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Abstract. Database management systems use numerous optimization
techniques to accelerate complex analytical queries. Such queries have
to scan enormous amounts of records. The usual technique to reduce
their run-time is the materialization of partial aggregates of base data.
In previous papers we have proposed the concept of metagranules, i.e.
partially ordered aggregations of the fact table. When a query is posed,
the actual aggregation level will be determined and the smallest fit meta-
granule (materialized aggregation) will be used instead of the fact table.
In this paper we extend that idea with metagranular indices, i.e. indices
on metagranules. Assume a user issuing an aggregate query to a fact table
with a selective HAVING or small LIMIT-ORDER BY clause. The database
engine can not only identify the best metagranule but it can also use the
index on that metagranule in order not to scan its full content. In this pa-
per we present the proposed optimization method based on metagranular
indices. We also describe its proof-of-concept prototype implementation.
Finally, we report the results of performance experiments on database
instances up to 350GiB.
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1 Introduction

Processing analytical queries is time-consuming, since they require scanning
countless records. A database admin can avoid such enormous scans by materi-
alizing properly pre-aggregated data. On the other hand, he/she must also take
into account the space occupied by such redundant aggregates and the overhead
on updates they bring about. Therefore, an administrator has to find an equilib-
rium between gains (faster queries) and costs (space and processing overhead).
This activity may be supported or even performed by automated tools.

The problem how to choose a proper set of indices for an application is an
interesting research topic [3]. Analyses of database workloads lead to a number
of index sets that can speed up query processing. The maintenance cost of each
of these sets is then computed and compared with the profits. The set with
biggest difference between profits and costs is suggested to a database admin
[6,10,13,5,4]. A number of index advisors has been developed in commercial
databases. Since the database workload changes over time, advisors have to be
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rerun over and over again. Therefore, online index advisors [2] and benchmarks
to compare them have emerged [14]. Further research on the choice of indices led
to adaptive indices, e.g. database cracking [11] and adaptive merging [9]. Since
both methods prove useful, a hybrid approach has also been proposed [12]. There
is also a benchmark to compare adaptive indices [8].

In our research we focus on the object-relational mapping middleware (ORM)
and its inherent optimisation potential. We showed that ORM could optimize
analytic queries by materialization of partial aggregates [7]. We also described a
programming interface to define aggregations worth materializing (called meta-
granules) and a query rewriting that facilitates using them. In this paper we
extend that approach by considering usage of indices on metagranules. Assume
a query rewritten so that it uses materialized aggregates instead of base data.
If this query contains a HAVING or ORDER-BY clause (preferably combined with
LIMIT), an index on the used metagranule can further accelerate the query.
Queries are analysed using a method similar to the one presented in [1]. The
proposed method collects queries from an application, and then examines them
to find indices that will potentially accelerate the application. In our proof-of-
concept prototype, we use Hibernate ORM. Thus, the queries considered are
HQL (Hibernate QL) queries. In this paper, we report results of experimental
evaluation of this prototype on database instances up to 350 GiB. The results
attest that the proposed method can significantly increase the efficiency of ap-
plications that use various ORMs. This paper makes the following contributions:

– we propose a novel method to advise and automatically generate indices on
metagranules;

– we describe a query rewriting method that aids using these indices;
– we show our proof-of-concept prototype implementation of these ideas;
– we show performance evaluation of this prototype using database instances

of the size up to 350GiB.

The paper is organized as follows. In section 2 we motivate the idea of granu-
lar indices. Section 3 reminds our approach to materializing partial aggregates in
ORMs. In section 4 we describe the concept of metagranules and discuss the cost
aspect of storing them. Section 5 presents the algorithm that analyses queries
collected from an application. Section 6 reports the result of experimental eval-
uation of the proposed method. Section 7 concludes.

2 Motivation

Assume a business analysis application with a database of the schema as pre-
sented on Figure 1. Its user poses the query shown on Listing 1.1. In the ab-
sence of auxiliary data structures such query has to scan all rows of the fact
table (invline). However, if the aggregation of the expression (inl.price *

inl.qty) by customer’s id is materialized, the query can be answered signifi-
cantly faster. Further acceleration can be achieved if we create an index on the
summed column of such materialized aggregate. In such a case, the query engine
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Fig. 1. The schema of a sample business database

Listing 1.1. The query to find twenty best customers

SELECT cust . c id , SUM( i n l . p r i c e ∗ i n l . qty )
FROM cust JOIN inv USING ( c i d )

JOIN i n l USING ( i n v id )
GROUP BY cust . c i d
ORDER BY SUM( i n l . p r i c e ∗ i n l . qty ) DESC
LIMIT 20 ;

simply collects twenty tail entries from this index (provided it is stored in the
ascending order).

The algorithms presented in this paper can automatically detect such an op-
timisation opportunity and suggest creating the corresponding materialized ag-
gregate and its index. However, one has to be aware that maintaining them is
costly. Therefore, we also report the results of an experimental analysis of costs
and profits induced by these redundant data structures (see section 6).

3 Partial Aggregation

In this paper we focus on applications that use an object-relational mapping
system to store their persistent data. Since contemporary ORMs have relatively
limited functionality, an application programmer that wants to code analytic
processing has two equally terrible options. He/she can accept notably low per-
formance or bypass ORM mechanisms by directly addressing the database with
SQL queries [7]. We proposed an extension to Hibernate that allows materializ-
ing aggregates without breaking the architecture of an application. Listing 1.2
shows an example class augmented with annotations @DWDim and @DWAggr that
indicate aggregates to be materialized. Our extension interprets such annotations
and (1) creates a table that stores SUM(quantity*price) grouped by inv id,

date, c id, (2) augments the class Invoice with methods to query this table
and (3) adds triggers that will synchronize this table with the base data.

Listing 1.2. The class Invoice with annotations on metagranules

@Entity
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Listing 1.3. The query for twenty best customers using a finer aggregation

SELECT cust . c id , SUM( sum qty x pr i c e )
FROM mg inv
GROUP BY cust . c i d
ORDER BY SUM( sum qty x pr i c e ) DESC
LIMIT 20 ;

@Granule(Dim = ” id , date , customer”
Agr = ”Sum( invL ine s . quant i ty ∗ i nvL ine s . p r i c e ) ” )

@Granule(Dim = ”date , . . . . ” )
public class Invo i c e {

@DWDim
private Long id ;
@DWDim
private Date date ;
@DWDim
private Customer customer ;
@DWAggr( func t i on=”SUM( quant i ty ∗ p r i c e ) ” )
private Lis t<Invo iceL ine> i nvL ine s ;

}
Usually more than one subset of dimensions is used to aggregate data. In order

to pass the set of all interesting aggregations we can use the annotation @Granule

[15] as shown on Listing 1.2. This annotation indicates that the table mg inv with
columns inv id, date, c id, sum qty x price is to be created. The first three
columns are dimensions, while the fourth column is SUM(quantity*price) over
these three dimensions.

4 Metagranules

Annotations presented in section 3 may impose a significant overhead on the
database. Storing and maintaining numerous materialized aggregates requires
space and time to synchronize data. However, we can observe that some analytic
queries can be rewritten so that they used more finely aggregated data. The query
from Listing 1.1 can be executed as the query from Listing 1.3. Although the
original query aggregates over the customer id only, it can benefit from using
finer aggregation over invoice id, date and customer id.

This query will not run in a fraction of seconds. For a 100 GiB database the
query should finish in less than one minute. This is probably acceptable. The
idea of materializing only a subset of desired aggregates has been presented [15].
Grouping levels called metagranules constitute a partial order. Figure 2 shows an
example of such order. It contains a possible set of metagranules for the database
schema from Figure 1.
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Fig. 2. The partial order of metagranules

Metagranules represent the aggregates used by the application. Some of them
are chosen to be actually materialized. We call them proper metagranules. In
Figure 2 their symbols have double border.

In the article [15] we presented methods to rewrite queries so that they use the
most fit proper metagranule, i.e. the maximal metagranule smaller or equal to
the desired metagranule. A smaller metagranule contains more records. Thus the
query based on a smaller metagranule will finish later. For some metagranules
there could be more than one metagranule that satisfies the abovementioned
conditions. The metagranule d has two such proper metagranules: i and pd.
Eventually, the algorithm chooses the one with smaller number of records. In
[15] we performed experiments on a database instance of size 100 GiB. They
confirmed the validity of this approach. This idea can be converted into an
algorithm as presented in section 5.

The choice of the best set of proper metagranules constitutes another inter-
esting problem. The more metagranules are proper the faster are the queries. On
the other hand each proper metagranule induces a noteworthy cost of overhead,
since it occupies space and slows down updates. In section 6 we show results of
tests against database instances of the sizes 100GB and 350GB. These results
reveal the impact of the introduction of new proper metagranules.

If a metagranule is proper, it can also have indices. Therefore, we have adapted
the algorithms presented in [1] so that they can be used to suggest metagranular
indices. Modified algorithms are discussed in section 5.

5 Processing HQL Queries

In this section we present the algorithms used in the proposed method. We start
from the analysis of HQL queries to collect all metagranules possibly worth mate-
rializing. Assume that we have already collected the potential database workload,
i.e. a set of queries from an application code. Initially the set of metagranules is
empty. Then for each query the algorithm performs the following steps:

1. Build the abstract syntax tree (AST) for the query.
2. Locate the WHERE node and if it exists, find all database columns in its

subtree, but not in aggregate functions.
3. Add all but aggregated columns to the set M of metagranule dimensions.
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Table 1. Row counts in the tested database instances

Table Small DB Medium DB Big DB

customer 360 000 600 000 1 200 000

invoice 59 995 970 199 948 701 601 628 100

invoiceline 629 949 439 2 099 416 306 6 316 455 713

product 12 000 24 000 36 000

product day aggr. 29 404 062 59 387 618 88 920 000

4. Find all non-aggregated columns in the subtrees of GROUP, ORDER and HAVING

add them to the set M .
5. Find the aggregating function F in the AST.
6. Add M as the dimensions and F as the aggregate of the new metagranule.

Now we focus on the identification of possible metagranular indices for a query.
The corresponding algorithm performs the following steps:

1. Find the metagranule for the query.
2. Build the abstract syntax tree (AST) of the query.
3. For each of the WHERE, ORDER and HAVING nodes in the AST, find all references

to database columns that are also dimensions of the metagranule.
4. Add them as the columns of a potential metagranular index.

Finally, let us consider a query that can be potentially rewritten to use meta-
granules and metagranular indices. The corresponding algorithm performs the
following steps:

1. Identify the metagranule for this query. If there is none, stop.
2. Build the abstract syntax tree (AST) of the query.
3. Remove from GROUP all columns that are dimensions of the metagranule.
4. If the GROUP node has no children, remove it.
5. Replace columns and aggregates that are members of the metagranule with

columns from the table that stores the aggregated data of the metagranule.
6. Remove tables from the FROM node that are no longer referenced.
7. Add the table that stores the data of the metagranule to the FROM node.

6 Performance

We used a computer with Intel i5 3570 (ivy bridge) and 8GiB RAM. The storage
was Raid 0 over 4xBlack Caviar 1TB controlled by Adaptec 2405. The operating
system was Ubuntu 13.10. We used PostgreSQL 9.1. We tested against three
database instances: small (base data of size 34 GiB), medium (130 GiB) and
big (345 GiB). Each of them was tested in three variants. The variant plain
contained just the base data. The variant aggr stored aggregated data on sales
in metagranule tables mg inv (aggregated by invoice) and mg pd (aggregated by
day). The instances in the variant plain have corresponding sizes 41 GiB, 134
GiB and 391 GiB. In the index variant, the medium and big databases have an
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Table 2. The execution times of the queries for five best invoices on a given day

Variant Medium DB Big DB

plain 820 s 6 410 s

aggr, based on mg inv 26 s 84 s

index (date) on mg inv 0.4 s 0.8 s

index (date,sum qty x price) on mg inv 0.3 s 0.3 s

index on date and sum price x qty. These indices increased the size of these
databases to 145GiB and 418 GiB. Below we report and discuss the execution
times of three analytic queries. For the sake of readability we present them in
SQL, since there can be interested readers who are not familiar with HQL.

Listing 1.4. A query for five the best invoices on a given day

SELECT name , SUM( qty ∗ p r i c e ) AS sum qty x pr i c e
FROM i n v l i n e JOIN inv USING ( i nv i d )

JOIN cust USING ( c i d )
WHERE date = ’ 2013 .11 . 10 ’
GROUPBY name , i nv i d
ORDERBY sum qty x pr i c e DESC LIMIT 5 ;

Listing 1.5. The optimized query for five the best invoices on a given day

SELECT date , name , sum qty x pr i c e
FROM mg inv JOIN cust USING ( c i d )
WHERE date = ’ 2013 .11 . 10 ’
ORDERBY sum qty x pr i c e DESC LIMIT 5 ;

Listing 1.6. A query for total sales for a given month sliced into days

SELECT date , SUM( qty ∗ p r i c e )
FROM i n v l i n e JOIN inv USING( i nv i d )
WHEREEXTRACT(year FROM date ) = 2013 AND

EXTRACT(month FROM date ) = 8
GROUPBY date ;

The first query finds five biggest invoices on a given day. Listing 1.4 shows
its initial (user submitted) form. According to the methods discussed in this
paper, this query gets rewritten to the form shown on Listing 1.5. The in-
dex suggesting algorithm presented in section 5 picked the indices (date) and
(date,sum qty x price) on the metagranule table mg inv. Tab. 2 shows exe-
cution time of this query for various database instances and their variants. We
can see that using a materialized aggregation significantly accelerates the query.
If the system is severely loaded with such queries, it will be worth building the
metagranular index.

The second query finds total sales for each day of a given month as shown on
Listing 1.6. The result of this query can be computed from stored aggregates by
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Table 3. Execution times of the query for total sales for a given month sliced into days

Variant Small DB Medium DB Big DB

plain 365 s 2 494 s > 2h

aggr, based on mg inv 14 s 49 s 147 s

aggr, based on mg pd 25 s 18 s 27 s

invoices or by products on particular days. Tab. 3 presents the execution times
of this query for various database instances and their variants without indices.

Listing 1.7. A query for eight best vendors of a given month

SELECT vname , SUM( qty ∗ i l . p r i c e ) AS sum qty x pr i c e
FROM vend JOIN prod USING( v id )

JOIN i n v l i n e i l USING ( p id )
JOIN inv USING( i nv i d )

WHEREEXTRACT(year FROM date ) = 2013 AND
EXTRACT(month FROM date ) = 8

GROUPBY v id , vname
ORDERBY sum qty x pr i c e DESC LIMIT 8 ;

Listing 1.8. The rewritten query for eight best vendors of a given month

SELECT vname , SUM( sum qty x pr i c e ) as sum qty x pr i c e
FROM vend JOIN prod p USING( v id )

JOIN mg pd USING( p id )
WHEREEXTRACT(year FROM date ) = 2013 AND

EXTRACT(month FROM date ) = 8
GROUPBY p . v id , vname
ORDERBY suma DESC LIMIT 8 ;

Table 4. The execution times of the query for eight best vendors of a given month

Variant Small DB Medium DB Big DB

plain 365s 1 521s > 1h

aggr, based on mg pd 10s 49s 31s

The third example query lists eight best vendors of a given month, i.e. vendors
whose products had biggest sales. Listing 1.7 shows this query in the original
form. Listing 1.8 presents the rewritten version that uses the materialized ag-
gregation mg pd. Tab. 4 reports executions times of these two version in various
database instances.

It is obvious that one cannot store all desired aggregations. However, our ex-
periments show that even a reasonably small subset of materialized aggregations
can make the performance of big analytic queries acceptable.
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Table 5. The impact of the presented methods in case of the big database

Size Insertion of 100 000 invoices The query from Listing 6

Version GiB Ratio Time Ratio Time Ratio

plain 345 100% 4.63s 100% 6 410s 100%

aggr 391 113% 556.97s 12 029% 84s 1.31%

index 418 121% 858.59s (154%) 18 544% 0.3s (0.36%) 0.0046%

Table 6. Time necessary to insert records on 100 000 invoices

Variant Medium DB Big DB

plain 5, 39 s 4, 63 s

aggr 326, 82 s 556, 97 s

index 598, 31 s 858, 59 s

We have also assessed the overhead imposed by proper metagranules. We have
analysed the time needed to insert records on 100 000 invoices into three analysed
database variants of three different sizes. The results are shown in Tab. 6. For
a database variant with stored aggregations, appropriate triggers synchronize
derived data. This causes also corresponding updates in granular indices, if they
exist.

Tab. 5 shows how the presented methods impact the size of the database and
the execution times of 100 000 insertions of invoices and the query from List-
ing 1.4. This summary contains data on the big database instance that stores
6 billions records in the table invline. In parentheses there are ratios of corre-
sponding values from the last two rows.

7 Conclusions

In this paper we extend our previous research on metagranules, i.e. a partial
order of possible materialized aggregates that accelerate analytic queries. We
show algorithms that find possibilities to build indices on stored aggregations to
further improve the efficiency of querying. Performed experimental evaluation
proves that using metagranules and their indices can significantly improve the
efficiency of an application. However, the overhead imposed by them is note-
worthy. Therefore, one cannot materialize all desired aggregations. A quantitave
model to balance the cost and profits of metagranules is needed to choose the op-
timal set of metagranules and indices. The development, tuning and verification
of such model is a topic for our further research.
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