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Abstract. The article presents and analyses three graph processing is-
sues that can be identified in three methods of GO term similarity eval-
uation. The solutions of these problems are implemented in Neo4j graph
database environment. Each of the issues can be solved directly by a
single Cypher query or can be divided into several queries which results
have to be merged. The comparison of the introduced solutions is pre-
sented in terms of time and memory effectivness. The results show how
to implement the effective solutions of this class of issues.
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1 Introduction

Gene Ontology (GO) [2] is a widely used knowledge base that is continuously
developed and corrected. GO enables annotation of gene products to ontology
terms representing biological process, molecular function or biological compo-
nent. Gene Ontology terms are connected by means of relations of different
types, such as e.g., is a, part of or regulates.

Gene Ontology is an important source of knowledge utilized in several research
projects and analysis [2]. It is modeled as a directed acyclic graph where ontology
terms are graph nodes and the edges are defined by the relations between terms.
One of the important issues that can be approached in Gene Ontology analysis
is evaluation of GO terms similarity. Several methods refering to this problem
were introduced [8] and many of these methods require different Gene Ontology
graph processing.

Recently, several new types of database management systems have been in-
troduced. One of the interesting and well received by the market is a concept of
graph database. A very popular representative of this type of systems is Neo4j
[7]. It offers, among others, graph data model, graph oriented query language
Cypher and Java based API. Recently, a version 2.0 of this system has been re-
leased, what has solved several previously existing issues (e.g., efficient memory
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use). Neodj has been already reported as an interesting environment that can
support Gene Ontology graph analysis [5].

The goal of this article is to present and analyse three graph processing issues
that can be identified in three methods of GO term similarity evaluation. The
solutions of these problems are implemented in Neo4j graph database environ-
ment. Each of the issues can be solved directly by a single Cypher query or can
be divided to several queries which results have to be merged. The comparison of
the introduced solutions is presented in the article and also their time and mem-
ory effectivness are evaluated. The results show how to implement the effective
solutions of this class of issues.

The structure of this work is as follows. Section 2 presents the similarity
measures which require different graph processing approaches. The solutions that
were introduced and implemented, and the results of the effectiveness analysis
are presented in section 3. Conclusions of the work are presented in section 4.

2 Similarity Measures

Three GO term similarity measures are analysed in this study. They have differ-
ent characteristics and they require different approaches to GO graph processing.

The first two approaches are classified as semantic similarity measures and
utilize the concept of Information Content 7(a) of an ontology term a given by
the following formula:

7(a) = —log(P(a)), (1)
where P(a) is a ratio of a number of annotations to a term a, to a number of
analysed genes.

The basic semantic similarity measure was proposed by Resnik [9] and it
takes under consideration only the Information Content of the common ancestor
Tea(@i, @) of the compared terms a; and a;:

s47 (a1, 0) = Tea(ai, ). (2)
Fig. 1 A presents the common ancestors (terms 1, 2, 5 and 6) of terms 4 and 8.

Other popular approaches requireing identification of the common ancestor
term were introduced by Jiang and Conrath [4] and by Lin [6]. Each of these
methods was introduced with a purpose other then Gene Ontology term analysis.

The approach based on semantic similarity and taking into account the speci-
ficity of GO was presented in [3]. GraSM introduced by Couto et al. [3] extends
the above similarity measures by taking into consideration different paths lead-
ing to a common ancestor what can also result in different terms regarded as
common ancestor. GraSM takes into consideration all such common disjunctive
ancestors and instead of the information content of a single common ancestor
used in semantic similarity measures it calculates the average of the information
content of a disjunctive common ancestors [3]. In that way all the ”classical”
semantic similarity measures [9,4,6] can be extended to GraSM versions. Fig. 1
B presents the disjunctive common ancestors (terms 1 and 6) of terms 4 and 8.
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Fig. 1. Illustration of common ancestors (A), disjunctive common ancestors (B), lowest
common ancestor (C) of a given pair of terms

The last approach that is considered here defines the distance between two
terms a; and a; on the basis of a length I(a;, a;) of the shortest path between
them. Calculating shortest paths in Gene Ontology it has to be taken into con-
sideration that the ontology graph is a directed one. Therefore, the length of
a path between two ontology terms that are not connected by a parent-child
relation can be set as infinity or it can be calculated as a sum of path lengths
leading to the lowest common ancestor. The latter approach was chosen in the
work presented. When the shortest paths are calculated then the similarity of
the two GO terms can be defined as exponential dependency on a path length
I(as,ay) [1):

s (i a5) = e M), (3)

where A is a parameter setting the strength of the path length influence on the
similarity value. Fig. 1 C presents the lowest common ancestor (term 5) of terms
8 and 10.

3 Experiments and Results

The main goal of the experiments was to compare average query execution time
and memory usage level for three types of problems: finding common ancestors,
finding the lowest common ancestor and finding disjunctive common ancestors.
Each of the issues listed above can be associated with one of the similarity
measures presented in section 2 - Resnik, shortest path and GraSM similarity
measure respectively.

Twenty terms located deeply in the graph of the gene ontology were selected
for the experiments. These were the terms with the significant number of ances-
tors what enables a proper evaluation of the compared methods.
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Table 1. No. of ancestors of the twenty selected terms

Term Id No. of ances- Term Id No. of ances- Term Id No. of ances-
tors tors tors
GO:0039542 126 GO:0039551 121 G0O:0039560 99
GO:0039559 121 GO:0039544 117 GO:0039550 104
GO:0039558 113 GO:0039575 113 GO:0039545 103
GO:0039546 112 GO:0039583 111 GO:0039549 102
G0O:0039543 109 GO:0039555 109 G0O:0039548 99
GO:0039541 109 GO:0039540 108 GO:0039557 99

GO:0039554 108 GO:0039561 107

Database Neo4j in version 2.0.6, embedded, was used during the test. In ac-
cordance with the recommendations of the creators of the database the following
database and the Java virtual machine settings have been used:

Listing 1.1. Database system settings

—server —XX:4UseConcMarkSweepGC —Xms200m —Xmx512m —XX: MaxPermSize=512m —XX:+
UseGCOverheadLimit

3.1 Finding Common Ancestors

Each semantic similarity of GO terms (e.g., Resnik similarity) requires identi-
fication of a list of common ancestors. The solution of this problem in Neo4j
database environment can be approached in two ways. The first one is a com-
prehensive query of Cypher language referred further as single. The example of
this query is presented below on listing 1.2.

Listing 1.2. Single query identifying a list of common ancestors
START firstTerm=node ({0}), secondTerm=node({1}) MATCH firstTerm —[*x]—>ancestor
<—[*]— secondTerm RETURN distinct ancestor
The second method, presented below on listing 1.3, is based on separate an-
cestors finding for each term, and then calculating the intersection of the sets.
Elements of the result set form a set of common ancestors. This approach is
refered further as divide.

Listing 1.3. Divide query identifying a list of common ancestors

Set<Term> findCommonAncestors (Long firstTermId, Long secondTermld) {
return intersection (ancestors (firstTermId), ancestors(secondTermld));

@Query (”START term=node ({0}) MATCH a—[x]—>ancestor RETURN distinct ancestor”)
Set<Term> ancestors (Long term) ;
Both approaches can be compared according to their execution time and mem-
ory usage.
Tab. 2 shows the execution time expressed in milliseconds for both queries
presented on lisitings 1.2 and 1.3. Tab. 2 and the rest of the tables presenting
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Table 2. Execution time [ms] of single (listing 1.2) and divide (listing 1.3) queries
[a\] D — <t [ele] 0O Ne} ™ 0O [ap]
<t 0 0 <t 0 r~ <t 0] 0 <t
T} 0 T} T} 0 0O 0 0 T} 0

Single 2 2 = = & 2 & & 2 &

.. o S o o S (e} S S (e} S
Divide SR < SR < < < < < < <
o O o o O o O O o O

O O O O O @} O O @} ()

G0O:0039542 8187 8877 8425 7642 8714 7700 8550 8151 7990

G0O:0039559 155 7797 7708 7032 8038 7189 8164 7660 7658

GO:0039551 147 136 7704 7037 8009 7185 8155 7652 7662

GO0O:0039544 177 149 141 6879 7859 7076 7975 7527 7536

G0O:0039558 173 126 127 131 7245 6544 7516 7001 7114

GO:0039575 186 136 142 138 122 7413 8402 7888 7896

GO0:0039546 164 137 137 137 115 127 7477 7066 7041

G0O:0039583 163 138 138 139 117 131 128 8042 8034

GO:0039555 178 148 136 150 129 139 144 137 7475

GO:0039543 174 142 135 150 127 140 133 135 149

results contain the comparison of only 10 out of 20 terms analysed, what is a
consequence of a lack of space. However, this number of measurements presents
clearly the existing dependencies.

In the case of a comprehensive query (single, 1.2) the average execution time
was 7686.5 ms, while in case of the latter approach (divide, 1.3) only 142.2 ms.
The execution time of the divide query is thus on average more than 54 times
shorter than it is in the case of a comprehensive query.

The Fig. 2 shows the level of memory usage during the performed experiments.
It is worth noting that in the case of the first query (1.2) the value of the
maximum memory usage is 150 MB, while in the case of the second one (1.3) it
equals 125 MB, what is almost 17% less.
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’W“WMMWI MWW“

W
0

N] \w

‘h

Fig. 2. Level of memory usage [MB] for method of finding common ancestors

3.2 Finding the Lowest Common Ancestor

The second issue analysed in this work is the problem of a search for the lowest
common ancestor in GO graph. This problem can be encountered in the algo-
rithms based on paths and it is based on searching for such ancestor, for which
the length of the path between it and the two terms is the shortest. Again, two
approaches are presented below. The first of them is based on a single query
presented on listing 1.4.
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Listing 1.4. Single query identifying the lowest common ancestor
START firstTerm=node ({0}), secondTerm=node ({1}) MATCH path=firstTerm —[+]—>
(;?:::zxxtonlAncestor<7[*]7seccudTer1u RETURN commonAncestor order by length (path)

In this query, the mechanism adjusting the pattern in graph with the simulta-
neous memorizing of its structure was used. Next, common ancestors are sorted
by the length of the path, and the resulting set is narrowed down to only one
term with the shortest path.

The second method (listing 1.5) relies on finding separate list of ancestors of
two terms, the calculation of the intersection of the sets, and then calculating
path lengths between terms and common ancestor.

Listing 1.5. Divide query identifying the lowest common ancestor

Term findTheLowestAncestor (Long firstTermlId, Long secondTermlId) {

Set<Term> commonAncestors = intersection (ancestors (firstTermId), ancestors(
secondTermld ) ) ;
Integer theBestPathLength = Integer .MAX VALUE;
Term theLowestAncestor = null;
for (Term commonAncestor : commonAncestors) {
int totalPathLength = shortestPath (firstTermId, commonAncestor.getId ()) +

shortestPath (secondTermlId , commonAncestor.getId ())

if ( theBestPathLength < totalPathLength) {
theBestPathLength = totalPathLength; theNearestAncestor = commonAncestor ;

}

return theLowestAncestor;
}
}

@Query ("START firstTerm=node({0}), secondTerm=node({1}) MATCH p = shortestPath (

firstTerm —[*]—>secondTerm) RETURN p”)
Path shortestPath (Long firstTerm , Long secondTerm) ;

The results of the execution time comparison of the queries 1.4 and 1.5 are
presented in tab. 3.

Table 3. Execution time [ms] of single (listing 1.4) and divide (listing 1.5) queries

N o — < 0 10 © o 10 0

o o 0 < rey = 5 S 10 <

0 0 0 0 0 0 0 0 0 0

Single R A 2 2 R 2 R 2 A 2

Divide g g8 8 8 8 g8 &8 g8 8 3

o ©) o o ©) o ©) ©) o ©)

&} O O O O &} O O &} O
GO:0039542 9734 10228 10002 9020 10391 9235 10268 9739 9716
GO:0039559 192 9164 9206 8301 9529 8526 9662 9151 9129
GO:0039551 178 201 9203 8296 9535 8533 9655 9151 9141
GO:0039544 196 184 167 8278 9497 8518 9592 9125 9129
GO:0039558 234 176 162 157 8636 7745 8742 8287 8278
GO:0039575 250 179 166 168 145 8872 10022 9481 9491
GO:0039546 235 173 155 159 137 151 8947 8504 8525
GO:0039583 226 178 169 159 137 159 142 9636 9632
GO:0039555 240 178 169 168 149 163 158 160 9056

GO:0039543 236 177 163 171 144 165 155 159 166
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The results obtained show unambiguously that the average time of divide
method is more than 52 times shorter. The average execution time of a single
approach (1.4) was 9178.2 ms, whereas in case of divide approach (1.5) it was
only 174.6 ms.
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Fig. 3. Level of memory usage [MB] for method of finding the lowest common ancestor
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(a) Single query (1.4) (b) Divide query (1.5)

Fig. 3 shows that the maximum value of the memory usage for the single
approach is equal 150 MB. Whereas for divide approach only 130 MB, what is
about 13% less comparing to the single approach to this issue.

3.3 Finding Disjunctive Common Ancestors

The last issue considered in this paper is the problem of searching for disjunctive
common ancestors. This issue is encountered in the GraSM algorithm. Analo-
gously to the two previous problems, also in this case, the two distinct ways to
achieve the goal were verified. The first of them, single is shown below:

Listing 1.6. Single query identifying the disjunctive common ancestors
START first Term=node ({0}), secondTerm=node({1}) MATCH firstTerm —[firstTermPaths
#*]—>ancestor <—[secondTermPaths ] —secondTerm WITH firstTermPaths ,

secondTermPaths , ancestor WHERE NOT ANY(path IN firstTermPath WHERE path IN
secondTermPath) RETURN distinct ancestor

This query finds common ancestors, memorizes a path connecting the first
term with the ancestor and the second term with the ancestor. In the next step,
the ancestors for which there is identical path between the first term and the
common ancestor, and the second term and the common ancestor, are filtered
out.

The divide method (listing 1.7) relies on finding common ancestors, next find-
ing all paths between the term and the ancestor, and finally determining whether
any path is included both for the first and for the second term.

The results of the execution time comparison of the queries 1.6 and 1.7 are
presented in tab. 4.

The average time of finding the common disjunctive ancestors is equal to
24726.1 ms in case of a single query (1.6) and 744.9 ms in case of divide query
(1.7). Tt means that an average divide query was executed in over 33 times
shorter time then a single query.
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Listing 1.7. Divide query identifying the disjunctive common ancestors

Set<Term> findDisjunctiveAncestors (Long firstTermId, Long secondTermld) {
Set<Term> disjunctiveCommonAncestors = {};
Set<Term> commonAncestors = intersection(ancestors (firstTermId), ancestors(

secondTermId)) ;
for (Term commonAncestor : commonAncestors) {
Set<Path> pathsBetweenFirstTermAndAncestor = findAllPaths (commonAncestor .
getId (), firstTermId);
Set<Path> pathsBetweenSecondTermAndAncestor = findAllPaths (commonAncestor .

getld (), secondTermld) ;
if (!doTheyHaveACommonPath (pathsBetweenFirstTermAndAncestor ,
pathsBetweenSecondTermAndAncestor ) {
disjunctiveCommonAncestors.add (commonAncestor ) ;

return disjunctiveCommonAncestors;

@Query (" START firstTerm=node({0}), secondTerm=node({1}) MATCH p = (firstTerm —[*]—>
secondTerm) RETURN p”)
Set<Path> findAllPaths (Long firstTerm , Long secondTerm) ;

Table 4. Execution time [ms] of single (listing 1.6) and divide (listing 1.7) queries

N (=] — < 9] 0 Nel [ 0 [an]

< 0 0 < 0 o~ < 9] 0 <t

0 0 0 0 0 0 0 0 0 0

Single 3 % & 5 5 5 &8 8 & %

.. = = = = = = = = = =

Divide < < < < < < < < < <

@) O @) @) ©) @) O O @) ©)

U O @) @) O @) O O U O
G0:0039542 27386 27341 18163 25310 30355 23362 30408 25973 18162
G0:0039559 787 23883 25892 18265 26221 23117 26042 25978 25976
GO:0039551 743 965 25865 21748 26241 23117 25936 25742 25751
GO:0039544 920 684 674 24109 28892 21797 28634 24381 16449
GO:0039558 793 848 828 628 23810 21024 23669 23357 23382
GO:0039575 896 737 718 680 661 25345 27492 28204 28209
GO:0039546 906 649 640 867 576 622 25306 21120 21069
GO:0039583 794 853 852 676 686 746 618 27982 27945
GO:0039555 949 690 669 854 603 650 775 642 24264

GO:0039543 963 678 661 84 604 657 770 644 813

200,
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(a) Single query (1.6) (b) Divide query (1.6)

Fig. 4. Level of memory usage [MB] for method of finding disjunctive common ances-
tors

The results presented on Fig. 4 show that the level of memory usage for divide
query slightly exceeds 125 MB, whereas for single query it slightly exceeds 150
MB, what is about 13% difference.
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3.4 Average Execution Time and Its Standard Deviation

All of the previously presented experiments were repeated for 5% of randomly
selected terms for the three Gene Ontology subgraphs: Biological Process (1267
terms), Mollecular Function (481 terms) oraz Cellular Component (164 terms).
For each pair of terms belonging to the same subgraph of GO the average exe-
cution time and standard deviation were measured.

Table 5. Average time [ms] (Avg) and standard deviation [ms] (St. dev.) of execution
time for 5% populations of three GO subgraphs : Biological Process (BP), Cellular
Component (CC), Molecular Function (MF)

Common Lowest Disjunctive
ancestors Common common
Ancestor ancestors
divide single divide single divide single
BP Avg 9.38 53.66 9.84 58.07 11.99 149.95
St. dev. 21.13 388.72 21.37 433.77 26.52 1317.15
cC Avg 6.58 40.86 7.04 48.29 11.05 123.41
St. dev. 10.01 142.66 10.26 174.60 17.54 512.70
MF Avg 11.52 42.42 12.07 48.45 14.83 130.42
St. dev. 52.26 741.01 52.59 934.97 68.57 2435.99

The obtained results are consistent with the results from the previous exper-
iments. The results presented in Tab. 5 clearly indicate, that the divide method
has a much smaller execution time and standard deviation. It is worth noting
that the standard deviation for the single method is many times larger, so this
approach can be considered as less stable and more sensitive to the location of
the terms in the GO graph.

4 Conclusions

The article presented two different approaches, applied in graph database Neo4;j,
to solve the issues related to Gene Ontology term similarity analysis. The issues
that were taken into consideration cover finding common ancestors, the nearest
common ancestor and disjunctive common ancestors.

The first approach was based on a single query of Cypher language, which
is integral part of Neo4j database. The second approach divided the query into
subqueries and additional merging processing.

The experiments performed proved that divide queries perform significantly
better. The execution time analysis showed that they can be from 33 to 54
times faster then single queries. It was also shown that divide queries are more
stable (in terms of execution time) and less dependent on the terms’ depth in
GO graph. Additionally, the memory usage was verified in the experiments.
Increase of the memory usage is often observed during the time optimization
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in a classic optimization approach. However, this trend was not observed in the
experiments performed. Moreover, the figures presented show that the maximal
memory usage is always reduced when divide queries are executed.

This work presents how to implement efectively the three different classes of
problems that can be encountered during Gene Ontology analysis. The conclu-
sions can be generalized, as we can point a certain type of query that is a common
feature of the analysed issues. This query that has the following form in Cypher
language ”->common node<-" is faster realised by Neo4j when it is divided into
separate queries. This conclusion does not disqualify graph database systems
and Neo4j being their representative in this work as an interesting and prof-
itable environment that can be applied to GO-based analysis, as it was pointed
in other works [5].
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