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Abstract. We study the influence of global, local and community-level
risk perception on the extinction probability of a disease in several mod-
els of social networks. In particular, we study the infection progression
as a susceptible-infected-susceptible (SIS) model on several modular net-
works, formed by a certain number of random and scale-free communi-
ties. We find that in the scale-free networks the progression is faster
than in random ones with the same average connectivity degree. For
what concerns the role of perception, we find that the knowledge of the
infection level in one’s own neighborhood is the most effective property
in stopping the spreading of a disease, but at the same time the more
expensive one in terms of the quantity of required information, thus the
cost/effectiveness optimum is a tradeoff between several parameters.
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1 Introduction

Epidemic spreading is one of the most successful and most studied applications
in the field of complex networks. The comprehension of the spreading behavior of
many diseases, like sexually transmitted diseases (i.e. HIV) or the H1N1 virus,
can be studied through computational models in complex networks [4,20]. In
addition to “real” viruses, spreading of information or computer malware in
technological networks is of interest as well.

The susceptible-infected-susceptible (SIS) model is often used to study the
spreading of an infectious agent on a network. In this model an individual is
represented as a node, which can be either be “healthy” or “infected”. Connec-
tions between individuals along which the infection can spread are represented
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by links. In each time step a healthy node is infected with a certain probability
if it is connected to at least one infected node, otherwise it reverts to a healthy
node (parallel evolution).

The study of epidemic spreading is a well-known topic in the field of physics
and computer science. The dynamics of infectious diseases has been extensively
studied in scale-free networks [2,6,8,24], in small-world networks [19] and in
several kind of regular and random graphs.

A general finding is that it is hard to stop an epidemic in scale-free networks
with slow tails, at least in the absence of correlations in the network among the
infections process and the node characteristics [24]. This effect is essential due
to the presence of hubs, which act like strong spreaders. However, by using an
appropriate policy for hubs, it is possible to stop epidemics also in scale-free
networks [2,9].

This network-aware policy is inspired by the behavior of real human soci-
eties, in which selection had lead to the development of strategies used to avoid
or reduce infections. However, human societies are not structureless, thus a par-
ticular focus must be devoted to the community structures, which are highly
important for our social behavior.

Recently, a wave of studies focused the attention on the effect of the com-
munity structure in the modelling of epidemic spreading [7,25,26]. However, the
focus was only set towards the interaction between the viruses’ features and the
topology, without considering the important relation between cognitive strategies
used by subjects and the structure of their (local) community/neighborhood.

Considering this scenario, an important challenge is the comprehension of
the structure of real-world networks [14,15,21]. Given a graph, a community is
a group of vertices that is “more linked” within the group than with the rest of
the graph. This is clearly a poor definition, and indeed, in a connected graph,
there is not a clear distinction between a community and a rest of the graph.
In general, there is a continuum of nested communities whose boundaries are
somewhat arbitrary: the structure of communities can be seen as a hierarchical
dendrogram [22].

It is generally accepted that the presence of a community structure plays a
crucial role in the dynamics of complex networks; for this reason, lots of energy
has been invested to develop algorithms for the detection of communities in
networks [10,12,13]. However, in complex networks, and in particular in social
networks, it is very difficult to give a clear definition of a community: nodes
often belong to more than just one cluster or module. The problem of over-
lapping communities was exposed in [23] and recently analyzed in [17]. People
usually belong to different communities at the same time, depending on their
families, friends, colleagues, etc. For instance, if we want to analyze the spread-
ing of sexual diseases in a social environment, it is important to understand the
mechanism that leads people to interact with each other. We can surely detect
two distinct groups of people (i.e., communities): heterosexual and homosexual,
with bisexual people that act as overlapping vertexes between the two principal
communities [1,7,18].
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The strategies used to face the infection spreading in a community is itself a
complex process (i.e., social problem solving) in which strategies spread (as the
epidemics) along the community, and are negotiated and assumed or discarded
depending on their social success.

Several factors can affect the social problem solving which is represented by
the adoption of a behaviour to reduce the infection risk. Of course, personality
factors, previous experiences and the social and economical states of a subject
can be considered as influencing variables. Another important variable is repre-
sented by the structure of the environment in which the social communities live,
because it determines at the same time the speed of the epidemic diffusion and
the strategy of the negotiation process; in particular large and more connected
communities are often characterized by conservative strategies while small and
isolated communities allow more relaxed strategies.

The same strategy can be more or less effective depending on the strategies
adopted by the neighbours (community) of the subject. For instance, a subject
in a conservative community can adopt a more risky (and presumably profitable)
attitude with a certain confidence since he would be protected from the infection
because of their neighbours’ behaviours. This “parasitic” behavior (like refus-
ing vaccinations) can be tolerated up to a certain level without lowering the
community’s fitness.

Not only the neighbor’s behaviours affect the evolution of the cognitive strate-
gies of a subject, but also the position he has in the network should be a rele-
vant factor. A hub, or a subject with a great social betweenness, is usually more
exposed to the infection than a leaf, and as a consequence, the best strategy for
him has to be different. In the same way, since the topology of the network (e.g.,
small world, random) determines variables such as the speed of the spreading,
or its pervasiveness, it should also affect the development of the “best strategy”.

Moreover, while the negotiation process evolves, the cognitive strategies usu-
ally develop within the most intimate community of a subject, thus the behaviour
adopted by subjects could be an interesting feature for the community detection
problem as well.

The understanding of the effects of the community structure on the epidemic
spreading in networks is still an open task. In this paper we investigate the role
of risk perception in artificial networks, generated in order to reproduce several
types of overlapping community structures.

The rest of this paper is organized as follows: we start by describing a mech-
anism for generating networks with overlapping community structures in Sect. 2.
In Sect. 3, we describe the SIS model adopted to model the risk perception of
subjects in those networks. Finally, Sect. 4 contains simulation results from our
model with a throughout discussion and future work proposals.

2 The Networks Model

There are nc different communities with nv vertices (in this paper we consider
only undirected and unweighted graphs); we assume that the probability to
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Fig. 1. (a) An example network with 4 different communities composed by 10 vertices:
in this case, considering p1 = 1 and p2 = 0, we generate 4 non-interconnected fully
connected networks. (b) The same 4 communities with parameters p1 = 0.95 and
p2 = 0.05.

have a link between the vertexes in the same community is p1, while p2 is the
probability to have a link between two nodes belonging to different communities.
For instance, with p1 = 1 and p2 = 0, we generate nc fully connected graphs,
with no connections among them as shown in Fig. 1(a). It is possible to use the
parameters p1 and p2 to control the interaction among different communities, as
shown in Fig. 1(b). The algorithm for generating this kind of networks can be
summarized as:

1. Define s1 as number of vertexes in the communities;
2. Define nc as number of communities;
3. For all the nc communities create a link between the vertexes on them with

probability p1;
4. For all the vertexes N = s1nc create a link between them and a random

vertex of other communities with probability p2;

Constraining the condition p1 = 1−p2, we can reduce the free parameters to
just one. The connectivity degree itself depends on the size of the network and
on the probabilities p1 and p2. In particular, the connectivity function f(k) has
a normal distribution from which we could define the mean connectivity 〈k〉 as

〈k〉 = (s1 − 1)p1 + (nc − 1)s1p2 (1)

with standard deviation σ2(k) = (s1 − 1)p1(1 − p1) + (nc − 1)s1p2(1 − p2).
In Fig. 2(a) we show the frequency distribution of the connectivity degree of

nodes varying the value of the parameter p2 for a network composed by N = 5000
nodes and nc = 5 communities.
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Fig. 2. (a) Random networks: in this figure, we show the frequency distribution of
the connectivity degree changing the value of the parameter p2. The circles represent
the values for p2 = 0.01, crosses for p2 = 0.1 and eventually squares for p2 = 0.2.
Here, s1 = 1000 and nc = 5, thus we have generated networks with 5 communities of
1000 nodes for each. (b) Distribution of connectivity degree for the scale-free network
generated with the mechanism described above (dots). The straight line is a power law
curve with exponent γ = 2.5.

It is widely accepted that real-world networks from social networks to com-
puter networks are scale-free networks, whose degree distribution follows a power
law, at least asymptotically. In this network, the probability distribution of con-
tacts often exhibits a power-law behavior:

P (k) ∝ ck−γ , (2)

with an exponent γ between 2 and 3 [3,11]. For generating networks with this
kind of characteristics, we adopt the following mechanism:

1. Start with a fully connected network of m nodes;
2. Add N − m nodes;
3. For each new node add m links;
4. For each of these links choose a node at random from the ones already belong-

ing to the network and attach the link to one of the neighbors of that node,
if not already attached.

Through this mechanism we are able to generated scale-free networks with
an exponent γ = 2.5 as shown in Fig. 2(b). There, we show the frequency dis-
tribution of the connectivity degree for a network of 106 nodes. To generate
a community structure with a realistic distribution, we first generate nc scale-
free networks as explained above. Then, for all nodes and all outgoing links, we
replace the link pointing inside the community with that connecting a neighbor
of a random node in a random community with a probability of p2 = 1 − p1.
Thus, the algorithm can be summarized as:

1. Generate nc communities as scale-free networks with nv vertices;
2. For all the vertices, with a probability p2 = 1 − p1;

– Delete a random link;
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Fig. 3. Different values of modularity (Q) after increasing the mixing parameter p2 for
two networks with N = 4 · 105 nodes and N = 4 · 102 nodes.

– Select a random node of another community and create a link with one of
its adjacent vertex;

3. End.

In this way, we are able to generate scale-free networks with a well defined
community structure. A good measure for the estimation of the strength of
the community structure is the so-called modularity [15]. The modularity Q is
defined to be:

Q =
1
2

∑

vw

[
Avw − KvKw

2m

]
δ(cv, cw), (3)

where A is the adjacency matrix in which Avw = 1 if w and v are connected
and 0 otherwise. m = 1

2

∑
vw Avw is the number of edges in the graph, Ki is the

connectivity degree of node i and (KvKw)/(2m) represents the probability of an
edge existing between vertices v and w if connections are made at random but
with respecting vertex degrees. δ(cv, cw) is defined as follows:

δ(cv, cw) =
nc∑

r

ĉvr ĉwr (4)

where ĉir is 1 if vertex i belongs to group r, and 0 otherwise.
In Fig. 3 we show the values of modularity for two networks that were gen-

erated with the same algorithm, but with different sizes. Here, we consider a
network with 4 communities: in the first case s1 = 105, while in the second case
s1 = 102. What one can observe in Fig. 3 is that the modularity’s behaviour
does not change significantly for different network sizes with the same number
of communities.

In the case of scale-free networks, the mean connectivity degree 〈k〉 is fixed
a priori when we choose the number of links the new nodes create. In the case
of random networks the mean connectivity is given by Eq. 1.
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3 The Risk Perception Model

We use the susceptible-infected-susceptible model (SIS) [1,24] for describing an
infectious process. In the SIS model, nodes can be in two distinct states: healthy
and ill. Let us denote by τ the probability that the infection can spread along
a single link. Thus, if node i is susceptible and it has ki neighbors of which
sn are infected, then, at each time step, node i will become infected with the
probability:

p(s, k) = [1 − (1 − τ)sn ]. (5)

We model the effect of risk perception considering the global information of
the infection level for the whole network, the information about the infected
neighbors and the information about the average state of the community. Thus,
the risk perception for the individual i is given by:

Ii = exp
{

−H + J1

(
sni

ki

)
+ J2

(
sci

nci

)}
, (6)

where H = J(s/N) is the perception about the global network on which s is the
total number of infected agents while N is the number of agents in the network.
The second term of the Eq. 6 represents the perception about the neighborhood,
while the third term represents the perception about the local community of the
agent i.

In this model, we assume that people receive information about the network’s
state through examination of people in the neighborhood. The global information
could refer to entities like media while the information about the community
could be assumed as word of mouth. In this paper, we don’t consider the cost
that people should pay in order to get these information, but it is clearly an
important constraint to consider in future works.

The risk perception Ii, defined in Eq. 6, is assumed to determine the prob-
ability that the agents meet someone in its neighbourhood. The algorithm is
given by:

1. For all nodes i = 1, 2, . . . , N ;
2. For all its neighbors j = 1, 2, . . . , ki;
3. If Ii > rand;

– i meets j;
– If j at time t − 1 was infected then i becomes ill with probability τ ;

4. End.

Then, we propose a gain function defined as the number of meetings in time
considering different values of j = J, J1, J2 and different kind of scale-free and
random networks; the gain function G(j) is given by:

G(j) =
∑Te

t=1 Mt

Te
, (7)

in which Te is the time for the extinction, while Mt is the number of meetings
during time. Based on that, we can eventually define a fitness function that
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considers the probability to extinct the epidemic in the given time. Thus, the
fitness function is given by:

FT
j = G(j)Pe(j) (8)

It is possible to make a mean-field approximation of this model. Pastor-
Satorras and Vespignani defined the mean-field equation for scale-free networks
in [24]. In 2010, Kitchovitch and Liò [16] modeled the mean number of infected
neighbors g(k) for individuals i with connectivity degree k. In fact, given the
probability of receiving an infection by at least one of the infected neighbors
(Eq. 5), it is possible to define the rate of change of the fraction of individuals i
with degree k at time t by the following:

dik
t

= −γ + (1 − ik)g(k), (9)

on which γ is the rate of recovery (in our simulations we set γ = 1).
Then, as shown by Boccaletti et al. [5], for any node, the degree distribution

of any of its neighbors is,

qk =
kP (k)

〈k〉 , (10)

hence, it is possible to define the number of infected neighbors as:

in =
kmax∑

Kmin

qkik, (11)

and it allows to give a definition of g(k) as:

g(k) =
k∑

s=0

(
k

s

)
p(s, k)isn(1 − in)k−s, (12)

where s = sn is the number of infected neighbors.
The temporal behavior of the mean fraction c of infected individuals in the

case of a network with fixed connectivity is given by:

c
′
=

k∑

sn=1

(
k

sn

)
csn(1 − c)k−sn [1 − (1 − τ)sn ], (13)

where c ≡ c(t), c′ ≡ c(t + 1) and the sum runs over the number kinf of infected
individuals.

4 Results and Discussion

We studied the behavior of our model for different scenarios. In Fig. 5, we show
results considering a network of 500 nodes and 5 communities where the initial
number of infected agents is ≈ 10% of all agents in the network. We focus on
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Fig. 4. Effect of the parameters J2 (a), J1 (b) and J (c) (x-axis) on the fitness function
F (y-axis) considering different scale-free and random networks with different values of
modularity. Results are averaged over 100 simulations for each value of J , J1 and J2.

the information about the community (parameter J2), while we kept J = J1 = 1
fixed. It is very interesting to observe the time necessary for the extinction of
the epidemics, with the probability of being infected τ = 0.5 and changing the
community structure of the network.
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Fig. 5. On the left side of the figure we show the temporal evolution of infected indi-
viduals by varying the mixing parameter p2. The time necessary for the epidemic
extinction increases as the modularity Q decreases. On the right side, we show the
effects of the precaution parameter J2 on the extinction time by varying the modular-
ity Q. The straight line represents the results for different value of J2, while the dashed
line represents the results for a constant value of J2.

The effects of the parameters J2, J1 and J on the fitness function F consider-
ing different scale-free and random networks with different values of modularity
are shown in Fig. 4. The results were averaged over 100 simulations for each
value of J , J1 and J2.

On the left side of Fig. 5 we show the temporal evolution of the percentage
of infectious agents for different kind of networks and different values of J2. We
can observe that the extinction time increases when the modularity of network
decreases, even if we use higher values of J2. On the right side of Fig. 5, we show
the effect of the precaution on the extinction time. The straight line corresponds
to different values of J2, while the dotted line corresponds to the same value
of J2 in different kind of networks. It is also possible to observe that when a
network becomes less clustered, the information about the community becomes
less important.

In the case of scale-free networks, the mean connectivity degree 〈k〉 is related
to the number m of links the new nodes create. In the above example, considering
m = 5, we obtained a mean connectivity degree 〈k〉 = 7.8.

For comparisons, we generated random networks with a mean connectivity
degree 〈k〉 ∈ (7, 8). The first result that we obtained is that the extinction time
is larger than in the scale-free case. In Fig. 6, we show the temporal evolution of
the infected agents for a random network with modularity Q = 0.78 considering
J2 = 25 as in the upper plot on the left side of Fig. 5. For the scale-free network
the time necessary for the extinction is Te � 3 · 102 while for the random one it
is Te � 3 · 103.
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Fig. 6. Percentage of infected agents for a random network of 100 nodes and 5 commu-
nities with modularity Q = 0.78. Adopting the same parameter used for the simulation
reported in Fig. 5, we show how the time for the extinction (approx. 2900 units) of
the epidemic is greater than for the scale-free case (i.e., upper plot on the left side of
Fig. 5).

Table 1. Critical values for the extinction of the epidemic on case of scale-free networks
of 500 nodes and 5 communities considering a maximum threshold time Tmax = 1000,
necessary for the extinction of the epidemics.

Critical Values

Q (modularity) J J1 J2

0.78 45 15 25

0.64 40 15 45

0.35 40 20 55

Regarding the effects of the global and local (neighborhood) information,
we investigated scale-free networks composed by 500 nodes and 5 communities
with a fixed maximum threshold time Tmax, necessary for the extinction of the
epidemics. We assume Tmax = 1000 and separately measure critical values of
J, J1 and J2. In the Table 1, we show the critical values of the three parameters
by changing the modularity Q. As we can observe, the most variable parameter
is J2 while the other two parameters do not appear to change. From this figure,
we observe that the information about the fraction of infected neighbors is the
most effective for stopping the disease. However, in order to get this piece of
information, each node needs to check the status of all its neighbours, a task
that can be quite hard and possibly conflicting with privacy. On the other hand,
the information on the average infectious level in the community or in the whole
population is more easily obtained. Therefore, one needs to add the cost of
information into the model in order to decide what the most effective solution
for risk perception is.

Summarizing, we have studied the progression and extinction of a disease
in a SIS model over modular networks, formed by a certain number of random
and scale-free communities. The infection probability is modulated by a risk
perception term (modeling the probability of an encounter). This term depends
on the global, local and community infection level. We found that in scale-free
networks the progression is slower than in random ones with the same average
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connectivity. For what concerns the role of perception, we found that the local
one (information about infected neighbours) is the most effective for stopping the
spreading of the disease. However, it is also the piece of information that requires
most efforts to be gathered, and therefore it may result a high cost/efficacy ratio.

The main element of originality of this paper is that we introduced a network
model based on communities, which still retains the scale-free structure with the
possibility of changing the modularity, and we think that this structure (albeit
being quite theoretical) is more realistic than standard scale-free networks. The
fact the knowledge about own community is more effective than other indicators
is surely trivial (and we expected to get this result), but it is also the information
that is more expensive to get, at least for the standard data gathering existing
today. We would like to quantify the advantage in using this indicator in order
to compare its efficiency with respect to its cost (and for doing it we need to
include a cost model, that will be done in a future work) and also point to the
necessity of gathering this kind of local information, that in a real case may also
present problems related to the privacy, but might be of great importance in the
case of a pandemic.

In regard to extending the model by inserting a cost model, it should also
be taken into account what the best strategies are to avoid the spreading of epi-
demics in different environments considering agents as intelligent entities capable
to change or select the best strategies dynamically in order to minimize the risk
and to maximize the economy of the system. In combination to this, we plan
to add a more complex model such as the SIR eventually with vaccinations, for
which there are important factors like the penetration and the possibility that the
modular structure may be exploited to “shield” a community that may remain
not exposed – similarly like people that refuse vaccinations, but are “shielded”
by a surrounding community that vaccinates.
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