
Chapter 2
Support Vector Learning and Optimization

East is east and west is west and never the twain shall meet.
The Ballad of East and West by Rudyard Kipling

2.1 Goals of This Chapter

The kernel-based methodology of SVMs [Vapnik and Chervonenkis, 1974],
[Vapnik, 1995a] has been established as a top ranking approach for supervised
learning within both the theoretical and red practical research environments. This
very performing technique suffers nevertheless from the curse of an opaque engine
[Huysmans et al, 2006], which is undesirable for both theoreticians, who are keen to
control the modeling, and the practitioners, who are more than often suspicious of
using the prediction results as a reliable assistant in decision making.

A concise view on a SVM is given in [Cristianini and Shawe-Taylor, 2000]:

A system for efficiently training linear learning machines in kernel-induced feature
spaces, while respecting the insights of generalization theory and exploiting optimiza-
tion theory.

The right placement of data samples to be classified triggers corresponding sep-
arating surfaces within SVM training. The technique basically considers only the
general case of binary classification and treats reductions of multi-class tasks to the
former. We will also start from the general case of two-class problems and end with
the solution to several classes.

If the first aim of this chapter is to outline the essence of SVMs, the second
one targets the presentation of what is often presumed to be evident and treated
very rapidly in other works. We therefore additionally detail the theoretical aspects
and mechanism of the classical approach to solving the constrained optimization
problem within SVMs.

Starting from the central principle underlying the paradigm (Sect. 2.2), the dis-
cussion of this chapter pursues SVMs from the existence of a linear decision func-
tion (Sect. 2.3) to the creation of a nonlinear surface (Sect. 2.4) and ends with the
treatment for multi-class problems (Sect. 2.5).
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2.2 Structural Risk Minimization

SVMs act upon a fundamental theoretical assumption, called the principle of struc-
tural risk minimization (SRM) [Vapnik and Chervonenkis, 1968].

Intuitively speaking, the SRM principle asserts that, for a given classification
task, with a certain amount of training data, generalization performance is solely
achieved if the accuracy on the particular training set and the capacity of the machine
to pursue learning on any other training set without error have a good balance. This
request can be illustrated by the example found in [Burges, 1998]:

A machine with too much capacity is like a botanist with photographic memory who,
when presented with a new tree, concludes that it is not a tree because it has a different
number of leaves from anything she has seen before; a machine with too little capacity
is like the botanist’s lazy brother, who declares that if it’s green, then it’s a tree. Neither
can generalize well.

We have given a definition of classification in the introductory chapter and we
first consider the case of a binary task. For convenience of mathematical interpreta-
tion, the two classes are labeled as -1 and 1; henceforth, yi ∈ {−1,1} .

Let us suppose the set of functions { ft}, of generic parameters t:

ft : Rn →{−1,1}. (2.1)

The given set of m training samples can be labeled in 2m possible ways. If for each
labeling, a member of the set { ft} can be found to correctly assign those labels,
then it is said that the collection of samples is shattered by that set of functions
[Cherkassky and Mulier, 2007].

Definition 2.1. [Burges, 1998] The Vapnik-Chervonenkis (VC) - dimension h for a
set of functions { ft} is defined as the maximum number of training samples that can
be shattered by it.

Proposition 2.1. (Structural Risk Minimization principle) [Vapnik, 1982]
For the considered classification problem, for any generic parameters t and for

m > h, with a probability of at least 1−η , the following inequality holds:

R(t)≤ Remp(t)+φ
(

h
m
,

log(η)
m

)
,

where R(t) is the test error, Remp(t) is the training error and φ is called the confi-
dence term and is defined as:

φ
(

h
m
,

log(η)
m

)
=

√
h
(
log 2m

h + 1
)− log η

4

m
.

The SRM principle affirms that, for a high generalization ability, both the training
error and the confidence term must be kept minimal; the latter is minimized by
reducing the VC-dimension.
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2.3 Support Vector Machines with Linear Learning

When confronted with a new classification task, the first reasonable choice is to try
and separate the data in a linear fashion.

2.3.1 Linearly Separable Data

If training data are presumed to be linearly separable, then there exists a linear hy-
perplane H:

H : w · x− b = 0, (2.2)

which separates the samples according to their classes [Haykin, 1999]. w is called
the weight vector and b is referred to as the bias.

Recall that the two classes are labeled as -1 and 1. The data samples of class 1
thus lie on the positive side of the hyperplane and their negative counterparts on the
opposite side.

Proposition 2.2. [Haykin, 1999]
Two subsets of n-dimensional samples are linearly separable iff there exist w∈R

n

and b ∈ R such that for every sample i = 1,2, ...,m:

{
w · xi − b > 0,yi = 1
w · xi − b ≤ 0,yi =−1

(2.3)

An insightful picture of this geometric separation is given in Fig. 2.1.

Fig. 2.1 The positive and negative
samples, denoted by squares and
circles, respectively. The decision
hyperplane between the two corre-
sponding separable subsets is H.

H

{x|w⋅x-b<0}

{x|w⋅x-b>0}
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It is further resorted to a stronger statement for linear separability, where the
positive and negative samples lie behind a corresponding supporting hyperplane.

Proposition 2.3. [Bosch and Smith, 1998] Two subsets of n-dimensional samples
are linearly separable iff there exist w ∈ R

n and b ∈ R such that, for every sample
i = 1,2, ...,m:

{
w · xi − b ≥ 1,yi = 1
w · xi − b ≤−1,yi =−1

(2.4)

An example for the stronger separation concept is given in Fig. 2.2.

Fig. 2.2 The decision and support-
ing hyperplanes for the linearly
separable subsets. The separating
hyperplane H is the one that lies in
the middle of the two parallel sup-
porting hyperplanes H1, H2 for the
two classes. The support vectors are
circled.

H
H1

H2

{x|w⋅x-b=-1}
{x|w⋅x-b=1}

Proof. (we provide a detailed version – as in [Stoean, 2008] – for a gentler flow of
the connections between the different conceptual statements)

Suppose there exist w and b such that the two inequalities hold.
The subsets given by yi = 1 and yi =−1, respectively, are linearly separable since

all positive samples lie on one side of the hyperplane given by

w · x− b = 0,

from:

w · xi − b ≥ 1 > 0 for yi = 1,

and simultaneously:

w · xi − b ≤−1 < 0 for yi =−1,

so all negative samples lie on the other side of this hyperplane.

Now, conversely, suppose the two subsets are linearly separable. Then, there exist
w ∈ R

n and b ∈R such that, for i = 1,2, ...,m:
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{
w · xi − b > 0,yi = 1
w · xi − b ≤ 0,yi =−1

Since:

min{w · xi|yi = 1}> max{w · xi|yi =−1} ,
let us set:

p = min{w · xi|yi = 1}−max{w · xi|yi =−1}
and make:

w′ =
2
p

w

and

b′ = 1
p (min{w · xi|yi = 1}+max{w · xi|yi =−1})

Then:

min
{

w′ · xi|yi = 1
}
=

=
2
p

min{w · xi|yi = 1}

=
1
p
(min{w · xi|yi = 1}+max{w · xi|yi =−1}+

min{w · xi|yi = 1}−max{w · xi|yi =−1})
=

1
p
(min{w · xi|yi = 1}+max{w · xi|yi =−1}+ p)

= b′+ 1

and

max
{

w′ · xi|yi =−1
}
=

=
2
p

max{w · xi|yi =−1}

=
1
p
(min{w · xi|yi = 1}+max{w · xi|yi =−1}− p)

= b′ − 1

Consequently, there exist w ∈R
n and b ∈R such that:

w · xi ≥ b+ 1 ⇒ w · xi − b ≥ 1 when yi = 1

and w · xi ≤ b− 1 ⇒ w · xi − b ≤−1 when yi =−1
�	
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Definition 2.2. The support vectors are the training samples for which either the
first or the second line of (2.4) holds with the equality sign.

In other words, the support vectors are the data samples that lie closest to the
decision surface. Their removal would change the found solution. The supporting
hyperplanes are those denoted by the two lines in (2.4), if equalities are stated in-
stead.

Following the geometrical separation statement (2.4), SVMs hence have to deter-
mine the optimal values for the coefficients w and b of the decision hyperplane that
linearly partitions the training data. In a more succinct formulation, from (2.4), the
optimal w and b must then satisfy for every i = 1,2, ...,m:

yi(w · xi − b)− 1≥ 0 (2.5)

In addition, according to the SRM principle (Proposition 2.1), separation must be
performed with a high generalization capacity. In order to also address this point, in
the next lines, we will first calculate the margin of separation between classes.

The distance from one random sample z to the separating hyperplane is given by:

|w · z− b|
‖w‖ . (2.6)

Let us subsequently compute the same distance from the samples zi that lie clos-
est to the separating hyperplane on either side of it (the support vectors, see Fig.
2.2). Since zi are situated closest to the decision hyperplane, it results that either
zi ∈ H1 or zi ∈ H2 (according to Def. 2.2) and thus |w · zi − b|= 1, for all i.

Hence:

|w · zi − b|
‖w‖ =

1
‖w‖ for all i = 1,2, ...,m. (2.7)

Then, the margin of separation becomes equal to [Vapnik, 2003]:

2
‖w‖ . (2.8)

Proposition 2.4. [Vapnik, 1995b]
Let r be the radius of the smallest ball

Br(a) = {x ∈R
n|‖x− a‖< r} ,a ∈ R

n

containing the samples x1, ...,xm and let

fw,b = sgn(w · x− b)

be the hyperplane decision functions.
Then the set

{
fw,b|‖w‖ ≤ A

}
has a VC-dimension h (as from Definition 2.1) sat-

isfying
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h < r2A2 + 1

In other words, it is stated that, since ‖w‖ is inversely proportional to the margin
of separation (from (2.8)), by requiring a large margin (i.e., a small A), a small VC-
dimension is obtained. Conversely, by allowing separations with small margin, a
much larger class of problems can be potentially separated (i.e., there exists a larger
class of possible labeling modes for the training samples, from the definition of the
VC-dimension).

The SRM principle requests that, in order to achieve high generalization of the
classifier, training error and VC-dimension must be both kept small. Therefore, hy-
perplane decision functions must be constrained to maximize the margin, i.e.,

minimize
‖w‖2

2
, (2.9)

and separate the training data with as few exceptions as possible.
From (2.5) and (2.9), it follows that the resulting optimization problem is (2.10)

[Haykin, 1999]:

⎧⎨
⎩find w and b as to minimize

‖w‖2

2
subject to yi(w · xi − b)≥ 1, for all i = 1,2, ...,m

(2.10)

The reached constrained optimization problem is called the primal problem (PP).

2.3.2 Solving the Primal Problem

The original solving of the PP (2.10) requires the a priori knowledge of several
fundamental mathematical propositions described in the subsequent lines.

Definition 2.3. A function f : C → R is said to be convex if
f (αx+(1−α)y)≤ α f (x)+ (1−α) f (y), for all x,y ∈C and α ∈ [0,1].

Proposition 2.5. For a function f : (a,b)→R, (a,b)⊆R, that has a second deriva-
tive in (a,b), a necessary and sufficient condition for its convexity on that interval is
that the second derivative f ′′(x)≥ 0, for all x ∈ (a,b).

Proposition 2.6. If two functions are convex, the composition of the functions is
convex.

Proposition 2.7. The objective function in PP (2.10) is convex [Haykin, 1999].

Proof. (detailed as in [Stoean, 2008])
Let h = f ◦ g, where f : R→R, f (x) = x2 and g : Rn → R, g(w) = ‖w‖.

1. f : R→R, f (x) = x2 ⇒ f ′(x) = 2x ⇒ f ′′(x) = 2 ≥ 0 ⇒ f is convex.
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2. g : Rn → R, g(w) = ‖w‖
We appeal to two well-known properties of a norm:

1. ‖αv‖= |α| ‖v‖
2. ‖v+w‖ ≤ ‖v‖+ ‖w‖

Let v,w ∈R
n and α ∈ [0,1].

g(αv+(1−α)w) = ‖αv+(1−α)w‖ ≤ |α| ‖v‖+ |1−α|‖w‖ =
α ‖v‖+(1−α)‖w‖= αg(v)+ (1−α)g(w)

⇒ g is convex.

Following Proposition 2.6 ⇒ h is convex. �	
Since constraints in PP (2.10) are linear in w, the following proposition arises.

Proposition 2.8. The feasible region for a constrained optimization problem is con-
vex if the constraints are linear.

At this point, we have all the necessary information to outline the classical solv-
ing of the PP inside SVMs (2.10). The standard method of finding the optimal solu-
tion with respect to the defined constraints resorts to an extension of the Lagrange
multipliers method. This is described in detail in what follows.

Since the objective function is convex and constraints are linear, the Karush-
Kuhn-Tucker-Lagrange (KKTL) conditions can be stated for PP [Haykin, 1999] .

This is based on the argument that, since constraints are linear, the KKTL con-
ditions are guaranteed to be necessary. Also, since PP is convex (convex objective
function + convex feasible region), the KKTL conditions are at the same time suffi-
cient for global optimality [Fletcher, 1987].

First, the Lagrangian function is constructed:

L(w,b,α) =
1
2
‖w‖2 −

m

∑
i=1

αi [yi(w · xi − b)− 1], (2.11)

where variables αi ≥ 0 are the Lagrange multipliers.
The solution to the problem is determined by the KKTL conditions for every

sample i = 1,2, ...,m [Burges, 1998]:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂L(w,b,α)

∂w
= 0

∂L(w,b,α)

∂b
= 0

αi [yi(w · xi − b)− 1] = 0
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Application of the KKTL conditions yields [Haykin, 1999]:

∂L(w,b,α)

∂w
= w−

m

∑
i=1

αiyixi = 0 ⇒ w =
m

∑
i=1

αiyixi (2.12)

∂L(w,b,α)

∂b
=

m

∑
i=1

αiyi = 0 (2.13)

αi [yi(w · xi − b)− 1] = 0, i = 1,2, ...,m (2.14)

We additionally refer to the separability statement and the conditions for positive
Lagrange multipliers for every i = 1,2, ...,m:

yi(w · xi − b)− 1≥ 0

αi ≥ 0

We have to solve the particular PP in (2.10). Generally speaking, given the PP:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

minimize f (x)

subject to

⎧⎪⎨
⎪⎩

g1(x)≥ 0

...

gm(x)≥ 0

,
(2.15)

the Lagrange multipliers are α = (α∗
1 , ...,α

∗
m), α∗

i ≥ 0, such that:

inf
g1(x)≥0,...,gm(x)≥0

f (x) = inf
x∈Rn

L(x,α∗),

where L is the Lagrangian function:

L(x,α) = f (x)+
m

∑
j=1

α jg j(x),x ∈R
n,α ∈ R

m

Then, one can resort to the dual function [Haykin, 1999]:

q(α) = inf
x∈Rn

L(x,α)

This naturally leads to the dual problem (DP) :
{

maximize q(α)

subject to α ≥ 0
(2.16)

The optimal primal value is f ∗ = inf
g1(x)≥0,...,gr(x)≥0

f (x) = inf
x∈Rn

sup
α≥0

L(x,α).

The optimal dual value is g∗ = sup
α≥0

q(α) = sup
α≥0

inf
x∈Rn

L(x,α).

There is always that q∗ ≤ f ∗.
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But, if there is convexity in the PP, then:

1. q∗ = f ∗
2. Optimal solutions of the DP are multipliers for the PP.

Further on, (2.11) is expanded and one obtains [Haykin, 1999]:

L(w,b,α) =
1
2
‖w‖2 −

m

∑
i=1

αiyiw · xi + b
m

∑
i=1

αiyi +
m

∑
i=1

αi (2.17)

The third term on the right-hand side of the expansion is zero from (2.13).
Moreover, from (2.12), one obtains:

1
2
‖w‖2 = w ·w =

m

∑
i=1

αiyiw · xi =
m

∑
i=1

m

∑
j=1

αiα jyiy jxi · x j

Therefore, (2.17) changes to:

L(w,b,α) =
m

∑
i=1

αi − 1
2

m

∑
i=1

m

∑
j=1

αiα jyiy jxi · x j

According to the duality concepts, by setting Q(α) = L(w,b,α), one obtains the
DP:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

find {αi}i=1,2,...,m as to maximize Q(α) =
m

∑
i=1

αi − 1
2

m

∑
i=1

m

∑
j=1

αiα jyiy jxi · x j

subject to

⎧⎪⎨
⎪⎩

m

∑
i=1

αiyi = 0

αi ≥ 0
(2.18)

The optimum Lagrange multipliers are next determined by setting the gradient of
Q to zero and solving the resulting system.

Then, the optimum vector w can be computed from (2.12) [Haykin, 1999]:

w =
m

∑
i=1

αiyixi

As b is concerned, it can be obtained from any of the equalities of (2.14), when
αi �= 0. Then:

yi(w · xi − b)− 1 = 0 ⇒

yi(
m

∑
j=1

α jy jx j · xi − b) = 1 ⇒
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m

∑
j=1

α jy jx j · xi − b = yi ⇒

b =
m

∑
j=1

α jy jx j · xi − yi

Note that we have equalled 1/yi to yi above, since yi can be either 1 or -1.
Although the value for b can be thus directly derived from only one such equality

when αi �= 0, it is nevertheless safer to compute all the b values and take their mean
as the final result.

In the reached solution to the constrained optimization problem, those points for
which αi > 0 are the support vectors and they can also be obtained as the output of
the SVM.

Finally, the class for a test sample x′ is predicted based on the sign of the decision
function with the found coefficients w and b applied to x′ and the inequalities in
(2.4):

class(x′) = sgn(w · x′ − b)

2.3.3 Linearly Nonseparable Data

Since real-world data are not linearly separable, it is obvious that a linear separating
hyperplane is not able to build a partition without any errors. However, a linear
separation that minimizes training error can be tried as a solution to the classification
problem [Haykin, 1999].

The separability statement can be relaxed by introducing slack variables ξi ≥ 0
into its formulation [Cortes and Vapnik, 1995]. This can be achieved by observ-
ing the deviations of data samples from the corresponding supporting hyperplanes,
which designate the ideal condition of data separability. These variables may then
indicate different nuanced digressions (Fig. 2.3), but only a ξi > 1 signifies an error
of classification.

Minimization of training error is achieved by adding the indicator of an error
(slack variable) for every training data sample into the separability statement and, at
the same time, by minimizing their sum.

For every sample i = 1,2, ...,m, the constraints in (2.5) subsequently become:

yi(w · xi − b)≥ 1− ξi, (2.19)

where ξi ≥ 0.
Simultaneously with (2.19), the sum of misclassifications must be minimized:

minimize C
m

∑
i=1

ξi. (2.20)

C > 0 is a parameter of the methodology and is employed for the penalization of
errors.
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Fig. 2.3 Different data placements
in relation to the separating and
supporting hyperplanes. Corre-
sponding indicators of errors are
labeled by 1, 2 and 3: correct
placement, ξi = 0 (label 1), margin
position, ξi < 1 (label 2) and
classification error, ξi > 1 (label 3).

1

3
1

1

3
3

3

1

2

2

Therefore, the optimization problem changes to (2.21):
⎧⎪⎨
⎪⎩

find w and b as to minimize ‖w‖2

2 +C
m

∑
i=1

ξi,C > 0

subject to yi(w · xi − b)≥ 1− ξi,ξi ≥ 0, for all i = 1,2, ...,m
(2.21)

This formulation still obeys the SRM principle as the VC-dimension is once more
minimized and separation of training data with as few exceptions as possible is again
achieved, both through (2.19) and (2.20).

From the formulation in (2.11), the Lagrangian function changes in the following
way [Burges, 1998], where variables αi and μi, i = 1,2, ...,m, are the Lagrange
multipliers:

L(w,b,ξ ,α,μ) =
1
2
‖w‖2 +C

m

∑
i=1

ξi −
m

∑
i=1

αi [yi(w · xi − b)− 1+ ξi]−

m

∑
i=1

μiξi,

The introduction of the μi multipliers is related to the inclusion of the ξi variables
in the relaxed formulation of the PP.

Application of the KKTL conditions to this new constrained optimization prob-
lem leads to the following lines: [Burges, 1998]:

∂L(w,b,ξ ,α,μ)
∂w

= w−
m

∑
i=1

αiyixi = 0 ⇒ w =
m

∑
i=1

αiyixi (2.22)
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∂L(w,b,ξ ,α,μ)
∂b

=
m

∑
i=1

αiyi = 0 (2.23)

∂L(w,b,ξ ,α,μ)
∂ξi

=C−αi − μi = 0 ⇒ αi + μi =C (2.24)

The KKTL conditions also require that, for every i = 1,2, ...,m, the subsequent
equalities hold:

αi [yi(w · xi − b)− 1+ ξi] = 0 (2.25)

μiξi = 0 (2.26)

We additionally refer to the relaxed separability statement and the conditions for
positive slack variables ξi and Lagrange multipliers αi and μi for every i= 1,2, ...,m:

yi(w · xi − b)− 1+ ξi ≥ 0

ξi ≥ 0

αi ≥ 0

μi ≥ 0

After term by term expansion, the Lagrangian function is then transformed to:

L(w,b,ξ ,α,μ) =
m

∑
i=1

αi − 1
2

m

∑
i=1

m

∑
i=1

αiα jyiy jxi · x j +C
m

∑
i=1

ξi−

m

∑
i=1

αiξi −
m

∑
i=1

μiξi

From (2.26), the last term of the Lagrangian becomes zero and following (2.24)
and expanding the third term, one obtains:

L(w,b,ξ ,α,μ) =
m

∑
i=1

αi − 1
2

m

∑
i=1

m

∑
i=1

αiα jyiy jxi · x j +
m

∑
i=1

(αi + μi)ξi −
m

∑
i=1

αiξi

=
m

∑
i=1

αi − 1
2

m

∑
i=1

m

∑
i=1

αiα jyiy jxi · x j +
m

∑
i=1

αiξi +
m

∑
i=1

μiξi −
m

∑
i=1

αiξi

=
m

∑
i=1

αi − 1
2

m

∑
i=1

m

∑
i=1

αiα jyiy jxi · x j
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Consequently, the following corresponding DP is obtained:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

find {αi}i=1,2,...,m as to maximize Q(α) =
m

∑
i=1

αi − 1
2

m

∑
i=1

m

∑
j=1

αiα jyiy jxi · x j

subject to

⎧⎪⎨
⎪⎩

m

∑
i=1

αiyi = 0

0 ≤ αi ≤C
,C > 0

(2.27)

The second constraint is obtained from (2.24) and the condition that μi ≥ 0, for
every sample i = 1,2, ...,m.

The optimum value for w is again computed as:

w =
m

∑
i=1

αiyixi

Coefficient b of the hyperplane can be determined as follows [Haykin, 1999]. If
the values αi obeying the condition αi <C are considered, then from (2.24) it results
that for those i μi �= 0. Subsequently, from (2.26) we derive that ξi = 0, for those
certain i. Under these circumstances, from (2.25) and (2.22), one obtains the same
formulation as in the separable case:

yi(w · xi − b)− 1= 0 ⇒ b =
m

∑
j=1

α jy jx j · xi − yi.

It is again better to take b as the mean value resulting from all such equalities.
Those points that have 0 < αi <C are the support vectors.

2.4 Support Vector Machines with Nonlinear Learning

If a linear hyperplane is not able to provide satisfactory results for the classification
task, then is it possible that a nonlinear decision surface can do the separation? The
answer is affirmative and is based on the following result.

Theorem 2.1. [Cover, 1965] A complex pattern classification problem cast in a
high-dimensional space nonlinearly is more likely to be linearly separable than in
a low-dimensional space.

The above theorem states that an input space can be mapped into a new feature
space where it is highly probable that data are linearly separable provided that:

1. The transformation is nonlinear.
2. The dimensionality of the feature space is high enough.
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The initial space of training data samples can thus be nonlinearly mapped into a
higher dimensional feature space, where a linear decision hyperplane can be subse-
quently built. The decision hyperplane achieves an accurate separation in the feature
space which corresponds to a nonlinear decision function in the initial space (see
Fig. 2.4).

Fig. 2.4 The initial data
space with squares and cir-
cles (up left) is nonlinearly
mapped into the higher di-
mensional space, where the
objects are linearly sepa-
rable (up right). This cor-
responds to a nonlinear
surface discriminating in
the initial space (down).

The procedure therefore leads to the creation of a linear separating hyperplane
that minimizes training error as before, but this time performs in the feature space.
Accordingly, a nonlinear map Φ : Rn → H is considered and data samples from the
initial space are mapped by Φ into H.

In the standard solving of the SVM optimization problem, vectors appear only
as part of scalar products; the issue can be thus further simplified by substi-
tuting the dot product by a kernel, which is a function with the property that
[Courant and Hilbert, 1970]:

K(x,y) = Φ(x) ·Φ(y), (2.28)

where x,y ∈R
n.

SVMs require that the kernel is a positive (semi-)definite function in order
for the standard solving approach to find a solution to the optimization problem
[Boser et al, 1992]. Such a kernel is one that satisfies Mercer’s theorem from
functional analysis and is therefore required to be a dot product in some space
[Burges, 1998].

Theorem 2.2. [Mercer, 1908]
Let K(x,y) be a continuous symmetric kernel that is defined in the closed interval

a ≤ x ≤ b and likewise for y. The kernel K(x,y) can be expanded in the series
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K(x,y) =
∞

∑
i=1

λiΦ(x)iΦ(y)i

with positive coefficients, λi > 0 for all i. For this expansion to be valid and for
it to converge absolutely and uniformly, it is necessary that the condition

∫ b

a

∫ b

a
K(x,y)ψ(x)ψ(y)dxdy ≥ 0

holds for all ψ(·) for which

∫ b

a
ψ2(x)dx < ∞

Restricting the kernel to be positive (semi-)definite has two drawbacks [Mierswa,
2006b]. On the one hand, it is difficult to check Mercer’s condition for a newly
constructed kernel. On the other hand, kernels that fail to meet the conditions of the
theorem might have proven to achieve a better separation of the training samples.

When applying SVMs for a classification task, there are a couple of classical
kernels that had been demonstrated to meet Mercer’s condition [Vapnik, 1995b]:

• the polynomial kernel of degree p: K(x,y) = (x · y)p

• the radial basis function kernel: K(x,y) = e−σ‖x−y‖2
,

where p and σ are parameters of the SVM.
One may state the DP in this new case by simply replacing the dot product be-

tween data points with the chosen kernel, as below:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

find {αi}i=1,2,...,m as to maximize Q(α) =
m

∑
i=1

αi − 1
2

m

∑
i=1

m

∑
j=1

αiα jyiy jK(xi,x j)

subject to

⎧⎪⎨
⎪⎩

m

∑
i=1

αiyi = 0

0 ≤ αi ≤C
,C > 0

(2.29)
As generally one is not able to construct the mapping Φ from the kernel K, the

value for the optimum vector w cannot always be determined explicitly from:

w =
m

∑
i=1

αiyiΦ(xi)

Consequently, one usually has to directly determine the class for a new data sam-
ple x′, as follows:

class(x′) = sgn(w ·Φ(x′)− b)
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Therefore, by replacing w with
m

∑
i=1

αiyiΦ(xi), one gets:

class(x′) = sgn(w ·Φ(x′)− b)

= sgn(
m

∑
i=1

αiyiΦ(x) ·Φ(xi)− b)

= sgn(
m

∑
i=1

αiyiK(x,xi)− b)

One is left to determine the value of b. This is done by replacing the dot product
by the kernel in the formula for the linear case, i.e. when 0 < αi <C:

b =
m

∑
j=1

α jy jK(x j,xi)− yi,

and taking the mean of all the values obtained for b.

2.5 Support Vector Machines for Multi-class Learning

Multi-class SVMs build several two-class classifiers that separately solve the corre-
sponding tasks. The translation from multi-class to two-class is performed through
different systems, among which one-against-all, one-against-one or decision di-
rected acyclic graph are the most commonly employed.

Resulting SVM decision functions are considered as a whole and the class for
each sample in the test set is decided by the corresponding system [Hsu and Lin,
2004] .

2.5.1 One-Against-All

The one-against-all technique [Hsu and Lin, 2004] builds k classifiers. Every ith

SVM considers all training samples labeled with i as positive and all the remaining
ones as negative.

The aim of every ith SVM is thus to determine the optimal coefficients w and b
of the decision hyperplane to separate the samples with outcome i from all the other
samples in the training set, such that (2.30) :

⎧⎪⎨
⎪⎩

find wi and bi as to minimize
‖wi‖2

2
+C

m

∑
j=1

ξ i
j

subject to y j(wi · x j − bi)≥ 1− ξ i
j,ξ i

j ≥ 0, for all j = 1,2, ...,m.

(2.30)
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Once the all hyperplanes are determined following the classical SVM solving as
in the earlier pages, the class for a test sample x′ is given by the category that has
the maximum value for the learning function, as in (2.31):

class(x′) = argmaxi=1,2,...,k(w
i ·Φ(x′))− bi) (2.31)

2.5.2 One-Against-One and Decision Directed Acyclic Graph

The one-against-one technique [Hsu and Lin, 2004] builds k(k−1)
2 SVMs. Every ith

machine is trained on data from every two classes, i and j, where samples labelled
with i are considered positive while those in class j are taken as negative.

The aim of every SVM is hence to determine the optimal coefficients of the deci-
sion hyperplane to discriminate the samples with outcome i from the samples with
outcome j, such that (2.32) :

⎧⎪⎨
⎪⎩

find wi j and bi j as to minimize
‖wi j‖2

2
+C

m

∑
l=1

ξ i j
l ,

subject to yl(wi j · xl − bi j)≥ 1− ξ i j
l ,ξ i j

l ≥ 0, for all l = 1,2, ...,m
(2.32)

When the hyperplanes of the k(k−1)
2 SVMs are found, a voting method is used to

determine the class for a test sample x′. For every SVM, the class of x′ is computed
by following the sign of its resulting decision function applied to x′. Subsequently,
if the sign says x′ is in class i, the vote for the i-th class is incremented by one;
conversely, the vote for class j is increased by unity. Finally, x′ is taken to belong
to the class with the largest vote. In case two classes have an identical number of
votes, the one with the smaller index is selected.

Classification within the decision directed acyclic graph technique [Platt et al,
2000] is done in an identical manner to that of one-against-one.

For the second part, after the hyperplanes of the k(k−1)
2 SVMs are discovered, the

following graph system is used to determine the class for a test sample x (Fig. 2.5).
Each node of the graph has an attached list of classes and considers the first and last
elements of the list. The list that corresponds to the root node contains all k classes.
When a test instance x is evaluated, one descends from node to node, in other words,
eliminates one class from each corresponding list, until the leaves are reached.

The mechanism starts at the root node which considers the first and last classes.
At each node, i vs j, we refer to the SVM that was trained on data from classes i and
j. The class of x is computed by following the sign of the corresponding decision
function applied to x. Subsequently, if the sign says x is in class i, the node is exited
via the right edge; conversely, we exit through the left edge. We thus eliminate the
wrong class from the list and proceed via the corresponding edge to test the first and
last classes of the new list and node. The class is given by the leaf that x eventually
reaches.
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Fig. 2.5 An example of a 3-class problem
labeled by a decision directed acyclic graph 1 vs 3

2 vs 3 1 vs 2

3 2 2 1

1,2,3

2,3 1,2

not 1 not 3

not 1not 3not 2 not 2

2.6 Concluding Remarks

SVMs provide a very interesting and efficient vision upon classification. They pur-
sue a geometrical interpretation of the relationship between samples and decision
surfaces and thus manage to formulate a simple and natural optimization task.

On the practical side, when applying the technique for the problem at hand, one
should first try a linear SVM (with possibly some errors) and only after this fails,
turn to a nonlinear model; there, a radial kernel should generally do the trick.

Although very effective (as demonstrated by their many applications, like those
described in [Kramer and Hein, 2009], [Kandaswamy et al, 2010], [Li et al, 2010],
[Palmieri et al, 2013], to give only a few examples of their diversity), the standard
solving of the reached optimization problem within SVMs is both intricate, as seen
in this chapter, and constrained: the possibilities are limited to the kernels that obey
Mercer’s theorem. Thus, nonstandard possibly better performing decision functions
are left aside. However, as a substitute for the original solving, direct search tech-
niques (like the EAs) do not depend on the condition whether the kernel is positive
(semi-) definite or not.
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