Wilczak, D.: Symmetric heteroclinic connections in the Michelson system: a computer assisted

proof. SIAM J. Appl. Dyn. Syst. 4(3), 489–514 (2005)
7. Wilczak, D.: The existence of Shilnikov homoclinic orbits in the Michelson system: a computer

assisted proof. Found. Comput. Math. 6(4), 495–535 (2006)



Study of Errors in the Integration of the Two
Body Problem Using Generalized Sundman’s
Anomalies

José Antonio López Ortí, Francisco José Marco Castillo, and María José
Martínez Usó

Abstract As is well known, the numerical integration of the two body problem with
constant step presents problems depending on the type of coordinates chosen. It is
usual that errors in Runge–Lenz’s vector cause an artificial and secular precession of
the periaster although the form remains symplectic, theoretically, even when using
symplectic methods. Provided that it is impossible to preserve the exact form and
all the constants of the problem using a numerical method, a possible option is to
make a change in the variable of integration, enabling the errors in the position of
the periaster and in the speed in the apoaster to be minimized for any eccentricity
value between 0 and 1.

The present work considers this casuistry. We provide the errors in norm infinite,
of different quantities such as the Energy, the module of the Angular Moment vector
and the components of Runge–Lenz’s vector, for a large enough number of orbital
revolutions.

1 Introduction

One of the principal problems present in spatial mechanics is the integration of
the equations of motion of an artificial satellite in orbit around the Earth. This
motion can be approached in a geocentric system of coordinates by means of the
equations [2]

d2r

dx2
D �Gm

r3
r � rU C F (1)
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where r is the vector of geocentric position of the satellite, G is the constant of
universal gravitation, m is the terrestrial mass, U is the generating potential of the
conservative perturbing forces, such as the luni-solar and other planets attraction
as well as the forces due to the not sphericity of the Earth and F represents the
non conservative perturbing forces such as the friction with the higher layers of the
atmosphere, etc.

The integration of the previous problem can be carried out by means of analytical
techniques from Gauss’s planetary equations [8] or using numerical techniques, with
the choice of an appropriate numerical method together with a convenient step. The
perturbing forces acting on a satellite are usually small, so a common procedure
in the construction of integrators adapted for this problem is the development of
efficient integrators for the two body problem (this is the not disturbed problem) and
then using them for the resolution of the general problem. The study here presented
is focused on the elliptic motion. In this case, the two major problems appear when
the eccentricity is high. First, the temporary distribution of points on the orbit is very
unequal depending on the region. Second, the orbit has zones with very different
curvatures. To settle these problems and obtain an acceptable precision, we can
use several techniques [14] such as the choice of a very small uniform step, a
variable step, and finally a change of the temporal variable so that a better temporal
distribution of positions is obtained on the orbit near the perigee where the speed
of the satellite is faster without reducing excessively the concentration of positions
in the perigee, where the curvature, as well as in the perigee, is maximum. The
problem of reparameterization of the temporal variable has been studied by several
author [2, 4, 7, 10, 11] using several kinds of anomalies.

In this work we follow this third way, we study especially a family of transfor-
mations derived from dt D K˛r

˛d� [7], called Sundman’s generalized transforma-
tions.

In this section we briefly explain the terminology associated to the two body
problem. A more detailed version can be seen in [1,13]. The two body problem is a
classic celestial mechanics problem regarding to the problem of the motion of two
punctual bodies under the action of their gravitational forces. One of the most usual
ways of studying this problem is by means of the study of the relative motion: the
motion of a body, generally the one of smaller mass, called secondary, with respect
to that of higher mass, called primarily. If r is the vector of position of the secondary
with respect the primary, the motion follows the equation

Rr D �
 r
r3
; 
 D G.mCm0/; r.0/ D r0; Pr.0/ D v0 (2)

It is known that the two body problem satisfies Kepler’s laws. The orbits of the
secondary with respect to the primary are conical, with the primary in the principal
focus, the area swept by the radius vector that links the primary with the secondary
is proportional to the time; and the reason between the cube of the major semiaxis
and the square of the period is constant for an elliptical orbit.
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In the two body problem appear several important magnitudes such as the integral
of the areas C D r � v whose meaning is the double of the areolar speed. On the
other hand, we have also that the vectorA, called the Laplace–Runge–Lenz’s vector
defined as

A D v � C � 

r
r

(3)

is constant. It is usual to represent the vector as A D 
e.
The equation of the relative orbit is obtained computing the scalar multiplication

of r and 
e providing

r D p

1C e cosV
(4)

where p D C2



is the parameter of the conic, e the eccentricity and V the angle

between A and r, known as true anomaly. This angle is measured from A. The A
vector determines the direction of the periaster and its norm is directly related to the
eccentricity e.

In addition, h is constant too. h is the integral of the energy and its value is

h D 1

2
v2 � 


r
(5)

where v2 D v 	 v.
In the case of the elliptical motion (0 � e < 1) the value of the parameter is given

by p D a.1� e2/ and the period P by P D 2�a2
p
1�e2

C
, where a it is the major semi

axis of the ellipse. In this case, we also define the mean motion n as n D 2�
P

and the
mean anomaly as M D n.t � T0/ where T0 is the epoch of the closest approach.

Finally, in the elliptical motion it is also of great interest the so called
eccentric anomaly E related to the mean anomaly M through Kepler’s equation
E � e sinE D M .

If the orbital system of coordinates .x; y/ is considered, with O placed in the
primary focus, OX in the direction of the periaster and OY perpendicular to OX so
that the motion takes place in direct sense, it turns out that r D a.1 � e cosE/,
x D r cosV D a.cosE � e/, y D r sinV D a

p
1 � e2 sinE .

In Sect. 2 we briefly study the generalized family of Sundman’s anomalies, that
we use as temporal variables in the numerical integration of the two body problem.

In Sect. 3 we compute the numerical integration of different examples of the
simple two body problem along 100,000 revolutions. We study the effect in the
integral of the areas and the energy of the ˛ value for different eccentricities. We
also study the dependence of ˛ on the eccentricity and the numerical precession
considering Runge-Lenz’s vector along long periods of time.

In section “Conclusions” we give the main conclusions of the work.
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2 Study of the Family of Sundman Generalized Anomalies

In the year 1912 Sundman [12], introduced the change of temporary variable
dt D Crd� in order to regularize the problem of three bodies. Later Nacozy [6, 11]
extended this transformation to a more general dt D C˛r

˛d� , such family of
transformations includes the mean, eccentric and true anomalies for values of ˛ D
0; 1; 2 and appropriate values of C˛ [9]. From the above mentioned family Lopez [9]
introduces the concept of Sundman’s generalized anomaly �˛ as a function �˛.M/

so that

• dM D K˛.e/r
˛d� , K˛.e/ D nC˛ being n is the mean motion.

• �˛.�/ D � , �˛.2�/ D 2� .
• �˛.M C 2�/ D �˛.M/, �˛.�M/ D ��˛.M/.

To this aim, it is sufficient that

K˛.e/ D 1

2�

Z 2�

0

.1 � e cosE/1�˛dE (6)

whose value is given by [9]

K˛.e/Da�˛
	

.1�e/1�˛F.1
2
; ˛�1; 1I 2e

e � 1
/C.1C e/1�˛F.

1

2
; ˛ � 1; 1I 2e

1C e
/

�

(7)

where F.a; b; cI z/ is the hypergeometrical function.
The function �˛ � M can be developed as Fourier series depending on M and

as Fourier series of �˛ [9], where the development of 1
r
, r sinV y r cosV is also

obtained as Fourier series depending on �˛ . So, a set of developments sufficient for
the analytical treatment of the problem is provided.

With regard to the concerned numerical methods, the differential equations of
motion depend on the t variable; in this way, we have

d

dt
D n

d

dM
D n

K˛.e/
r�˛ d

d�˛
: (8)

Thus, the equations of motion of the two body problem in the orbital coordinates
.x; y/ are

dx

d�˛
D K˛.e/

n
r˛vx;

dvx
d�˛

D �K˛.e/

n
r˛GM

x

r3
(9)

dy

d�˛
D K˛.e/

n
r˛vy;

dvy
d�˛

D �K˛.e/

n
r˛GM

y

r3
: (10)
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The use of an appropriate value for the ˛ parameter improves the efficiency of
the integration in the two body problem. The optimal value for ˛ for each value of
eccentricity can be approached by

˛.e/ D 1:5541e4 � 1:94142e3 C 0:582338e2 C 0:252954eC 1:54422: (11)

The robustness of these value has been tested using a Runge–Kutta of eight order [3]
and Gragg-Bulirsch-Stoer integrators [5].

3 Numerical Results

In the present section we study the motion on the orbital plane of a fictitious
satellite with the same orbital elements that the old HEOSII satellite except for the
eccentricity, that is modified to simulate different cases. As one would expect, low
values of the eccentricity do not provide significantly different results. To test the
efficiency of the integrators for higher values of the eccentricity we consider a high
value e D 0:5 and an extreme value e D 0:95.

First we carry out the integration of a satellite with a high eccentricity e D 0:5,
considering 10,000 orbits, using a classic Runge–Kutta method of fourth order with
1,000 uniform steps. Firstly we employ the mean anomaly ˛ D 0 and secondly
the Nacozy’s intermediate anomaly ˛ D 1:5. In this last case, the results are
improved. Figure 1 shows the magnitude of the variations in the quantities C ,
H , e, !, that are constants at the perigee in the analytical solution of two body
problem, depending on the used anomaly. In each subfigure the OX axis represents
the number of revolutions and the OY axis the value of the quantities C , H , e is the
eccentricity and ! is in radians. For the initial epoch t D 0 C D 188;109:144 and
H D �1:68376245

The integration is repeated for a case with extreme eccentricity e D 0:95. In this
case, the use of the mean anomaly as variable of integration provides absolutely
inadmissible results. We obtain considerably improved results in the case ˛ D 1:9,
shown in Fig. 2. For t D 0 C D 67;823:519.

The long time error in the quantities of the energy H , the areas integral C , the
eccentricity e.t/ and the numerical precession of the perigee ! can be improved
using an appropriate value of ˛. If e D 0:5 and e D 0:95 the dependence of
the results on the value of the chosen parameter ˛ is evident. In order to test the
robustness of the method, these results have been compared with the ones obtained
using a Bulirsch-Stoer method. In both cases the results are similar.
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Fig. 1 Time evolution of 4C , 4H , 4e and 4!. (a) 4C W e D 0:5 ˛ D 0:0. (b) 4C W
e=0.5. ˛ D 1:5. (c) 4H W e D 0:5 ˛ D 0:0. (d) 4H W e D 0:95 ˛ D 1:9. (e) 4e.t/ W e D
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Conclusions
In this work it is remarked that it is of great importance the temporary variable
chosen in the numerical integration of the orbital motion. The use of an
appropriate anomaly from the family of Sundman’s generalized anomalies
improves the preservation along long temporal periods of quantities that must
remain invariant in the two body problem. The first integrals given by the
constant of the areas, the energy, the direction of apoaster and the Laplace–
Runge–Lenz’s vector, which determines the value of the eccentricity, are
slightly sensitive to the value of ˛ for small eccentricities. When the value
of the eccentricity increases, the conservation of these quantities is a much
more delicate problem. For extreme values of the eccentricity e D 0:95 the
results obtained for low values of ˛ are inadmissible. In these cases, the most
adequate values for ˛ are between 1:5 and 1:9.
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Piecewise Linear Analogue of Hopf-Zero
Bifurcation in an Extended BVP Oscillator

Enrique Ponce, Javier Ros, and Elísabet Vela

Abstract In this work, we consider a family of symmetric piecewise linear systems
in three dimensions. By using the analysis done in Ponce et al. (Physica D 250:34–
46, 2013), in which the authors detect and characterize the appearance of limit cycles
for the bifurcation parameter passing through its critical value, we show that Hopf-
zero bifurcation takes place for a certain range of parameters in an extended version
of Bonhoeffer-van der Pol oscillator.

1 Introduction and Preliminary Results

Hopf-zero bifurcation, also called fold-Hopf or Hopf-pitchfork bifurcation, is a
specific bifurcation in 3D vector fields. This bifurcation is characterized by the
simultaneous crossing of three eigenvalues at the imaginary axis of the complex
plane. In a recent paper [6], the authors give for the first time, information about the
general unfolding of such bifurcation in the framework of piecewise linear systems.

Here, we apply the achieved theoretical results to a physically and biologically
interesting oscillator system, the Bonhoeffer-van der Pol (BVP for short) oscillator,
which can be considered as a generalization of both the Duffing oscillator and the
well-known van der Pol oscillator, see [3]. It is pointed out that apart from the usual
period-doubling bifurcations leading to chaotic dynamics, the system also exhibits
resonance or phase-locking phenomena when external constant and periodic forces
are applied.

Thus, we consider the same family of piecewise linear differential systems
studied in [6] written in the Luré form,

Px D F.x/ DARx C b sat.x/; (1)
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where x D .x; y; z/T 2 R
3 and the dot represents the derivative with respect to the

time � . Without loss of generality, we can assume that the matrix AR and the vector
b have the following expressions

AR D
0

@
t �1 0

m 0 �1
d 0 0

1

A and b D
0

@
T � t

M �m
D � d

1

A ; (2)

where t , m, d , T , M and D are the basic parameters of the model, to be later
identified. The scalar function sat stands for the normalized saturation given by

sat.u/ D
8
<

:

1 if u > 1;
u if juj 6 1;

�1 if u < �1:

System (1)–(2) has the following properties:

(a) It is symmetric with respect to the origin, i.e. F.x/ D �F.�x/.
(b) In the region with jxj 6 1 it becomes the homogeneous system

Px D ACx D
0

@
T �1 0

M 0 �1
D 0 0

1

A x.�/: (3)

(c) The coefficients t , m, d and T , M , D are the linear invariants (trace, sum of
principal minors of order two and determinant) of the matrices AR and AC ,
respectively.

Note that AC D AR C beT1 , where e1 D .1; 0; 0/T , and that the considered
family of systems is in the so-called generalized Liénard form, see [1], which is in
fact equivalent to the observable canonical form in control theory [2]. Thus, under
generic conditions for every system of the form (1), after some change of variables,
we can get the matrices in the form given in (2) and (3).

As done in [6], we introduce " as the main initial bifurcation parameter such that
the three eigenvalues of the matrixAC are �" and �"˙!i , where � 2 R and! 2 R

C
are auxiliary fixed parameters. Thus for " D 0 the three eigenvalues are 0 and ˙!i ,
which are located on the imaginary axis of the complex plane, reproducing so the
critical situation associated to the Hopf-zero bifurcation in differentiable dynamics.
Accordingly we choose

T ."/ D .2� � 1/"; M."/ D !2 C �"2.� � 2/; D."/ D �".�2"2 C !2/; (4)

to be assumed hereinafter.
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Note that for " D 0, the solutions of system (3) give rise to orbits that, if they are
completely contained in the central zone, define planar ellipses forming a bounded
set foliated by periodic orbits. This periodic set has the shape of two solid cones
sharing the elliptic disc !2x2 C y2 6 !2 in the plane z D 0 as their common basis,
see Fig. 1.

Regarding this piecewise linear version of the Hopf-zero bifurcation, the follow-
ing results come directly from theorems 3 and 6 in [6], where much more qualitative
and quantitative information can be found. We need first to define the parameter
ı D d � t!2, which characterizes the criticality of the bifurcation.

Theorem 1 Let us consider system (1)–(2) under conditions (4) where it is assumed
� ¤ 0 and ı D d � t!2 ¤ 0 and fixed.

For " D 0 the system (1)–(2) undergoes a tri-zonal limit cycle bifurcation, that
is, from the configuration of periodic orbits that exists in the central zone for " D 0,
one limit cycle appears for �ı" > 0 and j"j sufficiently small. It is symmetric with
respect to the origin and bifurcates from the ellipse


 D f.x; y; z/T 2 R
3 W !2x2 C y2 D !2, z D 0g:

Fig. 1 Structure of the periodic orbits for " D 0 in the central zone. The two solid cones are com-
pletely foliated by periodic orbits surrounding the segment of equilibrium points f.x; 0; x!2/T W
jxj 6 1g
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Furthermore, the bifurcating limit cycle is stable if and only if t < 0, ı > 0 and
d < 0.

In the case ı D d � t!2 D 0 with d ¤ 0, a similar result but requiring a special
consideration, appeared in [6]; furthermore, such a case is analyzed in a biparametric
context in [5].

From the quoted analysis in [6], we must also emphasize the following result
about the possible simultaneous bifurcation of bizonal limit cycles. Note that, due
to the symmetry of the system (1)–(2), bizonal limit cycles will always appear in
pairs, each one crossing one of the planes x D 1 and x D �1, respectively. Thus,
from the periodic orbits tangent to the planes x D ˙1 when " D 0, considering the
two ones contained in the planes z D ˙ Oz, where

Oz D d�!2

d�C ı
;

a limit cycle bifurcate under appropriate hypotheses, as follows.

Theorem 2 Consider system (1)–(2) under conditions (4) and assuming that � ¤ 0,
ı D d � t!2 ¤ 0, d�C ı ¤ 0,

0 < Oz D d�!2

d�C ı
< !2;

and fixed. Under these hypotheses a bizonal limit cycle bifurcation takes place for
the critical value " D 0. Thus, a symmetrical pair of limit cycles appears when
�ı" > 0 and j"j is sufficiently small. They are stable if and only if t < 0 and � > 0,
or t D 0, � > 0 and d.2� � 1/ < 0.

2 Realization in an Extended BVP Oscillator

In this section we consider an extended BVP oscillator, which is consisted of
two capacitors, an inductor, a linear resistor and a nonlinear conductance, as
shown in Fig. 2. To obtain more information about this circuit, see [4], where a
smooth nonlinearity is assumed for the conductance and a rich variety of dynamical
behaviors is found. The circuit equations are as follows:

C
dv1
dt

D �i � g.v1/; C
dv2
dt

D i � v2
r
; L

di

dt
D v1 � v2;

where v1 and v2 are the voltages across the capacitors, the symbol i stands for the
current through the inductance L, and the v � i characteristics of the nonlinear
resistor is written as g.v/ D �av � b sat.cv/, where a; b; c > 0. Note that here we
adopt a PWL version of the nonlinearity considered in [4].
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Fig. 2 The extended BPV oscillator proposed in [4]

After some standard manipulations, the normalized equations of the extended
BVP oscillator become

8
<

:

Px D �z C ˛x C sat.ˇx/;
Py D z � �y;

Pz D x � y;

where the dot represents derivative with respect to the new time � , and

� D 1p
LC
t; ˛ D a

r
L

C
; ˇ D bc

r
L

C
; � D 1

r

r
L

C
;

x D v1
b

r
C

L
; y D v2

b

r
C

L
; z D i

b
:

Making now the change of variables X D ˇx, we obtain the system in its Luré
form,

Px D
0

@
˛ 0 �ˇ
0 �� 1

1=ˇ �1 0

1

A x C
0

@
ˇ

0

0

1

A sat.eT1 x/; (5)

and we will rename X as x in the sequel, for convenience. It is easy to see that
system (5) is observable if and only if ˇ ¤ 0; in particular, since ˇ > 0, it can be
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written in the form (1)–(2), and so we can apply both Theorems 1 and 2. Effectively,
with a linear change of variables given by the matrix

P D 1

ˇ

0

@
ˇ 0 0

�2 � 1 � 1
� 1 0

1

A ;

we can write system (5) in its Liénard form as

Px D
0

@
˛ � � �1 0

2 � ˛� 0 �1
˛ � � 0 0

1

A x C
0

@
ˇ

�ˇ�
ˇ

1

A sat.x/; (6)

where now the trace, the sum of second order principal minors and the determinant
in the different zones are evident, namely

T D ˛ C ˇ � �; t D ˛ � �;
M D 2 � �.˛ C ˇ/; m D 2 � ˛�;
D D ˛ C ˇ � �; d D ˛ � �:

(7)

Note that the origin is always an equilibrium point and that from the last
component of (6) we have the equilibria condition .� � ˛/x D ˇ sat.x/, so that
we have an extra symmetric pair of equilibria whenever

0 < � � ˛ < ˇ: (8)

Following a similar procedure to the one done for the Chua’s circuit in [6], and
looking for the Hopf-pitchfork bifurcation in this model, we need to check not only
the hypotheses of different theorems of [6] but also the feasibility of conditions (4).
That is, we need to impose

E1 WD .2� � 1/"� ˛ � ˇ C � D 0;

E2 WD !2 C �"2.� � 2/� 2C �.˛ C ˇ/ D 0;

E3 WD �".�2"2 C !2/� ˛ � ˇ C � D 0:

(9)

From (7) we observe that T and D are identically equal, what implies that we
cannot move the position of eigenvalues at will. Thus, for instance, the parameter
� cannot be fixed a priori; it must depend instead on " in order to satisfy (9). More
precisely, from (9) by substracting E3 from E1 we have

".�2"2 C !2/C .2� � 1/" D 0;

leading for " ¤ 0 to the condition

"2�2 C 2�C !2 � 1 D 0: (10)



PWL Analogue of Hopf-Zero Bifurcation in an Extended BVP Oscillator 119

Therefore the value of � cannot be arbitrarily chosen, nor constant (as we supposed
before). Indeed, as the only solution of (10) that becomes regular at " D 0, we have

� D �."/ D 1 � !2

1Cp
1 � "2.!2 � 1/

; with �.0/ D 1 � !2
2

; (11)

and consequently we have the condition 2�.0/ < 1. We assume in the sequel the
above choice for �."/ and neglect the third equation of (9), so to be automatically
fulfilled. We also rewrite the second equation by using the above relation, namely

E1 WD Œ2�."/ � 1�" � ˛ � ˇ C � D 0;

E2 WD �1 � 2�."/.1C "2/C �.˛ C ˇ/ D 0:
(12)

In looking for the Hopf-pitchfork bifurcation to take place at " D 0, we need

E0
1 WD �˛ � ˇ C � D 0;

E0
2 WD !2 � 2C �.˛ C ˇ/ D 0;

(13)

leading to the necessary condition

!2 C .˛ C ˇ/2 D 2; (14)

that is, we must assume both ! <
p
2 and ˛ C ˇ <

p
2, so that from (11) we also

obtain �1 < 2�.0/ < 1.
In what follows, we assume ˇ > 0 fixed and we allow ˛ and � to be moved,

writing ˛."/ and �."/ for the functions satisfying (12). From Eqs. (13) we obtain
the following equalities,

˛0 D ˛.0/ D �ˇ C p
2� !2;

�0 D �.0/ D p
2 � !2:

(15)

From (12) and using the equalities of (15), it is easy to check that the required
condition to reproduce the eigenvalues transition is

det

�
@.E1;E2/

@.˛; �/

�

"D0
D
��1 1

�0 ˛0 C ˇ

�

D �˛0 � ˇ � �0 D �2�0 ¤ 0:

Under this last condition, the Implicit Function Theorem assures, for j"j sufficiently
small, the existence of a branch of solutions .�."/; ˛."/; �."// of (9), with ˇ a
fixed parameter, leading to the eigenvalue transition corresponding to the Hopf-
pitchfork bifurcation. From (7), when " vanishes, we obtain t D d D �ˇ, and
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m D !2 C ˇ
p
2 � !2: Thus, for this set of parameters, it is easy to check that the

non-degeneracy condition

ı D d � t!2 D �ˇ �1 � !2
� ¤ 0 (16)

holds if and only if ! ¤ 1, and then we have necessarily �.0/ ¤ 0.
Then, our PWL Hopf-pitchfork bifurcation at " D 0 in system (6) is guaranteed

by Theorem 1 in two cases:

(a) 0 < ! < 1, which requires ˛ C ˇ > 1 and leads to �.0/ > 0, and
(b) 1 < ! <

p
2, which requires ˛ C ˇ < 1 and gives �.0/ < 0.

We know then that the bifurcating tri-zonal limit cycle appears for �ı" > 0, that
is, for �ˇ.1� !2/2" > 0; in short, for " < 0. It is stable if and only if t < 0, d < 0
and ı > 0, that is, if ˇ > 0 and ! > 1. Thus we have a tri-zonal unstable limit cycle
in case (a) and a stable limit cycle in the case (b), appearing for " < 0 in both cases.

To apply Theorem 2, we now compute the value of d�.0/C ı, obtaining

�ˇ1 � !2

2
� ˇ �1 � !2

� D �3ˇ1 � !2

2
;

and the value

d�.0/

d�.0/C ı
D 1

3
:

Thus, the hypotheses of Theorem 2 are fulfilled both in case (a) and (b), obtaining
that two bizonal limit cycles also bifurcate for " < 0. These bizonal limit cycles are
stable for t < 0 and � > 0, being so stable in case (a) and unstable in case (b).

Note that we obtain the simultaneous bifurcation of three limit cycles for " < 0,
and since from (11) we have

T ."/ D Œ2�."/ � 1�" D �!2"CO
�
"2
�
;

it must be concluded that the bifurcation occurs for T > 0, that is for � < ˛ C ˇ.
We must also remark from (8) that then there also appear two isolated equilibrium
points and they are stable if t; d < 0, that is ˇ > 0, andmt �d < 0, which from (7)
leads to m � 1 > 0. This last inequality is equivalent to � < 1=˛; at the bifurcation
values we have �0 D ˛0 C ˇ and so it is fulfilled in the case (b), where ˛0 < 1 is
guaranteed.

From the above analysis, we can summarize our results using � as the main
bifurcation parameter and stating what we have proved.

Theorem 3 Considering system (5) or equivalently system (6) with ˛ > 0, ˇ > 0

and ˛ C ˇ <
p
2, the following statements hold.

(a) For ˛Cˇ�� < 0 the origin is the only equilibrium of the system. Furthermore,
if �.˛ C ˇ/ < 1 then the origin is asymptotically stable.
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(b) For ˛ C ˇ � � D 0 the system undergo a PWL analogue of the Hopf-
zero bifurcation; from the periodic set existing at such critical situation, for
˛ C ˇ � � > 0 and sufficiently small the bifurcation leads to the simultaneous
appearance of three limit cycles (one tri-zonal and two bizonal ones) along with
two additional equilibrium points, being the origin not stable any longer.

Furthermore, if ˛ C ˇ < 1 .1 < ˛ C ˇ <
p
2/, then the bifurcating tri-

zonal limit cycle is stable (unstable) while the bifurcation bizonal limit cycles
are unstable (stable). The bifurcating equilibrium points are stable whenever
˛ C ˇ < 1 and, in the case 1 < ˛ C ˇ <

p
2, when � < 1=˛.

The unfolding of the degeneration appearing for ˛ C ˇ D 1 needs a special
treatment to be done elsewhere.
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On Multiresolution Transforms Based
on Weighted-Least Squares

Francesc Aràndiga and Dionisio F. Yáñez

Abstract This work is devoted to construct Harten’s multiresolution transforms
using Weighted-Least squares for different discretizations. We establish a relation
between the filters obtained using some decimation operators. Some properties and
examples of filters are presented.

1 Introduction: Harten’s Framework for Multiresolution

In the last years different multiresolution (MR) transforms have been developed in
order to design compression algorithms (see [1–3, 6, 7]).

In Harten’s framework for MR is defined by two operators: discretization
operator Dk and reconstruction operator Rk (k implies more the resolution level).

Let beF a functions space and let be V k a vectorial space of discrete signals. The
discretization function Dk W F ! V k is a linear operator that discretizes a function
f 2 F to a signal f k D Dkf . The reconstruction function Rk W V k ! F is a
linear or non linear operator that maps a discrete signal to a continuous function.

The principal relation to these operators is the consistence. Therefore,

DkRk D IV k ; (1)

where IV k is the identity function.
In order to construct a MR scheme we define the decimation operator as Dk�1

k D
Dk�1Rk and the prediction operator as Pk

k�1 D DkRk�1.
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It is easy to prove that the operators satisfy the consistence property (1) then:

Dk�1
k Pk

k�1 D IV k�1 : (2)

However Pk
k�1Dk�1

k f k is an approximation of f k , therefore we can define the
prediction error as:

ek D f k � Pk
k�1f k�1: (3)

The operators Dk�1
k and Pk

k�1 constitute a pyramid MR scheme [5]. If Nk D
dim.V k/ then the error ek have the same dimension that f k , therefore the pair
.f k�1; ek/ represent redundant information that we can eliminate. For this, we apply
the linear operator Dk�1

k (linear) to Eq. (3) and obtain:

Dk�1
k ek D Dk�1

k f k � Dk�1
k Pk

k�1f k�1 D f k�1 � f k�1 D 0; (4)

then ek 2 N .Dk�1
k / D fvjv 2 V k;Dk�1

k v D 0g. We can eliminate by
selecting a set of basis functions, f
kj g, in N .Dk�1

k / and defining a function

Gk W N .Dk�1
k / ! G k , which assigns to any ek 2 N .Dk�1

k / the sequence dk in
the basis, dk D Gke

k , and let QGk be the canonical injection N .Dk�1
k / ,! V k .

Then Gk QGk D IGk ;
QGkGk D IN .Dk�1

k /. There is a one to one correspondence

between f k and .f k�1; d k/: Given f k we evaluate

f k�1 D Dk�1
k f k; d k D Gk.f

k � Pk
k�1Dk�1

k f k/; (5)

and given f k�1 D Dk�1
k f k and dk we reconstruct f k by

Pk
k�1f k�1C QGkdk D Pk

k�1Dk�1
k f kC QGkGk.f k�Pk

k�1Dk�1
k f k/ D f k: (6)

This single stage is iterated on the decimated signal for a MR representation
f N � .f 0; d 1; : : : ; dN /:

The Algorithms to obtain the direct and inverse multiscale transformations are
the following:

Algorithm 1 Encoding f N ! MfN D .f 0; d 1; : : : ; dN /

for k D N; : : : ; 1

f k�1 D Dk�1
k f k

dk D Gk.f
k � Pk

k�1f k�1/
end
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Algorithm 2 Decoding MfN ! M�1MfN

for k D 1; : : : ; N

f k D Pk
k�1f k�1 C QGkdk

end

The Algorithms 1 and 2 have the same structure as Mallat’s decomposition and
reconstruction operators (see [8]). Also, Harten’s framework for MR is related to
the one-step lifting scheme scheme developed by Sweldens et al. (see [9]).

We design a MR scheme using Weighted-Least squares for different discretiza-
tions: point-value, cell-average and hat-based. The stability is ensured by the
linearity of the operator. We present some examples of filters.

1.1 Discretization Operators: Point-Value, Cell-Average
and Hat-Based Discretizations

In this section we define the most used examples of discretization operators,
therefore we explicit the decimation operators. Also, the functions Gk and QGk are
presented. The choice of the discretization operator allow us to explain the nature
of the data, i.e. how the data have been obtained. We begin with the point-value
discretization in Œ0; 1� (in a bounded set ˝ is similar).

Let XN be a uniform partition of Œ0; 1�, then

XN D fxNj gJNjD0; xNj D jhN ; hN D 1=JN ; JN D 2NJ0;

where J0 is some integer (JN < C1). We consider a set of nested dyadic grids
Xk D fxkj gJkjD0, k D N � 1; : : : ; 0, as

xk�1
j D xk2j ; j D 0; : : : ; Jk�1 WD Jk=2:

Therefore, we define the discretization operator as the evaluation of the function
in a point of the grid, i.e.

Dk W F D BŒ0; 1� ! V k f k
j D .Dkf /j D f .xkj /; 0 � j � Jk;

where BŒ0; 1� is the set of bounded real functions in Œ0; 1� and V k is the vector space
of dimension Jk C 1.

As f k�1
j D f .xk�1

j / D f .xk2j / D f k
2j , the decimation operator is defined by:

.Dk�1
k f k/j D f k

2j ; j D 0; : : : ; Jk�1:

As ek 2 N .Dk�1
k / we can define .Gk/i;j D ı2i�1;j and . QGk/i;j D ıi;2j�1.
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The second discretization presented is based in cell-average. This is used in
image compression. Let f 2 L 1 be a function discretized by:

.Dkf /j D
Z

2k�.j � 2kx/f .x/dx; (7)

where � is a compactly weighting function. Similarity, .Dkf /j D .�k 
 f /.xkj /,
with �k.x/ D 2k�.2kx/. For this example, � is the Haar scaling function

!0.x/ D
	
1; � 1

2
� x � 1

2
I

0; in other case.
(8)

Therefore the discretization .Dkf /j is the average over the cell ckj D .2�k.j �
1/; 2�kj /,

.Dkf /j D 2k
Z

ckj

f .x/dx: (9)

It is easy to prove that !0.x/ D !0.2x/ C !0.2x � 1/, therefore f k�1
j D 1

2
f k
2j C

1
2
f k
2j�1. Thus, the decimation operator is defined by

.Dk�1
k f k/j D 1

2
f k
2j C 1

2
f k
2j�1: (10)

In order to construct the operatorsGk and QGk we observe that Dk�1
k ek D 0, then

ek2j D �ek2j�1 and

dkj D .Gke
k/j D ek2j�1;

(
ek2j�1 D . QGkdk/2j�1 D dkj ;

ek2j D . QGkdk/2j D �dkj :
(11)

Finally, if � is the hat function !0 
 !0 D !20 , i. e.

!20.x/ D
8
<

:

1C x; �1 � x � 0;

1 � x; 0 � x � 1;

0; in other case,
(12)

then the decimation operator Dk�1
k is:

!20.x/ D 1

2
!20.2x � 1/C !20.2x/C 1

2
!20 .2x C 1/

.Dk�1
k f k/j D 1

4
f k
2j�1 C 1

2
f k
2j C 1

4
f k
2jC1:
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1 f k2 j
1 f k2 j− 1 1 f k2 j

1 f k2 j− 1 2 f k2 j 1 f k2 j+1
1 f k2 j− 2 3 f k2 j− 1 3 f k2 j 1 f k2 j+1

1 f k2 j− 2 4 f k2 j− 1 6 f k2 j 4 f k2 j+1 1 f k2 j+2
1 f k2 j− 3 5 f k2 j− 2 10 f k2 j− 1 10 f k2 j 5 f k2 j+1 1 f k2 j+2

Fig. 1 Each line n D 0; : : : ; 5, represents the decimation, 2n.Dk�1
k f k/j , when n D 0 is point-

value, n D 1 cell-average and n D 2 hat-based discretization

Following the same strategy than the before examples, Gk and QGk are defined by:

dkj D .Gke
k/j D ek2j�1;

(
ek2j�1 D . QGkdk/2j�1 D dkj ;

ek2j D . QGkdk/2j D � 1
2
.dkj C dkjC1/:

(13)

We can generalize these examples using as function � in Eq. (7):

!nC1
0 D !n0 
 �Œ� 1

2 ;
1
2 �
; !00 D ı; (14)

the it is easy to prove that the coefficients, f˛nl g, can be computed by the recursive
relation:

˛nC1
l D 1

2
.˛nl C ˛nl�1/; ˛0l D ıl;0: (15)

In Fig. 1 the coefficients are calculated. For n D 0 we have point-value, n D 1

cell-average and n D 2 hat-based discretizations.

2 Prediction Operators Based on Weighted-Least Squares

We will use the framework developed in [4]. If f k�1 D ff k�1
j gJk�1

jD0 are the values

of the function in the nodes xk�1
j D jhk�1, therefore f k�1

j D f .xk�1
j /.

For a fitting point xk2j�1, we estimate a curve based only on the nearest

neighborhood determined by a kern functionKs.x
k
2j�1; xk�1

l /. This function assigns

a weight to each f k�1
l and this depends on the distance between xk�1

l and xk2j�1.
The kern functionsKs are indexed by the parameter s � 1which is not necessary

integer and it indicates the number of data taken in the approximation. In order to
simplify the notation we define Qhk D .1 C �/hk , with 0 < � < 1. We introduce
the parameter � because we want to amplify the bandwidth. Therefore, when s is
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an integer we will use 2s points. If we do not introduce this term we would use
2.s � 1/, without loss of generality we take � D 2 	 10�3. This determines the
bandwidth .xk2j�1 � .2s � 1/ Qhk; xk2j�1 C .2s � 1/ Qhk/. We use the data points which
are within this band in the approximation (see more details in [4]). Therefore,

Ks.x
k
2j�1; x/ D !

�
xk2j�1 � x
.2s � 1/ Qhk

�

(16)

where !.u/ � 0 is a weight function that assigns largest weights to observations
close to xk2j�1.

We denote as z.x/ a polynomial of degree r :

z.x/ D
rX

iD0
�ix

i D Ar.x/
T N�r (17)

where Ar.x/ D .1; x; : : : ; xr /T and N�r D .�0; : : : ; �r /
T . We use the function

L.x; y/ D .x � y/2 as a loss-function and weight functions such that !.u/ D
0; juj > 1, we have that

Ks.x
k
2j�1; xk�1

jCl / ¤ 0 if � bsc � l � bsc � 1;

where b	c is the function that rounds a number to the nearest integer less than or
equal to it.

Our problem would be the following:

Oz.x/ D arg min
z.x/2˘r

1 .R/

Jk�1X

lD0
Ks.x

k
2j�1; xk�1

l /L.f k�1
l ; z.xk�1

l //

O�r D . Q�0; : : : ; Q�r/ D arg min
�i2R;iD0;:::;r

Jk�1X

lD0
Ks.x

k
2j�1; xk�1

l /

�

f k�1
l �

rX

iD0
�i .x

k�1
l /i

�2

D arg min
�i2R;iD0;:::;r

bsc�1X

lD�bsc
Ks.x

k
2j�1; xk�1

jCl /
�

f k�1
jCl �

rX

iD0
�i .x

k�1
jCl /i

�2

(18)

and we calculate Oz.xk2j�1/ D Pr
iD0 Q�i.xk2j�1/i , j D 1; : : : ; Jk�1.

Fixed r , j and s, the problem can be rewritten as:
We denote as Nf k�1 D .f k�1

j�bsc; : : : ; f
k�1
jCbsc�1/

T , the matrix 2bsc � .r C 1/
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X D

0

B
B
B
B
@

1 xk�1
j�bsc : : : .xk�1

j�bsc/
r

1 xk�1
j�bscC1 : : : .x

k�1
j�bscC1/

r

:::
:::

: : :
:::

1 xk�1
jCbsc�1 : : : .x

k�1
jCbsc�1/

r

1

C
C
C
C
A

I (19)

and the matrix 2bsc � 2bsc

W D

0

B
B
B
B
B
B
B
@

!
� xk2j�1�xk�1

j�bsc

.2s�1/ Qhk
�

0 : : : 0

0 !
� xk2j�1�xk�1

j�bscC1

.2s�1/ Qhk
�
: : : 0

:::
:::

: : :
:::

0 0 : : : !
� xk2j�1�xk�1

jCbsc�1

.2s�1/ Qhk
�

1

C
C
C
C
C
C
C
A

: (20)

Then, our problem is to calculate N�r D .�0; : : : ; �r /
T such that

X
T
WX N�r D X

T
W Nf k�1; (21)

whose solution is

O�r D .XTWX/�1XTW Nf k�1:

Therefore, we have that Oz.x/ D Ar.x/
T b�r and

.Pk
k�1f k�1/2j�1 D Oz.xk2j�1/ D Ar.x

k
2j�1/T .XTWX/�1XTW Nf k�1

D
bsc�1X

lD�bsc
Ll.x

k
2j�1/f k�1

jCl D
bscX

lD1
ˇl .f

k�1
jCl�1 C f k�1

j�l /
(22)

where Ll.xk2j�1/ D Ar.x
k
2j�1/T .XTWX/�1XTWel , with el D .ıl;i /

bsc�1
iD�bsc and

ˇl D Ljlj.xk2j�1/, l D 1; : : : ; bsc.
Observe that the prediction operator is linear independently of the weight

function chosen, therefore the MR scheme is stable. Also, as the data points are
equally spaced, the filters obtained in each MR level k depending on the weight
function!.u/, the bandwidth s (using 2bsc nodes) and the degree of the polynomials
chosen, r . It is not necessary to solve the problem in each point.

In Table 1 the filters obtained using the weight function !.u/ D .1 � juj2/3,
juj � 1 are showed. We denote it as trwt.
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Table 1 1D filters obtained
in MR based on
weighted-least squares

trwt r D 3

2:5 3.5 4.5 5.5

ˇ5 �0.0052364

ˇ4 �0.0111931 �0.0393571

ˇ3 �0.0279061 �0.0457477 C0.0131481

ˇ2 �1/16 C0.0212183 C0.1419025 C0.1865625

ˇ1 C9/16 C0.5066877 C0.4150384 C0.3448828

2.1 Prediction Operator Based on Weight-Least Squares
for Cell-Average and Hat-Based Discretizations

We obtain the filters for cell-average MR setting via primitive function (see also
[3, 6, 7]). We define it by:

F.x/ D
Z x

0

f .y/dy; f .x/ D d

dx
F.x/:

Then, the relation between ff k
j g and fF k

j g is the following:

F k
j D 2�k

jX

nD0
f k
n ; f k

j D 2k.F k
j � F k

j�1/; j D 1; : : : ; Jk: (23)

Therefore we can define the prediction operator for cell-average discretization using
the operator defined for point-values of the function F.x/ as

.Pk
k�1f k�1/j D 2k

�
A .xkj ; F

k�1/� A .xkj�1; F k�1/
�
; (24)

where A .xk� ; F
k�1/ is an approximation in the point xk� , with � D j � 1; j using

the values fF kg.
If we have calculated an approximation using Weighted-Least square in point-

values context:

(
A .xk2j�1; F k�1/ D Pbsc�1

lD�bsc �lF
k�1
jCl ;

A .xk2j�2; F k�1/ D F k�1
j�1 :

where

��l D �l�1 D ˇl ;

bsc�1X

lD�bsc
�l D 1 l D 1; : : : ; bsc (25)
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Then

.Pk
k�1f k�1/2j�1 D2k�A .xk2j�1; F k�1/� A .xk2j�2; F k�1/

�

D2k.
bsc�1X

lD�bsc
�lF

k�1
jCl � F k�1

j�1 /

D2
� bsc�1X

lD�bsc
�l � 1

� j�bscX

nD0
f k
n C

C2
bsc�1X

mD1

� bsc�1X

lD�bscCm
�l�1

�

f k
j�bscCmC2

bsc�1X

mD0

� bsc�1X

lDm
�l

�

f k
jCm

D
bsc�1X

lD�bsc
O�lf k

jCl :

In Table 2 we can see the relation between filters, with ��l D ��l , with
l D bsc � 1.

In Table 3 the correspondent filters of Table 1 for cell-average discretization are
showed.

Table 2 Relation between the filters using point-value and cell-average discretizations

r D 4 r D 6 r D 8 r D 10

O�4 2�4
O�3 2�3 2.�3 C �4/

O�2 2�2 2.�2 C �3/ 2.�2 C �3 C �4/

O�1 2�1 2.�1 C �2/ 2.�1 C �2 C �3/ 2.�1 C �2 C �3 C �4/

O�0 2.�0 C �1/ 2.�0 C �1 C �2/ 2.�0 C �1 C �2 C �3/ 2.�0 C �1 C �2 C �3 C �4/

Table 3 1D cell-average filters calculated via primitive function

trwt r D 3

2.5 3.5 4.5 5.5
O�4 �0.0104728
O�3 �0.0223863 �0.0891871
O�2 �0.0558122 �0.1138819 �0.0628907
O�1 �1=8 �0.0133755 C0.1699231 C0.3102343
O�0 1 1 1 1
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Table 4 Relation between the filters using point-value and hat-based discretizations

r D 4 r D 6 r D 8 r D 10

O�4 �8�4
O�3 �8�3 4.�2�3 � 4�4/

O�2 �8�2 4.�2�2 � 4�3/ 4.�2�2 � 4�3 � 6�4/

O�1 �8�1 4.�2�1 � 4�2/ 4.�2�1 � 4�2 � 6�3/ 4.�2�1 � 4�2 � 6�3 � 8�4/

Finally, using the same reasoning, we design the filters for hat-based discretiza-
tion. For this, we use the following equations:

H.x/ D
Z x

0

Z y

0

f .z/dzdy; f .x/ D d2

dx2
H.x/; (26)

and relations

Hk
j D 4�k

j�1X

mD0

mX

nD0
f k
n ; f k

j D 4k.Hk
j�1 � 2Hk

j CHk
jC1/; j D 1; : : : ; Jk I

(27)

The filters showed in Table 4 are calculated using that .Pk
k�1f k�1/2j D 2f k�1

j �
1
2
.f k
2j�1 C f k

2jC1/ and Eq. (25).
In both cases, cell-average and hat-based discretizations, it is easy to calculate

the order of the scheme. Also the MR schemes are stable because of the linearity of
the prediction operators obtained.
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Signal Denoising with Harten’s Multiresolution
Using Interpolation and Least Squares Fitting

Francesc Aràndiga and José Jaime Noguera

Abstract Harten’s multiresolution has been successfully applied to the signal
compression using interpolatory reconstructions with nonlinear techniques. Here
we study the applicability of these techniques to remove noise to piecewise smooth
signals. We use two reconstruction types: interpolatory and least squares, and we
introduce ENO and SR nonlinear techniques. The standard methods adaptation to
noisy signals and the comparative of the different schemes are the subject of this
paper.

1 Introduction: Harten’s Multiresolution

Multiscale decompositions are efficient tools for analyzing the information con-
tained in a signal, providing various applications such as signal compression and
denoising. If f L represents a sampling of a signal, f .x/, in the finest resolution
level L, the multiresolution schemes rearrange this information leading to the
decomposition ff 0; e1; e2; : : : ; eLg, where f 0 corresponds to the sampling at the
coarsest resolution level and each sequence ek represents the information which is
necessary to recover f k from f k�1. If f .x/ is smooth the details ek have small
magnitude and we can remove them without a great loss of information, providing
excellent compression capabilities. Harten introduces its notion of multiresolution
in [5] and later generalizes it in [6, 7]. We start revising the basic aspects of this
formulation.

Let us consider V kC1 to be a k C 1 dimension linear space. The discretization
operator, DkC1 W F ! V kC1, allows to obtain the discrete values of a function,
f 2 F, while the reconstruction operator, RkC1 W V kC1 ! F, performs the reverse
operation, and it must satisfy the following property:

DkC1RkC1 D IV kC1 : (1)
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The reconstruction operator can be nonlinear. This allows the introduction of
techniques that improve the approximation in the presence of discontinuities (see
[1]), being this a fundamental difference from linear multiscale decompositions,
such as the wavelet transform (see [3]).

The connection between two levels of resolution (larger k, higher resolution) is
given by two operators: decimation, Dk

kC1 W V kC1 ! V k and prediction, PkC1
k W

V k ! V kC1, that must satisfy the consistency requirement: Dk
kC1P

kC1
k D IV k .

However, for the inverse composition PkC1
k Dk

kC1 ¤ IV kC1 . Then, we define the
prediction error: ekC1 D .IV kC1 �PkC1

k Dk
kC1/vkC1, being vkC1 2 V kC1. If f
kC1

i g
is a basis of the null space of Dk

kC1, we can express ekC1 D P
i d

kC1
i 
kC1

i (see

[1]). We call dkC1
i the scale coefficients at level k.

Finally, decimation operators can be constructed from a sequence of discretiza-
tion operators, provided they are nested (see [1]):

DkC1f D 0 ) Dkf D 0; 8k 2 N; 8f 2 F: (2)

The most commonly used discretizations are point-value and cell average, [1].
Since our goal is noise removal and it is eliminated naturally by cell average
decimation, this will be used in what follows.

1.1 Cell Average Discretization in [0,1]

Consider a set of nested dyadic grids defined in [0,1]:

Xk D fxki gNkiD0; Nk D 2kN0; xki D ihk; hk D 1
Nk
; k D 0; : : : ; L; (3)

where N0 2 N. If F D L1.Œ0; 1�/, the cell average discretization operator DkC1 W
F ! V kC1, is defined in [7] as:

Nf kC1
i WD .DkC1f /i D 1

hkC1

Z x
kC1
i

x
kC1
i�1

f .x/dx; 1 � i � NkC1: (4)

By integral properties is easy to see that Nf k
i D 1

2
. Nf kC1
2i C Nf kC1

2i�1/, defining this way
the decimation operator and satisfying (2).

2 Interpolatory Reconstruction for Cell Averages

We define the r-th order interpolatory reconstruction as:

IC
r�1
nl;nr.x;

Nf k/ D gi .x/; x 2 Œxki�1; xki �; i D 1; : : : ; Nk; (5)
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where gi .x/ is the polynomial of degree r � 1 D nl C nr such that:

1

hk

Z xkiCs

xkiCs�1

gi .x/dx D Nf k
iCs; s D �nl; : : : ; nr; nl; nr 2 N: (6)

Prediction operator is calculated as follows:

.P kC1
k

Nf k/2i�j D
�

DkC1.IC
r�1
nl;nr.xI Nf k//

�

2i�j D 1

hkC1

Z x
kC1
2i�j

x
kC1
2i�j�1

IC
r�1
nl;nr.xI Nf k/dx;

where j D 0; 1. Therefore 1
2
..P kC1

k
Nf k/2i�1 C .P kC1

k
Nf k/2i / D Nf k

i , satisfying (1).
Also ekC1

2i�1 C ekC1
2i D 0 and we can define dkC1

i D ekC1
2i�1, (see [1]).

Then, the multiresolution scheme is:
Codification, Nf L ! f Nf 0; d 1; d 2; : : : ; dLg (Direct Transformation):

8
<

:

For k D L � 1; : : : ; 0
Nf k
i D 1

2
. Nf kC1
2i�1 C Nf kC1

2i /; i D 1; : : : ; Nk;

dkC1
i D Nf kC1

2i�1 � .P kC1
k

Nf k/2i�1; i D 1; : : : ; Nk:

(7)

Decodification, f Nf 0; d 1; d 2; : : : ; dLg ! Nf L (Inverse Transformation):

8
<

:

For k D 0; : : : ; L� 1
Nf kC1
2i�1 D .P kC1

k
Nf k/2i�1 C dkC1

i ; i D 1; : : : ; Nk;Nf kC1
2i D 2 Nf k

i � Nf kC1
2i�1 � .P kC1

k
Nf k/2i � dkC1

i ; i D 1; : : : ; Nk:

(8)

2.1 Nonlinear Techniques

Nonlinear techniques help us to improve the reconstructions in the presence of
discontinuities. Here, we will apply ENO and SR techniques.

2.1.1 ENO Technique

The ENO (Essentially Non-Oscillatory, [8]) interpolation technique consists in
choose for each interval, a stencil that do not cross a discontinuity. This is possible
if the working interval contains no discontinuities. Typically stencil is selected
according to the magnitude of the divided differences. However, if the function is
contaminated by noise, the information provided by divided differences is unreliable
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and we must seek an alternative. Inspired by [9] we use a choice that is not affected
by the presence of noise. If m D nl C nr C 1, we define the measure:

NE2.xi ;m; l/ D
mX

jD1

�
NqLSm�l;l�1

i .xki�.m�l/Cj�1I Nf k; s/ � Nf k
i�.m�l/Cj�1

�2
; (9)

where NqLSnl;nr
i .xI Nf k; s/ is the cell averages least squares polynomial of degree

s � 1 < nl C nr constructed from the stencil fxki�nl; : : : ; x
k
iCnrg.

Now, we take:

NE2.xi ;m; l�/ D min
˚ NE2.xi ;m; 1/; NE2.xi ;m; 2/; : : : ; NE2.xi ;m;m/

�
; (10)

and the ENO stencil for I ki D .xki�1; xki / is
˚
xki�nli

; : : : ; xkiCnri

�
, with:

nli WD m � l�; nri WD l� � 1: (11)

2.1.2 SR Technique

With the technique SR (Subcell Resolution, [2, 4]) we can improve the approxima-
tion even in the interval containing the discontinuity. The idea is to properly extend
the adjacent interpolating polynomials to the point of discontinuity.

First, we define some useful concepts. If f .x/ has a jump in Œxki�1; xki � the
primitive function of f , F.x/ D R x

0
f .y/dy 2 C.Œ0; 1�/ has a corner (a

discontinuity in the derivative) there. Note that the sets f Nf k
i gNkiD1 and F k D fF k

i gNkiD0
are equivalents due to the relations F k

i D F.xki / D R xki
0 f .y/dy D hk

Pi
jD1 Nf k

j

and Nf k
j D 1

hk
.F k

j � F k
j�1/.

If m D nl C nr C 1, the SR technique is summarized as follows:

1. Taking stencils with m nodes, we calculate the ENO stencils by (11).
2. If nli�1 D m � 1 and nliC1 D 0 the stencils for the cells I ki�1 and I kiC1 are

disjoint. We label the cell I ki as suspect of containing a discontinuity.
3. For each suspicious cell we define the function

GIC
i .x/ D qIP

iC1;0;m�1.xIF k; r/ � qIP
i�1;m�1;0.xIF k; r/; (12)

where qIP
j;nl;nr.xIF k; s/ is the polynomial of degree s that interpolates the point

values .xkl ; F
k
l /, j � nl � 1 � l � j C nr.

If GIC
i .x

k
i�1/ 	GIC

i .x
k
i / < 0 we label the cell I ki as singular.
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4. IfGIC
i .x

k
i�1/ 	GIC

i .x
kC1
2i�1/ < 0, the node xkC1

2i�1 lies at the right of the discontinuity.
Then the predicted values are obtained as follows:

.P kC1
k

Nf k/2i D qIP
iC1;0;m�1.x

kC1
2i IF k; r/� qIP

iC1;0;m�1.x
kC1
2i�1IF k; r/

hkC1
; (13)

.P kC1
k

Nf k/2i�1 D 2 Nf ki � .P kC1
k

Nf k/2i : (14)

In the other case, xkC1
2i�1 is located at the left of the discontinuity and:

.P kC1
k

Nf k/2i�1 D qIP
i�1;m�1;0.x

kC1
2i�1IF k; r/ � qIP

i�1;m�1;0.x
kC1
2i�2IF k; r/

hkC1
; (15)

.P kC1
k

Nf k/2i D 2 Nf k
i � .P kC1

k
Nf k/2i�1: (16)

3 Least Squares Reconstruction for Cell Averages

Schemes in this case are similar to those discussed in Sect. 2 but now we use least
squares fitting instead interpolation fitting. We define the r-th order least squares
reconstruction for cell averages as:

LSC
r�1
nl;nr.x;

Nf k/ D gi .x/; x 2 Œxki�1; xki �; i D 1; : : : ; Nk; (17)

where gi .x/ is the polynomial of degree r � 1 < nl C nr such that:

1

hk

Z xk
iCs

xk
iCs�1

gi .x/dx D Nf k
iCs; s D �nl; : : : ; nr; nl; nr 2 N: (18)

The prediction operator is calculated as follows:

.P kC1
k

Nf k/2i�jD
�

DkC1.LSC
r�1
nl;nr.xI Nf k//

�

2i�j D 1

hkC1

Z x
kC1
2i�j

x
kC1
2i�j�1

LSC
r�1
nl;nr.xI Nf k/dx;

with j D 0; 1. Note that we don’t have any interpolation condition and (1) is
not fulfilled because of 1

2
..P kC1

k
Nf k/2i�1 C .P kC1

k
Nf k/2i / ¤ Nf k

i . At this point we
suggest two options for (8):

• Forcing consistency: Nf kC1
2i D 2 Nf ki � Nf kC1

2i�1 . We denote it as LSC � C .
• Losing consistency: Nf kC1

2i D .P kC1
k

Nf k/2i � dkC1
i . We denote it as LSC � NC.
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3.1 Nonlinear Techniques

We can apply the nonlinear techniques similarly to the exposed in Sect. 2.1, but
considering the following adaptations:

• In (9), s � r is allowed.
• The G function, (12), in this case is defined as follows:

GLSC
i .x/ D qLSP

iC1;0;m�1.xIF k; r/� qLSP
i�1;m�1;0.xIF k; r/; (19)

where qLSP
j;nl;nr.xIF k; s/ is the s-th degree polynomial that approximates in the

least squares sense to the point values .xkl ; F
k
l / for j � nl � 1 � l � j C nr.

Since there are no interpolatory conditions, we can’t express GLSC
i in terms of

f Nf k
i g. To apply the SR technique for this reconstruction, we use the function

GIC
i .x/ to decide whether we are facing a singular cell. Obviously we need to

use in GIC
i .x/ polynomials with the same length that LSC.

4 Numerical Experiments

In this section we present some numerical experiments for denoising applying the
reconstructions studied in this paper.

We define the function:

g.x/ D
	 � 4x�3

5
sin. 3

2
�. 4x�3

5
/2/ if 0 � x < 3�

29
;

jsin2�.4x�3
5
/C �

1000
j if 3�

29
� x � 1:

(20)

The work function is of the following type: f .x/ D g.x/ C n.x/; where g.x/
is defined in (20) and n.x/ is some white Gaussian noise.1 To measure the noise of
the signal, we consider the Signal-to-Noise Ratio, expressed in dB: SNR.g; f / WD
10log10.

PN
iD1 g2i =

PN
iD1.gi � fi /2/, where N is the signal length.

The experiment consists of: we fix SNR D 25 dB, and we consider a discretiza-
tion with NL D 26CL nodes, obtaining f Nf L

i gNLiD1. First we decimate L levels for
cell averages to get f Nf 0i g64iD1. Then we apply L levels of an inverse transform (with
dki D 0 8i; k) using different reconstructions, obtaining f Of Li gNLiD1. For evaluate the
denoising goodness we use the Root Mean Squared Error:

RMSE. Of L; NgL/ D
v
u
u
t 1

NL

NLX

iD1
. Of L
i � NgLi /2: (21)

1Generated using the function awgn of MATLAB R�.
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Fig. 1 Denoising with IC. Errors: (a) RMSE = 0.02196; (b) RMSE = 0.03206;
(c) RMSE = 0.03526; (d) RMSE = 0.07537

In Fig. 1 we can see the results that we obtain with IC C SR reconstruction. In
(a) (L D 3) we see that the noise removal is poor, due to we use few levels. Gibbs
phenomenon does not appear, thereby nonlinear techniques achieve their objective.
In (b) we increase the number of levels,L D 5, obtaining an efficient noise removal.
In Fig. 1c, d we show what happens if we raise the degree of IC. We can see that the
results are worse because we are using high degree polynomials with noisy data and
we obtain values with lower smoothness. The oscillations are amplified by raising
levels. Then we conclude that the degree of IC must be low.

In Fig. 2 we use least squares reconstruction for cell averages with SR technique.
In (a) we use LSC � C and, as expected, we do not get good results because by
forcing consistency we create oscillations which are transmitted and extended to
higher levels. However, if we use LSC � NC, with the same parameters, we obtain
smoother results (Fig. 2b). There is a problem with the non consistency: we lose the
connection between two consecutive levels and we could lose the correct location
of discontinuities, as we can see in Fig. 2c. Nevertheless there is an advantage with
respect to IC reconstruction: we can see in (d), only with three levels, that we achieve
remove noise efficiently. This fact is confirmed by the RMSE (shown in the figure
legend). For that, we need to use longer stencils and also we improve the reliability
of discontinuity detection. Remember that we can’t do it for IC because it involves
an increase of the degree and therefore worst reconstructions. Also using few levels
we reduce the computational cost and the effects of non consistency.
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Fig. 2 Denoising with LS. Errors: (a) RMSE = 0.07252; (b) RMSE = 0.03560;
(c) RMSE = 0.06847; (d) RMSE = 0.02271

Conclusions
We have studied the applicability of the Harten’s multiresolution with non-
linear techniques (ENO and SR) to the signal denoise, obtaining adaptations
to the standard schemes (using NE2 instead of divided differences for locating
discontinuities). We have used two reconstructions types: interpolatory and
least squares, and the latter with some adaptations (consistent and non
consistent) to improve the denoise.

Based on our numerical experiments we can conclude that with the IC
reconstruction we can remove efficiently noise and for it we must use low
degrees and high levels. If we use LSC reconstruction we must use a non
consistent version, causing that we lose the exact discontinuity position.
However, in some cases this may be advantageous over the interpolatory
reconstruction. For example, if there are insufficient number of initial data
to apply a large number of levels we can eliminate a significant amount of
noise using few levels of LSC reconstruction.

As future work, we plan to design consistent reconstructions combining
interpolation and least squares, in order to take advantage of both reconstruc-
tions.



Harten’s Multiresolution Denoising 145

References

1. Aràndiga, F., Donat, R.: Nonlinear multiscale decompositions: the approach of A. Harten.
Numer. Algorithms. 23, 175–216 (2000)

2. Aràndiga, F., Cohen, A., Donat, R., Dyn, N.: Interpolation and approximation of piecewise
smooth functions. SIAM J. Numer. Anal. 43(1), 41–57 (2005)

3. Daubechies, I.: Ten lectures on Wavelets. CBMS-NSF Regional Conference Series in Applied
Mathematics. SIAM, Philadelphia (1993)

4. Harten, A.: ENO schemes with subcell resolution. J. Comput. Phys. 83, 148–184 (1989)
5. Harten, A.: Discrete multiresolution analysis and generalized wavelets. J. Appl. Numer. Math.

12, 153–192 (1993)
6. Harten, A.: Multiresolution representation of data II. Technical report, UCLA CAM report, n.

93–13 (1993)
7. Harten, A.: Multiresolution representation of data: a general framework. SIAM J. Numer. Anal.

33(3), 1205–1256 (1996)
8. Harten, A., Engquist, B., Osher, S., Chakravarthy, S.: Uniformly high order accurate essentially

non-oscillatory schemes III. J. Comput. Phys. 71, 231–303 (1987)
9. Mizrachi, D.: Remoivong noise from discontinous data. PhD. thesis, School of Mathematical

Sciences, Tel-Aviv University (1991)



The Wavelet Scalogram in the Study of Time
Series

Vicente J. Bolós and Rafael Benítez

Abstract Wavelet theory has been proved to be a useful tool in the study of time
series. Specifically, the scalogram allows the detection of the most representative
scales (or frequencies) of a signal. In this work, we present the scalogram as a tool
for studying some aspects of a given signal. Firstly, we introduce a parameter called
scale index, interpreted as a measure of the degree of the signal’s non-periodicity.
In this way, it can complement the maximal Lyapunov exponent method for
determining chaos transitions of a given dynamical system. Secondly, we introduce
a method for comparing different scalograms. This can be applied for determining
if two time series follow similar patterns.

1 Introduction

A wavelet function (or wavelet, for short), is a function  2 L2 .R/ with zero
average (i.e.

R

R
 D 0), normalized (i.e. k k D 1), and centered in the

neighborhood of t D 0 (see [1] for other properties). Scaling  by a positive
quantity s, and translating it by u 2 R, we define a family of time-frequency atoms,
 u;s , as

 u;s .t/ WD 1p
s
 

�
t � u

s

�

; u 2 R; s > 0: (1)
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Given f 2 L2 .R/, the continuous wavelet transform (CWT) of f at time u and
scale s is defined as

Wf .u; s/ WD hf; u;si D
Z C1

�1
f .t/ �

u;s .t/dt; (2)

and it provides the frequency component (or details) of f corresponding to the scale
s and time location u.

The revolution of wavelet theory comes precisely from this fact: the two
parameters (time u and scale s) of the CWT in (2) make possible the study of
a signal in both domains (time and frequency) simultaneously, with a resolution
that depends on the scale of interest. According to these considerations, the CWT
provides a time-frequency decomposition of f in the so called time-frequency plane
[2, Figure 1]. This method, as it is discussed in [3], is more accurate and efficient
than other techniques such as the windowed Fourier transform (WFT).

The scalogram of f is defined by the function

S .s/ WD kWf .s; u/ k D
�Z C1

�1
jWf .s; u/ j2du

� 1
2

; (3)

representing the energy ofWf at a scale s. Obviously,S .s/ � 0 for all scale s, and
if S .s/ > 0 we will say that the signal f has details at scale s. Thus, the scalogram
allows the detection of the most representative scales (or frequencies) of a signal,
that is, the scales that contribute the most to the total energy of the signal.

If we are only interested in a given time interval Œt0; t1�, we can define the
corresponding windowed scalogram by

SŒt0;t1� .s/ WD kWf .s; u/ kŒt0;t1� D
�Z t1

t0

jWf .s; u/ j2du

� 1
2

: (4)

2 Analysis of Compactly Supported Discrete Signals

In practice, to make a signal f suitable for a numerical study, we have to

(i) Consider that it is defined over a finite time interval I D Œa; b�, and
(ii) Sample it to get a discrete set of data.

Regarding the first point, boundary problems arise if the support of  u;s overlaps
t D a or t D b. There are several methods for avoiding these problems, like using
periodic wavelets, folded wavelets or boundary wavelets (see [1]); however, these
methods either produce large amplitude coefficients at the boundary or complicate
the calculations. So, if the wavelet function  is compactly supported and the
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interval I is big enough, the simplest solution is to study only those wavelet
coefficients that are not affected by boundary effects.

Taking into account the considerations mentioned above, the inner scalogram of
f at a scale s is defined by

S inner .s/ WD SJ.s/ .s/ D kWf .s; u/ kJ.s/ D
 Z d.s/

c.s/

jWf .s; u/ j2du

! 1
2

; (5)

where J.s/ D Œc.s/; d.s/� � I is the maximal subinterval in I for which the support
of  u;s is included in I for all u 2 J.s/. Obviously, the length of I must be big
enough for J.s/ not to be empty or too small, i.e. b � a 
 sl , where l is the length
of the support of  .

Since the length of J.s/ depends on the scale s, the values of the inner scalogram
at different scales cannot be compared. To avoid this problem, we can normalize the
inner scalogram:

S
inner

.s/ D S inner .s/

.d.s/ � c.s// 12
: (6)

With respect to the sampling of the signal, any discrete signal can be analyzed
in a continuous way using a piecewise constant interpolation. In this way, the CWT
provides a scalogram with a better resolution than the discrete wavelet transform
(DWT), that considers dyadic levels instead of continuous scales (see [1]).

3 The Scale Index

Although there is no universally accepted definition of chaos, a bounded signal is
considered chaotic if (see [4])

(a) It shows sensitive dependence on the initial conditions, and
(b1) It is non-periodic, or
(b2) It does not converge to a periodic orbit.

Usually, chaos transitions in bifurcation diagrams are numerically detected by
means of the Maximal Lyapunov Exponent (MLE). Roughly speaking, Lyapunov
exponents characterize the rate of separation of initially nearby orbits and a system
is thus considered chaotic if the MLE is positive. Therefore, the MLE technique is
focused on the sensitivity to initial conditions, i.e. on criterion (a).

As to criteria (b1) and (b2), Fourier analysis can be used for studying non-
periodicity. However chaotic signals may be highly non-stationary, which makes
wavelets more suitable (as it is discussed in [5]).

We are going to introduce a new parameter, the scale index, that will give us
information about the degree of non-periodicity of a signal. To this end we are going
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to state first some results for the wavelet analysis of periodic functions (for further
reading please refer to [1] and references therein).

The next theorem gives us a criterion for distinguishing between periodic and
non-periodic signals. It ensures that if a signal f has details at every scale (i.e. the
scalogram of f does not vanish at any scale), then it is non-periodic.

Theorem 1 Let f W R ! C be a T -periodic function in L2 .Œ0; T �/, and let  be a
compactly supported wavelet. Then Wf .u; 2T / D 0 for all u 2 R.

Note that if f W R ! C is a T -periodic function in L2 .Œ0; T �/, and  is a
compactly supported wavelet, thenWf .u; s/ is well-defined for u 2 R and s 2 R

C,
although f is not in L2 .R/. For a detailed proof see [2].

From this result we obtain the following corollary.

Corollary 1 Let f W I D Œa; b� ! C a T -periodic function in L2 .Œa; aC T �/.
If  is a compactly supported wavelet, then the (normalized) inner scalogram of f
at scale 2T is zero.

These results constitute a valuable tool for detecting periodic and non-periodic
signals, because a signal with details at every scale must be non-periodic (see [2,
Figure 2]). Note that in order to detect numerically wether a signal tends to be
periodic, we have to analyze its scalogram throughout a relatively wide time range.

Moreover, since the scalogram of a T -periodic signal vanishes at all 2kT scales
(for all k 2 N), it is sufficient to analyze only scales greater than a fundamental
scale s0. Thus, a signal which has details at an arbitrarily large scale is non-periodic.

In practice, we shall only study the scalogram on a finite interval Œs0; s1�. The
most representative scale of a signal f will be the scale smax for which the scalogram
reaches its maximum value. If the scalogram S .s/ never becomes too small
compared to S .smax/ for s > smax, then the signal is “numerically non-periodic” in
Œs0; s1�.

Taking into account these considerations, we will define the scale index of f in
the scale interval Œs0; s1� as the quotient

iscale WD S .smin/

S .smax/
; (7)

where smax is the smallest scale such that S .s/ � S .smax/ for all s 2 Œs0; s1�,
and smin the smallest scale such that S .smin/ � S .s/ for all s 2 Œsmax; s1�. Note
that for compactly supported signals only the normalized inner scalogram will be
considered.

From its definition, the scale index iscale is such that 0 � iscale � 1 and it can
be interpreted as a measure of the degree of non-periodicity of the signal: the scale
index will be zero (or numerically close to zero) for periodic signals and close to
one for highly non-periodic signals.
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The selection of the scale interval Œs0; s1� is an important issue in the scalogram
analysis. Since the non-periodic character of a signal is given by its behavior at large
scales, there is no need for s0 to be very small. In general, we can choose s0 such
that smax D s0C� where � is positive and close to zero. On the other hand, s1 should
be large enough for detecting significant periodicities. But as s1 increases, so does
the computational cost. In fact, the larger s1 is, the wider the time span should be
where the signal is analyzed, in order to maintain the accuracy of the normalized
inner scalogram.

Scales smin and smax determine the pattern that the scalogram follows. For
example, in non-periodic signals smin can be regarded as the “least non-periodic
scale”. Moreover, if smin ' s1, then the scalogram decreases at large scales and
s1 should be increased in order to distinguish between a non-periodic signal and a
periodic signal with a very large period.

In [2] there is a complete study of the scale index versus MLE and bifurcation
diagrams in some particular chaotic systems: the forced Bonhoeffer-van der Pol
(BvP) oscillator, the Henon map, and the logistic map. It is shown that there is a
correspondence between the chaotic regions of the bifurcation diagram, the regions
where the MLE is positive, and the regions where iscale is positive. Moreover, the
scale index detects sudden expansions or contractions of the size of the attractor in
BvP that are not detected by the MLE.

In spite of being a relatively new-developed method, the scale index has
been already applied in a wide range of different areas such as the analysis of
precipitation time series in meteorology [6], the study of cardiac dynamics in
Electrical Engineering [7], speech signals [8] and pseudo random number generators
in Complexity Theory and Cryptography [9].

4 Scalogram Comparisons

In this section, we are going to introduce a method for comparing the scalograms of
two time series. This can be a complement to some other tools as the cross wavelet
power or the wavelet coherence introduced in [10].

First, we are going to make some considerations. Any function f 2 L2 .R/ can
be written as

f D
X

k;z2Z
dk;z k;z; (8)

where dk;z WD hf; k;zi (that are called wavelet or detail coefficients) and  k;z is the
dyadic version of (1), i.e.

 k;z.t/ WD 1p
2z
 

�
t � 2zk

2z

�

; (9)
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for all k; z 2 Z. So, in order to make fair comparisons, it is convenient to
re-distribute homogeneously the scales that contribute to the decomposition of f .
Hence, we re-scale the scalogram in a dyadic way

OS .z/ WD S .2z/; (10)

where z 2 Z.
Given two signals f; f 0, we can compare their re-scaled scalograms OS ; OS 0 in

order to know if they follow similar patterns. We can make an absolute comparison,
but it only has sense if both signals use the same measure units or the scalograms
have been normalized in some manner. So, if we work with finite time series from
t0 to t1, then it is recommended to study only the finite scale interval Œs0; s1� where
s0 is two times the time step and s1 is the quotient of the length of the time series
and the size of the original wavelet  ; then we can normalize the scalograms and
make a relative comparison given by

�
�
�
�
�

OS
k OS k �

OS 0

k OS 0k

�
�
�
�
�
; (11)

where

k OS k D k OS kŒz0;z1� D
�Z z1

z0

j OS .z/j2dz

� 1
2

;

with Œz0; z1� is the corresponding dyadic scale interval in which we make the study
(i.e. s0 D 2z0 and s1 D 2z1); analogously for OS 0.

Finally, we can also compare re-scaled windowed scalograms in a given time
subinterval of Œt0; t1� (in order to locate the study in time) and only for a given
scale subinterval of Œs0; s1�. Using this technique, we can compute the scalogram
difference centered in a determined time and scale, and so it could be an alternative
to the cross wavelet power or the wavelet coherence introduced in [10].

This method for comparing scalograms can be interpreted as a measure of the
similarity between the patterns of two signals, because two signals with similar
scalograms follow “similar patterns”. But, what does it mean “similar patterns”?
The next result clarifies the matter.

Proposition 1 Given a signal f 2 L2.R/, we have that ˙f .t C c1/C c2 has the
same scalogram as f , where c1; c2 2 R. Moreover, if the wavelet is antisymmetric,
then we can affirm that ˙f .˙t C c1/C c2 has the same scalogram as f .

Proof The square of the scalogram of ˙f .t C c1/C c2 is given by

Z C1

�1

ˇ
ˇ
ˇ
ˇ
ˇ

Z C1

�1
.˙f .t C c1/C c2/  

�
u;s.t/dt

ˇ
ˇ
ˇ
ˇ
ˇ

2

du D
Z C1

�1

ˇ
ˇ
ˇ
ˇ
ˇ

Z C1

�1
f .t C c1/ 

�
u;s.t/dt

ˇ
ˇ
ˇ
ˇ
ˇ

2

du;

(12)
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because
R C1

�1 c2 
�
u;s .t/dt D 0. Then, making the change of variable t 0 D t C c1 in

(12) and renaming t 0 as t , we have

Z C1

�1

ˇ
ˇ
ˇ
ˇ

Z C1

�1
f .t/ �

u;s .t � c1/dt

ˇ
ˇ
ˇ
ˇ

2

du: (13)

Since  u;s .t � c1/ D  uCc1;s.t/, making the change of variable u0 D u C c1 in (13)
and renaming u0 as u, we obtain the expression of the square of the scalogram of f .

On the other hand, if  is antisymmetric, then the square of the scalogram of
f .�t/ is given by

Z C1

�1

ˇ
ˇ
ˇ
ˇ

Z C1

�1
f .�t/ �

u;s .t/dt

ˇ
ˇ
ˇ
ˇ

2

du: (14)

Making the change of variable t 0 D �t in (14) and renaming t 0 as t , we have

Z C1

�1

ˇ
ˇ
ˇ
ˇ

Z C1

�1
f .t/ �

u;s .�t/dt
ˇ
ˇ
ˇ
ˇ

2

du: (15)

Moreover, since  is antisymmetric, it is easy to prove that  u;s .�t/ D � �u;s .t/;
then, making the change of variable u0 D �u in (15) and renaming u0 as u, we obtain
the expression of the square of the scalogram of f . ut

Note that, in general, a wavelet is “more or less” antisymmetric; so, we can
conclude that the scalogram of ˙f .˙t C c1/C c2 is very similar to the scalogram
of f . Moreover, it is easy to prove that if we consider all the possible windowed
scalograms, only a signal of the form

˙f .t/C c; c 2 R

has the same windowed scalograms (all of them) as f .
In conclusion, this method for comparing scalograms measures the similarity

between the patterns of two signals taking into account that f and ˙f .t/ C c

follow the same patterns. This also happens with some other tools, e.g. the wavelet
coherence.

A work related with scalograms comparisons, their interpretations, applications
and the relations with other tools like the wavelet coherence is currently being
developed.
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A Simplified Wildland Fire Model Applied
to a Real Case

Luis Ferragut, María Isabel Asensio, José Manuel Cascón, and Diego Prieto

Abstract We present a simplified 2D wildland fire model with some 3D effects,
which takes into account convection and radiation. The topography, the fuel load
and type and the meteorological data required by the model (temperature, humidity
and wind) are provided via GIS. The wind conditions can be considered a given
data in all domain, or can be computed by the wind model developed by authors.
Given the fire ignition location and time the model provide the state of landscape
for several time steps, allowing to establish the perimeter of the fire at different
instants. By modifying the fuel load and type raster files, fire suppression tactics
can be incorporated in order to adapt the simulation to the real situation, since the
simplified model and its numerical solution allow a computational time much less
than real time.

1 Introduction

Wildland fire is the complicated combination of energy (heat) released due to
chemical reactions in the process of combustion and the transport of that energy
to surrounding unburnt fuel and its subsequent ignition, and occurs on scales
ranging from millimeters up to kilometers, that makes the modelling of wildland
fire behavior a real complex problem.
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In recent years, the advances in computational power and the increase in the
capabilities of spatial information technologies (remote sensing and geographic
information systems) offer great potential for the effective simulation of wildland
fire behavior. This has re-intensified the interest in the fire behavior modelling as
can be appreciated in the diverse and interesting reviews that have appeared recently
on wildland fire modelling [10, 13–15]. Most of these reviews classify fire models
according to the nature of their construction as being: physical, semi-physical or
empirical, although the nomenclature varies. Some authors [13] define the physical
(theoretical) models as those that attempt to represent both the physics and the
chemistry of fire spread; and quasi-physical models as those that attempt to represent
only the physics.

The model we present in this paper is a simplified quasi-physical model based
on the fundamental physics of combustion and fire spread. The model takes into
account the three generally accepted forms of heat transfer: conduction, convection
and radiation. The most important physical processes driving the heat transfer in a
wildland fire are convection and radiation. In low wind conditions, the dominating
mechanism is radiation [16], but in conditions where wind is not insignificant, it is
convection that dominates [17]. However, it is not reasonable to assume one works
without the other and thus both processes must be considered, though it is possible
to avoid diffusion.

Based on previous fire models developed by the present authors, [1, 6, 7]
we present a simplified two-dimensional wildland fire model with some three-
dimensional effects. The model takes into account: the moisture content by using an
enthalpy multivalued operator, the energy convected by the gas pyrolyzed through
the elementary control volume, the energy lost in the vertical direction and the
radiation.

The model also takes into account the topography of the surface where the fire
takes place and the fuel load and type. This information is provided by a GIS as
well as the meteorological data required by the model: temperature, humidity and
wind (direction and velocity) from any meteorological service. The local adjustment
wind field model developed by the present authors [2, 8] provides a wind field
adjusted to the given meteorological data (wind direction and velocity at several
points).

Given the fire ignition location and time, the fire model provides the state of
landscape (burning, burnt and unburnt area) for several time steps, allowing to
establish the perimeter of the fire at different instants. By modifying the fuel load
and type raster files, fire suppression tactics can be incorporated in the location
and time desired in order to adapt the simulation to the real situation, since the
simplified model and its numerical solution allow a computational time much less
than real time. The numerical solution proposed for this model tries to reduce
the computational time defining the actives nodes and making use of parallel
computation.
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The outlines of the paper are as follows: In Sect. 2 we describe the fire model,
in Sect. 3 we establish the numerical scheme and in Sect. 4 we report on numerical
experiments to simulate a real fire that happened in an area covered by shrub and
grass near Salamanca (Spain) in September, 2012. Finally some conclusions and
ideas that are being developed at present are given in section “Conclusions”.

2 The Fire Model

Following the models in [5] and [9], and previous models developed by the present
authors as the model with local radiation in [1], the model with a multivalued
operator for the enthalpy in [6] and the model with no local radiation in [7],
we present here a simplified two-dimensional model with some three-dimensional
effects. This model takes into account: the moisture content by using an enthalpy
multivalued operator, the energy convected by the gas pyrolyzed through the
elementary control volume, the energy lost in the vertical direction and the radiation
from the flames above the surface where the fire takes place.

Let d D Œ0; lx� � Œ0; ly� � R
2 be a rectangle representing the projection of the

surface S where the fire takes place, defined by the mapping

S W d 7�! R
3

.x; y/ 7�! .x; y; h.x; y//:

We will assume that vegetation can be represented by a given fuel load
M; .kg m�2/ together with a moisture content Mv, (kg of water=kg of dry fuel).
M and Mv are scalar functions defined on d . Additionally we will assume that the
height F of the flames in a particular fire is known and bounded by ı.

In order to take into account some three-dimensional effects, and particularly
the radiation from the flames above the surface S , we will consider the following
three-dimensional domain,

DDf.x; y; z/W x; y 2 d; h.x; y/< z<h.x; y/C ıg:

The governing equations for the fire model are based on the energy and mass
conservation equation in the surface S , and the radiation equation in D. The non-
dimensional simplified equations for the fire model are,

@�e C ˇv 	 re C ˛u D r in S � 2 .0; �max/; (1)

e 2 G.u/ in S � 2 .0; �max/; (2)

@� c D �g.u/c in S � 2 .0; �max/: (3)
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We complete the problem with homogeneous Dirichlet boundary conditions and the
following initial conditions,

u.x; y; 0/ D u0.x; y/ in S; (4)

c.x; y; 0/ D c0.x; y/ in S: (5)

The unknowns e D E
MCT

1

, non-dimensional enthalpy, u D T�T
1

T
1

, non-

dimensional temperature of the solid fuel and c D M
M0

, mass fraction of solid fuel,
are bidimensional variables defined in S � .0; �max/. The physical quantities E , T
andM are enthalpy, temperature of solid fuel and fuel load respectively, besides the
heat capacity of solid fuel C , a reference temperature T1 and M0 the initial fuel
load.

The non-dimensional enthalpy e is an element of a multivalued maximal
monotone operatorG [4], given by:

G.u/ D

8
ˆ̂
<

ˆ̂
:

u if u < uv

Œuv ; uv C �v� if u D uv

u C �v if uv < u < up
Œup C �v ; 1� if u D up

where uv and up are the non-dimensional evaporation temperature of the water
and the non-dimensional pyrolysis temperature of the solid fuel, respectively. The
quantity �v is the non-dimensional evaporation heat related to the evaporation latent
heat 	v

�v D Mv	v

CT1
:

It should be noticed that in the burnt zone the multivalued operator does not
exactly represent the physical phenomena as the water vapor is no longer in the
porous medium. This drawback can be circumvented setting �v D 0 in the burnt
area. For more details about the multivalued operator see [6].

The convective term ˇv	re represents the energy convected by the gas pyrolyzed
through the elementary control volume, where the wind velocity v is re-scaled by
a correction factor ˇ / .MCT/g

.MCT/s
. The surface wind velocity can be considered given

data or can be computed by means of the wind model developed by authors in [2,8].
The coupling of this convection model with a fire model was detailed by authors
in [6].

The term ˛u represents the energy loss by natural convection in the vertical
direction. The parameter ˛ is related to physical quantities by ˛ D HŒt�

MC , where
H is the natural convection coefficient.
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The right hand side of Eq. (3) represents the lost of solid fuel due to combustion,
so g.u/ D 0 when u < up , and g.u/ is constant when u D up where the constant is
inverse proportional to the half life time of combustion of each type of fuel.

The right hand side of Eq. (1) describes the thermal radiation reaching the surface
S from the flame above the layer. The intensity of radiation is defined as the
radiation energy passing through an area per unit time, per unit of projected area
and per unit of solid angle. The projected area is formed by taking the area that the
energy is passing through and projecting its normal to the direction of travel. The
unit elemental solid angle is centered about the direction of travel and has its origin
at the area element.

After non-dimensionalization, the radiation equations in the direction ˝ can be
written as

˝ 	 r i C a�i D �.1C ug/
4 in D; (6)

i D 0 on @D \ fxI ˝ 	 N < 0g; (7)

where i D I Œt �

MCT
1

is the nondimensional radiation intensity, a� D Œl �a is the

nondimensional absorption coefficient, ug D Tg�T
1

T
1

is the nondimensional flame

temperature, � D Œl�Œt �a�ŒT �3

MC� depends on the Stefan-Boltzmann constant � D
5:6699 � 10�8 Wm�2 K�4 and N is the outer unit normal vector field to @D. In
a first approximation we have considered a gray body and neglected the scattering.
Here, a.x/ is the mean absorption coefficient of the gray body and is a function of
the point x D .x; y; z/ 2 D. The right hand side represents the total emissive power
of a blackbody. The incident energy at a point x D .x; y; h.x; y// of the surface S
due to radiation from the flame above the surface per unit time and per unit area will
be obtained summing up the contribution of all directions ˝ , that is

r.x/ D
Z 2�

!D0
i.x;˝/˝ 	 N d! (8)

where we have only considered the hemisphere above the fuel layer, and each
contribution depends on the flame height. For more details about how to derive the
radiation term of this model see [7].

3 Numerical Method

Model simulation must be achieved much faster than real time to be useful in
decision support. In order to reduce the computational time we propose to solve
the equations of the model only in an environment of the fire front, defining for
each time step the set of active nodes. We define a uniform and fine mesh at the
beginning of the numerical process, and we solve the corresponding equations only
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in the set of active nodes formed by the nodes placed inside the fire front and their
environment. This reduces the computational time since we do not have to solve the
equations of the model where the solution does not change at all.

3.1 Time Integration

Let �� D �nC1 � �n be a time step and let cn, en and un denote approximations at
time step �n to the exact solution c, e and u, respectively.

We consider an implicit scheme by discretizing the total derivative, see [11],

@� e C ˇv 	 re � 1

��
.enC1 � Nen/;

where Nen D en ı Xn, and Xn.x/ D X.x; �nC1; �n/ � x � ˇv�� is the position at
time �n of the particle which is at position x at time �nC1. At each time step, we
solve,

enC1 � Nen
��

C ˛unC1 D rn; (9)

enC1 2 G.unC1/; (10)

cnC1 � cn
��

D �g.unC1/cnC1: (11)

The basic idea is to treat implicitly the positive terms. The non local radiation
term r depends strongly on the temperature u and on the fuel mass c, therefore, it
will be evaluated explicitly at time �n. Once the radiation rn is known, the problem
given by Eqs. (9)–(11) is non linear due to the multivalued operatorG. However, the
solution of this problem can be reduced to explicit calculations.

3.2 Numerical Solution of the Multivalued Equation

The multivalued operator in Eq. (10) is maximal monotone, then its resolvent J
 D
.Id C 
G/�1 for any 
 > 0 is a well defined univalued operator. Moreover the
Yosida approximation of G, G
 D Id�J




is a Lipschitz operator and the inclusion

Eq. (10) is equivalent [3] for all 
 > 0 to the equation

enC1 D G
.u
nC1 C 
enC1/; (12)
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or

unC1 D J
.u
nC1 C 
enC1/: (13)

On the other hand, rearranging Eq. (9) we have

unC1 C 1

˛��
enC1 D 1

˛��
Nen C 1

˛
rn: (14)

Taking 
 D 1=.˛��/ by substitution in Eq. (13) we obtain

unC1 D J1=˛�� .
1

˛��
Nen C 1

˛
rn/: (15)

Once unC1 has been obtained by solving Eq. (15), we calculate enC1 and cnC1
explicitly

enC1 D Nen � ˛��unC1 C�� rn; (16)

cnC1 D cn

1C��g.unC1/
: (17)

It remains to explain how to calculate unC1 in Eq. (15). That is, for a given b D
1
˛��

Nen C 1
˛
rn, compute s D J1=˛�� .b/ is equivalent to solve

.˛�� Id CG/s 3 Nb D ˛�� b; (18)

then s is given by

if Nb < .1C ˛��/uv then s D Nb
1C˛��

if .1C ˛��/uv < Nb < .1C ˛��/uv C 
v then s D uv

if .1C ˛��/uv C 
v < Nb < .1C ˛��/up C 
v then s D Nb��v
1C˛��

if .1C ˛��/up C 
v < Nb < 1 then s D up:

Notice that Eqs. (12), (16) and (17) can be solved simultaneously in all the active
nodes, then parallel computation can be used to improve the computational time.

3.3 Numerical Solution of the Radiation Equation

The radiation term r in Eq. (1) is computed by numerical integration of Eq. (8). We
propose Gauss-Legendre nodes for the polar angle and Gauss-Chebyshev nodes for
the azimuthal angle. See [7] for more details.
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To compute the incident radiation in the direction ˝ on a point x D . Nx; Ny; Nz/ 2
S , with Nz D h. Nx; Ny/, we consider the characteristic line expressed in cartesian
coordinates

Œ0; �� 7�! R3

� �! .x.�/ D Nx C �˝1; y.�/ D Ny C �˝2; z.�/ D Nz C �˝3/:

On the characteristic, Eq. (6) becomes

di

d�
C a�i D ı.1C ug/

4; (19)

which can be solved together with the condition

lim
�!1 i.�/ D 0: (20)

Equation (19) is solved by a backward finite difference method of order two
based on an interpolation for the variables a and ug. It should be noted that the
three-dimensional mesh does not need to be explicitly computed. To obtain this
scheme, we consider ug and a given by a non-null input value firstly defined over
the surface S where the nondimensional fuel temperature u, given by the solution
of the energy and fuel equations, Eqs. (1)–(3), reaches the pyrolysis temperature.
The non-null values of the non-dimensional flame temperature ug and the mean
absorption coefficient a depends on the type of fuel.

To expand the non-dimensional flame temperature ug (respectively the mean
absorption coefficient a) in D we proceed as follows: If there is no wind, we
extend the temperature vertically, that is, we define the extension Qu by Qu.x; y; z/ D
u.x; y; h.x; y// for all points .x; y; z/ 2 D and h.x; y/ < z < h.x; y/ C ı. In
the case of wind conditions, we compute the extended field assuming a convective
transport, that is, Qu.x; y; z/ D u.x � .z � h.x; y// vx

vz
; y � .z � h.x; y// vy

vz
; h.x; y//.

Here .vx; vy; vz/ stands for the velocity field which we suppose to be known. More
precisely, .vx; vy/ is a horizontal meteorological velocity field and vz is computed by
the rule vz � p

gH . Otherwise a three-dimensional velocity field can be computed
involving only two-dimensional computations using the model developed by authors
in [2, 8].

4 A Real Case

In order to test the model we simulate a real fire that happened in Serradilla del
Llano (a municipality located in the south of Salamanca, Spain) in September, 2012.
The fire began on the 14th of September at 18 W 20, remained controlled by the
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firefighters at 21 W30 The fire re-ignited the following day being controlled on the
15th of September at 20W30, and completely extinguished on the 16th of September
at 20W00 The fire burned 93:98Ha of grass and 128:19Ha of shrubs.

Weather variables related to wildland fires: wind (direction and velocity),
temperature, relative humidity, and precipitation, were provided for the fire area by
MeteoLogica S.A. Although the meteorological information indicates a maximum
wind of 24 km=h, the firefighters present indicated wind gusts of 45 km=h near the
river where the slope was higher.

The simulation area is a rectangle of 3:5 � 3:26 km, where the minimum height
is 712 m and the maximum is 955 m. The mesh size is 700 � 652 nodes. The
orthoimages and the topographic relief are provided by the National Topographic
Base 1:25.000 (BTN25) and the Numerical Cartographic Base 1:25.000 (BCN25)
[18]. The topographic data file used for the simulation is 1:5.000, obtained by
resampling the corresponding data from the BSN25. The fuel data are provided by
the Spanish Forest Map 1:50.000 (MFE50) [19] which includes the following fuel
types, where the wooded areas differ depending on the fraction of content covered
(FCC) for the total of the woodland (percentage of soil covered by the horizontal
projection of the top of the trees):

1. Herbaceous cultures.
2. Pastures.
3. Shrubs.
4. Disperse woodland (FCC: 5–20 %).
5. Spread woodland (FCC: 20–50 %).
6. Opened forest (FCC: 50–70 %).
7. Closed forest (FCC: >70%).

There are parameters depending on the fuel type such as the fuel load M ,
moisture contentMv, the height of the flame F and the half life time of combustion.
The following table gathers the values of these parameters used in the simulation,
depending on each type of fuel.

Fuel type M .kgm�2/ Mv F.m/ t1=2.s/

1 0.2 0:06 1:5 60

2 0.2 0:06 2 60

3 0.5 0:06 2:5 180

4 0.5 0:06 3 180

5 0.5 0:06 4 180

6 3.5 0:06 4 180

7 10 0:06 4 180

In Fig. 1 we represent the simulation area, the perimeter of the real fire that
took place on September the 14 and the areas where the firefighters worked. The
perimeter of the simulated fire each hour during 3 h are detailed in Fig. 2 where the
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Fig. 1 Perimeter of the Serradilla del Llano fire (09/14/2012), simulation area and Firefighters
actions

perimeter of the fire after 3 h is similar to the real perimeter. The differences between
the real perimeter and the simulated one owe to the uncertainty in the parameters, the
meteorological data and the information on the firefighters actions. The efficiency of
the model might get improved using data assimilation-based parameters estimation
methods.

These simulations have been computed on a Dell Precision T7500 workstation,
equipped with two processors Intel Xeon X5650 (6 cores each one working at a
frequency of 2; 66GHz, 12 cores altogether) and 24 GB RAM. The 3 h of simulation
involved 385 s, where we have used the parallel computation and active nodes,
which has allowed to simulate 3 h in a few minutes.
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Fig. 2 Simulation perimeters after 1, 2 and 3 h with firefighters actions

Conclusions
We present a simplified quasi-physical fire model taking into account the
topography of the surface, the fuel load and type, temperature, humidity and
wind, and the most important mechanisms of heat transfer: convection and
radiation. The model has been applied to a real case simulating 3 h of a real
fire in a few minutes and allowing to incorporate the fire fighting actions.

The model is sufficiently simple as to depend on a few parameters that will
allow data assimilation-based parameters estimation, but sufficiently precise
as to reflect important phenomena for the evolution of a fire.

The simplicity of the model and the numerical techniques proposed allow
to achieve real time simulations in very competitive computational times.

(continued)
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The model includes its own wind model which allows to compute a hight
definition wind field over the simulation domain that takes into account
topography, temperature and meteorological wind data in a few points, in
contrast to other models that consider winds to be constant in space, that is,
with no orographic or thermal effects on winds. Therefore, the wind model
could be solved with a reduced basis scheme [12]. In this way, the thermal
effects could be included in the simulation without ruining the computational
time.

The model is being integrated into a GIS system as a module which allows
the necessary data to be obtained from the GIS system and provide friendly
results for the GIS system.
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Functional Output-Controllability
of Time-Invariant Singular Linear Systems

María Isabel García-Planas and Sonia Tarragona

Abstract In the space of finite-dimensional singular linear continuous-time-
invariant systems described in the form

E Px.t/ D Ax.t/C Bu.t/
y.t/ D Cx.t/

�

(1)

where E;A 2 M D Mn.C/, B 2 Mn�m.C/, C 2 Mp�n.C/, functional output-
controllability character is considered. A simple test based in the computation of the
rank of a certain constant matrix that can be associated to the system is presented.

1 Introduction

A great many physical problems as for example electrical networks, multibody
systems, chemical engineering, Economics, semidiscretized Stokes equations, Con-
volutional codes among others, use state space representation as (1) for description.

This linear system can be described with a input-output relation called transfer
function obtained by applying Laplace transformation to Eq. (1)

sEX � x.0/ D AX C BU
Y D CX;

�

;

obtaining the following relation

H.s/U.s/ D C.sE � A/�1x.0/C C.sE � A/�1BU.s/: (2)
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If the system is relaxed (that is to say if the initial state is x.0/ D 0), Eq. (2) is
reduced to

H.s/ D C.sE �A/�1B: (3)

The controllability concept of a dynamical standard system is largely studied by
several authors and under many different points of view, (see [1–3,14] for example).
Nevertheless, functional controllability for the output vector of a system has been
less treated for the standard case and even less for the singular case, (see [7, 10, 12,
13] for example).

The functional output-controllability generally means, that the system can steer
output of dynamical system along the arbitrarily given curve over any interval of
time, independently of its state vector. A similar but least essentially restrictive
condition is the pointwise output-controllability.

J.L. Domínguez in [6] examine the functional output controllability of a linear
system describing a fixed speed wind turbine formed by a squirrel cage generator
connected directly to the grid. Working over finite fields, Fragouli and Wessel [9]
analyze the minimality among strictly equivalent encoders using the functional
output controllability character. The authors use the term output observable instead
of functional output controllable, it is the same concept but working in discrete
variable.

In this paper functional output-controllability for singular systems is analyzed
generalizing the study realized for standard systems and a simple test based on
computing the ranks of certain matrices in order to study this property is presented.
Notice that, in [11], the authors present a test for the study of functional output-
controllability of regular singular systems, which result is therefore a particular case
of the one presented in this article where regularizable systems are considered.

2 Preliminaries

In this paper, it is considered the singular state space system introduced in Eq. (1)

E Px.t/ D Ax.t/C Bu.t/
y.t/ D Cx.t/

�

;

where x is the state vector, y is the output vector, u is the input (or control)
vector, A 2 Mn.C / is the state matrix, B 2 Mn�m.C / is the input matrix and
C 2 Mp�n.C / is the output matrix.

For simplicity, we will write the systems by quadruples of matrices .E;A;B;C /.
In particular we will are interested in systems (called regular) which are those

that satisfy the relation det.�E C 
A/ ¤ 0 for some .�; 
/ 2 C
2, or those systems

(called regularizable), which through a feedback proportional and/or derivative
and/or an output injection proportional and/or derivative become regular. More
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concretely .E;A;B;C / is regularizable if and only if there exist matricesFB
E ; F

B
A 2

Mm�n.C/, FC
E ; F

C
A 2 Mn�p.C/, such that the system .ECBFBECF C

E C;ACBFAC
FC
A ;B; C / is regular.

Remark 1 If a singular system is regular there exists a unique solution for any
consistent initial condition.

Remember that an initial condition is called consistent with the system, if the
associated initial value problem has at least one solution.

A manner to understand the properties of the system is using algebraic tech-
niques. One of the main aspects of this approach is defining an equivalence relation
preserving these properties.

The equivalence relation considered is such that is derived after to make
the following elementary transformations: basis change in the state space, basis
change in the input space, basis change in the output space, proportional feedback,
derivative feedback, proportional output injection, derivative output injection and a
premultiplication by an invertible matrix.

More concretely.

Definition 1 Two systems .Ei ; Ai ; Bi ; Ci /, i D 1; 2, are equivalent if and only if
there exist matrices P;Q 2 Gl.nIC/, R 2 Gl.mIC/, S 2 Gl.pIC/, FB

E ; F
B
A 2

Mm�n.C/, F C
E ; F

C
A 2 Mn�p.C/ such that

E2 D QE1P C QB1F
B
E C FC

E C1P;

A2 D QA1P C QB1F
B
A C FC

A C1P;

B2 D QB1R;
C2 D SC1P:

(4)

That can be written in the following constant matrix form:

0

B
B
@

E2 B2
C2

A2 B2
C2

1

C
C
A D

0

B
B
@

Q FC
E

S

Q FC
A

S

1

C
C
A

0

B
B
@

E1 B1
C1

A1 B1
C1

1

C
C
A

0

B
B
@

P

F B
E R

P

FB
A R

1

C
C
A :

(5)
Or in the following polynomial matrix form:

�
sE2 �A2 B2
C2

�

D
�
Q sFCE � FC

A

S

��
sE1 �A1 B1
C1

��
P

sFBE � FB
A R

�

: (6)

Remark 2 The null terms are not written in these matrices. From now on, if there
confusion is not possible, zeroes also omit in the matrices defined in blocks.

Having defined an equivalence relation, the standard procedure then is to look
for a canonical form, that is to say to look for a quadruple of matrices which is
equivalent to a given quadruple and which has a simple form from which we can
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directly read off the properties and invariants of the corresponding singular system.
For a better understanding, we will give the following notations: I` denotes the `-
order identity matrix, Ni D diag .Ni1; : : : ; Nit / 2 Mni .C/, i D 1; 2; 3; 4, Nij D
 
0 Inij �1
0 0

!

2 Mnij
.C /, J D diag .J1; : : : ; Jt / 2 Mn5.C/, Ji D diag.Ji1 ; : : : ; Jis /,

Jij D �iIij CN .

Proposition 1 A system .E;A;B;C / is regularizable if and only if it can be
reduced to .Er ; Ar ; Br ; Cr/ where:

Er D

0

B
B
B
B
B
@

I1
I2

I3
I4
N1

1

C
C
C
C
C
A

; Ar D

0

B
B
B
B
B
@

N2
N3

N4
J

I5

1

C
C
C
C
C
A

; Br D

0

B
B
B
B
B
@

B1 0 0

0 B2 0

0 0 0

0 0 0

0 0 0

1

C
C
C
C
C
A

and

Cr D
0

@
C1 0 0 0 0

0 0 C2 0 0

0 0 0 0 0

1

A:

Remark 3 1. The standard part of the system is maximal among all possible
reductions of the system.

2. Not all parts (i),. . . , (v), necessarily appears in the decomposition of the system.

The reduced form can be obtained from the following complete set of invariants

f�; �Ji ; �Ki ; �Li ; �Mi g

where

(i) � D f� 2 C j rank

�
�E �A B
C 0

�

< rank

�
sE � A B

C 0

�

g.

(ii) �J.�/i D rank .Ji .�// with

J1.�/ D
�
�E � A B

C 0

�

; J2.�/ D

0

B
B
@

�E � A B

C 0

E 0 �E �A B
C 0

1

C
C
A ; : : : ;
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Ji .�/ D

0

B
B
B
B
B
B
B
B
B
B
B
B
@

�E � A B

C 0

E 0 �E �A B
C 0

E 0 :

: : :

�E � A B

C 0

1

C
C
C
C
C
C
C
C
C
C
C
C
A

2 Mi.nCp/�i.nCm/.C/

8� 2 �
(7)

(iii) �Ki D rank .Ki/ with

K1 D
�
E B

C 0

�

; K2 D

0

B
B
@

E B

C 0

A 0 E B

C 0

1

C
C
A ; : : : ;

Ki D

0

B
B
B
B
B
B
B
B
B
B
B
B
@

E B

C 0

A 0 E B

C 0

A 0
: : :

E B

C 0

1

C
C
C
C
C
C
C
C
C
C
C
C
A

2 Mi.nCp/�i.nCm/.C/:

(8)

(iv) �Li D rank .Li / with

L0 D .B/; L1 D
0

@
E B 0

C 0 0

A 0 B

1

A ; L2 D

0

B
B
B
B
B
@

E B

C 0

A 0 E B 0

C 0 0

A 0 B

1

C
C
C
C
C
A

; : : : ;

Li D

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

E B

C 0

A 0 E B

C 0

A 0 :
: : :

E B 0

C 0 0

A 0 B

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

2 M.iC1/nCip/�inC.oC1/m/.C/:

(9)
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(v) �Mi D rank .Mi / with

M0 D .C /;M1 D
0

@
A B E

C 0 0

0 0 C

1

A ; M2 D

0

B
B
B
B
B
@

A B E

C 0 0

A B E

C 0 0

0 0 C

1

C
C
C
C
C
A

; : : : ;

Mi D

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

A B E

C 0 0

A B E

C 0 0

:

: : :

A B E

C 0 0

0 0 C

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

2 MinC.iC1/p�.iC1/nCim.C/

(10)

(For more details see [4, 5]).

3 Functional Output-Controllability for Standard Systems

In order to make more comprehensible this work, we begin by recalling the concept
of functional output-controllability for standard systems

The output-controllability means, that the system can steer output of the dynam-
ical system independently of its state vector.

Definition 2 A standard system is functional output-controllable if and only if its
output can be steered along the arbitrarily given curve over any interval of time. It
means that if it is given any output yd .t/, t � 0, there exists t1 and a control ut ,
t � 0, such that for any t � t1, y.t/ D yd .t/.

Proposition 2 ([2]) A system is functional output-controllable if and only

rankC.sI �A/�1B D p

in the field of rational functions.

A necessary and sufficient condition for functional output-controllability is

Proposition 3 ([2, 8])

rank

�
sI �A B
C 0

�

D nC p:
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3.1 Test for Functional Output-Controllability for Standard
Systems

The functional output-controllability can be computed by means of the rank of a
constant matrix in the following manner

Theorem 1 ([10]) The system .A;B; C / is functional output-controllable if and
only if

rank oCf.A;B; C / D rank

0

B
B
B
B
B
@

C

CA CB
CA2 CAB CB
:::

: : :

CAn CAn�1B : : : CAB CB

1

C
C
C
C
C
A

D .nC 1/p :

Remark 4 We call

oCi D

0

B
B
B
B
@

C

CA CB
CA2 CAB CB
:::

: : :

CAi CAi�1B : : : CAB CB

1

C
C
C
C
A
; 8i � 1:

(i) If the system .A;B; C / is functional output-controllable, then the matrices oCi

have full row rank for all 0 � i � n.
(ii) If the matrix oCn�1 has full row rank, it does not necessarily the matrix oCn has

full row rank.

4 Functional Output-Controllability for Singular Systems

We begin by considering singular systems that are regular.
The output-controllability character can be generalized to regular singular

systems in the following manner.

Definition 3 A regular singular system is functional output-controllable if and only
if its output can be steered along the arbitrarily given curve over any interval of time.
It means that if it is given any output yd .t/, t � 0, there exists t1 and a control ut ,
t � 0, such that for any t � t1, y.t/ D yd .t/.
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Proposition 4 A relaxed regular singular system is functional output-controllable
if and only

rankH.s/ D p

in the field of rational functions.

Proof According to Eq. (3), H.s/ D C.sE � A/�1B .
If rankH.s/ D p, then H.s/H.s/� is invertible, then it suffices to consider

U.s/ D H.s/�.H.s/H.s/�/�1Y.s/

If rankH.s/ < p, we can obtain a Y.s/ with Y.s/ … ImH.s/. ut
A necessary and sufficient condition for functional output-controllability is

Proposition 5

rank

�
sE � A B

C 0

�

D nC p:

Proof

rank

�
sE � A B

C 0

�

D rank

�
I 0

0 C.sE �A/�1B
�

:

ut
Remark 5 Notice that for E D I the proposition coincides with Proposition 3.

Remark 6 If rankC < p the system is not functional output-controllable. Then,
henceforth without lost of generality, we suppose that rankC D p.

In order to obtain more properties we make use of the equivalence relation
defined in Definition 1. It permits us to consider an equivalent simple reduced form
for the system.

Proposition 6 The functional output-controllability character is invariant under
equivalence relation.

Proof

rank

�
Q sFCE � FC

A

0 S

��
sE � A B

C 0

��
P 0

sFBE � F B
A R

�

D rank

�
sE �A B
C 0

�

:

ut
Propositions 5 and 6 permit us generalize the definition of functional output-

controllability to regularizable singular systems.
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Definition 4 A regularizable singular linear system is functional output-controlla-
ble under proportional and derivative feedback and proportional and derivative
output injection, if and only if all equivalent regular singular systems are functional
output-controllable.

Corollary 1 A regularizable singular linear system .E;A;B;C / is functional
output-controllable under proportional and derivative feedback and proportional
and derivative output injection, if and only if

rank

�
sE � A B

C 0

�

D nC p:

Remark 7 If the singular system is not regularizable it is not functional output-
controllable.

4.1 Test for Functional Output-Controllability for Singular
Systems

The functional output-controllability can be computed by means of the rank of a
certain constant matrix defined in the following manner.

For each system .E;A;B;C / we consider the collection of matrices Mi

considered in (10).

Proposition 7 The system .E;A;B;C / is functional output-controllable if and
only if all matrices Mi have full row rank.

Proposition 8 For all ` � n we have that

rankM`C1 � rankM` D rankM`C2 � rankM`C1:

Calling now Mn D oCf.E;A;B;C /, and taking into account Propositions 7 and 8,
we have the following result.

Theorem 2 The system .E;A;B;C / is functional output-controllable if and only
if

rank oCf.E;A;B;C / D rank

0

B
B
B
B
B
B
@

A B E 0 0 0 : : : 0

C 0 0 0 0 0

0 0 A B E 0

0 0 C 0 0 0
:::

: : :

: : : A B E

: : : C 0 0

: : : 0 0 C

1

C
C
C
C
C
C
A

D .nC 1/p C n2 :
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Remark 8 For E D I , the theorem coincides with the theorem for standard
systems. It suffices to make block elementary row and columns transformations to
the matrix oCf.I; A;B; C /:

rank

0

B
B
B
B
B
B
B
B
B
B
B
B
@

A B I 0 0 0 0 : : : 0

C 0 0 0 0 0

0 0 A B I 0

0 0 C 0 0 0
:::

: : : A B I

: : : C 0 0

: : : 0 0 C

1

C
C
C
C
C
C
C
C
C
C
C
C
A

D rank

0

B
B
B
B
B
B
B
B
B
B
B
B
B
@

I
: : :

I

C

CA CB
CA2 CAB CB
:::

: : :

CAn CAn�1B CB

1

C
C
C
C
C
C
C
C
C
C
C
C
C
A

:

Proof of the Theorem Proposition 6 permit us to consider the system in its reduced
form

rank

�
sE � A B

C 0

�

D rank

�
sI1 �N1 B1

C1 0

�

C rank
�
sI2 �N2 B2

�

Crank

�
sI3 �N3
C2

�

C rank
�
sI4 � J

�C rank
�
sN1 � In1

� D
n2 C p2 C n3 C n4 C n5 C n1 D nC p2:

The rank is nCp if and only if p D p2. In order to obtain p2, it suffices to compute
the rOi numbers associated to the system [4].

An alternative proof can be obtained considering the pencil A C sB with

A D
0

@
�A B 0

C 0 0

0 0 0

1

A ; and B D
0

@
E 0 B

0 0 0

C 0 0

1

A

and compute the ranks of the matrices

Mi D

0

B
B
B
B
@

At 0 : : : 0

Bt At
:::

:::
:::
: : : At

0 0 : : : Bt

1

C
C
C
C
A
:

These matrices appear when one tries to obtain the elements of the Ker of At C sBt .
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Example 1 Let .E;A;B;C / be a system with E D
0

@
�1 0 0

0 �1 0
0 0 0

1

A, A D
0

@
0 1 0

0 0 0

0 0 1

1

A,

B D
0

@
0

1

0

1

A and C D �
1 0 0

�

oCf.E;A;B;C / D

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

0 1 0 0 �1 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 �1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 �1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 �1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 �1 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 �1 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

:

Using Matlab, it is easy to compute the rank of this matrix, we have

rank oCf.E;A;B;C / D 13:

Then, the system is functional output-controllable.

But if we consider the system .E1; A1; B1; C1/ with E1 D
0

@
�1 0 0

0 �1 0
0 0 0

1

A, A1 D
0

@
0 1 0

0 0 0

0 0 1

1

A, B1 D
0

@
0

0

0

1

A and C1 D �
1 0 0

�

oCf.E1; A1; B1; C1/ D

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

0 1 0 0 �1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 �1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 �1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 �1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 �1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 �1 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

:
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As before, using Matlab, it is easy to computing the rank of this matrix,

rank oCf.E1; A1; B1; C1/ D 11:

Then the system it is not functional output-controllable.

Remark 9 (i) If the singular system .E;A;B;C / is functional output-controllable,
then the matricesMi has full row rank for all 0 � i � n.

(ii) If the matrix Mn�1 has full row rank, the matrix Mn does not necessarily has
full row rank, as it can be seen in the following example.

Example 2 Let .E;A;B;C / with E D �I , A D
�
0 1

0 0

�

, B D
�
0

0

�

and C D �
1 0
�
.

rank

 
A B �I
C 0 0

0 0 C

!

D rank

0

B
@

0 1 0 �1 0

0 0 0 0 �1
1 0 0 0 0

0 0 0 1 0

1

C
A D 4 D nC 2p;

but

rank

0

B
B
B
@

A B �I
C 0 0

0 0 A B �I
0 0 C 0 0

0 0 0 0 C

1

C
C
C
A

D rank

0

B
B
B
B
B
B
B
B
B
@

0 1 0 �1 0 0 0 0

0 0 0 0 �1 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 1 0 �1 0

0 0 0 0 0 0 0 �1
0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0

1

C
C
C
C
C
C
C
C
C
A

D 6 < 7:

Theorem 2 provides an iterative method to compute functional output-
controllability in the following manner.

Step 1: Compute rank M0. If rank < p the system is not functional output-
controllable.
If rank D p, then

Step 2: Compute rank M`. If rank < .` C 1/p C `n the system is not output-
controllable.
If rank D .`C 1/pC `n and ` D n the system is functional output-controllable,
and if ` < n go to step 2.

Finally we want to highlight the following: Partitioning matrices B D
�
B1 : : : Bm

�
and C D

�
C t
1 : : : C

t
p

�t
by columns and rows respectively, we can

compute if there is any SISO subsystem, that is functional output-controllable, in
the following manner.
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Corollary 2 Let .E;A;B;C / be any system. The subsystem SISO system
E;A;Bi ; Cj for some 1 � i � m, 1 � j � p is functional output-controllable,
if and only if

rank

0

B
B
B
B
B
B
@

A Bi �E 0 0 0 : : : 0

Cj 0 0 0 0 0

0 0 A Bi �E 0

0 0 Cj 0 0 0
:::

: : :

: : : A Bi �E
: : : Cj 0 0

: : : 0 0 Cj

1

C
C
C
C
C
C
A

D .nC 1/C n2:

From this result, it is easy to prove the following proposition.

Proposition 9 Let .E;A;B;C / be a functional output-controllable system. Then,
for all 1 � j � p, there is at least one i , 1 � i � m such that the SISO system
.E;A;Bi ; Cj / is functional output-controllable.

Remark 10 Notice that not necessarily all SISO subsystems are functional output-
controllable, and in the case that all SISO subsystems are functional output-contro-
llable, the complete system is not necessarily functional output-controllable.
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Manufacture of Offshore Mooring Chains
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Abstract Vicinay Cadenas S.A is a world leader in the manufacture of mooring
chains for the offshore industry. Welding is a key part of chain manufacturing.
This study seeks to determine how the manufacturing parameters of welding
machines influence the appearance of inhomogeneities. The idea is to optimise
current manufacturing processes and acquire knowledge that will enable the firm
to develop new products with diameters in excess of those produced to date. To
that end, multivariate analysis techniques are used to study manufacturing data on
various chains and an algorithm is designed to select the spreads of the adjustable
variables that contain the lowest (highest) percentage of links with inhomogeneities.
The application of this algorithm to a number of chains with different diameters
manufactured on the same machine provides an estimate of the table of settings that
should be used to make chains with dimensions larger than those currently made.
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1 Introduction

Vicinay Cadenas S.A. (VCSA) is a steel processing company that specialises in
the manufacture of chains and accessories for mooring lines used in the offshore
industry, mainly for oil and gas. Its main customers are major oil companies such as
Exxon, Shell and BP, which require mooring systems for their offshore rigs. VCSA
manufactures chains of various types according to the preferences of its customers,
and is a world leader in its field.

This paper focuses on the welding process, which is a key part of chain
manufacturing. Section 2 outlines the whole process of chain manufacturing.
Section 3 explains the welding process used at VCSA. Section 4 describes the
databases drawn up by VCSA for all its products. Section 5 presents a 40-variable
multivariate analysis of the welding process. Section 6 focuses on the 7 adjustable
variables that most influence weld quality. An algorithm is designed to select spreads
of these variables that contain a preset number of links and the lowest (highest)
percentage of links containing inhomogeneities. This algorithm has been selected
up by VCSA to improve the tables of settings for its welding machines. The last
section of the paper describes the results when the designed algorithm is used
on production runs of chains with different diameters on the same machine. This
provides an estimated table of settings that can be applied when embarking on the
manufacture of larger chains.

2 The Production Process at Vicinay Cadenas S.A.

Manufacturing a mooring line is a long, complex process. The raw material used
comprises a round steel bar stock whose diameter and grade are set specifically in
each order. The first step is to saw the bars at a set length, determined by the design
of the link.

2.1 Link Manufacturing

Chains are manufactured link by link, with each link being attached to the previous
one. The entire process comprises five consecutive stages.

Heating The bars are heated to 800–900 ıC. At VCSA three forms of heating are
used: gas furnaces, Joule effect heating and induction heating.

Bending Once they are heated, the bars are placed in a bar stock bender that
shapes them into links. First, one end is bent and hooked onto the last link formed.
Then, the other end is bent to close the link and give it its final shape. The ends
to be welded are located in the middle of one of the straight sides of the link.
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Welding The length of chain with the link blank is then taken to the welding
station. VCSA uses a technique called Flash-Butt Welding (FBW) [1–4], which
is explained below.

Trimming During welding sticks, part of the material is expelled to the welded
area in the form of trims. The trimming machine cuts off this excess material and
leaves the welded area straight.

Pressing Finally, the link is taken to the press, where it is compressed on the two
straight sides to give it the required design width.

2.2 Heat Treatment

Once the chain is complete it is treated with heat in continuous furnaces to
consolidate the welds and give the steel the mechanical properties required for its
working life. Heat treatment comprises three stages: solubilisation, quenching and
tempering.

2.3 Tensile Load Testing

All links are subjected to a tensile load test section by section. This is performed
due to three reasons: to ensure that the chain meets the dimensional requirements,
to ensure that the welding is correct and to give the chain tensile strength.

2.4 Inspection

After load testing, all links are subjected to non-destructive testings using dye
penetrants, magnetic particles and ultrasounds. If any inhomogeneities are detected,
the link in question may be reworked or rejected and removed. Although it
is not compulsory, many customers – especially in the case of large-diameter
chains – require VCSA to perform a similar inspection prior to heat treatment.

2.5 Destructive Testing

The regulations in place require destructive tests to be carried out on simple links
before the product can be accepted. These links are manufactured and attached
provisionally to the rest of the chain via connectors and then removed following the
final inspection. They are used to conduct tensile breaking strength tests to ensure
that the link does not break until after it has borne a preset load for a given time.
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Test pieces taken from the link are also submitted to laboratory tensile strength and
resilience or Charpy tests. The breaking strength of the test pieces must exceed a
predetermined figure.

2.6 Product Certification

The production process ends with certification by a classification society such as the
American Bureau of Shipping, Det Norske Veritas or Lloyd’s Register. This is an
essential prerequisite for delivery of the chain to the customer.

3 Flash Butt Welding

FBW is a resistance welding technique that requires no external filler material. The
link is placed on the welding bench and gripped on each side of the welding area
with copper clamps, which secure it tightly. These clamps are attached to the bench
and connected to an electrical circuit, so that there is a voltage difference between
the two opposing surfaces to be welded. One side of the bench is fixed in position
and the other is moveable, which is known as the carriage. The welding sequence is
as follows (cf. Fig. 1).

Preheating By approaching and retracting the carriage, the two surfaces to be
welded are brought closer and then separated several times so that short-circuits

Electrodes
Clamps

a c

b d

Fig. 1 FBW process: (a) Commencement of welding; (b) Preheating; (c) Flash; (d) Upsetting
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are generated. Once this heats them to a preset temperature, the resistance of the
material leads the voltage difference in the discharge dropping to the point where
the sensor no longer detects it. The machine then moves on to the flash stage.

Flash The carriage is moved forward to keep the two surfaces in continuous
contact and material is gradually consumed in the form of sparks. When the
number of millimetres set via the numerical control unit has been consumed, the
machine goes on to the forging or upsetting stage.

Upsetting The carriage makes a high-pressure strike that lasts 1 or 2 s. As a result,
the area to be welded becomes forged and consolidated.

4 Database for the Whole Production Process

Vicinay Cadenas S.A. keeps a complete record of the manufacturing of each link,
including the date and time of each stage of the process, which operator and machine
performed them and any detected incidents. It also records data about the raw mate-
rial (pour number & grade of steel), the cutting (bar length), the welding process
(temperatures, times, travels, feed rates, pressures, current, electrical voltage, etc.),
the heat treatment (temperature, feed rate in each furnace, hardness at the exit from
the furnace, etc.), the load tests (maximum load applied, link dimensions before and
after testing), the inspections (codes for any inhomogeneities and corrective actions
if any) and the destructive tests (links tested, numerical results of breaking strength
tests, maximum load applied, energy absorbed by impact, etc.) .

5 Study of Manufacturing Variables

The FBW process at VCSA is automatic. Once the machine is set up, the link blank
is inserted, the start command is initialized, and the machine performs the whole
weld unaided. VCSA records measurement data on 40 manufacturing parameters
that are considered to influence weld quality [5]. Seven of these parameters are
directly adjustable by the production staff, and the rest are not adjustable but are
affected by the adjustable ones, the ambient conditions, the state of the machine,
the raw material, etc. The company has the recommended figures and tolerances for
these parameters set down in tables of settings for each link diameter. As indicated,
this study seeks mainly to determine the extent to which the selected settings affect
weld quality, with a view to optimising the settings tables when appropriate.

To study all the manufacturing variables together, two manufacturing runs on the
same machine but with different chain characteristics are used. Seven thousand and
two hundred and forty seven links from manufacturing run “A” and 8855 from run
“B” are considered. The study divides into four parts.
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Data filtering This is performed for two reasons: the first is to exclude those
links whose data are unrealistic, incorrect, or are isolated to the extent that they
would contaminate a statistical analysis. The second is to help to detect influential
atypical links.

Correlation of variables Determining whether or not there is correlation
between variables helps us to decide what variables need to be handled to cause
a variation in other significant variables and bring their readings closer to the
desired figures. This method makes it easier to interpret the various multivariate
analyses conducted, the principal component analysis and the discriminant
analysis.

Discriminant analysis This is used to determine which variables are most
influential in the appearance of inhomogeneities, and to estimate the probability
of a link having an inhomogeneity. In this case, there are too few links with
inhomogeneities for the results to be significant enough to be useful.

Multivariate analysis. Principal components Principal component analysis
represents a set of observed variables in a group of individuals or elements by a
smaller number of new variables constructed by means of linear combinations
of the original ones [6]. The link between principal components (PCs) and
inhomogeneities is studied here. In manufacturing run “A”, the first principal
component (PC1) discriminates links with inhomogeneities and without
inhomogeneities. Thus, links with PC1> �1;065 (34.5 % of total) do not contain
inhomogeneities. In manufacturing run “B”, PC1 and PC3 together divide links
in groups with high or low concentration of inhomogeneities. The main difficulty
in making use of these results lies in translating the sets defined by the PCs into
Cartesian product of intervals in terms of the original variables, as this is what
is needed in practice to implement the regulation and rank of variation of the
manufacturing variables.

6 Study of Seven Adjustable Variables: Algorithm for
Locating Optimal Regions

From fabrication data of all links in a chain, the objective here is to design an
algorithm that finds a region such that the number of inhomogeneities is minimum
(or maximum). Out of the existing 40 variables that are recorded during the
fabrication process, for this algorithm we have restricted ourselves to just seven
of them. This subset of variables has been selected by Vicinay’s experts based on
the criteria of being the most critical during the fabrication process and at the same
time can be manually adjusted.

An individual analysis of each variable has shown to provide no valuable
information in terms of identifying regions with a low number of inhomogeneities.
Thus, we will treat the seven variables simultaneously. Mathematically, we will
identify each link with a point x 2 R7. For the algorithm to be useful, the following
requirements hold:
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1. The search of optimal regions in R7 should be restricted to tensor product of 1D
intervals.

2. The length of each 1D interval should be bounded below by the minimum range
of variability that limits the precision that can be achieved during fabrication.

3. The optimal region should have a minimum preset number of links, either
expressed in terms of an absolute number (e.g., 1,000 or 2,000) or a relative
percentage (e.g., 20 or 30 %).

The proposed algorithm consists of the following steps:

(a) For each link x 2 R7, we compute the distance to all remaining links.
(b) For each link x 2 R7, we compute the region of closest links whose size is

that given by the minimum preset number of links established by condition 3
(above).

(c) We increase the size of each of the above regions as much as possible without
introducing any link with inhomogeneities.

(d) Out of all the computed regions, we select the one with minimum number of
inhomogeneities.

A critical point in the above algorithm is the choice of a distance. Since a distance
can be obtained from a norm, and in view of the above condition 1, we select a
(weighted) L-infinity norm in R7. This norm has the property that equal distance
points can be expressed as a tensor product of 1D intervals. Thus, and algorithm
based on such norm ensures that the above first condition is satisfied. To satisfy the
above condition 2, we select the following weights for each variable:

a1 D 0:034; a2 D 0:2; a3 D 0:66; a4 D 0:66; a5 D 0:66; a6; D 13:33; a7 D 0:143:

The above weights have been selected based on the range of variability of each
variable and the expertise of senior members of Vicinay.

Table 1 shows the full ranges of the 7 variables in manufacturing run “B” and the
best spread for those variables with at least 1,000 links.

Table 1 Manufacturing run “B”. Full range of the adjustable variables and spreads of those
variables containing 1,000 links and the lowest concentration of inhomogeneities

Full range Best spreads

Variable x1 773,14–878,32 804,800–852,210

Variable x2 163,303–172,157 166,920–172,050

Variable x3 40,045–43,14 40,81–42,75

Variable x4 15,162–20,558 15,65–18,03

Variable x5 44,798–47,95 44,800–47,040

Variable x6 0,807–0,944 0,862–0,944

Variable x7 172,578–186,032 178,82–186,03

No of links 8.855 1.000

No of inhomogeneities 2
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The designed method enables to obtain tables for setting the adjustable welding
variables to be improved, so that the best spreads for those variables are selected. In
addition, the best and worst “rectangular” areas of a preset size and with a minimum
number of links are selected. The results are similar to those indicated above.

7 Selecting the Optimal Method

Working with technicians from Vicinay, we have assessed the results of the different
methods used with a view to applying them to improve the tables of settings. We
concluded that all methods of analysis used are complementary and should continue
to be developed in parallel. However, the one that locates the optimal regions for the
seven adjustable manufacturing variables is selected as the optimal one, since it is
the method that best suits the specific needs of the industrial process in question, the
know-how of the company and the physics of welding.

8 Study of Nine Manufacturing Runs from the Same
Machine

The method designed for locating the best and worst spreads of the welding
variables was then applied to nine manufacturing runs of chains with different
diameters on the same machine, with a view to drawing up a table of settings for it.
Results show that the nominal figures for the variables increase when the diameter
of the links to be welded increases, in a way that is consistent with the experience
of the company. This has led to a modification of the whole table of settings for the
machine. The new table is an improvement on the one previously used at Vicinay
Cadenas S.A. The results also provide an estimate for the table or settings that needs
to be applied to tackle the manufacture of new, larger chains. At a later stage of the
project, the modelling of FBW will be studied (see for instance [7]).
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A Model of Traffic Flow in a Network

Ángela Jiménez-Casas and Aníbal Rodríguez-Bernal

Abstract We obtain a mathematical model which governs the traffic flow of
material objects in a net to generalize several previous models like air traffic
(Sridhar, Menon (2005) Comparison of linear dynamic models for air traffic
flow management. IFAC, Prague; Sun, Strub, Bayen (2007) Netw Heterog Media
2(4):569–594). We analyze the existence and uniqueness of solutions for some
particular case.

1 Introduction

The goal of this work is to obtain a model to describe the air traffic flow when we
consider discontinuous functions in time to generalize the previous model [3, 4],
and such that if we assume additional hypothesis of regularity we get a system of
differential equations with delay (see [1, 2]).

We consider a net given by a set of points nodes connected by edges such that
the material objects is moving from node to node through edges, satisfying the
followings rules:

Principles of traffic flow of material objects in a net

1. The traffic flow goes from one node to another node.
2. The nodes are connected by edges and the traffic goes only by edges.
3. On the edge connecting the node i with j only goes the material object that

previously belonged to i .

Á. Jiménez-Casas (�)
Departamento de Matemática Aplicada, Escuela Técnica Superior de Ingeniería (ICAI),
Universidad Pontificia Comillas de Madrid, Calle de Alberto Aguilera 25, E-28015 Madrid, Spain
e-mail: ajimenez@upcomillas.es

A. Rodríguez-Bernal
Departamento de Matemática Aplicada, Universidad Complutense de Madrid, E-28040 Madrid,
Spain

Instituto de Ciencias Matemáticas, CSIC-UAM-UC3M-UCM, E-28049 Madrid, Spain
e-mail: arober@ucm.es

© Springer International Publishing Switzerland 2014
F. Casas, V. Martínez (eds.), Advances in Differential Equations and Applications,
SEMA SIMAI Springer Series 4, DOI 10.1007/978-3-319-06953-1__19

193

mailto:ajimenez@upcomillas.es
mailto:arober@ucm.es


194 Á. Jiménez-Casas and A. Rodríguez-Bernal

2 Formulation of the Equations of Traffic in a Network

2.1 Definitions and Notations

We consider a net given by G D .V;E/ where V D fv1; v2; : : : ; vN g is the sets of
nodes, and E , is the sets of edges (ordered pairs of different nodes of V ). Hereafter
we identify each node with the place, this is vi is the node i . Thus the graph G
is in turn represented by the adjacency matrix G D .aij/ij 2 MN�N , such that
aij D 1 , the node i is connected with the node j and aij D 0 if the node i is not
connected with j . We agree that aii D 1.

If i ¤ j we note that

i ! j if aij D 1 and i ¹ j if aij D 0:

We note that i is connected with j implies that j is connected with i for every i; j ,
then the graph is given by a symmetric matrix.

We denote by N �.i/ D fj; aij D 1g the set of nodes connecting with the node
i , given by the elements row i of the matrix associated to the graph, G, which are
different to zero and N.i/ D fj; aij D 1; j ¤ ig the set of nodes connecting with
the node i , different to i , that is N �.i/ D N.i/[ fig.

For i; j D 1; 2; ::; N

• If i ! j , we denote by fij � 0 the number of material objects that goes over the
edge .i; j /. If i ¹ j , then fij D 0.

• fii � 0, is the number of material objects belonging to the node i .
• If i ! j , we denote by �ij � 0 the time used by the material objects to arrive in

the node j from the node i , we assume that it is the same for all material objects
in the net and if i ¹ j , then �ij D 0.

• MG D fA 
 G;A 2 MN�N g where C WD A 
 B iff cij D aij:bij; is the
Hadamard’s product. If we define PG .A/ D A
G then PG D P2

G is a projection
and MG D PG .MN�N /:

• MC
G is a subject of MG given by A D .aij/ 2 MC

G iff A 2 MG ; aij �
0 for all i; j:

• MC;�
G is the subject of MC

G given by A D .aij/ 2 MC;�
G iff A 2 MC

G ; aii D
0 for all i .

Thus, the traffic flow in the net, or number of materials objects in the net,
associated to G is given by a function on time

t 7! f .t/ D .fij.t//ij 2 MG
C: (1)

In order to study the evolution of the number of material objects in the net
f .t/, we defined the following rates.
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For i; j D 1; 2; ::; N

• If i ! j , we denote by “ rate of takeoffs”, Tij.t/ � 0, the rate of take offs from
the node i to the node j by unit time. If i ¹ j , then Tij.t/ D 0 and we assume
also that Tii.t/ D 0.

• Ti .t/ � 0 denote the total rate of take offs from the node i by unit time.
• If i ! j we denote by “rate of landings”, Lij.t/ � 0, the rate of landings over

the node i belonging to the node j by unit time. If i ¹ j then Lij.t/ D 0 and
we also assume that Lii.t/ D 0

• Li .t/ denote the total rate of landings over the node i by unit time.

2.2 Constitutive Equations in a Network Traffic

Under the above notations the Principles of traffic flow are given by:
for i; j 2 f1; 2; ::; N g, if i ! j then,

Lij.t/ D Tji.t � �ji/:.PI/: (2)

Therefore, the number of material objects in the edge, fij; verifies:

fij.t/ D fij.s/C
Z t

s

Tij.r/dr �
Z t

s

Lji.r/dr; t � s

and using (PI)(2),
R t
s
Lji.r/dr D R t

s
Tij.r � �ij/dr D R t��ij

s��ij
Tij.r/dr, thus

fij.t/ D fij.s/C
Z t

t��ij

Tij.r/dr �
Z s

s��ij

Tij.r/dr:

This is, for t � s the number of objects in this edge verifies:

fij.t/ �
Z t

t��ij

Tij.r/dr D fij.s/�
Z s

s��ij

Tij.r/dr: (3)

Now, taking into account (PI)(2) together with �ij we get

fij.t/ D
Z t

t��ij

Tij.r/dr; for every t:.PII/: (4)

By the other hand, for every i D 1; 2; ::; N and t � s the number of material
objects belonging to the node i verifies that

fii.t/ D fii.s/C
Z t

s

Li .r/dr �
Z t

s

Ti .r/dr.PIII/: (5)
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Using (PI)(2) together with N.i/ we get

Li.t/ D
X

j2N.i/
Lij.t/ D

X

j2N.i/
Tji.t � �ji/ � 0; Ti .t/ D

X

j2N.i/
Tij.t/ � 0:

Then, from (PIII)(5) for every t � s we have:

fii.t/ D fii.s/C
X

j2N.i/

Z t

s

Lij.r/ �
X

j2N.i/

Z t

s

Tij.r/dr

with
R t
s
Lij.r/ D R t

s
Tji.r � �ji/ D R t��ji

s��ji
Tji.r/ and for every t � s in an isolated

network

fii.t/ D fii.s/C
X

j2N.i/

Z t��ji

s��ji

Tji.r/ �
X

j2N.i/

Z t

s

Tij.r/dr: (6)

Therefore, Eqs. (4) and (6), are the constitutive equations in the network.

2.3 Initial Value Problem

To determine the traffic flow, f .t/, when t � 0, we note the initial value on the edge
is given by Tij.t/ in Œt0 � �ij; t0�, since from (PII)(4) we have

fij.t0/ D
Z t0

t0��ij

Tij.r/dr; i ! j: (7)

Although on the node from (PIII) (6) we need to know the initial condition

fii.t0/ D �0i 2 RC; 8i 2 f1; 2; : : : ; N g: (8)

We define

�� D maxf�ijgij

and fix �0 2 .RC/N , then given T .t/ 2 MC;�
G with t � t0 � ��, the traffic flow

f .t/ 2 MC
G (1), satisfies for i; j 2 f1; 2; : : : ; N g and t � t0

8
ˆ̂
<̂

ˆ̂
:̂

fij.t/ D
Z t

t��ij

Tij.r/dr; i ! j; .fij.t/ D 0 for all i; j= i ¹ j /;

fii.t/ D �0i C
X

j2N.i/

Z t��ji

t0��ji

Tji.r/dr �
X

j2N.i/

Z t

t0

Tij.r/dr

(9)
in particular satisfy the initial data on edges and nodes.
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We note, if the functions Tij are continuous, then (9) is equivalent to the following
ordinary differential system of retarded type [1]:

8

<̂

:̂

fij.t/ D 0 for all i; j= i ¹ j;

f 0
ij .t/ D Tij.t/ � Tij.t � �ij/; i ! j;

f 0
ii .t/ D P

j2N.i/ Tji.t � �ji/ �P
j2N.i/ Tij.t/;

(10)

with t � t0, and satisfying the initial data on the edge and on the nodes.

2.4 Functional Setting

We note that (4) together with (6) define a functional

f .t/ D F .T; s; �/.t/; �i D fii.s/; t � s; (11)

with T defined on Œs � ��; t � with values on MC;�
G where �� D maxf�ijgij:

The right hand side of (4) and (6) define a linear and continuous operator
F�.T; s; �/, in .T; �/, satisfying that, for every � > 0 and s 2 R,

F�.	; s; 	/ W L1.Œs � ��; s C ��;MG / � RN �! C .Œs; s C ��;MG / : (12)

We note that (11), (12) implies causality, this is: in order to know F�.T; s; �/.t/
we have to know T prior to t . Thus,F in (11) is the restriction of the operator F�
on the subset Xs;� � .RC/N , i.e. F D F�jXs;��.RC/N

F .	; s; 	/ W Xs;� � .RC/N 7! C .Œs; s C ��;MC
G /

.T; �/ 7! f D F .T; s; �/
(13)

and is Lipschitz-continuous where

Xs;� D
n
T 2 L1.Œs � ��; s C ��;MC;�

G /;F�.T; s; �/ 2 C
�
Œs; s C ��;MC

G

�o
:

(14)

3 A Decision Operator on the Nodes

We consider now the rate of takeoff as a function depending on the material objects
on the nodes of the net. This is:

T D D.x/; with x D .f11; : : : ; fNN / 2 .RC/N
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where D.x/ is the “decision operator” and we note that now fij are given by x, since

fij.t/ D
Z t

t��ij

Dij.x/.r/ dr; i ! j: (15)

By this way, we have the traffic flow in this case is given by the function which
describes the objects at the nodes,

t 7! x.t/ 2 .RC/N

such that for every i 2 f1; 2; : : : ; N g; xi verifies that

xi .t/ D �0i C
X

j2N.i/

Z t��ji

t0��ji

Dji.x/.r/dr �
X

j2N.i/

Z t

t0

Dij.x/.r/dr; t � t0; (16)

where the operator D has to satisfy suitable properties that allow us to prove the
existence and uniqueness of solution from de initial value problem (16). One of this
is the Principle of causality: in order to know D.x/.t/ we have to know x prior to t .

We assume that there exists �0 � 0 with �0 � �� where �� D maxf�ijg, such that
for every interval I � R with l.I / � �0, we have

D W L1.I; .RC/N / 7! XI � L1.I;MC
G / (17)

where, as in (14),

XI D fT 2 L1.I;MC;�
G /; with F�.T; s; �/ 2 L1.I;MC

G /g: (18)

In particular, for every s 2 R and � > 0,

D W L1.Œs � ��; s C ��; .RC//N ! Xs;� � L1.Œs � ��; s C ��;MC;�
G / (19)

where Xs;� D XI with I D Œs � ��; s C �� is as (14); see (12).
Thus, from (11) we have that (16) is given by

x.t/ D H .x; t0; �
0/.t/ D Fdiag.D.x/; t0; �

0/.t/; t � t0: (20)

And thus (9) becomes

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

fij.t/ D 0 for all i; j= i ¹ j;

fij.t/ D
Z t

t��ij

Dij.x/.r/dr; i ! j;

xi D �0i C
X

j2N.i/

Z t��ji

t0��ji

Dji.x/.r/dr �
X

j2N.i/

Z t

t0

Dij.x/.r/dr

(21)

where fii.t/ D xi .
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From (13) the right hand side of (21) is a function on Œt0; t0C ��, although in (19)
x is defined in Œt0 � ��; t0 C ��. Therefore, to determine x using the operator D , we
need to know x in Œt0 � ��; t0� and this is now the initial condition for (20).

By this way, given the vector �0 2 .RC/N and the function y 2 L1.Œt0 �
��; t0�; .RC/N /, to solve (21) allow us to find x 2 L1.Œt0 � ��; t0 C h�; .RC/N /
such that x D y in Œt0 � ��; t0� and x D Fdiag.D.x/; t0; �0/ in Œt0; t0 C ��. In
particular, from (13) we have that x 2 C .Œt0; t0 C ��; .RC/N / and verifies the initial
conditions on the edges and on the nodes, this is:

fij.t0/ D
Z t0

t0��ij

Dij.y/.r/dr i ! j;

fii.t0/ D xi .t0/ D �0i 2 RC; for all i 2 f1; 2; : : : ; N g:

Theorem 1 Under above notations and hypotheses, we consider the initial data
�0 2 .RC/N together with non negative function y 2 L1 �

Œt0 � ��; t0� ; .RN /C
�
,

where �� D maxf�ijgij. We assume that for some 0 < � < 1 the decision operator
D satisfies (17)

D W L1.Œt0 � ��; t0 C ��; .RN /C/ ! Xt0;� � L1.Œt0 � ��; t0 C ��;MC;�
G /

and D is Lipschitz with constant LD such that

�N0LD < 1

where N0 � N.N � 1/ is the number or edges in the network.
Then, there exists a unique solution x of (20), (21) with x 2 L1.Œt0 � ��; t0 C

��; .RN /C/\ C .Œt0; t0 C ��; .RN /C/ such that x D y in Œt0 � ��; t0�.
We assume also that y 2 C .Œt0 � ��; t0�; .RN /C/.

(i) If, for some i 2 f1; : : : ; N g, yi .t0/ ¤ �0i ,then xi 2 C .Œt0 � ��; t0/ [ Œt0; t0 C
��;RC/ and at t D t0 has a finite jump.

(ii) If yi .t0/ D �0i , for some i 2 f1; : : : ; N g, then xi 2 C .Œt0 � ��; t0 C ��;RC/.
(iii) If y.t0/ D �0 then x 2 C .Œt0 � ��; t0 C ��; .RN /C/.

Proof IdentifyingL1 �
Œt0 � ��; t0 C ��; .RN /C

�
with the space

L1 �
Œt0 � ��; t0� ; .RN /C

��L1 �
Œt0; t0 C �� ; .RN /C

�
, we consider the operator

H given by

H W Y 7! Y

x 7! H.x/ D Fdiag.D.y; x/; t0; �0/
(22)

where Y D L1 �
Œt0; t0 C �� ; .RN /C

�
such that (20) is equivalent to x D H.x/,

x 2 Y .
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From the properties of Fdiag and D we get H is Lipschitz, with constant LH �
�N0LD , so we have the existence and uniqueness of the fixed point since �N0LD <

1.
Indeed, for every x1; x2 2 Y D L1.Œt0; t0 C ��; .RN /C/ from (17) we have

T 1 D D.y; x1/, T 2 D D.y; x2/, verify T 1 D T 2 en Œt0 � ��; t0�.
Thus,

jFii.T
1; �0/.t/ � Fii.T

2; �0/.t/j �
X

j2N.i/

Z t��ji

t0��ji

jT 1ji .r/ � T 2ji .r/jdrC

C
X

j2N.i/

Z t

t0

jT 1ij .r/ � T 2ij .r/jdr

and using again T 1 D T 2 in Œt0 � ��; t0�, we get

kFii.T
1; �0/� Fii.T

2; �0/kL1 Œt0;t0C�� � �N0kT 1 � T 2kY : (23)

Therefore

kF .T 1; �0/� F .T 2; �0/kY � �N0kT 1 � T 2kY
and from T 1 D D.y; x1/, T 2 D D.y; x2/,

kT 1 � T 2kY � LDkx1 � x2kY
and we conclude.

In particular, there exists a unique solution of (20), (21) x 2 Y D L1.Œt0; t0 C
��; .RN /C/ such that .y; x/ 2 L1.Œt0 � ��; t0 C ��; .RN /C/ and in particular
xi .t0/ D �0i . Moreover, from (13) we have x 2 C .Œt0; t0 C ��; .RN /C/.

If we assume also y 2 C .Œt0 � ��; t0�; .RN /C/ and yi .t0/ D �0i D xi .t0/ we
have xi is continuous function in Œt0 � ��; t0 C �� and has a finite jump at t0 si
yi .t0/ ¤ �i D xi .t0/. Finally, if y.t0/ D �0 then x 2 C .Œt0 � ��; t0 C ��; .RN /C/.
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Fire Spotting Effects in Wildland Fire
Propagation

Gianni Pagnini

Abstract Wildland fire propagation is affected by events with random character.
Two of them are turbulence, due to the Atmospheric Boundary Layer and to the
fire-induced flow, and fire spotting, when sparks or embers are carried by convection
and they start new fires when they land. Fire front position gets therefore a random
character, too. A formulation which includes random effects due to both turbulence
and fire spotting is discussed. It generalizes the level-set method for tracking
random fronts. Under the assumption that fire spotting is a downwind-phenomenon,
differences between fire propagation in the windward and in the leeward sectors are
analyzed. In particular it emerges that the variability in time of the average ember
jump-length and of the mean wind direction push fire advancement.

1 Introduction

Wildland fire propagation is a complex multi-scale, as well as a multi-physics and
multi-discipline process, strongly influenced by the atmospheric wind. The wildland
fire is fed by the fuel on the ground and displaced, beside meteorological and
orographical factors, also by the hot air that pre-heats the fuel and aids the fire
propagation. Heat transfer is turbulent due to the Atmospheric Boundary Layer
and the fire-induced flow. In general, fire-atmosphere coupling has an important
role in fire front propagation [5, 12]. Moreover, fire generates firebrands that when
land on the ground are further sources of fire. Both turbulence and jump-length of
firebrands are random processes that affect the fireline propagation. Hence, the fire
front propagation becomes a random process, too. Accounting for the effects of
turbulence and fire spotting improves the usefulness of the operational models and
thereby increases the firefighting safety and in general the efficiency of efforts for
fire suppression and nature preservation.
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Fire propagation has been mainly modelled by using reaction-diffusion type
equations, see e.g. [1, 2, 10], and the level-set method, see e.g. [4, 9, 11, 12]. Here,
an approach that generalizes the level-set method [19] to track random fronts is
proposed to model the global random effects on fire front propagation due to
turbulence and fire spotting. Actually, the reaction-diffusion equation associated to
the level-set method is derived. Such approach, based on the statistical distribution
of the level-set contour, has been previously introduced to account for turbulent
heat transfer only [14] and here its extension to include also fire spotting is studied.
Turbulent heat transport acts in both windward and leeward sector but, excluding
particular situations, fire spotting can be assumed to be a downwind-phenomenon
acting only in the leeward direction. Within the modelling approach proposed,
differences between windward and leeward sectors are discussed. In particular, it
is emerged that variability in time of the average jump-length of embers and of the
direction of the mean wind enhance the propagation of the fire.

2 Model Formulation

Let 
 .t/ be the fire line contour, then in a two dimensional domain it can be
represented as an isoline of an auxiliary function �.x; t/, i.e. 
 .t/ D fx; t W
�.x; t/ D �0 D constantg. The evolution equation of the isoline �0 is given by

D�

Dt
D @�

@t
C dx

dt
	 r� D D�0

Dt
D 0 : (1)

When the motion of the surface points is directed towards the normal direction it
holds

dx

dt
D V .x; t/ D V .x; t/ On ; On D � r�

jjr� jj ; (2)

and (1) becomes

@�

@t
D V .x; t/ jjr� jj ; (3)

which is the ordinary level-set equation. Let '.�.x; t// be an indicator function
such that

'.�.x; t// D
8
<

:

0 ; �.x; t/ � �0 ;

1 ; �.x; t/ > �0 ;

(4)

then, in wildland fire propagation, it is assumed that '.x; t/ D 1 marks the burned
area ˝.t/, i.e. ˝.t/ D fx; t W '.x; t/ D 1g, and '.x; t/ D 0 marks the unburned
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area, i.e. x 62 ˝.t/. The boundary of ˝.t/ is 
 .t/, that is the front line contour
of the wildland fire. In literature models [4, 9, 11, 12], quantity V .x; t/ is identified
with the so-called Rate Of Spread (ROS). Several determinations of the ROS have
been proposed, some of them are based on experimental data and others on physical
insight, see e.g. [3, 6, 7, 9, 17]. The present formulation holds for any determination
of the ROS.

Let the burning fireline be embodied by a large number of active flame holders.
Let the motion of each active flame holder belonging to the fireline be random due
to turbulence and fire spotting effects. For any realization indexed by !, the random
trajectory of each active flame holder is stated to be X!.t;x0/ D xROS.t;x0/ C
�! C �! , where � and � are two random noises that reproduce the randomness of
turbulence and fire spotting. The deterministic component xROS corresponds to the
motion obtained by literature determination of the ROS [3, 6, 7, 9, 17]. By using
statistical mechanics formalism [8], the trajectory of a single active flame holder is
marked out by the one-particle density function f !.xI t/ D ı.x � X!.t;x0//,
where ı.x/ is the Dirac-delta function. The random trajectory X.t;x0/ has the
same fixed initial condition X!.0;x0/ D xROS.0;x0/ D x0 in all realizations.
Let �.x0; 0/ be the initial fixed fireline contour, the evolution in time of the fireline
according to the !-realization of the trajectories of the active flame holders follows
to be

�!.x.t// D
Z


0

�.x0; 0/ ı.x � X!.t;x0// dx0 ; (5)

where 
0 D fx W �.x; 0/ D �0g.
Denoting by h	i the ensemble average, the average trajectory hX.t I x0/i D

x.t;x0/ is driven by the deterministic velocity field dx=dt D V .x; t/. Then, trajec-
tory x.t;x0/ emerges to be time-reversible and the Jacobian of the transformation
follows to be J D dx0=dx ¤ 0. When the fireline length L .t/ grows, the number
N .t/ of the active flame holders composing the fireline grows as well. Then the
growing ratio of the fireline, i.e. L .t/=L .0/, and that of the number of the active
flame holders, i.e. N .t/=N .0/, are equal. Hence, to each active flame holder it
can be associated an action length d stated as d D L .t/=N .t/ D L .0/=N .0/ D
constant . As a consequence of this reasoning, a condition of incompressibility type
follows: J D 1. Finally, by time inversion and ensemble averaging, from (5) the
effective fire front contour emerges to be in terms of the indicator function '.x; t/
as follows

h'!.x.t//i D h
Z

R2
'.x; t/ı.x�X!.t;x//dxi D

Z

R2
'.x; t/hı.x � X!.t;x//idx

D
Z

R2
'.x; t/ f .xI t jx/ dx D 'e.x; t/ ; (6)



206 G. Pagnini

where f .xI t jx/ D hı.x � X!.t;x//i is the probability density function (PDF)
of the distribution of the particles of the fireline contour around the average front
location x and the definition of '.x; t/ stated in (4) has been used.

Field variable 'e.x; t/ is computed from formula (6) where indicator function
'.x; t/ follows from solving the level-set equation driven by the average front
velocity as discussed in Sect. 3.2, see Eqs. (19) and (22). The pure deterministic
motion governed by the level-set equation (3) is recovered when f .xI t jx/ !
ı.x � x/.

Since the effective fireline contour 'e.x; t/ is a smooth function continuously
ranging from 0 to 1, a criterion to mark burned points have to be stated. For example,
points x such that 'e.x; t/ > 0:5 are marked as burned and the effective burned
area emerges to be ˝e.t/ D fx; t W 'e.x; t/ > 0:5g. However, beside this criterion,
a further criterion associated to an ignition delay due to the pre-heating action of
the hot air or to the landing of firebrands is introduced. Hence, in the proposed
modelling approach, an unburned point x will be marked as burned when one of
these two criteria is met.

This ignition delay, due to a certain heating-before-burning mechanism, can be
depicted as an accumulation in time of heat [14], i.e.

 .x; t/ D
Z t

0

'e.x; �/
d�

�
; (7)

where  .x; 0/ D 0 corresponds to the unburned initial condition and � is a
characteristic ignition delay that can be understood as an electrical resistance.
Since the fuel can burn because of two pathways, i.e. hot-air heating and firebrand
landing, the resistance analogy suggests that � can be approximatively computed as
resistances acting in parallel, i.e.

1

�
D 1

�h
C 1

�f
D �f C �h

�h�f
; (8)

where �h and �f are the ignition delays due to hot air and firebrands, respectively.
The amount of heat is proportional to the increasing of the fuel temperature

T .x; t/, then

 .x; t/ / T .x; t/ � T .x; 0/
Tign � T .x; 0/

; T .x; t/ � Tign ; (9)

where Tign is the ignition temperature. Finally, when  .x; t/ D 1 the ignition
temperature is assumed to be reached, so that a new ignition occurs in .x; t/ and,
with reference to (6), the modelled fire goes on by setting '.x; t/ D 1, see the
numerical algorithm in Sect. 4.
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3 Windward and Leeward Differences

The windward sector of the fireline propagation is assumed to be affected solely
by turbulence while the leeward is affected by both turbulence and fire spotting.
In this Section the differences between the two sectors are analyzed within the
modelling approach described above. The indices w and ` refer to windward and
leeward quantities, respectively.

3.1 Particle Probability Density Function

Since '.x; t/ is an indicator function, formula (6) turns out to be

'e.x; t/ D
Z

˝.t/

f .xI t jx/ dx ; (10)

that was originally proposed to model the burned mass fraction in turbulent
premixed combustion [13]. By applying the Reynolds transport theorem to (10),
the evolution equation of the effective fire front 'e.x; t/ is [13]

@'e

@t
D
Z

˝.t/

@f

@t
dx C

Z

˝.t/

rx 	 ŒV .x; t/ f .xI t jx/� dx : (11)

Equation (11) is the reaction-diffusion equation associated to the level-set equa-
tion (3).

An important property of the proposed approach is the possibility to manage real
world situations when a fire overcomes a zone without fuel, e.g. roads, firebreak
lines, rivers. On the contrary, by using the classical level-set method this issue can
not be solved, because when there is no fuel the ROS is null and the fire front stops,
see Eq. (3). Indeed, in the present formulation (11), when the ROS is null the fireline
spreading is driven by the joint action of the turbulent motion of the hot air and fire
spotting in terms of the particle PDF f .xI t jx/ according to the equation

@'e

@t
D
Z

˝.t/

@f

@t
dx : (12)

Hence, in this approach modelling of random processes is embodied by the PDF
f .xI t jx/.

This PDF results from the sum of two independent random variables, i.e.
.xROS C�/ and �, regarding turbulence and fire spotting. This means that f .xI t jx/
is determined by the convolution between the PDF corresponding to .xROS C �/,
hereinafter labeled as G, and the PDF corresponding to �, hereinafter labeled as
q. Embers are pushed by the atmospheric mean wind U and land to a certain
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distance `! D jj�! jj from the fireline. The mean wind U is assumed to be the
same in all realizations and with the same direction all over the domain involved,
i.e. OnU D OnU .t/. Then, the effect of � emerges to be positive and aligned with the
mean wind direction, i.e. �! D `! OnU . Turbulent noise � is a zero-mean noise, i.e.
h�i D 0, while fire-spotting noise � has a positive mean value, i.e. h`i > 0. Finally

f .xI t jx/ D
Z C1

0

G.x � xROS � ` OnU I t/ q.`I t/ d` ; (13)

and the average front position is x.t/ D
Z

R2
x f .xI t jx/ dx D xROS C h`i. Let ˛ be

the angle between On and OnU , then in the leeward fireline sector, i.e. 0 � ˛ < �=2,

f`.xI t jx/ D
Z 1

0

G.x � xROS � ` OnU I t/ q.`I t/ d` ; x.t/ D xROS C h`i OnU ;

(14)

otherwise in the windward sector fw.xI t jx/ D G.x � xROSI t/ with x.t/ D xROS.
The presence of fire spotting enlarges the burned area because jjxjj > jjxROSjj.

If turbulent heat transfer is modelled by a Gaussian PDF with diffusion coeffi-
cient D , then the spreading around the fireline position xROS is described by

@G

@t
D D r2G ; G.xI 0jxROS/ D ı.x � xROS/ : (15)

Hence, from (13), the evolution equation for f .xI t jx/ follows to be

@f

@t
D D r2f C

Z 1

0

G.x � xROS � ` OnU I t/ @q.`I t/
@t

d`

C rx 	 d OnU
dt

Z 1

0

G.x � xROS � ` OnU I t/ ` q.`I t/ d` ; (16)

where the property rx G D �rx G has been used. Finally, inserting (16) into (11),
it follows

@'e

@t
D D r2'e C

Z

˝.t/

	Z 1

0

G.x � xROS � ` OnU I t/ @q.`I t/
@t

d`

�

dx

C
Z

˝.t/

rx 	 d OnU
dt

�Z 1

0

G.x � xROS � ` OnU I t/ ` q.`I t/ d`



dx

C
Z

˝.t/

rx 	 ŒV .x; t/ f .xI t jx/� dx ; (17)
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in which clearly the variability in time of heat transfer generates a diffusive
behaviour (the first term in RHS) while the variability in time of the fire spotting
generates two source terms (the second and the third term in RHS) that sum to
the source term driven by the velocity field V (the fourth term in RHS). Then, the
variability in time of fire spotting enhances the ROS as it will be shown in the next
Section.

Equation (17) is more difficult to be solved than other reaction-diffusion equa-
tions in literature [1,2,10]. The only case exactly solved is the plane fire front limit,
see Sect. 3.2. However, it is here reminded that 'e.x; t/ is practically computed by
using (6) and Eq. (17) has been derived with the aim to understood the role of each
involved process.

3.2 Average Front Velocity

In the windward sector it holds x D xROS and then the average front velocity is

dx

dt
D dxROS

dt
D VROS.x; t/ On ; (18)

such that its modulus equals the value of the ROS as derived in literature [3, 6, 7, 9,
17]. Then, in the windward sector, the level-set equation reads

@�w

@t
D VROS.x; t/ jjr�wjj : (19)

What concerns the leeward sector, it holds x.t/ D xROS.t/C h`.t/i OnU and then

dx

dt
D d

dt
.xROS.t/C h`.t/i OnU / D V0.x; t/ On C d h`i

dt
OnU C h`i d OnU

dt

D V0.x; t/ On C Vf C VU ; (20)

where Vf and VU represent the components of the average front velocity due to
the time variability of the average ember jump-length h`i and of the mean wind
direction OnU , respectively.

Formula (20) is a key result of the present approach. In fact, when fire spotting
occurs, the effective fire spreading expressed by the modulus of the average front
velocity is

V .x; t/ D VROS.x; t/C Vf 	 On C VU 	 On : (21)

Finally, in the leeward sector the level-set equation turns out to be
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@�`

@t
D .V0.x; t/C Vf 	 On C VU 	 On/ jjr�`jj : (22)

In particular, the computation of Vf follows from the chosen parameterization
of h`i and the computation of VU from the behaviour of the mean wind direction
OnU .t/. Examples of fire spotting parameterization can be found in [15, 16, 18].

3.3 Plane Fire Front Limit: Exact Solution

When only turbulence is acting, the effective front contour is determined by

'eT.x; t/ D
Z

˝.t/

G.x � xI t/ dx ; ˝ D ˝wU ˝` ; (23)

then, in the windward sector, i.e. x 2 ˝w, 'w.x; t/ D 'eT.x; t/ and in the leeward
sector, i.e. x 2 ˝`, it holds

'`.x; t/ D
Z 1

0

'eT.x � ` OnU I t/ q.`; t/ d` : (24)

For a plane front with Gaussian turbulence, the exact solution of the pure-turbulent
process is [13]

'GeT.x; t/ D 1

2

	

Erfc

�
x � LR.t/

2
p
D t




� Erfc

�
x � LL.t/

2
p
D t


�

; (25)

and then in the leeward sector the exact solution turns out to be

'`.x; t/ D
Z 1

0

'GeT.x � `; t/ q.`; t/ d` ; (26)

where Erfc is the complementary Error function and LR and LL are the right and
left deterministic fronts, i.e. ˝.t/ D ŒLL.t/ILR.t/�. These results are important
for comparison with the ordinary level-set method in the “cold” case and in the
“hot” case, i.e. without and with taking into account the heating-before-burning
mechanism (7).

In fact, consider exact solution (25) for the “cold” case. If V D constant , the
right front position of the level-set contour is LR D L0CV t and for the randomized
level-set it holds for 0 < t < 1

'GeT.LR; t/ D 1

2

	

1� Erfc

�
LR � LL

2
p
D t


�

<
1

2
: (27)

Then setting the right front position LR in the leeward sector, by using (26), it
follows
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'`.LR; t/ D 1

2

	

1�
Z 1

0

Erfc

�
LR � LL � `
2

p
D t




q.`; t/ d`

�

<
1

2
; (28)

because functions inside integral are positive. Hence both the “cold” isolines 'GeT D
1=2 and '`.x; t/ D 1=2 in the windward and leeward sector, respectively, are slower
than the ordinary level-set contour.

What concerns the “hot” case, if only turbulence is considered, when

 .x; �t/ D 1 then � D �h D
Z �t

0

'eT.x; t/ dt. Since 'eT.x; t/ D
Z

˝.t/

G.xI t jx/ dx D
Z

R2
'.x; t/G.xI t jx/ dx and G.xI t jx/ D ı.x � x.0// C

D

Z t

0

r2G.xI sjx/ ds, by substitution it follows

�h D �t C D

Z �t

0

	Z

R2

�Z t

0

r2G.xI sjx/ ds




'.x; t/ dx

�

dt : (29)

In the deterministic case D D 0 then �h D �t . Hence when r2G > 0, i.e. jjxjj >
jjxjj C p

2D�t , the “hot” front is faster because for fixed �h it holds�t < �h.
What concerns the leeward sector, if q.`; t/ D q.`/, at the distance r from the

main perimeter in the outward direction On it holds

 e.r;�t/ D
Z 1

0

 eT.r � `; t/ q.`/ d` : (30)

Since  .ra;�t/ >  .rb;�t/ when ra < rb , then

 e.r;�t/ D
Z 1

0

 eT.r � `; t/ q.`/ d` >  eT.r;�t/ ; (31)

and  .r;�a/ >  .r;�b/, when �a > �b . Finally  e.r;�t/ D 1 D  eT.r;�t
0/

such that it holds �t < �t 0 < � .

4 Numerical Results

A wildland fire propagating in a flat terrain covered by an idealized Pinus ponderosa
ecosystem is simulated as a simple case study. Simulation details are reported in the
caption of Fig. 1. The study of further cases can be found in [15].

The adopted numerical algorithm is the following:

1. The central difference approximation of the gradient of the level-set function is
calculated and the gradient is normalized to obtain the unit normal to the front.
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a b

c d

e f

Fig. 1 Plots show the level-set method (top row), the present modelling approach when only
turbulence (middle row) and when both turbulence and fire spotting are considered (bottom row).
The labels on the contour lines indicate the elapsed time in minutes. Fire spotting has been
parameterized according to [16, 18]. In particular, a stationary log-normal distribution for jump-
length of embers is chosen with mean 
 D hln `i and standard deviation s D h.ln `� 
/2i stated
equal to: 
 D 1:32 I 0:26f U 0:11

t �0:02 and s D 4:95 I�0:01
f U�0:02

t �3:48, where Ut is the modulus
of the mean wind as measured at the top of the tree canopy (10m [18]) and assumed constant both
in value (17:88m s�1) and direction (x-axis), and If D I C It where I D 20;000 kW m�1 is
the fire intensity and It D 0:015 kW m�1 is the tree torching intensity. Since temporal constancy
of fire spotting statistics and mean wind direction, it holds Vf D VU D 0. Other simulation
parameters are: VROS D I=.Hw0/ where H D 22;000 kJ kg�1 is the fuel low heat of combustion
and w0 D 2:243 kg m�2 is the oven-dry mass of fuel, D D 0:04m2 s�1, �h D 600 s, �f D 60 s
and the width of firebreaks is 60m in the windward sector and 90m in the leeward sector

2. The modulus of the average front velocity V .x; t/ is calculated in each point of
the Cartesian grid.

3. The first stage of the Total Variation Diminishing (TVD) Runge–Kutta scheme is
completed to obtain an approximation of the new value of the level-set function
for the next time step.

4. Steps from 1 to 3 are repeated using the new value of the level-set function.
5. The second stage of the TVD Runge–Kutta scheme gives the new value of the

level-set function.
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6. The new value of 'e.x; t/ is calculated through numerical integration of the
product of '.x; t/ times the PDF f .xI t jx/ as stated in (6). If 'e.x; t/ > 0:5

then point x is marked as burned.
7. Function .x; t/ is updated for each point by integration in time with the current

value of 'e.x; t/. In any point with  .x; t/ > 1, the ignition is possible so point
x is marked as burned and '.x; t/ D 1 is stated to allow ignition and simulated
fire goes on.

8. Current time is updated as well as the level-set function and the operations are
repeated for a new time step.

The present analysis constitutes a proof-of-concept and it needs to be subjected to
a future validation. Hence, numerical results are understood as explorative exercises
to investigate the potentialities of the approach. From comparison of the level-
set method against the proposed model when only turbulence and when both
turbulence and fire spotting are taken into account, it emerges the suitability of the
proposed approach to simulate a fire that overcomes a firebreak zone, in contrast
to the level-set method. Moreover, it emerges also that the inclusion of turbulence
allows for simulating fire flank and backing fire and the inclusion of fire spotting
strongly enhances the frontline propagation. This richness of model behaviours
supports the proposed formulation as a promising approach to simulate the complex
phenomenology of real wildland fire propagation.

Conclusions
In this paper an approach to model the effects of random processes occurring
in wildland fire propagation is presented. The random processes considered
are turbulence and fire spotting. The fireline propagation is modelled as a
particle random trajectory problem. The resulting governing equation emerges
to be a reaction-diffusion equation associated to the level-set method. Random
processes have been inserted into the level-set approach by randomizing the
position of the contour points. This formulation emerges to be suitable to
manage real world dangerous situations such as the faster propagation and the
overcoming of a break-fire because of the diffusion of the hot air and embers
jumping. An important obtained result is the determination of the effective
fire spread which includes fire spotting.
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Solving the Pertubed Quantum Harmonic
Oscillator in Imaginary Time Using Splitting
Methods with Complex Coefficients

Philipp Bader and Sergio Blanes

Abstract Efficient splitting algorithms for the Schrödinger eigenvalue problem
with perturbed harmonic oscillator potentials in higher dimensions are considered.
The separability of the Hamiltonian makes the problem suitable for the application
of splitting methods. Using algebraic techniques, we show how to apply Fourier
spectral methods to propagate higher dimensional quantum harmonic oscillators,
thus retaining the near integrable structure and fast computability. This methods is
then used to solve the eigenvalue problem by imaginary time propagation. High
order fractional time steps of order greater than two necessarily have negative
steps and can not be used for this class of diffusive problems. However, the use
of fractional complex time steps with positive real parts does not negatively impact
on stability and only moderately increases the computational cost. We analyze the
performance of this class of schemes and propose new highly optimized sixth-order
schemes for near integrable systems which outperform the existing ones in most
cases.

1 Introduction

We consider the eigenvalue problem for the stationary Schrödinger equation (SE)
(„ D m D 1),

H�i.x/ D Ei�i .x/; i D 0; 1; 2; : : : (1)

where

H D T C V.x/ D 1

2
pT	p C V.x/; x 2 R

d ; (2)
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V.x/ denotes the interaction potential and p D �ir is the momentum operator. In
this work, we will focus on special techniques for the important case of the perturbed
harmonic oscillator in higher dimensions,

V.x/ D V0 C "V".x/ D 1

2
xT˝x C "V".x/; " � 1;

which is relevant, for example, if one is interested in the lower excited states, which
evolve near the minimum of the potential. This particular problem has attracted great
interest among theorists and practitioners [2, 12, 16, 17, 19] due to its relevance for
the understanding of the atomic and molecular structure of matter.

An efficient solution is given by the imaginary time propagation method (ITP),
i.e., the evolution of the time-dependent Schrödinger equation in imaginary time
(t D �i�), whose formal evolution operator is exp.��H/. In practice, any initial
condition converges under the action of exp.��H/ asymptotically to the ground
state solution when � ! 1.

We will show how to compute the operators e��.TCV0/ and e��"V" exactly in
the coordinate and momentum space, respectively, in order to apply the operator
splitting technique which combines these exponential operators with appropriate
coefficients to yield an approximation of e��H . The computational cost depends on
the number of changes between these coordinates which are cheaply performed by
Fast Fourier transforms (FFT). However, splitting methods of order p > 2 require
negative time-steps [20,21] and the instabilities caused thereof are analogous to the
ones for the integration of a diffusion equation backwards in time.

In this paper, we propose new splitting methods that take into account the near
integrable structure of the problem by solving the harmonic part exactly by means of
Fourier transforms and overcome the order barrier by using complex time-steps. The
obtained methods outperform the existing splitting schemes when high accuracy is
desired and could be appropriate for elaborating a variable order algorithm. The
conducted numerical experiments illustrate the efficiency of the new methods.

2 Imaginary Time Integration for the Schrödinger Equation

An important property of the Hermitian operator H is that (choosing properly the
origin of the potential) its eigenvalues 0 � E0 � E1 � : : : are real and non-
negative, and the corresponding eigenfunctions �i can be chosen to form a real
orthonormal basis on its domain. The imaginary time Schrödinger equation reads

� @

@�
 .x; �/ D H .x; �/;  .x; 0/ D  0.x/; (3)
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with formal solution  .x; �/ D e��H .x; 0/. After expanding the initial condition
 0 in the basis of eigenfunctions �i , the time evolution of (3) is given by

 .x; �/ D e��H X

i

h�i .x/ j .x; 0/i �i .x/ D
X

i

e��Ei h�i .x/ j .x; 0/i �i.x/;
(4)

where h	 j 	i is the usual L2 scalar product. Asymptotically, for a sufficiently long
time integration, we get  .x; �/ ! e��E0 c0�0 since the other exponentials decay
more rapidly. The convergence rate depends of course on the separation of the
eigenvalues. For simplicity, we restrict ourselves to the non-degenerate case E0 <
E1.

Normalization of the asymptotic value yields the eigenfunction �0 and the
corresponding eigenvalue is computed via E0 D h�0jH�0i. Excited states can be
obtained by propagating different wave functions simultaneously (or successively)
in time and using, for example, the Gram-Schmidt orthonormalization or diagonal-
izing the overlap matrix [1].

The problem is further simplified by truncating the spatial domain and assuming
periodic boundary conditions, which is justified since all bounded eigenstates vanish
at a sufficiently large distance from the origin.

The potential V is represented in this grid by a diagonal matrix and the periodic-
ity of the system allows for the use of spectral methods (in space) for the calculation
of T , namely the Fast Fourier Transform, after which the matrix representation of
T also becomes diagonal on each dimension, and the computational costs for the
application of V and T to a vector are thus proportional to Nd and Nd logN ,
respectively.

3 Splitting Methods for the Schrödinger Equation

To approximate the time evolution (4), i.e., the computation of e��H acting on a
vector, standard splittings consist of compositions of the operators e��V and e��T
evaluated at different times. A first example is provided by the well-known Strang
splitting

�
Œ2�

h � e� h
2 V e�hT e� h

2 V ; (5)

verifying �Œ2�

h D e�hH C O.h3/ with h � �� . Higher order approximations can be
obtained by a more general composition

�
Œp�

h �
mY

iD1
e�aihT e�bihV ; (6)
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where �Œp�

h D e�hH C O.hpC1/ if the coefficients ai ; bi are chosen such that they
satisfy a number of order conditions (with m sufficiently large). It is well-known,
however, that methods of order greater than two (p > 2) necessarily have negative
coefficients [7,13,20,21]. While this is usually not a problem for the coefficients bi ,
having negative ai coefficients makes the algorithm badly conditioned (in the limit
N ! 1).

Composition methods with coefficients bi positive are also convenient for the
present case of unbounded potentials since negative values of bi can generate large
round-off errors in the exponential e�bi V at the boundaries if the interval-size of the
spatial discretization is not appropriately chosen and the potential takes exceedingly
large values.

Splitting methods are particularly appropriate for the numerical integration of
this problem since the choice of the time step, h, is not affected by the mesh size.

Before we concentrate on order conditions to obtain higher order methods, we
point out that it is beneficial to separate the quadratic part and to treat the remainder
as a perturbation since the harmonic oscillator has a simple and fast solution using
FFTs [3,11]. The central result of this work will give rise to such a splitting approach
for higher dimensional problems,

Theorem 1 For symmetric positive definite matrices 	;˝ 2 R
d�d and functions

f .h; 	;˝/ D p
˝	 tan

�
h

2

p
˝	

�

	�1; g.h; 	;˝/ D ˝�1
p
˝	 sin

�
h
p
˝	

�
;

(7)

the following decomposition is satisfied for jh�max.
p
˝	/j < �:

e�ih 12 .p
T 	pCqT ˝q/ D e�i 12 qT f .h;	;˝/qe�i 12 pT g.h;	;˝/pe�i 12 qT f .h;	;˝/q ; (8)

where qT D .x1; x2; : : : ; xd / and pT D �i.@x1 ; @x2 ; : : : ; @xd / and the stepsize is
restricted by the largest eigenvalue �max of

p
˝	.

Remark 1 From a formal point of view, the symmetry of 	 and ˝ as well as the
positivity are not necessary and could be replaced by invertibility. These conditions
only play a role when we express the formal series in terms of trigonometric
functions with the help of the (positive) matrix square root. For quantum mechanics,
however, we require Hermitian operators, e.g., for pT	p, 	� D 	 is implied.
Furthermore, since the corresponding operators commute, there is a degree of
freedom in the representation of the matrices in the Hamiltonian and by choosing
them real and Hermitian, 	;˝ are uniquely determined.

Proof The proof is a generalization of the result for the one-dimensional case [3].
Given the functions f; g, we can prove the lemma directly by recalling that two
operators are identical on a sufficiently small time interval if they satisfy the same
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first order differential equation with the same initial conditions [22]. We thus verify
that the right-hand side of (8) also solves the propagator equation

i PU D .A1 C B1/U; U.0/ D I; (9)

with A1 D 1
2
pT 	p and B1 D 1

2
qT˝q and is therefore identical to the propagator

on the left-hand side. Now set

QU .t/ D e�if .t/A1e�ig.t/B1e�if .t/A1

and plugging it into (9) yields

.A1 C B1/ QU ŠD
� Pf A1 C e�ifA1 PgB1 eifA1 C e�ifA1 e�igB1 Pf A1 eigB1 eifA1

� QU :

After algebraic manipulation, we obtain two independent non-linear differential
equations for f .t/ and g.t/ with initial condition f .0/ D g.0/ D 0 in order to
satisfy QU .0/ D I . It is then easy to check that f; g given in (7) solve these equations.
As a result, we have that QU .t/ D U.t/ locally in a neighborhood of the origin and
(8) is proved identically.

The functions f; g can be found by exploiting that the operators A1;B1 generate
the same algebra as their corresponding classical mechanical operators and the
computations can be carried out in a matrix setting as follows: The classical
mechanical system is

d

dt

�
q

p

�

D
�
0 	

�˝ 0

��
q

p

�

and the evolution operator is computed to

exp

�

t

�
0 	

�˝ 0

��

D
�

cos.t
p
	˝/ 	.

p
˝	/�1 sin.t

p
˝	/

�˝.p	˝/�1 sin.t
p
	˝/ cos.t

p
˝	/

�

:

(10)

It is known that products of real psd matrices 	˝;˝	 can be diagonalized and
have positive eigenvalues [15, Corr. 7.6.2], which means that the positive square
root in (10) exists and is unique. We further note that the product	˝ is symmetric
iff. Œ	;˝� D 0. For the decomposition, we compose the exponentials

�
1 0

�B 1

��
1 A

0 1

��
1 0

�B 1

�

D
�

1 � AB A

�2B C BAB 1 � BA

�

: (11)

Equating (11) and (10), we easily obtain the expressions for f; g in (7). ut
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With the identity (8) at hand, we propose to replace the generic splitting (6) by

�
Œp�

h �
mY

iD1
e�aihH0 e�bih"V" ; (12)

which comes at the same computational cost of two FFTs per stage and has the
important benefit of error terms proportional to powers of the small parameter ".
Applying the Baker-Campbell-Hausdorff formula to the composition (12), the order
conditions can be obtained and for details, we refer to [4].

Since " is assumed to be small, the error expansion for a consistent method �h
can be asymptotically expressed as

�h � e�hH D
X

i�1

X

k�si
ei;k "

ihkC1; as .h; "/ ! .0; 0/;

where the si start from the first non-vanishing error coefficient esi ;k . We say that �h
is of generalized order .s1; s2; : : : ; sm/ (where s1 � s2 � 	 	 	 � sm) if the local error
satisfies that

�h � e�hH D O."hs1C1 C "2hs2C1 C 	 	 	 C "mhsmC1/:

4 New Splitting Methods for the ITP Problem

Due to the aforementioned necessity of negative coefficients ai ; bj for splitting
methods of order higher than two, an alternative strategy has to be pursued to
circumvent this order barrier. A successful remedy comes from considering complex
coefficients in the composition (12). In other problems where the presence of
negative real coefficients is unacceptable, the use of high-order splitting methods
with complex coefficients having positive real part has shown to possess some
advantages. In recent years a systematic search for new methods with complex
coefficients has been carried out and the resulting schemes have been tested
in different settings: Hamiltonian systems in celestial mechanics [10], the time-
dependent Schrödinger equation in quantum mechanics [5, 6] and also in the more
abstract setting of evolution equations with unbounded operators generating analytic
semigroups [9,14]. Many of the existing splitting methods with complex coefficients
have been constructed by applying the composition technique to the symmetric
second-order leapfrog scheme (5). For example, a fourth-order integrator can be
obtained with the symmetric composition

�
Œ4�

h D �
Œ2�

˛h �
Œ2�

ˇh �
Œ2�

˛h ; ˛ D 1=.2� 21=3e2ik�=3/; ˇ D 21=3e2ik�=3˛ (13)
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and k D 1; 2. In both cases, one has Re.˛/;Re.ˇ/ > 0. Higher order composition
methods with complex coefficients and positive real part can be found in Refs. [8,9,
14], where several numerical examples are also reported.

We present the best methods that have been obtained by a systematic search
among symmetric compositions. Since H0 and V" have qualitatively different
properties, we analyze both TVT-and VTV-type compositions, defined as

TVT: �Œp�

h D e�a1hH0e�b1h"V"e�a2hH0 	 	 	 e�a2hH0e�b1h"V"e�a1hH0 ;

VTV: �Œp�

h D e�b1h"V"e�a1hH0e�b2h"V" 	 	 	 e�b2h"V"e�a1hH0e�b1h"V" :

In principle, both compositions have the same computational cost for the same
number of exponentials. Nevertheless, due to a projection step to the real part after
each full time-step, only in the VTV composition we can concatenate the last map
in the current step with the first stage in the next one. The TVT compositions thus
require two additional FFTs in comparison with the VTV composition, and this is
accounted for in the numerical experiments.

We have explored both TVT and VTV compositions of order six with different
number of stages. Among the solutions that minimize

P
i .jai j C jbi j/ and/or the

absolute value of the real part of the coefficients appearing at the leading error
terms, we choose the ones that give the best performance on a series of numerical
examples.

The best methods for our purpose have nine stages and the two free parameters
are used to achieve generalized order (8,6) and are denoted by T869 and V869 in
Table 1 (Murua and Makazaga, Private communication, 2012).

Table 1 Splitting methods of order (8,6)

V869 T869
b1 D 0:0324977060374 C 0:0106413103804i a1 D 0:0422578972998 � 0:0142157802241i

a1 D 0:0878956804412 C 0:0360525761828i b1 D 0:0948948693677 � 0:0379638064725i

b2 D 0:0941809234226 C 0:0238668753626i a2 D 0:0952603984718 C 0:0045187258914i

a2 D 0:0953518553990 � 0:0651283760351i b2 D 0:0973746603817 C 0:0885188779317i

b3 D 0:1011329530972 � 0:1122017573370i a3 D 0:0999605789447 C 0:0902719950713i

a3 D 0:1218655755949 � 0:0549740024714i b3 D 0:1185847935200 C 0:0383562506084i

b4 D 0:1609413821194 � 0:0161276438969i a4 D 0:1486955304026 C 0:0114381171876i

a4 D 0:1415068827184 C 0:0246072290465i b4 D 0:1368651197603 � 0:0235874049695i

b5 D 1=2� .b1 C b2 C b3 C b4/ a5 D 1=2� .a1 C a2 C a3 C a4/

a5 D 1� 2.a1 C a2 C a3 C a4/ b5 D 1� 2.b1 C b2 C b3 C b4/
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5 Numerical Examples

As test bench for the numerical methods, we consider an anisotropically perturbed
harmonic oscillator

H D 1

2

�
@2x C @2y

�
C 1

2
.x; y/

�
4 1

1 4

��
x

y

�

C 1

100
x4: (14)

The numerical integration proceeds as follows: starting from random initial data,
we iterate with fixed time-step until the sufficiently large final time T D 50 and
compare the result with the exact solution, uex.T /, which has been obtained by
integrating with a much smaller time step. The spatial interval is fixed for all
experiments to Œ�10; 10�2 and is discretized with N D 128 equidistant mesh points
in each dimension. At each step, we project the obtained vector to its real part and
normalize it to one in `2.R2/, i.e., given the method �Œp�

h and initial conditions,

un 2 R
N2

, we compute unC1 as

QunC1 D Re.� Œp�

h un/I

and then normalize the solution unC1 D QunC1
ıkQunC1k; where the norm is given by

kwk2 � �x2
N2
X

jD1
w2j ; w D .w1; : : : ;wN2/ 2 R

N2

:

We take as the computational cost the number of Fourier transforms necessary until
the final time. In addition, the methods using complex coefficients are penalized
by a factor 2 in the computational cost, which comes from the use of complex
Fourier transforms instead of real FFT. We repeat the numerical integrations for
different values of the time step, i.e., h D T=M for different values of M . We
take as the approximate solution, ua.T /M , in each case and measure the error as
error D kuex.T /� ua.T /k: The reference methods will be the second order method
optimized for near integrable systems, V82 [18] and the fourth order complex
triple-jump scheme (13), referenced as Yoshida 4. All methods are computed with
either a splitting in harmonic part plus perturbation, indicated by subscript H , or by
splitting into kinetic and potential part, subscript F , neglecting the near-integrable
structure. After the substitution ı D �ih, the stability condition in theorem becomes
jIm.h/�maxj < � and Re.h/ > 0 and the perturbation part is easily propagated after
discretization by the exponential of a diagonal matrix. In this setting, the higher
order in the small parameter is amplified and the efficiency plots in Fig. 1 indicate
that the new methods outperform the existing ones when high precision is sought.
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Fig. 1 In the left column, the squared absolute value of the solution at T D 50, in 3D (top
panel) and from above (bottom panel), is displayed. The right column shows the efficiency curves
(accuracy versus computational cost) for the 2D perturbed harmonic oscillator (14) integrated using
Nx D Ny D 128 equidistant grid points on Œ�10; 10�2 . The standard splitting in kinetic and
potential parts (dashed blue lines) is clearly dominated by the near-integrable splitting (red solid
lines)

Conclusions
We have studied the quantum harmonic oscillator and derived efficient
decompositions that allow the use of Fourier spectral methods and go in hand
with perturbations of the potential. The Schrödinger eigenvalue problem in
imaginary time often has such a structure and we have designed splitting
schemes using complex coefficients that can overcome the order barrier for
parabolic problems since the coefficients have only positive real parts. The
obtained sixth order methods are clearly superior to any classical ones for
high precisions.

An efficient implementation should take into account, for example, a pre-
liminary time integration on a coarse mesh using simple precision arithmetic
in order to get, as fast as possible, a smooth and relatively accurate solution
from a random initial guess, and next consider a refined mesh using arithmetic
in double precision. For simple precision arithmetic and low accuracies, it

(continued)
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suffices to consider only low order methods, and when higher accuracies are
desired we turn to double precision, variable time step and variable order
methods. The best algorithm could depend on the class of problems to solve.
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A High-Order Well-Balanced Central Scheme
for the Shallow Water Equations in Channels
with Irregular Geometry

Ángel Balaguer-Beser, María Teresa Capilla, Beatriz Nácher-Rodríguez,
Francisco José Vallés-Morán, and Ignacio Andrés-Doménech

Abstract This paper presents a new numerical scheme based on the finite volume
method to solve the shallow water equations in channels with rectangular section
and variable width. Time integration is carried out by means of a Runge-Kutta
scheme with a natural continuous extension, using a new temporary forward flow
at the midpoint of each cell which considers the physical flow and the source term
primitive of the shallow water model. That term takes into account the gradient
of bed height, channel width and friction energy loss model. Spatial integration is
based on a central scheme in which flows only have to be evaluated on the midpoint
of the cells where the solution is reconstructed. In this way, it is not necessary to
know the structure of the partial differential equations to be solved. A centered three
degree reconstruction polynomial is applied, using a slope correction to the midpoint
of each cell to prevent the occurrence of spurious numerical oscillations. Some
benchmark examples show the non-oscillatory behavior of numerical solutions in
channels with a variable width. A comparison between numerical results and those
obtained experimentally on a laboratory flume is also carried out.

1 Introduction

This paper describes a new central numerical scheme that solves the shallow water
equations considering a rectangular section and variable width. The system of
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partial differential equations which solves this problem (continuity and momentum
equations) can be expressed in this way (see [10]):

8
<

:

ht C .q/x D �q B0.x/

B.x/

.q/t C
�
q2

h
C 1

2
gh2

�

x
D �gh.Zb/x � q2

h

B0.x/

B.x/
� g n2 q

ˇ
ˇ q
h

ˇ
ˇR

�4=3
h

(1)

where h.x; t/ is the height of the fluid above the bottom of the channel (water depth),
q.x; t/ is the specific discharge (flow rate per unit width), which is related to the
average horizontal velocity v.x; t/ by the expression q.x; t/ D h.x; t/v.x; t/,Zb.x/
is the function which describes the bed height, g is the acceleration of gravity (g D
9:8m=s2), B.x/ is the channel width at each point x, n is Manning’s roughness
coefficient and Rh.x; t/ represents the hydraulic radius which is expressed as:

Rh.x; t/ D h.x; t/B.x/

B.x/C 2h.x; t/
: (2)

System of equations (1) can be rewritten using �.x; t/ D h.x; t/CZb.x; t/ instead
of h.x; t/, as suggested in [2]. This gives the following system of equations:

�
�

q

�

t

C
 

q
q2

��Zb C 1
2
g.� �Zb/2

!

x

D
 

�q B0.x/

B.x/

�g.� �Zb/.Zb/x � q2

��Zb
B0.x/

B.x/
� g Sf

!

(3)

where Sf models the friction term by means of Manning’s formula, so that:

Sf D n2 q

ˇ
ˇ
ˇ
ˇ

q

� �Zb

ˇ
ˇ
ˇ
ˇ .Rh/

�4=3: (4)

Introducing the vector of variables, u D .�; q/T , system (3) can be expressed as:

@u.x; t/

@t
C @f .u.x; t//

@x
D

3X

kD1
sk.x; u.x; t// , ut Cfx D s D s1Cs2Cs3 (5)

where f .u/ is the flux vector, s1 is the source term related to the bed slope, s2
depends on the channel width and s3 is the friction term:

s1 D
�

0

�g.� �Zb/.Zb/x

�

; s2 D
 

�q B0.x/

B.x/

� q2

��Zb
B0.x/

B.x/

!

; s3 D
�

0

�g Sf
�

: (6)
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2 A Central Numerical Scheme

The spatial domain Œ0; L� is divided into N equally spaced nodes xj . Furthermore,
3 additional nodes are considered on the left of x D 0, and also on the right of
x D L to avoid loss of accuracy in the domain boundaries. Thus, initially �x D L

N

is defined and thereby so are points xjC 1
2

D �3�x C j�x; j D 0; 1; : : : ; .N C
6/. Then the nodes xj D x

j�

1
2

Cx
jC

1
2

2
; j D 1; : : : .N C 6/ are considered. Time

interval is discretized by means of: t0 D 0; tn D tn�1 C �tn; n � 1. Time step
�tn is computed taking into account the CFL criteria, so for stability, the following
condition has to be satisfied:

�tn D CFL
�x

maxj

�q

g Ohnj C jOvnj j
� ; CFL � 0:35 (7)

where Ohnj and Ovnj are the point-values at time tn of the water depth, h and the water
velocity v, respectively, consideringx D xj when n is even and x D xjC 1

2
when n is

odd. The central scheme integrates equation (5) in the control volume: Œxj ; xjC1� �
Œtn; tnC1� when n is even so (see [4, 7]):
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being:

un
jC 1

2

D 1

4x
Z xjC1

xj

u.x; tn/ dx; fj .t/ D f .u.xj ; t// ;

sjC 1
2
.t/ D 1

4x
Z xjC1

xj

3X

kD1
sk.x; u.x; t// dx: (9)

The ideas described in [4, 5] are extended for developing the numerical scheme of
this paper, considering the source term, s, which also includes the channel width, s2,
and the friction term, s3. Thus, numerical algorithm takes into account the following
steps:

1. Reconstruction, at time tn, of averages, un
jC 1

2

and point-values, Ounj . Those point-

values will be used in the numerical approximation of source term and fluxes.
2. Reconstruction of Runge-Kutta fluxes, k.i/j . Time integration will be devel-

oped by means of a fourth-order Runge-Kutta scheme coupled with a Natural
Continuous Extension (NCE) [4]. That procedure uses the Runge-Kutta fluxes,
k
.i/
j ; 1 � i � 4, which coincide with a numerical evaluation of .�fx C s/
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in Eq. (5), computed starting from the point values Ounj . For that the following
discrete values are defined:

Kj .xk I Ou.i//D�
h
f
.i/

k � f
.i/
j

i
C
 Z xk

xj

.s1 C s2 C s3/ dx

!.i/

:

Using a non-oscillatory interpolating polynomial it holds that:

dK.i/
j

dx

ˇ
ˇ
ˇ
ˇ
ˇ
xDxj

D k
.i/
j D .�fx C s1 C s2 C s3/

.i/
j ; 8 1 � i � 4:

3. Evaluation of the point-value solution, OunCˇk
j , for time flux integrals. A Gaussian

quadrature rule with two nodes of integration is selected in order to achieve
fourth-order accuracy in time. Thus, the point-values of the solution: OunCˇk

j D
u.xj ; tn C ˇk�t/; k 2 f0; 1g have to be computed.

4. Source term integration. Source term integrals are also evaluated using a Gauss
quadrature rule with two integration nodes so that the resulting scheme is well
balanced (see [3, 5, 6]).

Centered fourth-order non-oscillatory polynomials described in [4] are used in the
reconstruction process of the first two steps.

3 Numerical Results

Test 3.1: Steady flows in channels with contractions Simulations reproduce a
series of steady flows in a domain with variations in both width and topography.
This example was represented for example in [1]. A frictionless channel of length
L D 3 m is considered, which presents a converging and diverging geometry and a
topographic small hill. Bed elevation is defined as:

Zb.x/ D
	
0:1 cos2 Œ�.x � 1:5/� if jx � 1:5j < 0:5
0 otherwise

and the channel width is given by:

B.x/ D
	
1 � 0:1 cos2 Œ�.x � 1:5/� if jx � 1:5j < 0:5
1 otherwise

:

Simulations involving subcritical and supercritical flow, as well as a combination
of both, were performed until the steady-state solution was reached. During the
simulations, the domain is discretized by a uniform grid with 100 cells, and
CFL = 0:35. The numerical results are compared against the analytical solution
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Fig. 1 Test 3.1: Solution to subcritical, supercritical and flow regime combination cases. � is the
free surface level and Q D B.x/q.x/ is the total discharge. (a) � in subcritical flow problem;
(b) Q in subcritical flow problem; (c) � in flow regime combination problem; (d) � in supercritical
flow problem

obtained by assuming that there are two quantities that remain constant throughout
the channel: total discharge Q.x/ D B.x/q.x/ and total energy E D h.x/ C
Zb.x/Cq.x/2=.2gh.x//, which is valid in absence of a hydraulic jump and friction
losses [8].

In the subcritical flow problem (Fig. 1a, b), a discharge of q D 1:566m2/s is
imposed at the inflow and a depth of h D 1m is fixed at the outflow. In the case with
a change on flow regime (Fig. 1c) an inflow discharge condition of q D 1:879m2/s
is imposed. Then the flow becomes critical at the channel throat and continues onto
a supercritical flow. Finally, Fig. 1d shows the supercritical flow that is produced by
setting the inflow depth to h D 1m and the inflow discharge to q D 5:325m2/s. For
all these cases, numerical results for the water surface shows good agreement with
the exact solutions, with an acceptable level of accuracy for the steady discharge
conditions. Total discharge Q also shows a non-oscillatory behavior in the last two
cases, being similar to the subcritical case and for this reason it has not been shown
in this paper.

Test 3.2: Tidal wave in a short channel with variable depth and width
Benchmark test proposed in [10] is considered which describes the propagation of



234 Á. Balaguer-Beser et al.

a tidal wave into a channel with L D 1;500m. This is an important benchmark for
checking well-balancing of the numerical schemes (see [9]). Initial conditions are
�.x; 0/ D 12 m and q.x; 0/ D 0m2/s and boundary conditions are:

�.x; t/ D 12C4C4 sin
�

�

�
4t

86;400
� 1

2

��

m 8x � 0 and q.x; t/ D 0 m2=s 8x � L

The width functions and the bed profile are represented in Fig. 2a, b. Large variations
in width and depth take place throughout the channel. The friction term is included
by setting Manning’s coefficient to n D 0:1. Numerical and asymptotic (see [10])
solutions are computed in a mesh with N D 300 nodes. Time step is defined
using (7) and considering that CFL = 0:35.

Free-surface elevation and discharge per unit-width at times t D 10;800 s and
t D 32;400 s are presented in Fig. 2b–d. Asymptotic solution for the free-surface
elevation is horizontal and varies in time according to �.0; t/. Free-surface ele-
vation at time t D 32;400 s is identical to that presented in Fig. 2b because
�.0; 10;800/ D �.0; 32;400/. The agreement between asymptotic and computed
solution is always remarkable, both for free surface and discharge, without spurious
numerical oscillations.
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Fig. 2 Test 3.2: Geometry, numerical results and asymptotic solution for tide in a short channel.
(a) Channel width (b) Bed and free-surface elevation; (c) Specific discharge at t D 10;800 s;
(d) Specific discharge at t D 32;400 s



A High-Order Well-Balanced Central Scheme for the Shallow Water Equations 235

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0  0.5  1  1.5  2

Su
rf

ac
e 

el
ev

at
io

n 
(m

)

x (m)

Measured data
Contraction location

Numerical Exp1
Numerical Exp2

a

c

b

Fig. 3 Test 3.3: Numerical profiles plotted against experimental profile. Laboratory test is shown
in the background. (a) Sketch of the laboratory experiment; (b) Free-surface elevation at t D 60 s;
(c) Laboratory image together with numerical profiles

Test 3.3: Comparison with experimental results This test is considered in order
to evaluate the capacity of the model to represent changes in open channel flow
regimes, from subcritical to supercritical, and viceversa, including a hydraulic jump.
A comparison is performed between numerical and experimental results. A channel
of L D 2:5 m length is considered, with a horizontal bed (Zb.x/ D 0; 8x).
Figure 3a shows a plan view sketch of the laboratory flume, showing the variation
in the width of the channel. Manning’s coefficient is equal to 0:008, which is an
appropriate value for methacrylate flumes, according to technical literature. Initial
condition is set to: h.x; 0/ D 0:05m and Q.x; 0/ D 0m3=s; 8x 2�0; 2:5Œ.
Boundary conditions are the following:

Q.x; t/ D 1:638 	 10�3 m3=s;8x � 0; 8t; h.x; t/ D 0:05 m;8x � 2:5; 8t
(10)

Numerical solutions are computed on a mesh with N D 400 points and at
t D 60 s with a time step computed with CFL D 0:35. For the numerical solution,
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besides the defined hydrograph and the downstream depth condition, two upstream
conditions were tested. In the first case (named Exp1), water depth was set to
0:072m, which is the value measured in the test. In the second case (named Exp2),
water surface derivative at x D 0 is set equal to zero. Thus, the influence of knowing
the upstream water depth value for subcritical flow can be assessed.

Figure 3c shows different water surface profiles plotted over a photograph of the
laboratory test. Numerical and experimental profiles are also shown in Fig. 3b. As
those figures illustrate, both cases show quite similar profiles, being the hydraulic
jump location the only significant difference. Where the cross section is narrowed,
the change from subcritical to supercritical regime is properly represented, and
upstream and downstream numerically calculated depths are close to those observed
during the test. With regard to depths upstream and downstream the hydraulic jump
(conjugated depths), Exp2 provides the values obtained in the test, whereas Exp1
values differ in less than 5 %. When it comes to the water depth in the uppermost
section of Exp2, the calculated value is 0:068m, just 5.5 % lower than the measured
one. The length of the hydraulic jump is not properly calculated, as might be
expected from a one-dimensional model, which does not take into account the effect
of turbulence. Nevertheless, it is possible to implement some equations that modify
the solution at the hydraulic jump location, provided it occurs, by defining a certain
length according to empirical relations widely used in the field of hydraulics.

Conclusions
The numerical scheme presented in this paper, which works with variable
channel widths and friction energy losses, has shown its potential to represent
different flow regimes in cases with strong irregularities in bed channel geom-
etry and cross section, providing a remarkable agreement with well known
benchmark solutions. It has also been proved to give reliable water surfaces
when compared to experimental results, even when major discontinuities
appear, as is the case of the hydraulic jump.
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On Tridiagonal Sign Regular Matrices
and Generalizations

Álvaro Barreras and Juan Manuel Peña

Abstract In this paper, some characterizations of strictly k–banded nonsingular
sign regular matrices are presented and new sufficient conditions for the total
positivity of tridiagonal matrices are provided.

1 Introduction

Totally positive, TP, matrices are matrices with all their minors nonnegative and have
important applications to many fields (see [8]). Given the bidiagonal decomposition
of a nonsingular totally positive matrix, many computations can be performed with
high relative accuracy, including the calculation of their singular values, eigenvalues
or their inverses (see [6]).

Totally positive matrices belong to the more general class of sign regular
matrices. In [2], nonsingular tridiagonal sign regular matrices were characterized
and a stable test to check if a matrix belongs to this class was presented. By
Theorem 4 of this paper we prove that, if A is a tridiagonal nonsingular sign
regular matrix, then either A or �A is TP or A is a strictly tridiagonal sign regular
matrix. Thus, in Sect. 3 we analyze the extension of the last previous concept:
strictly banded nonsingular sign regular matrices. These matrices are characterized
in several ways (see Theorems 1 and 2). Section 4 provides new sufficient conditions
for the total positivity of a tridiagonal matrix, improving previous results. In the
following Sect. 2, we include some basic notations and results.
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2 Basic Concepts and Results

Let us introduce some basic notations. Given k; l 2 f1; : : : ; ng, let ˛ (resp., ˇ) be
any increasing sequence of k (resp., l) positive integers less than or equal to n. Their
set is denoted byQk;n. LetA be a real n�n matrix. Then we denote byAŒ˛ j ˇ� the
k � l submatrix of A containing rows numbered by ˛ and columns numbered by ˇ.
Furthermore, if ˛ D ˇ, we denote AŒ˛� WD AŒ˛ j ˛�. Let us recall that the minors
of the form detAŒ1; : : : ; k� (k � n) are called leading principal minors of A.

A vector of signs " D ."1; : : : ; "n/ with "j 2 f˙1g for j � n is called a
signature. An n � n matrix A is sign regular of order k (SRk) with signature "
if, for each j D 1; : : : ; k, all minors of order j have the same sign "j or are zero.
If A is sign regular of order k for k D 1; : : : ; n, then we say that A is sign regular
(SR). If all minors of A of order less than or equal to k are nonnegative, then we
say that A is totally positive of order k (TPk). If A is totally positive of order k for
k D 1; : : : ; n, then A is called totally positive (TP). Observe that totally positive
matrices form a subclass of sign regular matrices.

As the following result shows (see Theorem 3.1 of [1]) the product of SR matrices
is a SR matrix.

Proposition 1 Let A and B be two n � n SR matrices with signature ".A/ and ".B/

respectively. Then the product AB is a SR matrix with signature ".A/".B/.

Let us consider the n � n matrix

P D

0

B
@

1

: :
:

1

1

C
A ; (1)

which is the reverse of the identity matrix. Let us observe that P is a SR matrix with
signature " D ."i /1�i�n given by "i D .�1/b i2 c for i D 1; : : : ; n, where bxc denotes
the greatest integer less than or equal to x, a positive real number.

The following result corresponds to the well-known Shadow’s Lemma for TP
matrices extended to n � n SR matrices with signature " D ."i /1�i�n satisfying
"2 D C1 (see Lemma 2.2 of [7]).

Lemma 1 Let A D .aij/1�i;j�n be a SR matrix with signature " D ."i /1�i�n with
"2 D C1. If aij D 0 for any i; j 2 f1; : : : ; ng then one of the following conditions
holds:

(1) akj D 0 for all k � n,
(2) aik D 0 for all k � n,
(3) akl D 0 for all k � i and l � j ,
(4) akl D 0 for all k � i and l � j .

The following result forms part of the Theorem 3 of [3] and presents an
interesting property of SR matrices with a negative entry in their signature. But
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first, let us present some cases .a/; .b/; .c/ that are not included in the following
proposition and arise when �A, PA or �PA is a totally positive matrix respectively.
Given the signature " D ."i /1�i�n of an n � n sign regular matrix, consider the
following cases:

(a) "i D .�1/i for all i � n.
(b) "i D .�1/b i2 c for all i � n.
(c) "i D .�1/b i2Cic for all i � n.

Proposition 2 Let A D .aij/1�i;j�n be a nonsingular SR matrix with signature
" D ."i /1�i�n such that (a)–(c) do not hold. If there exists a positive integer k with
2 < k � n such that "i D C1 for all i < k and "k D �1, then aij ¤ 0 whenever
ji � j j � n � k C 1.

3 Strictly k–Banded Nonsingular SR Matrices

Let us introduce the following classes of matrices: k–banded matrices and strictly
k–banded matrices. k–banded SR matrices have been considered in [5].

Definition 1 Given a matrix A D .aij/1�i;j�n let us consider an integer k < n. We
say that A is a k–banded matrix if aij D 0 when ji � j j > k. If, in addition aij ¤ 0

when ji � j j D k, we say that A is an strictly k–banded matrix.

Observe that (strictly) 0–banded matrices are (strictly) diagonal matrices, (strictly)
1–banded matrices are (strictly) tridiagonal or Jacobi matrices and (strictly) 2–
banded matrices are also called (strictly) pentadiagonal matrices.

The reverse matrices of k–banded matrices are also studied in this paper and so
we present the following definition.

Definition 2 Given a matrix A D .aij/1�i;j�n let us consider an integer k < n. We
say that A is an anti–k–banded matrix if aij D 0 when i C j < n�kC 1 and when
i C j > n C k C 1. If, in addition aij ¤ 0 when i C j D n � k C 1 and when
i C j D nC k C 1, we say that A is strictly anti–k–banded.

Observe that, if A is a (strictly) k–banded matrix, then AP and PA are (strictly)
anti–k–banded matrices.

The following result characterizes SR strictly k–banded matrices in terms of their
nonzero entries.

Theorem 1 LetA D .aij/1�i;j�n be a nonsingular SR matrix and let k be an integer
such that k < n. Then the following conditions are equivalent:

(i) A is strictly k–banded.
(ii) aij ¤ 0 if and only if ji � j j � k.

Proof .i/ ) .ii/. Since A is strictly k–banded, we can take an index i 2 fk C
1; : : : ; n � 1g such that ai;i�k and aiC1;i�kC1 are nonzero and aiC1;i�k D 0. Thus,
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the minor detAŒi; i C 1 j i � k; i � k C 1� D ai;i�kaiC1;i�kC1 is strictly positive
and since A is SR by hypothesis, we have that "2 D 1.

Let us suppose that aij D 0 for some i; j such that ji � j j � k. Then we can
apply Lemma 1 and we have that one of the conditions (1)–(4) holds. Observe that,
since A is nonsingular, there are no columns or rows of zeros in A, and so neither
(1) nor (2) holds. If (3) holds, then ahl D 0 for all h � i and l � j , in particular
ai;i�k D 0, but this contradicts the fact that A is strictly k–banded. Analogously, it
can be checked that (4) does not hold. Then we conclude that aij ¤ 0 for all i; j
satisfying ji � j j � k.
.ii/ ) .i/. It is trivial by Definition 1. ut
The following result relates total positivity with strictly k–banded matrices.

Theorem 2 Let A be an n � n k–banded nonsingular SR nonnegative matrix with
signature " D ."i /1�i�n and "n�kC1 D �1. Then A is strictly k–banded if and only
if A is TPn�k.

Proof To prove the direct implication it suffices to consider the minors detAŒk C
1; : : : ; l j 1; : : : ; l � k� D akC1;1akC2;2 	 	 	al;l�k > 0 for l D k C 1; : : : ; n. Thus,
we have positive minors of orders 1 to n � k and we conclude that A is TPn�k .

For the converse, let us recall that "i D 1 for i � n � k because A is TPn�k and
that "n�kC1 D �1 by hypothesis. So we can apply Proposition 2 to conclude that
aij ¤ 0 whenever ji � j j � k. Finally, by Theorem 1, we have that A is strictly
k–banded. ut

The next result corresponds to Theorem 3.3 of [2] and characterizes tridiagonal
nonsingular SR matrices.

Theorem 3 Let A be an n�n (n � 2) tridiagonal nonsingular nonnegative matrix.
Then A is SR if and only if A is TPn�1.

The following result completes the classification of tridiagonal nonsingular SR
matrices and shows that there are only the following cases: either A or �A is TP or
A is strictly tridiagonal.

Theorem 4 Let A be an n� n tridiagonal nonsingular matrix. Then A is SR if and
only if either A or �A is TP or A is strictly tridiagonal SR.

Proof As we have seen in Theorem 3, there are only two possible signatures for
a tridiagonal nonsingular SR nonnegative matrix: either .1; : : : ; 1/ (TP case) or
.1; : : : ; 1;�1/. Since a SR matrix is either nonnegative or opposite to a nonnegative
matrix, if A is tridiagonal nonsingular SR, then either A is TP or has signature
.1; : : : ; 1;�1/ or it is opposite to a matrix satisfying one of the previous properties.
Since the opposite to a strictly tridiagonal matrix is also strictly tridiagonal, it only
remains to see that A is strictly tridiagonal when A is nonnegative and has signature
.1; : : : ; 1;�1/. Since "n D �1, we can derive from Proposition 2 (for k D n) and
Theorem 1 that A is strictly tridiagonal.

The converse is trivially satisfied. ut
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Let us now focus on SR pentadiagonal matrices. We can derive the following
corollary from Theorem 2.

Corollary 1 LetA be a an n�n pentadiagonal nonsingular SR nonnegative matrix
with signature " D ."i /1�i�n and "n�1 D �1. Then A is strictly pentadiagonal if
and only if A is TPn�2.

We can also extend Theorem 2 to anti–k–banded matrices, as the following result
shows.

Theorem 5 Let A be an n � n anti–k–banded nonsingular SR nonnegative matrix

with signature " D ."i /1�i�n and "n�kC1 D .�1/b n�kC1
2 cC1. Then A is strictly anti–

k–banded if and only if A has signature "i D .�1/b i2 c for i � n � k.

Proof Let us consider the matrix P presented in (1). Recall that P is a SR matrix
with signature O" D .O"i /1�i�n given by O"i D .�1/b i2 c for i D 1; : : : ; n.

Now, by Proposition 1, we have that AP is a SR matrix and the .n � k C 1/–th

entry of the signature of AP is "n�kC1 O"n�kC1 D .�1/2b n�kC1
2 cC1 D �1. Besides, AP

is nonsingular, nonnegative and k–banded. Thus, by Theorem 2, we have that AP
is strictly k–banded if and only if AP is TPn�k . Let us observe that P�1 D P and
then .AP/P D A. Note that if AP is TPn�k, we have, by Proposition 1, that A has
signature "i D .�1/b i2 c for i � n � k. Finally, we can conclude that A is strictly
k–banded if and only if A has signature "i D .�1/b i2 c for i � n � k. ut

4 Sufficient Conditions for the Total Positivity of Tridiagonal
Matrices

In this section we present several sufficient conditions for the total positivity of
tridiagonal matrices. We start with a consequence of Theorem 4.

Theorem 6 Let A D .aij/1�i;j�n be a tridiagonal nonsingular SR nonnegative
matrix. If aij D 0 for some i; j with ji � j j D 1, then A is TP.

Now, we are going to present a formula for the determinant of a tridiagonal
matrix which will be used to derive a new sufficient condition for the total positivity
of a tridiagonal matrix. Let us observe that the expression for the determinant of a
matrix is reduced if we consider tridiagonal matrices. In fact, if A is tridiagonal, its
determinant can be expressed as detA D a11 detAŒ2; : : : ; n��a21 detAŒ1; 3; : : : ; n j
2; : : : ; n�. Expanding the previous formula we have that

detA D a11 detAŒ2; : : : ; n� � a21a12 detAŒ3; : : : ; n�: (2)

The following result generalizes the previous formula. Let us mention that if ˛ is
the empty set, then we say that detAŒ˛� D 1. For instance, if A is an n � n matrix,
we have that detAŒ1; 0� D 1 and detAŒnC 1; n� D 1.
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Let us prove the following formula to compute the determinant of a tridiagonal
matrix. This formula was presented in p. 99 of [8] without proof. We include a proof
in the following result for the sake of completeness.

Lemma 2 Let A be a tridiagonal n � n matrix (n > 3), then

detA D detAŒ1; : : : ; i � detAŒi C 1; : : : ; n� (3)

�ai;iC1aiC1;i detAŒ1; : : : ; i � 1� detAŒi C 2; : : : ; n�

for i D 1; : : : ; n � 1.

Proof If i D 1, then the formula is the trivial case (2). We proceed analogously if
i D n � 1.

For i 2 f2; : : : ; n � 2g, we proceed by induction on i . If i D 2, then we expand
the determinant of A and, since A is tridiagonal, we have that

detA D a11 detAŒ2; : : : ; n� � a12a21 detAŒ3; : : : ; n�

D a11.a22 detAŒ3; : : : ; n� � a23a32 detAŒ4; : : : ; n�/ � a12a21 detAŒ3; : : : ; n�

D .a11a22 � a12a21/ detAŒ3; : : : ; n� � a11a23a32 detAŒ4; : : : ; n�

D detAŒ1; 2� detAŒ3; : : : ; n� � a23a32 detAŒ1� detAŒ4; : : : ; n�:

Thus, formula (3) holds for i D 2.
Suppose that the formula is valid for i D k � 1. Let us prove that it is also valid

for i D k. By the induction hypothesis we know that

detA D detAŒ1; : : : ; k � 1� detAŒk; : : : ; n� (4)

�ak�1;kak;k�1 detAŒ1; : : : ; k � 2� detAŒk C 1; : : : ; n�:

If we expand detAŒk; : : : ; n� we have that

detAŒk; : : : ; n� D akk detAŒk C 1; : : : ; n� � ak;kC1akC1;k detAŒk C 2; : : : ; n�;

and then, we can write the product detAŒ1; : : : ; k � 1� detAŒk; : : : ; n� as

detAŒ1; : : : ; k � 1�akk detAŒk C 1; : : : ; n�

� detAŒ1; : : : ; k � 1�ak;kC1akC1;k detAŒk C 2; : : : ; n�: (5)

So, by (4) and (5), we have that

detA D .detAŒ1; : : : ; k � 1�akk

�ak�1;kak;k�1 detAŒ1; : : : ; k � 2�/ detAŒk C 1; : : : ; n�

�ak;kC1akC1;k detAŒ1; : : : ; k � 1� detAŒk C 2; : : : ; n�:
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Since AŒ1; : : : ; k� is tridiagonal and taking into account the definition of determi-
nant, we have that

detAŒ1; : : : ; k� D akk detAŒ1; : : : ; k � 1�� ak�1;kak;k�1 detAŒ1; : : : ; k � 2�:

Then, replacing this in the previous formula, we can conclude that formula (3)
holds for all i � n � 1. ut

It is well–known (see p. 100 of [8]) that given an n � n tridiagonal nonnegative
matrix A, it is sufficient to verify that detAŒ1; : : : ; k� > 0 for k D 1; : : : ; n to
conclude that A is TP. That characterization involves n minors. Theorem 7 can
be used to reduce to n � 1 the number of minors that guarantee that a tridiagonal
nonnegative matrix is TP.

Theorem 7 Let A be an n � n (n � 3) tridiagonal nonnegative matrix. If
detAŒ1; : : : ; k� > 0 for k � n � 2 and detA > 0, then A is TP.

Proof Since the positivity of the leading principal minors of A implies that A is
TP (see p. 100 of [8]), it remains to prove that detAŒ1; : : : ; n � 1� > 0. Let us
start seeing that ann ¤ 0. If ann D 0, then by formula (3) for i D n � 1, we
have that detA D �an�1;nan;n�1 detAŒ1; : : : ; n � 2�, where an�1;nan;n�1 � 0 and
detAŒ1; : : : ; n � 2� > 0 by hypothesis. Then detA � 0, which contradict the fact
that A has positive determinant. So we have that ann > 0.

Now, if an�1;nan;n�1 D 0, then .0 </ detA D ann detAŒ1; : : : ; n � 1�. Thus, we
conclude that detAŒ1; : : : ; n � 1� > 0.

If an�1;nan;n�1 ¤ 0 we have, by (3), that

detA D ann detAŒ1; : : : ; n � 1� � an�1;nan;n�1 detAŒ1; : : : ; n � 2�;

where detA > 0, an�1;nan;n�1 � 0 and detAŒ1; : : : ; n � 2� > 0 by hypothesis and
ann > 0. So we have that detAŒ1; : : : ; n � 1� > 0. ut

Example 1 shows that Theorem 7 cannot be extended to k–banded matrices in
general.

Finally, we shall derive a last sufficient condition for total positivity using a
condition on diagonal dominance. Let us recall that a matrix A D .aij/1�i;j�n
satisfying that jaiij >

Pn
jD1;j¤i jaijj, for all i D 1; : : : ; n is called strictly

diagonally dominant (by rows).
The following result can be found in Theorem 6.1.10 of [4] and it contains the

Levy–Desplanques theorem.

Theorem 8 Let A D .aij/1�i;j�n be a strictly diagonally dominant matrix. Then

(i) A is nonsingular.
(ii) Besides, if aii > 0 for all i � n, then all eigenvalues of A have positive real

part.
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From the previous theorem we can derive more properties of strictly diagonally
dominant matrices, as the following results shows.

Proposition 3 Let A D .aij/1�i;j�n be a strictly diagonally dominant matrix.
If aii > 0 for all i � n, then detAŒ1; : : : k� > 0 for all k � n.

Proof Since the determinant is the product of the eigenvalues, we know by
Theorem 8 that A has positive determinant. Furthermore, since every submatrix of
A of the form AŒ1; : : : ; k� for k D 1; : : : ; n is also strictly diagonally dominant and
it has positive diagonal entries, then, again by Theorem 8, detAŒ1; : : : ; k� > 0 for
all k � n. ut

The following result shows that strict diagonal dominance is a sufficient condi-
tion for total positivity for tridiagonal nonnegative matrices.

Theorem 9 Let A D .aij/1�i;j�n be a tridiagonal nonnegative matrix. If A is
strictly diagonally dominant, then A is TP.

Proof Observe that, since A is strictly diagonally dominant and nonnegative, then
aii > 0 for all i D 1; : : : ; n. Thus we can apply Proposition 3 to conclude that
detAŒ1; : : : ; k� > 0 for all k � n. So, by Theorem 7, A is TP. ut

The following example shows that neither Theorem 7 nor Theorem 9 can be
extended to k–banded matrices for k � 2.

Example 1 Let us consider the matrix

A D
0

@
3 1 1

1 3 1

1 1 3

1

A :

This matrix is pentadiagonal nonnegative and strictly diagonally dominant butA has
a negative minor detAŒ2; 3j1; 2� D �2, and so A is not TP. So, the matrix A shows
that Theorem 9 cannot be extended to k–banded matrices in general. Analogously,
we observe that Theorem 7 cannot be extended to k–banded matrices in general:
detAŒ1� D 3 > 0 and detA D 20 > 0 but A is not TP.
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High Order Variational Integrators:
A Polynomial Approach

Cédric M. Campos

Abstract We reconsider the variational derivation of symplectic partitioned Runge-
Kutta schemes. Such type of variational integrators are of great importance since
they integrate mechanical systems with high order accuracy while preserving the
structural properties of these systems, like the symplectic form, the evolution of the
momentum maps or the energy behaviour. Also they are easily applicable to optimal
control problems based on mechanical systems as proposed in Ober-Blöbaum et al.
(ESAIM Control Optim Calc Var 17(2):322–352, 2011).

Following the same approach, we develop a family of variational integrators to
which we refer as symplectic Galerkin schemes in contrast to symplectic partitioned
Runge-Kutta. These two families of integrators are, in principle and by construction,
different one from the other. Furthermore, the symplectic Galerkin family can as
easily be applied to optimal control problems, for which Campos et al. (Higher
order variational time discretization of optimal control problems. In: Proceedings of
the 20th international symposium on mathematical theory of networks and systems,
Melbourne, 2012) is a particular case.

1 Introduction

In recent years, much effort in designing numerical methods for the time integration
of (ordinary) differential equations has been put into schemes which are structure
preserving in the sense that important qualitative features of the original dynamics
are preserved in its time discretization, cf. the recent monograph [6]. A particularly
elegant way to, e.g. derive symplectic integrators, is by discretizing Hamilton’s
principle as suggested by [14, 15], see also [11, 13].

However most part of the theory and examples rely on second order schemes,
hence some effort must still be put into the development of accurate high order
schemes that, in long term simulations, can drastically reduce the overall computa-
tional cost. A clear example are the so called symplectic partitioned Runge-Kutta
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methods that integrate mechanical systems driven by a Lagrangian LW .q; Pq/ 2
R
n � R

n 7! L.q; Pq/ 2 R and, possibly, by a force f W .q; Pq/ 2 R
n � R

n 7! p D
f .q; Pq/ 2 R

n. A detailed study of such methods can be found in [6].
The paper is structured as follows: Sect. 2 is a short introduction to Discrete

Mechanics and Sect. 3 describes the variational derivation of high order schemes
using polynomial collocation. Finally we briefly enumerate the relations and
differences between symplectic partitioned Runge-Kutta schemes and symplectic
Galerkin ones in Sect. 4 and conclude by outlining future research directions in the
last section.

2 Discrete Mechanics and Variational Integrators

One of the main subjects of Geometric Mechanics is the study of dynamical
systems governed by a Lagrangian. Typically one considers a mechanical system
with configuration manifold Q together with a Lagrangian function LWTQ ! R,
where the associated state space TQ describes the position and velocity of a particle
moving in the system. A consequence of the principle of least action, also known
as Hamilton’s principle, establishes that the natural motions qW Œ0; T � ! Q of the
system are characterized by the celebrated Euler-Lagrange equation (refer to [1]),

@L

@q
� d

dt

@L

@ Pq D 0 : (1)

Different preservation laws are present in these systems. For instance the
Hamiltonian flow preserves the natural symplectic structure of T �Q and the total
energy of the system. Also, if the Lagrangian possess Lie group symmetries, then
Noether’s theorem asserts that some quantities are conserved, like for instance the
linear momentum and/or the angular momentum.

Discrete Mechanics is, roughly speaking, a discretization of Geometric Mechan-
ics theory. As a result, one obtains a set of discrete equations equivalent to the
Euler-Lagrange equation (1) above but, instead of a direct discretization of the
ODE, the latter are derived from a discretization of the base objects of the theory,
the state space TQ, the Lagrangian L, etc. In fact, one seeks for a sequence
f.t0; q0/; .t1; q1/; : : : ; .tn; qn/g that approximates the actual trajectory q.t/ of the
system (qk � q.tk/), for a constant time-step h D tkC1 � tk > 0.

A variational integrator is an iterative rule that outputs this sequence and it is
derived in an analogous manner to the continuous framework. Given a discrete
Lagrangian Ld WQ � Q ! R, which is in principle thought to approximate the
continuous Lagrangian action over a short time

Ld .qk; qkC1/ �
Z tkC1

tk

L.q.t/; Pq.t//dt ;
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one applies a variational principle to derive the well-known discrete Euler-Lagrange
(DEL) equation,

D1Ld .qk; qkC1/CD2Ld.qk�1; qk/ D 0 ; (2)

where Di stands for the partial derivative with respect to the i -th component. The
equation defines an integration rule of the type .qk�1; qk/ 7! .qk; qkC1/, however if
we define the pre- and post-momenta

p�
k WD �D1Ld .qk; qkC1/ and pC

k WD D2Ld.qk�1; qk/ ; (3)

the Euler-Lagrange equation (2) is read as the momentum matching p�
k D pC

k DW
pk and defines an integration rule of the type .qk; pk/ 7! .qkC1; pkC1/.

The nice part of the story is that the integrators derived in this way naturally
preserve (or nearly preserve) the quantities that are preserved in the continuous
framework, the symplectic form, the total energy and, in presence of symmetries,
the linear and/or angular momentum (for more details, see [11]). Furthermore,
other aspects of the continuous theory can be “easily” adapted, symmetry reduction
[2, 4, 7], constraints [8, 9], control forces [3, 12], etc.

3 High Order Variational Integrators

High order variational integrators for time dependent or independent systems
(HOVI) are a class of integrators that, by using a multi-stage approach, aim
at a high order accuracy on the computation of the natural trajectories of a
mechanical system while preserving some intrinsic properties of such systems. In
particular, symplectic-partitioned Runge-Kutta methods (spRK) and, what we call
here, symplectic Galerkin methods (sG) are s-stage variational integrators of order
up to 2s.

The derivation of these methods follows a general scheme. For a fixed time
step h, one considers a series of points qk , refereed as macro-nodes. Between each
couple of macro-nodes .qk; qkC1/, one also considers a set of micro-data, the s
stages: For the particular cases of sG and spRK methods, micro-nodes Q1; : : : ;Qs

and micro-velocities PQ1; : : : ; PQs , respectively. Both macro-nodes and micro-data
(micro-nodes or micro-velocities) are required to satisfy a variational principle,
giving rise to a set of equations, which properly combined, define the final integrator.

In what follows, we will use the following notation: Let 0 � c1 < : : : < cs � 1

denote a set of collocation points and consider the associated Lagrange polynomials
and nodal weights, that is,

lj .t/ WD
Y

i¤j

t � ci
cj � ci

and bj WD
Z 1

0

lj .t/dt ;
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respectively. Note that the pair of .ci ; bi /’s define a quadrature rule and that,
for appropriate ci ’s, this rule may be a Gaussian-like quadrature, for instance,
Gauss-Legendre, Gauss-Lobatto, Radau or Chebyshev.

Now, for the sake of simplicity and independently on the method, we will use the
same notation for the nodal coefficients. We define for spRK and sG, respectively,

aij WD
Z ci

0

lj .t/dt and aij WD dlj

dt

ˇ
ˇ
ˇ
ci
:

Moreover, for spRK, we will also use the nodal weights and coefficients . Nbj ; Naij/

given by Eq. (5) and, for sG, the source and target coefficients

˛j WD lj .0/ and ˇj WD lj .1/ :

Finally, we assume that L denotes a Lagrangian from R
n � R

n to R, from which
we define

Pi WD @L

@ Pq
ˇ
ˇ
ˇ
i

D @L

@ Pq
ˇ
ˇ
ˇ
.Qi ; PQi /

and PPi WD @L

@q

ˇ
ˇ
ˇ
i

D @L

@q

ˇ
ˇ
ˇ
.Qi ; PQi /

;

where .Qi ; PQi/ are couples of micro-nodes and micro-velocities given by each
method. Besides, Di will stand for the partial derivative with respect to the i -th
component.

3.1 Symplectic-Partitioned Runge-Kutta Methods

Although the variational derivation of spRK methods in the framework of Geometric
Mechanics is already known (see [11] for an “intrinsic” derivation, or [6] for a
“constrained” one), it would be interesting to present it here again in order to ease
the comprehension of and the comparison with sG methods below. However, due
to (literal) space constraints, we will only point out the different ingredients with
respect to the sG recipe. An “extended” version of this paper may be found on
arXiv, with the detailed recipe.

A partitioned Runge-Kutta method is an s-stage integrator .q0; p0/ 7! .q1; p1/

given by the equations

q1 Dq0 C h

sX

jD1
bj PQj ; p1 Dp0 C h

sX

jD1
Nbj PPj ; (4a)

Qi Dq0 C h

sX

jD1
aij PQj ; Pi Dp0 C h

sX

jD1
Naij PPj ; (4b)

Pi D@L

@ Pq .Qi ; PQi/ ; PPi D@L

@q
.Qi ; PQi/ ; (4c)
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where .bj ; aij/ and . Nbj ; Naij/ are two different Runge-Kutta methods associated to
collocation points 0 � c1 < : : : < cs � 1 and time step h > 0.

It is shown that the previous integrator is symplectic whenever the two sets of
coefficients satisfy the relations

bi Naij C Nbj aji D bi Nbj ; bi D Nbi : (5)

Moreover, it can be derived as a geometric variational integrator, a fact that was
firstly noticed by Sanz-Serna [13] and Suris [14].

The main ingredient in spRK that differs from sG is the characterization of the
space of polynomials where we extremize the Lagrangian. Here we first consider
an initial point q0 2 R

n and inner vectors f PQigiD1;:::;s � R
n, in order to define the

polynomial curves

PQ.t/ WD
sX

jD1
lj .t=h/ PQj and Q.t/ WD q0 C h

sX

jD1

Z t=h

0

lj .�/d� PQj ;

that give the target point and micro node equations (4a.1) and (4b.1).

3.2 Symplectic Galerkin Methods

Galerkin methods are a class of methods to transform a problem given by a
continuous operator (such as a differential operator) to a discrete problem. As such,
spRK methods falls into the scope of this technique and could be also classified
as “symplectic Galerkin” methods. However, we want to stress on the difference
between what is called spRK in the literature and what we here refer as sG. The
wording should not be confused by the one used in [11].

Given points fQigiD1;:::;s � R
n, we define the polynomial curves

Q.t/ WD
sX

jD1
lj .t=h/Qj and PQ.t/ WD 1

h

sX

jD1
Plj .t=h/Qj :

We have

Qi D Q.h 	 ci / and PQi WD PQ.h 	 ci / D 1

h

sX

jD1
aijQj :

Note that the polynomial curveQ is uniquely determined by the points fQigiD1;:::;s .
In fact, it is the unique polynomial curveQ of degree s�1 such thatQ.h 	ci / D Qi .
However, if we define the configuration points

q0 WD Q.h 	 0/ D
sX

jD1
˛jQj and q1 WD Q.h 	 1/ D

sX

jD1
ˇjQj (6)
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and consider them fixed, then Q is uniquely determined by q0, q1 and the Qi ’s but
a couple. For instance, we may considerQ1 andQs as functions of the others, since
the relations (6) define a system of linear equations where the coefficient matrix has
determinant � WD ˛1ˇs � ˛sˇ1 ¤ 0 (if and only if c1 ¤ cs). More precisely,

�
Q1

Qs

�

D 1

�

�
ˇs �˛s

�ˇ1 ˛1

� 
q0 �Ps�1

jD2 ˛jQj

q1 �Ps�1
jD2 ˇjQj

!

:

We now define the two-point discrete Lagrangian

Ld.q0; q1/ WD ext
Ps�1

Ld .Q1; : : : ;Qs/ D ext
Ps�1

h

sX

iD1
biL.Qi ; PQi/

where Ps�1 D Ps�1.Œ0; h�;Rn; q0; q1/ is the space of polynomialsQ of order s�1
from Œ0; 1� to R

n such that the pointsQi ’s determine such polynomials as discussed
above, where Ld.Q1; : : : ;Qs/ D h

Ps
iD1 biL.Qi ; PQi/ is the multi-point discrete

Lagrangian and where L is the continuous Lagrangian. The extremal is realized by
a polynomialQ 2 Ps�1.Œ0; h�;Rn; q0; q1/ such that

ıLd .Q1; : : : ;Qs/ 	 .ıQ1; : : : ; ıQs/ D 0 (7)

for any variations .ıQ1; : : : ; ıQs/, taking into account that

ıq0 D ıq1 D 0 and ıQi D
s�1X

jD2

@Qi

@Qj

ıQj ; i D 1; s:

For convenience, the previous Eq. (7) is developed afterwards.
By the momenta-matching rule (3), we have that

p0 D �D1Ld .q0; q1/ p1 DD2Ld .q0; q1/

D � ˇs=� 	D1Ld .Q1; : : : ;Qs/ D � ˛s=� 	D1Ld.Q1; : : : ;Qs/

C ˇ1=� 	DsLd .Q1; : : : ;Qs/ C ˛1=� 	DsLd .Q1; : : : ;Qs/:

Coming back to Eq. (7), we have that

ıLd .Q1; : : : ;Qs/ 	 .ıQ1; : : : ; ıQs/

D
s�1X

jD2

�

D1Ld .Q1; : : : ;Qs/
@Q1

@Qj

CDjLd .Q1; : : : ;Qs/

CDsLd.Q1; : : : ;Qs/
@Qs

@Qj




ıQj :
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Combining these, we obtain that for any j D 1; : : : ; s

DjLd .Q1; : : : ;Qs/ D �˛j p0 C ˇjp1 : (8)

The integrator is defined by

DjLd.Q1; : : : ;Qs/ D �˛j p0 C ˇjp1 ; j D 1; : : : ; sI (9a)

q0 D
sX

jD1
˛jQj and q1 D

sX

jD1
ˇjQj : (9b)

Finally, using the definition of the discrete Lagrangian, we may write the equations
that define the sG integrator (without forces) in a pRK fashion, that is

q0 D
sX

jD1
˛jQj ; q1 D

sX

jD1
ˇjQj ; (10a)

PQi D1

h

sX

jD1
aijQj ; PPi Dˇip1 � ˛ip0

h Nbi
C 1

h

sX

jD1
NaijPj ; (10b)

Pi D@L

@ Pq .Qi ; PQi/ ; PPi D@L

@q
.Qi ; PQi/ ; (10c)

where biaij C Nbj Naji D 0 and bi D Nbj .
We remark that Eq. (8) generalizes the ones obtained in [3, 10], where the

collocation points are chosen such that c1 D 0 and cs D 1, which is a rather
particular case.

4 Relations Between spRK and sG

First of all, it is worth to say that, with a little bit of extra technicalities, one can
easily include forces into both schemes. As a result, one would only need to redefine
in (4) and (10)

PPi D @L

@q
.Qi ; PQi/C f .Qi ; PQi/ ;

where f W .q; Pq/ 2 R
n � R

n 7! p D f .q; Pq/ 2 R
n is the external force.

As already mentioned, both methods can be considered of Galerkin type. In
this sense, spRK and sG could be refereed as a symplectic Galerkin integrators of
1st and 0th kind, respectively, since spRK is derived from the 1st derivative of an
extremal polynomial and sG from the polynomial itself. At this point, a very natural
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question could arise: Are spRK and sG actually two different integrator schemes?
Even though the derivations of both methods are quite similar, they are in general
different (although they could coincide for particular choices of the Lagrangian, the
collocation points and the integral quadrature). A weak but still fair argument to
support this is that, at each step, spRK relies on the determination of the micro-
velocities PQi , while sG does so on the micro-nodes Qi . All the other “unknowns”
are then computed from the determined micro-data.

Example 1 Here we are going to consider the perhaps simplest case of all, that is, a
Lagrangian of the form kinetic minus potential energy,L.q; Pq/ D 1

2
PqTM Pq �U.q/,

with M a constant mass matrix; s D 2 micro-nodes (inner-stages); and Lobatto’s
quadrature, c1 D 0, c2 D 1. Under such assumptions and after some simple
computations, both schemes, spRK (4) and sG (10), will reduce to the well-known
leap-frog or Verlet method:

p1=2 D p0 � h
2
rU0 ;

q1 D q0 C hM�1p1=2 ;

p1 D p1=2 � h
2
rU1 :

Example 2 In the previous example, two of the assumptions are crucial so the spRK
and sG schemes coincide. To counter it, we resume Example 1, this time considering
a Lagrangian with a scalar mass matrix dependent on the configuration, that is, a
Lagrangian of the form L.q; Pq/ D 1

2
�.q/k Pqk � U.q/, with �WQ ! R. Under this

modified assumption and noting �1=2 WD �0C�1
2

, .r/�i WD .r/�.qi /, .r/Ui WD
.r/U.qi /, i D 0; 1, the spRK scheme (4) as well as the sG scheme (10) reduce to

p1=2 Dp0 C h

2

�r�0
2�2a

kp1=2k2 � rU0
�

;

q1 D q0 C h

2

�
1

�a
C 1

�b

�

p1=2 ;

p1 Dp1=2 C h

2

 
r�1
2�2b

kp1=2k2 � rU1
!

;

with a slight difference. While for the spRK scheme the subindexes are a D 0 and
b D 1, in the sG scheme they are a D b D 1=2. It is important to note that, even
though the difference is small, it makes both schemes certainly different. Besides
and in any case, one may notice that they reduce to the Verlet method for a constant
� and that in the general case the first two equations define p1=2 and q1 implicitly.
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Example 3 We counter again Example 1, but this time considering an alternate
quadrature rule, Legendre’s one, that is, c1 D 1

2
� 1p

3
, c2 D 1

2
C 1p

3
. Under this

modified assumption and noting q1=2 D Q1CQ2

2
, Pq1=2 D p

3
Q2�Q1

h
, the spRK and

sG schemes (10) again reduce to a similar one

q0 D q1=2 � h
2

Pq1=2 C h2

24
M�1. PP1 C PP2/ ; q1 D q0 C h Pq1=2 ;

p0 DM Pq1=2 � h
2

h�
1
2

C
p
3
6

� PP1 C
�
1
2

�
p
3
6

� PP2
i
; p1 Dp0 C h

2
. PP1 C PP2/ ;

where the framed term appears only in the spRK case. Note that the left equations
define implicitly Q1 andQ2, which are of use in the right ones.

With respect to the accuracy of the schemes, for any Gaussian quadrature
(Gauss-Legendre, Gauss-Lobatto, Radau and Chebyshev) and any method (spRK
and sG), the schemes have convergence order 2s � 2, except for the combination
of Gauss-Lobatto together with spRK which is 2s, being s the number of internal
stages.

Let’s finish underlying that sG, as spRK, is inherently symplectic.

Conclusions
In this work, by revisiting the variational derivation of spRK methods [6, 11],
we have presented a new class of high order variational integrators within the
family of Galerkin schemes. These integrators are symplectic per construction
and, therefore, well suited for long term simulations, where the high order
accuracy of the schemes can be exploited to reduce the overall computational
cost. Also, they can be easily adapted to implement constraints or symmetry
reduction [2, 7, 11] or, together with a non-linear programming (NLP) solver,
to integrate optimal control problems [3, 12].

For the future, the sG schemes deserve a proper analysis to establish
the actual differences with respect to spRK schemes and results on the
convergence rates. And to further take advantage of the high accuracy of the
methods, we envisage to design time adaptive algorithms. Joint work with O.
Junge (TUM), S. Ober-Blöbaum (UPB) and E. Trélat (CNRS-UPMC) on the
control direction has already started in order to generalize [3] and clarify some
aspects of [5]. As well, we have begun digging along the lines of constrained
systems and higher order Lagrangians.
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A Block Compression Algorithm for Computing
Preconditioners

Juana Cerdán, José Marín, and José Mas

Abstract To implement efficiently algorithms for the solution of large systems of
linear equations in modern computer architectures, it is convenient to unravel the
block structure of the coefficient matrix that is present in many applications of the
physics and the engineering. This is specially important when a preconditioned
iterative method is used to compute an approximate solution. Identifying such a
block structure is a graph compression problem and several techniques have been
studied in the literature. In this work we consider the cosine algorithm introduced by
Y. Saad. This algorithm groups two rows of the matrix if the corresponding angle
between them in the adjacency matrix is small enough. The modification that we
propose considers also the magnitude of the nonzero entries of the rows with the
aim of computing a better block partition.

1 Introduction

Very often Numerical Linear Algebra applications give raise to systems of linear
equations

Ax D b ; (1)

where A 2 R
n�n is a large and nonsingular sparse matrix. These problems are

usually solved by iterative Krylov methods since they require less computational
time and storage than counterpart direct methods based on Gaussian elimination.
It is well known than the convergence of iterative Krylov methods is improved if
a good preconditioner is used, see [10]. The aim of the preconditioning technique
is to improve the condition number or the eigenvalue distribution of the coefficient
matrix. On the other hand the cost of computing the preconditioner and its applica-
tion inside the iterative method should be negligible and performed as efficiently as
possible. To this end several block versions of the most popular preconditioners have
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been proposed for a variety of structured problems. For example, matrices arising
from the discretization of partial differential equations have often a natural block
structure [5]. This structure consists of small and dense submatrices that can be
treated as individual entries of the matrix. With appropriate sparse storage formats
and using basic linear algebra subroutines (BLAS) the computational performance
can be improved [8]. Examples of this block preconditioning approach can be found
in the literature [2–4,6,7]. In every case an improvement in the efficiency compared
to its point version is reported.

Finding the block structure of a matrix is a graph compression problem, and
has been studied by different authors [1, 9]. In [11] the author propose the cosine
algorithm that finds an approximate block structure since it allows some zero entries
in the dense blocks. The goal of this paper is to modify the algorithm such that
besides the nonzero pattern, the magnitude of the entries is considered.

The paper is organized as follows. The cosine algorithm is revised in Sect. 2.
Section 3 is devoted to the motivation and description of the proposed modification.
Numerical results of experiments with different matrices are shown in Sect. 4.
Finally, section “Conclusions” summarizes the work.

2 The Cosine Algorithm

In this section we describe the cosine algorithm proposed by Y. Saad in [11]. Let
us start with an example that illustrates the matrix graph compression problem.
Consider the next symmetric nonzero pattern:

2

6
6
6
6
6
6
6
6
6
4


 
 
 0 0 0 


 
 
 0 0 0 


 
 
 0 0 0 

0 0 0 
 
 0 0

0 0 0 
 
 0 0

0 0 0 0 0 
 


 
 
 0 0 
 


3

7
7
7
7
7
7
7
7
7
5

;

where each 
 represents a nonzero entry. This matrix has a block structure of sizes
3, 2, 1 and 1, respectively. The adjacency graphG D .V;E/ of a matrix consists of
the node set V that corresponds to the rows or columns (unknowns) of the matrix,
and the set E such that there is an edge from node i to node j if aij ¤ 0. The
nodes can be grouped into four subgroups: Y1 D f1; 2; 3g, Y2 D f4; 5g, Y3 D f6g
and Y4 D f7g. The corresponding restricted graph to each one of these subgroups
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is complete and it can be represented by one entry on the adjacency matrix of the
associated quotient graph

2

6
6
4


 0 0 

0 
 0 0

0 0 
 


 0 
 


3

7
7
5

where each 
 in the position .i; j / corresponds to a dense block of size jYi j � jYj j,
where jX j is the cardinality of the set X .

To detect the partition of the nodes and therefore the block structure of a matrix
different algorithms have been proposed. Algorithms based on hash functions assign
a different value to each nonzero row pattern. For instance in [1] it is used the hash
function

hash.u/ D
X

.u;w/2E
w :

These values allow to group two nodes with the same hash value, though further
refinements may be necessary. Hash-based algorithms are not useful to detect almost
complete subgraphs as it is illustrated by the next example. It has been obtained from
the previous one by introducing some zeros on the dense subblocks,

2

6
6
6
6
6
6
6
6
6
4


 0 
 0 0 0 


 
 0 0 0 0 


 
 
 0 0 0 0

0 0 0 
 
 0 0

0 0 0 
 0 0 0

0 0 0 0 0 
 


 
 
 0 0 
 


3

7
7
7
7
7
7
7
7
7
5

:

Using a hash function we would not be able to find the same block structure
because all the row patterns and their corresponding hash values are different. That
is, no block structure will be found. To detect the same partition of the nodes the
algorithm should allow some few zero entries in the dense subblocks. One technique
that can be used to compute such a kind of approximate block structures is the
cosine algorithm. It is based on the idea of computing the angle between the rows,
or columns, of the adjacency matrix. For example, the adjacency matrix C of the
previous matrix is

2

6
6
6
6
6
6
6
6
6
4

1 0 1 0 0 0 1

1 1 0 0 0 0 1

1 1 1 0 0 0 0

0 0 0 1 1 0 0

0 0 0 1 0 0 0

0 0 0 0 0 1 1

1 1 1 0 0 1 1

3

7
7
7
7
7
7
7
7
7
5

;
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where each nonzero entry has been replaced by 1. We note that the .i; j / entry of
the matrix CCT is the inner product of the rows i and j . Thus, the cosine of the
angle between two given rows of the adjacency matrix can be easily obtained by
computing the upper triangular part of this matrix. Large cosine values correspond
to rows with similar nonzero patterns and therefore, an approximate block structure
can be detected.

Algorithm 3 shows the cosine algorithm. The vector Group stores the index of
the group where each row belongs to. If Group(i) = �1 it means that row i is either
not grouped or it is the leader row of the i -th group. Lines 5–10 implement the
computation of the inner product between rows which is stored in vector Count .
The cosine evaluation is done in lines 11–14. The parameter � is the minimum value
for the cosine between two rows such that they can be grouped together. Tipically
1 � � � 0:7 even for some matrices smaller values may be needed to find blocks
of moderate size. If � D 1 only rows with exactly the same nonzero pattern are
grouped performing in that case as a hash-based algorithm. The biggest block sizes
are obtained for small � values but probably at the cost of introducing a large amount
of nonzero entries on the block partition. Finally, nzC .i/ indicates the number of
nonzero elements of the i -th row of the matrix C and corresponds to its norm.
Further details can be found in [11].

Algorithm 3 Cosine Algorithm

Input: Adjacency matrix C and tolerance � ; Output: block partition.
Compute the pattern CT .
Set Group(i)D �1 and Count(j)D 0 for i; j D 1; : : : ; n

For i D 1; : : : ; n if Group(i)D �1 Do:
For {j j cij ¤ 0g Do:

Let row the j -th row of CT

For k D nzCT .j / to 1 Do:
Let col D row(k)
If (col� i ) break
If (Group(col)DD �1) Count(col) ++

For {col j Count(col)¤ 0} Do:
If (Count(col)2 > � 
 nzC .i/ 
 nzC .col/) Then:

Group(col)DD i ; Update size of Group(i)
Count(col)=0

3 Modified Cosine Algorithm

In this section we modify the cosine algorithm to take into account the magnitude
of the nonzero entries of a matrix. In some scenarios, for instance when there is a
big difference between the magnitude of the entries, considering only the nonzero
pattern for grouping rows can lead to an approximate block partition that may



A Block Compression Algorithm for Computing Preconditioners 263

not be a good representation of the significant part structure of the matrix. With
“significant” we mean the block structure induced by the largest entries of the
matrix. For instance, by applying the cosine algorithm to the next two matrices
one may find as result the same block structure since both share the same adjacency
matrix (which is in fact the matrix on the right).

2

6
6
6
6
6
6
6
6
6
4

1 1 0 � 0 � 0

1 �1 1 � 0 � 0

� � 1 1 1 0 0

0 0 1 �1 1 1 0

0 0 0 1 1 �1 0

1 0 0 0 0 1 1

1 0 0 0 0 1 1

3

7
7
7
7
7
7
7
7
7
5

;

2

6
6
6
6
6
6
6
6
6
4

1 1 0 1 0 1 0

1 1 1 1 0 1 0

1 1 1 1 1 0 0

0 0 1 1 1 1 0

0 0 0 1 1 1 0

1 0 0 0 0 1 1

1 0 0 0 0 1 1

3

7
7
7
7
7
7
7
7
7
5

:

But, for relative small values of �, it is reasonably to think that the rows 3 and 4
have closer patterns than those corresponding to rows 2 and 3. In that case it could
be preferred to identify the slightly different block structure

2

6
6
6
6
6
6
6
6
6
4

1 1 0 � 0 � 0

1 �1 1 � 0 � 0

� � 1 1 1 0 0

0 0 1 �1 1 1 0

0 0 0 1 1 �1 0

1 0 0 0 0 1 1

1 0 0 0 0 1 1

3

7
7
7
7
7
7
7
7
7
5

:

To allow the cosine algorithm to find this structure some changes must be done.
Figure 1 illustrates the inner product of row i with all the columns of CT , i.e., ciC T .

Fig. 1 Rowwise scheme for the inner product of row i with the columns of CT . “X” indicates the
differences in the application of the modified cosine algorithm with respect to the standard one
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It is done rowwise and the computational cost is basically the sum of the number
of nonzero entries of each row involved in this inner product. This example shows
that taking into account the magnitude of the elements the result can be slightly
different with respect to the sum obtained with the standard cosine. The differences
come first, from the evaluation of which rows of CT are involved. Then, the sum
by columns may be also affected for the magnitude of the entries. Therefore, the
corresponding inner product may be different and so the block partition for the
matrix.

Algorithm 4 incorporates these modifications. In line 5 for each entry cij of the
adjacency matrix C the magnitude of aij is checked. Row j of CT is not considered
for computing rowwise the product ciC T if jaijj < �. Another modification is
introduced in line 10 where the magnitude of the entries of a row of AT is checked
before adding its contribution to the sum by columns. Finally, we point out that to
compute correctly the row norms used in line 12 to evaluate the cosine, the values
of nzC .i/ and nzC .col/ must be decremented in the same quantity than the number
of discarded entries in the corresponding rows.

Algorithm 4 Modified Cosine Algorithm
Input: matrix A, tolerance � , tolerance �; Output: Block partition.

Compute matrices AT , C and CT .
Set Group(i)D �1 and Count(j)D 0 for i; j D 1; : : : ; n

For i D 1; : : : ; n if Group(i)D �1 Do:
For {j j jaijj > �g Do:

Let row the j -th row of CT

For k D nzCT .j / to 1 Do:
Let col = row(k)
If (col� i ) break
If ((Group(col)DD �1) && (jaTj;colj > �)) Count(col)++

For {col j Count(col)¤ 0} Do:
If (Count(col)2 > � 
 nzC .i/ 
 nzC .col/) Then:

Group(col)DD i ; Update the size of Group(i)
Count(col)=0

As additional notes we mention that, since the magnitude of the entries is needed,
not only the adjacency graph of the matrix A but also its entries are needed as an
input. Moreover, the matrix AT must be computed internally. Using appropriate
sparse storage schemes, as CSR (Compress Sparse Row), the adjacency matrices
C and CT are directly available without additional computational or memory cost.
With respect to the value of � we note that different choices for this parameter in
lines 5 and 10 can be made. This observation makes a difference with respect to the
possibility of sparsifying the matrix before the application of the standard cosine
algorithm. Thus, the modified cosine is more flexible and opens more possibilities
to the block partition computation.
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4 Numerical Experiments

In this section the results of some numerical experiments conducted to determine
the performance of the modified algorithm are presented. Table 1 shows the matrices
used, its size (n), the number of nonzero entries (nnz) and the application field from
they arise. The experiments have been done using MATLAB. The block version of
the approximate inverse preconditioner AISM [6] has been used to precondition the
BiCGSTAB iterative method. Table 2 shows, for different values of � (minimum
cosine value) and � (tolerance to discard entries in the modified algorithm), the
average block size obtained (� ), the preconditioner density (�) and the iteration
count needed to reduce the initial residual by 10�8. The parameters � and � have
been chosen to get similar preconditioner densities for both algorithms.

From the results we observe an improvement on the convergence rate of the
iterative method with a reduction in the number of iterations from 10 to 20%.
We also note that, in general, this improvement is obtained with a reduction on
the preconditioner density and, therefore, a bigger reduction on the computational

Table 1 Used matrices (Available at http://math.nist.gov/MatrixMarket/)

Matrix n nnz Application

HOR 131 434 4,710 Network flow

FS 541 4 541 4,285 Quemical kinetics

ORSIRR 1 1;030 6,858 Oil reservoir

UTM1700B 1;700 21,509 Plasma physics

UTM3060 3;060 42,211 Plasma physics

BCSSTK16 4;884 147,631 Structural engineering

ADD20 2;395 13,151 Computer component design

MEMPLUS 17;758 126,150 Computer component design

SAYLR4 3;564 22,316 Harwell-Boeing collection

Table 2 Results of the experiments

Matrix Cosine Alg. Modified cosine Alg.

� � � Its. � � � � Its.

HOR 131 1:12 0:57 0:7 86 1:1 0:78 0:7 10�5 79

FS 541 4 1:24 0:4 0:7 46 3:05 0:6 0:7 10�5 42

ORSIRR 1 1:38 1:73 0:4 95 1:28 1:49 0:6 10�4 81

UTM1700B 5:05 5:75 0:4 691 4:05 3:85 0:4 10�6 626

UTM3060 6:02 4:89 0:4 1,337 4:53 4:44 0:4 10�4 1,107

BCSSTK16 6:74 1:81 0:6 57 5:8 2:21 0:5 10�4 52

ADD20 2:03 1:26 0:5 35 2:27 1:33 0:5 10�4 31

MEMPLUS 11:8 7:79 0:2 86 10:25 4:92 0:2 10�6 81

SAYLR4 4:74 3:15 0:2 160 2:59 2:29 0:2 10�3 131

http://math.nist.gov/MatrixMarket/
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cost of the iterative solution process. We can conclude that it is possible to find a
combination of the parameters � and � such that the performance of the iterative
method can be significantly improved.

Conclusions
In this work we introduce a modification of the cosine algorithm to compress
the graph of a sparse matrix that takes into account the magnitude of the
nonzero entries of the rows. From the results of the numerical experiments
one can deduce that with a good choice of the parameters � and � it is
possible to reduce the number of iterations needed by the iterative method
to get convergence.

Additional experiments to evaluate different choices for the parameter �
in different points inside the modified cosine algorithm will be done in the
future.
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Partially Implicit Runge-Kutta Methods
for Wave-Like Equations

Isabel Cordero-Carrión and Pablo Cerdá-Durán

Abstract Runge-Kutta methods are used to integrate in time systems of differential
equations. Implicit methods are designed to overcome numerical instabilities
appearing during the evolution of a system of equations. We will present partially
implicit Runge-Kutta methods for a particular structure of equations, generalization
of a wave equation; the partially implicit term refers to this structure, where the
implicit term appears only in a subset of the system of equations. These methods
do not require any inversion of operators and the computational costs are similar to
those of explicit Runge-Kutta methods. Partially implicit Runge-Kutta methods are
derived up to third-order of convergence. We analyze their stability properties and
show the practical applicability in several numerical examples.

1 Introduction

The evolution in time of many complex systems, governed by partial differential
equations, implies, in a broad variety of cases, looking for the numerical solution of
a system of ordinary differential equations. The most commonly used methods to
integrate in time these systems are the well-known Runge-Kutta (RK) ones (see
e.g. [4, 9] for a general review). Several classifications of the RK methods can
be done, according to, e.g., their convergence order, the number of stages or their
explicit/implicit structure.

Implicit methods are designed to overcome numerical instabilities appearing
during the evolution of a system of equations. As an example, the so-called implicit-
explicit RK (IMEX) methods have been used to evolve conservation laws with stiff
terms or convection-diffusion-reaction equations (see, e.g., [1,2,12,13]). In our case,
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although we will not focus on equations with stiff source terms, a partially implicit
treatment of the source terms will avoid the development of numerical instabilities
in the numerical evolution of wave-like equations.

An implicit treatment offers a solution to get a stable evolution and involves,
in general, an inversion of some operators. Depending on the complexity of the
equations, the inversion can be even prohibitive in practice from a numerical point of
view. We will focus on a particular structure of equations which does not require any
analytical or numerical inversion. Therefore, these methods have a computational
cost similar to the explicit Runge-Kutta methods (ERK).

2 Structure of the Equations

Let us consider the following system of PDEs,

	
ut D L1.u; v/
vt D L2.u/C L3.u; v/

; (1)

being Li ; i D 1; 2; 3, general non-linear differential operators. Let us denote by
Li their discrete operators. This particular structure is a generalization of a wave
equation, written as a first-order system in time. L1 and L3 will be treated into an
explicit way, whereas the L2 operator will be considered to contain the unstable
terms and, therefore, treated implicitly. The partially implicit term refers to this
structure, where the problematic term appears only in a subset of the system of
equations.

Each stage of the derived partially implicit RK (PIRK) methods will proceed
into two steps: (i) the variable u is evolved explicitly; (ii) the variable v is evolved
taking into account the updated value of u for the evaluation of the L2 operator. The
computational costs of the PIRK methods are comparable to those of the explicit
ones. The resulting numerical schemes do not need any inversion of operators.

Numerical methods based on a nonlinear stability requirement are very desirable.
Such methods are referred to as strong stability preserving (SSP) ones [8]. Given an
evolution equation @tU D L.U /, Gottlieb and Shu [7] proved that the classical
second-order method,

U .0/ D Un; U .1/ D Un C�t L.U n/; U nC1 D 1

2
U n C 1

2
U .1/ C �t

2
L.U .1//;

(2)

is the optimal second-order two-stage SSP ERK method, and that the third-order
one due to Shu and Osher [14],
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U .0/ D Un; U .1/ D Un C�t L.U n/; U .2/ D 3

4
U n C 1

4
U .1/ C �t

4
L.U .1//;

U nC1 D 1

3
U n C 2

3
U .2/ C 2�t

3
L.U .2//; (3)

is the optimal third-order three-stage SSP ERK method. The optimal adjective
refers, for a given number of stages, to a maximization of the corresponding
Courant-Friedrichs-Lewy (CFL) value (1 in both cases). In the derivation of the
PIRK methods, the previously described optimal SSP ERK methods are recovered
when the L2 operator is neglected, i.e., when implicitly treated parts are not taken
into account. The remaining coefficients associated to the L2 operator are chosen
according to stability criteria. The PIRK methods will minimize the number of
stages, two (three) for the second-order (third-order) method.

3 Numerical Methods and Stability Analysis

Let us denote by . N̨1u; N̨2v/, N�u and . N�1u; N�2v/ the associated linearized parts of the
L1, L2 and L3 operators, respectively. The linearized system (1) is rewritten as

	
ut D N̨1u C N̨2v;
vt D N�1u C N�2v C N�u:

(4)

Let us denote ˛i WD N̨ i �t , � WD N��t and �i WD N�i �t . We assume that j!i j � 1,
where !i , i D 1; 2, denote the two eigenvalues of the following matrix

�
1C ˛1 ˛2
�1 1C �2

�

; (5)

which represents the explicit terms of the system. We are going to focus here in the
linear stability of the system; the analysis of the linear stability is the most simple
case regarding the study of the stability of the system of equations, but if a method
does not verify even this criteria it is obviously not stable in general. In most cases,
the linear part of the operators is the dominant one and the results obtained in the
analysis of the linear stability are reproduced in the numerical simulations. Previous
matrix determinant, dex, and trace, trex, are bounded by jdexj � 1 and jtrexj � 2.
Let us denoteMi the matrix which updates values for a i th-order method,

�
unC1
vnC1

�

D Mi

�
un

vn

�

: (6)

Stability thus requires that the absolute value of the two eigenvalues associated to
the matrix Mi are bounded by 1. However, in order to simplify the derivation of
the PIRK methods, we are going to relax this condition on the eigenvalues of the
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matrix Mi by a bound on its determinant, j det.Mi /j � 1. The restriction onto the
eigenvalues will be shown in the numerical experiments as the boundaries of the
stability region. Re.�˛2/ � 0 is also assumed; this condition is satisfied for general
wave-like equations written as a first-order system in time (see numerical example).

3.1 First-Order Method

The one-stage first-order method for the system (1) can be written in terms of one
coefficient, c1, as follows:

	
unC1 D un C�t L1.un; vn/;
vnC1 D vn C�t Œ.1 � c1/ L2.un/C c1 L2.unC1/C L3.un; vn/�:

(7)

This method is a particular case for the system (1) of the IMEX-� method (see,
e.g., [10]). The matrixM1 satisfies det.M1/ D dex��˛2 .1�c1/. c1 D 1 guarantees
j det.M1/j � 1;8.� ˛2/.

3.2 Second-Order Method

The two-stages second-order method for the system (1), imposing SSP optimal two-
stages second-order method for the pure explicit parts, can be written in terms of two
coefficients, c1 and c2, as follows:

	
u.1/ D un C�t L1.un; vn/;
v.1/ D vn C�t Œ.1 � c1/ L2.un/C c1 L2.u.1//C L3.un; vn/�:

(8)

8
ˆ̂
<̂

ˆ̂
:̂

unC1 D 1

2
Œun C u.1/ C�t L1.u

.1/; v.1//�;

vnC1 D vn C �t

2
ŒL2.u

n/C 2c2 L2.u
.1//C .1 � 2c2/ L2.u

nC1/
CL3.un; vn/CL3.u.1/; v.1//�:

(9)

Matrix M2 satisfies det.M2/ D 1
4
Œ.1 � dex/2 C trex2 C �˛2 .1 � dex/ .1 � 2c1 C

2c2/�. j det.M2/j � 1 cannot be guarantee 8.� ˛2/. We restrict to real numbers and
consider the determinant of M2 as a polynomial in .� ˛2/; the extrema values of
its coefficients can be analyzed. For j�˛2j � 1, the resulting optimal values for
the coefficients are c1 D 1=2 and c2 D 0; we will denote this method by PIRK2a.
For j�˛2j 
 1, the optimal values for the coefficients are c1 D 1 � p

2=2 and
c2 D .

p
2 � 1/=2; we will denote this method by PIRK2b. If j�˛2j is not too big,

the choice .c1; c2/ D .1=2; 0/ is convenient since it avoids to compute the term
L2.u.1// to obtain vnC1 in the final stage. Otherwise, the PIRK2b method is better.
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3.3 Third-Order Method

The three-stages third-order method for the system (1), imposing SSP optimal
three-stages third-order method for the pure explicit parts, can be written in terms
of two coefficients, c1 and c2, as follows:

	
u.1/ D un C�t L1.un; vn/;
v.1/ D vn C�t Œ.1 � c1/ L2.un/C c1 L2.u.1//C L3.un; vn/�:

(10)

8
ˆ̂
<̂

ˆ̂
:̂

u.2/ D 1

4
Œ3un C u.1/ C�t L1.u

.1/; v.1//�;

v.2/ D vn C �t

4
Œ 2.c1 C 2c2/ L2.u

n/C 4c2 L2.u
.1//C 2.1� c1 � 4c2/ L2.u

.2//

CL3.un; vn/C L3.u.1/; v.1//�:
(11)8

ˆ̂
<̂

ˆ̂
:̂

unC1 D 1

3
Œun C 2u.2/ C 2�t L1.u

.2/; v.2//�;

vnC1 D vn C �t

6
ŒL2.u

n/C L2.u
.1//C 4L2.u

.2//

CL3.un; vn/C L3.u.1/; v.1//C 4L3.u.2/; v.2//�:

(12)

Matrix M3 satisfies

det.M3/ D 1

36
Œ14C 2.trex � 1/3 C .dex � 2/3 C 6 trex2 C 3 dex ..trex � 1/2 � 2/�

C 1

24
�˛2 .�1C c1 � 4c2/Œ.dex � 2/2 C .trex � 1/2 � 2�

C 1

12
�2 ˛22 Œc1 � 4c2 C .dex � 1/.4c2 � c21 � 4c1c2/�

� 1

72
�3 ˛32 Œ�1C 3.1 � 2c1/.c1 C 4c2/�: (13)

j det.M3/j � 1 cannot be guarantee 8.� ˛2/. We proceed as in the second-order
method. For j�˛2j � 1, the resulting optimal values for the coefficients are
.c1; c2/ D .1=4; 1=16/; we will denote this method by PIRK3a. For j�˛2j 
 1,
the resulting optimal values for the coefficients are .c1; c2/ D ..3 � p

3/=6; .�1Cp
3/=8/; we will denote this method by PIRK3b.

4 Numerical Experiments

In this section we show two examples of the application of PIRK methods to
ODEs and PDEs, demostrating that the stability properties of the method hold in
practice.



272 I. Cordero-Carrión and P. Cerdá-Durán

4.1 System of ODEs

Let us consider a system of ODEs of the following form:

ut D c u C d v; vt D a u C b v; (14)

where a, b, c and d are real constants. This system is interesting because it coincides
with the linear part of the system of Eqs. (4) considered for our stability analysis,
with N̨1 D c, N̨2 D d , N�1 D 0, N�2 D b and N� D a.

In the case .b � c/2 C 4 a d < 0 and b C c � 0, this system of equations has
damped oscillatory solutions of the form,

u D
p�ad

a
v0 cos.!t C �/e�t ; v D v0 cos.!t/e�t ; (15)

being v0, ! � 1
2

p�4 a d � .b � c/2, � � bCc
2

and tan � � !
��b a constant set by

the initial conditions, the frequency, decay rate and relative phase between u and v
of the solution, respectively. This system corresponds to (1), with L1.u; v/ D u C v,
L2.u/ D a u and L3.u; v/ D b v, and fulfills the applicability requirements of the
PIRK methods, i.e. N̨2 N� < 0, jdexj � 1 and jtrexj � 2.

For our numerical experiment we will consider the case ! D 1 and a D �d ,
without loss of generality, since it is equivalent to a rescaling of t and v. The remain-
ing coefficients depend only on the values of � and �. We have performed numerical
simulations for � D 0;�0:01;�0:1;�1, and �=� D 1=2; 1=3; 1=4; 1=10, which are
representative of all possible solutions of this set of equations.

Figure 1 shows the results for a representative test, comparing the first-order
ERK with the PIRK. To estimate the relative error of the method we compute the
time-averaged L2-norm of the difference between the analytic and the numerical
solution

L2.u/.t/ D 1

t

s
X

tn<t

Œunum.tn/ � uana.tn/�2�t
2e�2� tn : (16)

For this test the ERK is unconditionally unstable (see left panel) and decreasing
the time step leads to an exponentially increasing amplitude, provided the inte-
gration time is sufficiently long. By comparison, the first-order PIRK is stable for
�t < 2, since juj . 1. For longer time steps (e.g. �t D 0:1) using the PIRK, the
solution losses accuracy (in this case a phase shift) but it is still bounded (even
at t D 1;000), and hence the numerical method is stable. We use the value of
the time-averaged L2-norm at time t D 100 as a measure of the stability of a
numerical method, for a particular numerical test with a given time step. Values
<1 (>1) usually indicate stability (instability). In Fig. 2 we compare the stability
properties of ERK and PIRK methods observed in our numerical experiments. In all
cases, the PIRK methods are superior to the ERK methods, as they can achieve
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Fig. 1 Numerical integration of the previous ODEs with � D � D 0, using a first-order ERK
(left panels) and a first-order PIRK (right panels). Upper panels show the time evolution of u,
10�4 � �t � 1. Dotted lines are the amplitude of the oscillatory analytic solution. Lower panels
show the time averaged L2-norm of the difference between the numerical and analytical solutions,
10�4 � �t � 2:1

stable numerical evolutions with significantly longer time steps. For small time
steps, all numerical methods follow the expected order of convergence. For first
and second-order methods, ERK methods are unconditionally unstable; despite L2-
norm< 1 for small values of �t , longer evolutions always lead to exponentially
growing amplitudes in all studied cases. In contrast, first and second-order PIRKs
are numerically stable in all simulations tested (up to t D 1;000), and only become
unstable for �t larger than a certain threshold. For the third-order methods, all the
schemes are stable for small �t , but the ERK becomes unstable at lower values of
�t than PIRK methods, which behave similar to the tested IMEX scheme.

A change of the value of � , fixed � D 0, introduces a damping in the oscillatory
solution, in a timescale of 1=� . As the parameters approach j�!j � 1, the system
becomes stiff, and the maximum time step providing stable evolutions decreases
as expected. In the case of third-order methods (see upper panel of Fig. 3), and
similarly for first and second-order ones, as we approach � D �1, both ERK and
PIRK methods behave almost identically. Despite of being partially implicit, the
terms in Eq. (14) responsible for the stiffness cannot be included in the L2 operator,
and both ERK and PIRK methods suffer from this stiffness.

In the case of varying �, fixed � D 0, all ERK schemes behave in an identical
way (see lower-right panel of Fig. 3 for third-order schemes; first and second-order
ones behave similarly). However, PIRK methods suffer from a significant reduction
of the maximum time-step as � � 0 (see lower-middle and right panels of Fig. 3 for
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Fig. 2 Numerical error integrating a system of ODEs with � D 0 and � D 0, using first (left
panels), second (middle panels) and third (right panels) order methods. Upper panels show the
transition between stable (L2 � 1) and unstable (L2 	 1) numerical evolutions. Lower panels,
in logarithmic scale, show the behavior for small time steps, compared to the expected scaling for
each method (dashed-dotted lines). As a reference, vertical dashed line at �t D 2 corresponds to
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third-order schemes; first and second-order ones behave similarly). This is the only
case in which ERK methods are superior to PIRK methods. Therefore, the class of
systems for which PIRK methods are a good alternative to classical ERK methods
are wave-like equations, in which the condition � � �=2 is fulfilled.

4.2 Wave Equation in Spherical Coordinates

In this section, the PIRK methods are applied to the case of the time evolution of
a wave equation for a scalar, h, in spherical coordinates. The evolution equation
for h can be written as @t th D 4h, where 4 denotes the Laplacian operator. This
equation can be rewritten as a first-order system in time, with the addition of an extra
auxiliary variable, A, as follows: @th D A; @tA D 4h. In this case, according to
system (1), the variables can be identified as .u; v/ D .h; A/, and the operators as
L1.h; A/ D A, L2.h/ D 4h and L3.h; A/ D 0. Spherical coordinates are used.
This equation has solutions of the form h.r; �; '; t/ � jl .kr/ Ylm.�; '/ cos kt ,
being jl the spherical Bessel function of first kind of order l and Ylm the spherical
harmonics. The value of k 2 R

C is determined by imposing boundary conditions.
We search for solutions inside a sphere of radius unity imposing h.r D 1; �; '; t/ D
0. We have performed 1D, 2D and 3D simulations using as initial data solutions
with n D 1 at t D 0. We use .l;m/ D .0; 0/; .2; 0/; .2; 2/ for the 1D, 2D and 3D
cases, respectively. We use a finite difference scheme and an equally-spaced grid
with nr , n� and n' grid points in the coordinate directions. At r D 1 the analytical
solution is imposed as boundary condition. L2-norm is used as a measure of the
global absolute error,

L2.h/.t/ D 1

nrn�n'

sX

r;�;'

Œhnum.r; �; '; t/ � hana.r; �; '; t/�2.k r/2: (17)

We will analyze the numerical stability of the derived PIRK methods using
.n; l;m/ D .1; 2; 0/ for the initial data in 2D simulations with equatorial symmetry,
.nr ; n� / D .100; 32/ grid points and a fourth-order spatial discretization scheme
(see more details in [6]). Let us denote CFL factor = �t

�lmin
D �t

�tmax
.

We study stability properties of the numerical solution depending on the
coefficients of the methods and the time step �t . The bound for the determinant
is a necessary but not sufficient condition; the boundaries of the stability region
correspond to the bounds for the eigenvalues. For the first-order PIRK method, the
estimated optimal value of the coefficient, c1 D 1, lays inside the stability region
and is indeed the value such that the maximum CFL factor is achievable, as it can be
checked in Fig. 4. The ERK method corresponds to c1 D 0, and is always unstable.

We have studied the numerical stability of the second-order PIRK method.
Figure 5 shows the stability region on the .c1; c2/ plane, for c1; c2 2 Œ�0:5; 1:5� and
several CFL factors (0.5, 0.7, 0.8 and 0.9). The boundaries agree with the bounds
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simulations with CFL factor 0.5 and c1 values of 0.9 (blue), 0.99 (magenta), 1 (red), 1.5 (orange),
2 (green) and 2.05 (black). Solid and dashed lines represent numerically stable and unstable
simulations, respectively. Right panel: stability region depending on the values for c1 and the CFL
factor. Solid lines are the boundaries of the stability region (orange area). The boundary of the
region j det.M1/j � 1 is also plotted (dashed lines)
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Fig. 5 Dependence of the numerically determined stability region (orange area) on the .c1; c2/
coefficients using a second-order PIRK method for several CFL factors. Boundaries (solid lines)
agree with the condition for the eigenvalues. The boundaries for the condition for the determinant
(dashed lines), the optimal values for the coefficients, .c1; c2/ D .1=2; 0/ (black circle) and
.c1; c2/ D 1=2.2 � p

2;
p
2 � 1/ (star symbol), and the ones corresponding to the second-order

ERK method (black triangle) are also plotted

for the eigenvalues, and the condition for the determinant overestimates this region.
The optimal values corresponding to the PIRK2b and PIRK2a methods lie in the
stability region almost for all the cases and all the cases, respectively, as it can be
checked in Fig. 5. The ERK method corresponds to .c1; c2/ D .0; 1=2/ and is always
unstable.

The same numerical stability analysis have been carried out for the third-order
PIRK method, shown in Fig. 6 for several CFL factors. The boundaries of the
stability region can be obtained in the same way as in the second-order method,
the condition for the determinant being less restrictive. The optimal values of the
coefficients lay inside the stability region for all CFL factors analyzed. For the
coefficients corresponding to the third-order ERK method, stability is achieved if
the CFL factor <0.751 (see Fig. 6).
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Fig. 6 Dependence of the numerically determined stability region (orange area) on the .c1; c2/
coefficients using a third-order PIRK method for several CFL factors. Boundaries (solid lines)
agree with the condition for the eigenvalues. The boundaries for the condition for the determinant
(dashed lines), the optimal values for the coefficients, .c1; c2/ D .1=4; 1=16/ (black circle) and
.c1; c2/ D ..3� p

3/=6; .
p
3� 1/=8/ (star symbol), and the ones corresponding to the third-order

ERK method (black triangle) are also plotted

We have studied the convergence of the PIRK methods by performing series of
1D, 2D and 3D simulations, with resolutions nr D 50, .n� ; n'/ D .50; 16/ and
.nr ; n� ; n'/ D .50; 8; 32/, respectively. We use CFL=0.8. The L2-norm is used as
an estimation of the error. Independently of the dimensionality of the simulation,
the error falls with decreasing time step as expected from the convergence order of
the PIRK method used.

Conclusions
PIRK methods, from first to third-order of convergence, have been derived to
evolve in time wave-like systems of non-linear partial differential equations.
Optimal SSP ERK methods are recovered when implicitly treated parts are
neglected. No inversion is required and the computational costs of the PIRK
methods are comparable to those of the ERK ones. The PIRK methods are sta-
ble for wave-like equations and larger time steps can be achieved. In contrast,
first and second-order ERK methods result to be unconditionally unstable;
third-order ERK method is stable, but the largest time step achievable is lower.
PIRK methods are appropriate to evolve generalized complex wave equations
in spherical coordinates, as it has been shown in [3, 5, 11] for the evolution of
Einstein equations.
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Operator-Splitting on Hyperbolic Balance Laws

Pedro González de Alaiza Martínez and María Elena Vázquez-Cendón

Abstract Operator-Splitting Methods or Fractional-Step Methods are based on the
fact that hyperbolic balance laws can be split exactly into a homogeneous hyperbolic
partial differential equation (PDE, advection) and an ordinary differential equation
(EDO, evolution); which means that both advecting first and evolving next and
evolving first and advecting next are equivalent to solve the whole problem directly
[3, 4, 10, 11]. The key to this method is the physical flux which must be used in the
advective part. If the problem is linear, it coincides with the physical flux of the
problem and does not depend on whether the advection is solved before or after the
evolution. However, this is no longer true for nonlinear problems: it is different from
the flux of the problem and depends on the order [8]. In this work we will begin with
the analysis of the splitting of multi-dimensional linear systems and we will end up
explaining how exact nonlinear splitting can be obtained for one-dimensional scalar
equations.

1 Introduction

For simplicity without loss of generality, we will introduce the idea of the splitting
for scalar multidimensional hyperbolic equations. Let us consider the following
initial value problem (IVP) in N dimensions:

8
ˆ̂
<̂

ˆ̂
:̂

@w

@t
C

NX

iD1

@

@xi
fi .w/ D s.x1; : : : ; xN ; t;w/;

w.x1; : : : ; xN ; 0/ D w0.x1; : : : ; xN /;

(1)

where w D w.x1; : : : ; xN ; t/ is the conserved variable, fi .w/ is the i -th component
of the physical flux, �i .w/ WD f 0

i .w/ is the i -th component of the wave-propagation
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speed, s.x1; : : : ; xN ; t;w/ is the source term and w0.x1; : : : ; xN / is the initial
condition. This IVP has also been studied at references [2, 6, 9, 12, 15, 16].

The wave-progation speed defines the so-called characteristics curves x.t/ D
.x1.t/; : : : ; xN .t// given by:

8
ˆ̂
<

ˆ̂
:

d

dt
xi .t/ D �i .w.x.t/; t//;

xi .0/ D �i ;

i D 1; : : : ; N (2)

where � WD x.0/ represents the foot of the characteristic. Along these curves, the
evolution of the conserved variable is given by the following ODE:

d

dt
w.x.t/; t/ D s .x.t/; t;w.x.t/; t// : (3)

Coupling the Eqs. (2) and (3) together, we obtain the exact solution of the IVP
given by (1). The operator-splitting technique applied to hyperbolic balance laws is
based on this fact. It consists of splitting the IVP into an evolutive part (ODE):

dw

dt
D s.x1; : : : ; xN ; t;w/; (4)

and an advective part (homogeneous PDE):

@w

@t
C

NX

iD1

@

@xi
Ofi .w/ D 0; (5)

where Of is a certain physical flux.
Depending on whether the advective part is solved in the first or second place, we

define respectively two splittings. The first one will be called Advection-Evolution
Splitting (AES) and it has the following structure of two steps:

(advective step)

8
ˆ̂
<̂

ˆ̂
:̂

@ Ow
@t

C
NX

iD1

@

@xi
Of AES
i . Ow/ D 0;

Ow.x1; : : : ; xN ; 0/ D w0.x1; : : : ; xN /;

(evolutive step)

8
ˆ̂
<

ˆ̂
:

dw

dt
D s.x1; : : : ; xN ; t;w/;

w.x1; : : : ; xN ; 0/ D Ow.x1; : : : ; xN ; tend/;

(6)
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where tend is the final instant at which w.x; t/ is calculated and Of AES is the physical
flux of AES. The second one, the Evolution-Advection Splitting (EAS), has this
analogous structure:

(evolutive step)

8
ˆ̂
<

ˆ̂
:

d Ow
dt

D s.x1; : : : ; xN ; t; Ow/;

Ow.x1; : : : ; xN ; 0/ D w0.x1; : : : ; xN /;

(advective step)

8
ˆ̂
<̂

ˆ̂
:̂

@w

@t
C

NX

iD1

@

@xi
Of EAS
i .w/ D 0;

w.x1; : : : ; xN ; 0/ D Ow.x1; : : : ; xN ; tend/;

(7)

where Of EAS is the physical flux of EAS.
The graphical interpretation of both splittings (6) and (7) is shown in Fig. 1. It

depicts, along a characteristic curve and in the x–w plane, the idea of the splitting
for a one-dimensional IVP when we want to calculate the solution at t D tend from
the values at t D 0. We can calculate the solution of the IVP directly by solving
(2) and (3); by doing this, the values of the position x and the conserved variable
w will be coupled together in time in a way depending on the flux and the source.
Instead of solving the IVP in this way, which can be very complicated, we can apply
the operator splitting to it. By doing this, we calculate the position and conserved
variable separately: during the advection only the value of the position changes and
during the evolution only the value of the conserved variable.
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x

w

Fig. 1 Graphical interpretation of the equivalence between the two splittings (AES in red, EAS in
blue) and the IVP (in black), along a characteristic curve and in one dimension



282 P. González de Alaiza Martínez and M.E. Vázquez-Cendón

If the flux of the IVP given by (1) is linear it is well known that the problems (1),
(6) and (7) are equivalent with the same fisical flux f in the advective parts of the
splittings, that is:

Proposition 1 Being f linear, the problems (1), (6) and (7) are equivalent to each
other if f D Of AES D Of EAS.

In Sect. 2 we will see that this equivalence is also true at discrete level.
However, if the flux of the IVP is nonlinear we have to modify the flux of the

advective parts of AES and EAS in order to have equivalent splittings. In Sect. 3 we
will deal with the exact splitting of scalar one-dimensional nonlinear equations.

2 Numerical Methods for Linear Systems

Proposition 1 establishes that, at continous level, any IVP defined by a linear
hyperbolic system with source term is equivalent to the corresponding AES and
EAS using its same flux. At discrete level, we will construct numerical schemes
based on AES and EAS by means of a combination of a certain discrete advective
operator (A) and a certain discrete evolutive operator (S): WnC1 D S.�t/A.�t/Wn

and WnC1 D A.�t/S.�t/Wn, respectively. If we add more steps and the operators
are accurate enough, we could obtain high order schemes (Strang [13]); moreover,
a dimensional splitting could be applied to the advection (Toro [14]).

A very interesting result is that, if we permute the order of the discrete operators,
we get the same numerical scheme (maybe except for high-order terms); which
means that AES and EAS are also equivalent between one to another at discrete
level. We can illustrate this fact with the well-known scalar one-dimensional linear
advection equation wt C �wx D s. In a regular mesh (�x, �t) and for � > 0, we
will use Godunov’s method for advecting and explicit Euler’s method for evolving
to obtain first-order accurate schemes. The first scheme is obtained from the IVP:

wnC1
i D wni � 


�

�
nC 1

2

iC 1
2

� �nC 1
2

i� 1
2

�

C�t
h


2
sni�1 C

�
1 � 


2

�
sni

i
; (8)

where 
 D ��t=�x is the CFL number and �nC1=2
iC1=2 D �.wni C �t

2
sni / is the

numerical flux at the boundary at instant tnC1=2. Secondly, we get this scheme from
AES:

wnC1
i D wni�
 C sni�
�t; (9)

where wni�
 D .1 � 
/wni C 
wni�1 is the solution at the foot of the characteristic
that passes through .xi ; tnC1/ and sni�
 D .1 � 
/sni C 
sni�1 is the source at such
foot approximated via an interpolation (sni�
 D s.xi�
; tn;wni�
/ is also possible).
Figure 2 shows its graphical interpretation as the solution along the characteristics
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i−μ + sni−μΔt

wn
i−μ
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Fig. 2 Graphical interpretation of (9)

and it corresponds to an upwind scheme introduced by Bermúdez and Vázquez-
Cendón [1]. Finally, the scheme from EAS is:

wnC1
i D .1 � 
/ OwnC1

i C 
 OwnC1
i�1 ; (10)

where OwnC1
i D wni C sni �t is the evolved solution in the cell. Figure 3 shows its

graphical interpretation as the cell-averaged value of the advected evolved solution.
After easy manipulations, we can see that (8)–(10) are equivalent to each other.

These resultings schemes are first-order accurate and stable if 
 � 1.
We shall show the results from a simulation:

Example 1 Let us consider the following two-dimensional IVP:

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

@tW C
0

@
0 0 0

0 0 1

0 1 0

1

A @xW C
0

@
0 0 �1
0 0 0

�1 0 0

1

A @yW D S;

W.x; y; 0/ D �
0; 0; siny � sinx

�T
;

(11)

where S.x; y; t;W/ D �
.cosy � y sin x/ cos t; .cosx � x sin y/ cos t; 0

�T
. Its

solution is:

W.x; y; t/ D �
y sin x sin t; x sin y sin t; .sin y � sin x/ cos t

�T
: (12)
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Fig. 3 Graphical interpretation of (10)

We solve (11) numerically by means of source (operator S.�t/) and dimensional
(operators X.�t/ and Y.�t/) splittings in the domain Œ0; 1� � Œ0; 1� with a structured
mesh, �x D �y, from t D 0 to t D 1:

• We construct this EAS-based first-order scheme, using Godunov to advect:

WnC1
i;j D Y.�t/X.�t/S.�t/Wn

i;j ; (13)

WnC1=3
i;j D Wn

i;j C SnC1=2
i;j �t (Leap-Frog method): (14)

• We construct this EAES-based second-order scheme, using Lax-Wendroff to
advect:

WnC1
i;j D S.�t=2/X.�t=2/Y.�t/X.�t=2/S.�t=2/Wn

i;j ; (15)

WnC1=5
i;j D Wn

i;j C SnC1=2
i;j

�t

2
; WnC1

i;j D WnC4=5
i;j C SnC1=2

i;j

�t

2
: (16)

As the eigenvalues are �1 D 1, �2 D �1 and �3 D 0, the schemes are stable if
�t � �x. Table 1 shows the 1-norm errors of the solution for different mesh sizes
and 
 D 1. The ratios between errors verify the order of convergence [17].
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Table 1 Errors in jj:jj
1

of the solution at t D 1

�x �1

G �x �1

G �x=�G
1

�x
2

�LW
1

�x �LW
1

�x=�LW
1

�x
2

0:025 4:62048 � 10�3 – 5.50321�10�5 –

0:0125 2:29361 � 10�3 2:01 1.41283�10�5 3:90

0:00625 1:14259 � 10�3 2:01 3.61852�10�6 3:90

0:003125 5:70237 � 10�4 2:00 9.24710�10�7 3:91

3 Splitting of Nonlinear Equations

In the nonlinear situation, we have to modify the flux of the balance law in order
to achieve equivalent EAS and AES splittings. We shall justify this fact with the
following illustrative example (Burger’s equation):

8
ˆ̂
<

ˆ̂
:

@w

@t
C @

@x

�
w2

2

�

D w; x 2 R;

w.x; 0/ D w0.x/:

(17)

As a first approach, Langseth et al. [5] constructed non-equivalent splitting by
using the same flux as the IVP; we will name them *AES and *EAS, respectively.
Figure 4 compares the exact solution of the IVP with these two constructions, for
(17) at t D 0:5 when w0.x/ D e�x2 . It evinces the error made when extrapolating
the linear constructions to the nonlinear case [7]: the exact solution of *AES is
behind the exact solution (there is a delay) and the solution of *EAS is ahead (there
is an advance). This means that we have to modify the flux in order to have an exact
splitting; for (17) we introduce the fluxes:

Of AES.w; t/ D w2

2
et ; Of EAS.w; t/ D w2

2
e�t : (18)

At discrete level, numerical schemes obtained from EAS and AES are also
equivalent one to another like in the linear case (the evolution is solved exactly
and the advection is calculated by Godunov’s method):

�
wnC1
i

�

AES D �
wnC1
i

�

EAS D wni e
�t � e2�t � e�t

�x

�

�
nC 1

2

iC 1
2

� �nC 1
2

i� 1
2

�

; (19)

where �nC1=2
i˙1=2 is the numerical flux of Godunov’s method for Burgers’ equation

(Toro [14]). We can contrast this first-order numerical scheme of AES and EAS
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x

w(x, t)

w(x, 0)

∗EAS

w(x, 0.5)

∗AES

Fig. 4 Exact solution of (17) at t D 0:5 (in black) with w0.x/ D e�x2 (in green), compared with
the non-equivalent *AES (in red) and *EAS (in blue) of Langseth et al.

with *AES and *EAS:

�
wnC1
i

��
AES

D wni e
�t � e�t�t

�x

�

�
nC 1

2

iC 1
2

� �nC 1
2

i� 1
2

�

; (20)

�
wnC1
i

��
EAS

D wni e
�t � e2�t�t

�x

�

�
nC 1

2

iC 1
2

� �
nC 1

2

i� 1
2

�

; (21)

If we calculate their local truncation error, we see that the leading terms coincide
in space but differ in time. This difference (of O.�t/, as Langseth et al. proved [5])
is the consequence of the lagging and leading phase errors depicted in Fig. 4 (these
local truncation errors are calculated assuming w.x; t/ > 0):

Œ�i �
AES
�t D Œ�i �

EAS
�t D

�
wttjni � wjni

2
C 3

2
wjni wx jni

�

�t C O.�t2/; (22)

Œ�i �
�AES
�t D

�
wttjni � wjni

2
C wjni wx jni

�

�t C O.�t2/; (23)

Œ�i �
�EAS
�t D

�
wttjni � wjni

2
C 2wjni wx jni

�

�t C O.�t2/: (24)

This result evidences that AES and EAS starts to be advantageous over *AES
and *EAS when using at least second-order FV schemes.

For a general flux and source, it is highly complicated to obtain the formulae for
AES and EAS. For example, if in (17) we consider the source term s.x; t;w/ D
x, the fluxes for the splittings are OfAES.w; t; x/ D 1

2
w2 cosh t C wx sinh t and

OfEAS.w; t; x/ D 1
2
w2 cosh�2 t�wx cosh�2 t tanh t ; and if we consider s.x; t;w/ D t ,

then the fluxes are OfAES.w; t/ D 1
2
w2C 1

2
wt2 and OfEAS.w; t/ D 1

2
w2�wt2. Therefore

further studies in this area will be needed to clarify this issue and, in this paper, we
propose the following approximation of the flux of AES by a Taylor series:
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Proposition 2 The Taylor expansion of the flux of AES is:

Of AES.w; t; x/ D R O�.w; t; x/ dw;
O� D �C Œ�0 s� t C 1

2



�00 s2 C �0.sx �C st C sw s/

�
t2 C : : :

(25)

If we truncate the Taylor expansion at the degree N , we can obtain numerical
schemes with splitting error up to order N C 1.
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