
Chapter 3
Overview of Evolutionary Algorithms

It is not the strongest or the most intelligent who will
survive but those who can best manage change.
Charles Darwin

3.1 Goals of This Chapter

Every aspect of our daily life implies a search for the best possible action and the
optimal choice for that act. Most standard optimization methods require the fulfil-
ment of certain constraints, imply convergence issues or use single point movement.
Among them, EAs represent a flexible and adaptable alternative, with classes of
methods based on principles of evolution and heredity, with populations of potential
solutions and only some basic knowledge of mathematics.

This chapter explains the concepts revolving around the field of evolutionary
computation (EC) (Sect. 3.2), presents a general scheme of an EA and describes its
main components (Sect. 3.3). The choices for representation and evolutionary op-
erators are only summarized; more emphasis is given to the types employed further
on within the approaches that are put forward by this book. Finally, Sect. 3.11 out-
lines the traditional EA approaches to classification as a standard reference for the
envisaged contributions.

3.2 The Wheels of Artificial Evolution

Evolution is the driving force behind all life forms in nature, since, even under very
cruel conditions, diverse species that make up our world manage to survive and
adapt in their own niches. As nature represents a great source of inspiration for sci-
entists, the development of an artificial optimization framework to mimic evolution
and heredity and transform their laws into arithmetical operators came natural and
it materialized through the field of EAs.

When solving a problem in the EC context, an environment is created and filled
with a population of individuals. These represent a collection of candidate solu-
tions for the considered task. Learning is viewed as a process of continuous adap-
tation of the individuals to the initially unknown environment. This acclimatization
is achieved through reproduction, recombination and mutation. The fitness of the

C. Stoean and R. Stoean, Support Vector Machines and Evolutionary Algorithms 29
for Classification, Intelligent Systems Reference Library 69,
DOI: 10.1007/978-3-319-06941-8_3, c© Springer International Publishing Switzerland 2014

30 3 Overview of Evolutionary Algorithms

individuals is closely related to how well they adjust to the environment and repre-
sents their chance of survival and multiplication.

Provided that the environment can only host a limited number of individuals and
given their capacity to reproduce, selection is inevitable if population size is forbid-
den to grow exponentially. Obviously, natural selection favors those individuals that
best adapt to the environmental settings – historically called by Darwin as survival
of the fittest – hence the best ones survive and reproduce and evolution progresses
step by step. Occasional mutations take place in order to introduce new testing ma-
terial. Thus, the constitution of the population changes as time passes and it evolves,
offering in the end the most adequate solution(s) for the considered problem.

As a correspondence between natural evolution and problem solving, the envi-
ronment is said to represent the problem, individuals are candidate solutions and the
fitness corresponds to the quality of the solution. The quality of a candidate deter-
mines the chance of the considered individual to be used as a seed for building new
potential solutions. As in nature, mutation also sporadically attacks certain traits of
an individual. The next generation is presumably a better one than that of its parents.

There are many approaches that simulate evolution: genetic algorithms (GAs),
evolution strategies, genetic programming, evolutionary programming [Fogel, 1995],
[Bäck, 1996], [Michalewicz, 1996], [Bäck et al, 1997], [Dumitrescu et al, 2000],
[Sarker et al, 2002], [Eiben and Smith, 2003], [Schwefel et al, 2003]. All of them
imply the use of selection of individuals in a population, reproduction, random vari-
ation and competition, which are the essences of evolution, both in nature or inside
a computer [Fogel, 1997]. EAs are simple, general and fast, with several potential
solutions that exist at the same time. They are semi-probabilistic techniques that
combine local search - the exploitation of the best available solutions at some point
- with global search - the exploration of the search space. The different properties of
continuity, convexity or derivability that have been standardly required in classical
optimization for an objective function are of no further concern within EAs.

Real-world tasks have immense solution search spaces and the high number of
local optima hardens the process of finding the global optimum in reasonable time.
Moreover, the problems can have dynamic components that can change the location
of the optima in time and, therefore, the technique that is considered for solving
them must adapt to the changes. Additionally, the final solution may have nonlinear
constraints that have to be fulfilled (constrained problems) or may have objectives
that are in conflict (multiobjective problems). EAs represent an appropriate alterna-
tive for solving such problems. They are population-based approaches, thus multi-
ple regions of the search space can be simultaneously explored. This is especially
advantageous when dealing with a multimodal search space where an EA keeps
track of several optima in parallel and maintains diversity in the population of solu-
tions, with the aim of performing a better exploration of the search space for finding
the global optimum. When the considered problem is dynamic, the solutions in the
population continuously adapt to the changing landscape and move towards the new
optima. For multiobjective problems [Coello et al, 2007], [Branke et al, 2008], EAs
provide, in the end of the evolution process, a set of trade-off solutions for the con-
flicting objectives, while traditional techniques only produce one solution at the end

3.3 What’s What in Evolutionary Algorithms 31

of a run. For constrained problems, EAs offer a set of feasible and unfeasible solu-
tions. Probably their main advantage and the reason why they are frequently used
nowadays is that they can be applied to any type of optimization problem, be that
it is continuous or discrete. Another important advantage is that they can be easily
hybridized with existing techniques.

It may be tempting to perceive EAs as the applicable solver for any optimization
problem, which is false.

If there is already a traditional method that solves a given problem, EAs should not be
used [Schwefel, 1997].

At least one should not expect their alternative solving to be both better or less
computationally expensive. The computational effort indeed represents an impor-
tant drawback of EAs as many candidate solutions have to be evaluated in the evo-
lutionary process. But even if EAs alone do not necessarily provide the best possible
solution for the problem at hand, they can be used for adding further improvements
to solutions obtained by other means. Artificial evolution thus represents an opti-
mization process that does not reach perfection, but still can obtain highly precise
solutions to a large scale of optimization problems. Conversely, an EC technique is
better than a random search strategy.

There is a continuous interest for researchers in this field as well as from com-
pletely different areas towards the application of EAs for solving practical optimiza-
tion problems. They are also called the Swiss army knife of metaheuristics and they
owe their charm to their simplicity and flexibility.

3.3 What’s What in Evolutionary Algorithms

Artificial evolution performs a precise algorithmic cycle which closely follows its
natural counterpart. Figure 3.1 intuitively shows a typical evolutionary flow. Given
a population of individuals, the environmental pressure causes natural selection, the
survival of the fittest, and consequently the average fitness along the generations
gradually increases. Supposing the fitness function has to be maximized, a set of
randomly generated candidate solutions are created in the domain of the function
and are evaluated – the better individuals are considered those with higher values
for the fitness function. Based on the computed fitness values, a part of the individ-
uals are selected to be the parents of a new generation of individuals. Descendants
are obtained through variation, i.e., by applying recombination and/or mutation to
the previously chosen individuals. Recombination takes place between two or more
individuals and one or more descendants (or offspring) are obtained; descendants
borrow particularities from each of the parents. When mutation is applied to a po-
tential solution, the result is one new individual that is usually only slightly different
from its parent. After applying the variation operators, a set of new individuals is
obtained that will fight for survival with the old ones for a place in the next genera-
tion. The candidate solutions that are fitter are again advantaged in this competition.
The evolutionary process – parent selection - variation - survival selection – resumes
and usually stops after a predefined computational limit is reached.

32 3 Overview of Evolutionary Algorithms

Initialization

Population

Select parents
Parents

OffspringTermination

Survivor selection

Variation
operators

Fig. 3.1 The cycle of an EA

We have introduced several EA-related concepts in the previous paragraph. They
are summarized below:

1. Initialization
2. Representation of candidate solutions
3. Population model
4. Fitness function
5. Selection

• Parent selection strategy
• Survival selection strategy

6. Variation operators
7. Termination criterion

An EA for a specific problem is completely built only when each of these com-
ponents is carefully specified.

A general formulation of a canonical EA is outlined by Algorithm 3.1.
Although initialization and a termination criterion are also common for the tradi-

tional approaches to optimization, the presence of selection and variation operators
needs further argumentation apart from that of perfectly mimicking nature. Variation
operators have the role of introducing new candidates into the population and, in this
way, explore the search space. But by applying them alone, worse solutions might
be encountered; the task of avoiding the decrease in quality of the populations with
respect to the fitness evaluations is achieved by selection. Selection exploits the fitter
candidate solutions, so the average value of the population fitness consequently in-
creases. In conclusion, variation operators create diversity in the population, having
an explorative role, while selection favors the better individuals, having therefore an
exploitative task.

3.4 Representation 33

Algorithm 3.1 A standard EA.

Require: An optimization problem
Ensure: The best obtained individual(s)

begin
Initialization;
Evaluation;
while termination condition is not satisfied do

Selection for reproduction;
Recombination;
Mutation;
Evaluation;
Survivor selection for the next generation;

end while
return best obtained solution(s)
end

In order to reach the optimum of the problem to be solved, a good equilibrium
between exploration and exploitation has to be established [Eiben and Smith, 2003].
When performing too much exploitation and only little exploration, some promising
regions from the search space might remain unexplored, so the best solutions might
not be found at all. In such a situation, there is a high probability that the search
process remains blocked into a local optimum. Otherwise, if there is too much ex-
ploration and only little exploitation, the search process is significantly slowed down
and the time needed for the convergence of the algorithm to the optimum might be-
come too large.

It must also be underlined that EAs are stochastic optimizers. When selection is
applied, the fitter individuals have higher chances to be chosen than the less fit ones.
However, even the weak individuals, with respect to the fitness evaluation, have a
(smaller) chance to be selected. In the same way, when recombination is applied to
two or more candidates, the offspring genes are randomly chosen from each of the
parents. In the case of mutation, the parts of the individual that are changed are also
picked in a random fashion.

In the following sections, we will present the evolutionary components in detail.
The most common choices are briefly discussed and those used in further experi-
ments throughout this book are emphasized.

3.4 Representation

The first thing to do when solving a problem through EAs is to set up a bridge be-
tween the problem space and the EA space. The possible solutions of the original
problem (phenotypes) have to be encoded into individuals within the EA (geno-
types).

While sometimes the phenotypic and the genotypic spaces may coincide, other
times they can be completely different. For instance, if the optimization problem is

34 3 Overview of Evolutionary Algorithms

in an integer domain, a real-valued genotype representation can be chosen, so the
two spaces would be the same, or it could be decided for a binary representation. A
solution of the form ”21” from the phenotypic space would then be represented as
”10101” in the genotypic space. The way the individual representation is chosen de-
pends very much on the problem to be solved. In conclusion, a mapping is therefore
necessary to transfer the solution of the problem into the EA space (encoding) and
an inverse mapping will be also needed, in order to transform the EA result back
into the problem solution (decoding).

Genotypes or individuals are also called chromosomes, but throughout the book
we will mostly refer to them as individuals. The individual is composed of genes.
A gene is located at a particular position in the chromosome. A gene may contain
several values or may have several forms. Each value of a gene is referred to as an
allele of that gene.

A binary representation is used for problems searching for 0/1 values (such as
truth values) for certain variables. It is however often inappropriately chosen for
solving other tasks, just because it is typical of the widely used EA subclass of
GAs.

An integer encoding is most appropriate when solutions have to be represented
in a discrete space. An example would be the search for optimal values for a set of
variables that are instantiated with integers. Permutation problems where one must
determine an optimal permutation of elements that lead to a potential solution can
also be represented by integer values.

When the values represented by genes come from a continuous space, a real-
valued encoding is employed. Every individual is then a vector of real components
and each of them takes values in a certain domain and must be kept in that interval
all throughout evolution.

The chosen representation is strongly related to the type of recombination and
mutation operators that are used. Since the techniques we discuss in this book use
only binary and real-valued encodings, we will summarize only some variation op-
erators that correspond to these representations.

3.5 The Population Model

The role of the population is that of preserving all candidate solutions at one time; it
consists of a set of genotypes that are not necessarily all different from each other.
The population as a unit is the one that evolves, not the individuals. When selection
is applied for choosing the parents of the population that will form the next gener-
ation, it picks the fitter candidates from the current population. Also, the resulting
offspring are intended to replace the former individuals in a fitter future population.

The population size represents the number of individuals that the population con-
tains. Usually, the population size, which is a parameter of the EA, is constant from
the start to the end of the algorithm. However, an algorithm that contains a popula-
tion with decreasing size is presented in Chap. 4.

3.7 The Selection Operator 35

The initialization of the population implies addressing population size together
with representation. Each gene of every individual generally takes a random value
from its domain of representation. Sometimes, the EA may start using as an initial
population a fixed set of candidate solutions obtained by other methods.

3.6 Fitness Evaluation

The role of the fitness function (or evaluation function) is to measure the extent by
which individuals adapted to the environment. It is mostly used by selection and
thereby makes improvements possible.

The fitness function is defined on the genotypic space and its values are usually
real numbers, in order to be able to make comparisons between the qualities of
different individuals. Returning to the previous example of a binary representation,
and presuming that a real-valued function is to be optimized, e.g. f (x) = x2, the
fitness of the genotype 10101 is 212 = 441.

In many cases, the objective function, which is the name used in the original
context of the problem, coincides with the fitness function or the fitness function is
a transformation of the given objective function.

3.7 The Selection Operator

Selection appears twice during an evolutionary cycle. First, there is selection for
reproduction, when parents of the next generation are chosen (parent or mating se-
lection). Secondly, there is selection for replacement, when individuals that will
form the next generation are chosen from the offspring and the current population
(survivor selection). Both selection types are responsible for quality enhancement.

3.7.1 Selection for Reproduction

The role of parent selection is that of choosing which of the individuals in the current
population should be considered to undergo variation in order to create offspring,
based on their quality. Parent selection is typically probabilistic: high-quality indi-
viduals have a good chance to be selected for reproduction, while low-quality ones
have small chances of becoming parents.

The selection operator does not create new candidate solutions. It is solely re-
sponsible for selecting relatively good solutions from the population and discarding
the remaining candidates. As the population size usually remains constant, the se-
lection conducts to the placement of multiple copies of certain individuals in a new
population by removing inferior solutions.

The basic idea is that individuals with a better fitness must have a higher probabil-
ity of being selected. Nevertheless, selection operators differ in the way the chances
are assigned to better solutions. Some operators sort the individuals in the popu-
lation according to their fitness and then deterministically choose some few best

36 3 Overview of Evolutionary Algorithms

individuals. Meanwhile, other operators assign a selection probability to each indi-
vidual which is dependent on its fitness. In this case, there exists the possibility of
selecting a bad solution and, at the same time, of rejecting a good one. However,
this can be an advantage: the fittest individuals in a population can be connected to
a suboptimal region in the fitness landscape and, by using a deterministic selection,
the EA would evidently converge to the wrong, suboptimal solution. If, conversely, a
probabilistic selection is employed here, diversity is maintained for a higher number
of generations by selecting some less fit individuals. Therefore, more exploration is
performed and the EA would eventually be prevented from converging to a wrong
solution.

Two of the most popular schemes, i.e. the proportional and the tournament selec-
tions, are briefly mentioned in the following paragraphs.

Proportional selection implies that the number of copies an individual will have
is directly proportional to its fitness. A solution having double the fitness of an-
other solution will also have twice as many copies in the selected population. The
most commonly used form of implementing selection probabilities within the pro-
portional type is the roulette-wheel (or Monte-Carlo) mechanism, where each in-
dividual in the population occupies a section on a roulette that has a size directly
proportional to its fitness. Then, the wheel is spun as many times as the population
size and at every turn the solution indicated by the wheel is selected. Evidently, so-
lutions with better fitness have higher chances to be selected (and therefore to have
several copies in the population) as their sections on the wheel are proportional to
their fitness.

Algorithm 3.2 puts forward the basic steps for implementing the proportional
scheme. A probability selection is computed for each individual like in (3.1), by re-
ferring the sum of the fitness evaluations for all individuals in the population. Then,
the sections of the roulette-wheel are computed as in (3.2). Next, the wheel is turned
n times by randomly generating a number in the [0, 1] interval and determining its
correspondingly chosen section: that is the one pointing to the individual that is
selected.

Psel(xi) =
f (xi)

n

∑
j=1

f (x j)

(3.1)

ai =
i

∑
j=1

Psel(x j) (3.2)

There are however several limitations of the proportional selection scheme. First
of all, if there exists a very fit individual in comparison to all the others in the popu-
lation, proportional selection selects a very high number of copies of that individual
and this leads to a loss of diversity in the population which conducts to prema-
ture convergence. On the other hand, if all candidates have very similar evaluations,
which usually happens later on in the evolutionary process, the roulette-wheel will
be marked approximately equally for all individuals in the population and all of

3.7 The Selection Operator 37

Algorithm 3.2 Proportional selection.

Require: The population that consists of n individuals
Ensure: n individuals selected for reproduction

begin
for i = 1 to n do

Compute the probability Psel(xi) to select individual xi as in (3.1);
end for
for i = 1 to n do

Compute the roulette section ai for individual xi as in (3.2);
end for
i ← 1;
while i ≤ n do

Generate a random number r ∈ [0, 1];
j ← 1;
while a j < r do

j ← j + 1;
end while
selecti ← x j;
i ← i + 1;

end while
return the selected individuals
end

them will have almost the same chances of being selected (the effect of random
selection). On a different level, it cannot handle negative values for fitness, as they
should correspond to sections on the roulette-wheel. Finally, it cannot handle min-
imization problems directly, but they have to be transformed into a maximization
formulation. A way to avoid these last two drawbacks is by using a scaling scheme,
where the fitness of every solution is mapped into another interval before marking
the roulette wheel [Goldberg, 1989].

These issues of proportional selection are avoided when using the tournament
type. For a number of times equal to the population size, one chooses the best so-
lution in a tournament of k individuals. In the simplest form, k is 2, the scheme is
called binary tournament selection and the best one of each two solutions is chosen
for as many times as to form a population of the same size as before. This selection
operator does not depend on whether the fitness values are positive or negative and,
when one deals with a minimization problem (instead of a maximization one), the
only difference is that the individuals with the smaller fitness value are now selected
(instead of the ones with the higher fitness score). The absolute performances of
individuals do not count, it is only the actual values they exhibit in relation to one
another that are important. Therefore, in this type of selection there is no need for
global knowledge on the population as in the proportional scheme.

Due to its simplicity and flexibility, it is the scheme we use the most throughout
the book and it is outlined in Algorithm 3.3.

38 3 Overview of Evolutionary Algorithms

Algorithm 3.3 Tournament selection.

Require: The population that consists of n individuals
Ensure: n individuals selected for reproduction

begin
i ← 1;
while i ≤ n do

Choose k individuals;
Take the fittest one x from them;
selecti ← x;
i ← i + 1;

end while
return the selected individuals
end

An important parameter and advantage of this selection is given by the tourna-
ment size k. For higher values of k, there is a stronger selection pressure, which
triggers the choice of above average individuals. Smaller values of k on the contrary
also give weaker individuals the chance of being selected, which eventually leads to
a better exploration of the search space.

Ranking selection is similar to the proportional scheme, but instead of using the
direct fitness values, the individuals are ordered according to their performance and
attributed a corresponding rank. It can also treat negative evaluation results and,
when minimization is required, the only difference is that ranking has to be inversely
performed.

3.7.2 Selection for Replacement

Another situation when selection takes place is when it is decided which individuals
from the current population and their offspring are retained to form the population
of the next generation. In order to preserve the same population size after offspring
are obtained via the variation operators, survivor selection has to intervene. This
selection decision is usually elitist (the best individuals are preferred) and takes into
account the fitness of all individuals (new and old), favoring the fitter candidate
solutions.

3.8 Variation: The Recombination Operator

We have seen that the selection operator has the task of focusing search on the
most promising regions of the search space. On the other side, the role of the
variation operators is to create new candidate solutions from the old ones and in-
crease population diversity. They are representation dependent, as for various en-
codings, different operators have to be defined [Bäck, 1996], [Bäck et al, 1997],
[Eiben and Smith, 2003].

3.8 Variation: The Recombination Operator 39

We will thus further discuss the standard operators for introducing variation, i.e.,
recombination and mutation, along with their most common representation-related
choices. Those of particular need for the upcoming approaches of this book are
described at larger extent.

Recombination or crossover is a variation operator that is responsible for forming
offspring by combining the genes of parent individuals. Recombination represents
a stochastic operator, since choices like which parts are to be inherited from one
parent and which from the other or the way the two parts are combined depend on a
pseudo-random number generator.

When mating (usually two) individuals with different attributes, an offspring (or
two) that combine those features is (are) obtained. The aim is to explore the space
between the two individuals, in search of a potential solution that has a better quality.

In a more general scenario, recombination can even take place between p indi-
viduals (p > 2) and p offspring may be obtained [Bäck et al, 1997]; one offspring
alone can also be constructed by combining traits from the p parents.

The process usually takes place as follows. For every individual in the current
population obtained after the application of the selection for reproduction, a random
number in the [0, 1] interval is generated. If it is smaller than the given crossover
probability, then the current individual is chosen for recombination. If the number of

Algorithm 3.4 The main steps of a recombination process using probability pr.

Require: A population that consists of n individuals
Ensure: A population obtained after the recombination process

begin
i ← 0;
for j = 1 to n do

Generate q in [0,1]; {select individuals for recombination in vector parent with proba-
bility pr}
if q < pr then

i ← i + 1;
parent[i]← individual[j];

end if
end for
if i is odd then

Generate q in [0,1]; {pairs of parents should be formed, so either add or remove an
individual}
if q < 0.5 then

Add a random individual from population to parent;
else

Remove a random item from parent;
end if

end if
Apply the chosen recombination type for each pair of parents;
return the resulting population
end

40 3 Overview of Evolutionary Algorithms

chosen individuals is odd, then they recombine as pairs which are randomly formed.
Otherwise, one individual is deleted or another one is added from the parents pool,
a decision which is also randomly taken. The steps are presented in Algorithm 3.4.

As concerns the different possibilities of recombination, several options can be
distinguished, depending on the type of representation – binary, integer or real-
valued. The choices are numerous, however only the most common schemes within
the binary and real-valued representations are further outlined [Eiben and Smith,
2003], as some of them will be addressed in the algorithms of this book.

For the binary representation, an often used scheme is the one point recom-
bination. A random position is generated which is the point of split for the two
parents, as in Fig. 3.2. The resulting offspring take the first part from one parent
and the other from the other, respectively. Suppose there are two parent individu-
als c = (c1,c2, ...,cm) and d = (d1,d2, ...,dm) and we take a random number k from
the set {1,2, ...,m}. The first offspring copies the first k genes from parent c and
the remaining from d, like this: o1 = (c1,c2, ...,ck,dk+1, ...,dm); conversely, the sec-
ond offspring takes the first k genes from parent d and the remaining from c, i.e.
o2 = (d1,d2, ...,dk,ck+1, ...,cm).

Fig. 3.2 One point crossover for binary rep-
resentation. The first part of offspring 1 is
copied from the first parent and the other
section from the second parent, while for the
second offspring the complementary parts
are inherited from the two parents.

Parents

Offspring

Fig. 3.3 Two point crossover for binary
representation. The offspring take alternate
sections from the parents. The same type of
inheritance occurs when several cut points
are considered.

Parents

Offspring

A generalized form is the multiple point recombination, where several cut points
are considered: an example of two point crossover can be visualized in Fig. 3.3. Fur-
thermore, within adaptive recombination, the split points also undergo evolution by
adapting to previous splits that took place. Additionally, segmented recombination

3.9 Variation: The Mutation Operator 41

is another variant of the multiple point recombination where the number of points
can vary from one individual to another [Eiben and Smith, 2003].

Uniform recombination does not use split points. For every gene of the first off-
spring it is probabilistically decided which parent gives the value of that component,
while the corresponding gene of the second offspring gets the value from the other
parent. This operator could also be considered such that the values for both offspring
individuals are computed in the same probabilistic manner, but independently.

Shuffle recombination is an add-on to an arbitrary binary recombination scheme
and has the advantage of removing positional bias. The genes of the two parents
are shuffled randomly, remembering their initial positions. The resulting individuals
may then undergo any kind of binary crossover. Resulting offspring are un-shuffled.

Such recombination mechanisms are obviously not suitable for a real-valued en-
coding. Intermediate recombination presumes that the value for the gene of the
offspring is a convex combination of the corresponding values of the parents. We
have again two parents c = (c1,c2, ...,cm) and d = (d1,d2, ...,dm) and offspring gene
oi = αci +(1−α)di, for α ∈ [0,1]. Parameter α can be randomly chosen at each
application of the recombination operator or it can be fixed: it is very often set at
0.5, which leads to a uniform arithmetic recombination. Depending on the number
of recombined genes for the offspring, there are three types of intermediate recom-
bination: single (when one position is changed), simple (when we change all values
from some point on) and total (when all genes are affected).

3.9 Variation: The Mutation Operator

Mutation is a unary variation operator. It is also a stochastic one, so the genes whose
values are considered to be changed are chosen in a probabilistic manner. When
applied to an individual, the resulting offspring contains minor modifications as
opposed to the initial individual. Through mutation, individuals that cannot be gen-
erated using recombination may be introduced into the population, as it makes all
the values of a gene available for the search process.

For every individual in the current population and each gene of that individual,
a random number in the [0, 1] interval is generated. If the mutation probability
is higher than the generated number, then that gene suffers mutation (see Algo-
rithm 3.5).

Sometimes global search is intended in the initial evolutionary phases and local
search (fine tuning) is planned towards the final steps of the EA. In this respect, the
mutation probability may decrease with the increase in the number of generations.
Another distinct situation concerns those cases where the change of a gene lying at
the beginning of an individual could make a significant modification to the individ-
ual in question, while the same change at the end of the individual would induce a
less significant alteration. Then, while the number of generations passes, the proba-
bility of mutation of the first genes in every individual may decrease and that of the
final ones increase.

42 3 Overview of Evolutionary Algorithms

Algorithm 3.5 Mutation applied with probability pm.

Require: A population that consists of n individuals, each containing m genes
Ensure: A population obtained after the mutation process

begin
for i = 1 to n do

for j = 1 to m do
Generate q in [0,1];
if q < pm then

Apply the chosen mutation operator to the gene j of the current individual i;
end if

end for
end for
return the modified population
end

Depending on the specific task and the considered representation, there are sev-
eral forms of the mutation operator as well. Again only the situations with binary
and real-valued encodings are further outlined and the most frequent types are de-
scribed [Eiben and Smith, 2003].

For the binary encoding, a strong mutation (also called bit flip perturbation) pre-
sumes that, when a gene undergoes mutation, 1 changes into 0 and 0 into 1. Thus,
the value of the gene to be mutated will change through the formula ci = 1− ci. An
intuitive representation can be observed in Fig. 3.4.

Fig. 3.4 Mutation for binary representation.
A position having the value v ∈ {0,1} is ran-
domly chosen in the individual to be mutated
and its value is changed to 1 - v.

1 0 0 1 1 0 1 1 0 1 1 0

Gene selected for mutation

1 0 0 1 0 0 1 1 0 1 1 0

Obtained individual

{

Weak mutation presumes that the above change does not take place automatically
as before, but 1 or 0 is probabilistically chosen and attributed to that position. In this
way, the newly generated value could be identical to the old one, so no effective
change would actually occur.

For the real-valued individuals, mutation customarily performs a small pertur-
bation in the value of the selected gene. This is induced randomly by a number
generated to follow a normal distribution with mean zero and standard deviation

3.11 Evolutionary Algorithms for Classification 43

given by a parameter called mutation strength. A value of the gene i of an individ-
ual c is thus changed according to the formula ci = ci +N(0,ms), where ms is the
mutation strength parameter.

3.10 Termination Criterion

The stop condition of a typical EA may refer to several criteria like:

• reaching a previously set number of generations,
• not exceeding a predefined number of iterations without achieving any fitness

improvement,
• finding a solution with a given accuracy,
• consuming a preset number of fitness evaluation calls,
• allowing the algorithm to run for a certain amount of time,
• population diversity falling below a given threshold,
• a stop button etc.

The solution to the algorithm is the best individual with respect to the fitness
function from the last generation, or the best from the entire process, or, sometimes,
the entire (or a subset of the) population from the last generation [Bäck, 1996],
[Dumitrescu et al, 2000].

3.11 Evolutionary Algorithms for Classification

As the practical side of this book targets classification, the classical evolutionary
techniques that had been tailored for this direction will be mentioned. Note that,
although there are EA approaches acting both as stand-alone or in hybridization
with classification-specific methods, we will present only the former ones. For the
latter category, we will specifically outline those related to SVMs in the future Chap.
6 and 7.

The aim of a classification technique may be further conceived as to stepwise
learn a set of rules that model the training set as good as possible. When the learning
stage is finished, the obtained rules are applied to previously unseen samples within
the test set to predict their classes.

EAs may consequently encode IF-THEN rules, while certain mechanisms model
their behavior and interaction towards learning. An evolutionary classifier then rep-
resents a machine learning system that uses an EA as a rule discovery component
[Michalewicz, 1996]. The IF-THEN rules (or productions) are represented through
a population that is evolved by an appropriate EA. The rules cover the space of
possible inputs and are evolved in order to successfully be applied to the problem
to be solved – the fields of application may range from data mining to robotics.
On a broader sense, and in connection with the definition of classification from the
introductory chapter, an evolutionary classification approach is concerned with the
discovery of IF-THEN rules that reproduce the correspondence between given sam-
ples and corresponding classes. Given an initial set of training samples, the system

44 3 Overview of Evolutionary Algorithms

learns the patterns, i.e. evolves the classification rules, which are then expected to
predict the class of new examples. An IF-THEN rule is imagined as a first-order
logic implication where the condition part is made of attributes and the conclusion
part is represented by the class.

There are three classical families of evolutionary classifiers [Bacardit and Butz,
2007]:

The Pittsburgh learning strategy [Smith, 1980], [de Jong et al, 1994], [Michalewicz,
1996]: aims to evolve a complete classification rule collection by encoding the
entire set into each individual.

The Michigan approach [Holland, 1986], [Wilson, 1995], [Michalewicz, 1996]:
considers every individual as the representative of one rule, uses reinforcement
learning to reward/penalize the collaboration between rules and achieves the
complete optimal rule set as the output of the EA.

Iterative rule learning [Venturini, 1993], [Aguilar-Ruiz et al, 2003],
[Bacardit and Butz, 2007]: for each class of the problem, one separate EA run is
performed, with all individuals encoding rules for that class and adjusting them-
selves against the training samples labeled accordingly.

In a Pittsburgh-type evolutionary classifier, each individual represents an entire
set of rules. The individuals compete among themselves and only the strong sets
survive and reproduce. The Pittsburgh approach uses a typical EA for conducting
the learning. What remains to be solved is the representation problem and the way
individuals adapt to their environment. Usually, operators from propositional logic,
like disjunction and/or conjunction, also appear within the encoding.

In a Michigan-style evolutionary classifier, each individual of the population rep-
resents a unique, distinct rule, so the EA evolves a set of rules. Then, the population
represents the rule set needed to solve the problem. The goal here is not to obtain
the best individual, but to find the best set of individuals (rules) in the end of the
algorithm. Usually, representation is divided into two parts – one is the condition
part and contains the values for the attributes that appear in the condition of the rule
and the other part consists of the conclusion of the rule. A credit assignment system
is used in order to reward the better rules or, at the same time, to penalize the worse
ones. When new rules are produced through mutation and/or recombination, crowd-
ing methods are usually utilized in order to introduce them into the population; in
this way, they replace only very similar individuals.

By iterative rule learning, the evolution of a rule for each class is obtained by an
equal number of runs of an EA. In every such run, the individuals (rules of one class)
are evolved against the training samples of the corresponding class. The fitness ex-
pression refers both accuracy and a generality measure that makes the individual
cover as much samples as possible.

Finally, note that rules in an IF-THEN format are the traditional means of repre-
senting individuals for classification by EAs. Other more complex representations
can be employed, like, for instance, a genetic programming approach to rule dis-
covery [Giordana et al, 1994], [Freitas, 1997], [Bojarczuk et al, 2000]. The internal
nodes of the individual encode mathematical functions, while the leaf nodes refer

3.12 Concluding Remarks 45

the attributes. Given a certain individual, the output of the tree is computed and, if
it is greater than a given threshold, a certain outcome of the classification task is
predicted.

3.12 Concluding Remarks

We have targeted to show why EAs are easy and straightforward for any task, while
their performance as general optimizers is very competitive. Their power and suc-
cess lie in the simplicity of their mathematical functioning, the naturalness of un-
derlying metaphor and the easy tailoring for any given problem.

After having gone through the introductory chapter into evolutionary computing,
the following knowledge has been acquired:

• A general idea of the concepts revolving around EAs.
• The components of a typical EA are subsequently enumerated and are followed

by brief descriptions.
• The traditional EA applications for classification are summarized, to set the con-

text for introducing the new evolutionary approaches for this task in Chap. 4, 5,
6 and 7.

	Overview of Evolutionary Algorithms
	3.1 Goals of This Chapter
	3.2 The Wheels of Artificial Evolution
	3.3 What’s What in Evolutionary Algorithms
	3.4 Representation
	3.5 The Population Model
	3.6 Fitness Evaluation
	3.7 The Selection Operator
	3.8 Variation: The Recombination Operator
	3.9 Variation: The Mutation Operator
	3.10 Termination Criterion
	3.11 Evolutionary Algorithms for Classification
	3.12 Concluding Remarks

