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Preface

This book contains the best papers presented at the Gulf International Conference
on Applied Mathematics 2013 (GICAM’13). The conference is the first, in a series
we hope, of conferences on Applied Mathematics held at the Gulf University for
Science and Technology in Kuwait in cooperation with the Society for Industrial and
Applied Mathematics (SIAM). Our intention at this conference, as any gathering of
academics, was to bring together people in the region with world-renowned experts
to help set in motion a significant drive to focus on certain research areas. In line
with this, three major themes were chosen,mathematical biology, computational
science and applications of mathematics in industry/business. The latter two themes
form the bulk of research pursued in applied mathematics in the Gulf region;
however, mathematical biology is a relatively new area of research.

One of the world’s leading centres on the subject is housed in the Mathe-
matical Institute at Oxford University in the form of the Wolfson Centre for
Mathematical Biology (WCMB) (http://www.maths.ox.ac.uk/groups/mathematical-
biology). Thus, our keynote address for this theme was given by professor Philip
Maini, the director of the WCMB. The keynote address for the second theme on
computational science was given by professor Grigorii Shishkin, well known in the
field for his non-uniform mesh that has helped in solving many singularly perturbed
differential equations and problems with thin boundary layers. The third theme was
on applications of mathematics in general used for solving industrial problems; the
keynote address for this theme was given by professor Ali Nayfeh, well known for
his book on perturbation methods and his significant contributions to engineering.

We received over 100 abstracts and accepted 77 for presentation; these conference
proceedings represent 25 of the best papers presented at the conference.

Of course any conference of this magnitude comprising of participants from
over 25 countries cannot be successful without financial support. In this regard
we would like to thank and acknowledge the support of the Kuwait Foundation
for the Advancement of Science (KFAS); the Gulf University for Science and
Technology (GUST); Business Development and Corporate Relations, GUST;
Growmore; Springer; McGrawhill Education; Naseej, Arabian Advanced Systems;
Institute of Numerical Computation and Analysis (INCA), Ireland.


http://www.maths.ox.ac.uk/groups/mathematical-biology
http://www.maths.ox.ac.uk/groups/mathematical-biology

vi Preface

Finally, we acknowledge the support of the Department of Mathematics and
Natural Sciences in organising the conference. All of the faculty were most
supportive, particularly Dr. Helmi Temimi and Dr. Wasim Daher for their effort
in making sure the conference was successful. In addition, we are most grateful to
all our participants and our invited speakers without whom this conference would
not have been possible.

Mishref Campus, Kuwait Ali R. Ansari
March 2014
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Modelling Collective Cell Motion in Biology

P.K. Maini and R.E. Baker

Abstract This paper reviews three mathematical modelling approaches that have
recently been used to understand three different modes of collective cell motion
in biology. Firstly, a cell-based model is presented for the study of cell motion in
epithelial sheets, then a hybrid discrete cell-based model is described for neural crest
cell invasion and, finally, a traditional partial differential equation model is described
for tumour cell invasion. It is shown that the behaviour of all of these models can, in
limiting cases, be recapitulated by nonlinear diffusion equations where the particular
nonlinearity of the diffusion coefficient captures, on the global scale, the inherent
interactions on the local scale.

Keywords Cell-based model ¢ Vertex-based model ¢ Travelling waves ¢ Volume
exclusion

1 Introduction

The collective movement of individuals is a common feature in nature, ranging from
the migration of herds of wildebeest to the dramatic aerial displays of bird flocks.
The body also plays host to collective motion, but of cells. For example, in early
development, cells move within sheets by exchanging neighbours or crawl long
distances by repeated expansion and retraction of the front and back of the cell,
respectively. In cases such as wound healing, cell motion is essential for correct

This is a brief summary of a presentation given by the first author at the Gulf International
Conference on Applied Mathematics, Kuwait 2013.
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2 P.K. Maini and R.E. Baker

restoration of the tissue, while in cancer it can lead to fatal metastases. In this paper
we briefly review three recent studies on collective cell motion. In Sect. 2, we present
a model for the movement of cells within an epithelial sheet of the mouse embryo;
in Sect. 3 we consider the movement of cranial neural crest cells and in Sect. 4 we
consider a model for acid-mediated cell invasion in cancer. We show that, at some
level, the migration of cells during all of these seemingly very different processes
can be modelled by a nonlinear diffusion equation.

2 Epithelial Cell Migration

Epithelial tissues line the surfaces and cavities of structures throughout the embryo.
During embryonic development, epithelial tissues undergo a complex series of
deformations (see, for example, [1]) as the body shape is sculpted. The cells within
the tissue can be visualised as polygons that share edges and vertices [2] and
typically three or four cells will meet at any one vertex (see the reviews [3, 4]).
However, there are cases where five or more cells meet at a vertex and the resulting
structure has been given the name rosette [5]. In the mouse embryo, rosettes form
in the visceral endoderm (VE, the epithelium that forms the outer layer of the egg-
cylinder stage mouse embryo) due to the movement of a specialised subset of these
cells known as the anterior visceral endoderm (AVE). For normal development, it
is vital that these cells move as a coherent group. A recent study [6], on which this
section is based, analysed the question of whether the formation of rosettes played
an important role in this process.

2.1 Model

There are a number of ways to model cell movement in epithelial sheets. In [6],
the so-called vertex-based model is chosen, in which each vertex in the system
moves due to the forces acting upon it and the system is considered as overdamped
(see also [4, 7]). The forces within this model framework are, to a large extent
phenomenological, capturing the numerous forces acting on cells in a simple way.
In particular, a tension force is considered to act along the edges of the cell, while a
pressure force is considered to act outwards.

The egg-shaped embryo is considered to be a growing three-dimensional ellipsoid
and each cell has a volume that changes over time, with a certain probability of
division, depending on its size. The assumption is made that when a number of cell
vertices come within a certain distance of each other, there is a certain probability
that the cells will coalesce to form a rosette. The full details of the model are
presented in [6].
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Simulation with rosettes

Simulation without rosettes

Fig. 1 Images taken at regular intervals of AVE cell migration (light grey) with (A) and without
(B) rosettes. It can be seen that rosettes appear to facilitate the orderly and collective migration
of the AVE while inhibition of rosette formation leads to a break-up of the AVE cell cluster (see
[6] for full details). Note that the upper part of the EXE-VE is observed in experiments to be
enshrouded in actin, and this is implemented in the model by making these cells very stiff. Compare
these simulations with the experimental images in (C), (C’) and (C”). EXE-VE denotes visceral
endoderm overlying the extra-embryonic ecotoderm: Epi-VE the visceral endoderm overlying the
epiblast

Migration of the AVE cells is implemented in the model by assuming that there
is a directed force on the leading vertex of the AVE cells enabling them to move
upwards from the base of the embryo. The source of this force is unspecified as
the issue at hand is to understand how rosettes affect the ability of the cells to
undergo coherent migration, rather than how directed motion is achieved. Despite
the phenomenological nature of the model, it was found that simulations agree
qualitatively with data on the polygon distribution, which varies in space and time.
An investigation of the difference in model predictions between embryos in which
rosettes were and were not allowed to form was then carried out. This was encoded
in the model by varying the probability of rosette formation. Remarkably, it was
found that simulations without rosettes predicted the break-up of coherent AVE cell
migration in a way which was very similar to that observed in a mutant mouse which
does not form rosettes (see Figs. 1 and 2).
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2.2 Other Approaches

There are, of course, other approaches to modelling epithelial sheet dynamics.
For example, the spring-based model (see, for example, [8]) assumes cells to
be point masses attached by springs. The cellular Potts model [9], on the other
hand, assumes that cells are composed of elements which move to minimise a
Hamiltonian representing an energy, and then there are the more sophisticated
subcellular element models [10]. A natural question to ask is how do these models
compare, but this is a difficult question to answer because they are not built from a
common underlying framework. However, for the very simple case of a row cells,
connected by linear springs, it can be shown that, in the overdamped case, the
continuum limit of the discrete model is the nonlinear diffusion equation

on d k on
w T ax [n_a_} M

where n(x, t) is the normalised cell density at position x and time ¢, k is the spring
constant and 7 is the cell viscosity [11]. For the cellular Potts model, where cells
interact via a hard-core potential, it can be shown that in the macroscopic limit this,
too, reduces to a nonlinear diffusion equation but with the form

on 9 n+n® on 5

at  Ox [ (ny —n)? ax}’ @
where 1! is the average cell length and C is a constant [12]. This allows, for the
first time, an informed comparison to be made between these modelling frameworks.
In fact, in [13] the spring-based formalism is extended to include nonlinear
springs, so that it is now possible to compare, in a consistent framework, cellular
Potts models, spring-based models, and continuum models with phenomenolog-
ically hypothesised nonlinear diffusion coefficients. An open-source cell-based
computational framework has also been established in which to compare these
models [14, 15]. An open, and very challenging, question is how to derive the
continuum limit for more complicated forms of cell-based models which incorporate
biochemical signals [16].

3 Cranial Neural Crest Cell Migration

Cells migrate long distances during normal development and cancer metastasis, but
little is understood about the mechanisms that control such behaviour. The paper
[17] carries out an interdisciplinary study of one such example, cranial neural crest
cell migration. Experiments are used to determine how the domain on which the
cells migrate grows, and this is then incorporated into a hybrid model. Here a two-
dimensional off-lattice individual-based model is used to describe cell migration,
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Cell invasion at time t = 0 hours
120 T T T T T T 0.9
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Cell invasion at time t = 12 hours
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0
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Cell invasion at time t = 24 hours

Fig. 3 A hybrid discrete cell-based model for neural crest cell invasion. Cells emerge from the
neural tube (right-hand boundary) and consume VEGEF, setting up a gradient (dark shading—low
concentration of VEGF, light shading—high concentration of VEGF). A sub-group of the cells
(leaders—at the front) move up the gradient in VEGF while the trailing group of cells (followers—
at the back) respond to the leaders. The result of this is successful invasion of the domain. See
[17, 18] for full details

and it is coupled with a PDE model for the dynamics of vascular endothelial
growth factor (VEGF) concentration. It is assumed that VEGF is produced by
the underlying tissue, diffuses and is consumed by cells which, in turn, send
out protrusions (filopodia) to sample the local VEGF concentration. The cells
then move in the direction of the filopodium if it samples a concentration higher
than the local average (chemoattraction). Such a model is used to test a number
of hypotheses on possible migration mechanisms. It is shown that the simplest
hypothesis, namely that cells emerge from the neural crest and, via consumption
of VEGEF, set up a VEGF gradient up which they migrate, is not robustly successful,
as later emerging cells are left behind due to VEGF depletion. From this emerges
a new model hypothesis, the cells at the back respond, not to VEGEF, but to cells at
the front, contacting them and moving in the direction in which they are moving.
Experimental analyses of this follower—leader scenario reveal that cells at the front
express a number of different genes to those at the back, with genes responsible
for exploratory motion upregulated at the front, while those encoding for adhesive
motion being upregulated at the back, precisely as predicted by the mathematical
model (Fig.3").

'We thank Louise Dyson for providing this figure.
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3.1 Volume Exclusion

To begin to understand the dynamics of the above type of model, the paper
[19] considered a very simplified off-lattice individual-based model with volume
exclusion. Using a master equation approach and taking a parabolic limit of the
resulting conservation equation the authors showed how, in the macroscopic limit,
a position jump process with volume exclusion could be written as a diffusion
equation with a nonlinear diffusion coefficient. The particular details of the diffusion
coefficient depend on the details of the jump probability density function. For
example, if individuals hopped with rate o a constant distance d to the left or right,
then the macroscale diffusion equation, under certain simplifying assumptions, takes
the form

an d N -1

where n(x, t) is the average total cell density at position x and time ¢, N is the total
cell number, D is aD? /2 (in the limit of d tending to 0), and R is the cell radius
(assumed the same for all cells). Note that in this case, crowding actually enhances
diffusion but of course, as N increases the limiting procedure becomes invalid and
in fact we reach the jamming limit, where crowding inhibits movement.

On the other hand, if it is assumed that the distance moved is normally distributed
with zero mean and variance o2, then the diffusion equation, under the same
simplifying assumptions, takes the form

on  ao? 9 1+N_1 AR —2 2 @

—_ = —_— =204/ = |n|.

at 2 odx N b4
One can see that, although this is a very different model and is based on very
different biology, in the continuum limit, it leads, as for the case in the previous
section, to a nonlinear diffusion equation for macroscopic (global) behaviour, in

which the microscopic (local) details are encapsulated in the precise form of
nonlinear diffusion coefficient.

4 Acid-Mediated Invasion Hypothesis

In 1996, Gatenby and Gawlinski [20] proposed a novel model for tumour cell
invasion. They investigated the seemingly paradoxical phenomenon of tumour cells
undergoing glycolytic metabolism even in the presence of oxygen (known as the
Warburg effect [21]). If one considers the body as an ecosystem, with cancer cells
attempting to invade the host (normal cells), then in the resultant competition, it
is puzzling as to why tumour cells, in the presence of oxygen, do not undergo
aerobic respiration, which is much more energy efficient than anaerobic (glycolytic)
metabolism. They made the hypothesis that tumour cells gained a competitive
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advantage in doing so because a byproduct of glycolysis, lactic acid, is more toxic to
normal cells than to cancer cells. In effect, the cancer cells change the environment
to gain an advantage. They showed that this model could give rise to travelling
waves of invasion which, in certain parameter regimes, predicted that there would
be an acellular gap between the invading tumour front and the regressing normal
cells. They validated this model prediction in the laboratory. The travelling waves
exhibited by this model were mathematically analysed in [22] where it was shown
that the system exhibited both slow and fast waves.

More recently, the paper by McGillen et al. [23] considered an extended version
of the above model which assumed that the tumour cells were not totally resistant
to acid (a more realistic description). The model, in one spatial dimension for
simplicity, takes the form

U U |4
_:ply(l___az_)_slyw, 5)
ot K1 K1
av |4 U ad U\ oV
—:p2V 1———0[1— —52VW+— D2 1—— ) — ’ (6)
ot K> K> ox k1) 0x
aw 2V
A _ Di——
at p3V 53W + 3 3x2 ) (7)

where U(x,t), V(x,t), and W(x,t) are, respectively, normal tissue density, cancer
cell density, and excess acid concentration at position x and time 7. All the
parameters are non-negative and constant.

The first equation assumes that normal cells grow logistically in the absence
of tumour cells, compete with the tumour cells, and die due to the presence of
excess acid. It also assumes that normal cells do not move which, in the adult, is
a biologically realistic assumption. The second equation models growth of tumour
cells in a way similar to that of normal cells, but allows the tumour cells to diffuse
when there is space available. The third equation assumes that excess lactic acid
growth is linearly dependent on tumour cell density and that it degrades linearly and
diffuses.

This model recaptures the key results of the original paper (Fig.4). Exploiting
the existence of a small parameter in this system (the ratio of tumour cell diffusion
coefficient to that of lactic acid) in [23], a very detailed perturbation analysis was
used to show that, in the asymptotic limit, the problem reduces to the famous Fisher—
KPP problem (see, for example, [24]). Using the biological literature to estimate as
many parameters as possible, a detailed analysis was carried out of the remaining
parameter space to determine under what biologically realistic conditions the model
could predict a gap of the size that was observed experimentally. It was found that
the parameters had to be very finely tuned to achieve this behaviour. However, a
larger parameter space was found to permit the existence of a smaller gap. This is
in agreement with the original experiments, where the authors were aware of the
fact that the gap they observed may be an experimental artefact (caused by fixing).
However, when they did not fix the tissue they still observed a gap, but it was smaller,
which is consistent with the model calculations.
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Fig. 4 The acid-mediated tumour cell invasion model predicts the possibilities of an initially small
compact tumour invading the host tissue either leading to coexistence (a) or competitive exclusion
(b). Note that in (b) there is also an acellular gap between the two cell types. Dark lines represent
tumour cell density and light lines normal cell density. See [23] for full details

This study suggests that in mice, bicarbonate treatment can significantly reduce
metastatic tumour invasion and this has been experimentally validated [25]. Whether
or not such a treatment would be effective in humans remains controversial [26].

5 Conclusions

Biological systems are, of course, extremely complex, with myriad processes inter-
acting across a multitude of spatial and temporal scales. The inherent nonlinearities
present in biology mean that the traditional verbal reasoning approaches used
within the field can lead to incorrect conclusions. Therefore, it is necessary to
address these problems mathematically. While bioinformatics has already had a
huge impact on biology through using statistical approaches for data mining, the
recent technological advances that have led to acquisition of spatiotemporal data
now mean that dynamical models can be tested and validated. There are conflicting
philosophies in the latter approach. One camp has the view that large multiscale
models should be built to try to capture as many features as possible of the system
being modelled. The other camp favours small models, developed to answer specific
biological questions. This paper reviews three problems addressed using the latter
approach. It is shown that the formation of multicellular rosettes in the mouse
embryo may facilitate orderly migration of cells, that cranial neural crest cell
invasion requires different cell phenotypes, and that the glycolytic phenotype can
lead to acid-mediated tumour cell invasion.

All the above models are based on very different biological hypotheses and
very different mathematical/computational modelling frameworks. However, we
see that, in some limits, all these models share the same unifying underlying
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mathematical structure, namely reaction—diffusion equations with a nonlinear diffu-
sion coefficient. These equations describe the global, macroscopic (coarse-grained)
dynamical behaviour of the system, where the local, microscopic (cell)-level
behaviour manifests itself in the specific form of the nonlinear diffusion coefficient.
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Modelling Oxygen Capillary Supply to Striated
Muscle Tissues
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Abstract The ability to characterise functional capillary supply (FCS) plays a key
role in developing effective therapeutic interventions for numerous pathological
conditions, such as chronic ischaemia in skeletal or cardiac muscle. Detailed tissue
geometry, such as muscle fibre size, has been incorporated into indices of FCS by
considering the distribution of Voronoi tessellations (‘capillary domains’) generated
from vessel locations in a plane perpendicular to muscle fibre orientation, implicitly
assuming that each Voronoi polygon represents the area of supply of its enclosed
capillary. However, to assess the capacity of FCS in muscle, we are naturally led to
use a modelling framework that can account for the local anatomic and metabolic
heterogeneities of muscle fibres. Such a framework can be used to explore the
validity of the Voronoi polygon representation of FCS regions while also providing
a general platform for robust predictions of FCS.
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1 Introduction

The availability of energy within striated muscle cells (fibres) is essential for sus-
taining healthy function. The cellular preference for high energy aerobic metabolism
necessitates a continuous supply of oxygen (O,) for matching the local cellular
demand. Such a match is ensured by allowing adequate O, delivery from the
microcirculation and through a local capillary bed. In particular, capillaries provide
the terminal sites for O, delivery to and metabolite waste removal from cells, where
O, diffuses passively across capillary walls and into tissue to meet the local cellular
demand (Fig. 1a, b). Hence a healthy capillary supply is essential for healthy tissue
function, thus highlighting the importance of capillary distributions for adequate
tissue oxygenation.

Capillary delivery of oxygen is a major limiting factor in the oxygen trans-
port pathway to muscle tissue, especially in the presence of vascular and tissue
pathologies. For example, ischaemia, a vascular disease involving a restriction in
arterial blood supply to tissues (e.g. coronary artery disease), leads to a vascular
shortage in oxygen (hypoxemia), which, if left untreated, can further lead to
insufficient tissue O, supply (hypoxia), complete deprivation of O, supply (anoxia),
and ultimately necrosis (tissue death). In particular, according to recent estimates
from the World Health Organization, ischaemic heart disease is the leading cause
of global human death [3]. While treatment from chronic ischaemia in skeletal and
cardiac muscles would certainly benefit from a local enhancement of functional
capillary supply (FCS) of oxygen by inducing capillary growth (angiogenesis) to
match the local tissue demand, we still lack a complete understanding of such
interventions. However, even quantifying FCS is fraught with difficulties. While
measures of gross capillary supply may highlight a global tissue ischaemia [4],
their spatial resolution cannot capture the local tissue pathologies associated with
the underlying capillary distribution. At such local resolutions, analyses based on

Red blood cell

Capillary

Tissue

Fig. 1 (a) Traditional view of tissue oxygenation. Estimation of PO, within a circular cylinder
of tissue surrounding a capillary of radius R.; r is the distance from the capillary centre; R,
denotes the cylinder radius where oxygen flux becomes zero [1]. (b) PO, at capillary declines
monotonically both around and within the fibre; the minimum PO, is at the centre of a fibre [2].
(¢) Krogh’s view of circular tissue cylinder stacking, where tissue supply voids are inevitable



Modelling Oxygen Capillary Supply to Striated Muscle Tissues 15

conventional FCS measures can give conflicting results [5], thus potentially leading
to poor interpretations of experimental findings.

There has been a growing interest in improving the classification of FCS to tissue
and using measures that take into account the local anatomical and metabolic details
in experimental studies seeking to assess the extent and location of angiogenesis
in striated muscle tissues [2, 6, 7]. Recognising the importance of such attempts,
we present a brief account that highlights the modelling developments seeking to
quantify the regions of muscle tissue exclusively supplied by individual capillaries
as a basis for analysing FCS.

2 Theory

2.1 Krogh Cylinder

The idea of quantifying capillary supply by assigning a region of tissue to each
capillary was initially conceived by August Krogh in 1919 [1] and subsequently led
to his Nobel Prize in physiology. Essentially a capillary supply region was defined as
the extent of tissue volume diffusively supplied by a capillary. Based on anatomical
observations, each capillary was assumed to concentrically supply a hexagonal
cylinder. This was further conveniently reduced to an circular cylinder (Krogh
Cylinder) with a predefined radius (Fig. 1a), thus leading to a 3D arrangement where
capillaries parallel to skeletal muscle fibre axes are symmetrically distributed with
their Krogh cylinders stacked evenly (Fig. 1c), inevitably giving rise to tissue supply
voids. Along with other simplifications [8], these led to a simple 1D steady-state
diffusion problem for oxygen tension, p, with the solution (Krogh—Erlang equation)

7'2
R2
Rc

M,

p(r) = p(Rc) - 4K

[Rf log — — (r* — Rf)],

where R, and R, are the tissue and capillary radii with R, < r < R;, K is
Krogh’s O, diffusion coefficient in tissue, and M is a constant tissue demand
for O,. Combining experimental measurements and geometrical observations of
the microvasculature with this formula has led to estimates of the minimum tissue
oxygen tension and capillary density [1,9].

2.2 Capillary Domains

Krogh’s attempt to close pack circular tissue cylinders has led to tissue voids
where diffusive supply was geometrically excluded. Gonzalez-Fernandez and Atta
[9] addressed this by reformulating Krogh’s original problem to allow for oxygen
supply to the entire domain via hexagonal, square, and triangular tissue cylinders.
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Fig. 2 (a) Digitised rat EDL muscle section showing capillary locations (black dots), capillary
domains (DOM, polygons), and Krogh cylinders (circles). (b) Fibres partition capillary supply
unambiguously by overlapping DOM. (¢, d) Uniform muscles have only one type of muscle fibre
(e.g. Type I) with spatially homogeneous tissue oxygen demand (MO,). (e) If capillaries (red discs)
have identical transport capacity, the predicted O, flux lines (dotted lines) coalesce at the no-flux
points that match DOM boundaries (solid lines). (f) Mixed muscles have at least three distinct fibre
types (I, Ila, and IIb) with distinct MO,. (g) O, diffusion depends on the local extraction pressures
established by differences in MO,. (h) Given any capillary may be surrounded by distinct fibres, the
heterogeneity in fibre composition and MO, reduces the fit between no-flux and DOM boundaries
for mixed muscles. The model geometry is obtained by considering a muscle tissue cross section
(Fig. ¢, f). The tissue region excluding capillaries is denoted by Q with an external boundary 9<2.
Capillaries, 2;, are treated as circular inclusions within the tissue with a boundary d€2; and a
uniform radius. Data from [2, 11, 12], with permission

This essentially marked the first formal attempt for modelling capillary supply
regions as capillary domains (DOM). While the use of such domains had clearly
solved the tissue void problem, it still maintained the assumption that capillary
arrangements within tissue are highly symmetrical. In contrast, capillaries in skeletal
muscles are often asymmetrically distributed, thus breaking the symmetry of
Krogh’s cylinders.

Hoofd and colleagues [10] tackled this question by generalising the symmetry
in Krogh’s geometrical formalism by allowing each capillary to have a distinct
edge of symmetry with each of its neighbours (the bisector of the line connecting
neighbouring capillaries). Such a construction identified DOM with the Voronoi
tessellation [4, 10] of capillary locations in the plane perpendicular to muscle fibre
orientation (see polygons in Fig. 2a). Consequently, the tissue cylinders formed by
DOM may have distinct geometries (loss of symmetry), indicating that the Krogh—
Erlang equation will assume different solutions for geometrically distinct tissue
cylinders. In addition, an ‘equivalent’ Krogh cylinder, whose cross-sectional area
is identically set to the average capillary domain, was alternatively used for all
capillaries (compare cylinders to polygons in Fig. 2a). However, the large voids and
overlaps associated with these cylinders highlight the inadequacy of using Krogh
cylinders to represent regions of capillary supply.
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As noted previously, within the framework of DOM, capillaries supply the tissue
regions nearest to them, thereby generating a complete tessellation of the tissue
plane. This, in turn, allows the detailed anatomical geometry to be incorporated
into measures of FCS by considering the overlap of DOM with muscle fibres [2],
implicitly assuming that a capillary domain represents the diffusive area of supply
of its enclosed capillary (Fig.2b). However, such geometrical constructs are still
simplifications to the diffusive supply regions, which may well be affected by spatial
heterogeneities of capillaries and oxygen uptake (Fig. 2f-h).

2.3 Flux Trapping Regions

Hoofd and colleagues [12] assessed the accuracy of DOM by taking capillaries
to be O, point sources, which in turn led to an analytical expression for O, flux.
For a capillary distribution embedded in a striated muscle with spatially uniform
oxygen uptake (Fig.2c, d), e.g. cardiac muscle, they found that DOM accurately
capture the predicted flux lines (Fig. 2e; [2, 12]). However, it was not clear whether
this representation will generalise to all striated muscle tissues, especially in the
presence of a feedback between capillaries and tissue. For example, asymmetries
in the spatial distribution of capillaries and blood oxygen content as well as
heterogeneities in intracellular metabolic and diffusive characteristics are expected
to affect the flux of oxygen at the prescribed boundaries of DOM (Fig.2f-h). In
addition, a recent mathematical exploration of this problem has led to the conclusion
that DOM are inaccurate for capillary supply representation [13], though based on
predictions that were heavily influenced by boundary conditions [14]. Hence, this
leaves the question of whether DOM are appropriate in physiological settings.

3 Mathematical Model

Here we present a brief description of our recent mathematical modelling framework
which was aimed at assessing the capillary domain approximation and generalising
it to capture tissue heterogeneities.

Under maximal aerobic capacity, O, transport is effectively 2D and governed
by Michaelis—Menten O, consumption within muscle fibres, free O, diffusion, and
O,-facilitated diffusion by myoglobin (a protein carrier). Averaged intravascular
dynamics is fed into the model through a Robin boundary condition at the
capillary wall.

Striated muscle tissues are composed of two distinct regions: (1) interstitial
spaces and (2) muscle fibres. In addition, muscle fibres can have different intra-
cellular composition which leads to further local specialisations giving rise to
distinct fibre types (I, Ila, and IIb). Letting 2 denote the tissue domain exclusive
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of capillaries (£2;), with external boundary 92, we seek to explore the 2D profile of
oxygen tension (PO,) in Q (Fig. 2c, f)

v[D(x)V(a(x)p) - M () DM (x) (ds“”Vp)] — M(r.p). xeQ.

free diffusive flux Tissue consumption
myoglobin-facilitated flux

(1)
ni- [(X(X)D()C)Vp] =k (pz,'ap - P) , X € ain (2)
Miigsue * [a(x)D(x)VP] = O’ (3)
aQ
M,
Sup(p) = —r__ M(x, p) = Ma 4)
D+ Pso.mb D+ pe

where D and « are the molecular diffusivity and solubility of free oxygen, CM?
and DM? are the bulk myoglobin (Mb) concentration and diffusivity, Sy is the
equilibrium O, saturation of Mb, psg 5 is the tissue oxygen partial pressure at half
Mb saturation, M is the rate of O, consumption in muscle tissue, My is the maximal
consumption rate (VOyp,.x) of a muscle fibre, and p, is the tissue PO, value which
reflects the partial pressure scale where fibre mitochondria are no longer able to
extract oxygen at maximal rate. Parameter values are detailed in [11, 14].

4 Computational Solution

4.1 PO;, Oxygen Flux, and Trapping Regions

A direct numerical exploration of the oxygen transport problem within tissue cross
sections can be pursued via image capture, overlaying a mesh which is faithful to the
geometry captured from biopsies and refined within regions of complex geometry
(see Fig. 3a—c). This allows a numerical solution of our oxygen transport equations,
which capture the biophysics of oxygen delivery while accounting for histological
detail. However, the complexity at the microvascular level limits the length scales
which may be readily explored in this manner, especially for 3D simulations or for
simulations within a large parameter space.

To determine the supply regions of our model (trapping regions, TR; Fig. 3d),
oxygen flux can be first computed by solving the gradient dynamical system, % =
V p where x(s) is a parameterisation of the trapping region boundary, via Heun’s
method. The Hartman—Grobman theorem can then be employed to estimate TR as

detailed in [14].
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Fig. 3 Computational framework. (a) Post-segmentation digitised image of tissue cross section.
(b) Finite element mesh generation. (¢) Numerical solution to (1)—(4) with fibre-specific parameters
using Matlab’s PDE Toolbox [15]. (d) PO, flux lines (red) generated for each capillary (disc) by
numerically solving % = —Vp with trapping regions delimited (black), where s parameterises
the flux lines

4.2 Capillary Domains vs Trapping Regions

Using the above framework we can qualitatively and quantitatively assess the area
of capillary supply in the presence of heterogeneities (Fig. 4). For example, DOM
are a generally accurate approximation of TR (Figs.4a—c), with lower accuracy
correlating with increased spatial heterogeneities of capillary locations (Fig. 41).
Nonetheless, DOM breakdown in the presence of significant capillary rarefaction
(Fig. 4d). In addition, increasing the metabolic heterogeneity further accentuates
DOM’s inaccuracy (Figs.4e-h, j). In particular, the heterogeneity in capillary
arrangements is observed to have a much more pronounced effect on the accuracy
of DOM than that of metabolic heterogeneities.

5 Discussion

Voronoi tessellations (capillary domains) may be a useful method for assessing oxy-
gen capillary supply in homogeneous tissue, but their use may be problematic in the
presence of extensive capillary rarefaction (functional and structural). Calculation
of diffusive oxygen fluxes provides a computationally more intensive alternative. In
cases of heterogeneous perfusion, such trapping regions provide a more general
representation of capillary supply regions. In addition, this approach will allow
incorporation of additional influences of heterogeneity that are absent in the con-
sideration of capillary domains, such as differences in local metabolism or muscle
fibre size. Therefore, trapping regions may be used to better inform experimental
studies assessing microvascular and tissue dysregulations and pathologies.
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Fig. 4 Investigation of the effect of structural and metabolic heterogeneities on the correlation
between capillary domains (DOM; red) and trapping regions (TR; black). Capillary arrangement
is symmetric (a,e), asymmetric (b,f), extensor digitorum longus muscle (c,g), or rarefied (d,h).
Oxygen demand is homogeneous in (a—d), and heterogeneous in (e-h). Plots of the difference
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Modeling Human Response to Bed—Net
Promotion Campaigns and Its Impact
on Malaria Transmission

Bruno Buonomo

Abstract We consider a malaria model including human response to health-
promotion campaign for bed-net usage. We propose a formulation of the human—
mosquito contact rate which is based on the idea of information-dependent epidemic
models. We show that the model allows to easily determine optimal control
strategies for implementing health campaigns. Moreover, the controlled system
may predict a dramatic reduction of malaria incidence even when the uncontrolled
system predicts stable endemicity.

Keywords Malaria » Mathematical model  Optimal control * Bed nets

1 Introduction

Malaria is a mosquito-borne infectious disease caused by parasites transmitted to
susceptible humans through the bites of infected female mosquitoes of the genus
Anopheles. Recent reports indicate that in spite of a substantial reduction of reported
malaria cases and deaths in the last years, malaria is still a global emergency, with
3.3 billion people worldwide at risk of acquiring the disease in 2011 [1].

Mathematical modeling of malaria transmission, as part of the necessary mul-
tidisciplinary research approach, plays an important role for the understanding of
malaria dynamics and the best strategies to control the disease [2—5].

Recently, the usage of non-pharmaceutical interventions (NPIs) for malaria
control has received much attention from modelers. Such interventions aim to limit
the disease spread by reducing the contacts between infectious and susceptible
individuals [6]. Among the NPIs, the insecticide-treated bed nets (ITNs) are the
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most prominent malaria preventive measure for large-scale deployment in highly
endemic areas [7]. An intriguing aspect of ITN usage is that its effectiveness is
largely influenced by behavioral factors. Improper handling, nuisance and discom-
fort in using them, or simply personal habits and convictions may be reasons for
not using I'TNs [8]. Therefore, a modeling approach in the framework of Behavioral
Epidemiology, where the key aspect is the impact of human behavior on epidemics
[9], seems to be appropriate when assessing the impact of ITN usage to malaria
transmission.

In a recent paper, Agusto et al. [10] proposed a malaria model where ITN usage is
assumed to increase mosquito mortality and to reduce the human—mosquito contact
rate (i.e. the average number of bites per mosquito per unit time, denoted here by ).
This last effect is represented by the relation

ﬂ(b) = ,Bmax -b (ﬂmax - ﬂmin) > (D

where Bax and B, are the maximum and the minimum contact rate, respectively,
and b is the proportion of ITN usage. The parameter b is a positive constant, the
value of which may range from 0 (no ITN usage) to 1 (the whole population is
protected by ITNs). As a consequence, the contact rate ranges between 8(0) = Bmax
and (1) = Bmin-

In this paper, we propose a different formulation of human—mosquito contact rate
based on the idea of information-dependent epidemic models [11-14]. We show that
the new model allows us to easily determine optimal strategies for implementing
health campaigns. In particular, we show that the controlled system may predict
dramatic reductions of malaria prevalence, even when the uncontrolled system
predicts stable endemicity.

2 The Model

Agusto et al. [10] considered a malaria model where both the host and vector pop-
ulation are divided into two compartments, susceptibles and infectious individuals.
The dynamics is ruled by the following system of nonlinear ordinary differential
equations:

Si = Ap—Au(b)Sh — Sy + 81,
Iy = An(b)Sy — (o + p + 8) 1,
S, = Ay — A, (b)S, — n(b)S,

iv = )Lv(b)Sv - n(b)lw

(@)

where the upper dot denotes the time derivative. The state variables are given
by susceptible humans, Sy, infectious humans, I, susceptible vectors, S,, and
infectious vectors, [,. The parameter b € [0, 1] is the proportion of ITN usage.
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Table 1 Description of parameters in system (2) and baseline values (taken from [10])

Parameter Description Baseline value
Ap Immigration rate in humans 103/(70 x 365)
A, Immigration rate in mosquitoes 10%/21

b Proportion of ITN usage Varies

n Natural mortality rate in humans 1/(70 x 365)
Mnat Natural mortality rate in mosquitoes 1/21

Nbn Maximum ITN-induced death rate in mosquitoes 1/21

o Disease-induced death rate in humans 1073

D1 Prob. of disease transm. from mosquito to human 1

P2 Prob. of disease transm. from human to mosquito 1

Brmax Maximum transmission rate 0.1

Brin Minimum transmission rate 0

] Recovery rate of infectious humans to be susceptible 1/4

All the parameters in (2) are strictly positive constants and their meaning is
described in Table 1. The forces of infection are given by

I, I
An(b) = pBb) - M@)=pﬁﬂmxi, 3)

where f(b) represents the human—mosquito contact rate.

Using bed nets reduces the probability for humans to be bitten. Moreover, the
nets are treated with insecticide. Therefore, in [10], it is assumed that ITN usage
reduces the contact rate 8 according to (1) and increases the mosquito death rate n
according to the relation

7’](1)) = Nnat + nbnb- (4)

Here, our aim is to incorporate human behavior in model (2) by employing the
approach of information-dependent epidemic models [11-14]. The basic idea is
to consider the feedback that the information about an infectious disease has on
its spreading. Here, we model this feedback as the actions taken by individuals as
consequence of a health-promotion campaign aimed at using ITNs.

The first step is to assume that the actions taken for the health-promotion
campaign, such as advertising, counseling, hygienic aid, etc., summarized by the
effort function u(t), build up a goodwill w(t), like the classical concept in marketing
literature [15]. In this setting, w should be interpreted as concern or the willingness
to use ITNs. As for the information variable employed in [11-14], we assume that
w is not instantaneous but depends on the past history of the campaign in a way
prescribed by a function v and distributed in the recent or far past by a delay kernel
K. Therefore we set

wi) = [ @) KL - 0. )
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In (5), the effort function u(¢) is assumed to be bounded 0 < u < up,x. As in
[14] the kernel K, Ep is assumed to be an Erlangian kernel defined by the probability
density function

prp_le_%-x
K/(x) =>———, x,E€R;, peNyg,
£ (X) =) §e€Ry, peNy
where £ > 0, p = 1,2,.... In this case the delay is infinite and centered at p/§,

which is the average delay [16]. The function i describes the role played by the
state variables and health campaign measures in the goodwill dynamics and it may
be generally assumed to be continuous and increasing with respect to I, (actually ¥
might be independent of [;) and increasing respect to u. We also set ¥ (1;,0) = 0
for all 1j,.

As a particular case, if p = 1, we get Kg (t) = £e~¥ that is an exponentially
fading memory. In this case, from (5) by using the linear chain trick [16], we have
w =&y (I;(t), u(t)) — Ew. Note that here it must be

0
WO = [ v @.u0) K0,

By choosing ¥ (I,,u) = u/& (which means that the “history” of the goodwill is
affected only by campaign effort u) we get

w=u(t) — Ew. (6)

Once that the goodwill has been introduced, it remains to specify how it affects
the forces of infection [for the sake of simplicity, we neglect the mosquito killing
effect of NTlIs, i.e. we set np, = 01n (4)]. As proposed in [15], we assume that the
contact rate decays exponentially with w, i.e. we consider the forces of infection (3),
where now

_ ﬁmax - ,Bmin —yw
/3(W)—,3max—m(1—e ) (7
where y is a positive constant. Observe that 8 in (7) ranges from Bpax t0 Bmin as w

ranges from 0 t0 Winax = Umax/&.

3 The Optimal Control Problem

In this section, we will consider the model given by (2)—(4), (6), and (7) and look
for optimal strategies for implementing health campaigns. In other words, we aim to
determine the optimal effort u(¢) over a finite horizon ¢ r. “Optimal” in the sense that
the campaign target is to minimize the total costs associated to both the disease and
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the controls. The costs associated to disease are assumed to be linearly dependent
on the size of human infectious compartment, whereas the intervention costs are
assumed to be quadratic (quadratic expressions of the control are the simplest and
most widely used nonlinear representation of intervention costs. For more details
see, e.g., [17-20]). The objective functional to be minimized is

J() = // (Alh + guz) dr, @)
0

where the control u(¢), i = 1,2, is a Lebesgue measurable functions such that
0 < u(t) < Umax, fort € [0,27]. In (8), the (positive) constants A and B are
weight parameters describing the comparative importance of the two terms in the
functional [20]. This optimal control problem may be addressed by the well-known
Pontryagin’s maximum principle, where the Hamiltonian

5
H=gxut)+ Y L)1),

i=1

must be minimized pointwise [20]. Here g is the integrand of the objective
functional, x denotes the state-variable vector, A;, i = 1,...,5, are the adjoints,
and ¢; denotes the right-hand side of the i th equation of system (2).

A similar optimal control approach, applied to malaria models or general host—
vector models, can be also found in [21-24].

4 Numerical Results

We omit all the details concerning the method used to numerically solve the
optimality system (the procedure is analogous to that in [18-20,25] and many other
papers). In our simulations, the parameter values are given in Table 1 (except that
Npn = 0). We assume that u(t) = O fort < Oandy = 0.01, A = 1, B = 10,
ty = 250 and the initial values S,(0) = 950, I,(0) = 5, S,(0) = 4,000,
I,(0) = 1,000, w(0) = 0.

The optimal control profile u(t) together with the corresponding goodwill w(z)
is shown in Fig. 1. It can be seen that the effort must be applied at its upper bound
and this level must be maintained for almost all the total period, before dropping to
zero. The goodwill of the ITN usage campaign affects the contact rate and, in turn,
the disease transmission as shown in Fig.2, where the state variables are plotted
in both the cases of controlled and uncontrolled dynamics. In the shown simulation,
the control is able to produce a dramatic reduction of malaria prevalence, even when
the uncontrolled system predicts stable endemicity.
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Fig. 2 Dotted line: uncontrolled dynamics. Solid lines: controlled dynamics

5 Conclusions

In this short note we used a mathematical modeling approach to investigate
the effects of human behavior on malaria transmission. Motivated by the well-
documented strong influence of behavioral factors in ITN usage, we propose a
formulation of the human-mosquito contact rate that is based on the idea of
information-dependent epidemic models. In particular, we assume that the goodwill
of a health campaign for ITN usage depends on the past history and is distributed in
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the recent or far past by a delay kernel. As a particular example, we have considered
the case where the goodwill is affected by campaign effort only and the memory is
exponentially fading. We have shown that the new model allows to easily determine
optimal strategies for implementing health campaigns.

We remark that an optimal control problem applied to model (2), together with
(1), (3) and (4), has been recently considered by Silva and Torres [25]. In their
model, the contact rate (1) is reduced by a coefficient 1 — {(¢), where the function
£(t) is analogous to campaign effort u(¢) used in our model and must be chosen
optimally in the same way (the costs (8) must be minimized). They show that the
control is not able to radically change the dynamics of the system, although it may
make faster the decay of infected humans when compared to the case where no
controls are used. Instead, with our modeling approach, the controlled system may
predict dramatic changes of malaria prevalence, as shown in Fig. 2.

Our study is, of course, a theoretical one. Real data, when available, could
validate our findings. As far as future investigations are concerned, it might be
of relevance to investigate the model in case of a general memory kernel, thus
extending the present study.
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Computational Modelling and Optimal Control
of HIV/AIDS Transmission in a Community
with Substance Abuse Problem

1. Takaidza, O.D. Makinde, and K.O. Okosun

Abstract Abuse of substances continues to be ubiquitous in communities leading
to high-risk sexual behaviour mainly due to impaired decision-making capacity.
The abuse may also have numerous effects on neurocognitive function resulting
in HIV infection and ultimately AIDS. In this paper, a compartmental deterministic
model for the transmission dynamics of HIV/AIDS in a community plagued with
substance abuse is proposed. The nonlinear problem is tackled using stability theory
of differential equations and a basic reproduction number for the elimination of HIV
infection is determined. The implementation of optimal control strategies involving
treatment of substance-abusing susceptibles, counselling and prevention to combat
the spread of HIV infection is determined using Pontryagin’s maximum principle.
Numerical simulations are performed and the pertinent results are presented graph-
ically and discussed quantitatively.

Keywords HIV/AIDS model * Substance abuse ¢ Reproduction number e
Optimal control * Numerical simulation

1 Introduction

The use of any drug or combination of drugs to such an extent that drug effects
seriously interfere with health or occupational and social functioning is considered
abuse. Substance abuse is linked with poor adherence to taking ARV doses,
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which can lead to treatment failure. Mixing recreational drugs and ARVs can
be dangerous as drug interactions can cause serious side effects or dangerous
overdoses. In addition, drug use and abuse can facilitate the progress of HIV
infection by further compromising the immune system. Treatment enables people
to counteract addiction’s powerful disruptive effects on the brain and behaviour
and regain control of their lives [1]. HIV and substance abuse treatment and
prevention services must thus be better integrated to take advantage of the multiple
opportunities for intervention.

Plant [2] concluded that chronic heavy drinking or alcohol consumption levels
consistent with alcohol dependence or alcohol-related liver disease do damage to the
immune system. Hence, drinking appears to be a risk factor for potential exposure
to HIV infection and for relapse into ‘high-risk’ sexual activities. McManus and
Weatherburn [3] assessed the relationship between alcohol use and the likelihood of
engagement in ‘unsafe’ sexual behaviour, the impact of alcohol on immune function
and its importance as a co-factor for AIDS-related illness. A model for the spread of
HIV/AIDS amongst a population of injecting drug users is developed and analysed
in [4]. Logistic regression has been used to identify the independent influences
of drug dependence symptoms or heavy drinking and HIV-related variables on
comorbidity [5]. The substance abuse epidemic can be reduced by intervention
programmes targeted at light drug users and by increasing the uptake rate into
treatment for those addicted [6]. A deterministic model for the case where there is no
interaction between misusers and non-misusers in the susceptible and infectious
classes allowing only for transition of drug misusers with AIDS to non-misusers
with AIDS is considered in [7].

The paper is organized as follows. In Sect.2, we present a compartmental
deterministic model consisting of ordinary differential equations describing the
transmission dynamics of the disease given the underlying assumptions and also
provide the basic properties of the model. Section 3 is devoted to the optimal
control of the disease, making use of Pontryagin’s maximum principle. In Sect. 4,
we present and discuss the numerical simulation results. Cost-effective analysis is
the subject of Sect. 5.

2 Mathematical Model

The population, N(¢), is divided as follows: susceptible individuals who do not
abuse substances, S;(¢), the susceptibles who abuse substances, S,(¢), individuals
who do not abuse substances and are infected by HIV, I;(¢), infected individuals
who also abuse substances, /5(¢), and the full-blown AIDS group, A(t). We assume
that the susceptibles are recruited into the community through birth or immigration
at arate Q. A proportion P of the immigrants abuse substances. The non-abusing
susceptibles become abusers at a rate ¢; and the non-abusing infected become
abusers at a rate 6, where 6, > 6, due to HIV infection. We denote by f the contact
rate between the susceptible and the HIV infected while 0 > 1 denotes the rate of
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Fig. 1 Model flow diagram

increase in contact between the susceptible and the HIV infected due to substance
abuse. ¢ is the number of sexual partners an infected person is having.

The control variable for reducing the recruitment to substance abuse is denoted
by u; while the control variable for reducing the spread of HIV infection is denoted
by u,. The non-abusing and abusing infected move to the AIDS class at rates §;
and &, respectively, 6, > §; due to substance abuse. The recovery rate for substance
abuse is denoted by w, while u3 is the control on treatment for substance abuse.
uy is the control on treatment of the infected. Note that 0 < u; < 1,i = 1,2,3,4.
M and o represent the natural and disease-induced mortality rates, respectively. The
dynamics are depicted in Fig. 1.

Following the above discussion, the resulting state system is given by

% = ({1 =P)OoN — ((1 —u)b + p)S) — c( _MZ)ﬂil(Il +ol,)

+ (1 + M3)CUS2

1— I I
% — PQON + (1 —ul)elsl _ C( uz)ﬂo’iz( | +U 2)

— (I +uz)w + ©)S>
dl c(l —up)BS1(I; + ol
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with the initial conditions given by S;(0) = So1, S2(0) = Soz, 11(0) = Iy, [,(0) =
Iy; and A(0) = Ay. The model is epidemiologically meaningful since all solutions
with non-negative initial data will remain non-negative for all time.

Theorem. If So1, Soz, lo1, [oo and Ay are non-negative, then so are Si(t), S»(t),
1,(t), I,(t) and A(t) for all time t > 0. Moreover,

Jim sup N(7) < %. @)

t—>0o0

Furthermore, if N(0) < %, then N(t) < %

Local existence of solutions follows from standard arguments since the right-
hand sides of the model system (1) are locally Lipschitz. Global existence follows
from the a priori bounds.

The disease-free equilibrium & = (S?, 89, 17, I, A°) entails Oy = p and is
given by

& = (N[Qo(1 ~P)+ (1 +wu)o]  N[1—u)b + QoP]

, ,0,0,0). (3
(I—u)b+p+(A+wo (1-u)b +p+ 0+ u)o ) ®

The linear stability of & is governed by the basic reproduction number R, which
is defined as the expected number of secondary infections produced by a single
infectious individual during his/her entire infectious period. To compute the basic
reproduction number we only consider the states that apply to infected individuals
and thus focus on those equations of (1) that describe the production of new
infections and changes in state amongst infected individuals. The matrix describing
this infected subsystem is decomposed as F — V, where

c(l—uz),BSl C(l—uz)ﬂﬁsl

N N 0
F=|c(l-—u)poS, c(1—u)po>S, 0 4)

N N

0 0 0

is the transmission part, describing the production of new infections, and

2 + (1 — u1)91 + (1 — pu4)81 —Uzw 0
V= —(1-— u1)92 Usw + (1 — pu4)52 +u 0 (®)]
—(1 — pug)é; —(1 — pug)éy a+u

is the transition part, describing changes in state (including removal by death). The
control reproduction number, R., in the presence of drug-abusing individuals is then
computed as the dominant eigenvalue, or more precisely the spectral radius, of the
next-generation matrix K = F x V™! about the infection-free steady state [8], that
is, the disease-free equilibrium and is given by
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R = cBo(l —up)[(1 —u1)0r + Qo PI[((1 — ur)0 + (1 —ug)dy + o + (1 + u3)w]
U —u)d A e+ (L= u) (62 + O — ua)ds + w1+ (14 ws)o][(1—u)by + p+ (1 + u3)w]

with the basic reproduction number given by

_ cPalbi + QoPl[(1 + 81 + w)o + o]
- 81+ + 6+ 01][62 + u + 0][01 + 1 + o]

(6)

0

Analysis of the reproduction number shows that the additional pathways of disease
transmission for substance abusers increase the likelihood of disease spread.

3 Optimal Control

To investigate the optimal level of efforts that would be needed to control the
disease, we wish to minimize the number of substance-abusing and infectious
individuals and the cost of applying the controls u;, u,, u3 and u4 over a finite time
interval [0, 7']. We achieve this by defining an objective functional, J, by choosing
a quadratic cost on the controls

T
J = / (mS2+I’lI] +k12+b1u%+b2u§+b3u§+b4uﬁ)dt, (7)
0

where m,n,k,by,by,b; and by are positive weights. We seek optimal controls
such that the objective functional is minimized. The necessary conditions that
v = (uf,ul,ul,uy) and x* = (S}, S5, 1], 1, A*) must satisfy come from
Pontryagin’s maximum principle [9]. We use this principle to convert the problem
of minimization of the objective functional coupled with the state variables into a
problem of minimizing point-wise a Hamiltonian, H, with respect to the controls

uy, Uz, U3 and Uy.

ds, ds, dl dl, dA
o A, 2 Ay = A, R A —
dt+ SzdtJr I'dt+ Izdt+Adt’

(®)
where Ag,,As,, Az, A, and A4 are adjoint or co-state variables. By applying

Pontryagin’s maximum principle and the existence result for the optimal control
[10], we obtain the adjoint system

4
H = m52+n[1+k12+2b,’u?+/\51

i=1

dAs,

o= (L — Qo)As, + (PQo+ (1 —u)b)(As, — As,)

+ 15 10820 = As) + (N = S)Qs, = A1)}
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where
Py, = P(As, — As,) — As,,
¢r = cf(l —w)(Iy + olr), (10)
Ysr = Si(As, — An) +0S2(As, — Ap,).

The adjoint system has final values
As,(T) = As,(T) = A1, (T) = A, (T) = A4(T) = 0. 11

The values of the optimal control variables at each instant are found by noting

that each minimizes the Hamiltonian and thus must satisfy the necessary condition
oH

ou;
controls yields the following expressions for the optimal controls:
01S1(A52 — AS]) + 9211(112 - A11)
2b; ’
cp(Ii + ob)[S1(A, — As) +082(A, — As,)]
2N b, ’

= 0. Coupled with standard control arguments involving the bounds on the

uf = min{l,max{o,

1, max {0,

(12)

0 w[S2(As, —As) + L(Ar, — )Ul]} }

2b;

S11y(Ag—Ap) + 821y — llz)} }

0,
2by

uy = min

= min 1
;zmm;l,maxg
B
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4 Numerical Simulation and Discussion

An iterative scheme is used to solve the optimality system which consists of
state and adjoint equations. We start to solve the state equations with a guess for
the controls over the simulated time using the fourth-order Runge-Kutta scheme.
The state equations (1) are solved using a forward method with given initial
conditions, whereas the adjoint system (9) is solved using a backward scheme with
the prescribed final conditions. Controls are updated by using a convex combination
of the previous controls and the stationary value characterizations (12). This process
is repeated and iterations stopped if the values of the unknowns at the previous
iterations are very close to the ones at the present iterations [11].

We investigate and compare numerical results for the following combinations
with at least three controls to ensure that we address either prevention or treatment
of both substance abuse and HIV infection: (i) strategy A, when the substance abuse
prevention control, u, is set to zero and the other controls optimized; (ii) strategy B,
when the HIV prevention control, u,, is set to zero and the other controls optimized;
(iii) strategy C, when the substance abuse treatment control, us, is set to zero and
the other controls optimized; (iv) strategy D, when the HIV treatment control, uy, is
set to zero and the other controls optimized; and (v) strategy E, when all controls
are optimized.

For the simulations, we choose the model parameter values in Table 1. Q¢, P, w
and « are obtained from [7] while §; and p are as in [12] with the rest assumed.

We assume that the weight factor, b;, associated with control u; is lower than
by, by and by which are associated with controls u,, u3 and uy, respectively. This
assumption is based on the fact that it probably costs more to control the spread
of HIV than substance abuse. The cost associated with treatment will include the
cost of medical examinations, drugs and hospitalization with the treatment of HIV
being lifelong, thus making it the costliest. We use the following objective functional
parameter values (Table 2):

For illustrative purposes we make use of the initial state conditions S;(0) = 20,
$>(0) = 15,1;(0) = 10, I2(0) = 5 and A(0) = 0.

Numerical simulations are consistent for all the scenarios under consideration,
varying only in the margins of growth and reduction. We, consequently, only present
and discuss results for the most cost-effective combination, which is no prevention
to HIV infection. In Fig.2a, the number of the substance-abusing individuals is
lower under control as contrasted to without control. In fact, the abusing susceptible

Table 1 Model parameters

Parameter Q, P B ¢c o 6, 6, 8 & w m o
Value 0029 05 00753 1 102 0.15 0.18 0.1 0.12 0.05 0.02 04

Table 2 Objective functional

. Parameter m n k by b, b; by
parameters

Value 12 20 25 20 60 140 170
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Fig. 3 (a) Abusing infected and (b) AIDS individuals

number reduces under control while there is increase in time without control. In
Fig. 2b, the number of the non-abusers is more under control despite the lack of
growth for the infected, which is reasonable due to the positive impact of prevention
and treatment for substance abuse.

Figure 3a shows that there is slight growth for the first two years followed by
a reduction in the number of the abusing infected in the absence of control but
reduction from the onset under control. Figure 4a indicates that maximum efforts
need to be employed to prevent and treat substance abuse. Shadow prices in Fig. 4b
show that the infected abusers cost communities the worst followed respectively by
the infected non-abusers and the susceptible abusers.
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Fig. 4 (a) Control profiles and (b) adjoints

5 Cost-Effectiveness

Realizing positive impact for a population is an important goal of public health
programmes and policies. Impact is measured using indicators related to a change
in health status such as the estimated number of deaths and infections averted.
Cost-effective analysis is one of several economic evaluation tools used to measure
the costs and consequences of alternative programmes. The measures are then
compared to assess how the greatest health benefits can be generated. To identify
the strategy which realizes the most positive impact, we make use of incremental
cost-effectiveness ratios (ICERs) defined as

Difference in costs between strategies
ICER =

Difference in health effects between strategies

We consider health effects as the cases averted in the S5, I} and I, classes. Strategies
are ranked from the least effective by considering health effects and then compared
pairwise using ICERs.

Strategy A B C D E
Cases averted 255 596 720 748 748
Costs 71,437 64,361 26,336 67,388 67,325

The ICER between A and C is —17.82. So it costs 17.82 less for each additional
case averted from A to C, so A is excluded. Next, we calculate the ICER between
C and B, which is —306.65. Hence, it costs 306.65 less for each additional case
averted as we switch from C to B. So, we exclude C and calculate ICER for B and D.
It costs 1,466.14 more for each additional case averted when switching from B to D.
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D is now excluded and we calculate ICER between B and E. It costs 1,463.89 more
for each additional case averted from B to E. Therefore, strategy B is the most cost
effective.

6 Conclusion

Shadow prices show that the cost and impact of the infected substance abusers is
very high; this may result in negative effects on the population. The results suggest
that prevention and treatment of substance abuse coupled with treatment of the
infected is the most effective strategy. However, budgetary provision still needs
to be made to include the prevention of infection so as to reduce the risk of HIV
transmission. Control programmes that follow these strategies can effectively reduce
the spread of HIV attributable to substance abuse.
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Standard Difference Scheme for a Singularly
Perturbed Convection-Diffusion Equation
in the Presence of Perturbations

G. Shishkin, L. Shishkina, and A. Petrenko

Abstract We consider a Dirichlet problem for a singularly perturbed ordinary
differential convection-diffusion equation with a perturbation parameter ¢ (¢ €
(0, 1]) multiplying the highest-order derivative in the equation. This problem is
approximated by the standard monotone finite difference scheme on a uniform grid.
Such a scheme does not converge e-uniformly. Moreover, under its convergence,
it is not e-uniformly well conditioned and stable to perturbations in the data of
the discrete problem and/or computer perturbations. For a model boundary value
problem in the case of computer perturbations, we discuss results of numerical
experiments and their conformity to theoretical results.

Keywords Singularly perturbed boundary value problem ¢ Convection-diffusion
equation ¢ Standard difference scheme e Uniform grid ¢ Uniform norm
» Conditioning of difference scheme ¢ Perturbed difference scheme ¢ Computer
perturbations

1 Introduction

Classical difference schemes on uniform grids (standard difference schemes) are
widely used for solving applied problems [1]. Quite often such schemes are applied
to solve singularly perturbed equations. However, for the convection-diffusion
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problems, standard schemes do not converge e-uniformly, and in the case of
their convergence they are not e-uniformly well conditioned and not stable to
perturbations in the data; see, e.g., [2-7]. Applicability of standard schemes for
solving singularly perturbed problems requires further study.

In this paper, we consider a Dirichlet problem for a singularly perturbed ordinary
differential convection-diffusion equation which is approximated by the standard
monotone finite difference scheme on a uniform grid. For this problem, we
develop a technique for theoretical and numerical studies of grid solutions in the
presence of perturbations in the data of the discrete problem, as well as computer
perturbations. We present and discuss the results of numerical experiments that
illustrate theoretical results.

The contents of the paper are the following. Formulation of the boundary value
problem for a singularly perturbed convection-diffusion equation and the aim of
the study are presented in Sect.2; here also, a standard scheme on a uniform
grid is constructed. A difference scheme under perturbations in its data and also
conditioning of the scheme are considered in Sect. 3. Standard scheme in the case
of computer perturbations is studied in Sect.4. In Sect.5, numerical studying a
model boundary value problem is performed; numerical results are compared with
theoretical results.

Note that some results on the investigation of the standard scheme on a uniform
grid, in particular, in the presence of perturbations in the data of grid problem from
Sects.2 and 3 are partial results of the papers [3, 5], adapted to the present study.
Technique of numerical studying errors in the presence of perturbations in the data
of the grid problem, as well as computer perturbations, that is described in Sect. 5,
earlier has not been considered.

2 Problem Formulation, Standard Difference
Scheme; Aim of Research

2.1 Problem Formulation

Ontheset D = D UT, D = (0,1), we consider the Dirichlet problem for the
singularly perturbed ordinary differential convection-diffusion equation’

d? d
Lay(x) = {ea(x) 5 +b(x) 7= —c)futx) = f(). x€D. (D

u(x) = (x), xel.

IThe notation Ljky (M(jx), Gnjxy) means that these operators (constants, grids) are introduced
in formula (j.k).
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Here I' = I'} U I',, where I'; and I'; are the left and right parts of the boundaryz;
the functions a(x), b(x), c(x), f(x) are assumed to be sufficiently smooth on D;
moreover>

m<a(x), b(x), c(x) <M, |f(x)| =M, xeD, lpx)| <M, xeTl,

the parameter ¢ takes arbitrary values in (0, 1]. For small values of the parameter ¢,
a boundary layer appears in a neighborhood of the set I';.

2.2 Standard Difference Scheme

We consider a standard difference scheme on the uniform grid D), = EZ with the
step-size h = 1/N, where N + 1 is the number of nodes x = x' in the grid 52,
i=0,1,...,N.

Problem (1) is approximated by the difference scheme [1]

Az(x) ={ea(x) Oz + b(x) 8, — c(x)}z(x) = f(x), x € Dy,
z2(x) = o(x), x € I'y; )

here D, = D N Dy, T, = TI' N Dy, 8;z(x) is the central second-order
difference derivative, and &, z(x) and 8z z(x) are the first-order difference (forward
and backward) derivatives.

Difference scheme (2) is monotone e-uniformly [1]. Using the maximum princi-
ple, for z(x) — u(x), i.e., the error of the solution to difference scheme (2) (or, in
short, the error of the grid solution), we obtain the following estimate (similar to
estimate (3.3) in [3]):

T
lu—zllp, < M8u; by :Sst(ng):(g‘l‘N l) N7L (3a)
For the standard scheme, the value §;, is determined by the product e N: §;;, =
8s:1(eN) = (eN + 1)~!. Note that the estimate (3a) is equivalent to the following
one:
lu—zllp, <M8: §=68@eN)=¢'N" (3b)
We say that the value 8;;, = 8y, 34)(¢, N) as well as § = (e, N) are accuracy

parameters of difference scheme (2) (or, in short, accuracy of the difference scheme),
and M3, and M3y, are the error constants.

2By M (or m), we denote sufficiently large (small) positive constants independent of the parameter
¢ and of the discretization parameters.
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The estimate (3) holds in the case of the following a priori estimate (which
follows from a priori estimate (4.4) of [3]):

|d* Jdx* u(x)| < M (1+&"F+e* exp™¢ %), xeD, k<K, K=3. (4

Thus, the following theorem on convergence of standard difference scheme (2) holds
(similar to Theorem 1 from [3]).

Theorem 1. Let the solution u(x) of the problem (1) satisfy the estimate (4). Then
the solution of the standard finite difference scheme (2) converges to u(x) with the
estimate (3).

Remark 1. Standard scheme (2) does not converge e-uniformly; for its convergence
it is required to use grids with the number of nodes N + 1, growing indefinitely as
e—>0and N = N(e) > ¢ .

2.3 Aim of Research

Our aim for boundary value problem (1) is to consider conditioning of standard
scheme on a uniform grid and convergence of its solution both under perturbation
in the data of the grid problem and under computer perturbations; also it is required
to compare theoretical results and results of numerical experiments.

3 Estimates of Grid Solution Under Data Perturbation;
Conditioning of Difference Scheme (2)

In the case of difference scheme (2), we consider perturbations of solutions caused
by perturbations in the data, as well as conditioning of the difference scheme.

3.1 Matrix Form of the Difference Scheme

Let the components of the function z(x), x € ‘D), be associated with an (N + 1)-
dimensional vector Y. Ordering the elements z(x) in scheme (2), we come to the
system

AY =F. ®)
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Here A is a three-diagonal (N + 1) x (N + 1)-matrix (a;;); Y and F are vectors
from the space R¥*! with the uniform vector norm || - ||. The components of the
matrix A and vectors Y and F are determined by the relations

aij—1 = —eh™2a(x;), ai; =2eh™2a(x;) +h™ " b(xi) + c(x;),
aijt1=—eha(x;)—h7"b(x;)), 2<i<N; Yi=z(x;), 1<i<N+I;
Fi=9(x), FF=-f(), 2<i=<N, Fyyi=0xn+1);

here x5y = x'T!, x' € D). The matrix A is an M -matrix.

3.2 Perturbed Standard Difference Scheme

We consider the following perturbed problem corresponding to (5):
A*Y* = F*. (6)

Here A* is the perturbed matrix (a;;), Y™ and F* are perturbed vectors, A* =
A+38A,Y* =Y +68Y, F* = F + §F. The perturbations of the coefficient a(x;)
entering the components a;;, j = i—1,i,i+1,i = 2,..., N of the matrix A4 are, in
general, different; we denote these perturbations in the components a;; by §a;] . In a
similar way, we denote the perturbations of the coefficient b(x;) in the components
bij, j =1,i + 1 and the perturbations of the coefficient c(x;) in the component c;;

by Sbij and 86} , respectively. Assume that the components equal to zero or one and
also the values ¢ and / are not perturbed. Thus, in the componentwise notation of
the matrix §A4 and the vectors § F and §Y, we have

8aji—1 = —¢ h? (Saf_l, da;; = 2¢h™? 8615 +h! Sbl’: + 8011:, 7
Sajiy1 =—eh28at —n~'8biT, 2<i<N;
§Fi=8p(x1), 0F;=—38f(x;), 2<i <N, O8Fy11=8¢(xn41): 8Yi=0z(x;).

In the presence of perturbations in the data of the grid problem, for the perturbed
matrix problem (6) we have the following perturbed standard difference scheme (or,
in short, perturbed difference scheme):

A*z75(x) = {ea*(x) Oz + b*(x) 6 — c*(x)} 2°(x) = f*(x), x € Dy,

®)
Z(x) = ¢*(x), x €Ty
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i—1

Here x = x', x' € Dy, and in the relations below we have x; = x'~!, x’ € Dy,

and
a*(x;) = a(x;) +8ai™",  b*(x;) = b(x;) + b +ehT! (=8al 7" + 8al T,
c*(x;) = c(x;) + 8¢l —eh 2 (Sai™" —28al + 8aiTh) + b (8b) — 8bIT,
f*x) = fx) +8fi. @™ (i) = o(xi) + Sgi:

7*(x) is the perturbed grid solution, i.e., the solution of the perturbed difference
scheme (8).

Taking into account (7), for the value z*(x) — z(x), i.e., for the perturbation of
the grid solution, we obtain the estimate

Iz —zll5, < M [eN?[8al|" + N 8b) 1> + |8t |* + 19~ ] 9a)

I 18] 1" = max |87, [8ci|” = max [8cl],
i,] i

a: = max |0d;
sal 1" = max 3a

i = max[wmax |8a!|, max |8f;]. max|5<p,~|].
i;i=1,N+1 i i

Taking into account (3), for the value z* (x) —u(x), i.e., for the error of the perturbed
grid solution, we obtain the estimate

lu—z*|l5, < M [(e + N™)7' N +e N2 |8a] "+ N |85 [N +]8ci 1N+ .
(9b)

3.3 Estimates for the Perturbation of the Grid Solution

For the perturbation of the grid solution z*(x) — z(x), taking into account (9a), we
obtain the estimate

Iz* —zllp, < M n(e, 8, (10)
where (e, 8) = n(e, 8; 84, §F) = 7' 872 |8al |" + 71871 8b] | + [8ci N +

PN, N = 1A, 8§ = 83)(s, N); the estimate is unimprovable up to a
i i il9) 3) p p
constant-factor.
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3.4 Estimate for the Conditioning Number of the Difference
Scheme

Definition 1 (See [3]). We write the unimprovable estimate (10) in the variables
e, § in the form of the estimate to the relative error || 7* — z||p, ||z IIE through
relative perturbations in the data of the grid problem written in the matrix form (6)

12" =zllp, / Izll5, < ®p(AsDR) IS FIL/IFI -+ 18 Al / [1AID.

We call the value @ p(A; Dj) the conditioning number of the difference scheme (2)
(see also the discussions of the matrix and problem conditioning in [8] for regular
problems).

Taking into account estimate (10), we obtain the estimate @ p (A; D},) (similar to
(5.13) from [3]):

®p(A;Dy) < Me' 572 (11

the estimate is unimprovable up to a constant-factor. The conditioning number
@®p(A; D)) grows without bound as & — 0; the scheme (2) is not e-uniformly well
conditioned and it is not e-uniformly stable to perturbations in the data of the grid
problem.

4 Standard Difference Scheme Under Computer
Perturbations

We consider the standard finite difference scheme in that case when perturbations
of the solution are generated in the process of solving the discrete problem on a
computer, for example, due to the finite number of computer word digits.

4.1 Computer Solution

We denote by A the maximum of perturbations in the data of the grid problem,
caused by computer calculations. Let zj (x), x € D}, be the corresponding computer
solution (i.e., the perturbed solution obtained on a computer) of the difference
scheme in the matrix form (6) and (7) under the condition

18al |, 18b7 1. 18¢i]. 18f(xi)| <A, 2<i < N: [Sp(x;)| <A, i =1,N+1. (12)
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The function ZZ (x), x € Dy, is the solution of difference scheme (8), in which

the computer data perturbations 8a’, 8b!, Sci, 8f(x;), 8¢(x;) satisfy the condi-
tion (12). We say that ZZ (x) is the solution of the difference scheme (8) and (12), i.e.,
the standard difference scheme under computer perturbations. The condition (12)
can also be seen as a condition imposed on perturbations in the data of the standard
difference scheme under the perturbation of its data discussed in Sect. 3.

4.2 Estimates for the Computer Perturbation
and for the Computer Solution

For the grid function z} (x) — z(x), i.e., the perturbation of the grid solution caused
by the computer solution ZZ (x) (or, in short, the computer perturbation), taking into
account (10), we obtain the following estimate in the variables ¢, §:

lzh —zllp, < Me™'672 A, (13a)

where M = 4M ). This estimate is equivalent to the following estimate in the
variables ¢, N:

lzx —zllp, <MeN> A . (13b)
The estimate is unimprovable with respect to orders of incoming values.

For the grid function z}; (x) — u(x), i.e., the error of the computer solution, the
following estimate holds:

lu—2zxlp, = lu—zlp, +llzp —zlp, = ow—=z23 —2), (14a)
where o (1 — z;z}, — z) is the total error of the computer solution (sum of the error
to the solution of the standard scheme [|u — z||55, and perturbation [z} — z|5,)- In
the variables ¢, §, taking into account estimates (3) and (13), we obtain the estimate

lu=zilp, = M8+ Moe™ 6 A= M[§+e7672 8 ] (14b)

where M| = M), My = M(3,. In the variables ¢, N we have the following
estimate which is similar to one (9b):

lu—zpllp, <Mi(e+N")'N'+ MyeN> A (14¢)

The estimate (14) is unimprovable with respect to orders of incoming values.
Thus, the following theorem is valid (similar to Theorem 5 from [3]).
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Theorem 1. Let the conditions of Theorem I be satisfied. Then for the perturbation
of the discrete solution and the error of the computer solution, the estimates (13)
and (14) hold, respectively.

5 Numerical Investigation of a Model
Boundary Value Problem

In this section, for a model boundary value problem, using results of numerical
experiments, we study perturbations of the solution to the standard finite difference
scheme in the case of computer perturbations; results of numerical experiments are
compared with theoretical results.

5.1 Standard and Perturbed Difference Schemes for a Model
Boundary Value Problem

Formulation of a model boundary value problem. Standard finite difference scheme
and the perturbed difference scheme in the case computer perturbations.
Consider the boundary value problem

d? d
Layu(x) = {ea(x)-— +b(x)——hu(x) = f(x), x € D, u(x) = ¢(x), x€T.
dx dx
(15a)
Here D = [0,1], a(x) = 1, b(x) = 2, f(x) = —2, ¢(x) = 0. The solution of
problem (15a) is written out explicitly:
u(x) = (1 - 6_25_1)_l 1- e_zg_l“) —x, xeD. (15b)
We approximate problem (15) by the standard difference scheme

Az(x) = {835 + 268, }z(x) = =2, x € Dy, z(x) =0, x €I'y; (16)

here D}, is the uniform grid with the step-size h = N\
In the case of perturbations in the data, the following perturbed standard
difference scheme corresponds to difference scheme (16):
A*Z¥(x) = {ea”(x) 6z + ™ (x) 6x} 2¥(x) = f*(x), x € Dy,
(x) = ¢*(x). x €Ty

A7)
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The perturbed data in the scheme (17) are determined by the relations
a*(x) = aqs(x) + 50;4_1» b*(x) = bas)(x) =2, (18)
T (x) = fus(x) = =2, x=x', x' e Dy; e*(x) =0, xely;
in numerical experiments, we set
8a;’=—8a, Sa=10"% j=i—1,i,i+1, i=12....,N. (19

It should be noted that, in accordance with the estimate (10), the most significant
impact into the perturbation of the discrete solution z*(x)—z(x) and into the error of
the perturbed solution z*(x) — u(x) is introduced by perturbations in the coefficient
multiplying the second-order derivative in the differential equation (1).

In the case of the difference scheme in the presence of computer perturbations
[scheme (8) and (12)], considering the computer solution z*(x) = z}(x) and
the computer solution error 8;"/ ar = llu—2z3ll5,, we assume that the computer
perturbations satisfy the condition (12), where

A= Sa. (20)

Thus, for the boundary value problem (15), we have the perturbed difference
scheme (17)—(19) in the case of perturbations in the data of the grid problem,
and we have the perturbed difference scheme (17)—(20) in the case of computer
perturbations.

We are interested in the behavior of the errors in solutions to the standard
difference scheme and of the perturbation to the computer solutions, depending on
the parameter ¢ and the number of grid intervals of N, and we are also interested to
compare experimental results with theoretical.

5.2 Numerical Experiments in the Variables ¢ and N

We discuss the results of numerical experiments for errors in solutions to the
standard finite difference scheme in the absence of perturbations [scheme (16)] and
the computer difference scheme [scheme (17)—(20)].

5.2.1 Errors in the Solution of the Standard Difference Scheme
in the Absence of Perturbations

Consider the behavior of the solution error §, to the standard difference scheme in
the absence of perturbations, i.e., the scheme (16),

8y =8u(e. N) = |lu _Z||5h 3) (21a)
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Table 1 Errors of the grid solution §,, = §,(e, N) for various values ¢ and N

e\N 22 24 26 28 210

1 3.96¢ 2 1.27¢72 3.37¢3 8.54¢* 2.14e™*
272 1.90¢~! 7.59¢ 2 2.17¢72 5.64¢73 1.42¢73
24 - 1.98¢~! 7.65¢72 2.18¢72 5.67e73
276 — - 1.98¢~! 7.65¢2 2.18¢72
278 - - - 1.98¢7! 7.65¢72
210 - - - - 1.98¢~!

depending on the parameter € and the number of grid intervals of N. In Table 1,
errors of the grid solution 6,(¢, N) are given for various values ¢ and N. Note
that in according to the estimate (3), the error §,(g, N) essentially depends on the
product ¢ N.

From the results in Table 1 it follows that under the condition N ~! < & (the mesh
step-size & is less than the value of the perturbation parameter ¢) the error of the
grid solution §, = [lu — z||, tends to zero as N grows for fixed values of . Note

that the error for the linear interpolant 7(x), x € D, in the uniform continuous norm
| - || is a quantity of order to the error of the discrete solution in the uniform grid
norm |- |,

However, provided that N~! > & (the mesh step-size & is greater than the value of
the parameter ¢), the linear interpolant of the grid solution in the uniform continuous
norm || - || leads to the error of order one, even when the error in the uniform grid
norm || - ||, is small (see, e.g., discussions in [9]). For this reason, the errors for
e < N~! are not given in Table 1. Thus, results in Table 1 qualitatively agree with
the assertion of Theorem 1.

5.2.2 Errors in the Solution of the Computer Difference Scheme (17)-(20)
Discuss the behavior of the computer perturbation to the grid solution
81 = (SZ(E, N; A) = ”ZZ _Z||5h(13b) (22a)

in the case of various values of the parameter ¢ and the number of intervals N for a
fixed value of the perturbation A. The computer perturbation §,(e, N; A), according
to estimate (13b), essentially depends on the product & N2.

In Table 2, computer perturbations §, = §,(e, N; A) of the solution of computer
difference scheme (17)—(20) are given for various values ¢ and N. Unlike the
behavior in the error §, of the grid solution in Table 1 which tends to zero as N
grows for fixed ¢, the computer perturbations of the grid solution 6, = §8,(g, N; A)
in Table 2 increase as N grows. Thus, the results in Table 2 qualitatively agree with
the estimate (13b) from Theorem 1.
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Table 2 Computer perturbations §, = §,(s, N; A) for various
values ¢ and N

8\ N 22 24 26 28 21()

1 2.16e™° 5.35¢78 9.18¢77  1.49¢7>  2.39¢7*

272 2.90e~° 7.48¢78 1.29¢7%  2.10e™> 3.37¢74
24 1.31e~° 3.10e8 51677  8.32¢7° 1.33¢7*
26 3.75¢71%  9.00e™° 1.47¢77  2.38¢° 3.82¢7°

28 9.67e~ 11 2.3le™° 3.87¢7%  6.22¢77  9.99¢°
2-10 2.43¢71 580e710 9827 1.58¢77 2.53¢°
From comparison of the behavior of the error §, = |lu — z||5, and the computer

perturbation 8, = §.(¢, N; A), it follows that for fixed values ¢ and large values N
these computer perturbations will exceed the errors of grid solutions to the unper-
turbed difference scheme that is qualitatively consistent with the estimate (14c) from
Theorem 1.

Tables 1 and 2 in the variables ¢ and N are rather complicated. Therefore,
it is interesting to consider similar tables, but in other variables, the so-called
“automodel” simplifies the structure of the tables.

5.3 Numerical Experiments in the Automodel Variables

Discuss the behavior of errors in the solution of the standard difference scheme and
of the computer perturbation of the grid solution with regard to their theoretical
estimates (3) and (13b).

5.3.1 Errors in the Solution of the Standard Difference Scheme
in the Absence of Perturbations in the Variables ¢ and

Consider errors in the solution of the standard difference scheme, using the variables
e and B, where B = ¢ N is the automodel variable.

In Table 3, errors of the grid solution §, = §,(e, B) are given for various values &
and 8, where B = (e, N) = ¢ N. Here also the values {3 max 8.(g, B)} are given

for various values . Note that
gu = Su(& B) = Su(ss B(e, N)) = 8u(21a)(8s N).

From the results in Table 1 it follows that for a fixed 8, the values §,(¢, B)
rather weakly depend on the values of the parameter ¢, and they stabilize quickly
with decreasing of €. The values { max§,(e, B)} are weakly dependent on §, and

&

they stabilize quickly with increasing of 8; the maximum of these values does not
exceed 0.369.
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Table 3 Errors of the grid solution §, = 8, (e, B) for various values ¢ and f and also the values
{B max §,(e, B)} for various values 8
&

e \ ﬂ 20 22 24 26 28 210

1 3.96¢ 2 1.27e72 3.37¢73 8.54e4 2.14e™*
272 1.90e~! 7.59¢2 2.17¢72 5.64e73 1.42¢73 3.57e*
24 1.98¢7! 7.65¢2 2.18¢72 5.67e73 1.43¢73 3.59¢~*
276 1.98¢7! 7.65e2 2.18e72 5.67e73 1.43¢73 3.59¢~*
28 1.98¢~! 7.65¢72 2.18¢72 5.67e73 1.43¢73 3.59¢*
210 1.98¢! 7.65¢2 2.18¢72 5.67e73 1.43¢73 3.59¢~*
{Bmax8,(e.f)}  0.198 0.306 0.358 0.366 0.368 0.369

Thus, in the case of the model problem for the error of the grid solution
8.1 (e, N), using the results in Table 3, we obtain the experimental estimate

Su(e, Ny < Mye ' N7, (21b)
where (according to Table 3) we have

M, = max {B max$,(e, B)} = 0.369. (21c)

The estimate (21) for the error in the solution of the standard difference scheme is
fully consistent with the estimate (3) from Theorem 1.

5.3.2 Errors in the Solution of the Computer Difference Scheme
in the Variables ¢ and y

Consider the perturbations of grid solutions, caused by computer calculations, i.e.,
computer perturbations of grid solutions, using the variables ¢ and y, where y =
& N2 is the automodel variable. ~ _

In Table 4, computer perturbations of the grid solution §; = §.(s, y; A) are given
for various values e and y. Here also the values {(y A)~! max 8.(e, y; A)} are

given for various values y. Note that
8, = 8.(e, y: A) = 8.(e, y(e, N); A) = 8.(e, N: D).

From Table 4, it follows that the computer perturbations of the grid solution
8, = 8.(e, y; A) sufficiently weakly depend on the parameter &; moreover, they are
stabilized with decreasing ¢ for fixed values y. For fixed values ¢, the perturbations
8.(e, y; A) change significantly with increasing y; these perturbations grow with
increasing y at the rate close to linear one for all values ¢. Here also the values
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Table 4 Computer perturbations gz = gz(e, y; A) for various values ¢ and y and also the values
{(y A)™" max(8,(e, y; A))} for various values y
&

8\)/ 28 210 212 214 216 218

1 53578 22477 91877 3.7le™® 1.49¢ 5.98¢7°
272 3.15¢77  1.29e7°% 5227 2.10e7 8.42e° 3.37¢*
274 5.16e77 2.07e° 832¢7® 3.33¢° 1.33e¢ % 5.34e*
276 59377 2387 954e7° 3.82¢ 1.53¢ % 6.12¢7*
28 6.22¢77 2.49¢7% 9.99¢7% 4.00e> 1.60e~* 6.4le™*
2—10 6.33¢77  2.53¢7° 1.0le™> 4.06e7> 1.62¢7* 6.5le™*

{y O max@(e.y;8)) 0247 0249 0249 0249 0249 0250

{(y M)7! maax(gz(a, y; A))} are given for various values y. These values weakly

depend on the y, and they stabilize quickly with increasing y; the maximum of that
ratio does not exceed a value of 0.250.

Thus, in the case of the model problem for the computer perturbations of the
grid solution §,(e, N; A), using the results in Table 4, we obtain the experimental
estimate

8.(e, N:A) < Mre N* A, (22b)
where (according to Table 4) we have

M, = max {(y A)~' max(3.(s, y; A))} = 0.250. (22¢)
y &

The estimate (22) is fully consistent with the estimate (13b) from Theorem 1.

5.3.3 Experimental Estimate for the Error of the Perturbed Computer
Solution

Taking into account the estimates (21) and (22), for the error of the perturbed
computer solution §; = §* /A= lu — 2} [I5, we obtain the experimental estimate
in the variables {¢, N, A}

<M+ N Y 'N'+MeN? A (23)

The estimate (23) is fully consistent with the estimate (14c) from Theorem 1.
Thus, the numerical results in Tables 3 and 4 are in good agreement with the
theoretical results.
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6 Conclusions

In the case of the Dirichlet problem for a singularly perturbed ordinary differential
convection-diffusion equation with perturbation parameter ¢ (¢ € (0,1]), the
standard difference scheme (classical scheme on a uniform grid) is considered in
the presence of perturbations. Such a difference scheme is not e-uniformly stable to
perturbations in the data. Perturbations of grid solutions generated by perturbations
in the data of the grid problem and computer perturbations are discussed. The data
of numerical experiments to study the influence of computer perturbations on the
grid solutions are presented. Results of numerical experiments are consistent with
the theoretical results.
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A Higher Order Immersed Discontinuous
Galerkin Finite Element Method
for the Acoustic Interface Problem

S. Adjerid and K. Moon

Abstract We present an interface discontinuous Galerkin finite element method
on non-fitted meshes for solving acoustic wave propagation problems in nonho-
mogeneous media. The proposed method uses the standard discontinuous Galerkin
finite element formulation with polynomial approximation on elements that contain
one material while on interface elements containing multiple materials it uses a
specially build piecewise polynomial shape functions that satisfy the interface jump
conditions. We present several computational results that suggest that the proposed
method has optimal convergence rates.

Keywords Immersed method * Discontinuous Galerkin ¢ Acoustic problem

1 Introduction

Simulation of wave propagation in nonhomogeneous media arises in many applica-
tions in science and engineering such as geophysics, acoustics, and electromag-
netism and leads to systems of partial differential equations with discontinuous
coefficients. These problems present several challenges to scientists as they involve
large time integration and wave propagation through bodies that are thousands of
wavelengths in size which requires the solution of large problems with complex
geometries.

The discontinuous Galerkin (DG) formulation is a natural choice for first-
order linear hyperbolic systems leading to compact high-order schemes with
low-dispersion and low-dissipation errors. The DG formulation can easily enforce
boundary conditions on complex geometries and can handle discontinuous solutions
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up to element boundaries. There exist mainly two DG formulations to solve transient
linear hyperbolic systems in the literature: (i) semi-discrete DG formulations using
a method-of-lines approach [1-3] where the system is first discretized in space
using the DG formulation combined with low-storage Runge—Kutta time integrators
that have relatively large stability limits and low-dissipation and low-dispersion
errors [4-7] and (ii) space—time explicit DG methods by Falk and Richter [8]
on properly designed space—time meshes. Motivated by the work in [8] a space—
time DG formulation has also been used for linear transient interface symmetric
hyperbolic systems [9] where the problem is marched in time by solving sets of
small problems in space—time.

Interface problems have been considered for a long time and many numerical
methods have been developed. Both finite difference and finite element approaches
can be employed (see [10—16] and references therein). Piraux and Lombard [17,18]
developed explicit interface method to solve acoustic wave propagation in nonho-
mogeneous media on non-fitted meshes. On the other hand higher order immersed
finite element (IFE) methods have been developed for diffusive problems [19-25].
In this manuscript we present a higher order interface discontinuous Galerkin finite
element (IDGFE) method for solving the acoustic problem in nonhomogeneous
media on non-fitted meshes.

This manuscript is organized as follows. In Sect. 2 we state the problem and inter-
face conditions. In Sect. 3 we construct the IFE shape functions and the immersed
discontinuous Galerkin formulation. In Sect. 4 we present several numerical results
and conclude in Sect. 5.

2 Problem Statement

Let u and p, respectively, be the velocity and pressure defined on the interval / =
(a, b) which is splitinto I; = (a,«) and I = (o, b) suchthat I = I, U I,.
Now we consider the acoustic interface problem on I where U = [u, p] satisfies

ad d
—U+ —U=0 x el \{a}, I > I, (la)
ot ox
o L
Al =A = , ) i = 1,2, (1b)
pic;i 0

with p;, c¢;, respectively, being the densities and sound speeds in /;. The matrix A
can be split as A = At + A~ such that A* and A, respectively, have nonnegative
and nonpositive eigenvalues, i.e., if A = XAX ™! with A = diag(A;,...,A,), then
A*E = A28 gpd 4% = xAEX !
5 .
This problem is subject to the inflow boundary conditions

A?—le=a = &> A2_U|x=b = &b, (IC)
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initial conditions
U(x,70) = Uo(x), x €1, (1d)
and physical interface conditions

[U]lx=« = 0,
[p]|x=a =0, (1e)

where [u]|y=¢ = u(a™, 1) — u(a~, 1) is the jump of u across the interface x = a.

3 Discontinuous Galerkin Discretization

In order to apply the discontinuous Galerkin method to the acoustic problem (1) we
partition the interval / into N subintervalsa = xp < x| < x; <--- < xy = b and
use polynomials on non-interface elements containing one material and specially
designed piecewise polynomial shape functions on interface elements containing
more than one material. We start by showing how to construct interface polynomial
spaces and shape functions.

3.1 Interface Shape Functions

Applying the physical interface conditions (le) all immersed shape functions must
be continuous at the interface. To uniquely define high-degree immersed shape
functions we need additional jump conditions (referred to as “extended jump
conditions”) derived in [17] from the acoustic equations (1a):

82k o” a2k

50 = ¢~ 75U,

82k+1 " 82k+1

WU = —C AwU, for k > 0.

The continuity of U and its time derivatives at the interface yields the jump
conditions

92k 4 (%)Zk 0 92k
WU((X e . (C_l)zk FreTs

)

U(a™,1), (2a)
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§2k+1 N (%) (§>2k+2 0 2k+1 B
WU(O{ ,t) = 0 (p_z) (c_l)Zk WU(O[ ,t), (2b)
p1 2
fork > 0.

Now let us consider the reference interface element [—1,1] containing an
interface § = @ suchthat—1=§ <& <---<§_ 1 <@ <& <---<§ =1land
let L;, j =0,1,...,q be the standard Lagrange polynomials such that L;(§;) =
8;;. Without loss of generality we assume that £; # @ andletZ; = {0,1,...,i —1}
andZ, = {i,i + 1,...,q} and Z = Z; U Z,. We express the gth-degree immersed
shape functions in terms of L ; as

$ =Lt X oL on(-1a),
¢l(q) _ jEI\I.\' l € IY»S = 172 (3)

2 N
¢i(q) = Y ¢;Lj, on(a,l),
jez,

We note that these immersed shape functions are of Lagrange type, i.e., ¢l-(q)

() = 8.

The constants ¢; for the velocity are determined by the jump conditions

@) = ¢"7@") 4)

9k ¢i(q)w1 (&—) 3k¢i(q),2(&+)
=17
9k T

k=12,....q ®)

where for k = 2/(even) and k = 2] + 1(odd)

e\ o\ [\ T2
Ty = (—) , 41 = (—) (—) . (6)
&) 02 C

The immersed shape functions for the pressure are obtained in a similar manner

with 1,41 replaced by
21
c
P41 = (&) (—1) . (N
L1 C2

We present gth-degree immersed shape functions on [—1, 1], for & = 0.4, ¢; = 1,
pr=2,c0=2,pp=4andq = 1,2,3,4,in Fig. 1.
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Fig. 1 Immersed shape functions for the velocity

3.2 DG Formulation

We use the standard DG weak formulation on a non-interface element (x;, x;+;) by
multiplying (la) by a test function V, integrating over the element, and integrating
by parts to obtain

X1+1 3 . X141 8VT
/ —dx + VAU [ —/ ~—AUdx = 0. (8)

1 X1

Apply flux splitting A = A~ + A to define the DG formulation to find U, € P,,
the space of polynomials of degree not exceeding ¢, such that

=XI41

W1 9U
[ Vi ot —dx + Vi TAYUS ey, +Vi TATUS |

XI

T _ T ,—
—V,FTATU, |v=y, VAU |y

X[ 41 aVT
_/ S LAUdx =0, Y V) € P, ©)
X
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On an interface element (x;, x;4+) containing an interface point x = «, let V), 1rg be
the space spanned by the shape functions 1/fl«(q), i =0,1,...,q obtained from ¢i(q)
through the affine mapping from [—1, 1] — [x;, x;+1]. We multiply (1a) by a test
function V;, € V;, 1ps and integrate over the element. We integrate by parts on (x;, )
and (o, x;+1). The discrete DG formulation is obtained by approximating U on
(x7, x;41) by Uy, € Vj1pe and the boundary terms at x; and x;+; are approximated
using numerical fluxes. We note that the resulting IDGFE formulation contains a
penalty term at the interface x = «.
Multiply (1a) by V and integrate over (x;, o) to obtain

;U «av, T
/ —Ldx + VIA U, |yzo —VTAU| =, — | — A Updx =0.
X ax x 0x

Similarly, integrate over (c, x;41) and integrate by parts to obtain

X141 3U X141 8V
/ \'d Iy —2dx+VIAU, iy, —VIAU; |imq —/ 8_)62 A>Updx = 0.
o o

Combining the previous two equations and applying the flux splitting at x = Xx;
and x = x;4 yield the DG formulation on the interface element (x;, x;41) which
consists of determining U, € V), jpg such that

* U1 M U,
/ VIT,h FY dx—l—/ \ o ldx"‘Vzh ASUL, le=ny,
X/ o

— TA—7+ + TA+1— + TA-u+
+V2.,h A2 U2.h |x=»’61+1 _Vl,h Al U].h |x=x1 _Vl,h A1 U],h |x=x1

o T

+V{}1A1Ul,h |x=oz _V£}1A2U2,h |x=a _/ hAlUl,hdx

X/

XI41 8VT
—/ AU dx =0,V Vi € Vi, (10)
o

where Vi = Vi |0y x4 @a0d Uiy = Uy |0 gy fori = 1,2.

Combining the previous equation for the interface element and the DG formula-
tion on non-interface elements we obtain the IDGFE method for solving the acoustic
problem on non-fitted meshes.

4 Computational Examples

Consider the acoustic interface problem (1) with an incident wave

W (x,1) = up(x —cit),  p'(x,1) = polx —cit), (11a)
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with the initial pulse

1
wo=-n(-2) 5] =[] ow

where
o) = sin (w.£) — 31 sin 2w §) + 2 sin (4we) — 515 sin 8w, £), if 0 < & < fi
0, elsewhere.
(11¢)
When the incident wave hits the interface x = « it results in a reflected wave
W (x ) = 2P EPL et —2(a - 8),
c1p1 + 202
c1p1 —¢
Py = PO Lt it = 2(a - 8)), (11d)
c1p1 + €202

with § = ¢1(ty — sz), and a transmitted wave

2
u(x,t) = ¢u0 (ﬂ(x — ot —a) + a) ,
cip1 + 202 c2
2
Py = —P2 _p, (C—l(x—czr —~a) +a), (11e)
cipr + 202 &)

Thus, the true solution of (1) can be written as

U(x,t)+U'(x,1) ifx <a,

U(x,t) =
U'(x,1) if x > a,

(11f)

where U' = [/, p'|",U" = [, p"]" and U' = [’ p']".

Example 4.1. As a test problem we select the physical parameters ¢; =
Im/s, pp = 2kg/m>, ¢ = 2m/s, p, = 4kg/m’, @ = 107*m, t, = Os,
w, = 2nf., and f, = 0.5Hz and solve the acoustic problem (1) on the interval
[—5, 5] using uniform non-fitted meshes having N = 100, 120, 130, 140, 150
elements and polynomial spaces of degrees ¢ = 1,2,3,4 and integrate in time
using the classical fourth-order Runge—Kutta method from ¢ = 0 to t = 2 with time
steps At = d Ax,d = 1079, Ax = 10/N is the mesh size. We present the L>
errors and their orders of convergence at ¢t = 2 in Tables 1, 2, 3, and 4 that suggest
that the proposed IDGFE yields optimal convergence rates. We plot the true and
numerical solutions for N = 150 and ¢ = 4 at¢t = 0,2 in Fig. 2 to show that both
solutions coincide.
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Table 1 L2 errors and orders of convergence for Example 4.1 with

g=1lattr=2

N Hu”; T"’L”LZ Order % Order
100 2.9207¢—2 2.6743¢e—2

110 2.3162¢—2 2.4331 2.1103e—2 2.4849
120 1.8634e—2 2.4999 1.6907¢—2 2.5482
130 1.5200e—2 2.5448 1.3735¢—2 2.5957
140 1.2563¢—2 2.5712 1.1302¢—2 2.6311
150 1.0512¢e—2 2.5830 9.4087¢—3 2.6571

Table 2 L2 errors and orders of convergence for Example 4.1 with

q=2att =2

N IIu”—Tl/, Iz, Order Hp”—ph Iz, Order
ullz, P”Lz

100 1.1669¢—3 7.0329¢—4

110 8.3352¢—4 3.5301 4.7916e—4 4.0261

120 6.1460e—4 3.5016 3.3702¢—4 4.0443
130 4.6598e—4 3.4586 2.4414e—4 4.0276
140 3.6196e—4 3.4087 1.8174e—4 3.9835
150 2.8710e—4 3.3581 1.3866e—4 3.9207

Table 3 L2 errors and orders of convergence for Example 4.1 with

q=3attr =2

N % Order % Order
100 5.6914e—5 2.5968¢—5

110 4.0138¢—4 —20.49 4.0096e—4 —28.71
120 2.5217e—5 31.805 1.0286e—5 42.098
130 1.7874e—5 4.3001 7.0391e—6 4.7393
140 1.3064¢—5 4.2298 5.0186¢e—6 4.5655
150 9.7916e—6 4.1792 3.6965¢—6 4.4316

Table 4 L2 errors and orders of convergence for Example 4.1 with

q=4attr =2

N ”u”_u T"’LHLZ Order % Order
100 4.4295e—5 4.4102¢e—5

110 1.4661e—6 35.76 5.7277e—7 45.57
120 9.3950e—7 5.1148 3.6126e—17 5.2969
130 6.2588¢—17 5.0746 2.3848e—17 5.1885
140 4.3041e—7 5.0524 1.6308¢—7 5.1284
150 3.0400e—7 5.0398 1.1475e—7 5.0949

Example 4.2. Let us consider the acoustic problem where medium 1 is water and
medium 2 is air with ¢; = 1,450m/s, p; = 1,000kg/m’, ¢c; = 340m/s, p, =
1.3kg/m’, o = 0.051's, w. = 27f, and f. = 50Hz and the true solution is given
by (11).
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initial velocity u

initial pressure p

2 6
15 true solution true solution
: L, projection 4 L, projection
1
2
> 0.5 o
= ]
8 o % 0
C o
- S
0.5 )
-1
-1.5 -4
-2 -6 ,
-5 0 -5 0 5
X X
final velocity u final pressure p
2 L 6 1
true solution true solution
1.5 numerical solution 4 numerical solution
1
2
> 0.5 o
= =]
8 0f 2 0
[ o
- S
0.5 5
-1
-1.5 -4
-2 ] -6 ,
-5 0 5 -5 0 5
X X

Fig. 2 True and numerical velocity and pressure for Example 4.1 using N = 150 elements and
q = 4att = 0 (top) and t = 2 (bottom)

We solve this problem on [40, 140] with the interface point @ = 96.3m
using uniform meshes having N = 105, 121, 208, 224, 240 elements (having one
interface element) for degrees ¢ = 1,2, 3,4 and integrate from ¢ = 0.051s to
t = 0.091s using the classical fourth-order Runge—Kutta method with time step
sizes At = d Ax,d = 107@*» and Ax = 100/N. The IDGFE solution for
q = 1 exhibits large dispersion errors and thus optimal convergence rates are
not observed in this case. As predicted in [26] high-degree approximations greatly
reduce the dispersion errors and yields optimal O(h4*!) convergence rates as shown
in Tables 5, 6, and 7. The true and numerical velocity and pressure coincide as
shown in Fig. 3. In this problem the transmitted IDGFE pressure is much smaller
than the incident and reflected pressures and is plotted separately in Fig.4 which
coincides with the true pressure.

Example 4.3. Our IDGFE method has been extended to the two-dimensional
acoustic problem on [0,20]?> and —2 < ¢ < 3 where a planar wave hits the linear
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Table 5 L2 errors and orders of convergence for Example 4.2 with
q = 2att = 0.091

N Hullﬂll‘h Iz, Order |I17“*ph Iy Order
ulf g, FHL2

105 1.8842¢—1 6.8117¢—3

121 1.3195e—1 2.5120 4.3000e—3 3.2434

208 3.3138e—2 2.5505 6.9107¢—4 3.3745
224 2.6941e—2 2.7939 5.5910e—4 2.8596
240 2.2105e—2 2.8673 4.5885e—4 2.8640

Table 6 L2 errors and orders of convergence for Example 4.2 with
q =3att = 0.091

N ”u”_u Lllthlle Order Up—pullzy I;I\jth!LZ Order
105 1.5431e—2 6.3989¢—4

121 8.1492¢—3 4.5014 3.9177e—4 3.4593
208 1.4417e—3 3.1972 5.2776e—5 3.7003
224 9.3264¢—4 5.8776 3.9786¢—5 3.8126
240 6.0543e—4 6.2628 3.0393¢—5 3.9035

Table 7 L? errors and orders of convergence for Example 4.2 with
q =4att =0.091

N 7”7” TIhLIlLZ Order Up=pullzy I;ﬁ’;!” Order

105 1.0735¢—3 1.0388¢—4

121 5.0048¢e—4 5.3802 5.4430e—5 4.5567
208 2.5220e—5 5.5154 4.5425¢—6 4.5841
224 1.1362¢—5 1.0760 3.1243e—6 5.0501

240 5.9673e—6 9.3337 2.1905¢—6 5.1467

oblique interface y = —5x + 70.05555. The true and numerical solutions at t = 3
shown in Fig.5 obtained on a 100 x 100 uniform Cartesian mesh for piecewise
bilinear approximations are in full agreement. More details on the two-dimensional
implementation of IDGFE method will be discussed in a forthcoming paper [27].

5 Conclusion

A higher order immersed discontinuous Galerkin finite element method is developed
for acoustic wave propagation in a nonhomogeneous medium. On non-interface ele-
ments we use the standard DG formulation for hyperbolic systems with polynomial
approximations while on an interface element containing two materials we construct
piecewise polynomial IFE shape functions satisfying appropriate jump conditions
across the interface. The new immersed shape functions are combined with a DG
formulation that leads to a very efficient and conservative higher order finite element
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Fig. 3 True and numerical velocity and pressure for Example 4.2 with N = 300 and ¢ = 4 at
t = 0.051 (top) and t = 0.091 (bottom)

transmitted pressure
15

—— true solution
11 - numerical solution

05 ¢

pressure
o

-15 . . . . . . . ,
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X

Fig. 4 True and numerical transmitted pressure for Example 4.2 with N = 300, ¢ = 4 att =
0.091
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true pressure true x-velocity true y-velocity
20 20 20
15 15 15
10 10 10
5 5 5
0 0 0
0 10 20 0 10 20 0 10 20
numerical pressure numerical x-velocity numerical y-velocity
20 20 20
15 15 15
10 10 10
5 5 5
0 0 0
0 10 20 0 10 20 0 10 20

Fig. 5 True (fop) and IDGFE (bottom) solutions for Example 4.3 att = 3

method for wave propagation in a nonhomogeneous medium which yields optimal
convergence rates for both the velocity and pressure. Several challenges such as
solving two-dimensional wave propagation problems with curved and/or moving
interfaces remain to be addressed.
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A Parameter-Uniform Numerical Method
for a Boundary Value Problem for a Singularly
Perturbed Delay Differential Equation

M. Manikandan, N. Shivaranjani, J.J.H. Miller, and S. Valarmathi

Abstract In this paper, a boundary value problem for a second-order singularly
perturbed delay differential equation is considered. The solution of this problem
exhibits boundary layers at x = 0 and x = 2 and interior layers at x = 1.
A numerical method composed of a classical finite difference scheme applied on a
piecewise-uniform Shishkin mesh is suggested to solve the problem. The method
is proved to be first-order convergent in the maximum norm uniformly in the
perturbation parameter. Numerical illustrations support the theory.

Keywords Singular perturbation problems ¢ Boundary layers ¢ Delay differen-
tial equations e Finite difference scheme ¢ Shishkin mesh ¢ Parameter-uniform
convergence

1 Introduction

Delay differential equations play an important role in the mathematical modeling
of various practical phenomena in the subjects of bioscience and control theory.
Singularly perturbed delay differential equations arise frequently in the modeling of
human pupil-light reflex, the study of bistable devices and variational problems in
control theory.

In [1], Lange and Miura give asymptotic expansion approximations for the
solutions of singularly perturbed second-order delay differential equations with
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small delay. In [2], a numerical method is suggested for the initial value problem for
a class of delay differential equations. The method uses a hybrid difference scheme
on a fitted mesh and is proved to be second-order convergent under the assumption
that Ce < N~!. In [3], a fitted operator scheme on a uniform mesh is suggested to
solve an initial value problem for a class of linear and hence a class of semilinear
first-order delay differential equations. Further, the method is proved to be first-
order parameter-uniform convergent. In [4], under the assumption of analyticity of
the input data, the hp version of the finite element method on an appropriate mesh
is proved to have an exponential rate of convergence. In [5], a numerical method
known as initial value technique is suggested to solve singularly perturbed boundary
value problems for second-order delay differential equations of reaction-diffusion
type. In [6], the same technique is applied to solve a system of second-order delay
differential equations of reaction-diffusion type.

In this paper we consider a boundary value problem for a singularly perturbed
delay differential equation of reaction-diffusion type. We construct a numerical
method using a classical finite difference scheme on an appropriate Shishkin mesh,
which resolves not only the usual boundary layers but also the interior layers
arising from the delay term. More precisely, the singularly perturbed boundary value
problem is

Lu(x) = —eu’(x) +a(x)u(x) +b(x)u(x —1) = f(x) on (0,2), (1)
with
u = ¢ on [—1,0] and u(2) =1, 2)

where ¢ is sufficiently smooth on [—1, 0]. For all x € [0, 2], it is assumed that a(x)
and b(x) satisfy

a(x) + b(x) > 2« (3)
and
b(x) <0, 4)

for some real number o > 0. Furthermore, the functions a(x), b(x), and f(x) are
assumed to be in C3([0, 2]).
The above assumptions ensure that u € C = C°([0,2])NC'((0,2))NC?((0, 1)U

(1,2)).
The problem (1) and (2) can be rewritten as
Liu(x) = —eu” (x)+a(x)u(x) = f(x)=b(x)p(x—1) = g(x) on (0,1) (5)
Lou(x) = —eu” (x) + a(x)u(x) + b(x)u(x — 1) = f(x) on (1,2) (6)
u=¢ on [—1,0], u(1-)=u(1+), '/(1-)=u/(1+) and u(2) = 1. (7)
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The reduced problem corresponding to (1) and (2) is defined by
a(x)up(x) = g(x) on (0,1) (8)
a(x)uo(x) + b(x)uo(x — 1) = f(x) on(1,2). ©)

In general as u(x) need not satisfy uy(0) = u(0) and uo(2) = u(2), the solution
u(x) exhibits boundary layers at x = 0 and x = 2. In addition to that, at x = 1,
uo(1-) = [f(1) = b(1)p(0-)l/a(l).uo(14) = [f(1) — b(Duo(0+)]/a(1), and
as up(1—) need not be equal to uy(1+), the solution u(x) exhibits interior layers
atx = 1.

For any function y on a domain D the following norm is introduced: || y || p=
sup,cp |y (x)|. If D = Q, the subscript is dropped. Throughout the paper C denotes
a generic positive constant, which is independent of x and singular perturbation and
discretization parameters.

The plan of the paper is as follows. In Sect. 2, the analytical results of the solution
are presented. Improved estimates are presented in Sect. 3. In Sect. 4, piecewise-
uniform Shishkin meshes are introduced and in Sect.5, the discrete problem is
defined and the discrete maximum principle and the discrete stability properties
are established. In Sect. 6, numerical analysis is presented and the error bounds are
established. In Sect. 7, numerical illustrations are presented.

2 Analytical Results

The operator L satisfies the following maximum principle.

Lemma 1. Leta(x) and b(x) satisfy (3) and (4). Let ¥ be in C such that y(0) > 0,
v(2)=0,Ly >0 on (0,2) then ¥ >0 on [0,2].

Proof. Let x* be such that ¥ (x*) = m[g]nz] ¥ (x). If ¥ (x*) > 0, there is nothing to
x€l|0,
prove. Suppose therefore that ¥ (x*) < 0. Then x* ¢ {0,2}. As ¥"(x*) > 0,

Ly (x*) = —ey"(x™) + a(x) Y (x*) + b)Y (x* = 1)
=y (x™) + (a(x™) + b)Y (x) <0, as Y (x* = 1) = Y (x7),

IA

which is a contradiction. This completes the proof. O

As a consequence of the maximum principle, there is established the stability result
for the problem (1) and (2) in the following:

Lemma 2. Let conditions (3) and (4) hold. If ¥ is any function in C, then for all
x €[0,2],

Y0l < maxdwOL L Lyl
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Proof. Define the two functions:
1
%) = max [y OLIVQ)L — I Ly ¢ + y(x).

Using the properties of a(x) and b(x), it is not hard to verify that 6% (x) > 0 for
x € {0,2} and LOT > 0on (0,2). It follows from Lemma 1 that #T > 0 on

[0,2].
Standard estimates of the solution of (1) and (2) and its derivatives are contained
in the following lemma. The proof is by the method of steps. O

Lemma 3. Let conditions (3) and (4) hold and let u be the solution of (1) and (2).
Then, for all x € [0, 2],

u® ()| < C e 5 (||ul| + || £1]), fork = 0,1

and

(k=

2| £ D)), for k = 2,34,

_k
@) < Cem3(llull + [1£11 + &

Proof. The bound on u is an immediate consequence of Lemma 2 and the
differential equation (1).
Rewriting the differential equation (1) gives

W’ (x) = e (a(x)u(x) + b(x)u(x — 1) — f(x)) (10)

and it is not hard to see that the bound on u” follow from (10).
To bound 1/ (x), on the interval (0, 1), consider an interval N = [a,a + /€] C
[0, 1]. By the mean value theorem, for some y € N,

u’(y) _ u(a + \/E) — u(a)
N Ve

and it follows that |u/(y)| < 28_%”14”. Now, for any x € N

w(x) = u/(y)—i-/v W’ (s)ds = u'(y)+e! / (= f(s)+a(s)u(s)+b(s)p(s—1))ds

y y

and so

W' ()] < ' ()] + Ce7 (1 f1] + IIMII)/ ds < Ce 2 (| £1| + lJul)
)

from which the required bound follows.
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To bound u/(x), on the interval (1, 2), consider an interval N = [a,a + /¢] C
(1,2]. By the mean value theorem, for some y € N,

V() = M4t V)~ ul@)
Y NG

and it follows that [/ (y)] < 28_%||u||. Now, for any x € N,
W (x) = i () + / " (s)ds = i (v) e / (= f(5)+als)u(s) +b()u(s—1))ds
y y
and so
W] < W O]+ Ce (171 + ||u||)/ ds < Ce3 (|1 f1] + llull)

from which the required bound follows.

Differentiating (10) once and twice give u® (x) = e~ (a(x)u'(x) +a’(x)u(x) +
b (x =1 +b' (u(x —1)— f'(x)) , u® (x) = e (a(x)u” (x) +2a' ()’ (x) +
a”(x)u(x) +bx)u”"(x — 1) + 26" (x)u/ (x — 1) + b" (x)u(x — 1) — f”(x)) and the
bounds on #® and u™ follow from those on «’ and u”.

The Shishkin decomposition of the solution u of (1) and (2) is © = v + w where
the smooth component v is the solution of

Ly =g on(0.1-), v(0) = up(0), v(1-0) = (a(1))"'(f()=b(1)$(0)) (11)

Lyv = f on (1+,2), v(1 +0) = (a(1)7'(f(1) = b(Duo(0)), v(2) = uo(2)
12)
and the singular component w is the solution of

Liw=0 on(0,1), Lyw=0 on(1,2)
with w(0) = u(0) —v(0), [w](1) = =[](1), [w'](1) = =P'](1), w(2) = u(2) —v(2).

13)
The singular component is given a further decomposition
w(x) = wh(x) + wh(x) (14)
with
wh(x) = wO)wh(x) + Awh (x), (15)
satisfying Liwk(x) = 0, x € (0, 1) with wh(0) = 1,wl (1) = 0, (16)
whk(x) =0on (1,2], 17)

Lowk(x) = 0,x € (1,2) with wk(1) = 1,wk(2) =0, (18)
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wk(x) =00n|0,1), (19)

and w®(x) = BwR(x) + w@wR(x), (20)
satisfying LwR(x) = 0,x € (0, 1) with wR(0) = 0,wR(1) =1, 1)
wR(x) = 0on (1,2], (22)

LywR(x) = 0,x € (1,2) with wX(1) =0,wk(2) =1, (23)

wX(x) =0on|0,1). (24)

Here, A and B are constants to be chosen in such a way that the jump conditions at
x = 1 are satisfied.

Bounds on the smooth component and its derivatives are contained in the
following lemma. O

Lemma 4. Let conditions (3) and (4) hold. Then the smooth component v and its
derivatives satisfy, for all x € [0, 2],

PO x)| <C, for k=0,1,2

and
WO ) < cd + 817%), for k = 3,4.

Proof. Decomposing the smooth component v as v = 1y + ¢vy, it is not hard to see
that v; satisfies a problem given by

L1V1 = M(/)/ on (0, 1—), Vl(O) = 0, V1(1 —O) = 0,
Lovy = uf on (14,2), vi(1+0) =0, v(2) =0.

We proceed by the method of steps. First consider (0, 1). On (0, 1), v; satisfies a
problem similar to (P;) of Chap. 6 in [7]. Hence on (0, 1), |v§k)| <C s_Tk, for
k = 0,1,2,3. From (8), [u"’| < C, for k = 0,1,2,3. Hence on (0, 1), |[v¥)| <
C(+e'=%), fork=0,1,2,3.

The arguments used to bound v and its derivatives in the interval (1, 2) are given
below.

The bound on v is an immediate consequence of the defining equation (12) for v
and Lemma 2.

The bounds on v’ and v” are found as follows. Differentiating twice the
equation (12) for v, it is not hard to see that v" satisfies

B = h, (25)
where
h(x) = f"(x) = 2a'(x)v'(x) — a"(x)v(x)
20" (x)v' (x—=1)=b"(x)v(x—=1)=b(x)V"'(x—1).
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Also the defining equation (12) for v yields
v'(14) =0, v'(2) =0. (26)

Applying Lemma 1 on p. 39 of [7] to v” and using the bounds of v, v’ and v on
[0, 1] gives

2 = C A+ P - 27)
Choosing x* € [1,2] such that

v (x*) = [V ll2 (28)

and using a Taylor expansion it follows that for any y € [1 — x*,2 — x*] and some
n, such that x* < n < x* + y,

2
v(x* 4+ y) =v(x®) + y VvV (x") + y? Vv'(n). (29)
Rearranging (29) yields

_ v(x* +y) —v(x¥) _ ZV//

V() V) (30)
and so, from (28) and (30),
2 y
IV lli2 < ;||V||[1.z] + §||V”||[1,2]- (31)

Using (31) and (27) and the bound on v yields

C 2
(1 - Ty) v [l0a) < € (1 + —) . (32)
Yy

Choosing y = min(%,Z — x™), (32) then gives |[v"||iy < C and (31) gives
[[v'[lpy < C as required. The bounds on v, v® are derived by similar
arguments.

The layer functions B, B, B¥, BR, B|, B, associated with the solution u, are
defined by

BlL(x) = =¥Vl e, BlR(x) = e~ (I=0)Va/ e, Bi(x) = BlL(x) + BlR(x), on [0, 1],
Bl (x) = e=("OVO/VE BR(x) = ¢=C=0V/VE | By(x) = BE(x) + BR(x), on[1,2].

Bounds on the singular components w* and w® of u and their derivatives are
contained in the following lemma. O
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Lemma 5. Let conditions (3) and (4) hold. Then there exists a constant C, such
that, for x € [0,1],

BL
wt-® )| < € %j), for k =0,1,2,3
g
and, for x € [1,2],
BL
wh®(x)| < C % for k =0,1,2,3.
€

Analogous results hold for wR and its derivatives.
Proof. First we derive the bound on w” on (0, 1). On [0, 1], w” satisfies Liw’ = 0,
wl(0) = w(0), wr (1) = A. Then following the procedure adapted in [7] it is not
hard to find that
L.k &L
Wt ®(x)| < Ce72BE(x), x €[0,1].

We now derive the bound on w’ on [1,2]. From the defining equation for w’, we

have
Lowk(x) = —ewh"(x) + a(x)wk(x) + b(x)wE(x = 1) =0
or
Liwt(x) = —ewl(x) + a(x)wh(x) = =b(x)wE(x — 1)
= |Liwh(x)| < C BE(x — 1) = CBE(x). (33)

Also, wt(1) = A, wh(2) = 0. Hence by using Lemma 1 on p. 39 of [7] for the

operator L1, on [1,2] leads to the required bound on w’.

Consider the differential equation
Lowl =0,x € (1,2).
Then w™" (x) = e~ (a(x)wk (x) + b(x)w’ (x — 1)). Hence

wh" ()| < Ce™'(By (x) + Bf (x — 1))
= Ce 'BL(x) since BL(x —1) = BE(x) for x € [1,2].

Using the mean value theorem and the bound of w’ (x), arguments similar to those
used to bound u/(x) lead to the bound of w’’(x). The bounds on w*"(x) and
wh® (x) are derived similarly.

Analogous arguments lead to the estimates of w® and its derivatives. O
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3 Improved Estimates

In the following lemma, sharper estimates of the smooth component are presented.

Lemma 6. Let conditions (3) and (4) hold. Then the smooth component v of the
solution u of (1) and (2) satisfies, for x € [0, 1),
B] (X) )
Cc (1+
(1+°7

c (1+22).

yE@x) = CA+ Bi(x)) £ v®(x), k=0,1,2 and x € (0, 1).

W® (x)| < C (1+ Bi(x)) for k =0,1,2 and |v"(x)|

IA

and, for x € (1,2],

v (x)] < C (14 By(x)), for k =0,1,2 and |v"(x)|

IA

Proof. Define barrier functions

Using Lemma 4, we find that Ly* > 0 on (0, 1) and ¥*(x) > 0 at the points
x = 0and x = 1 — 0, for a proper choice of the constant C.
By using the maximum principle in [7] for the operator L, ¥* > 0 on [0, 1).
Thus, we conclude that for kK = 0,1, 2,
MO = €U+ Bi(x). x€[0.1). (34)

Consider (25) and (26), satisfied by v”” and note that || 2" || < C, from Lemma 4.
For convenience let p denote v and then

Lip=~h on (0,1), p(x)=0 at x =0 and x =1-0. (35)
Let z and r be the smooth and singular components of p satisfying
Liz=nh on (0,1), z(x) =h(x)/a(x) at x =0 and x = 1—0.
and
Lir=0on (0,1), r=—zat x=0 and x =1-0.
Using Lemmas 4 and 5 we have, for x € [0, 1),

lZ(x)| < C,
Ir'(x)| < C 317”
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Hence, for x € [0, 1),

1+ B
V)] = [po) < ¢ LI (36)

NG
From (34) and (36), for k = 0,1,2,3 and x € [0, 1), the required results follow.
The bounds on v and its derivatives are similarly derived when x € (1, 2]. O

4 The Shishkin Mesh

A piecewise-uniform Shishkin mesh with N mesh intervals is now constructed on
— N_
Q = [0.2] as follows. Let ¥ = ;" U 2," where @,V = {x;} ", @, =

-l dxy = LThen @, = {x;}7sy. & = (3 .. & U
{xj j=Y+41 an x% = L. en v = {xj}j=05 2 = {x]}j=%, 1
" =Q" = (x;})_, and TV = {0,2}. The interval [0, 1] is divided into three

subintervals as follows:
[0,7]U(z, 1 —=7]U (1 —1,1].

The parameter t, which determine the points separating the uniform meshes, is
defined by

r=min{%,\/8/(xlnN} . (37

Then, on the subinterval (7, 1 — 7], a uniform mesh with % mesh points is placed
and on each of the subintervals [0, 7] and (1 — 7, 1], a uniform mesh of % mesh
points is placed.

Similarly, the interval (1, 2] is also divided into 3 subintervals (1,1 + ], (1 +
7,2 — 7] ,and (2 — t,2], using the same parameter 7. In particular, when the
parameter t takes on its left-hand value, the Shishkin mesh §N becomes a classical
uniform mesh throughout from 0 to 2.

In practice, it is convenient to take

N =8k, k>2. (38)

. =N . . . .
From the above construction of € ', it is clear that the transition points {z, 1 — 7}
are the only points at which the mesh size can change and that it does not necessarily
change at each of these points. The following notations are introduced: h; = x; —
.Xj_1,hj+1 =Xj+1 —Xj, andiij =T, thenh; =Xj —Xj—1, hj— = Xj+1 — X/,
J =1{x;: h;r # h7}. For each point x; in the mesh intervals [0, ] and (1 — 7, 1],

xj—xj-1 =8Nz, (39)

and forx; € (r,1—1], x; —x;_1 = 4N~'(1 —21).
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5 The Discrete Problem

In this section, a classical finite difference operator with an appropriate Shishkin
mesh is used to construct a numerical method for (1) and (2) which is shown later
to be essentially first-order parameter-uniform convergent.

The discrete two-point boundary value problem is now defined to be

LYU(x;) = —e8*U(x;) + a(x;)U(x;) + b(x;)U(x; — 1) = f(x;) on QV,
U=uonTV, (40)
The problem (40) can be rewritten as
L{VU(xj) = —882U()Cj) +a(x;)U(x;) = g(x;) on Q N,
LYU(xj) = —e82U(x;) + a(x))U(x;) + b(x)U(x; — 1) = f(x;) on Q"
U=uonlV,

DiU(XN/z) = D+U(XN/2). (41)

This is used to compute numerical approximations to the solution of (1) and (2).
The following discrete results are analogous to those for the continuous case.

Lemma 7. Let conditions (3) and (4) hold. Then, for any mesh function ¥, the
inequalities W > 0 on TV, L{V\IJ > Oon Q{V LéV\IJ > 0on QQ’ and D+\IJ(xN/2)—

D~ W(xy2) < 0 imply that ¥ > 0 on 2.
Proof. Let j* be such that W(x;+) = min W(x;) and assume that the lemma is
j

false. Then W(x;+) < 0. From the hypotheses we have j* # 0, N.
Suppose xj* € V. W(xjx) = W(xjx—1) <0, WU(xj*y1) —W(xjx) = 0, so
§2W(x,+) > 0. It follows that
LYW(xjx) = —e82W(x;*) + a(x;=)¥(x;+) <0,
which is a contradiction. If x j» € QZN , a similar argument shows that
LYW(x ) = —e82W(xje) +a(xjo)W(x;=) + blx;«) W= — 1) <0,

which is a contradiction. Finally if x j+ = xy/2, then

D™ W(xys) <0< DYW(xys2) < D”W(xy2), by the hypothesis
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and so
\IJ(X%_I) = \II(XN/Z) = ‘IJ(X%_H) < 0.

Then LY W(x i _1) <0, a contradiction. This concludes the proof of the lemma.
An immediate consequence of this is the following discrete stability result. O

Lemma 8. Let conditions (3) and (4) hold. Then, for any mesh function ¥,
1 N 1 N .
W) = max W00l W0, 1L Wllgy. LY Wllgy (. 0=/ < N.
Proof. Consider the barrier functions
+ 1 N 1 N :
O~ (x;) = max {|¥(xo)|, [W(xn)l. e Wl L2 Wlgy}£W¥(x). 0<j < N.

Using the properties of a(x) and b(x), it is not hard to find that ®* (x ;) = 0 for

j=0N ,L{V(H)i(xj) > 0 forx; € Q{V and Lg@i(xj) > 0 forx; € QQ’ At
j=1,

DFO* (xn/2) = D™OF (xnj2) = DT W(xnj2) — D™ W(xny2) = 0.
Hence by Lemma 7, ®F >0on QN, which leads to the required result. m|

6 Error Estimate

Analogous to the continuous case, the discrete solution U can be decomposed into
V and W which are defined to be the solutions of the following discrete problems:

LYV(x;) = g(xj). x; € N, V(0) = v(0), V(xnj—1) = v(1-),

LYV(x;) = f(x)). x; € N, Vxnjpr) = v(14), V(2) =v(2)
and

LYW(x;) =0, x; € ", W(0) = w(0),
LYW(x;) =0, x; € 2", W(2) = w(2),
V(xn/a+1) + Wxna+1) = V(xnjo-1) + Wxnja-1),

D_W(XN/Z) + D_V(XN/Z) = D+W(XN/2) + D+V(XN/2).
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The error at each point x; € " is denoted by e(x;) = U(x;) — u(x;). Then the
local truncation error LY e(x;), for j # N/2, has the decomposition

LVe(x;) = LN(V —v)(x;) + LN (W —w)(x)).

The errors in the smooth and singular components are bounded in the following
theorem.

Theorem 1. Ler conditions (3) and (4) hold. If v denotes the smooth component
of the solution of (1) and (2) and V' the smooth component of the solution of the
problem (41), then, for j # N/2,

1LY (V =)l = C N7

=J=

v =

0 —1, (42)
N
2

If w denotes the singular component of the solution of (1) and (2) and W the
singular component of the solution of the problem (41), then, for j # N/2,

ILY(V =v)(x;)| <C N, +1=<j <N (43)

N
ILN(W —w)(x;)| SCN'InN, 0<j =5 -1 (44)
N _ N .

LYW =W SCN'ImN. S 4+1=j<N. (45)

Proof. As the expression derived for the local truncation error in V and W and
estimates for the derivatives of the smooth and singular components are exactly in
the form found in Chap. 6 of [7], the required bounds hold good.

At the point x; = Xxp/2,

(DT = D7)e(xnp) = (DY = D7)U —u)(xnp)
= (DT =D )U(xnp2) — (DT = D7 )u(xpn)2).

Recall that (Dt — D7)U(xyy2) = 0. Let h* = hy;, = h;/z, where /1y, =

XN/2 — Xnj2—1 and h;/z = XN/24+1 — XN/2-
Then

(DT = D7)e(xnyp)| = (DY — D )u(xy))|

'(D+ - ;—x) u(xn/2)

1
—ht, max |u” —hy,, max |u”
2 N2 n1€(1,2)|u ()l + 2 N/znze(o,1)|u ()]

Ch* max |u'(x)|.
x€(0.HU(1,2)

d
+ ‘(D_ - E) u(xn/2)

IA
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Therefore,

*

h
(DT — D7 )e(xnp)| < C - (46)

. . . =N
Define a set of discrete barrier functions on € by

)_, (1 + Va/e hy)
Y21+ Va/e hy)

o(x)) = @7)

;2 (1 + Va/e hiv)
Yz N/z(l + Vor/e i)

0<j=<N/2

N/2<j <N.

Note that
w0)=0, w(l)=1, w(2)=0 (48)

and from (47), for0 < j < N,
0<w(x;) =<1 (49)
For x; € Q_IN,

o(xj+1) —w(x;)

+ ) —
D7w(x;) = oo
o f‘,<1+\/ /& ) o
= i HN/2(1+ ) (1+\/a/8h1+1 1)
= Ja/sw(x;).
Therefore,
Dt w(x;) = Va/e w(x)). (50)
Dw(x;) = o(x;) —o(xj_1)

h;

_ 1 I _ (1 + Va/e hy) 1
hy Y20+ Vafe ) \ 1+ Jajeh,

= Ja/e (x))-

1
(+ Jajehy)
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Therefore,
1
D w(x;) = Vaje——— w(x)). 51
w(x;) 01/8(1 T Jal k) w(x;) (51
DYw(x;)— D w(x;)
2 N — J J
Fol) (hj +hj+1)/2
S S (SN S
- (hj+hjy1)/2 3 e (14 yajehj) ’
— 2_“ h; 1 w(x;)
e (hj+hie) \1 4 Jaje h; !
< 2_a w(x;).
3
Therefore,
2 20
Fw(x;) < . o(x;). (52)
Similarly, for x; € 2,
1
Dt ) — — Y, DT ) — .
w(x;) \/a/s(l n \/Ol_/é‘/’lj.H) o(x;) w(x;) voa/sw(x;)
and 82a)(xj) < 2?Ota)(xj). (53)
In particular, at x; = Xy, using (53), (51), and (48),
1 1
(Dt —=DHw(x;) = —o/e——— — o) ————
’ (1 + ya/e hf,) (1 + yo/e hy,,)
C
< (54)

From (52) and (53),

—882w(xj) > =2 w(x;).
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Therefore

LYw(x;) = —e8w(x;) + a(x;)w(x;)
> 2 w(x;) +a(x;)w(x;) (55)
= (a(x;) — 2a) w(x;).

and

Léva)(xj) —882w(xj) +a(x;)o(x;) +b(xj)w(x; —1)
—2a w(x;) +a(x;)o(x;) + b(x;) (56)

(a(x;) —2a) w(x;) + b(x;).

v 1

We now state and prove the main theoretical result of this paper. O

Theorem 2. Let u(x;) be the solution of the problem (1) and (2) and U(x ;) be the
solution of the problem (41). Then, for 0 < j < N,

(U —u)(x;)] <C N 'InN.
Proof. Consider the mesh function W given by
WU(x;) = C,N'InN + Cy/a/e i*w(x;) £ e(x;), 0<j <N,
where C; and C, are constants. Then,
LYW(x;) = Cia(x;,)N"'InN + Cyv/a/s i*LYw(x;) £ LVe(x;). (57
Using (55) in (57) and Theorem 1,
L¥W(x;) > Cia(x;)N"'In N—i—CZM h*(a(x;)—2a)w(x;) £ C N"'InN > 0,
for appropriate choices of C; and C,. For x; € QN
LYW(x;) = Ci(a(x;) +b(x,)N'InN + Cov/a/e h*LY w(x;) £ LY e(x)).
(58)
Using (56) in (58),
LYW(x;) >Ci(a(x;) + b(x;))N"'InN
+ Cyva/e h*((a(x;) — 2a) w(x;) + b(x;)) £ C N~ InN.
G

A
Let A(x;) = (a(x;) — 2a)w(x;) + b(x;)). Then choosing C; > # + C, and
. . . o
Theorem 1, LY W(x;) > 0.
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Further,

DTW(1)— D™W¥(1)

IA

—C,

IA

Ch*

*

0, for proper choice of C,.

h
4+ C —, using (46) and (54)
&

Also, using (48), ¥(0) = C;N~'InN >0, ¥(2) =C,N~'InN > 0.
Therefore, using Lemma 7 for W, it follows that W(x;) > O forall0 < j < N.
As, from (49), w(x;) <1 forO0 < j <N,

(U —u)(x;)] <CN'InN,

which completes the proof.

7 Numerical Illustrations

87

The e-uniform convergence of the numerical method proposed in this paper is
illustrated through two examples presented in this section.

Example 1. Consider the BVP

—eu" (x) + 2u(x) —u(x — 1) = 0, for x € (0,1) U (1,2),

u(x) = 1forx € [-1,0], u(2) = 1.

The maximum pointwise errors and the rate of convergence for this BVP are

presented in Table 1.

Table 1 Values of DY, DV, pN, p* and C;’,\L for « = 0.9

Number of mesh points N

B 64 128 256 512 1,024

20 0.252E—02  0.128E—02  0.644E—03  0.323E—03  0.162E—03
273 0.741E-02  0.385E—02  0.195E—02 0.976E—03  0.488E—03
276 0.880E—02  0.577E—02  0.348E—02  0.201E—02  0.114E—02
279 0.881E—02 0.577E—02  0.348E—02  0.201E—02  0.113E—02
2712 (0.881E—02 0.577E—02 0.348E—02 0.201E—02  0.113E—02
DN 0.881E—02 0.577E—02  0.348E—02  0.201E—02  0.114E—02
pV 0.610E+00 0.732E4+00 0.792E+00 0.817E+00

C;V 0.323E+00 0.323E+00 0.297E4+00 0.261E+00  0.226E+00

Computed order of ¢-uniform convergence, p* = 0.6097

Computed e-uniform error constant, C 1?’]* = 0.3227
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Table 2 Values of D;V, DV, pN, p* ,and C;V* for « = 0.9

Number of mesh points N

£ 64 128 256 512 1,024

20 0.202E—02  0.102E—02 0.511E—03  0.256E—03  0.128E—03
273 0.577TE—02 0.297E—02 0.149E—02 0.743E—03 0.371E—03
276 0.679E—02  0.442E—02 0.264E—02 0.151E—02 0.854E—03
279 0.673E—02 0.438E—02 0.261E—02 0.150E—02 0.842E—03
2712 0.670E—02 0.437E—02 0.261E—02 0.149E—02 0.839E—03
DV 0.679E—02  0.442E—02 0.264E—02 0.151E—02 0.854E—03
pY 0.618E400 0.745E400 0.803E400 0.824E+400

cV 0.255E4-00 0.255E4-00 0.233E4-00 0.205E4-00 0.178E+4-00

Computed order of e-uniform convergence, p* = 0.6184
Computed e-uniform error constant, C ,fv* = 0.2548

Example 2. Consider the BVP
—su(x) + 2+ x)u(x) —u(x —1) =0, for x € (0,1) U (1,2),
u(x) = 1forx € [-1,0], u(2) = 1.

The maximum pointwise errors and the rate of convergence for this BVP are
presented in Table 2.
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Optimal L*°-Error Estimate for a System
of Elliptic Quasi-Variational Inequalities
with Noncoercive Operators

M. Boulbrachene

Abstract This paper deals with the standard finite element approximation of a
noncoercive system of quasi-variational inequalities (QVIs) arising in stochastic
control problems. We improve a result obtained in Boulbrachene (Comput. Math.
Appl. 45, 983-989, 2003) and establish the optimal L°° convergence order making
use of the concepts of subsolutions and discrete regularity.

Keywords System of quasi-variational inequalities ¢ Finite elements e
Subsolution * Discrete regularity ¢ L°°-error estimate

1 Introduction

We are concerned with the standard finite element approximation in the L°° norm of
the noncoercive problem associated with the system of quasi-variational inequalities
(QVIs): find U = (u',...,uM) € (H} ()M such that

al,v—u)=(fl,v—u)Vve H(RQ)

W <k+utt v<k+4+ut! ) (1)
uMFL = 1

This system appears in stochastic control problems with switching [1, 2]. Here Q2

is a bounded domain of RN, N > 1, with smooth boundary T, (.,.) denotes the
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standard inner product in L?(2), f' are positive functions in W2 (Q), k is a
positive number, and a' (1, v) are M bilinear forms

A A ou dv LA ou ;
1 — z l' 2 bl 1 d
@) /s; ( @i (%) dx; Ox * k=1 ) 8ka +aO(X)W) *

1<jk<N

assumed to be noncoercive. The coefficients aj. L (X), bi(x),al(x) are in
C*Q), x € Q, and satisfy al(x) = ¢ > 0,(x € Q ¢ > 0), and
Y iaen @ (OEE Z a8’ (x € Q, £ € RY, a>0).

Componentwise, #' can be regarded as the solution of the variational inequalities
(VI) with source term f and obstacle k 4+ u'T'. Let us then adopt the notation
W =o(flk+uth),i =1,2..., M for system (1).

Now, let 2 be decomposed into triangles and let 7, denote the set of all those
elements; i > 0 is the mesh size.We assume that the family ¢, is regular and quasi-
uniform. Let also V), be the finite element space consisting of continuous piecewise
linear functions vanishing on I', and {¢,}, s = 1,2,...,m(h) the basis of V;. The
discrete counterpart of (1) consists of seeking (u},, . u,ﬂ"’ ) € (Vi) such that

ai(uz,v—ufl) = (fi,v—u;l) Vv eV,

v§k+u2+l, u§1 §k+u2+l , 2
M+1 _ ]
w, T =u,

where, componentwise, uﬁl =on(fl, k+ uﬁl“) denotes the solution of the discrete
VI with source term f and obstacle k + u;fl.

The finite element approximation of the coercive problem was carried out in [3]
and optimal error estimate in the L° norm was obtained. Regarding the noncoercive
problem, a quasi-optimal error estimate has been derived in [4], that is,

i i 2 3

max || u' —u < Ch” |logh|’.

max |~ oo < CA* logh|
In the present paper, we get rid of the “extra-|log /| factor” and establish the optimal
convergence order:

max || u' —u} < Ch?|logh|.

max | o =1} oo < CH* logh|
For that, we shall employ the concepts of subsolutions and “discrete regularity.”
More precisely, we use the characterization the continuous solution (resp. the
discrete solution) as the maximum elements of the set of continuous subsolutions
(resp. the set of discrete subsolutions). The so-called discrete regularity plays a
crucial role in deriving the optimal order as it permits to replace the nonsmooth

obstacle functions k + u;fl appearing in problem (2) with functions in W27 ().
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2 Background

In order to deal with the noncoercive problem, we consider the equivalent formula-
tion: find (u', ..., uM) € (HJ(2))” such that

b, v—u')= (f +Au',v—u') Vv e H) ()
W <k+ut v<k+ut! , 3)
M+l — 1
where b’ (u,v) = a' (u,v) + A(u,v), and A > 0 is large enough such that b'(.,.) are
strongly coercive on H'(Q),i.e, b’ (v,v) >y ||v||§11(9), y > 0.

System (1) or (3) has a unique solution which belongs to (W27 (Q))M,
1 < p < oo [2]. Below, we give some useful qualitative properties enjoyed
by the solutions of system (1) and (3) respectively. These properties are greatly
needed in the proof of the main result.

Notation 1. Letk, k be two positive constants and let (f',..., fM), (fl, cees fM)
be two families of source terms.We denote by W = o(fik + uth and
W =o(fl,k+uTh,i=12..., M, the corresponding solutions to system (1).

For the sake of simplicity, we shall adopt, as in [3], the notation «' = o (f',k)
instead of ' = o (f', k +u't1).

Theorem 1 (Continuous Lipschitz dependence). Let C be a constant such that
Cal(x) > 1. Then, we have
o)

max | =i o= C (|k =k + | £/ = /"

1<i<M
Proof. We adapt [3]. O
Definition 1 (Continuous subsolution). (w',...,wM) e (H;(2))™ is said to be

a subsolution for the system of QVIs (1) if

biw',v) < (f'+Awi,v) Vve HI(RQ), v=0

w <k 4+wtl v<k4+wt! . 4)
WM+l —

Theorem 2 ([4]). Let X denote the set of such subsolutions. Then, the solution of

system of QVIs (1) is the maximum element of the set X.

As in the continuous situation, one can tackle the discrete problem by considering
the equivalent formulation

b"(uz,v—u};) > (f1 +Au2,v—u§l) Vv eV,
v§k+u;l+l, u2§k+u2+l . (5)

M+1 _ 1
uy = Uy
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For that, we need the discrete maximum principle (d.m.p). In other words, we
assume that the matrices with generic coefficients b (¢, 0) Vi = 1,2,.... M,
are M -Matrices [5, 6]. Under this d.mp, system (2) or (5) has a unique solution [4].
Furthermore, as in the continuous case, we have the discrete analogs of Theorems 1
and 2.

Theorem 3 (Discrete Lipschitz dependence). Let u), = o,(f". k), i, =
on(f'. k), and let C be a constant such that Cal(x) > 1. Then, under the d.m.p,
we have

max || u}, — it} ||oo§C(’k—lE’ + Hf—f”oo)

I<i<M

Definition 2 (Discrete subsolution). (wi.....w}') € (V) s said to be a
subsolution for the system (5) if

bi(wz,ws) < (fi —i—/\w;l,(ps) Yoo, s =1,...,m(h)

. i

w}}‘dik + w;l+ . (6)
1

W o =W

Theorem 4 ([4]). Let X, denote the set of such subsolutions. Then, under the d.m.p,
the solution of system of QVIs (5) is the maximum element of the set X,.

3 The Main Result

Theorem 5. There exists a constant C independent of both h and k such that

i < 2 2
Jmax || u' = [loo= Ch” [log h[".

The optimal order requires a special care in the smoothing of the obstacle
functions k + u;1+1. This is ensured by the so-called discrete regularity.

Lemma 1 (Discrete regularity). There exists a family of right-hand side

{gl(h), gM (h)}h>0 and a constant C independent of h such that ||gi L) ||oo <C
and

b' (), v) = (&', v) Vv € V). (7
Proof. We adapt [7, 8]. O

Let "™ denote the associated continuous solution. Then,

I u I werg) = € ®)



Optimal L°°- Error Estimate for a System of Elliptic Quasi-Variational. . . 93

and, therefore, thanks to [9], we have
| — |, < Ch*[logh| Vi =1,2,.... M. 9)
Let us now introduce the following variational inequalities (VIs):
i@, v—u) = (ff + W v —u) Vv e HI(RQ)

W <k+u Ty <k 4 it . (10)
UMALG) — 1)

Let us denote by ' = o(f! + Au" k + u'+1-") the solution of the above VI
with source term f7 + Au’" and obstacle k + ' t'® i =1,2,... M.

Lemma 2.
| i —ul) loo< Ch*[logh)* Vi =1,2,..., M. (11)

Proof. Let us denote by @;, = o5(f" + Aul® k + u'+1-) the approximation
of @ = o(f" 4+ Aut® k + /1) Since ' 1" € W?P(Q), making use of
standard results on L°° error estimate for elliptic VIs [10], we have

—1 - 2 2 s
— Wih = =1,Z,..., .
| @ — @ loo< Ch*|logh|® Vi =1,2,....M
a

On the other hand, since u}, = o3, (f" + Au,k + u,*'), combining Lipschitz
dependence with respect to both the right-hand side and the obstacle, for elliptic
VIs and (9), we get

| @i — 1t oo

= C(|7 + ) = (fF + M) | o + [k + w0 — (ke + D] )

< CA(| "™ =ty floo + [ ' F'® =1 ¥ |loo) < Ch? [logh*.
Hence

1@ =y lloo=Il @ = &in lloo + || @in — uj lloo< Ch* |logh|?.
Lemma 3.
|u® =@ | < Ch*[logh|* Vi =1,2,..., M. (12)

Proof. Since

0 =, = 0 ]+ iy~
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Then, making use of (9) and (11), we get
™ — @' | < Ch*[logh|*.
Theorem 6. There exists (B4, ..., M) such that
W <u and " —u |, < Ch*[logh® Vi =1,2,....M.

Proof. Indeed, ' being the solution of the VI (10), it is also a subsolution for the
same VI, that is,

b, v) < (ff 4+ Au™ v)Vy e H}(Q),v>0
W <k4+u 0y <k 4y t®
yMALB) — 1)

Then

bi(ﬁi,v) < (fl iy ”ui,(h) — i “00 + )Lljti,v)
W<k |u O Gt
gMA1.0) — 1.0 g

So, using (12), we get

b, v) < (f1 + ACh% |logh|* + Ait',v)
i <k+ Ch*|logh)* + #™!
gM+L0 — 100

that is, (i, .. L uM ) is a subsolution for the system of QVIs (1) with source
term (f1 + ACh2 |loghl*,..., fM + ACh? |logh|2) and parameter k = k +

Ch?|logh|*. Let us denote by U’ = o (f + ACh? |logh|*, k + Ch% |logh|*), i =
1,2..., M, the solution of such a system. So, as u = U(fi,k),i =1,2...,M,is
the solution of system (1), making use of Theorem 1, we have

|u —U" o= C
()k — (k + ACR? |1ogh|2)( + Hf" — (/1 + ACh? |logh?) H ) = I flog hP?.
o0
Hence, making use of Theorem 2, we obtain
i <U'" <u + Ch?|logh|
and, taking

B =it — Ch? |logh|®
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we clearly have

ﬁi,(h) < ui .
Finally, using (11), we obtain

|60 — o = | = C2 loghl* —u

oo

Theorem 7. There exists (a,i, .. ,a,’lw) such that

oz}; < uZ and ||aﬁl —u Hoo < Cl12|logh|2 Vi=1,2,..., M.

Proof. We only sketch the proof which uses the VIs:
br @, v—uy) Z (f" + Au',v—iy) Vv eV,

iy, < rp(k +u' ™), v <k +u'th)
M+1 1
u

=u
and combines the estimate

| ' — it |loo< Ch*|logh®> Vi =1,2,.... M
with Theorems 3 and 4 to get the discrete subsolution

o) =i, — Ch? [logh|?

satisfying (13).

< Ch?|logh|*.

95

13)

(14)

5)

Now, combining Theorems 6 and 7, we are in a position to derive the main result.

Proof. Indeed, making use of both Theorems 6 and 7, we have
ul, < B0 4 Ch? [log h)?
<u' + Ch*|logh|?
<al + Ch*|logh|*.
Thus

| —uj o= Ch?[logh|® Vi = 1.2,.... M.

ad



96

M. Boulbrachene

References

10.

. Evans, L.C., Friedman A.: Optimal stochastic switching and the Dirichlet problem for the

Bellman equations. Trans. Am. Math. Soc. 253, 365-389 (1979)

. Lions, P.L., Menaldi, J.L.: Optimal control of stochastic integrals and Hamilton-Jacobi-

Bellman equations (part I). STAM Contr. Optim. 20, 58-81 (1982)

. Boulbrachene, M., Cortey-Dumont, P.: Optimal L°° error estimate of a finite element

approximation of Hamilton-Jacobi-Bellman. Numer. Funct. Anal. Optim. 41, 421-435 (2009)

. Boulbrachene, M.: L error estimate for a system of elliptic quasi-variational inequalities

with noncoercive operators. Comput. Math. Appl. 45, 983-989 (2003)

. Ciarlet, P.G., Raviart, P.A.: Maximum principle and uniform convergence for the finite element

method. Comput. Methods Appl. Mech. Eng. 2, 17-31 (1973)

. Karatson, J., Korotov, S.: Discrete maximum principle for finite element solutions of nonlinear

elliptic problems with mixed boundary conditions. Numer. Math. 99, 669-698 (2005)

. Cortey Dumont, P.: Contribution a I’ approximation des inequations variationnelles en norme

L°°. C.R. Acad. Sci. Paris Ser. I Math. 296, 17 (1983)

. Cortey Dumont, P.: Sur I’ analyse numerique des equations de Hamilton-Jacobi-Bellman.

Math. Methods Appl. Sci. 9, 198-209 (1987)

. Nitsche, J.: L>-convergence of finite element approximations. In: Mathematical Aspects of

Finite Element Methods. Lecture Notes in Mathematics, vol. 606. Springer, Berlin (1977)
Cortey-Dumont, P.: On the finite element approximation in the L°° norm of variational
inequalities with nonlinear operators. Numer. Math. 47, 45-57 (1985)



Convergence of Finite Element Approximations
for Generalized Marguerre—von Karman
Equations

A. Ghezal and D.A. Chacha

Abstract In this work, we establish the convergence of a conforming finite element
approximations to the generalized Marguerre—von Karmdan equations. More pre-
cisely, we consider here the generalized Marguerre—von Kdrmén equations, which
constitute a mathematical model for a nonlinearly elastic shallow shell subjected to
boundary conditions of von Kdrman’s type only on a portion of its lateral face, the
remaining portion being free. We first reduce the discrete problem of these equations
to a single discrete cubic operator equation, whose unknown is the approximate
of vertical displacement of the shallow shell. We next solve this discrete operator
equation, by adapting a compactness method due to J.L. Lions and on Brouwer’s
fixed point theorem (Lions, Quelques méthodes de résolution des problemes aux
limites non linéaires, Dunod, Paris, 1969). Then we establish the convergence of a
conforming finite element approximations to these equations.

Keywords Marguerre-von Kédrmadn equations ¢ Finite element method e
Compactness method

1 Introduction

The two-dimensional Marguerre—von Kdrman equations for nonlinearly elastic
shallow shells were originally proposed by Marguerre [1] in 1938 and von Karman
and Tsien [2] in 1939; they generalize the equations of von Karmén for thin elastic
plates proposed by von Kdrman [3] in 1910.

In 1986, Ciarlet and Paumier [4] justified the classical Marguerre—von Karman
equations by means of a formal asymptotic analysis. Then, in 2002, Gratie [5] has

A. Ghezal (P<) » D.A. Chacha

Laboratoire de mathématiques appliquées, Université Kasdi Merbah,

B.P 511, Ouargla 30000, Algérie

e-mail: ghezal.abderrezak @univ-ouargla.dz; Chacha.dj@univ-ouargla.dz

A.R. Ansari (ed.), Advances in Applied Mathematics, Springer Proceedings 97
in Mathematics & Statistics 87, DOI 10.1007/978-3-319-06923-4_ 9,
© Springer International Publishing Switzerland 2014


mailto:ghezal.abderrezak@univ-ouargla.dz
mailto:Chacha.dj@univ-ouargla.dz

98 A. Ghezal and D.A. Chacha

generalized these equations, where only a portion of the lateral face is subjected to
boundary conditions of von Kdrman’s type, the remaining portion being free. She
showed that the leading term of the asymptotic expansion is characterized by a two-
dimensional boundary value problem called generalized Marguerre—von Kdrman
equations. In 2006, Ciarlet and Gratie [6] have established an existence theorem for
these equations. In the same way but for the dynamical case, we quote the previous
works [7, 8], where we recently identified the dynamical equations of generalized
Marguerre—von Karman shallow shells and we established the existence of solutions
to these equations using compactness method of Lions [9]. In this direction, we
quote also the previous work [10] for justification of the generalized Marguerre—
von Karmén equations with Signorini conditions.

For numerical approximations, some studies have been done for the von Kdrman
equations. Miyoshi [11] studied the mixed finite element method for these
equations. Kesavan [12, 13] proposed an iterative finite element method of the
bifurcation branches near simple eigenvalues of the linearized problem of von
Karman equations and mixed finite element method for the same problem. Brezzi
[14] and Brezzi et al. [15, 16] analyzed a finite element approximations of von
Karman plate bending equations and studied a Hellan-Herrmann-Johnson mixed
finite element scheme for the von Karman equations. Reinhart [17] proposed
an approximation of the von Kdrmén equations using a Hermann-Miyoshi finite
element scheme. Ciarlet et al. [18] studied the finite element method for the
generalized von Kdrman equations.

The objective of this study is to extend the results which studied by Ciarlet et al.
[18] to the generalized Marguerre—von Karman shallow shell.

2 Generalized Marguerre-von Karman Equations

Let @ be a connected bounded open subset of R? with a Lipschitz-continuous
boundary y, w being locally on a single side of y, and we assume 0 € y and we
denote by y(y) the arc joining O to the point y € y. Let y; be a relatively open
subset of y such that length y; > 0 and length y, > 0, where y, = y\y;. The
unit outer normal vector (v,) and the unit tangent vector (z,) along the boundary y
are related by 1y = —v, and 7, = v;. The outer normal and tangential derivative
operators v, 0, and 7,0, along y are denoted respectively by d, and d,. As shown
in [6], the generalized Marguerre—von Karman equations are written as

—dupmap(V2E) = [0, + 0] + finow,
A*® = —[£.& + 20 inow.
é‘_: avé = 0 onyy,
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maﬂ(Vzé)vavﬁ = 0on y»,
aamaﬁ (Vzg)vﬂ + at(maﬁ(vzg)vafﬂ) =0on y,,
® = Pyand 9,0 = O ony,

where

1( 44
map(V2E) = —5{ = A€8aﬁ+4u3aﬂ§},

A+2u

Do(y) = —)’1/ hady + s hidy +/ (x1hy — x2h)dy, y €y,
r(») r(y) ()

@1(y) = -y hydy + Vz[ hdy, y €,
y(») ()

[D,&] = 011 D020E + 020P011E —2012P0,€.

The known functions @ and f are, up to constant factors, the function that defines
the middle surface of the shell and the resultant of the vertical forces acting on the
shell. The functions ®( and ®; are known functions of the appropriately “scaled”
density (hy) : y1 — R? of the resultant of the horizontal forces acting on the
portion of the lateral face of the shell with y; as its middle line and the functions
he € L*(y) defined by ho = hg on Y1, hy = 0on 2. The constants A and u are the
Lamé constants of the material. The unknown £ : @ — R is, up to constant factors,
the vertical component of the displacement field of the middle surface of the shell
and the unknown ® : @ — R is the Airy function.

3 The Continuous Cubic Operator Equation

Let us briefly recall some of the results obtained in [6] concerning the properties of
the continuous cubic operator equation.
Let y € H?(w) denote the unique solution of the boundary value problem:

A’f=1[0.0]linw, (1)
¥=®pand 9,y = &, ony. 2

Let F € V(w) denote the unique solution of the boundary value problem:
— dupmap (VPF) = finw, (3)

F=0,F =0o0ny, )
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Mg (V2F) vgvp = 0 on ys, *)
damap (V2F) vg + 0, (map (V2 F) vet8) = 00n ys, (6)
where
V(o) = {n € H*(0);n=29,n=0o0ny}.
Let the bilinear mapping:
B : H*(») x H*(w) — H(w),

be defined as follows: for each pair (£,7) € H?(w) x H?(w), the function B(§,n) €
H () is the unique solution of the boundary value problem:

A’B(E,n) = [£, 1] ino, (7
B n)=0,B(¢n)=0o0ny. ®)
Let the second bilinear mapping:
B: H*(w) x H*(0) — V(o),

be defined as follows: for each pair (,§) € H 2(w) x H?*(w), the function
B(®,£) € V(w) is the unique solution of the boundary value problem:

— apmap (V2 B(D,§)) = [, €] in o, ©)
B(®,§) = 3,B(®.£) =0ony, (10)

Mo (V2 B(®, €))vevs = 0on ys, (11)
ot (V2 B(D, £))vp + 8 (map(V B(D,§))va1p) =00nyr.  (12)

First, Ciarlet and Gratie [6] have shown that the generalized Marguerre—von Kdrméan
equations are reduced to a cubic operator equation, such that a pair (¢, ®) € V(w) x
H*(w) satisfies the generalized Marguerre-von Kdrmén equations if and only if the
function £ = (0 + §) € V(w) satisfies the cubic operator equation:

CE+U-LE-F=0, (13)
and the Airy function ® € H?(w) is given by

® = j— BE.§), (14)
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where the cubic mapping C : V(w) — V() is defined by C(n = B(B(n 1,
the linear mapping L : V(w) — V(w) i is defined by Ln=B(%.n),and F = O+F.

Noting that, finding the solution é of the above operator equation (13) is
equivalent to solving the following variational problem:

(P) o Finflf: € I{(a)) such that,
(CE+U—-L)E—F,n))=0forall n € V(w),

where ((.,.)) is the inner product on V(w) defined by ((¢, 7)) = —fw Mmep(V3E)
dupndw and let ||.|| denote the norm associated with the inner product ((., .)) which
is equivalent to the norm |.|| 52(,) over the space V().

Next, Ciarlet and Gratie [6] have shown that, under the assumptions (w is simply
connected, the functions A, satisfy natural compatibility conditions, and the norms
[126ll22(,,) are small enough), the generalized Marguerre-von Kdrman equations
have at least one solution (£, ®) € V(w) x H?(w) in the sense of distributions.

The cubic operator equation (13) generalizes an operator equation originally
introduced by Berger [19] and Berger and Fife [20], then used by Ciarlet et al. [6,21]
for analyzing the generalized von Kdrméan and Marguerre—von Kdrman equations.

4 The Discrete Cubic Operator Equation

We assume that y is a polygon. Let W, C H*(w), Vi, C V(w), Von C HZ(w),
be standard conforming finite element spaces satisfying the minimal conditions of
[22, Theorem 6.1-7]. Strong and weak convergence are noted — and — respectively.
All convergence are meant to hold as 7 — 0.

Let y, € W, denote standard finite element approximation of y € H?(w), which
therefor satisfies || x» — ¥l #2(w) — 0.

Let Fj, € V), denote the unique solution of the variational equation

—/ 8a,3mo,,g(V2Fh)nhda) = / fnpdo for all n, € V,,
w w

which satisfies || Fj, — F || g2(4) — 0.

Let the bilinear mapping Bj, : H?(w) x H*(w) — Vy, be defined as follows:
for each pair (§,7) € H*(w) x H*(w), the function By, (§.7) € Vi, is the unique
solution of the variational equation

f ABy(§,n)Agrdw = f[é, nlshdw for all ¢, € Vop,

0]

hence, for (£, 1) € H?(w) x H?(o) fixed, | B;(§.n) — BE. )|l n2(w) — 0.
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Finally, let the bilinear mapping B), : H*(w) x H*(®) — V be defined as
follows: for each pair (®, ) € H?(w) x H*(w), the function B;,(®, £) € V is the
unique solution of the variational equation

— [ Bupmap (7 Bu(@. Do = [ [®.Elmdo forall y € i,

hence, for (®, ) € H*(0) x H?(w) fixed, || By(®. &) — B(®.€)]| 520 = O.
For each i > 0, the discrete problem is then defined through the following
theorem:

Theorem 1. The discrete problem of generalized Marguerre—von Kdrmdn equa-
tions consists in finding (&, @) € Vi, x Wy, such that &, satisfies the discrete
operator equation:

Cu(&) + (I — L), — F, =0inVj, (15)
and ®y, is given by

@) = fn — Bu(En. &) in Wi, (16)

where the discrete cubic mapping Cy © Vi — Vi is defined by Ch~(nh)
Bh(B;,(m, Mh),Mn), the linear mapping Ly . Vi, — Vj is defined by Lyn, =
By(nmn), € = 6 + &y and F = 6 + Fy.

Proof. The discrete problem of generalized Marguerre-von Kérmén equations
consists in finding (Eh, ®;,) € V), x Wy, such that &, satisfies the variational equation

- / dupap(V2(Ey — 0))mpdo = / (1, &) + f)mdo forall gy, € V,, (17)

and @, satisfies the variational equation

/ A2®),. 9, = /([é, 6] — [n. Ex])Ondw for all &, € W, (18)
w @
By definition of the function jj and the mapping By, (18) imply that
@ = fn — Bu(En. €4) in W,
By definition of the function F}, and the mapping Bj, (17) imply that

&y — Fi = Bu(®y, &) in V. (19)
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Eliminating ®;, between these two operator equations (16) and (19) yields the single
operator equation

Bi(Bi(En. ). &) + & — Bu(fn. &) — Fy = 0in V.
Then, we conclude that éh € V), is found by solving the discrete operator equation:

Ci(&n) + (I — L)y — F, = 0in V.

5 Convergence

Note that finding g?h is equivalent to solving the following discrete variational
problem:

Find §h € Vj, such that,

P\ (o) + (I = La)Er — Fiin)) = 0 forall iy € Vi,

where ((., .)) is the inner product on V}, defined by

(Grin)) = — / Mo (V2E1) g i d o,

w

In order to show that the discrete variational problem (P}) has at least one solution
in Theorem 4 below, we will need the following two lemmas:

Lemma 2. The trilinear form

n.c) € [HO)F — / (¢, nlcdw € R,

is continuous; moreover, becomes symmetric form if at least one of the three spaces
H?(w) is replaced by the space Hg(w).

Proof. The proof is detailed in the proof [part (i)] of [23, Theorem 5.8-2] and in the
proof [part (i)] of [18, Theorem 4.1]. O

Lemma 3. The bilinear mapping By, is sequentially compact, in the sense that, if

&) = (E,0) € [H (@),

then

By (En,mn) — Bu(€,n) € Hy(w).
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Proof. We define the following inner product on Hi ()

(to)a = f A¢Agda.

and let ||. || denote the norm over the space Hg(w), which corresponds to the inner
product (., .)A-
From the definition of the mapping Bj,, we get

(Bu(E. 1) 6)a = / £ nledo,

forall (§,7,¢) € [H*()]* x H}(»).
Then there exists a constant ¢; such that

I1Bu(&: Mlla = crllEllwrswllnliwisw). (20)

for all (£,7) € [H*(w)]?.
Let (£,,1,) — (£,1) € [H*(w)]?, and using the bilinearity of Bj,, we have

By (nonn) — Br(6.n) = Bp(§n —&.n) + Brn(E.nn — 1) + Bu(§n — &, mn — ).

From (20), it follows that there exists a constant ¢, such that

I Bh(Ens nn)=Br(€. M lla = c2(lEn—Ellwraw) Illwr4@)HIEwrs @ ma—nllw14 )
H1Er — Ellwra 1mn — llw14w))-

The compact imbedding of H?(w) into W'*(w) implies that Bj(£,,1,) —
By(&,n) € HO2 (w), for more details see the proof [part (iv)] of [23, Theorem 5.8-2].
O

Theorem 4. Assume that w is simply connected, the functions hy : y1 — R satisfy
natural compatibility conditions, and their norms |hq| 12, are small enough.
Then

(621

(a) There exists a constant M such that, for each h > 0, the disgrete variational
problem (Py,) has at least one solution &, € V), that satisfies ||&,|| < M .

(b) Let (£)n>0 be any subsequence that weakly converges in H*(w), let £ € V()
denote its limit, and let the associated subsequence (Dy,)~o be defined by (16).
Then £ is a solution of the variational problem (P), and

(&, @) — (£, @) in H*(0) x H*(w),

where @ is defined by (14).
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6 Conclusion and Commentary

This study is concerned with finite element method for approximating solutions
to the generalized Marguerre—von Karmén equations, solving these equations
amounts to solving a single discrete cubic operator equation. Then we establish
the convergence of a conforming finite element approximation to these equations,
using weak regularity on solutions, but in order to get an error estimate it needs
more regularity.

Note that, in the case & = 0 in @, we recover the generalized von Karman
equations.

As future work, we will extend these results to the dynamical case.
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The Maple Program Procedures at Solution
Systems of Differential Equation with Taylor
Collocation Method

S. Servi, Y. Keskin, and G. Oturang

Abstract In this paper, a maple algorithm Taylor collocation method has been
presented for numerically solving the systems of differential equation with variable
coefficients under the mixed conditions. The solution is obtained in terms of
Taylor polynomials. This method is based on taking the truncated Taylor series
of the function in equations and then substituting their matrix forms in the given
equation. Hence, the result of matrix equation can be solved and the unknown Taylor
coefficients can be found approximately. The results obtained by Taylor collocation
method will be compared with the results of differential transform method and
Adomian decomposition method.

Keywords Taylor collocation method ¢ Maple program

1 Introduction

Numerical methods which are based on algorithm and given solutions fastly, are
come into prominence for solution of differential equations are encountered in
applied mathematics and some of engineering problems, don’t have analytical
solutions or have so difficult and time-consuming solutions. One of these methods
is Taylor collocation method. Taylor collocation method, which is given for the
solution of systems of linear differential equations [1], is developed to find the
approximate solutions of high-order systems of linear differential equations with
variable coefficients.
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2 Taylor Collocation Method

The Taylor method is developed to find an approximate solution of high-order
linear differential-difference equations, integro differential equations with variable
coefficients under the mixed conditions [2]. The solution is obtained in terms of
Taylor polynomials. Firstly, this method is based on taking the truncated Taylor
series of the function in equations and then substituting their matrix forms in the
given equation. Hence, the result of the matrix equation can be solved and the
unknown Taylor coefficients can be found approximately [1,3-6].

mth-order linear differential equation with variable coefficients

Y Px)yP(x) = f(x), a<x<b M

with the mixed conditions

m—1

Z [aij y V(@) + by (B) + c;jy ()] =Ai,i =0,1,....m—1;a<c <b
j=0
(2)
then we can write the Eq. (1)

Pu(x)y™(x) + - + Pr(x)yD(x) + Po(x)y(x) = f(x),a<x<b (3

and the approximate solution is expressed in the truncated Taylor series,

Ny
y(x):Zyn—'(c)(x—c)”,afx,cfb,sz. 4)

n=0

Here P;(x) (k =0,1,...,m) f(x) are functions defined on a < ¢ < b; the real
coefficients a; ;, b; j, ¢; j, A; are appropriate constants. N number shows till which
term of the series it will be expansion and y(c) are the Taylor coefficients to be
determined. We use collocation points at defined interval of the problem to find the
Taylor coefficients.

a=xg<x]<--<xy=5b

and the collocation points,

b—a
X;i=a-+1i ,i=012,...,N

then we can put series (3) in the matrix form

[y(x)] = XMpA (5)
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where

X=[1 (x—rc¢) (x—c)z---(x—c)"]

A=[yO() yD(c) y2(c) - y(e) |

3000
0%()...0

\ 1
M()= 005"'0
000,

Firstly, we substitute x; Taylor collocation points in Eq. (5):

y(xi)] =X;MoA; i =0,1,...,N

Xi=[1(x;i—0)(x;i =) (xi — )" ]

and

[y (x0)] = XoMoA
[y(x1)] = X1 MoA

[y(xn)] = Xy MoA
YO = cMyA,
where the matrixes form Y © and C:

YO =[y(x0) y(r1) y(2) - yr) |
I(X()—C) (X()—C)2
| _ RY)

C:[X()xl...xzv]tz . (XI. ¢ . K

L (xw — ) (xy — )

y®(c) are the matrix forms of the derivates functions

e (=)
e —o)
(xN;c)N

[y (x)] = XM A,k =0,1,...,m < N.

We substitute x; Taylor collocation points in Eq. (8),

YO =CM A, k=0,1,..., m <

N7
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(6)

)

®)

€))
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where matrix ¥ ®)
Y© = [y® (xg) y® (1) yE (x2) ... yP ) ]

We substitute x; Taylor collocation points in Eq. (2),

m
PYO 4+ YD 4o 4 P YW =For Y PY® =F, (10)
k=0
where matrixes Py and F fork =0,1,...,m <N,
Pr(xg) O -+ 0 S (xo0)
Sf(xr)
P = 0 Pr(xy) F = . ,
0 0 o PeCew) d iy iiyevan) AN PV

We substitute ¥ ) Taylor collocation points in Eq. (9),

> P CMp A=F. (1)

k=0

As the abovementioned matrixes aren’t easy to calculate, we can show the matrixes
by calculating via Maple. The procedures of these matrixes in Maple and an example
can be written as [5]

Procedure 1

Mmatrix:= proc (N,m)

local i,3j,k,£,M;

for k from 0 to 5 do

flkl:=(i,j) -> piecewise(i=j-k,1/(i-1)1!):
M[k] :=matrix (N, N, £ [k]) ;

od:

eval (M[m]) :

end:

where,N is dimension and m is subscript.

Procedure 2

Pmatrix:= proc (N,a,b,p)
local i,j,k,M,P,g,h;
with(linalg) :

for k from 0 to N do

hlk] :=a+k+* (b-a)/ (N-1) :0d:
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for k from 1 to N do

glkl:=(1,j) -> piecewise(i=j,subs(x=h[i-1],p)):
P:=matrix(N,N,g[k]) :od:

eval (P) :end:

where, N is dimension and p is a P(x) polynomial.

Procedure 3

Cmatrix:= proc (N,a,b)

local i,3j,k,f,M,x,h,g;
with(linalg) :

for k from 1 to N do

x[k] :=a+(k-1) * (b-a) / (N-1) :0od:
for k from 1 to N do

flkl:=(i,3) -> simplify((x[k]l-a)”(j-1)):
hlk] := matrix(1,N,f[k]):

od:

gl1]:=h([1]:

for k from 1 to N-1 do

glk+1] :=1linalgl[stackmatrix] (g[k], h[k+1]) :
od:

Eval (g[N]) :end:

where, N is dimension.

Procedure 4

Hmatrix:= proc (N,a,b)

local i,3j,k,f,M,x,h,g;

f:=(i,j) -> simplify((b-a)”(j-1)):
h:= matrix(1,N,f):

eval (h) :

end:

where, N is dimension

Procedure 5

Fmatrix:= proc (N,a,b,f)

local i,j,k,h,g,F;

for k from 1 to N do

h[k] :=a+ (k-1) * (b-a) / (N-1) :0d:

for k from 1 to N do

glkl:=(1i,3j) -> simplify(subs(x=h[i], £f)):
F:=matrix (N, 1,gl[k]):

where, N is dimension and f is f (x) function.

Procedure 6

Answer:= proc (N,A::matrix)
local i,3j,k,£,T,C;
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f:=(i,3) -> x*(3-1)/(3-1)!:
T:=matrix(1,N+1,f);C:=multiply(T,A);eval(C):
end:

where, N is dimension.

It calculates equalence of A matrix in the Taylor series which was calculated
before.

3 Application [1,5,7]

Y| = y3—cosx
yy=y3—e" (12)
V3= Y1— )

y1(0) = 1, y2(0) = 0 ve y3(0) = 2.

The exact solution of equation is y; = e*, y, = sinx, y3 = e¢* + cosx . Now, let’s
solve this problem with the mentioned method and Maple procedure.

Y| —y3 = —cosx
yy—y3=—e
Yi=yi+y2=0
y1(0) =1,y2(0) =0ve y3(0) =2 0=<x <=1
We write Taylor collocation points for N = 2
Xo = —1,)61 = 0,)62 =1

and we can write the system (12) in the matrix form

Y POy (6) = f()

i=0
and we have the Maple procedure of the system (12),
y1 = 1+t + 0.583408022075000088¢>
v, =t + 0.410985157374999965¢>
y3 =2+t —0.0862114323500000612¢7.

The results obtained by Taylor collocation method compared with the results
of differential transform method [8] and Adomian decomposition method [7, 9]

(Fig. 1).
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0.204
0.154
0.104
0.05 1
0 - T T T 1
0 0.05 0.10 0.15 0.20
X
+Exact — DTM ¢ ADM —- TCM

Fig. 1 DTM with 11 steps, ADM 16 steps, TCM 3 steps

4 Conclusion

This study is about the systems of differential equations which don’t have analytical
solutions or have so difficult and time-consuming solutions. Firstly, we obtain
matrix form depending on the values in collocation points of the familiar coefficient
functions and unknown function and its derivatives in differential equations, finite
Taylor series expansion. Then, the equation is converted a matrix equation with
Taylor coefficient by substituting this matrix form. Taylor collocation method can
solve only the result matrix equations which corresponding the linear algebraic
system. So the solution cannot find for nonlinear systems. But this method gives
to approach result to analytical solution in linear equations and it can easily solve
with Maple procedures.
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Abstract We analyze the combined influence of thermodiffusion and diffusion heat
transfer flow of a chemically reacting viscous fluid through a porous medium in a
vertical channel under the influence of the transverse magnetic field. The nonlinear
coupled equations governing the flow of the heat and mass transfers have been called
by using Galerkin finite element analysis with a quadratic approximation function.
The velocity, temperature, concentration, and rate of heat and mass transfers are
analyzed for the different values of G, M, D™, N, Sc, Sy, Du, o, and y. Itis found
that an increase in Sy and Du enhances the velocity, temperature, and concentration.
An increase in the chemical reaction in y depreciates a velocity and concentration
and enhances a temperature in the degenerating chemical reaction and in the
generating chemical reaction case the velocity, concentrations are enhanced and
temperature is depreciation.
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1 Introduction

Heat and mass transfer problems have assumed greater significance in recent
decades due to widespread use and application in industrial segment. Research
in magnetohydrodynamics (MHD) viscous flow is pivotal in technological and
geothermal applications.

Non-Darcy effects on natural convection in porous media have received a great
deal of attention in recent years because of the experiments conducted with several
combinations of solids and fluids covering a wide range of governing parameters
which indicate that the experimental data for systems other than glass water at low
Rayleigh numbers do not agree with theoretical predictions based on the Darcy flow
model. This divergence in the heat transfer results has been reviewed in detail by
Cheng [1] and Prasad et al. [2] among others. The work of Vafai and Tien [3]
was one of the early attempts to account for the boundary and inertia effects in
the momentum equation for a porous medium. They found that the momentum

boundary layer thickness is of order of \/g . Vafai and Thiyagaraja [4] presented
analytical solutions for the velocity and temperature fields for the interface region
using the Brinkman-Forchheimer-extended Darcy equation. Detailed accounts on
non-Darcy convection have been reported in Tien and Hong [5], Prasad et al. [6], and
Kalidas and Prasad [7]. Tong and Subramanian [8] and Lauriat and Prasad [9] have
studied the viscous effects by using the Brinkman-extended Darcy equations and a
numerical study based on the Forchheimer-Brinkman-extended Darcy equation of
motion has also been reported by Beckerman et al. [10].

In the above-referred studies, thermal-diffusion and diffusion-thermo effects
have been ignored. However, these effects are interesting macroscopically physical
phenomenon in fluid mechanics. The heat and mass transfers simultaneously affect
each other which creates cross-diffusion. The heat transfer caused by concentration
gradient is called the diffusion-thermo or Dufour effect. On the other hand,
mass transfer caused by temperature gradients is called Soret or thermal-diffusion
effect. Thus Soret effect refers to species differentiation developing in an initial
homogeneous mixture submitted to a thermal gradient and the Dufour effect refers
to the heat flux produced by a concentration gradient. Most of the studies were based
on Soret and Dufour effects on free and mixed convection boundary layer flow in a
porous medium [11-14]. Studies were also conducted in non-Darcy convective heat
and mass transfer flow through a porous medium [15, 16].

Considering the above, we have attempted to study the combined influence
of thermodiffusion, diffusion-thermo, and chemical reaction effects on non-Darcy
convective heat and mass transfer flow of a viscous electrically conducting fluid
through a porous medium in a vertical channel in the presence of heat sources.
The governing equations of flow and heat and mass transfers are solved by using
Galerkin finite element technique with quadratic approximation functions.
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2 Formulation of the Problem

We consider a fully developed laminar convective heat and mass transfer flow of
a viscous, electrically conducting fluid through a porous medium confined in a
vertical channel bounded by flat walls. We choose a Cartesian coordinate system
O(x, y,z) with x-axis in the vertical direction and y-axis normal to the walls; the
walls are taken at y = =£L. The walls are maintained at constant temperature
and concentration. A uniform magnetic field of strength H, is applied normal to
the walls. The temperature gradient in the flow field is sufficient to cause natural
convection in the flow field. A constant axial pressure gradient is also imposed so
that this resultant flow is a mixed convection flow. The porous medium is assumed
to be isotropic and homogeneous with constant porosity and effective thermal
diffusivity. The thermophysical properties of porous matrix are also assumed to
be constant and Boussinesq approximation is invoked by confining the density
variation to the buoyancy term. In the absence of any extraneous force, flow is
unidirectional along the x-axis which is assumed to be infinite.

Configuration of the Problem

X
T=T, T=T,
C:C1 C:C2
D — _»
HO Y
Y=-L - Y=+L

The momentum, energy, and diffusion equations in the scalar form reduce to

ap wy 0%u oulH? pSF
S By 2R (2R B, PO 2 1
o (5) 32 ( b E)UTET T M
oT 0°T D, Ky 9*c
Cou — =k;— — 2
polpu ax f ayz +0 + T, ay2 ()
dC 3*C D, Ky 3T
— =D— —k,C —. 3
“ox TP TR T e, a2 )



118 G. Sreedevi et al.

The boundary conditions are

=0 , T=T1 C=C1 01’1y=—L (4)
=0 , T=T, C=GC, on y =+L.

The axial temperature and concentration gradients g—§ and % are assumed to

be constant, say, A and B respectively. We define the following nondimensional
variables as

u 5
W=gims ) =@/L. P =G

— I=D
9 - -1 °

®)

/. C—Cy
C'= C1—C

Introducing these nondimensional variables the governing equations in the dimen-
sionless form are reduced to (on dropping the dashes)

d*u

=Tt SM*+ D Hu—-8G(@O + NC)—8*Au? (6)
y
d? d>C
d>C ScSy d?6
—— —yC = (ScN, , 8
a2 (CC)+Nd2 @®)
where
A= FD™1/2 (inertia or Forchheimer parameter)
G = ﬂgm—TZ)LS (Grashof number)
M? = W‘v# (Hartmann number)
Sc = DL (Schmidt number)
N = M (buoyancy rati
AT yancy ratio)
P = T (Prandtl number)
o= AQTLsz (heat source parameter)
y = kbL]Z (chemical reaction parameter)
Nr (TIALTZ) (nondimensional temperature gradient)
N. = (CIBLCZ) (nondimensional concentration gradient)
So = ﬁig (Soret parameter)
Du= % (Dufour parameter)
The corresponding boundary conditions are
u=0, 0=1, C=1 ony=-1
g ©)

=0, 6=0,C =0 on y=+I.
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3 Method of Solution

Using finite element technique, these differential equations are solved with the
corresponding boundary conditions and we assume that if «', ¢, ' are the
approximations of u, C, and 6 we define the errors (residual) £/, E., Ej as

El = ;(d”) M2+ AW — 8GO + NCY) (10)
n
. d (dC . ScSy d [db .
=2 i L)~ seNad 1
fd(d)yc+zvdy(dy)sc” o
o d (do d (dC
E=2(2)_pN DuN 12
’ dy(dy) Nl + Ry (dy) (12
where u' =Y "y C' =Y 6' = > 6,y (13)
k=1 k=1 k=1

In order to predict the heat and mass transfer behavior in the porous medium,
Egs. (5)—(8) are solved. A simple 3-noded line element is considered. u, C, and
60 vary inside the element and can be expressed as

u=uiNy{+ uN, +uzN3
C=C|N{+C,N,+ C3N3
0 =0,N,+60,N,+ O3N;.

Galerkin’s method is used to convert the partial differential equations (10)—(13) into
matrix form of equations that results into 3 x 3 local stiffness matrices. All these
local matrices are assembled in a global matrix by substituting the global nodal
values of order I.

4 Discussion of Results

We investigate the combined influence of thermodiffusion and diffusion-thermo on
hydromagnetic convective heat and mass transfer flow chemically reacting viscous
fluid flow in a porous medium in a vertical channel. Cool walls are maintained
at concentric and constant temperature and concentration, in the presence of
temperature-dependent heat sources. The nonlinear coupled equations governing
flow and heat and mass transfer have been solved by employing Galerkin finite
element technique with quadratic approximation function. The analysis has been
carried out with Prandtl number 0.71.
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Fig. 1 Variation of u with
So. G =10, M =2,
N=1D""=10
Sc=13,Du=0.1,
a=0.51,y=05

Fig. 2 Variation of u with
Du.G =10, M =2,
N=1,D""=10
Sc=1.3,5,=0.01,
oa=0.51,y=05

G. Sreedevi et al.

-0.8 -0.6 -04 -0.2 0

O
LI

=0.06

02 04 06 038

S,=0.5,1,1.5,2.5,3.5

D

T T T

-0.8 -0.6 -0.4

-0.2
—0.005 1

-0.01 1

—-0.015 1

-0.02 1

-0.025 4

-0.03 1

35 1

=0.045

T T

02 04 06 038

Du=0.07,0.05,0.03,0.01

The velocity distribution # is shown in Figs. 1, 2, and 3 for different values of
So, Du, and y. Its actual axial flow is in the vertically downward direction and hence
u > 0 represents the reversal flow. The effect of thermodiffusion on u is observed
in Fig. 1. It can be seen from the profiles that lul experiences an enhancement with

increase in S.
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Fig. 3 Variation of u with y.
G=10>°,M =2,N =1,
D! =10% Sc = 1.3,

So = 0.01, Du = 0.1,

a =051

Fig. 4 Variation of 6 with
So. G =10, M =2,
N=1,D""'=10%

Sc =1.3,Du=0.1,

o =0.51,y=05
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Figure 2 represents u# with Dufour parameter. It is found that luldecreases with
increase in Du in the entire flow region. Thus the higher the diffusion-thermo
effects, the smaller the magnitude of u. It is found that lulenhances with the increase
in the chemical reaction parameter y <1.5 and enhances with higher y >= 2.5,
while it enhances with lyldecreasing at 1.5 (Fig. 3).

It is observed from the profiles that the higher the diffusion effects (S), the larger
the actual temperature in the flow region (Fig.4). Figure 5 represents the Dufour
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Fig. 5 Variation of 6 with
Du.G =10°, M =2,
N=1,D""'=10%
Sc=1.3,5, =0.01,
oa=0.51,y=05

Fig. 6 Variation of 6 with y.
G=10>,M =2,N =1,
D' =10% Sc =13,

So = 0.01, Du = 0.1,

a =051
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parameter represents 6. We notice a depreciation in the actual temperature with
increase in Du; thus the higher the diffusion-thermo effects, the larger the actual

temperature.

Figure 6 represents 6 with chemical reaction parameter y. It is observed that the
actual temperature is enhanced in the degenerating chemical reaction case (y >0)
and depreciates in the generating chemical reaction case (y <0).



Numerical Study of Convective Heat and Mass Transfer Flow in Channels

Fig. 7 Variation of C with
So.G =10, M =2,
N=1D""=10
Sc=13,Du=0.1,
a=0.51,y=05

Fig. 8 Variation of C with
Du.G =10°, M =2,
N=1D""=10%

Sc =1.3,5,=0.01,
a=0.51,y=05
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The variations of “C” with Soret parameter Sy show that the actual concentration
is enhanced with Sy < 1.0 and depreciates with Sy > 1.5. We notice an enhancement
in “C” (Fig. 7). A variation of “C” with Dufour parameter Du is exhibited in Fig. 8.

As chemical reaction parameter y depreciates, the actual concentration “C”
decreases and as the y enhances, the variation of concentration “C” enhances

(Fig. 9).



124 G. Sreedevi et al.

Fig. 9 Variation of C with y.
G=10>,M =2,N =1,
D! =10% Sc = 1.3,

So = 0.01, Du = 0.1,

a =051
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5 Conclusions

Numerical evaluations were performed and graphical results were obtained to
illustrate the details of the flow and heat and mass transfer characteristics and their
dependence on some physical parameters. The key findings are summarized below:

» The variation of u with Soret parameter S shows lul experiences an enhancement
with increase in (S¢). The higher the (Sy), the larger the actual temperature in
the flow region. The variations of “C” with Soret parameter S, show the actual
concentration enhances with increase in Sy.

e With increase in chemical reaction parameter y, lulgets enhanced. The actual
temperature enhances in the degenerating chemical reaction case (y >0) and
depreciates in the generating chemical reaction case (y <0), while the “C”
depreciates, with increase in chemical reaction parameter y.

e The higher the diffusion-thermo effects Du, the smaller the luland the larger the
actual temperature. With enhancement in “Du,” the concentration increases.
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A Parameter Uniform Method for an Initial
Value Problem for a System of Singularly
Perturbed Delay Differential Equations

Shivaranjani Nagarajan, Ramanujam Narasimhan, J.J.H. Miller, and
Valarmathi Sigamani

Abstract In this paper an initial value problem for a coupled system of two
singularly perturbed first-order delay differential equations is considered on the
interval (0,2]. The components of the solution of this system exhibit initial layers at 0
and interior layers at 1. A numerical method composed of a classical finite difference
scheme on a piecewise uniform Shishkin mesh is suggested. This method is proved
to be first-order convergent in the maximum norm uniformly in the perturbation
parameters. A numerical illustration is provided to support the theory.

Keywords Singular perturbation problems ¢ Boundary layers * Delay differential
equations e Finite difference schemes ¢ Shishkin mesh ¢ Parameter uniform
convergence

1 Introduction

Singularly perturbed delay differential equations arise in the mathematical mod-
elling of various phenomena of practical importance, for example, in population
dynamics, control theory, potential in models for neuron, optical bistable devices,
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human pupil-light reflex and many other problems in applied mathematics. Models
of hospital-acquired infections involving systems of singularly perturbed delay
differential equations are described in [1].

Singularly perturbed delay differential equations with small shifts are dealt with
in [2]. In [3], a hybrid finite difference scheme is suggested for an initial value
problem for scalar delay-differential equation and the method is proved to be
second-order convergent. In [4], a numerical method composed of a fitted operator
on an equidistant mesh to solve the above problem is suggested. The method
is proved to be first-order convergent, uniformly with respect to the perturbation
parameter. Related works are found in [5, 6].

On the other hand, very few or no works on systems of singularly perturbed
delay differential equations are reported in the literature. In this paper, the following
coupled system of two singularly perturbed delay differential equations of first order
is considered:

Li = Ei(x) + A(x)i(x) + B(x)i(x — 1) = f(x) on (0,2], (1)
i =¢ on [—1,0]. )

For all x € [0,2], @(x) = (u1(x).u2(x))" and f(x) = (fi(x). L. E, A(x)
and B(x) are 2 x 2 matrices. E = diag(s), € = (e1,&) with0<eg < & < 1,
B(x) = diag(l;), b = (b1(x), by(x)). For all x € [0,2] it is assumed that the
components a;; (x) and b; (x) of A(x) and B(x), respectively, satisty

bi.ay <0 for 1<i#j<2and ai >y la;(x)+bi(x)] ()
i#j

and

2
O<a< AI;I[(I)IZI] Xgai_, (x) + b;i(x) | , for some «. 4)
I<i<2 \j=

Further, the functions f (x),aij(x),bi(x),1 < i,j < 2 are assumed to be in
C ([0, 2]). The above assumptions ensure that z € C°([0,2]) U C'((0, 2)).
The problem (1) can be rewritten as

Liii = Eil (x) + A(x)ii(x) = f(x) = B)$(x — 1) = g(x) on (0.1] (5)
Loii = Eil'(x) + A(x)i(x) + B(x)i(x —1) = f(x)on (1,2]. (6)
The reduced problem corresponding to (5), (6) is given by
A(x)iip(x) = f(x) — Bx)$(x — 1) on (0,1] )
A(X)iig(x) + B(x)iig(x — 1) = f(x) on (1,2]. 8)

For any vector-valued function y on [0, 2] the following norms are introduced:
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I ¥(x) ll= max;|y;(x)] and || y [|= sup{| y(x) [: x € [1,2]}. Throughout
the paper C denotes a generic positive constant, which is independent of x and
of all singular perturbation and discretisation parameters. Furthermore, inequalities
between vectors are understood in the componentwise sense.

The plan of the paper is as follows. In Sect.2, estimates of the analytical
behaviour of the exact solution are presented. In Sects.3 and 4, the problem is
discretised using a Shishkin mesh, which is piecewise uniform, and the numerical
analysis is presented. In Sect. 5, the parameter-uniform error of this discretisation is
estimated in the maximum norm, and a numerical illustration is presented in Sect. 6.

2 Analytical Results

The operator L satisfies the following maximum principle.

Lemma 1. Let 1/_} be any function in the domain of L such that 1/_}(0) > 0. Then
Ly > 00n (0,2] implies ¥ > 0 on [0,2].

Proof. Let Y+ (x*) = min; . (;(x)). Suppose ¥+ (x*) < 0. Then, ¥/, (x*) < 0
and

2
(L)) (X*) = e (8%) + D @i P (x%) + by Y (x* = 1)

Jj=1

IA

2
Zai*ﬂ”j (X*) + bixrix (x™)

=1
= (aj*i* + bi=)Yix (X)) +ap ;¥ (x*) j=1lor2
< (@j*i* + aixj + bix)Pix (x™)

< 0,

which is a contradiction. Hence our assumption is wrong. Therefore, ¥+ (x*) > 0,
which proves the lemma. O

Lemma 2. Ifl/_} is any function in the domain ofI:, then ||1/_}|| < C max {||1Zf(0)||,
Lo
LLYIl

Proof. Consider the barrier functions, 6t = CM + @(x), where M =
max{||1ﬁ(0)||, $||L1Z||}. 6% (0) > 0, for proper choice of C.

L6%)i(x) = (Y ay +bi) (€M) £ L) (x)

(ML £ (LY)i(x) = 0.

v

Hence, 6+ (x) = 0.
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A Shishkin decomposition of # is given by i = v + w where v = (v, ;)7 is the
solution of

Liv = EV(x) + A@)i(x) = f(x) = Bx)$(x — 1) = §(x) on (0.1] (9)
Lyv = EV (x) + A(x)¥(x) + B(x)v(x — 1) = f(x) on (1,2] (10)

$(0) = A710)(F(0) — B(O)p(—1)) and # = (wy.wy)T satisfies L, = 0 for
x € (0,1] and Lyw = 0 for x € (1,2] with w(0) = u#(0) — v(0). Here, v is called
the smooth component of # and w, the singular component of i. |

Lemma 3. For i = 1,2, there exists a constant C such that ||vfk)|| < Cfor
k=0,1and ||| < Cel.

Proof. From (9), it is clear that, for x € (0, 1], the bounds on v are the same as in [7].
For x € (1,2], Lyv(x) = EV (x)+Ax)v(x)+B(x)v(x—1) = f(x) or Liv(x) =
f(x) — B(x)v(x —1). Hence | (LiV)(x) || < Cand]| v(1)| < C.Hence

applying the stability result for L [7] on the domain [1, 2], ||¥|| < C.
From (10), V(1) = f (1) — uip(1) = 0. Differentiating (10) once gives

LV = EFY () +AX)V (x) = f/(x)—A"(x)%(x)— B’ (x)¥(x—1)—B(x)¥ (x—1).
(11)

Thus, ||L1/|| < C. Hence using stability result for the operator L;, |[i/|| < C
on [1,2]. Further, from (11), it is not hard to derive that || v/ |< Ce/',i = 1,2
on [1,2]. Combining with the results for v in [0, 1], the required bounds of v in the
whole of [0, 2] are obtained. O

From [2] it is seen that the u;,i = 1,2, have exponential layers represented
by e®*/¢ and e**~1/¢ Define functions B;; and B,;,i = 1,2 by Bj;(x) =
e~/ on [0,2] and By, (x) = e~ D% on[1,2].

The bounds of the singular component w are contained in

Lemma 4. Let A(x), B(x) satisfy (3) and (4). Then, for eachi = 1,2, there exists
a constant C, such that, for x € [0, 1],

[wi (x)] < CBja(x), )wfl)(x)‘ <C [Bl‘ll(x) + Bl’zl(x)} =12
€ &
and for x € [1,2]
[wi(x)] < CBas(x), |wi(x)P] < C [Bz’l(x) + Bz.zl(x)] A =1,2.

I
€ &
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Proof. For x € [0, 1], the bounds for w are the same as in [7]. For x € (1, 2],
Low(x) := EW(x) + AX)w(x) + B(x)w(x —1) =0

or
Liw(x) := EW (x) + AC)w(x) = —B(x)w(x — 1)
which implies
I Lyib(x) | < CBia(x — 1),

Construct the barrier function
FE(x) = CiBaa(x) + (x)

(LiyE) =G (81 (;—j{) Bz,z(x)—l-all(x)Bz,z(x)-i-alz(x)Bz,z(x)) + Lyw(x)

> Ci(—a+ay(x)+apnp(x))Bra(x) £ CBa(x — 1)

> 0, choosing C; sufficiently large.

Similarly, (Llw (x))2 = 0, for sufﬁc1ently large C;. Also, 1//*(1) > (. Hence by

maximum principle for the operator Ll, (in [7]), we have 1//i(x) >0, x€][L,2].
Hence for x € [1,2], |w(x)| < CB;,(x).
From the defining equation for wy,

2

ewi(x) = — 3 ay ()w; (x) — b (wi (x — 1)

j=1
Wi ()] < Cer! (B2a(x) + (Bia(x — 1)
< Ce7'(Baa(x)).
Thus, [w,(x)| < Ce;'(Bya(x)). Similarly for the singular component wy(x),
Wa(x)| < Cey' Baa(x).
To obtain parameter uniform convergence of the method, we require sharper

estimates for the derivatives of w(x).
To find sharper estimates of w/ (x), consider the equation

Logwi(x) = ew|(x) + ann(x)wi(x) = ap(x)wa(x) — by (x)wi(x — 1)

and hence

Lo awi(x) = —(an(x)wa(x))" — (b1(x)wi(x — 1)) — aj;wi(x)
|L2iwi(x)] < Cley ' Bao(x) + &7 ' Bia(x — 1) + &5 Biao(x — 1]
[Lyiw)(x)| < CleyT" Byi(x) + &5 ' Byo(x)], since Byo(x — 1) = Bya(x).
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Define the barrier functions
YE(x) = Cle7" Boi(x) + &' Bya(x)) £ wh (x).
We have ¥ (1) > 0

Loy E(x) = Clar(Z)er Boi(x)+e1(32)e5 " Baa(x)}
+ a1 (x){C(e] ' By (x) 485 ' Ban(x))} & [Lowh (%)
> C(—Ol =+ a”)[sl_lBg_l(x)+82_132,2(x)] + C[81_132$1(x)+82_132,2(x)]

> 0.

Applying the maximum principle for the scalar operator L, ; (in [8]), the required
bounds of w (x) follow.

Differentiating (Zzﬁ/)] = 0 and (Zgﬂ/)z = 0 once and using the estimates of
w) (x) and w)(x), we have

Wi (x)| < Cey'[e7 " Bai(x) + &5 ' Bao(x)],
lwy (x)] < Csz_l[sl_le,l(x) + 82_132,2()6)].

ad

Remark. The unique point x* in (0, 1], such that &7 By 1 (x*) = &' B12(x*), 1 +
x* € (1,2] and 7' By (1 + x*) = &5 Br»(1 4+ x*) is introduced, which leads to
the following novel estimates for the derivatives of the singular components. In [9],
Linss et al. use a single point of this kind.

Lemma 5. Suppose that ¢, € (261, %) . Then, there are functions
wii(x), wia(x) wai(x), waa(x)
such that
wi(x) = wii(x) + wia(x),  wa(x) = wa1(x) + waa(x)
and

Wi (X)] < Cer'Bri(x), [w],(x)| < Cel'ey' Bya(x)

Wy ()] < Cey'Bia(x), [wh,(x)] < Cey?Bia(x), x €[0,1]
and

W (x)] < Cel'Bai(x),  |w],(x)] < Cej'ey' Bra(x)

W, ()] < Cey'Bay(x),  [wy,(x)] < Cer?Ban(x), x €[1,2].
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Proof. For x € [0, 1], the decompositions of wi(x) and w,(x), and hence their
respective bounds, follow from [7].
For x € [1, 2], define the function w; > (x) as follows:

wi(x), for x € [1 4+ x*,2]
2

wia(x) = Z (x — (1 + x*)*

iz wh (1 4+ x*), for x € [1.1+x*)

k=0
w1 (x) = wi(x) —wia(x).

w, is similarly decomposed.
Proceeding as in [7], the required bounds of wy ;(x) and w;,(x) for x € [1,2]
follow. O

3 Shishkin Mesh

Motivated by [8,10], a piecewise uniform Shishkin mesh QN = FN uQt N where
N

—N 5 N . . .

Q= {x; }02 and Q" = {x; }jx, " with N mesh intervals is now constructed on
2

Q = [0, 2] as follows for the case €| < &,. In the case &y = &, a simpler construction

requiring just one parameter 7 suffices. The interval [0, 1] is subdivided into three
subintervals [0, 7;]U (71, 2] U (12, 1]. The parameters 7, r = 1,2, which determine
the points separating the uniform meshes, are defined by 7o = 0, 73 = %,

.1 &
) =min{ —, —In N (12)
2 o
and
. (T2 &1
- =mm{—,—1nN}. (13)
2 o
Clearly
1
0 < T < T < 5

Then, on the subinterval (7, 1], a uniform mesh with % mesh points is placed and
on each of the subintervals (0, 7] and (z1, 73], a uniform mesh of % mesh points
is placed. Similarly, the interval [1,2] is divided into 3 subintervals [1, 1 + 7],
(1+ 71,1 4+ 2], (1 4+ 12, 2] having the same number of mesh intervals as in [0, 1].
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Note that, when both of the parameters t,,r = 1,2, take on their lefthand value,
the Shishkin mesh becomes a classical uniform mesh on [0, 2].

4 The Discrete Problem

The IVP (1), (2) is discretised using the backward Euler scheme applied on the
piecewise uniform fitted mesh Q" The discrete problem is

LU (x;) = ED™U (x))+A(x)U (x))+B(x,)U (x;—1) = f(x;). j = 1()N
(14)

U (0) = i(0), (15)

where

Lemma 6. If \i/(x ;) is any vector mesh function such that \TJ(O) > 0 and
LNWU(x;) > 0for1 < j < N then ¥(x;) > 0for0 < j <N.
Proof. Leti*, j* be such that W;«(x;+) = min ¥;(x;), 1<j <N.
. i .
Hence j* # 0. Then,
2

(ZN@)i* (xj*) = —Si*D_\l’[*(xj*) + Zai*k(xj*)lllk(xj*) + bi*(xj*)\lf(Xj* —-1)
k=1
2
< =g DT Wi () Y ape (X)W (o) by (X ) W(x ) < 0,
k=1

which contradicts the hypothesis and proves the lemma.
An immediate consequence of the discrete maximum principle is the following
discrete stability result. O

Lemma7. Let U be any vector mesh function in the domain of LN . Then
I W(x;) [I< max (| () [l 2 | LYW(x)) [}, j = O0(DN.
Proof. Let M = max {|| \fl(O) Il & I Z,N\_P(xj) I}. Define the barrier functions

OF(x;)) =M1, DT £ U(x)).
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Then,
O*(0) = M1, 1)7 £ ¥(0) > 0.
Also for j = 1(1)N,

LYUE(x;) = M(A(x)) + B(x;)(1, DT £ L¥NU(x;) > Ma(1,1)" £ />0

Hence the result follows from the discrete maximum principle. O

5 Error Estimate

Analogous to the continuous case, the discrete solution U canbe decomposed into
V and W which are defined to be the solutions of the following discrete problems:

(LYV)(x)) = ED7V(x)) + AV (x)) = f(x;) = B(x;)p(x; = 1) on @V
(LYV)(xj) = ED7V (x) + ACe)V () + BV (xj = 1) = f () on @+

and

(LYW)(x;) =0, x; e @V,
(LYW)(x;) =0, x; e @tV
W (0) = w(0).

The error at each point x; € Q" is denoted by e(x;) = U (x;) — u(x;). Then the
local truncation error LNé(x ;) has the decomposition

LNe(x;) = LNV =9)(x)) + LY (W —w)(x)).
The error in the smooth and singular components is bounded in the following
theorems.

Theorem 1. Let conditions (3) and (4) hold. If v denotes the smooth component
of the solution of (1), (2) and V the smooth component of the solution of the

problem (14), (15), then
(LY (V =9))i(x;)| <CN'InN. (16)

Proof. Proceeding as in [7] in the domains ™" and otV separately, the above
estimate is derived. o
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Theorem 2. Let conditions (3) and (4) hold. If w denotes the singular component
of the solution of (1), (2) and W the singular component of the solution of the
problem (14), (15), then

(LY (W — )i (x))| < CN~'InN. (17)

Proof. Proceeding as in [7] in the domains Q=" and otV separately, the above

estimate is derived. O
The main theoretical result of this paper is presented in

Theorem 3. Let u be the solution of the continuous problem (1), (2) and U be the
solution of the problem (14), (15). Then,

| U(x;)—i(x;) [< C N"'In N,

Proof. From Lemma 7, it is clear that, in order to prove the above theorem, it
suffices to prove that | (LN(U —#)) || < CN~'InN.But, | (L¥(U — ) |
< || LYWV =%) || + | (LN(W —#)) ||. Hence, using Theorems 1 and 2, the
above result is derived. O

6 Numerical Results

The numerical method proposed in this paper is illustrated through an example
presented in this section.

Example. Consider the initial value problem

Eu/ (x) + A(x)u(x) + B(x)u(x — 1) = f(x),forx €(0,2], i(x) = $(x).forx € [-1,0],

-1 5—x 0
gg(x) =1 for x € [<1,0]. The maximum pointwise errors and the rate of

convergence for this IVP are presented in Table 1 and a graph of the numerical
solution for N = 2048,6; = 2719, 6, = 2717 is given in Fig. 1.

where E =diag(e;, &), A=(3+x -1 ) Bz(_1 01)];= (1+x,07,
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Fig. 1 Numerical solution 1
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A Technique to Construct Grid Methods
of Higher Accuracy Order for a Singularly
Perturbed Parabolic Reaction-Diffusion
Equation

L. Shishkina and G. Shishkin

Abstract We consider a technique to construct e-uniformly convergent in the
maximum norm grid approximations of higher accuracy order on uniform grids
for a singularly perturbed parabolic reaction-diffusion equation with a perturbation
parameter ¢ (¢ € (0, 1]) multiplying the highest-order derivative, the solution of
which has a parabolic boundary layer in a neighborhood of the lateral boundary.

Keywords Parabolic reaction-diffusion equation ¢ Parabolic boundary layer e
Uniform grids ¢ Decomposition of grid solution * Asymptotic construction
technique * Richardson extrapolation * Higher-order finite difference scheme e
e-uniform convergence * Maximum norm

1 Introduction

The use of efficient numerical methods developed for regular problems (see,
e.g., [1]) and based on standard difference schemes on uniform grids does not pro-
vide e-uniform convergence in the maximum norm for one-dimensional singularly
perturbed parabolic reaction-diffusion equation with a perturbation parameter &
(¢ € (0, 1]) multiplying the highest-order derivative in the equation (the solution
of such a problem has a parabolic boundary layer in a neighborhood of the lateral
boundary; see, e.g., [2]).

In [3], a new approach is developed to construct e-uniformly convergent dif-
ference schemes on uniform grids of high accuracy order for a one-dimensional
singularly perturbed parabolic reaction-diffusion equation. Using an asymptotic
construction technique, a basic scheme of the solution decomposition method
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is constructed in which the regular and singular components of the discrete
solution are solutions of discrete subproblems considered on uniform meshes.
The basic difference scheme converges e-uniformly in the maximum norm at the
rate O (N2 In* N + Ny '), where N + 1 and Ny + 1 are the number of nodes in
the spatial and time meshes, respectively. The use of the Richardson extrapolation
technique to the basic scheme leads to a scheme of higher accuracy order, i.e.,
the Richardson scheme of the solution decomposition method, which converges
e-uniformly in the maximum norm at the rate O (N~ In* N + N;2).

In this paper, we present a modified technique from [3] which simplifies the
constructions under numerical solving of similar problems. This technique allows
you to construct e-uniformly convergent schemes of the fourth accuracy order
in x up to a logarithmic factor and the second order in ¢, using the Richardson
extrapolation on two embedded grids, and to construct e-uniformly convergent
schemes of the sixth accuracy order O (N ~° In® N + N; ) in x up to a logarithmic
factor and the third order in ¢, using the Richardson extrapolation on three embedded
grids.

2 Problem Formulation and Aim of Research

On the set G
G=GUS, G=Dx(0,T], D=(0,d), (1)

we consider a boundary value problem for the singularly perturbed parabolic
reaction-diffusion equation'

2
Loyutr.0) = {# ale,t) 5—c(eu0=p(x.0) 3 ) = 1), () € 6,
ulx,t)y=p(x,t), (x,t)€S. 2

The functions a(x,t), c(x,t), p(x,t), f(x,t), and ¢(x,t) are assumed to be
sufficiently smooth on G and S, respectively; moreover” a(x,t), c(x,t), p(x,t) >
m, | f(x,t)] < M, (x,t) € G, lo(x,1)] < M, (x,t) € S; the parameter ¢ takes
arbitrary values in (0, 1]. Here S = So U S L S, and ST are the lower and lateral
sides of the boundary S, ST = SE U SE, S| and ST are the left and right parts of
the lateral boundary, and Sy = So. We assume that the data of problem (2), (1) on

! The notation Ly (M(jxy, Gn(jx)) means that these operators (constants, grids) are introduced
in formula (j.k).

2 By M (or m), we denote sufficiently large (small) positive constants independent of the parameter
¢ and of the discretization parameters.
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the set of corner points S* = Sy N 5" satisfy the compatibility conditions ensuring
the required smoothness of the solution on G. For small values of ¢, a parabolic
boundary layer appears in a neighborhood of the set S*.

Our aim is for initial boundary value problem (2), (1) on the basis of the solution
decomposition method using only uniform grids and the Richardson extrapolation
technique, to construct a difference scheme that converges e-uniformly in the
maximum norm with a higher accuracy order (two/three with respect to ¢ and
four/six with respect to x up to a logarithmic factor).

3 Difference Scheme of the Solution Decomposition Method

In this section we consider a decomposition of the solution to problem (2), (1) using
an asymptotic construction technique. On the basis of this solution decomposition
of the differential problem, we construct a difference scheme (scheme of the
decomposition method to the grid solution), in which the grid regular and singular
components of the discrete solution are computed on uniform meshes.

3.1 Solution Decomposition of the Differential Problem

We write the solution of problem (2), (1) as the sum of its regular U(x,?) and
singular V'(x, t) components:

u(x,t) = U(x,t) + V(x.t), (x,1)eG. (3a)

Because we will construct a scheme of improved accuracy order, we use the
expansion of the regular component of the three members:

U(x,t) = Up(x,t) + 2 Ui(x. 1) +vy(x.1), (x.1) €G. (3b)

Here Uy(x, t) is the main term in the expansion, and v?] (x, 1) is the remainder term.
In (3b), the functions Uy(x, t), U;(x,t) and v?j (x, t) are solutions of the following
problems:

LayUo(x.1) = f(x,1), (x,1) € G\ So, Up(x,1) = p(x,1), (x.1) € So: (4a)

92 _
LyUi(x,t) = —sza(x,t) I Uo(x,1), (x,t) € G\ So, Ui(x,t) =0, (x,t) € So;

(4b)
32
Loyu(x,t) = —*a(x, 1) 97 Ui(x,t), (x,t) €G, vy(x,1)=0, (x,1) €S.

(40)
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0
Here L4 is the operator Ly for ¢ = 0, i.e., Ly = —c(x,t) — p(x,1) FYR (x,1)
S 6\ So. .
The function V(x,t), (x,t) € G, is the solution of the problem

LoyV(x,t) =0, (x,t) e G, V(x,t)=9¢y(x,1t), (x,t)€S, (5a)

where ¢y (x,t) = @(x,t) = U(x,t), (x,1) € S, U(x,t) = Ug)(x,t), (x,t) € G.
We write V(x, t) as the sum of the functions

Vix,t) = Vi(x,t) + Va(x,1), (x.1) €G, (3c)

where the functions V;(x,t) and V;(x, t) are solutions of the problems
Loy Vi(x,t) =0, (x,t)€G, (5b)
Vix,t) =@y(x,t), (x,t) € SE, Vilx,t) =0, (x,t) €S\ St j=1,2.

Thus, for the solution of problem (2), (1), we obtained representation (3) whose
components are solutions of problems (4) and (5).

3.2 Construction of the Basic Scheme of the Solution
Decomposition Method

Now, we construct a difference scheme for the boundary value problem (2), (1) by
approximating problems (4), (5b). We consider two cases depending on the value
of e.

3.2.1 Difference Scheme for Not Too Small Values of ¢

We construct a difference scheme for not too small values of the parameter ¢,
namely, provided

e>e)(N), e(N)=ml'd In"'N, (6)
where m is an arbitrary number in (0, mg), my = ming2 [a='(x,t)c(x,1)], and

¢ = 2. In this case, problem (2), (1) is approximated by the standard difference
scheme on a uniform grid

Az(x,t) = {e*a(x,t) Sz—c(x,1)—p(x, 1) §3z(x, 1) = f(x,1), (x,1) € Gy,

z2(x,t) = @(x,1), (x,t) € Sp. (7)
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Here
G = x (8)

is the uniform grid, N + 1 and Ny + 1 are the numbers of nodes in the meshes
o and wy, respectively, G, = G, US,, and 8% z(x, t) is the central second-order
difference derivative. Using the solution of difference scheme (7), (8), we construct
the interpolant

Zu(x, 1), (x,1) € G, under conditon (6). (9a)

We call the interpolant (9a) the solution of the difference scheme [(7), (8); (6)] which
approximates the differential problem (2), (1) under the condition (6).

3.2.2 Difference Scheme for Sufficiently Small Values of ¢

We construct a difference scheme for sufficiently small values of the parameter &,
namely, for

&< S()(N)(()). (10)

We approximate the components in the representation (3b) and the function U(x, t)
on the uniform grid (8) and the smgular components in (5b) on uniform grids which
are constructed on subdomains of G of G, adjacent to the boundaries S; Lij=1,2:

G, =671Js?. GI=DIx(0.T]. j=1.2,
=(0.0). D§ = (d —0.d), (11)
o=o0(s, N I)=min[d, m " le InN].

Differential problems (4), (1) are approximated by the following problems on the
grid (8):

Aanzyy(x,t) = f(x,1), (x,1) € Gy \ So,
(X, 1) =@(x,1), (x,1) € S, N So; (12)
A(IZ)ZU] (x,[):—gza(x,[) SXYZUo(th)9 (X,[) € Eh \ SO»

ZUI()C,I):(p(X,Z), (xvt) eShﬁSO; (13)

Az, (x, 1) =—e*a(x, 1) 8,5 20, (x, 1),  (x.t) € Gy,

Zoy (x,) =0, (x,t) € Sp. (14)
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Here G, = Gﬂah, Sy = Sﬂ@h, Aoy = —c(x,t)—p(x,t) 6, (x,t) € 6}1\30.
We set

ZU(-x5t):ZU()(-X)Z)+82ZU1(X5I)+ZVU(X7I)7 (x5t)66h' (15)

By zy(x,1),(x,1) € G, we denote the bilinear interpolant which is constructed
using the values of z (x, t) at the nodes of the grid G, on the elementary partitions
of the set G, generated by the grid G},. The function 7z (x,1), (x,1) € G, and
also its interpolant 7y (x, t), (x,t) € G are called the grid and continual solutions,
respectively, of the difference scheme [(12)-(14), (8); (10)], which approximates
differential problems (4), (1) under condition (10).

Now, we construct an approximation of problem (5), (1).

On the set Ej (11) We introduce the uniform grid

Ejhzajzzaixao’ .] =12, (16)
where @y = @ s) , @7 is the mesh defined on 57(11) with the step size % = oN ™!,
N + 1is the number of nodes in the mesh ®7, and E(;h = G7,US7,. On the grid

6‘; »» We solve the problem

Amyzy; (x,1) =0, (x,1) € G?h, a7

—L
0, (x.1) € S, \ S

px.0) =2y (x.0). (x.1) € S, nst
zy; (x, 1) =
J

}, (x.) €87, j=12

0

Using the values of the functions zy,(x,7), (x,1) € Ej 4> We construct the

interpolant Zy; (x,1), (x,1) € E;. We assume that, outside of the set 5(;, the
functions zy; (x,7) and Zy, (x, 7) vanish. We set

Zv(x,t) =2y, (x, 1) + 2 (x, 1), (x,1) €G.

The function Zy (x,t), (x,t) € EU is called the solution of difference scheme
[(17), (16); (10)], which approximates differential problem (5a), (1) under
condition (10).

The function

Zu(x,t) =7Zu(x,t) +Zy(x,t), (x,t) € G, under condition (10) (9b)

is called the solution of difference scheme [{(12)—(14), (8); (17), (16)}; (10)], which
approximates differential problem (2), (1) under condition (10).
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3.2.3 e-uniform Estimate for the Solution of the Basic Scheme

Thus, we have constructed the function Z,9ap)(X.?), (x,#) € G approximating
the solution of problem (2), (1). This function and the grid functions zy,(x,?),
20, (X, 1), zyy (x,2), (x, 1) € G, and 2y (x,1),(x,1) € E;h, j = 1,2, are called the
continual and grid solutions, respectively, of difference scheme [{(7), (8)}; {(12)-
(14), (8); (17), (16)}], or, in short, the basic scheme of the solution decomposition
method.

In [3] for the solution to the basic scheme of the solution decomposition method
we have obtained the following e-uniform estimate:

lu(x,1) — Zy@apy(x, )] < M [N2In* N + N;'], (x,1) €G. (18)

4 Richardson Extrapolation on the Basis of Classical Scheme

We describe the Richardson extrapolation method, which is used for improving the
accuracy of tlE solution to difference scheme (7) on uniform grid (8).
On the set G, we introduce the grids

G, = x@), i=123, (19a)

in which @' and 56 are uniform meshes with respect to x and ¢, respectively. Here
=l = . . . P
G, is G ), in which il = dN ! is the step size in @' with the number of nodes
. T —2
N +1,and h! = TN, ! is the step size in @, with the number of nodes Ny + 1; G,
—3 . . — . N
and G, are “coarsened” grids. The step size 42 in @* (on the interval D) is k times
larger than the step size h! in@', i.e., B2 = kd N="and k~'N + 1 is the number
of nodes in @>. The step size h?in 5% (on the interval [0, T']) is k2 times larger than
the step size h; in @, i.e., h? = kT Ny ' and k=N + 1 is the number of nodes
in @;. The step size 43 in @° (on the interval D) is k2 times larger than the step size
h2in@% ie.,hTk*d N~' ¢ k2N + 1 is the number of nodes in @". The step size
h? in @; (on the interval [0, T]) is k? times larger than the step size /42 in @3, i.e.,
h} = k*T Ny ' € k=*No + 1 is the number of nodes in @;.
. . L=l —2 —0 .
We consider the case with two embedded grids G, and G, and let G, be their
intersection:

G,=G,nG, (19b)

G, = G, itk isaninteger (k > 2), G, # G, if k is a noninteger; G, = @° x@".

Let 7/ (x,1), (x,1) € E;l, fori = 1, 2, be solutions of the difference schemes
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And (x,t) = f(x,1), (x,t) €GL, Z(x,t)=o(x,1), (x,t) €S, i=1.2.
(20a)

We set
0 _ 1 2 0
4 (Xat)—)’lZ (x»t)+V2Z (xat)7 (X,[)EGh, (ZOb)

where y; = yi(k),i = 1,2,y =—k>2 =D)L ya=1—y =k> (k> - 1)~
Difference scheme (20), (19) constructed on the basis of scheme (7), (8) is
called the Richardson scheme on two embedded grids. The function z?zo)(x, 1),

(x,1) € 52, is called the solution to Richardson scheme (20), (19), while the

functions z(lzo)(x,t), (x,t) € 5,‘1, and Z(ZZO)(x,t), (x,t) € Ei, are called the
components generating the solution of scheme (20), (19).

In [3], justification of convergence of the solution 2%(x,t) of Richardson
scheme (20), (19) to the solution u(x,?) of boundary value problem (2), (1) is
performed, and we have obtained the following estimate:

u(x,0) =L, 0] < M [e* N+ N2, (x,1)€G,). Q1)

Thus, the Richardson scheme (20), (19) converges with the fourth accuracy order in
x but for fixed values of & and under the sufficiently restrictive condition N~! =
o(e), Ny'' =o(1).

5 Richardson Extrapolation for Solution Decomposition
Scheme

Here we will apply the Richardson extrapolation technique to improve accuracy
order of discrete solutions obtained on the basis of the solution decomposition
method.

To construct a scheme of higher accuracy, we approximate problem (2), (1) by
the standard difference scheme (7), (8) under the condition

e>ey(N), eN)=ml'dIn""'N, (22)
where m = mg), £ = 4, and under the condition
e <e&y(N), &(N)==eo@e(N) (23)

we use grid constructions similar to [(12)—(14), (8); (17), (16)]. Further, to improve
accuracy of the scheme, we apply the Richardson extrapolation technique.
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5.1 Solution of the Richardson Scheme Provided (22)

Let the condition (22) be fulfilled. Using the solution 1?20) (x,1), (x,t) € 52, of the
Richardson scheme (20), (19) on two embedded grids, we construct the interpolant

Zu(x.1), (x.t) € G under condition (22). (24a)

We call this interpolant the solution of difference scheme [(20), (19), (22)] which
approximates the differential problem (2), (1) under the condition (22).

5.2 Solution of the Richardson Scheme provided (23)
for the Regular Component U(x, t)

Let the condition (23) be fulfilled. Using the Richardson extrapolation on two
embedded grids, we construct a grid approximation of the component U(x, ).
On the set G, we introduce the embedded grids

6;1 = 6;1(19) = wi X 510, l == 1,2, 62 - 62(19)- (25)

To approximate problems (4a) and (4b), we need an extension of problem (4a) to
the set G

G =D x[0,T], D' =[-h*d+h), (26a)

where h? is the step size of the “coarsened” mesh @125). We extend the data
specifying problem (2), (1) to the set G° with preserving their properties; the
extended functions a(x,?),..., f(x,1), (x,7) € G and ¢(x,1), (x,1) € So,
are denoted by a‘(x,t),..., f°(x,1), (x,1) € G e e(x,t), (x,t) € S§.
In decomposition (3b) and in (4b), we have

Ups(x,1) = US(x,1), (x,1) €G. (26b)
Here U§ (x,1), (x,t) € G is the solution of the “extended” problem

L Us(x,t) = fo(x.t), (x.1) € G\ S§. Ug(x,t) = ¢(x.1), (x.1) € S§.
. (26¢)
On the set Ge, we construct the embedded grids

—eli —eli

i — . —e0 —el —e2
Gh == Gh(27) == a)el X w6(25)’ 1 = 1,2, Gh == Gh n Gh 5 (27)

i

where @¢! are extended uniform meshes and @°' N D = 5225), i=1,2.
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Problems (26¢), (26a) and (4b), (4c), (1) are approximated by the difference
schemes on the grids E; "and 6;1, respectively:

Ao (6.0 = f<(e,0), (6.0) € G\ 8§,
G ()= (x.1),  (x.0) €G, NS (28)
Aoy, (x,1) = =82 a(x, 1) 8,525/ (x, 1), (x,1) € G, \ So,
4, (x,0)=0, (x,1) € G), N Sp; (29)
Aoz, (x,1) == a(x,1) 8:x 2, (x, 1), (x,1) € G},
2, (x.1)=0, (x,1) €S}, i =12 (30)
For the problem on the grid E;, the operator A¢ is defined by the relation

AGgy = —c(x, 1) — p°(x, )6, (x,1) € G\ S5

We set

2y (x.t) =25 (e ) + &2, (v, ) + 2, (x. 1), (x,0)€G). i =12. (31
—0 . 0 . .
On the set G, we define the function z, (x, f) in the following way:

—0
ety = yizy(x.t) + yazp(x.t),  (x,1) € Gy, (32)

where y; = yi 20 (k).
. —=0 . . L
The function z¥(x,t), (x,t) € G, is the grid approximation of U(x,?)
constructed with the use of the Richardson technique.
. . —0 .
Using the function z?] (x.t), (x,t) € G,, we construct its interpolant

D(x,1), (x,1)eCG (33)

as follows. First, for the function Z(z)/ (x,t) fort € a)_oo, we construct the interpolant
Zg(x,1), x € D, t € . This is the cubic interpolant on each elementary interval
of the partition D generated by the mesh @". It is constructed from the values
of z% (x,t) at three adjacent nodes of the mesh @° (see, e.g., in [4] and in [5]).
The function Zj; (x, 1), (x,1) € G is obtained by applying linear interpolation with
respect to ¢ for the function ZJ) (x, 7).

The function 2 (x, 1), (x,t) € G, is the continual approximation of the function
U(x,t) constructed with the use of the Richardson technique.
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5.3 Solution of the Richardson Scheme provided (23)
Jor the Singular Component V(x,t)

Under the condition (23), using the Richardson technique, we construct a grid
approximation of the singular component V(x, 7). On the set G, we define the
subsets G;-T

6;’ ZE;(II) = G;T USQ, o =O'(11)(8, N, l) fOr [ = 4, ] = 172- (34)

— o L= =0
On the sets G;, we construct the embedded sets (similar to the grids G ;, 25> G 2s))

—oi —oi — i —i . — 00 —00 —0ol _—o2 .
Gip=0Gjhas =w}”xa)(’), i=12 G;, =G;,55=6G;,NG;,, j=12.
(35)
Problem (5b), (1) is approximated by the difference scheme
A(7)zfvj (x,0)=0, (x,1) € GY}, (36)
, (e, 1) — 2y (x.1), (x,1) € ST NT"
z’Vj (x,0)= 1

(x.1) e S9I\S* } (r.0) € S7j i.j = 1.2,
b jh

On the set G;’g we define the function z?,j (x, 1) as follows:

—00 .
H (0 =nz, 0+ 00, x)eG,, j=12, (37

where y; = yi0),1 = 1,2.

The function z?,j (x,1), (x,1) € 57: is the grid approximation of the function
V;(x,t) constructed with the use of the Richardson technique. We construct its
interpolant:

~0 —00 .
y,(x,0), (x,))eG;, j=12Z% (38)

. —00 . A .
outside of G;-T , the function 219,- (x,t) is assumed to be zero. Set

20(x, 1) = 20 (x,0) + 20 (x.1),  (x.1) € G.
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We call the function
2.0, 1) = 20 (x, 1) + 2 (x,1), (x,t) € G under condition (23) (24b)

the solution of the Richardson difference scheme [{(28)-(30), (25), (27)};
{(36), (35); (23)}], which approximates differential problem (2), (1) under
condition (23).

5.4 e-uniform Estimate for the Solution of the Richardson
Solution Decomposition Scheme

Thus, we have constructed the function Zy 4ap)(x, ), (x,1) € G approximating
the solution of problem (2), (1). This function and the grid functions z‘{]g(x, t),
2, (x. 1), 20, (x,1), (x,1) € E: and z?/j_ (x,1), (x,1) € E;E, j = 1,2, are called
the continual and grid solutions, respectively, of the Richardson difference scheme
[(20), (19); (28)—(30), (25), (27)], or, in short, the solutions of the Richardson
solution decomposition scheme.

For the solution to the Richardson scheme of the solution decomposition method,
in [3] we have obtained the following ¢-uniform estimate:

lu(x,t) —2,(x, )| < M[N"*In* N + N;?], (x,1) €G. (39)

5.5 Construction of a Scheme with Higher Accuracy Order

The technique described above allows us to construct a Richardson scheme of
type (20) on the three embedded grids E;, Ei and 52 with the solution z°(x, ) on
the set E:, which is the intersection of the sets, 52 = 6;, N Ei N 5,31. Application
of this Richardson scheme to the basic scheme of the solution decomposition
(similar to constructions in Sect.5) leads to the scheme of higher accuracy order

whose solution z,(x, ) converges e-uniformly in the maximum norm at the rate
@) (N_6 In® N + N;?) on the set G.
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Spectral Analysis of Large Sparse Matrices
for Scalable Direct Solvers

Ahmet Duran, M. Serdar Celebi, Mehmet Tuncel, and Figen Oztoprak

Abstract It is significant to perform structural analysis of large sparse matrices
in order to obtain scalable direct solvers. In this paper, we focus on spectral
analysis of large sparse matrices. We believe that the approach for exception
handling of challenging matrices via Gerschgorin circles and using tuned parameters
is beneficial and practical to stabilize the performance of sparse direct solvers.
Nearly defective matrices are among challenging matrices for the performance of
solver. Such matrices should be handled separately in order to get rid of potential
performance bottleneck. Clustered eigenvalues observed via Gerschgorin circles
may be used to detect nearly defective matrix. We observe that the usage of
super-nodal storage parameters affects the number of fill-ins and memory usage
accordingly.

Keywords Spectral analysis ¢ Sparse solver * Defective matrices

1 Introduction

We design and implement a new hybrid algorithm and solver for large sparse
linear systems. We consider scalable direct solvers because of their robustness
and examine the SuperLU_DIST 3.3 for distributed memory parallel machines
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among several sparse direct solvers (see Li et al. [1], Li and Demmel [2], Amestoy
et al. [3], Schenk and Gartner [4, 5], Duran and Saunders [6], Duran et al. [7],
and references contained therein). Duran et al. [8] and Celebi et al. [9] discussed
the advantages and limitations of the SuperLU solvers and tested the code of
SuperLU_DIST 3.0 in order to measure the performance scalability for various
patterned sparse matrices and randomly populated sparse matrices (see [10] for
the theoretical foundation regarding the distribution of eigenvalues for some sets of
random matrices). Although the existing versions of SuperLU work well for many
matrices, they need to be improved for certain types of sparse matrices.

It is important to estimate the elapsed time to solve large sparse linear systems for
time-restricted real-life decision-making applications such as oil and gas reservoir
simulators and financial applications (see [11-13] and references therein). Challeng-
ing matrices should be distinguished and handled separately because they may lead
to performance bottleneck. Therefore, structural analysis of large sparse matrices
for scalable direct solvers is needed. In this work, we focus on spectral analysis of
large sparse matrices and check whether there is relationship between the eigenvalue
distribution of matrix and the performance of the solver. We try to examine the
eigenvalue distribution of various sparse matrices. We may find all eigenvalues in
order to obtain the distribution graph of eigenvalues, if possible. However, it is
very expensive to find all eigenvalues. Therefore, Gerschgorin’s theorem may be
used to bound the spectrum of square matrices. Several behaviors such as being
disjoint, overlapped, or clustered of, Gerschgorin circles may give clue regarding
the distribution of the eigenvalues and the performance of the solver for that matrix.

The presence of repeated eigenvalues can be one of the sources of challenges.
The repeated eigenvalue may have fewer eigenvectors than the multiplicity of
eigenvalue. While such eigenvalue is called defective eigenvalue, the corresponding
matrix is referred as a defective matrix (see [14]). If the matrix of eigenvectors is
singular, then the matrix cannot be diagonalizable and the matrix is defective. We
observe that it takes longer time to solve sparse linear system having defective or
nearly defective matrix than regular matrix. Moreover, defective matrix may lead to
memory restriction due to the appearance of more fill-ins than that of diagonalizable
matrix.

The existing versions of SuperLU are sensitive to challenging matrices and need
exception handling. Apart from the solver, spectral analysis can be done and tuned
parameters may be used accordingly. The exception handling is one of the new
properties of SuperLU_MCDT (Multi Core Distributed) solver (see Duran et al. [8]
and Celebi et al. [9]). The remainder of this work is organized as follows. In Sect. 2,
the test matrices including randomly populated matrices and patterned matrices are
described. Later, the computation for spectral properties is presented and several
illustrative examples are given. Section 3 concludes this work.
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Table 1 Description of patterned matrices

Pattern Numeric

Name Order NNZ NNZ/N symmetry symmetry Origin
EMILIA_923 923136 40373538 43,74 100 % 100 % UFSMC
HELM2DO03LOWER_20K 392257 1939353 4,94 0% 0% UHeM
Table 2 Description of randomly populated matrices

Name Order NNZ NNZ/N Condition number Origin
RAND_30K_3 30000 90000 3 1,20E+006 UHeM
RAND_30K_5 30000 150000 5 4,22E4-006 UHeM
RAND_30K_7 30000 210000 7 1,76E+006 UHeM
RAND_30K_9 30000 270000 9 2,51E+006 UHeM
RAND_30K_11 30000 330000 11 8,82E+4-005 UHeM
RAND_30K_30 30000 900000 30 1,13E+006 UHeM
RAND_30K_50 30000 1500000 50 7,03E+005 UHeM
RAND_30K_75 30000 2250000 75 1,16E+006 UHeM
RAND_30K_100 30000 3000000 100 3,39E+006 UHeM
RAND_10K_3 10000 30000 3 7,10E4-005 UHeM
RAND_20K_3 20000 60000 3 3,19E+005 UHeM
RAND_30K_3 30000 90000 3 1,20E+006 UHeM
RAND_40K_3 40000 120000 3 3,90E+006 UHeM
RAND_50K_3 50000 150000 3 1,20E+-006 UHeM
RAND_60K_3 60000 180000 3 2,14E+006 UHeM

2 Methods and Results

We consider a portfolio of test matrices containing randomly populated sparse
matrices in addition to patterned matrices. We generate 30 different randomly
populated matrices RAND_30K_3, ..., RAND_30K_100 for each. We describe the
matrices in Tables 1 and 2, respectively.

2.1 Description of Matrices

2.2 Computation for Spectral Properties

The selected eigenvalues of large matrices are computed using the Scalable Library
for Eigenvalue Problem Computations (SLEPc) software (see [15]), which is
developed based on the Portable, Extensible Toolkit for Scientific Computation
(PETSc) (see [16]). The code has been tested up for all sparse matrices in the list on
HP Integrity Superdome SD32B (see [17]), a computing server with shared memory
architecture at UHeM. The software package includes implementations of a set of
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Fig. 1 Gerschgorin circles of matrix HELM2D03LOWER_20K

methods for the solution of large sparse eigenproblems on parallel computers. It is
applicable to both symmetric and nonsymmetric matrices. In our computations, we
used the Krylov-Schur method available in the package.

The computation of all eigenvalues may not be feasible for large sparse matrices,
mainly due to memory constraints. Therefore, we followed two strategies to get
an idea about the eigenvalue distribution of the test matrices: For the large sparse
matrices, we compute the extreme eigenvalues. We try to see a rough picture of
the distribution for the rest of the eigenvalues by using Gerschgorin’s theorem. For
example, we show the Gerschgorin circles of matrix HELM2D03LOWER_20K and
matrix EMILIA_923 in Figs. 1 and 2, respectively.

We can compute all eigenvalues of the small randomly populated matrices and
show the distribution of eigenvalues for RAND_30K_100 in Fig. 3. We observe that
nearly all eigenvalues can be found within the circle except for the largest eigenvalue
that is indicated by cross in figure.

Although the existing versions of SuperLU work well for many reasonable
matrices, they need to be improved for certain types of sparse matrices. For example,
we generated a new unsymmetric matrix HELM2D03LOWER_20K (see Duran
et al. [8]), shown in Fig. 4, which consists of the lower triangular part of a symmetric
matrix HELM2DO03 from the University of Florida sparse matrix collection [18] and
an upper subdiagonal with 20,000 distance from the main diagonal. We reported in
our PRACE WP43 paper (see Duran et al. [8]) that SuperLU_DIST 3.0 failed for
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HELM2D03LOWER_20K due to symbolic factorization error, although it works
well for the matrix HELM2DO03 on the Linux Nehalem Cluster (see [19]) available
at UHeM. Later, the bug in the factorization routine was fixed in April 2013.

We used the SuperLU_DIST 3.3 with tunings of super-nodal storage parameters.
However, it runs slowly for the matrix HELM2D03LOWER_20K compared to
EMILIA_923 (see Table 3), because HELM2DO03LOWER_20K is a challenging
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Fig. 4 Matrix picture of
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Table 3 The performance of the SuperLU_DIST 3.3 for HELM2DO3LOWER_20K and

EMILIA_923

Wall clock time(s) BLAS MKL

Patterned matrices Default Tuned Default Tuned
parameters parameters parameters parameters

HELM2DO03LOWER_20K  5,594.72 3,047.56 5,310.04 2,324.00

EMILIA_923 743,29

matrix. It takes approximately 7.5 times longer than EMILIA_ 923, although
HELM2DO3LOWER_20K’s order, total number of nonzeros, and the number of
nonzeros per row are less than that of EMILIA_923. Table 3 shows the performance
of the SuperLU_DIST 3.3 for HELM2D03LOWER_20K and EMILIA_923 by
using standard BLAS [20] and Intel’s Math Kernel Library (MKL) [21] which is
a kind of optimized BLAS on the Linux Nehalem Cluster with 64 (8 x 8 mesh)
cores. The tunings of super-nodal storage parameters are important. For example,
the usage of tuned parameters (relax:100 and maxsuper:110) outperforms at least
1.8 times faster than that of default parameters (relax:12 and maxsuper:60) for
HELM2DO03LOWER_20K using the SuperLU_DIST 3.3. Moreover, the usage of
super-nodal storage parameters affects the number of fill-ins. For instance, there
are 3,208,629,380 nonzeros in L+U with the default parameters compared to
3,477,287,771 nonzeros of L+U in the presence of the tuned parameters.
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When we examine the spectral properties of HELM2D03LOWER_20K in Fig. 1,
the real parts of the eigenvalues range between 2.294563 and 4.944602 with many
repeated eigenvalues. Those clustered eigenvalues can be observed via Gerschgorin
circles as in Fig. 1. Therefore, HELM2D0O3LOWER_20K is a nearly defective
matrix.

3 Conclusions

We believe that the approach of exception handling of challenging matrices via
Gerschgorin circles and using tuned parameters is beneficial and practical to
stabilize the performance of sparse direct solvers. Nearly defective matrices are
among challenging matrices. Such matrices should be handled separately in order
to get rid of potential performance bottleneck. Clustered eigenvalues observed via
Gerschgorin circles may be used to detect nearly defective matrix.

We reported in our PRACE WP43 paper (see Duran et al. [8]) that
SuperLU_DIST 3.0 failed for HELM2DO3LOWER_20K due to symbolic
factorization error. Later, the bug in the factorization routine was fixed in April
2013. We noticed that the SuperLU_DIST 3.3 with tunings of super-nodal storage
parameters works for HELM2D03LOWER_20K but slowly.

The tunings of super-nodal storage parameters are important. For example, the
usage of tuned parameters outperforms at least 1.8 times faster than that of default
parameters for HELM2D03LOWER_20K using the SuperLU_DIST 3.3. Moreover,
we observe that the usage of super-nodal storage parameters affects the number of
fill-ins and memory usage.
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Numerical Study of Two-Dimensional Jet Flow
Issuing from a Funnel

Abdelkader Gasmi

Abstract In this paper, the problem of steady two-dimensional flow emerging from
a slot of a funnel is considered. The fluid is assumed to be incompressible and
inviscid and the flow is irrotational. The problem is reformulated using conformal
mappings and the resulting problem is then solved by using the series truncation
method. We computed solutions for various values of the Weber numbers. The
contraction coefficient for different forms of the funnel has been found. The shape
of the free surface of the jet has been determined and presented.

Keywords Free surface ¢ Inviscid flow ¢ Weber number ¢ Jet ¢ Series truncation

1 Introduction

In this work, we consider two-dimensional potential flow of an incompressible and
inviscid fluid emerging from an opening located at the end of a semi-infinite tube.
The width of the tube is 2 Hj and the inclination angle of the end faces of the tube to
the horizontal is B (see Fig. 1). The surface tension effects are incorporated into the
nonlinear free-surface boundary conditions and gravity is neglected. Far upstream
the flow is uniform with a constant velocity Uy, the thickness of the fluid is 2H and
the velocity approaches a constant U far downstream. The mathematical problem is
characterized by four parameters, the width of the tube 2 Hy, the inclination angle 3,
the angle at the separation point between the plate and the free streamlines y, and
the Weber number «. If one neglects the effect of surface tension, the solution can be
computed exactly by using the free streamline theory proposed by Kirchhoff (1869)
and the method of conformal mapping [1,2].
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Fig. 1 Sketch of the flow and y
the coordinates
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When the gravity or the effects of surface tension are included, the free-surface
equation is generally a nonlinear partial differential equation. These equations
are generally very difficult to solve analytically. In cases where the effect of surface
tension is neglected and the effect of gravity is considered there are several variants
of this problem, for example, the flow emerging from vessels, the flow under sluice
gate, the flow over an obstacle, etc. Many authors have investigated these problems:
Yoon and Semenov [3] and Vanden-Breock [4].

In this paper, we solved the fully nonlinear problem numerically and the mesh
points were only on the free surface. For each value of the inclination angle S,
we found that there exists a unique solution for all @ > 0. Gasmi and Mekias [5]
considered the problem of a free-surface flow past an infinite flat plate in a channel;
this configuration can be obtained when the inclination angle f = 7. In this work
we extend the calculations of Gasmi and Mekias [5, 6, 8].

The problem is formulated in Sect. 2. The numerical procedure is described in
Sect. 3 and the results are presented and discussed in Sect. 4.

2 Formulation

Let us consider a two-dimensional steady irrotational flow issuing from an orifice
of length 2L located at the end of a semi-infinite tube of width 2 Hj in the presence
of surface tension forces (see Fig.1). The fluid is inviscid and incompressible.
We introduce the cartesian coordinates with the streamline £OF on the x-axis and
the y-axis is perpendicular and passing through the points B and B’. Far upstream
the flow is uniform with a constant velocity Uy. Far downstream, we assume that the
velocity approaches a constant U and the thickness of the fluid tends to a constant
2H . Because of the symmetry of the flow field, we need only consider the half of
the flow region which is contained between the x-axis and the streamline ABCD.
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Fig. 2 The complex potential w4
f-plane
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The governing equations for the flow are
Ap =0 in the flow field, (D
where ¢ is the velocity potential,
d
—¢ =0 on the walls, 2)
an

where 7 is a normal vector of the boundaries,

1(dp\> 1(dp\> T
(9% + = 9\ _ —K =cts on the two free surfaces. 3)
2 \ dx 2 \ dy P

Here p is the density, T is the surface tension, and K is the curvature of the free
surface:

¢ — cts X — —00, @)
¢ —> Ux x — 4o00. o)

We introduce the complex potential function f and the complex velocity ¢: f =
¢+iv, = % = u — iv in which ¥, u, and v represent, respectively, the stream
function and the horizontal and vertical components of the fluid velocity.

The physical quantities are made dimensionless by using U as the velocity unit
and L as the length unit. Without loss of generality, we choose ¢ = 0 at the
separation point C and ¥ = 0 on the streamline A BCD. It follows from the choice
of the dimensionless variables that ¥+ = —1 on streamline EOF, and the flow

configuration in the complex potential plane is sketched in Fig. 2.
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We define the function T — i 0 as
w=u—iv=e"". (6)

In these new variables (3) becomes

et 28139_1 0<¢<oo (7
o AP ’
« is the Weber number defined by
pU?L
= . 8
% T 3
The kinematic condition on AB, BC, and EOF can be expressed as
Im¢ =0 on Yy =0 and —oco < ¢ < ¢p, ©)]
Rel
— =cotf on ¥y =0 and¢p <¢ <0, (10)
Im¢
Im¢{ =0 on Yy =-—1 and —oo0 < ¢ < 0. 11

This completes the formulation of the problem of determining T — i 6. This function
must be analytic in the strip —1 < ¥ < 0 and satisfies the conditions (7), (9), (10),
and (11).

3 Numerical Procedure

The nonlinear flow problem is numerically solved via a series truncation technique,
similar to that used by Vanden-Broeck. We define a new variable ¢ by the relation

f= Elog( 2it ) (12)
E14

1—12

The wall ABC goes onto the imaginary interval (0, ), the wall EOF onto the real
interval (0, 1), and the free surface CD onto the circumference (see Fig.3). The
domain of the fluid in the f-plane is then transformed into the first quadrant of the
unit disk in a z-plane.

Since there is stagnation point, an angle at B and discontinuity in the derivative
% at the separation point ¢ = 0, { must have singularities at these points. Local
analysis shows that appropriate singularities are

E~ (B2 +1H)F  as 1 —ib. (13)
§~(12+])1_% as t —i. (14)

Note that the free surfaces in the 7-plane are described by the points ¢ = e'°.
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Fig. 3 The complex potential A
t-plane
C
B-
A c D N
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Next we define the function 2(¢) by the relation
4 B
e = 2(t) = (bE — 1)) 7 (1 — 12) 17720, (15)

At the points t = i and ¢t = ib, ¢ has singularities associated with a flow around a
corner and stagnant flow (see Fig. 1). These singularities are removed in (12) by the

factor (b2 — tz)g (1—¢2)!=7 (see Birkhof and Zarantonello [1] and Vanden-Broeck
[4] for details). It follows that €2(¢) can be represented by a Taylor expansion in
powers of ¢. Furthermore, the kinematic conditions (9) imply that the expansion for
a, has real coefficients and involves only even powers of . Thus we write

o0
Q) =Y an™. (16)
n=1
Using (12) we rewrite (7) in the form
- - 30
e’ + Tt tan(o)— = 1. 17)
o do
Here 7(0) and 6 (o) denote the values of 7 and # on the free surface CD.
We solve the problem approximately by truncating the infinite series in (16) after

N terms. We find the N coefficients a, and the separation angle y by collocation.
Thus we introduce the N + 1 mesh points

T 1
o7 2(N+1)( 2), . + (18)

Using (18) we obtain [T(0)]s=0, [é(o)](,:a, and [%]Jq,, in terms of coefficients
a, and the separation angle y. This leads to a system of N + 1 nonlinear algebraic
equations of N + 1 unknown (a,, ,=1..n,Y)- This system is also solved by
Newton’s method.
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4 Results

Numerical schemes of Sect.3 were used to compute solutions for different values
of the inclination angle 8 and several values of the Weber number «. We found that
the coefficients a, decrease rapidly as n increases. Figure 4 presents the variation
of log|a,| against n for « = 100 and B = %, which shows how the coefficients a,
decrease rapidly. Some of the coefficients of the series (16) and the corresponding
Weber number for different values of 8 are shown in Table 1.

Most of the calculations were done and presented with N = 60.

‘We note that as the Weber number o decreases, the contraction coefficient C, and
the angle in the separation point increase. Numerical values of C, vs. é are shown
in Fig. 5.

In Fig. 6 we present values of the angle at the separation point between the wall
and the free streamlines y vs. é It is seen that numerical solutions exist for all
o > 0.

As b — 0 and for all values of the inclination angle 0 < 8 < % we obtain the
same results as Gasmi and Mekias [6] and our result also agrees with the results

logla,|
0.0
-5.00
—10.00
—15.00 4
Fig. 4 The variation of
logla,| against n fora = 100 —20.00 e (4
and B = % 0.00  10.00 20.00 30.00 40.00 50.00 60.00

Table 1 Some values of the coefficients a, of the series (12) for several values of the angle
B, b = 0.5 and different values of Weber number «

B o aj a0 40 ()

% 1.5 2.7332x 107" 4.8052x 10—  1.0300 x 10— 5.7705 x 10~
10 2.2080 x 107! 1.3708 x 10™*  1.4792 x 10— 1.7920 x 10~
a—>o00 1.1387x107% 3.1298 x 10~° 2.8399 x 10~10  1.4792 x 10~13

% 1.5 3.4142 x 107" 5.6654 x 10> 1.1014 x 10~° 6.0315x 108
10 2.4580 x 10! 1.3470 x 10~*  1.4681 x 10— 1.8478 x 10™°

o —>o00 1.4871x1077 4.1034 x 10™%  3.1948 x 10™° 1.4145 x 10712
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Fig. 5 Coefficient of C.
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of Ackerberg and Liu [7] for different Weber number ¢ > & = 6.801483. These
authors solved the problem via the finite difference method and the mesh points were
throughout the fluid domain; they could find solution for all ¢ > & = 6.801483.
In our procedure mesh points are only needed on the free surface and we computed
solutions for o > 0.
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Fig. 7 Free streamline shape for § = % Hy — L = 1 and various Weber numbers

It is also observed that where o — 0, the free surface tends to a horizontal line,
the contraction coefficient C, — 1, and the angle of separation y — 35 /2. For this
limiting case, all boundaries are rectilinear; hence, an exact solution can be found
via Schwarz-Christoffel transformation [1].

Typical profiles for various Weber numbers of the free surface are presented in
Fig.7 for Hy — L = 1 and B = 7. This work is a generalization of our previous
paper [6].

5 Conclusion

We have employed the series truncation method to find the velocity and the shape
of the jet flow. We also have precisely determined the type of singularity at the
separation points. The obtained solution showed that the surface tension forces act
in such a way as to reduce the free-surface curvature of the jet. The main advantage
of this method is to reduce the two-dimensional problems into one-dimensional and
find the solution only on the boundary of the flow field.
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Higher-Order Immersed Finite Element Spaces
for Second-Order Elliptic Interface Problems
with Quadratic Interface

Mohamed Ben-Romdhane, Slimane Adjerid, and Tao Lin

Abstract In this manuscript, we present quadratic immersed finite element (IFE)
spaces to be used with the interior penalty IFE method proposed in Adjerid (Int. J.
Numer. Anal. Model., 2013, accepted) to solve interface problems with a quadratic
interface. Quadratic IFE spaces for interface problems with quadratic interfaces
are developed using an affine mapping between the reference and the physical
elements. Two different approaches for imposing the interface jump conditions
are proposed: (i) a weak form of jump conditions using Legendre polynomials
and (ii) a pointwise form by imposing the conditions at some particular points.
We give a procedure to construct IFE shape functions, investigate the optimal
approximation capability of the proposed IFE spaces, and present numerical results
showing optimal convergence.

Keywords Quadratic finite element spaces ¢ Interface problem ¢ Quadratic inter-
face ¢ Interior penalty immersed finite element method

1 Introduction and Model Problem

Interface problems with discontinuous coefficients across the interface are encoun-
tered in many engineering and scientific problems such as problems in material
sciences, electromagnetism, fluid dynamics, and biological processes [1]. Solving
such interface problems efficiently and accurately remains a challenge because
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Fig. 1 A two-material
domain
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of the non-smoothness or the discontinuity of the input data and/or the solutions
as well as the non-smoothness of the interface geometry in some applications.
To handle the mentioned type of interface problems, the immersed finite element
(IFE) methods are proposed. Unlike the standard finite element method where body-
fitted meshes are used in order to guarantee optimal convergence of the solutions
[2—4], the IFE method does not require any restrictions on the mesh used to solve the
interface problem. It allows using finite elements that are cut by the interface which
eliminates the need for using body-fitted meshes and uses interface-independent
meshes to solve interface problems. As a result, meshes used by IFE methods consist
of the following two types of elements: (i) non-interface elements which do not
intersect the interface and are equipped with standard local FE basis functions and
(ii) interface elements which are cut by the interface and are equipped with IFE
basis functions satisfying interface jump conditions.
We consider the following model interface problem:

%—V(,BVu):f, in Q,

Upe = 8-

(1a)

Without loss of generality, we assume that @ C R? is a rectangular domain
consisting of two sub-domains Q™ and Q~ separated by an interface I" as illustrated
in Fig. 1, while S is given by

Bt, inQT,

=, inQ~ (1b)

Bx.y) = §

where BT and B~ are two positive constants. Following the same notations as [5],
we let P, denote the two-dimensional quadratic polynomial space in R?, and let
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Fig. 2 A physical interface
element

), be a regular triangulation of the domain €2, where 4 is the maximum diameter.
The set of interface elements that are cut by the interface is denoted by Zli , and
we call the set of non-interface elements as .7,° = .7, \ /. Similarly, edges that
are cut by the interface are called interface edges; otherwise, they are referred to as
non-interface edges. We let &, &0, CEZ , respectively, denote the set of all edges,
interior edges, and interface edges. As illustrated in Fig. 2, every interface element
T canbesplitas T =TT UT~, where TT = T N Q*.

In the discussion from now on, for a triangular element 7 = AV, V, V3, we will
use Vy, Vs, and Vg to denote the midpoints of the edges ViV,, V, V3, and V) V3,
respectively.

We will also use D and E to denote the intersection points of I with the edges
of T'. Guided by the standard isoparametric finite element ideas [6], we will denote
by G the intersection point of I with the line orthogonal to the line segment DE
and passing through its midpoint, as shown in Fig. 2.

2 Piecewise Quadratic IFE Spaces for Quadratic Interfaces

We introduce the following piecewise quadratic IFE spaces on an arbitrary interface
element T:

R](T)Z{U, |U|T:|: € P, / [U]Tmr Vi ds=0,i=0,1,2,
Tnr

/ [ﬂn-VU]TmrvidSZO,iZO,l,
rnr
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/ [BAU ]rnrvods =0}, )
AT

Rao(T) ={U, |Ulg+ € P2, Ulpeg =[Bn-VU|pe =[BAU]c =0}, (3)

with v;, i = 0,1,2, being the mappings from the reference interface element
T to the physical element 7', of the three one-dimensional Legendre polynomials
Vi, i =0,1,2, of degree i, shifted to the interface " on the reference element.

To define the global quadratic IFE spaces over the whole simulation domain €2,
we define the set of nodes N, for the usual Lagrange quadratic finite element space
defined on the mesh .7}, and for each node v; € Nj,, we define a piecewise quadratic
IFE basis function wik ,fork = 1,2, over Q as follows:

R(T)V T € T
yiir e , Vi (v;) =8 Vv €Ny
PVT € G\ T}

We also recall that \V};, contains N nodes among which the first N; nodes are inside

Q while the rest of them are on the boundary of €2, and we define the global
quadratic IFE spaces over the domain €2 as

Wy, = span{l//jl., j=1,...,N}, “4)
and
Ty =span{y}. j =1,....N}, )

and the subsets of the spaces W, and J, consisting of functions interpolating the
essential boundary condition g

Ny N
Wie = U e WU =Y "yl + Y gy ¢. 6)
i=1 i=N;+1
and
Ny N
Te=UeT|U=) c¥7+ > gvvi;. (7)
i=1 i=N;+1

In a forthcoming paper, we will detail the mapping of the piecewise quadratic IFE
spaces R¢(T), k = 1,2, defined on an arbitrary element 7', into the reference
interface triangle and discuss the new interface jump conditions on the reference
element.
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3 Approximation Capability

For all our numerical experiments, we consider the rectangular domain Q = [0, 1]
and the uniform triangular mesh .9, = J;' U )¢ of size h. J}, is formed by
partitioning Q into (1/h)? squares, with i = %, m = 2,...,7, then forming the
triangular elements by joining the lower right and upper left vertices of the squares.
We define a piecewise Lagrange-type IFE interpolant I,u(x, y) of u(x, y) such that

VT €9,

6

Lu(x, y)r =) u(Vi)i(x,y), ®)

i=1

where V;, i = 1,...,6, are the nodes on T and ¢; (x, y), i = 1,...,6, are the six
Lagrange FE or IFE shape functions depending on whether 7 is a non-interface or
an interface element.

To compute the interpolation errors, we use the usual L2 norm and the following
broken H' norm

= ol = 3 [f = oy, s =xv O

Te, T
using the constructed Lagrange piecewise quadratic IFE shape functions and discuss
the approximation capability of the piecewise quadratic IFE space J,.

Example 3.1. We consider the domain = [0, 1]? cut by the quadratic interface
I : x? 4+ Z =y, as illustrated in Fig. 3. Let us denote Q+ = {x> + Z < y} and

Q™ ={x*+ Z > y}. We test our IFE space on the piecewise function
1 3 2 7\ x+y . in O+
—+(y —(x +7)>e ; in Q
u(x.y) = ﬂl 3 2 7\3) ety . in O (19)
ﬂ—_<y —(x +7)>e v in 2,
withr = ’Z—J_r =5andr = ’Z—J_r = 10° representing a moderate and a large jump in

the coefficient S.

We present interpolation errors in /;u in the L? norm ||u — Iul|o and the broken
weighted H ' norms ||u, — (I4u) |0, and ||uy — (I4u),||o,» and compute their orders
of convergence in Tables 1 and 2 for the quadratic IFE space [J,. We conclude that
J» has optimal approximation capability, (p + 1 = 3) in L? norm, and (p = 2) in
broken weighted H ! norms, for both moderate and large jumps in B.
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Fig. 3 Geometry of Q2 and
the quadratic interface I' in
Example 3.1
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Table 1 Interpolation errors and orders for u, u,, and u, for the function (10) in Example 3.1 with
r = 5, with the IFE space 7,

h ||u — IhuHO Order ||MY — (Ih”)x”(lh Order ||uy — (Ihu)y||0<h Order
1/10 2.233135¢—03 N/A 1.490673e—01 N/A 4.638299¢e—02 N/A
1/20 2.816030e—04 2.987336 3.752784e—02 1.989931 1.168816e—02 1.988547
1/30 8.356524e—05 2.996240 1.670054e—02 1.996824 5.201587¢—03 1.996752
1/40 3.527386e—05 2.998050 9.398318e—03 1.998422 2.927384e—03 1.998229
1/50 1.806504e—05 2.998803 6.016243e—03 1.999017 1.873946e—03 1.998996
1760 1.045593e—05 2.999149 4.178425e—03 1.999372 1.301490e—03 1.999414
1/70 6.585241e—06 2.999262 3.070096e—03 1.999508 9.562708e—04 1.999498
1/80 4.411826e—06 2.999612 2.350624e—03 1.999738 7.321765e—04 1.999676

Table 2 Interpolation errors and orders for u, u,, and u, for the function (10) in Example 3.1 with
r = 1,000, with the IFE space 7},

h [|lu — Tnullo Order [luy — (Ipu).llo, Order [luy — (Iyu)yllo, Order
1/10 2.231791e—03 N/A 1.489825e—01 N/A 4.631764e—02 N/A
1/20 2.814414e—04 2.987295 3.750711e—02 1.989907 1.167267e—02 1.988428
1/30 8.351753e—05 2.996232 1.669135¢—02 1.996817 5.194732e—03 1.996731
1/40 3.525368e—05 2.998055 9.393162e—03 1.998418 2.923542¢—03 1.998211
1/50 1.805472e—05 2.998799 6.012948¢—03 1.999013 1.871490e—03 1.998987
1/60 1.044995e—05 2.999154 4.176138¢—03 1.999370 1.299785e—03 1.999412
1/70 6.581474e—06 2.999260 3.068417e—03 1.999505 9.550187¢—04 1.999493
1/80 4.409302e—06 2.999612 2.349338e¢—03 1.999741 7.312180e—04 1.999674
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4 Application to Interface Problems

To solve the interface problem, we use the interior penalty immersed finite element
(IP-IFE) formulation detailed in [5]. We present numerical results for the IP-IFE
method with the quadratic IFE space 7).

For all our numerical experiments, we consider the rectangular domain
Q = [0,1]* and the uniform triangular mesh .7, = .7/ U ¢ of size h. Here,
T}, is formed by partitioning € into (1/h)? squares, with h = 5, m = 2,....7,
then forming the triangular elements by joining the lower right and upper left
vertices of the squares.

Example 4.1. We consider the quadratic interface T' : y = x? + 7, defined in
Example 3.1. We solve the interface problem (1a), where the true solution is given

by (10) from the same example, with r = ’Z—t = 5, then with r = 'Z—f = 10%. The

L? error ||u— U"||o, the weighted errors ||u, — U ||, and [|u) — Uyh||0,h, and their
orders of convergence are presented in Tables 3 and 4.

Moreover, a computation of the global rates of convergence using least-squares
fit reveals the following:

Table 3 L2 errors and orders for u, u,, and uy in Example 4.1 with r = 5, using the interior
penalty IFE method with the IFE space 7,

h [lu—U"|o Order [luy — U los  Order lluy — UMlo, ~ Order
1/10 2.239261e—03 N/A 1.494187¢e—01 N/A 4.761907e—02 N/A
1/20  2.820069¢—04  2.989221 3.755771e—02 1.992180 1.178206e—02 2.014948
1/30 8.376481e—05 2.993891 1.672086e—02 1.995786 5.240740e—03  1.997990
1/40 3.532076e—05 3.001724 9.403894e—03 2.000588 2.939983e—03 2.009367
1/50 1.808355e—05 3.000167 6.019455¢e—03 1.999283 1.880580e—03  2.002403
1/60 1.046425e—05 3.000404 4.179944e—03 2.000306 1.305182e—03 2.003263
1/70  6.591189e—06 2.998564 3.071384e—03 1.999145 9.585988e—04 2.002100
1/80 4.414898e—06 3.001159 2.351411e—03 2.000375 7.338535e—04 2.000752

Table 4 L? errors and orders for u, u,, and uy in Example 4.1 with r = 1,000, using the interior
penalty IFE method with the IFE space 7,

h [lu—U"|o Order [luy — UMlos  Order lluy — UMlor,  Order
1/10  3.337899¢e—03 N/A 1.715437¢—01 N/A 9.378451e—02 N/A
1/20 2.890901e—04 3.529349  3.782933e—02 2.180999 1.305892e—02 2.844314
1/30 8.802201e—05 2.932808 1.688684e—02 1.989197 6.020309¢—03 1.909740
1/40 3.568347e—05 3.138532 9.416284e—03 2.030347 3.053520e—03 2.359701
1/50 1.827893e—05 2.997795 6.040323e—03 1.989675 1.963467¢—03 1.978920
1/60 1.053416e—05 3.022823 4.184462e—03 2.013363 1.343519¢—03 2.081046
1/70  6.629628e—06 3.004037 3.073598e—03 2.001478 9.843718e—04 2.017791
1/80 4.506741e—06 2.890515 2.364600e—03 1.963882 7.797157e—04 1.745464
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llu— Thullo ~ Ch*¥%®, |lux — (Iyu)slloy ~ Ch"P7,

[luy — (Lpt)y|lop ~ Ch>%3  forr = 5.

2

llu— Inullo &~ Ch*'®L - lux — (Iyu)ellon ~ CH*MB,

[y — (L) lon =~ Ch**'%, forr = 10°.

From these results, we can easily observe that the interior penalty IFE method
with the IFE space J, performs optimally for interface problems with quadratic
interfaces.

5 Conclusion

In summary, we developed a quadratic IFE space that has an optimal approximation
capability of p + 1 = 3 in L? norm and p = 2 in the weighted H' norms. The
quadratic IFE space performs optimally in producing solutions to interface problems
with quadratic interfaces via the interior penalty IFE method in [5]. In a forthcoming
paper, an extension of the method to handle arbitrary smooth interfaces will be
proposed.
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Abstract In this investigation, the study of a non-Newtonian material when it is
dragged through the narrow region between two corotating rolls is carried out.
Theoretical analysis based on the lubrication approximation theory (LAT) shows
that LAT is a good predictive tool for calendering, where the sheet thickness
is very small compared with the roll size. By considering the influence of the
material parameter, the dimensionless leave-off distance in the calendering process
is determined. The leave-off distance is expressed in terms of eigenvalue problem.
Quantities of engineering interest like the maximum pressure, the roll-separating
force, the power transmitted to the fluid by rolls, and the normal stress effect
are calculated. It is observed that the material parameter has great influence on
detachment point, velocity, and pressure distribution, which are useful for the
calendering process.
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1 Introduction

Calendering is one of the final processes in production line. It takes place by
conveying the material through the contact line, the nip, between two rotating
parallel cylindrical rollers. Due to the line load in the nip, the material undergoes a
deformation that smoothens the surface and reduces its thickness. The technological
challenge of calendering is to achieve the required surface smoothness and other
surface properties, together with the proper shape of the material. The calendering
process of forming a flowable material into film or sheet is used in a variety
of industries, such as paper, plastics and rubber, leather cloth, shrink films for
packaging, resilient flooring tiles, and so on. This process for shaping of materials
into sheets and films was introduced in the 1830s by Edwin Chaffee and Charles
Goodyear [1] in the United States; however, Gaskell [2] was the first to analyze the
process by developing a one-dimensional mathematical procedure for Newtonian
and Bingham plastics fluids. Following Gaskell’s work, a great deal of effort
was made by numerous researchers to improve the model [2]. All works prior to
1990 have been summarized in the textbook by Agassant et al. [3]. Sofou and
Mitsoulis [4] used the lubrication theory to provide numerical results for isothermal
viscoplastic calendering sheets with a desired final thickness. Arcos et al. [5]
reported the influence of the temperature-dependent consistency index on the exiting
sheet thickness in the calendering process of a power-law fluid. Hernandez et al. [6]
studied theoretically the analysis of calendering for an incompressible Newtonian
fluid flow, with pressure-dependent viscosity. Their analysis is based on the regular
perturbation technique and the resulting governing equations are based on the well-
known lubrication theory. Recently Siddiqui et al. [7] presented the effects of
magnetohydrodynamics on calendering process of an incompressible Newtonian
fluid. They successfully found that the magnetic field provides the controlling
parameter to increase or decrease power transmission, separation force, and distance
between attachment and detachment points. Most recently Siddiqui et al. [8]
consider thermodynamically compatible model for third-grade fluid [9] to provide
numerical results for calendering process.

Various constitutive models currently exist to describe the properties of non-
Newtonian fluids. The major problem however is that none of these models can
adequately describe all non-Newtonian fluids. Among the several constitutive
equations that have been suggested in the literature is a Rivlin-Ericksen model of
third-order fluid that is capable of describing the normal stress effects for steady
unidirectional flow and predicting shear thinning/thickening effects [10, 11].

From the aforementioned works, it appears that the no work has been reported on
third-order calendering. The objective of this paper is to derive the flow mechanism
of such a material and to investigate the effects of fluid physical properties on
calendering operation. The paper is organized as follows. In the following sections
the governing equations and formulation of the problem are given. The later
section deals with the analytical solution of the flow variables. Finally results and
discussions and conclusions are provided.
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2 Governing Equations

The fundamental equations governing the flow of an incompressible, isothermal
fluid are the field equations

divV =0, (1)

DV .
'OE = —Vp 4+ divS, 2)

where V' is the fluid velocity, p is the density of the fluid, % is the material time
derivative, and S is the extra stress tensor which for a third-order fluid satisfies the
constitutive equation

S = A| + a1As + AT + Bi1As + B2(A1As + AsA)) + B3(trADA;,  (3)

D() _ ()

o — T (V-V)(), 4)
A = (VV) +(VV)T, (5)
A, = (% + (V-V)) At + A1 (VV) + (VV)TA, (©)

W denotes the dynamic viscosity, o; (i = 1, 2), §; (i = 1, 3) are the material
constants, T indicates the matrix transpose, and A4; (i = 1,3) are the first three
Rivlin-Ericksen tensors.

Equation (3) reduces to second-order fluid when B, 8, and 3 are zero and
reduces to classical Newtonian fluid model when all material moduli except p are
Zero.

3 Problem Formulation

Consider an incompressible, laminar, steady third-order fluid, which is dragged
through the narrow region between the two corotating cylinders of the same radii
R in such a way as to produce a sheet. The x-axis is taken parallel to the sheet and
the y-axis normal to it. The upper roller is rotating anticlockwise while the lower
roller is rotating clockwise with the same angular velocity w, resulting in a linear
velocity at its surface given by U = wR, their separation at the nip is Hy, and —x ¢
is the location where material first bites the rolls, which is known, as shown in Fig. 1.
The length of the curved channel formed by the rolls is very large compared with the
separation at the nip, i.e., Hy < R; hence, the flow can be taken two dimensional.
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Fig. 1 Geometry of the studied physical model

V= [u(x. y), v(x, y)]. )

Due to the symmetry of the physical model, we consider the upper half of this
configuration.

We begin with the lubrication approximation theory (LAT) that the most impor-
tant dynamic events occur in the nip region. In that region and extending to either
side by a distance of the order of xy, the roll surfaces are nearly parallel. Then
it is reasonable to assume that v < u and % < % The material moves in
the x-direction and there is no velocity in the y-direction. Thus, Eq.(7) implies
du/dx = 0, which means u = u(y). Then, the continuity Eq. (1) is satisfied
identically, the material derivative DV /D¢t vanishes and the momentum Eq. (2)
reduces to —V p + divS = 0. This leads Eq. (2) in component form as

dS,y B ap

— =0 8
dy ax @®)
S,y dp _
Dy "y 0, )

where

du du\? du\?
Syy = a +2(B2+ B3) (5) and Sy, = 2a; + ) (5) . (10

On introducing generalized pressure P

2
P(x,y)=p(x,y) = Qo + ) (j—;f) : (1)
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Using Eqgs. (10) and (11), Egs. (8) and (9) take the form

2y du\’ 9P
Mdy +2(,32+/33) (a’y) =% (12)
® _y (13)
ay

Eq. (13) that P can be a function of x alone. Therefore Eq. (12) can be written as

d2 d dP
+ 2B (d;‘) == (14)

where for simplicity we have introduced B4 = B, + .
If both the rolls are identical and rotating with the speed U, then appropriate
boundary conditions are

u=U on y = h(x),
ou — 0 on 0, (15)
y y=
where /(x) is the y-distance from the center line to the roll surface, that is,
1
h(x) = Hy+ R— (R*—x%)2. (16)

Confining the analysis to values of x such that x <« R, a good approximation to

h(x) is

2
h(x) = (1 + ZHOR) a7

4 Dimensionless Equations

In this section, dimensionless governing equations are presented to solve the third-
order calendering process. Based on LAT analysis carried out previously, consider
the following dimensionless variables:

«_ X «_ U «_ ) «_ [Ho PHo 28,07
_— 3 u = —, y En— P — T 5
V2RH, U H, 2R pU L Ho
h(x
*(x*) = —— hx) ) (18)
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Introducing the above dimensionless variables, Eqgs. (14) and (15) after removing

the “*” sign yield

d*u d (du\® dP

—— 28— =) =—, 19
dy? + 'de (a’y) dx (19

g—":Oon y =0. (20)

{u:l on y=h(x)=1+ x2,
)

In case of finite sheet, there will be zero pressure and pressure gradient at exit as
well as zero pressure at entry where the sheet first bites the rolls; the dimensionless
forms of these boundary conditions, required for the solution of Eq. (19), are

a2 — p(x=1)=0
dx x=M ’
% P(x =—x7)=0. @h

Along with Eq. (19), the dimensionless volumetric flow rate is required, which can
be written in the form

0 =1+22= /" udy, (22)

here in Eq.(22), A represents an unknown eigenvalue of mathematical problem,
which is related to the existing sheet thickness in the calendering process by the
relationship defined in the next subsection.

4.1 Sheet Thickness

Once A is found, then all other engineering quantities of interest are immediately
available. The exiting sheet thickness H is given by

H
— =1+42% 23
e + (23)

The thickness of the entering sheet H; entering the analysis according to the
definition is

xp=,/-t-1. (24)
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5 Solution for 8 « 1

In order to find the dimensionless velocity and pressure profiles, and leave-off
distance of the sheet, we try to find out an asymptotic solution to Egs.(19)—
(22). Applying the regular perturbation technique and using f as the perturbation
parameter,

u(x, y) = up(x, y) + pur(x, y) + -, (25)
P(x) = Py(x) + BPi(x) + -~ . (26)
0=00+p01+-, 27
A=2do+BAr+--, (28)

where uy, Py, Qp, and Ay are the leading-order solutions, which represent the
Newtonian case [2, 8], and u;, Py, O, and A are the corrections up to first-order
terms and contain the contribution of the non-Newtonian effect.

5.1 Zeroth-Order Problem and Its Solution

By introducing the relationships Egs. (25)—-(28) into Egs. (19)—(22) and collecting
terms of the same power of 8, the zeroth-order boundary value problem becomes

dP, d?

d_xO:Wuzo’ for —x; <x <A, (29)
Qo =1+A2= [ updy (30)
dd—’fv(’=0 at  y =0,
=1 at y=1+x2, (31)
%:P():Oatx:)ko.

The solution for Egs. (29) and (30) subject to boundary conditions (31) is given by

1 (dP 22 _ .2
=1--(=2)[a - 2
uo 2(dx)[( +x%)* =y, (32)
with
dP()_ (A(Z)—Xz)

E = — (1 +x2)3 for — Xy =x = Ao, (33)
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and
x2(1-3023)—1-52 1 — 322 1 1
3| T awr ¥ + (1 =347 (tan x —tan”" x)
Py(x) == 1+x2 ) (1-302)—2(14+42 . 34
0(x) = 3 +( ) D20+ (34
(1+2%)
From Eq.(34), if we assume that Py — 0 as x — —oo, we get 1y = 0.4751
(keeping x y = —3.0). For this value of Ay we have, the maximum sheet thickness

to minimum gap width ratio equal to 1.226.
The zeroth-order velocity profile is obtained by substituting Eq. (33) into Eq. (32):

3 (x2=213)

up(x,y)=1— =
’ 2 (14 x?)

[(1+27)"=»?]. (35)

Here we must emphasize that the solutions given by Eqgs. (32)—(35) were obtained
in previous works [2, 5, 8].

5.2 First-Order Problem and Its Solution

The first-order boundary value problem takes the form

Py _ dhw d (du ’ 36)

dx dy* dy\dy )’

01 = 2oh1 = [ 1 uidy, 37
“L'l—b;} =0 at y =0,
uy=0 at y=1+x2, (38)
%: P=0atx =A,.

Using Eq. (35) in Eq. (36) and integrating the resulting equation twice and using the
boundary conditions (38), we get the following first-order solution for velocity:

27 (A2 — x?)’ 1dP
Ml(X»Y)=TH[}"‘—(I—F)&)A‘]%-EQ,—XI [yz_(1+xz)2]_ (39)

To find the first-order dimensionless flow rate, O, we substitute Eq.(39) into
Eq.(37) and get

27 (x2-22)°  14pP, 3
Ql—?m—gﬁ(l-i-x), (40)
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here Q; involves unknown pressure gradient d P;/dx. Flow rate Q; and dP;/dx
can be obtained by applying the boundary condition given in Eq. (38). Thus, an
explicit expression for d Py /dx is

dx s+ | (144" a+x)" ]

Equation (41) is valid for —x ; < x < A;, where A; must be determined as a part of
the problem. The pressure distribution is obtained by integrating Eq. (41). Hence,

x 2 12)3 2 12)3
P1 (x) — __81 1 (A'l A0) _ (X A'0) dx. (42)
5 ), 42 [ (1420 1 +x)]

The dimensionless leave-off distance A; may be found from the above equation,
since it has been assumed that Py = Oatx = —x. Therefore Eq.(42) can be
written as

/A' [(xz—léf i) }dx o “3)

1+ 1+ (1+2)°

—x

By integrating Eq. (42) and applying the boundary conditions (38), we have the
following form of pressure distribution:

n—l
Pi(x) = 0.0129tan"" (x) — (6.0750A¢ — 4.1137A¢ + 0.92851% — 0.0699) t(l Hgi

—2.4860 | _4.5669 _ _2.3084 0.0069 0.0086 0.0129
+ | (14x2)° + (1+x2)  (1422)" + (1+x2)° (1422 + ('+X2):| *

4.0500 60750 ) 56 27424 41137 ) 34
((1+x2)2 * (‘+x2)) A= ((1+x2)2 + (1+X2)) o

——
1 [ 06190 0.9285 \ 12 0.0466 0.0699) (+21)

RN R (0 A V() N ()
— 0.0129tan™! (xf)

+ (6.0750A% — 4.1137AF + 0.928513 — 0.0699) tan~! (/)

(1+22)°
| —2.4860 45669 2.3084 0.0069 0.0086 0.0129
(1+x_2f)6 (1+xzf)5 (1+x_2f)4 (1+xzf)3 (1+x})2 (1+»r§)

40500 60750 | 36 _ [ 27424 41137 | y4
)G
(14+21)
0.6190 09285 | 32 _ [ _0.0466 0.0699
* (1+x§)2+(1+X§)> ! (1+x})2+

(44)
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In Eq. (44) assuming P; — 0 as x — —oo and x ; = —3.0, we get A; = 0.3336.
The first-order velocity profile is obtained by substituting Eq. (41) into Eq. (39):

27 (k%—xzf 4 2\, 81 ()‘2_’\(2))3 (A%_)L(z)f
e = Ty = () [+ (1+2) (42 (142

|:y2 ~(1+ xz)z} . 45)

Combining the solutions at each order of approximation yields the solutions up to
first order for velocity, pressure gradient, and pressure distribution.

5.3 Operating Variables

Once the velocity, pressure gradient, and pressure distribution are found, then
all other quantities of interest are readily available. The operating variables of
engineering interest are computed in the following manners.

5.3.1 Roll-Separating Force

The roll-separating force F' is defined as

A
F = f P(x)dx, (46)
—00
where F = ;i/_llg(v)v’ F is the dimensional roll-separating force per unit width W.

5.3.2 Power Input

The power transmitted to the fluid by roll is calculated by integrating the product of
shear stress and the roll surface speed over the surface of roll which is obtained by
setting y = 1 in Eq. (25):

A
P, = / Syy(x, Ddx, 47)
o0

. . . SyyHo - . .
is the dimensionless power and Sy, = L‘ i % is the dimensionless

—_— PW
here P, = e

stress tensor defined by

ou o\’
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where

TN
dy (1+x?)

; (m ((»@—Aaf (03 -4) ) W=’ )
- - yH227T-—2y7 |
SN+ (1422) (142 (142’

49)
The expression for power can be calculated from Eq. (47) with the help of Eq. (48)
when y = 1.

5.3.3 Normal Stress Effect

Equation (11) in a dimensionless form can be written as

d 2
px,y)=P(x,y) +a (d—;t) , (50)

Qai+a)U Hy
wHo 2R"
By using Eq. (25) and Eq. (26) in the above equation, one can easily find normal

stress.

where o =

5.3.4 Adiabatic Temperature

The power input causes to raise the temperature of the fluid by an amount which at
most is given by an adiabatic temperature rise (A7),

p,

(AT)ye = ;
0pC)

(5D

where p is the melt density and C, is the melt heat capacity at constant pressure.

6 Results and Discussions

In this paper, we analyze the calendering process for incompressible third-order
fluid. The lubrication theory is used to simplify the equations of motion. The
numerical results for the volumetric flow rate, the separation point A, the exit sheet
thickness H /H,, the power input, and the roll-separating force are presented in
Tables 1 and 2. Table 1 is generated for positive values of B, whereas Table 2
is reserved for negative values of B. For a physical point of view, an increase in
third-order parameter  corresponds to shear thickening effect i.e., an increase in
viscosity of the fluid. More viscous fluid diffuses more momentum. Consequently,
the magnitude of velocity decreases. This fact is obvious from Figs. (3-10). It is
noted from Table 1 that sheet thickness, power input, and roll-separating force
increase with an increase in . This was physically expected because of shear
thickening effect.
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Table 1 The effect of
material parameter § on
leave-off distance, final sheet
thickness, power input, and
roll-separating force

Table 2 The effect of
material parameter § on
leave-off distance, final sheet
thickness, power input, and
roll-separating force

A.M. Siddiqui et al.

0.5 4

0.4 4

Normal |
Stress

0.3 1

0.2 1

B A H/H, P, F
0.01 0.4784 1.2289 0.0062 0.5527
0.03 0.4851 1.2353 0.0114 0.5542
0.05 0.4917 1.2418 0.0174 0.5557
0.07 0.4984 1.2484 0.0216 0.5572
0.09 0.5051 1.2551 0.0243 0.5587
0.1 0.5084 1.2585 0.0253 0.5594
0.3 0.5751 1.3308 0.0747 0.5744
0.5 0.6419 1.4120 0.1267 0.5901
0.7 0.7086 1.5021 0.1761 0.6068
0.9 0.7753 1.6011 0.2210 0.6248
1.0 0.8087 1.6539 0.2422 0.6343
B A H/H, P, F
—0.01 0.4712 1.2225 0.0054 0.5507
—0.03 0.4650 1.2163 0.0017 0.5492
—0.05 0.4584 1.2101 —0.0017 0.5477
—0.07 0.4517 1.2040 —0.0048 0.5462
—0.09 0.4450 1.1980 —0.0047 0.5446
—0.1 0.4417 1.1951 —0.0094 0.5439
—0.3 0.3750 1.1406 —0.0229 0.5286
—0.5 0.3083 1.0950 0.0046 0.5133
—0.7 0.2415 1.0583 0.0940 0.4980
—0.9 0.1748 1.0305 0.2598 0.4827
1.0 0.1415 1.0200 0.3655 0.4751
—-0.0040 4
—-0.0045 4
Normal
Stress
—-0.0050 4
—0.0055 4
—-0.0060 4

Fig. 2 Normal stress effect at position x = 0 and at x = 0.5, respectively, fixing 8 = 0.5

Figure 2 shows the normal stress effects at different positions of calendering
process keeping B = 0.5 for different values of «. It is observed that the stress
in increasing through out the region with the increase in «.
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Fig. 3 Effect of f on 14
velocity at x = —0.5 Isothermal Newtonian Case
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0.98+

u(r,y)./
0.97+
] =0
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G B=0.5
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0.95- v B=0.9

Fig. 4 Effect of B on
velocity at x = —0.25
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ufe,y)]
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: 05_‘ ﬁ=0 75
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1_m_l 1 1 b I I 1

0 02 04 0.6 038 1

In Figs. (3—-10) the dimensionless velocity u(x, y) is presented as a function of
the transversal coordinate y for different values of 8. The dimensionless velocity
profiles are evaluated at eight different positions of x. In Figs. 3 and 4 the velocity
profile is plotted in the domain —x; < x < —A, corresponding to the region
near the entrance where the pressure gradient is positive. We can see that velocity
decreases with the material parameter for a fixed value of A, and this increment is
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féﬁ; :;tyE;f ic;ofoﬁ on Isothermal Newtonian Case
1.3+
121
ufx,y
B=0
p=0.25
1.1 0
B=0.75
=0.9
P v
1 '0 3, 1 T L] ) 1 T
0 02 04 0.6 0.8 1

¥

Fig. 6 Effect of f on

. - ] Isothermal Newtonian Case
velocity at x = 0.25 ] /v
1.201
1.154
B=0

u(r,y):
0 B=0.25
B=0.5
] B=0.75
I '00- L) ) ) ) ) I
0 0.2 0.4 0.6 0.8 1

more pronounced at the center plane. In contrast, at the vicinity of the rolls, velocity
diminishes weakly compared with the Newtonian case. The velocity profile was
also plotted in the domain —A < x < A, velocity increases weakly at the vicinity

of the rolls, and it decreases at the center plane when f is increased as shown in
Figs. (5-9).
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Fig. 7 Effect of f on Isothermal Newtonian Case
velocity at x = 0.4 1.084

1.074

1.064

1.054
ufx,y)
1.04-
1.03- p=0
B=0.25
1.02 B=0.5
B=0.75
101 B=09 ¢
1-1 1 1 I 1 I
0 02 04 0.6 0.8 1
P
Fig. 8 Effect of § on 15 Isothermal Newtonian Case
velocity at x = 0.5
0.994
0.98
ufx,y)
0.97-
p=0
. B=0.25
B=0.5
B=0.75
0.95 v B=0.9
0 02 04 06 08 1 12

Figure 11 shows the numerical solution for the dimensionless pressure gradient as
a function of the dimensionless axial coordinate x, for different values of the material
parameter §(=0.0, 0.25, 0.5, 0.75, 0.9), and two fixed values of the dimensionless
leave-off distance A(=0.4751, 0.3336). Symmetric profiles about the nip point are
obtained. Pressure gradient is negative at x = 0 and increases symmetrically about
this point, attains maximum value, and then decreases exponentially and reaches
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Fig. 9 Effect of f on 1.004
velocity at x = 0.6 1
0.98
0.96
0.944

0.92 Isothermal Newtonian Case

ufx, vA
0.90
! B=0
0.88- B=0.25
0.86- p=0.5
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0.84- =().9
] v p
T v T T T T v T T
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Fig. 10 Effect of B on 1.04
velocity at x = 1.0

0.9+

0.8+

0.7+

ufx,yi

0.6+

0.5

0.4+

0 0.5 i 15 2

to zero value at x = £4. Moreover, an increase in 8 causes to increase pressure
gradient. Also, material parameter has major effect on pressure gradient at x = 0
because the pressure has a maximum absolute value at this point. In contrast, it has
zero effect near x = £\ because at this point flat velocity profiles are reached
corresponding to a rigid motion of the sheet.
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Fig. 11 Effect of 8 on
pressure gradient

Fig. 12 Effect of 8 on
pressure distribution

Isothermal Newtonian
Case, Middleman 1977

The results for the dimensionless pressure distribution are shown in Fig. 12.
Starting from zero value at x = A, the pressure increases monotonically up to a
maximum value at x = —A and then decreases until the entry point for a finite sheet
thickness is reached. By varying the material parameter §, the pressure is drastically
affected at x = —A. Also, an increase in the value of 8 tends to extend the length of
contact between the rolls and the material as can be noted from Tables 1 and 2.
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7

Conclusion

The findings of the present work can be summarized as follows:

1. Shear thickening/thinning phenomena are observed.

2. Shear thickening causes to enhance sheet thickness, power input, and roll-
separating force.

3. Third-order parameter 8 provides mechanism to control sheet thickness, power
input, roll-separating force, and leave-off distance.

4. Sheet thickness, power input, roll-separating force, and leave-off distance for
non-Newtonian material are larger than those of Newtonian fluid.
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Wavelet Solution of Convection-Diffusion
Equation with Neumann Boundary Conditions

A.H. Choudhury

Abstract In this paper, we derive a highly accurate numerical method for the
solution of one-dimensional convection-diffusion equation with Neumann boundary
conditions. This parabolic problem is solved by using semidiscrete approximations.
The space direction is discretized by wavelet-Galerkin method and the time variable
is discretized by using various classical finite difference schemes. The numerical
results show that this method gives high favourable accuracy compared with the
exact solution.

Keywords Parabolic equation ¢ Semidiscrete approximations e Stability e
Wavelet-Galerkin method

1 Introduction

In this paper, we consider numerical solution of one-dimensional convection-
diffusion equation

ou 9%u ou

— — — — 1
5 a8x2+ﬂ8x L, a<x<b, t>0 (1)

with initial condition

u(x,0)=gx), a<x<b 2)
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and boundary conditions
0 0
Pany=c@), Lp,ry=da), >0, 3)
ax ax

where « is a positive constant and 8 and f are constants or functions of any or
of both the independent variables x and ¢. Parabolic partial differential equation
(PDE) like (1) appears in connection with fluid mechanics, financial mathematics
and many other fields. Several methods exist for the solution of convection-diffusion
equation (1), mostly with Dirichlet and periodic boundary conditions, for example,
[1-4]. But its solution with Neumann boundary conditions is hardly available in
the literature. A particle method was proposed by Mas-Gallic [5] which is only
theoretical and lacks computational aspects.

Usually, parabolic problems are solved by using semidiscrete approximations.
For the solution of problem (1)—(3) in the present paper, the space direction is
discretized by using wavelet-Galerkin method and the time variable is discretized
by using various classical finite difference schemes. Wavelets in consideration here
are Daubechies compactly supported wavelets [6] which are differentiable.

Wavelet applications to the solution of PDE problems are relatively new. Some
recent applications are [2,4,7, 8], among many more. To discretize a PDE problem
by wavelet-Galerkin method, the Galerkin bases are constructed from orthonormal
bases of compactly supported wavelets. This can be done in a number of ways.
In this paper, we construct these basis functions as in Choudhury and Deka [7]. This
approach has been used to solve wave equation in Choudhury and Deka [8].

In Sect. 2, we explain the approximation of the Sobolev space H™(a,b) using
Daubechies scaling functions. Section 3 elaborates the method for the solution of
problem (1)—(3). In Sect. 4, we demonstrate the method with the help of a numerical
example. Section 5 concludes the paper.

2 Approximation of Sobolev Spaces in Daubechies Bases

For a positive integer N, consider two functions ¢, ¥ € L*(R) defined by

() =Y arp@x—k), Y(x) =) bpQ2x —k), )
k k

where {ay }xez and {by }rez are two specific sequences [6] such that ay = by = 0
fork ¢ {0,1,...,S}, S = 2N — 1. The functions ¢ and v are called dbN scaling
function and dbN wavelet function, respectively, where N is called their order.
These functions are compactly supported with supp(¢) = supp(y) = [0, S]. They
are available in wavelet toolbox of MATLAB 6 for 1 < N < 45. They satisfy the
properties (3.9)—(3.12) in [7].
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The integer translates and dilates of ¢ and v are defined as
Gui(X) =22¢(2"x — k), Ynx(x) =229 (2"x —k), nkeZ. (5
Now, for all n € Z, we define
V, = L*-closure (span{¢, i : k € Z}). (6)
We recall here that for an open interval (a, b) and for an integer m > 1, the space
H™(a,b) ={ue H" Y(a,b) : ' € H" '(a,b)} @)

is called the Sobolev space of order m, which is a Hilbert space with inner product
(u,v)m = Y0t fab uDydx and associated norm |.||,,. It may be noted here that
H'a,b) = L*(a,b).

Let N be any positive integer and let ¢p and ¥ be the dbN scaling function and
wavelet function, respectively. Then, by Theorem 1.1 in [9], there exists an integer
m, 0 < m < N, such that the Sobolev space H" (a, b) can be approximated by the
restrictions of translates and dilates of ¢ to (a, b).

We shift the support of ¢ from [0, S] to [a, b] by using the transformation y =

bg“x + a and let

I, = {k € Z : supp(¢y i) N (a,b) # @}. @®)

Considering V;, as defined in (6), we define the space V;(a,b) to be the set of
restrictions of all functions in V, to («a, b). In fact, we take

Va (Cl, b) = Span{¢i1$k|(a$b) ke In}- 9)

Since (a, b) is bounded, the space V), (a,b) is finite dimensional and is a closed
subspace of H" (a, b). By Proposition 4.1 in [7], dim(V,,(a, b)) = 2"S + S — 1 and
a basis for V;,(a, b) is given by

{bur € Vo(a,b):1—S <k <2"S —1}. (10)

3 Solution Methodology

Since PDE (1) is of second order in space with Neumann boundary conditions (3),
the solution space for spatial direction for problem (1)—(3) is H!(a, b). Multiplying
equation (1) by a function v € H'(a, b) and integrating by parts with respect to x
in (a, b), we get
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o T Yox dx

b b
f (au R d"+/3§_’;v) dx:/ Frdx + ald(t)v(b) — c(t)v(@)], (11)

which is the variational (weak) form of problem (1)-(3).

In Glowinski et al. [9], it is established that N = 3 is sufficient for the solution
of problems of second order (in space). So, we let N = 3 be any integer and let ¢
be the dbN scaling function. Considering the basis {¢, ; } of V,,(a, b) in Sect. 2, the
approximate solution of the variational problem (11) can be taken as

un(X,1) = 2 j (O (X). (12)
J
Applying the Galerkin method to problem (11) with the approximate solution (12),
we get a system of first-order ordinary differential equations in z = [z, ;]:
Mz+4+ Az =F, (13)

where A, M and F are the stiffness matrix, the mass matrix and the force vector,
respectively, whose elements are given by

Aij = fab (0‘45;/1,,“1’;/1,[ + /3¢;.,j¢n.i> dx, M;; = fab Gn.jPnidx,

: (14)
Fr = [} fonidx +ald()gi (b) — c(t)gni(@)]

There are several methods for the solution of equation (13). The most commonly
used method is a 8-family of approximation:

Oropr + (1— 0)z, = Z“A—:Z 0<0<I, (15)

where z, refers to the value of z at time t = t, = sAf.
Using approximation (15) for times #; and #,4 in (13), we get

MS—HZS—H = A\szs + ﬁs,s—i—lv (16)

where

A

A:Is+1 =M + GAIA_H-],
Ay =M — (1 —0)AtA;, 17
Fys+1 = At[0Fs41 + (1 = 0) F;].

The solution z;4; at time #;4; is obtained in terms of the solution z; at time #; by
inverting the matrix M s+1, Where the initial solution z, at time ¢ = ty = 0 is z(0),
which can be obtained by multiplying the initial condition (2) by v and integrating
and approximating with (12). For details about this scheme, we refer to Reddy [10].
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The above 6-family of time approximation schemes, for which 6 < % is stable
only if
2
At < ——, 18
(1-26)A (18)

where A is the largest eigenvalue of the problem associated to the original PDE
problem.

For different values of 6, the time discretization scheme (15) is classified as
follows:

1. The forward difference (or Euler) scheme: 6 = 0; conditionally stable; order of
accuracy=0(A?).

2. The backward difference scheme: 6 = 1; unconditionally stable; order of
accuracy=0(A?).

3. The Galerkin scheme: 0 = %; unconditionally stable; order of accuracy=
O((A1)?).

4. The Crank-Nicholson scheme: 0=
accuracy=0((A1)?).

%; unconditionally stable; order of

4 Numerical Results

Here the methodology for the solution of the parabolic IBVP (1)—(3) described
above is demonstrated with an example. The solution is performed using all the
four time discretization schemes. The computations are performed in MATLAB 6.

For the test problem, we take o = % and B = }‘ in the convection-diffusion
equation (1) with space domain [0, 1]. The right-hand function f(x), the initial value
function g(x) and the boundary value functions ¢(¢) and d(¢) in (2) and (3) are

obtained as per the exact solution

22
u(x,t) = 2e~ 7 'sin(2wx) + 8x%t. (19)

For 6 = 0, db3 scaling function is used for spatial discretization. As this scheme
is conditionally stable, we have to find an upper limit of the time step Af using the
stability condition (18). The largest eigenvalue of the associated problem for n = 0
is 320.93. Therefore, the maximum time step is 53255 ~ 0.0062. Figure 1 shows the
exact, unstable and stable solutions due to db3(n = 0) scaling function at x = 1.
Forf = 1land 6 = %, we also use db3 scaling function for spatial discretization.
As this scheme is unconditionally stable, there is no restriction on A¢. Table 1 shows
the decay of maximum absolute error for both the schemes with decreasing time step

due to db3(n = 1,2, 3) scaling functions at t = 1.
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unstable solution (At=0.007, no. of time steps=70)
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Fig. 1 (8 = 0): db3(n = 0) solution (solid line) and exact solution (dashed line) at x = 1

Table 1 (6 =1.3)
Maximum absolute errors at
t = 1 due to db3 scaling
functions

Scheme  Time step Maximum absolute error
) (A1) n=1 n=2 n=3
1 % 02276  0.2262  0.2261
& 0.1212  0.1181 0.1180
2710 0.0645 0.0605 0.0602
4—10 0.0351  0.0307  0.0305
8—10 0.0201  0.0157 0.0153
2 i 0.0661  0.0621  0.0619
1‘—0 0.0406  0.0362  0.0360
% 0.0240  0.0196 0.0193
4—10 0.0148 0.0104  0.0100
= 0.0099 0.0055 0.0051

For 6 = % Table 2 shows the maximum absolute errors between the exact and
the computed solutions at t = 1 due to db3(n = 0,1,2,3) and db4(n = 0,1,2,3)
scaling functions for A7 = 0.01 and At = 0.001, respectively.
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Table 2 (6 = ;) Maximum
absolute errors at = 1 due

Scaling functions At Maximum absolute error

— —

to db3 and db4 scaling db3 1072 52205 x 1072
functions 10 7.3238 x 10

1072 1.0011 x 103

db4 1073 7.2287 x 1073

1073 3.4199x 10*
1073 1.7572x 1073

n
0
1
2
3 1072 1.3354x 107
0
1
2
3 1073 1.4965x 10~°

5 Conclusion

In this paper, we have analysed a method for numerical solution of one-dimensional
convection-diffusion equation with Neumann boundary conditions. The space
direction is discretized by using wavelet-Galerkin method and the time variable
is discretized by using classical finite difference schemes. The main advantages
of this method are that the schemes are unconditionally stable (except one) and
are useful for problems with time-dependent boundary conditions and with time-
dependent source term. The method gives high favourable accuracy. The efficiency
of the developed algorithm has been illustrated by a test problem.
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Test of Causality Between QOil Price and GDP
Growth in Algeria

Zouaoui Chikr Elmezouar, A. Mazri, M. Benzaire, and AEK. Boudi

Abstract This paper seeks to investigate the causal relationship between oil prices
and economic growth in Algeria. The empirical analysis starts by analyzing the
time series properties of the data which is followed by examining the nature of
causality among the variables. Algeria is an oil-producing rather oil-exporting
country. An increase in oil price increases economic growth. This study analyzes
how change in real crude oil price affects the real GDP of Algeria positively. The
empirical analysis involves testing the time series characteristics of the data series
(stationary) using ADF test and running the pairwise Granger causality test based
on EViews software.

Keywords Oil price * Economic growth ¢ Cointegration * Granger causality e
Algeria

1 Introduction

Algeria is the second largest oil producer, after Nigeria, in Africa. It became a
member of the Organization of the Petroleum Exporting Countries (OPEC) in 1969,
shortly after it began oil production in 1958. Currently, the country is heavily reliant
on its hydrocarbon sector, which accounted for almost 70 percent of government
budget revenue and grants and about 98 percent of export earnings in 2011,
according to the International Monetary Fund.

In recent years, crude oil production has been stagnant, because new production
and infrastructure projects have repeatedly been delayed. Additionally, in the last
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three licensing rounds, there has been limited interest from investors to undertake
new oil projects under the government’s current terms. As a result, the Algerian
Parliament recently approved amendments to the current.

Any major disruption to Algeria’s hydrocarbon production would not only be
detrimental to the local economy but, depending on the scale of lost production,
could affect world oil prices.

Moreover, several studies draw additional conclusions. Thus, the effect of oil
shocks is asymmetric. Indeed, rising oil prices have a larger impact that cuts on
economic growth (and to a lesser extent inflation). This finding may be explained
by downward rigidities of wages and prices. Moreover, they allocate effects on
the labor market and uncertainty in financial markets as a result of fluctuations
in oil prices. An obvious conclusion is that the impact of dearer oil is generally
more pronounced in developing countries than in advanced countries. The oil has
indeed a more important place in those countries mainly because of the weight of
manufacturing and generally less modern machinery. This leads us to ask :

What is the impact of a continuous increase of oil prices on economic growth
in Algeria? This raises a number of important questions: Are oil prices a stimulus
for economic growth? (Or, alternatively, do oil prices “cause” GDP?) Is economic
growth a stimulus for oil prices? (Or, alternatively, does GDP “cause” oil prices?).

The remaining part of the paper is organized in the following way. Section 2
dwells on literature review. Section 3 presents the econometric methodology, Sect. 4
contains empirical results and discussion, and finally, conclusions are drawn in
Sect. 5.

2 Literature Review

A number of empirical studies have explored the relationship between economic
growth and oil price. Hamilton (1983) showed a negative relationship between oil
prices and macroeconomic activity in the United States. Hooker (1994) confirmed
Hamilton’s results and demonstrated that from 1948 to 1972, oil price variability
exerts influence on GDP growth. Later, Mork (1989), Lee et al. (1995), and
Hamilton (1996) introduced nonlinear transformations into the models and Granger
causality tests. Results confirmed the incidence of negative relationship between oil
price fluctuations and economic downturns as well as Granger causality from oil
prices to growth before 1973 but no Granger causality from 1973 to 1994. Other
studies include Mork (1989), Federer (1996), Hamilton (1997), Lee and Ni (2002),
and Balke et al. (2002).

Recently, Gounder and Barleet (2007) using both linear and nonlinear oil price
transformations discovered a direct link between net oil price shock and economic
growth in New Zealand. In addition, oil price shock was discovered to have
substantial effect on inflation and exchange rate. In a comparative study of the
impact of oil price shock and exchange rate volatility on economic growth, Jin
(2008) discovered that oil price increases exert a negative impact on economic
growth in Japan and China and a positive impact on economic growth of Russia.



Test of Causality Between Oil Price and GDP Growth in Algeria 207

3 Methodology

3.1 Granger Causality Tests

Several studies have been devoted to the study of causality between variables
(Granger 1969; Sims 1972). Furthermore, we carried out the Granger causality
test where Granger (1969) proposed a time series data-based approach in order
to determine causality. For example, if we want to explore the causal relationship
between oil prices (pt) and economic growth (yt),

pe= o Vi + Zﬂipt—i + € (1
=1 i=1
n n

V= Zlip,_i + Z(Si%—i + € )

i=1 i=1

where n is the number of lags.

If o; coefficients are jointly significantly different from zero, the Granger test
suggests that economic growth (y,) causes the oil prices (p;) and if (A;) is jointly
significantly different from zero, the Granger test suggests that the oil prices (p;)
cause the economic growth (y,).

If the two causalities are verified, we can conclude the return causality “feedback
causality” between the two variables.

3.2 Causality Test and Cointegration Variables

The relationship causality between different time series is based on the following.

3.2.1 Unit Root Tests

A stochastic process is stationary if its first and second moments are constant.
Analytically, y; is stationary if

E(y:) = u, Vvt 3)

cov (ys, yi+k) = 8 (h), Vi “4)
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Dickey and Fuller (DF) proposed a basic model of a unit root test

Ay, =(p—Dy—1 + &
Ay, =(@—Dy—1 + B+ &
Ay, = (@ —Dy—1 +B+ 0t +&

The hypothesis tests are

{HO:(¢—1)=O
H :(¢p—1)<0

To get a broader view, Dickey and Fuller took an autoregressive process of higher
order known as the augmented Dickey-Fuller (ADF) test. This test is represented as
follows:

Ay, =y + Y 6iAyi+&
i
Ay = ¢pyi—1 + Zei Ay + ,3 + &

Ay, = ¢yi—1 + 291' Ay—i + B+ 0t + &

3.3 Cointegration

The main objective of this paper is to assess not only the pairwise nature of causality
among the variables but also the short-run and long-run dynamic impacts, which we
tested for cointegration using two well-known approaches: the one developed by
Engle and Granger (1987) and the other one by Johansen (1988).

3.4 Engel-Granger Method

The Engle-Granger test is a procedure that involves an OLS estimation of a
prespecified cointegrating regression between the variables. This was followed by a
unit root test performed on the regression residuals previously identified. We applied
the Engle Granger to find the number of cointegration equations between the two
variables.
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3.5 An Error Correction Model

For interpret the vectoreuor correction model found in the different regression
equations. Indeed an error correction model (ECM) can detect the dynamics of
short-term and long-term variable around its stationary equilibrium value. Thus, for
an adjustment, error correction requires that the sign of the coefficient of residual is
negative and statistically significant.

The model error corrections read

Ax; = a1zi—1 + lagged (Ax,, Ay,) + &1, %)
Ay, = apz,—1 + lagged (Ax;, Ay,) + €2 (6)

with z,_; the error correction term resulting from estimating the cointegration
relationship and ¢ the error term stationary |o;| + |az| # O.

3.6 Causality Test

The causality test based on the model vector correction has the advantage of
providing a causal relationship even if no estimated coefficient of lagged variables
used is significant.

Thus, an error correction model after processing can be rewritten as

k k
Apy=a+ ) Ailp i+ Y 0iAyii+0z1 +& (7

i=1 i=l1

k k
Ayi =B+ ¢ilyi+ Y Gidpi+ Yz 1+ ®)

i=1 i=1

From both equations, p, does not cause y, the sense of Granger if ¢; = ¥ = 0, and
y; does not cause p; if o, = 0 = 0.

4 Empirical Results and Interpretation

4.1 Statistical Data Properties

The variables that we used in our application are the oil prices (p;) and the economic
growth (y,). Figure 1 shows the evolution of real GDP and oil price in Algeria from
1982 to 2012. The real GDP is characterized by an upward trend while the price of
oil is presented as an additive model. The correlation between the real GDP and oil
price is 0.90.
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Fig. 1 Representation of 16
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Table 1 Test of stationarity for GDP

Null hypothesis (GDP) has a unit root
Exogenous: None
Lag length: 4 (automatic based on SIC MAXLAG= 12)

t-Statistic prob*

Augmented Dickey-Fuller test statistic 3.909510 1.0000
Test critical values: 1 % level —2.584539

% level —1.943540

10 % level —1.614941

MacKinon (1996) one-sided p-values

4.1.1 Test of Stationarity of GDP and Oil Prices

prob= 1 greater than 0.05, then we can conclude that GDP was nonstationary.
prob= 0.8905 greater than 0.05, then we can conclude that the oil prices were
nonstationary.

Tables 1 and 2 present the test results for stationarity of GDP and oil price. The
results showed that the two variables were nonstationary.

prob= 0.0298 less than 0.05, then we can conclude that D(GDP) was stationary.
prob= 0.000 less than 0.05, then we can conclude that D(P) was stationary.

Tables 3 and 4 present the test results for stationarity for the difference of GDP
and oil price. The results showed that the two variables were stationary.
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Table 2 Test of stationarity for oil price

211

Null hypothesis P has a unit root
Exogenous: None
Lag length: 4 (automatic based on SIC MAXLAG= 12)

t-Statistic prob*

Augmented Dickey-Fuller test statistic

Test critical values: 1 % level
5 % level
10 % level

0.837473  0.8905
—2.584539
—1.943540
—1.614941

MacKinon (1996) one-sided p-values

Table 3 Test of stationarity for the difference of GDP

Null hypothesis D(GDP) has a unit root
Exogenous: None
Lag length: 3 (automatic based on SIC MAXLAG= 12)

t-Statistic prob*

Augmented Dickey-Fuller test statistic

Test critical values: 1% level
5% level
10% level

—2.165458  0.0298
—2.584539
—1.943540
—1.614941

MacKinon (1996) one-sided p-values

Table 4 Test of stationarity for the difference of oil price

Null hypothesis D(P) has a unit root
Exogenous: None
Lag length: 3 (automatic based on SIC MAXLAG= 12)

t-Statistic prob*

Augmented Dickey-Fuller test statistic

Test critical values: 1% level
5% level
10% level

—7.892420  0.0000
—2.584539
—1.943540
—1.614941

MacKinon (1996) one-sided p-values

4.1.2 An Error Correction Model Estimate

Table 5 presents the normalized coefficient of the variables in the model. The
coefficient was correctly signed and statistically significant at 1 percent level.

4.1.3 Cointegration Tests

Table 6 presents the test results for the number of cointegrating vectors. The results
showed that the trace statistic (39.69792 greater than 15.49471 and 6.580289 greater
than 3.841466) suggests the presence of two cointegrations among the two variables.
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Table 5 Test for stationarity of the errors

Null hypothesis ECT has a unit root
Exogenous: None
Lag length: 3 (automatic based on SIC MAXLAG= 12)

t-Statistic prob*

Augmented Dickey-Fuller test statistic —2.945771  0.0035
Test critical values: 1% level —2.584707

5% level —1.943536

10% level —1.614927

MacKinon (1996) one-sided p-values

Table 6 Test of cointegration

Unrestricted Cointegration Rank Test (Trace)

Hypothesized Eigenvalue Trace 0.05 Prob**
No. of CE(s) Statistic Critical Value

None* 0.242930  39.69792  15.49471 0.0000
At most* 0.053795 6.580289  3.841466 0.0103

Trace test indicates 2 cointegrating equations at the 0.05 level
*Denotes rejection of the hypothesis at the 0.05 level
MacKinnon-Haug-Michelis (1999) p-values

Table 7 Test of causality Pairwise Granger causality tests

Logs: 2

Null hypothesis: Obs F-Statistic Prob
GDP does not Granger cause p 122 10.0078  0.0001
P does not Granger cause GDP 7.69307 0.0007

4.1.4 Causality Tests

Table 7 shows that the Prob statistic of the first test= 0.0001 and Prob statistic of the
second test= 0.0007 less than 0.05 suggest the presence of two senses of causality
among the two variables.

5 Conclusion

This paper employs an empirical analysis to examine the impacts of oil price
fluctuations on the level of real economic activity in Algeria. The first step in
the empirical analysis involves testing the time series characteristics of the data
series using ADF test and running the pairwise Granger causality test. This was
followed by applying the Johansen cointegration test and the estimation of the long-
run cointegrating vectors and the number of cointegration equations equals two. The
analysis was capped with the estimation of short-run error correction model (ECM).
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The hypothesis of nonstationarity was rejected at first difference. The Granger
pairwise causality test showed that the null hypothesis that oil prices do not Granger
cause real GDP could be safely rejected at the 1 percent level. In other words, null
hypothesis that GDP does not Granger cause oil price could be safely rejected at the
1 percent level and finally we find that the two variables are causes or there exists
feedback causality between the oil price and the GDP.
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Solution Behavior of Heston Model Using
Impression Matrix Norm

Ahmet Duran and Burhaneddin Izgi

Abstract We are interested in the behavior of solutions for several stochastic
differential equations such as Heston model. We focus on the numerical solutions
via Milstein method for different stock market conditions. We examine the advan-
tages and limitations of the model. Moreover, we introduce 3-dimensional matrix
norms. Furthermore, we define market impression matrix norm as an application
to the 3-dimensional matrix norms. Later, we perform simulations for various
parameters.

Keywords Numerical solutions of stochastic differential equations e Heston
model ¢ 3-dimensional matrix norm ¢ Impression matrix norm

1 Introduction

Our goal in this paper is to study the behavior of solutions for several stochastic
differential equations such as Heston model (see [1]). Heston model is a very useful
stochastic volatility model in finance market where the evolution for the stock
price volatility is described and the volatility is a random process. We focus on the
numerical solutions via Milstein method (see [2] and [3]) for different stock market
conditions and parameters.
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It is important to examine several variables together in order to quantify market
impression and summarize large data set for this purpose. Although market price
reflects all past publicly available information according to weak-form efficient-
market hypothesis (EMH) (see [4]), many traders consider that prices can be
overvalued or undervalued. Therefore, we would like to find a methodology for
market impression in addition to market price. We believe that market impression
may be expressed via several variables such as volatility, interest rate, and time,
together.

The remainder of the paper is organized as follows. In sect. 2, we introduce
3-dimensional matrix norms as generalizations of the matrix norms and we prove
them by using the applicable numerical linear algebra and analysis arguments
(see [5, 6] and references therein). In sect. 3, we define market impression matrix
norm as an application to the 3-dimensional matrix norms. Section 4 concludes the
paper. Appendix includes Milstein method and Heston model.

2 3-Dimensional Matrix Norms

Matrix norms are essential parts of numerical linear algebra (see [5]) and its
applications in science, engineering, and finance.

Definition. A 3-dimensional matrix norm || - || is a function from m-by-n-by-p
complex matrices into R that satisfies the following properties:

| A|>0and || A |= 0if and only if 4 = 0;

e |ad ||=|a ||| A |, for scalar «;

e | A+ B ||l A | + || B |I; where A and B are matrices in m-by-n-by-p
dimensional space.

Definition. Let 4 € C"™*"*? then;

P m
| A lli= max; Z Z | agf) |= the largest absolute block-column sum.
k=1i=1

p n
| A |loo= max; Z Z | ag‘) |= the largest absolute block-row sum.
k=1,=1

Proof. Proofs are straightforward and just come from their definition.

Definition. The p —norm of A € C"™"*? is defined as follows:

m n
1

I A4ll,= ZZZ|a(k) )7, forl < p < oo.

k=1i=1 j=I

Proof. » || A||[,>0and| A ||,= 0ifand only if A = 0 (by the definition)
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V4 m n m n
k k 1
'HMMﬂZZZMWWHWNZZZMWW#MH
k=li=1 j=1 k=1i=1 j=1
Allp
* Wehavetoshow || A+ B |,<| All, + || B ||, where A, B € C"*"*P,
V4 m
lA+B|= ZZZ |al¥ + b |7 by the Minkowski inequality
k=1i=1 j=1
p m 1 1 P
=Y (e ()
k=1i=1 j=1
p m n i 1 p
SN ATITE DALY
k=1 i=1j=1 i=1j=1
1 pm " 1 b
SR N AT H ALY
k=1i=1 j=1 k=1i=1 j=1
=(lAl, +1B1,)"

The special case (p = 2) of p-norm is the Frobenius norm of A € C"™*"*? and
it can be defined as follows.

Definition. The Frobenius norm of A € C™*"*? is defined as follows:

p m n

lAlr= |33 1al 1.

k=1i=1j=1

Definition. Let A € C"*"*?; then the 2-norm of A is defined as follows:

I A |la= max(maxjyj,=1x=1.., | APx |2 ) = Xk, where XK is
the largest elgenvalue of (A®)* A* for all k. Also, it can be defined as || 4 ||3=
max(Xk ) where XK = maxi (| (AR)* 4K — NI |=0); (k= 1,....p).

max

Proof. * || A |.= ,/max(kmax) > 0 (since all eigenvalues of (A*))* AX are real
and nonnegative) and | A [|3=0= 4 = 0.
o || @A [I3= max(ZE,) = max{maxk (((aA)(k))*aAk - >\kl)} where Xk
is the eigenvalue of (A)®))*aA¥.
Also we know from the definition that | A |,= max {maxk((A(k))*Ak —
Nil)} where Xy is the eigenvalue of (4®))* 4F:

max

(@A) * Ak x = Nex
(A a*a A x = Nex
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(A) Oy A x = Nex
a?(A) P Ak x = Nx
02 Np X = NgX

(@ Xk —Xk)x =0;  (x # 0 vector)
Nk = PNk

Finally, || a4 [|2= max(X\K,,) = max(@*X%,.) = o?max(Xk, ) = o® |
Al =l aA =]l A
* We have to show | A + B ||| A |2 + || B |l where A,B €

C™M*"XP and Ak,Bk e CmXn .

I A+ B Il = max(maxsp,=rz=1..., | (A +BO)x )
= max(maxj,=1x=1...p | A¥x + BPx ||y)
< max(maxux||2=1;k=1 ..... P I AP [l + 1l B®x ||2)
< max(maxyyp=t:=1,.p | A%x |2 ) + max(maxysp=1x=1..., | BOx ll2)
=1A4l+1 Bl

3 Impression Matrix Norm

In financial markets we face with dynamic large data sets. Investors are curious
about real-time market impression under fluctuating volatility, interest rate, and mar-
ket price changes. It is hard to handle lots of variables at the same time. Therefore,
it is important to define a proxy to reflect market impression quickly. Consider a
3-dimensional matrix with time, interest rate, and stochastic volatility dimensions
where matrix entries are market prices. As an application of 3-dimensional norms
we define impression matrix norm.

We define impression matrix norm (IMN) as a norm of the moving matrix by
the time. It is generated by evaluating the norm of the matrix at each related time
subinterval. IMN of the 3-D matrix gives a good picture of all 3-D matrix data
and helps us to understand and interpret 3-D matrix more easily. We perform the
simulations and obtain graph in Fig. 1 by using the parameters in Table 1.

Interest rates generally change randomly at the real market. To converge the
real market behavior by this aspect, we start with initial interest rate and generate
280 new random interest rates by adding a random number within %[—10, 10]
to the previous interest rate at each step. Then we perform simulations and get
3-dimensional stock price expectation matrix M (M € C'000x100x280y 1f we yge
IMN to analyze M, then we obtain the graph in Fig. 2.
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MILSTEIN METHOD

[0] [o]
o o

Stock Price
S
o

20

0.32
Stochastic Variance

Time
Fig. 1 One thousand realizations of simulation

Table 1 Simulation parameters

t = 0: the initial time | T = 1; the terminal time -in | N = 1000; number of | n = 100; the number of discretization

q = 0: the dividend yield years paths points between O and T
4 At = 0.01; the uniform So= 10: the initial _ '
p = 0.7: the correlation coefficient | mesh size stock price ro= 0.08; the interest rate
vo= 0.4: the initial variance K = 4; the rate of mean 8=03:thelongrun | £= 0.1: the volatility parameters of
3 g reversion variance variance process

4 Conclusions

We find that defining 3-dimensional matrix norms, summarizing large financial data
set, and quantifying market impression in the presence of several variables together
are useful. We obtain a proxy for time evolution of market impression value and
perform simulations for various model parameters.

As a next step, we extend our approach by using several numerical solution
methods for Heston stochastic volatility model and by applying to large data sets
such as Borsa Istanbul-100 (BIST-100) and BIST-30, in another paper study.

Appendix

Milstein Method

Definition. Let 3 be the numerical approximation to y(ty) after N steps with
constant stepsize h = (ty — to/N); then y is said to converge strongly to y with
order p if 3C > 0 (independent of h) and § > 0 such that
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MILSTEIN METHOD

3.2+

3.1r

l0g4g (2 — Norm)
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0.1 02 03 04 05 06 07 08 09 1
Time

Fig. 2 Impression norm of matrix M

E(lyy —y@n)l) = Ch”, h €(0,9).
Lets consider the following SDEs :
dy = f(t.y)dt + g(t. y)dW, y(0) = yo. (1

Milstein method has the following form for equation (1):

1 ad
Ayi = f(ti, yi) At + g(ti, yi) AW; + Eg(ti,yi)g(fi,yi)(Amz — At;)
Atp =tip1— 1
AW = Wip1 =W,

Milstein method has strong order 1 for solving SDEs. Also Brownian motion
AW; can be modeled as AW; = z;4/At; where z; is chosen from N(0,1) standard
normally random variable (see [3]).

Heston Model

In Heston’s stochastic volatility model the asset price process S; and the variance
process v, := o} solve the following two-dimensional stochastic differential

equation (see [1]):
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dS; = (r —q)Sidt + v SidWi(1)
dv, = k(0 —v)dt + £/vidWh(1)

At the Black-Scholes-Merton (BSM) model (see [7]), the volatility o was assumed
to be constant. The main difference between BSM and Heston model is volatility
behavior. It is stochastic and it satisfies mean-reverting property with a mean-
reverting drift at the Heston model. The W;andW, represent Brownian motions of
asset price process and the variance process is correlated with correlation coefficient
p € [—1,1]. Here £ > 0 is the volatility parameter of the variance process, r > 0
is the risk-free interest rate, ¢ > 0 is the dividend yield, « > 0 is the rate of mean
reversion, and 6 > 0 is the long-run variance level (see [1]). Stochastic volatility
model of Heston (1993) is frequently used. Heston’s model is derived from the CIR
model of Cox, Ingersoll, and Ross (1985) for interest rates (see [8]). We choose the
parameters as they satisfy the Feller condition 2«6 > £2 at our simulations so that
non-negativity of volatility can be guaranteed (see [9]).
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Approximations to the Solution
of the Frank-Kamenetskii Equation
in a Spherical Geometry

Moustafa Aly Soliman

Abstract In this paper, an approximate analytical solution for Frank-Kamenetskii
equation modeling a thermal explosion in a sphere, is obtained. The approximate
solution is obtained by perturbation methods in terms of small and large distance
parameter. The approximate solution is compared with the numerical solution
obtained from an initial value problem formulation to the original boundary
value problem. The approximate solution obtained is valid for all values of the
distance parameter. For the original boundary value problem and for a given Frank-
Kamenetskii parameter, a nonlinear algebraic equation needs to be solved to be able
to apply the approximate solution.

Keywords Frank-Kamenetskii equation ® Thermal explosion ¢ Stellar structure °
Perturbation * Sphere

1 Introduction

Several theoretical studies and numerical methods were used for the study of
the Frank-Kamenetskii equation [1-12] which models thermal explosion in an
enclosure. The equation in a spherical enclosure occurs in the theory of stellar
structure. The equation also models a non-isothermal zero order reaction in a
catalyst particle. Frank-Kamenetskii [1] formulated the problem and obtained
analytical solutions for the case of a slab and cylinder enclosure. More results on
the case of a slab and cylinder can be found in references [13—16]. The spherical
enclosure case can so far only be obtained numerically.
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The Frank-Kamenetskii equation is given by

d*uv  sdu
2 1
dr? + rdt Aexp(u) M
with the boundary conditions
u(l) =0 ()
du
— |,=0=0 3
ar lr=0 3)

where s is a shape factor that takes a value of O for an infinite slab, 1 for an infinite
cylinder, and 2 for a sphere; u is dimensionless temperature; and r is dimensionless
distance.

This equation was treated by different investigators and was thus given different
names such as Bratu, Liouville, Gelfand, and Frank-Kamenetskii equation.

The parameter A is usually given the name of Frank-Kamenetskii parameter. If
A is greater than a critical value, explosion occurs and there is no solution for the
equation. For A less than the critical value, two solutions exist for the case of slab
and cylinder. For the case of a sphere for different values of A, we can have no
solution, one, two, or multiple number of solutions. The solution is characterized by
infinite number of solutions at A = 2.

The aim of the present paper is to give an approximate analytical solution for
equations (1-3).

In the next section, we transform the boundary value problem to an initial value
problem and obtain approximate solutions for this initial value problem for large
and small distance parameter using perturbation methods. Then we modify the
solution obtained for large distance parameter to be also valid for the small distance
parameter case. Thus we obtain one general approximate solution valid for all values
of the distance parameter. Finally numerical results are presented.

2 Mathematical Development

First we change the boundary value problem to an initial value problem as follows:
Let

Y = up —u, up = u(0) 4
and

£ = Ar?exp(uo) Q)
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Equations (1-3) become

>y sdy
d_§2 + Ed_%_ = exp(—y) (6)
v(0) = (7)
d
d_g le=0=0 (®)

Tables for y against £ for the case of a sphere are given by Chandrasekhar and
Wares [16] and Horedt [17].

2.1 Approximate Solution for Large &

We treat equation (6) for the case of a sphere (s=2).
‘We notice that

Y =2In(§) —In(2) ©)

satisfies equation (6) but does not satisfy initial conditions (7, 8). This solution is
called singular solution [2]. This solution approaches the exact solution as £ tends
to infinity.

Define

¢ =1In(§) (10)
¢ =v —2In() +1n(2) = ¢y —2¢ + In(2) 11
Substituting equation (11) into equation (6), we obtain

d*¢ do
d—;+d—;+2—2exp(—¢) (12)

For small ¢ (this happens as £ tends to co), we can approximate equation (12) by

d’¢ do
T+ 42 = 1
deg? o de v=0 (13)

which has a solution in the form

¢ = Aexp (—%) sin (B + g{) (14)
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or
A 7
@ = ——sin B+£lnf;‘ (15)
VE 2
where A and B are constants to be determined from the numerical solution. ¢ being
small, we can write
A 7
¢=ln(1+ﬁsin<3+§lné)) (16)

This formula is similar to what was obtained by Chandrasekhar [3] and Adler [9]
Thus from equations (11) and (15), we have

v =1n (%) + %Sm (B + gm&) (17)

We have solved equations (6-8) numerically using DASSL routine [18] and
determined the constants A and B. In fact we used the two points (§,v¢) =
(210650.464, 23.823), (525665.99, 25.653) to obtain A=—1.178, B=—0.507787.
The first point corresponds to A = 2 at which ¢ = 0 and the second point to a
turning point.

Equation (17) becomes

2 1.178 7
¥ =In (S—) _ 1m0 sorer 4+ Y7 Ing (18)
2 \/g 2
By definition, the value of ¥ at A = 2 is
%—2
=In( > 19
It o

so that the condition for A = 2 is
7
sin (—0.507787 n ‘/7_ In g) —0 (20)
or

7
(—0.507787 + % In S) =nn (n is an integer) 21
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giving

2
§ = exp W

Enig [8] has shown that for any shape, the following relation is satisfied at the
turning points:

(0.507787 + nr)} = 1.4679(10.74909)" (22)

”;_‘? i (23)
This means that
d | 1 NG
pT [E sin (—0.507787 + =5 In 5)} =0 (24)
giving
tan (—0.507787 + “/77 In g) =7 (25)
or
£ = exp { %(0.507787 +nw + 1.209429)} = 3.6623(10.74909)"  (26)

This is the condition for a turning point.
We could repeat the same analysis but defining

{_—2
¢=n (1 n 5) e

We arrive at the following formula:

B g2 1.178 V7 )

This formula would extend the range of applicability of equation (18).
We could further improve the accuracy of equation (28) by writing

g2 1178 . V7
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The condition for A = 2 is given by

4
2
=exp{ —=(0.507787 + nx % -2 (30)
£ = exp | J=( )
and for a turning point is given by
) 4
£° =exp W(O'SOWW +nm 4+ 1.209429); —2 31

2.2 Approximate Solution for All &

The following formula was synthesized from equation (29)

v =In (1 + % (1 - 34\/I;Jrsﬁcos (4111(1 + 52/23.162231)))) (32)

Notice

4
exp [ —= (0.507787 + Z) ) = 23.162231
N 2

Equation (32) contains the main components obtained for large v and satisfies the
small ¢ approximation:

1 1
352 - ms“ (33)

Il

14

For equation (32) to approach equation (29) for large £, the constant pre-multiplying
the cosine function (2/3) should be 0.59858
since

1.178/ 415 = 0.59858

We can then suggest a general formula of the following form:

£2 (1 (2/3 + 0.59858*107°£°)
2

¥ =ln (1 I\ T o e

cos (4111(1 + 52/23.162231))» (34)
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3 Numerical Results and Discussion

We have chosen the DASSL FORTAN code [18] to solve equations (6-8). It uses
backward differentiation formula method to solve a system of differential algebraic
equations. We were able to reproduce the table of Horedt [17] up to a value of ¥ =
14.7 and go beyond that to a value of 26. Numerical results show that equation (34)
is slightly better than equation (32), but both of them are indistinguishable with the
numerical solution. To solve the original problem (equations (1-3)) for a given A
we need to solve the nonlinear algebraic equation (5).

4 Conclusions

Approximate analytical solution for the Frank-Kamenetskii equation valid for
all values of A was derived. Numerical solutions of the equation show that the
approximate solution is of good accuracy. The Frank-Kamenetskii parameter A
at the turning points has been evaluated to five decimal places. In catalysis, the
equation represents an approximation for zero-order reaction in spherical catalyst
particle. Future work will be thus to extend the approximate solution to a general
order reaction.
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Blowup of Series Solutions on the Half Line

A. Boumenir

Abstract We prove the convergence of series solutions of a semilinear reaction
diffusion equation on the half line with quadratic nonlinearity. We also construct
a positive solution that blows up in finite time. The algorithm, which is based on
algebraic operations only, is fast and can be used to approximate and extend these
solutions beyond blowup.

Keywords KPP equation ¢ Series solution * Decomposition method

1 Introduction

We are concerned with the classical one-dimensional nonlinear reaction diffusion
equation defined by

U, = Uy + au + Aui? x €[0,00), t >0 )

u(0,1) + u,(0,7) =0 and u(x,0) = b(x)
It is well known that, depending on the initial condition b(x), the solution may
blow up in finite time and can do so at a single point [2, 3]. This makes the use of
numerical methods, such as finite differences, challenging as they might miss the
singularity. To overcome these difficulties we look for a nonnumerical method and
seek a solution of (1) in the form

ux,1) =y A"y, (x) )

n>0
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where 1, are bounded continuous positive functions that satisfy a family of
linear differential equations. Formula (2) extends the idea of separation of variables
to nonlinear equations and v, are computed recursively, using simple algebraic
operations only and no numerical integration is used as in [1]. Due to the exponential
coefficients in (2), the solution is expected to blow up in finite time if § > 0
and exists globally if B < 0, thus, the need to study the main properties, such
as smoothness and boundedness, of the sequence {,},-,. The series solutions
are important from the geometrical point of view as they help us understand how
singularities develop and evolve and how a solution can be extended beyond blowup
[4-6]. It is obvious that blowup is a simple matter of radius of convergence of
the series in (2). Solutions given by (2) are also important from the computational
point of view, as they can benchmark standard numerical methods for accuracy. The
truncation error can be estimated explicitly which then help produce guaranteed
error bounds.

2 The Sequence ¥,

If the series (2) is a solution of (1), then the ¥, should verify

an—leﬂntﬁnwn(x) — an—leﬂm (1//,/1/()6) + awn (x))

n>0 n>0

+ ) AT Y ()Y (x) 3)
k=0

n>0
and the boundary condition
¥ (0) + ,(0) = 0. “4)
Factoring out A" ~'ef"! yields a sequence of Sturm-Liouville equations
n
B (x) = Y/ (X) + a¥u (X) + D Y (X) i (x) n=01... (5
k=0
Setting n = 0 in (5) gives
Yo (x) + ao(x) + Y5 (x) = 0 (©6)

which is the rescaled steady state, lim; o, Au(x,t) = ¥o(x). The sequence v, for
n > 2, is defined by

¥, (X) + (a — Bn — 290(x)) Yu(x) = =Ry (x) (7
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where the right-hand side is made of previously computed v,

n—1
Ry(x) = ) yn () Yni (). ®)
k=1

For simplicity, we select the trivial steady state ¥y = 0, which reduces (7) to

¥, (X) + (@ — Bn) Y (x) = =Ry (x) 9

with Ry (x) = 0, and so the first equation of the sequence (7) is simply

‘X)) +@=PByi(x)=0 x>0 a0
¥1(0) + ¥ (0) = 0.

If 0 < B —a then a general solution is a linear combination of exp (:I:x VB - a)

and so an L? (0, c0) solution is given by exp (—x,/ B— a) and for the boundary
condition to hold we must have § —a =1

B=1+a (11)
and so in all cases
Y1(x) = exp (—x).
In order to proceed further define the self-adjoint operator acting in L2(0, co) by

A(y) = —y"(x) for x >0
y(0)+y'(0) =0

whose spectrum is given by
o4 =1{—1} U0, 00).
Thus (9) becomes
(A+ (np —a)) Yn(x) = Ry(x) (12)

and in order to generate a nontrivial sequence v, from (12), we need a —nf ¢ o4.
If a > 0, then condition (11) is enough to imply

a—nf <—1 for n=>2. (13)
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The solutions ¥, can then be found recursively and explicitly, since R,(x) has a
simple expression:

7(x) + (@ —2B) Ya(x) = —yi(x)
Yy (x) + (a = 3B) Y3(x) = =291 (x) ¥ (x)
Vi (x) + (a — 4B) Ya(x) = =291 (X)Y3(x) — Y3 (x).

For example, since R,(x) = y¥j(x) = exp (—Zx,/ﬁ —a) > 0, then the next
function v, is the solution of

Y1 () + (@ = 2B) y(x) = —exp (~2xy/F—a) <0

whose general solution is

Yo(x) = ¢y exp (—x V28— a) + exp (—2x \/ﬁTa) ,

1
3a —-28
while ¢,; is determined by the boundary condition ¥, (0) + ¥;(0) = 0, i.e.,

(2
_2/3—3‘1(1—\/2;8——61)'

C21

Next we compute

Rs(x) = 21 (0¥ () = 2ezrexp (—x (V2B —a + B —a))
exp (—3x B —a) (14)

+

2
3a —28
which yields
¥3(x) = c31exp (-x\/3ﬁ — a) + cxpexp (—x (\/2/8 —a+ B - a))
+enexp(-3xyB-a). (15)

By induction it is easy to see that

my

Ya(X) =Y Cuk €Xp (—Xdi) (16)

k=1
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and the constants a,; and ¢, are easily computed algebraically which makes the
algorithm fast. In order to track down these values a,; and find the properties of v,
we work out a specific case. For example, we can choose

a=1 and =2 17)

to satisfy (11) which then yields (13). In this case the first few terms of the sequence
forn >2

¥, (x) + (1 = 2n) ¥, (x) = —R,(x) x>0 as)
Vn(0) + v,(0) =0
are
Y1(x) = exp(—x) (19)
Va(x) = m exp(—+/3x) — exp(—2x)
—1++/3
Y3 (x) = Q exp(—(1 + v/3)x)
(8 - Sﬁ)
1 (643 —11)
— —3x) — —/5x),
+ 2exp( X) (8—5\/§+5«/§«/——8«/§)exp( V/5x)
and the solution looks like
uCx. )=y e X", (x)=11(x) exp(20) + P2 (X)X exp(41)+3(x)A% exp(61)+ . .. .
n>1
(20)

To prove its convergence, it is enough to find a bound on the functions v,,.

Proposition1. For n > 1 and x > 0 we have 0 < ¥,(x) < 1 and ¥, is a
decreasing function of x.

Proof. We use induction. It is certainly true from (19) for n = 1, 2, 3. Assume it is
true up to n — 1, then we deduce from (8),

l1-n<—-R,(x)<0
out of which follows that 1 is an upper solution since

0—2n—-1)1<—=R,(x)
1>0
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and that O is lower solution

{ 0— (2n —1)(0) > —R,(x)
0=0.

Thus 0 < ¥, (x) < 1. We also use induction to show that ¥/ (x) < 0. Obviously
Y1(x) = exp (—x) is decreasing and if it is true up to n — 1, then ¥, (x) satisfies,
see (18)

{ P+ (=2 Y = —R,(x) >0 x>0
W,; (O) = _1//'1 (O) <0.

By the maximum principle, it follows that 0 is an upper solution and so ¥, (x) < 0

for x > 0.
The fact that v, are bounded, 0 < v,,(x) < 1, implies that when |e2t )t| < 1, the

series converges for 0 <t < T where T = —In (ﬁ) and

u(x. 1) =y A"y, (x) < u(0,1). Q1)
n>1
We next show that it is a solution by examining its partial sums. O

Proposition 2. Let0 < A < 1,a = 1 and B = 2, then the solution of (1) is defined
by (20) which exists fort € [0, T).

Proof. We need to examine the partial sums for ¢ € [0, 7) and x > 0

n=k
M(k) — ZAn—leZntwn(x).
n=1

We have that u, (k) = Y= 2047 e, (x), ury (k) + u(k) = Y "=k An—le2n!
[¥) (x) + ¥ (x)] and

n=k

Ié(k) — an—lethtRn (x)

n=1
Use (18) and proposition 1 to see that
\1//,’1’()6) + wn(x)\ =2nvy,(x) — R, (x)| <2n+n—-1<3n

n—1

|R (X)) = ZWk(X)%—k(X) <n-1

k=1
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Thus u,(k), ucx (k) + u(k) and R(k) converge uniformly, as k — oo, on any
compact [0, 7 — ¢] x [0, N], for any ¢ and N where T > ¢ > 0 and N < oo.
Moreover it follows from (5) that

u (k) = uer (k) + u(k) + R(k) forallk > 1

and thus at the limit we obtain (3) which means that the series defined by (20)

is a solution to (1). The boundary condition at x = 0 is easily seen to hold and

u(x,0) = anl A"~ 14, (x) which is continuous on (0, co) since 0 < v, (x) < 1.
O

3 Blowup

A sufficient condition for (11) and (13) to hold is simply
B=a+1>0. 22)

To show that the solution blows up in finite time it is enough to show that the integral
o0
h(t) = / u(x,t)Y1(x) dx - oo ast - Tp <00
0
since ¥ (x) = exp(—x). Next multiplying equation (1) by ¥ (x) leads to
o0 o0 o0
/ up (x, 1)y (x)dx = [ e (x, D)1 (x)dx + a/ u(x, 1)y (x)dx
0 0 0
o0
+ A / u? (x, 1)y (x)dx (23)
0
and u, (0,¢) 4+ u(0,¢) = 0 yields
o0 o
| sty s = [ ute s,
0 0
Now since fooo Y1(x)dx = 1, Jensen’s inequality yields
00 00 2
[ owear = ([ utoweoar) 4
0 0

Combine (24) and (23) to see that & satisfies the inequality

W (t) = Bh(t) + Ah*(t).
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Thus if #(0) > 0 we have blow up in finite time, 7} say, and

T, 11 1 P 25
<50 (1+ 5im) =

It is also easy to see from (21) that if blowup occurs at a single point, then it has to
be at x = 0, which is on the boundary. The nature of the singularity depends only
on the convergence of the series:

u(x. Tpy) = Y A"'e" Ty, (x)

n>1

Summarizing the above we have

Proposition 3. Assume that 0 < A < 1, and (22) holds, then the solution defined
by (2) blows up in finite time.

Proof. Since u(x,0) = Y, ., A" ', (x) > 0 then £(0) > 0 and so the solution
blows up before T}, (25). As for the location of the blowup point, observe that
Y, are decreasing, and so ¥, (x) < v,,(0) which means that u(x,¢) < u(0,¢). Thus,
if the solution blows up at a single point, it has to be at x = 0. O
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Two Models of Subdiffusion Processes: When
Are They Similar?

T. Kosztolowicz and K.D. Lewandowska

Abstract We study two models which describe subdiffusive processes.
Subdiffusion is defined by the relation ((Ax)*(r)) = Dqt®, where ((Ax)*(1))
denotes the mean square displacement, « is a subdiffusion parameter which obeys
0 < o < 1 and D, is a subdiffusion coefficient. The first model consists of a
nonlinear partial differential equation with derivatives of a natural order obtained
from a Sharma—Mittal nonadditive entropy, whereas the second model is based on a
linear partial differential equation with a fractional time derivative which is derived
from the continuous time random walk formalism. We obtain the fundamental
solutions for both models. Next, we assume two agreement conditions. According
to the first one the fundamental solutions for both model fulfill the relation which
defines subdiffusion. The second agreement condition presumes the equality of
the first passage time distributions. On the basis of these agreement conditions we
answer the question when the considered models are similar.
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1 Introduction

Subdiffusion can be defined as a transport process in which the mean square
displacement of a random walker fulfills the following relation [1,2]:

((Ax)*(t)) = Dut® | (1)

where @« € (0,1) is a subdiffusion parameter and D, denotes a subdiffusion
coefficient given in the units of m?/t*. When @« = 1 we are dealing with
normal diffusion. The mean—square displacement can be calculated according to
the following formula:

(i =302 ) = [ =307 Gator.t: x0)dx @

where G denotes the fundamental solution to a subdiffusion equation for a spatially
unlimited system with the initial condition

Go(x,0:x0) = 8(x — xo) , 3)

8(x) denotes the Dirac—delta function and x, is the initial position of a random
walker. Subdiffusion can occur in media with a complex internal structure as,
for example, media with a fractal geometry, porous media, gels, or biological
membranes [1-5]. If a random walker moves in a medium in which, for example,
narrow tubes are present, its movement can be hindered so much that the mean
waiting time of random walker to take its next step is infinity, whereas the length of
steps has finite moments [1-5].

Subdiffusion can be described in many different ways using, for example, the
fractional Brownian motion, the continuous time random walk (CTRW) formalism
which provides a linear subdiffusion equation with a fractional time derivative [1],
the generalized Langevin equation, the generalized master equation, or nonlinear
subdiffusion equations with ordinary derivatives obtained on the base of nonadditive
entropies [6—11,18]. All of these models provide the relations (1). Another problem
concerns the physical interpretation of subdiffusive models. Some of them have a
stochastic interpretation. In other cases physical interpretation can be unclear or
unknown. For example, in the case of the model based on the CTRW formalism, the
stochastic interpretation of subdiffusion process is satisfactorily simple, whereas in
the case of the model based on nonadditive entropies, the stochastic interpretation
is not so obvious (at least in our opinion).

Below, we will present two models describing subdiffusive processes. One of
them will be a fractional model derived from the CTRW formalism and the
second one will be a Sharma—Mittal model based on the Sharma—Mittal nonadditive
entropy. We will assume the agreement conditions between these models in such a
way that the fundamental solutions to the subdiffusion equations for both models
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provide the relation (1) and the first passage time (FPT) distributions will be
equal. We will find dependencies between the fractional model parameters and the
Sharma—Mittal ones for which these model will be similar.

2 Sharma-Mittal Entropy

Sharma—Mittal entropy is defined as [6]

1— (f Prdx)(q—l)/(r—l)

S[P] = i

) “)

where ¢,7 > 0, ¢,r # 1 and P is the probability density function of finding a
random walker at point x at time ?.

Sharma—Mittal entropy is one of nonadditive entropies. Entropy S can be called
the nonadditive entropy when satisfies the following relation for two statistically
independent systems A and B and for g # 1

S(A+B)=S(A)+SB)+(1—¢q)S(A)S(B) . 5)

Nonlinear Fokker—Planck equation for the nonadditive entropies can be obtained
in the following way. Firstly, a subdiffusion flux is assumed to be a form [6]

d éS

JZQM(P)gg—Pv (6)

where Q is the fluctuation strength, M(P) is a function of P (the form of this
function should be assumed) and §S /8P denotes a functional derivative of entropy
with respect to the probability. After replacing the flux in the continuity equation

aJ(x,1)  OP(x,1)
x o

)

with the formula (6) and for M(P) = P, we obtain the following nonlinear Fokker—
Planck equation for nonadditive entropies:
dP(x,t) 0 p2 a aS
a dx  ox P’

®)

Equation (8) is a nonlinear partial differential equation with derivatives of a natural
order.
For the Sharma—Mittal entropy (4) Eq. (8) takes the following form [6, 11, 12]:

IP(x,1) Lo\ g2 P )
w0 _ g ( / P (x.0)] dx) = ©)
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The fundamental solution to Eq. (9) reads [6, 12]

—Cs%m(r—l)(x—xo)z}] . (0)
J’_

Gosm (x,t;x0) = Dsy (2) “ 1

where r > 1/3 and r # 1 and {z}+ = max{z, 0}, the subscript SM stands for the
Sharma—-Mittal model and

Dsm (1) [ ! }liq (11)
sm(t) = ,
2r(1 + Q)QKr,q|Zr|2t
Csm (1) =2z Dsu (1))* (12)
L(r/(r—1)
e heey 7> L
=147, r=1, (13)
7 L((1+r)/2(1=r))
= oy V3<r<l1,

3r—1 1—r
k. =) (5 AL 14
W) =1 4

3 The Continuous Time Random Walk Formalism

Within a framework of the continuous time random walk in which the probability
density of finding a random walker at a time ¢ at a point x, P(x,?), depends
on the probability density of the waiting time of the random walker to take its
next step w(¢) and the probability density of jump length A(x). When w(¢) and
A(x) are independent then the probability density P(x,¢) reads in terms of the
Laplace transform L£{w(t)} = &(s) = fooo e f(t)dt and the Fourier transform
F e} = Ak) = [Z,e* f(odx [1]

1 —a(s) 1

Pk,s) = —.
k. 5) s 1—a(s)Ak)

5)

As far as we know, an inverse transform of the above equation in the most general
case has not been found yet, with the exception of a few very special cases. For this
reason, Eq. (15) is usually considered within the limit of small values of s and k.
For subdiffusion, it is assumed that the first moment of w(¢) (the average value)
is infinite and that the Laplace transform &(s) has the following form for small
values of s

D(s) = 1—1%,, (16)
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where subdiffusion parameter @ obeys 0 < o < 1 and 7, is a positive parameter,
whereas all the moments of the natural order of A(x) are finite. Assuming that A(¢)
is a symmetric function, the Fourier transform A (k) has the following form for small
values of k

2k

Ay =1-07= (17)

where o2 is the second moment of A(x). Computing the inverse Laplace and Fourier

transforms leads to w(¢) being proportional to 1/¢!%¢ (therefore w(t) is referred to

as a heavy-tailed distribution) and A (x) in the form of Gauss distribution.
Substituting Egs. (16) and (17) into Eq. (15) we obtain

A 1
Gk,s) = ——————, 18
k.5) § + Dgsl—k2 1%
where Dy = o2 /7o Transforming Eq. (18) to the form
sP(k,s)—1=—s"""k>Dy P (k,s) (19)
and using the following inverse Fourier and Laplace transforms
A 9*P(x,t
- {kzp(k’,)} = PP ey s (20)
dx2
and
_ A dG(x,t;0) _ A P (x,1)
1 . _ 1)1 —
L {SG(X,S,O)—S(X)} = T B L {S aP(X,S)} = T‘X(ZI;

where d® f(t)/dt* denotes the Riemann-Liouville fractional time derivative which
is defined for @ € (0, 1) as [13]

d* f(t 1 d [! t
/0 _ o[t 22)
dte rad—oa)dt Jy t—1)
the following subdiffusion equation is obtained:
0P (x,1) < 37" 3P(x,1)
= D, _, 23
ot orl—  9x? 3
where
~ rq D,
B, = LU+ @ De (24)

* 2
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Equation (23) is a linear partial differential equation with a fractional time
derivative.
The fundamental solution to Eq. (23) reads [14]

1 [x — xo|
Gor(x,1;X0) = ——== fa/2-1.0/2 (I; = ) , (25)
2v/ D, v Dy

where the subscript F stands for the fractional model and the function f,, g(¢; a) is
defined as fora > 0

[ 1 a\k
Fop(0) = G5 D TR =) (-77) - (26)
k=0

The above function can be also expressed by the Fox H-function [15].

4 Comparison of the Models

Both of the considered models are assumed to describe subdiffusion which is
defined by the relation (1) in this paper. Therefore, the first condition for a similarity
between these models will be Eq. (1) which should be fulfilled by both models. As
the second condition we have chosen an equality of first passage time distributions.

4.1 The First Agreement Condition

As previously mentioned, the fundamental solution for the fractional model
Gor(x,t;x0) (see Eq.(25)) fulfills the definition of subdiffusion (1). Now, let
us determine conditions which should be fulfilled by the fundamental solution (25)
in order for the Sharma—Mittal model to also satisfy the relation (1).

Function (10) provides the formula

2 1
3r—1 CSM(I) '

((x = x0)2(1)) = 27)

Comparing (1) with (27) and taking into account consideration presented in the
paper [16] we obtain

g==--1. (28)
o

2D (3r — D]V
B 4rKr,2/a—l|Zr|2(l_l/a) 7

(29)
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Fig. 1 The fundamental solutions for the SM model, here x, = 0. Values of the parameter r are
given in the legend

where r > 1/3. Thus, the fundamental solution (10) fulfills the relation (1) only if
its form is as follows:

1

) . 1 (r —1)(x — x0)? =l
Gt = e V= Smer )

The fundamental solution (30) has different properties depending on the value of the
parameter r. The example fundamental solutions are presented in Fig. 1 for different
values of r. It can be noticed that the fundamental solutions for » > 1 have finite
supports.

The fundamental solution for the fractional model, Gor(x, t; x¢), see Eq. (25),
is controlled by the two parameters « and D,. We have found the dependencies
between the Sharma—Mittal model parameters (¢ and Q) and the fractional model
parameters (o« and D, ); see Egs.(28) and (29), respectively. Therefore, the fun-
damental solution for the Sharma—Mittal model (30) is controlled by the three
parameters «, D, and r; two of them are common for both models.
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4.2 The Second Agreement Condition

The first passage time is defined as the time that the random walker takes to reach
a target located in x,, for the first time, from a starting point xo. FPT is a random
variable which is described by a probability density, F(z; xo, x5 ). We can calculate
F(¢; x9, xpr) from the following formula:

dP(t; xo,
F(t:x0. xy) = — 2L EX0200) (31)
dt
for t > 0 and F(t;x9,xy) = 0 fort < 0, where P(¢;x,xy) denotes the

probability of finding the particle which started from x, in the system with a fully
absorbing wall located at x,, at time ¢ (in the following we assume that xo < x,7)

XM

P(t: 0, x31) = / G, 12 X0)dx 32)

—00

Gaps(x,1;x0) is the fundamental solution for subdiffusive system with a fully
absorbing wall located at x = xj;. The fundamental solution Gs(x,?;x¢) can
be found through the means of the method of images and reads for x, xo < xps

Gabs(x,l;xo) = G()(x,l;)C()) — Go(x,t;ZxM — Xo) R (33)

where Go(x,t;x9) and Go(x,t;2xy — xo) are the fundamental solutions for
unrestricted system.

We were assumed that the second agreement condition is the equality of the FPT
distributions, thus

Fsm (15 x0,xm) = Fr(t:x0.xpm) - (34)
Farther calculations we will make over a long time limit which we can esti-
Y 1/a
mate as ¢ > max{fsy,!r}, where tgy = [%] and tp =
2/a
[xp—x0|C(1—a/2) . . .
e , respectively. Taking into account the formulae and calcula-
[ /2Dy T (1—a) P ¥ £
tions presented in the paper [16] we obtain

1 1 V2
F(1-a/2) JT(U+a) ~3r—1lz|

(35)

The agreement condition (35) is the same for both cases of the fundamental solution
for the Sharma—Mittal model (1/3 < r < 1 and r > 1) [16]. The numerical solution
to Eq. (35) has a good approximation in the following form [16]:

r = 3.008a° — 5.471a* + 3.768a> — 0.869a + 0.101c + 0.463 . (36)
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Fig. 2 Comparison between the fundamental solutions for the Sharma—Mittal model (solid lines)
and the fractional model (dashed lines) for different times given in the legend

The satisfactory similarity of the fundamental solutions for the fraction model
and the Sharma—Mittal model for r given by Eq.(36) can be observed in Fig.2.
The comparison between the fundamental solutions for the fractional model and the
Sharma—-Mittal model can only be done for 1/3 < r < 1 because in this
case the fundamental solution for the Sharma—Mittal model has a finite support
like the fundamental solution for the fractional model. It should be noticed here
that the fact that the fundamental solutions for both models are very similar does
not stand for the equivalence of these models even though these models fulfill the
relations (1) and (34).

5 Final Remarks

In this paper we have studied two models for subdiffusive processes: the Sharma—
Mittal model and the fractional model. We have found the conditions under which
the fundamental solutions for both models are similar, Eqgs. (1) and (34). We have
also determined the dependencies between the parameters of the fractional model
(o and D,) and the Sharma—Mittal model (g, Q and r), Egs. (28), (29) and (35).
The equality of the FPT distributions over the long time limit (see Eq.(34))
gives an opportunity for extracting the parameters of the models from experimental
data. The parameters of the fractional model, namely the subdiffusion parameter
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a and the subdiffusion coefficient D,, can be extracted from the experimental
data by means of different methods such as a time evolution of a near-membrane
layer [4, 5] or a time evolution of a reaction front in a subdiffusive system with
chemical reactions [17]. The subdiffusion parameters o and D, are the same for
both models; therefore, we can calculate the values of the rest parameters by means
of the relation (34).
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Analysis of Customers’ Impatience in M/M/1
Queues with Server Subject to Random
Breakdowns and Exponential Vacations

Rehab F. Khalaf

Abstract In this paper we consider M/M/1queuing systems with server’s vacations
and random breakdowns. Customers are impatient, where customers’ impatience
is due to an absentee of the server upon arrival. This absentee is because either
the server is on vacation or it is under repair. The mean number of customers in
the system and the total waiting time the customer spends in the system have been
derived in this work as a very common and important performance measures.

Keywords M/M/1 queue * Server vacation * Random breakdowns ¢ Customers’
impatience

1 Introduction

Queuing systems with server interruptions can be used in modeling numerous real-
world queuing situations have arisen in systems such as manufacturing systems,
communication systems, and production-inventory systems. There is now a growing
interest in the analysis of queuing systems with impatient customers. This is due to
the potential application of such systems in many related areas (cf. [1]).

Queuing systems with server vacations and/or random system breakdowns have
been studied by numerous researchers, for instance, [2—4]. In their work [5-8]
investigated a batch arrival queuing system with a Bernoulli scheduled vacation
and random system breakdowns. In addition, [9] studied a queuing system with four
different main server interruptions and a standby that ever replaces the main server
during any potential stop.
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The impatience phenomenon has been studied under various assumptions by
many authors. The pioneering work of [10, 11] seems to be the first to analyze
queuing systems with impatient customers by considering the unlimited buffer
M/M/c queue and assuming that each individual customer stays in the queue as
long as his waiting time does not exceed an exponentially distributed impatience
time. Furthermore, [12] analyzed queuing systems with server vacations, where each
arriving customer who finds no servers on duty because it is on vacation activates
an independent random impatience timer. If a server does not show up by the time
the timer expires, the customer abandons the queue.

In this work we study the queuing system where the customers’ impatience is due
to the absence of servers upon arrival. This absence of the server is either because
of the vacation or because of random breakdowns. If an arriving customer sees no
server present in the system, he/she may abandon the queue if no server shows
up within some time. Such a model, representing frequent behavior by waiting
customers in service systems, has not been treated before in the literature.

2 The Model

The underlying process is a M/M/1 queue with multiple server ([12]). The customers
arrive to the system according to a Poisson distribution with arrival rate A. Service
times are exponentially distributed with mean service rate. Also the vacation times
are exponentially distributed with parameter y. The system may breakdown at
random, and breakdowns are assumed to occur according to a Poisson stream with
mean breakdown rate @ > 0. Once the system breaks down, the required repairs
start immediately. The duration of repairs follows an exponential distribution with
repair rate 6 > 0.

We consider the impatience of a customer by noting that whenever a customer
arrives to the system and realizes that the server is on vacation or under repair,
he/she activates an “impatience timer” 7, T which is exponentially distributed
with parameter £. The impatience time 7 is independent of the queue size at that
moment. If the server returns from his vacation before the time 7 expires (and
starts providing service), the customer stays in the system until his/her service is
completed. However, if T expires while the server is still on vacation or still under
repairs, the customer leaves the queue, never to return.

3 Balance Equations

We start by letting L denote the total number of customers in the system, and we let
J denote the number of working servers. When the server is on vacation or under
repair, this means that / = 0, while J/ = 1 implies that the server is active. The
pair (J, L) defines a continuous-time Markov process with transition-rate diagram
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as illustrated in Figure 1. Let Pjn = P{J = j,L =n}(j =0,1;n =0,1,2,...)
denote the (steady state) system state probabilities. The set of balance equations is
given as

i=0 {n=0 APy = P11 + &Py
nz1l A+nE+y+0)Po=n+1)EPyt1 + APoy—1 + aPiy
ey

=1 {nzl(A+M+W)P11=MP12+()/+9)P01 @)

nz2 A+ p+a) Py =pPiuyr + APyp—1 + (v +0) Poy
Define the probability generating functions (PGFs)
oo oo
Go@) =Y Pud'. Gi)=)_ P
n=0 n=1

Then by multiplying each equation for n in equation (2) by z" , summing over n and
rearranging terms, we get

2(y + 0)Go(2) — z((y + 0) Poo + uP11)
(1 =2)(zA — p) + za)

In a similar manner from equation (1) we obtain

Gi(2) = 3)

(1 -2)EGi(zx) = A —Az+y + 0)Go(z) — ((y + ) Poo + wP11) —aGi(z), (4)

where G(z) = d%GO(z). In the next section we will derive the mean number of
customers in the system when the server works and the mean number of costumers
when the server does not work.
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4 Derivation of E(L() and E(L)

We begin by setting A = (y + 6) Py + wP1;. The probability that the server is
working is defined by

o0
Gi(1) = Zpln =P
n=1
From equation (3) we obtain
0)Py. — A
p= Y TOR A L 0 5)

Clearly the probability that the server does not work (on vacation or under repair) is

Go(1) = Pon = Py

n=1

Obviously Py. + P;. = 1, so from equation (5) we get

_(y+0)—4
" at+y+0) ©
Then
o+ A 7

"= a0

The mean number of customers in the system when the server does not work (on
vacation or under repair) is given by E(L¢) = G{(1) = > o2 nPo,. So using
L’Hospital’s rule on equation (4), we get

—AGo(z) + (y + 0)G((2) —aG{(2)
—£

E(Lo) = limGy(z) = lim
= =

Implying that

_ AP() —|— OlE(L])
H =50 ®

To find the mean number of customers in the system when the server works
E(Ly) = G (1), from equation (3), we get
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aly +O)ELo) + A — (¥ + ) Po. — 4)

E(L) =G|(1) = " ©)
Substituting the value of E(L,) in equation (8) we get
E(Ly) PO.(aA+()L—;L)(§l);+ 6) — (A — )4 "
Then
By = D@+ 0+ E+y + 0 - +0) = E+y +OHG -4

a2g

(1D
If we define S to be the total sojourn time of customers in the system, measured
from the moment of arrival until departure, either after completion of service or as
a result of abandonment. By little’s law

E(S) = w (12)

So using equations (10) and (11) we can get E(S) .

5 Conclusion

We have introduced and analyzed in this paper a new type of impatience behavior in
which customers become impatient (and may leave the system) when the server goes
on vacation or the server is broken down and under repair. This is in contrast with
previously studied impatience behavior, which did not consider server breakdown
and where customers may become impatient when the number of customers or
the amount of workload queued in front of them is large. We derived explicit
expressions for the PGF of the number of customers (conditioned on the server
state) in the system. The closed forms to find the mean number of customers in the
systems as well as the mean sojourn time are given also in this work.
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Exchange Curve and Coverage Analysis Tools
for Better Inventory Management: A Case Study

S. Bhattacharya and S. Sarkar (Mondal)

Abstract In this paper, we explore how historical demand information can be used
to forecast future demand and how these forecast affect the inventory management
system. Forecasting, which have a long-term perspective of operations, is typically
based on demand for the goods and services it offers, compared to the cost of
producing them. It is used to determine the direction of future trends by using
some historical data. We develop a novel and useful yet very simple methodology
known as optimal policy curve or exchange curve for planning inventory by using
these forecasted demands. Using this curve, reduction of average investment in
inventories in the form of cycle stocks/total stocks or number of orders per year or
both as desired are done. Controlling the inventory at aggregate levels is analyzed
by using a scientific analysis, known as coverage analysis. We verify the idea of
exchange curve and coverage analysis using a real-life problem for which data are
collected from Durgapur Steel Plant, Durgapur, India, and find its optimal ordering
policy and coverage for each raw material. It is found that the results obtained from
economic order quantity (EOQ) model are same as the results calculated on the basis
of exchange curve.

Keywords Demand forecast * Exchange curve ¢ Coverage analysis ¢ Optimal
ordering policy

1 Introduction

The term “inventory” refers to the stock of production that a firm is offering for
sale and the components that make up the production. Control of inventory, which
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typically represents 45 % to 90 % of all expenses for business, is needed to ensure
that the business has the right goods on hand to avoid stock-outs, to prevent spoilage,
and to provide proper accounting. The aim of inventory management is to hold
inventories at the lowest possible cost. Starr and Miller (1962) [1] determined trade-
offs between two performance measures: (i) number of orders per year (workload)
and (ii) average investment in inventory in the case of multiple items. The coverage
analysis of Murdoch (1965) [2] discussed a simple and powerful approach of
controlling the inventory at aggregate levels. According to Chopra and Meindl
(2004) [3], forecasts of future demand are essential to the inventory manager for his
decision-making process. They described several methods to forecast demand and
estimate forecast accuracy. Dutta (2007) [4] suggested better policies and measures
to be adopted based on scientific analysis and mathematical modeling. According
to Tsou et al. (2011) [5], inventory management involves trade-offs between
conflicting objectives such as cost minimization and service level maximization.
They draw an exchange curve of cost and service which is useful in determining the
best customer service possible for the given investment in inventory management.
From this literature survey, we predict the forecasted demand from the historical
demand information and see how these forecasts affect the inventory management
system. We first calculate the inventory investment and the number of orders. Using
these data a curve, known as exchange curve or optimal policy curve, has been
plotted followed by a scientific analysis, known as coverage analysis controlling the
inventory at aggregate levels.

2 Definitions and Notations

Exchange curve is a device which is most useful to the executives to generate this
curve under the circumstances where it is difficult or even impossible to obtain
satisfactory estimates of the relevant costs. This curve can be plotted using total
inventory investment (T.I.) along one axis and total number of orders (T.O.) along
the other axis perpendicular to the former and is based on the assumption of EOQ
which is used for trading off cycle stock investment versus total number of orders
per year. Such graph demonstrates the nonlinear relationship between increasing
inventory and service level under some constraints. Moreover, it is useful for

planning aggregate inventory level in an organization. If, for item i (i =1, 2, ..., n)
Ordering cost =C,
Purchase cost =C;
Holding cost in percent = C;,
Annual demand =D;

Optimal order quantity = Q;

(J2CeDi

C.
_~n 0iG n GG )¢ n [c,D;C;
then, TI = Zi=1# = Zi:lTI = Zi:l Ulehl
C, 1 n

C—Z%Z,:m/DiCi
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_ n D; _ n D; _ n CyD;iC; __
and TO. = >/, 0 = Di=1 2CoD; = D i V2, T
CuCi
G 1 7 .
&5 2i= VDG

1 n
Therefore, T.I.xT.0.= E(Z VD G) (M
i=1
T.I. G,
and —— = — 2)
T.O. C

The above two equations (1) and (2) lead to the development of the exchange
curve which is in the shape of a hyperbola and accordingly any point on the
hyperbolic curve is given by the ratio % or g—; Thus, the desired operating points
can be found out from the curve.

Coverage analysis is a simple but powerful approach of controlling the inventory
at aggregate levels. In particular this approach aims at reducing the investment on
inventory for a given total number of orders per year by appropriate adjustment of
the total number of orders among different groups of items. The coverage of an item
is defined as the ratio of average stock level to annual usage of the item.

3 Real-Life Example

We establish the idea of exchange curve and coverage analysis using a real-life
problem for which data are collected from Durgapur Steel Plant, Durgapur, India.
We collect the data for four years (2009, 2010, 2011, 2012) which are shown in
Tables 1 and 2. The goal is to select the most appropriate forecasting method and
then use to forecast demand for the next year.

Here i represents the item and in our case i = 12 and ordering cost per order
(C,) = Rs. 10,300, 9,900, 10,700, and 12,900 and holding cost (C) in percentage
=9%,8.6% ,7.5%, and 7%, i.e., 0.09 , 0.086, 0.075, and 0.07 according to the
years 2012, 2011, 2010, and 2009, respectively (Table 3).

1. Solution for exchange curve for the year 2012

(A) Nonoptimal case:

Total Cost = Rs. (247200 + 5773.72) = Rs. 2,52,973.72 ~ Rs. 2,52,974
(B) Optimal Case:

(i) Optimal ordering policy for EOQ model:

Optimal inventory investment = Y; = w"c—cl"c"
1

Total cost = Rs. (24031.20 + 24081.24) = Rs. 48112.44 ~ Rs. 48112
Therefore, total cost decreases by an amount of Rs. (2,52,974—48112) =
Rs. 204862 or about 80.9 % in comparison to nonoptimal case (Table 4).



258

S. Bhattacharya and S. Sarkar (Mondal)

Table 1 Year 2012 and 2011
Unit cost Orders Lead time
D;in MT (C;)in Rs. per year in month
SL no. Raw materials 2012 2011 2012 2011 2012 2011 2012 2011
1. Coking coal 52 40 668.73 437.74 4 3 35 0.5
2. Noncoking coal 15 21 298.21 497.63 2 2 0.5 1.5
3. Calcium ammoniate 11 15 295.81 26742 1 1 2 1.5
4. Hot metal 47 51 564.13  650.18 3 3 4 1
5. Iron ore 18 22 24572 26527 2 2 0.5 0.5
6. Coal 14 10 158.34 126.83 1 1 1 1
7. Silicon manganese 39 30 328.15 32220 2 3 2.5 0.5
8. Ferro manganese 32 35 53451 413.14 3 2 1.5 1
9. Aluminum 10 16 540.14 578.17 1 2 0.5 0.5
10. Coke 21 21 553.55 42782 2 2 1 1
11. Limestone 20 12 116.18 176.18 2 1 0.5 0.5
12. Dolomite 12 24 28323 566.46 1 2 0.5 0.5
Table 2 Year 2010 and 2009
Unit cost Orders Lead time
D;in MT (C;)inRs. per year in month
SL no. Raw materials 2010 2009 2010 2009 2010 2009 2010 2009
1. Coking coal 20 35 377.14 425.17 2 2 1 1
2. Noncoking coal 18 20 298.21 366.15 2 1 1.5 1
3. Calcium ammoniate 10 10 254.62 22021 1 1 4 0.5
4. Hot metal 30 38 420.00 508.34 2 2 0.5 1.5
5. Iron ore 25 21 310.17 27224 2 1 1.5 1.5
6. Coal 12 16 17523 182.54 1 1 2.5 5.5
7. Silicon manganese 32 31 421.25 36427 2 2 0.5 0.5
8. Ferro manganese 29 36 400.10 400.00 2 2 1 1
9. Aluminum 15 20 530.00 620.00 2 2 0.5 0.5
10. Coke 17 15 580.23 530.15 2 1 0.5 4.5
11. Limestone 22 23 610.00 640.00 2 1 0.5 1
12. Dolomite 12 18 370.48 583.21 1 2 2 0.5
(ii) Restricted the total number of orders at 24
We want to determine optimal inventory X;
to minimize total inventory investment (T.I) = Y7_, X’TC‘
subject to, total number of orders (T.0.) =Y "_, % =24
We form Lagrangian function L = Y'_ & 4+ ) (377, % —24)
The necessary conditions for optimum X; are as follows:
oL 0= Q — @ =0 3)

ox; 2 x?
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Table 3 Calculations of total cost

Avg. Avg. inv. invst. Ordering cost

SL. Raw Orders inv. (=% Al (= D’ZC‘ )in (orders per Holding cost
No. materials per year in MT Rs yearXC,) in Rs. (Al xCj) in Rs.
1. Coking coal 4 26 17386.98 41,200 1564.83

2. Noncoking coal 2 7.5 2236.58 20,600 201.29

3. Calcium ammoniate 1 5.5 1626.96 10,300 146.43

4, Hot metal 3 23.5 13257.06 30,900 1193.14

5. Iron ore 2 9 2211.48 20,600 199.03

6. Coal 1 7 1108.38 10,300 99.75

7. Silicon manganese 2 19.5 6398.92 20,600 575.90

8. Ferro manganese 3 16 8552.16 30,900 769.69

9. Aluminum 1 5 2700.7 10,300 243.06

10. Coke 2 10.5 5812.28 20,600 523.10

11. Limestone 2 10 1161.80 20,600 104.56

12.  Dolomite 1 6 1699.38 10,300 152.94
Total 24 64152.68~ 247,200 5773.72

64152

Table 4 Calculation of optimal ordering policy

Avg. Avg. inv. invst. Ordering cost
SL. Raw Orders  inv. (:%) Al (:%) in (orders per Holding cost
No. materials per year in MT Rs yearXC,) in Rs. (Al XC},) in Rs.
1. Coking coal 89215.32 44607.66 0.39 4014.69 4014.69
2. Noncoking coal 31997.72 15998.86 0.14 1439.90 1439.90
3. Calcium ammoniate 27290.73 13645.36 0.12 1236.00 1228.08
4. Hot metal 77902.40 38951.20 0.34 3505.60 3505.60
5. Ironore 31817.70 15908.85 0.14 1431.80 1431.80
6. Coal 22525.36 11262.68 0.10 1030.00 1013.64
7. Silicon manganese 54122.88 27061.44 0.24 2435.53 2435.53
8. Ferro manganese  62569.87 31284.94 0.27 2815.64 2815.64
9.  Aluminum 35161.35 17580.67 0.15 1582.26 1582.26
10. Coke 51582.27 25791.14 0.22 2266.00 2321.20
11. Limestone 23061.79 11530.90 0.10 1037.78 1037.78
12. Dolomite 27891.55 13945.77 0.12 1236.00 1255.12
Total 24031.20 24081.24
aL "\ D;
andaA—Oizx 24=0 (4)

=1 !

Solving equations (3) and (4), we get, X; = ,/%?" and A =

% (using Table 5).
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Table 5 Calculations of average inventory investment

Optimal inv. invst. Avg. inv. invst. Al No. of orders

SL. No. Raw materials (Y;) in Rs. (=%) in Rs. m per year (=D[T’_C[)
1. Coking coal 8689.97 4344.98 186.48  4.00

2. Noncoking coal 3116.60 1558.30 66.88 1.44

3. Calcium ammoniate 2657.13 1328.57 57.02 1.22

4. Hot metal 7587.88 3793.94 162.83  3.49

5. Iron ore 3098.90 1549.45 66.50 1.43

6. Coal 2193.93 1096.96 4708 1.0l

7. Silicon manganese  5271.86 2635.93 113.13 243

8. Ferro manganese 6094.35 3047.17 130.78  2.80

9. Aluminum 3424.63 1712.32 73.49  1.58

10. Coke 5024.41 2512.20 107.82 231

11. Limestone 2246.12 1123.06 4820  1.03

12. Dolomite 2716.78 1358.39 58.30 1.25

Total 26061.27~26061 1118.51 23.99~24

Therefore, Y: = X;C; = V2A/D;C; = 46.6/D;C;

If the total number of orders per year remains at 24, then inventory
investment is found to be Rs. 26,061. Hence reduction in inventory
investment is Rs.(64,152—26,061) = Rs. 38,091 or about 59.4 % in
comparison to nonoptimal situation.

(iii) Restricted the average inventory investment at Rs. 64,152.
In this case, to minimize total number of orders (T.0.) = Z?:l %
under the restriction that total inventory investment (T.1)= Y_7_, % =
64152,
we follow the similar method used in (ii) in which the optimum number
of orders is obtained as 10. Therefore, the total number of orders per year
has been reduced by (24—10) = 14, i.e., about 58.3 % in comparison to
nonoptimal situation.

(iv) Reducing the average inventory investment at Rs. 40,000.

To optimize total cost = 10300 Y7, £- + 0.09 3 /_, ¥5=

subject to, TI. = Z:l:l % = 40,000, the optimum total cost
is obtained as Rs. 322900.

Hence, the increase in total cost is Rs.(322900—252974) = Rs. 69926 or
about 21.6 % in comparison to nonoptimal situation.

Similar computations have been done for different T.I. and T.O. which are
shown in the following Table 6.

where * denotes the optimal value.

Using the above data, the following exchange curve is plotted.

In Fig.1, point A corresponds the current company policy. Company’s

current policy can be improved by considering the following two situations:
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Table 6 Calculations of (T.I.)X(T.O.)

Policy

Total inventory investment (T.1.) Total number of orders (T.O.) (T.I) X (T.0.)

NNk »D =

80,000* 8 6,40,000
12,510 50* 6,25,500

6,252 100* 6,25,200
64,152 10* 6,41,520
26,061* 24 6,25,464
20,000* 32 6,40,000
50,000 12* 6,00,000

Total Inr entory Inr estment (T.1.)

Fig.

90000
80000
70000
60000
50000
40000
30000
20000
10000

0

A (24, 64152)

0 20 40 60 80 100 120

Total No. of Orders (T.O.)

1 Exchange curve

(a)

(b)

Keeping the number of orders at 24, we can reduce the inventory invest-
ment to Rs. 26,061, which can be obtained by drawing a straight line
parallel to the T.I. axis from point A. The line meets the curve at B whose
coordinate is (24, 26061).

Keeping the inventory fixed at Rs. 64,152, we can reduce the total number
of orders to 10 which is determined by drawing a straight line parallel to
the T.O. axis from point A. This line meets the curve at C whose coordinate
is (10, 64152).

The result of T.I. x T.O. computed in the last column of Table 6
is compared with the result obtained using the relation T.I. x T.0.=
%(Z;’zl /D;C;)?. This gives the constant product of T.I. and T.O., i.e.,
T.I.x T.O. = 6,25,532.31, which is approximately equal to the computed
results.

#2. Solution for coverage analysis for the year 2012:
In order to determine coverage, we use the following notations:
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Table 7 Calculations of reorder level (ROL)

Dj(=25) T LTin ROL per
SL D;in MT permthin  Q; per Orders per 0: mth mth in
no. Raw materials per year MT mth mth (=%) =2, (given) MT
1. Coking coal 52 4.33 1.10 3.94 0.25 35 17.32
2. Noncoking coal 15 1.25 0.72 1.52 0.66 0.5 0.62
Calcium 11 0.92 076 121 010 2 1.84
ammoniate
4. Hot metal 47 3.92 1.54 2.54 0.39 4 15.68
5. [Iron ore 18 1.50 0.82 1.83 0.55 0.5 0.75
6. Coal 14 1.17 0.84 1.39 0.72 1 1.17
7. Silicon 39 3.25 1.32 2.46 0.40 2.5 8.12
manganese
8. Ferro manganese 32 2.67 1.02 2.62 0.38 1.5 4.00
9. Aluminum 10 0.83 0.65 1.28 0.78 0.5 0.42
10. Coke 21 1.75 1.02 1.72 0.58 1 1.75
11. Limestone 20 1.67 0.83 2.01 0.50 0.5 0.84
12. Dolomite 12 1.00 0.76 1.32 0.76 0.5 0.50
Lot size (Q) = ,/%’hc”
Lead time = LT Reorder level (ROL) = (% per

mth) xA- (LT in mth.), where mth.
denotes month

Cycle length =T

Buffer stock (BS) = Average Demand per month during

VT +LT)
Standard deviation of demand (op) =/ ?—é’z - (% 2=14

95 % of Service level (z) = 1.65 (by normal distribution)
Safety stock (SS) =zop+/(T + LT) during /(T + LT)
Average inventory level (I;) = %+ SS

1
D;

The coverage is calculated using Tables 7 and 8.

Using Tables 7 and 8, we plot the curve of coverage analysis, taking T.O. in
horizontal axis and coverage in vertical axis. Every point on this curve represents
the ratio of average inventory level to the annual usage for the collected data item
(Fig. 2).

Coverage (G;) =

Forecast for the year 2013:

We consider the 4-point moving average for each item. We make the forecast for
period 5 using the last 4 periods for which we assume the current period to be
t= 4. We estimate the level L, in period 4 from the following relation using 4-point

moving average.
L — DiADiit Doy
—

N , where N =4 in our case and F, (forecasting at the
periodt+1) =L, andF,4ny =L, 4n—1.
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Table 8 Calculations of coverage (G;)
Buffer stock Safety stock Avg. inv. level Coverage
SL no. Raw materials (BS) in MT (SS) in MT (I;) in MT (G))
1. Coking coal 8.40 44.81 45.36 10.48
2. Noncoking coal 1.34 24.72 25.13 20.10
3. Calcium ammoniate 1.33 33.50 33.88 36.83
4. Hot metal 8.18 48.28 49.05 12.51
5. Iron ore 1.53 23.56 23.97 15.98
6. Coal 1.53 30.26 30.68 26.22
7. Silicon manganese  5.53 39.27 39.93 12.29
8. Ferro manganese 3.66 31.65 32.16 12.04
9. Aluminum 0.94 26.10 26.42 31.83
10. Coke 2.20 29.10 29.61 16.92
11. Limestone 1.67 23.10 23.52 14.08
12. Dolomite 1.12 25.87 26.25 26.25
40
35
30
]
%ﬁ 25
z| 2
© 15
10
5
0
0 1 3 4 5

Fig. 2 Coverage curve

Total No. of Orders

We obtain the level and the forecasted demand, unit cost, orders per year, and

lead time per month for period 5 for each item as shown in Table 9.

In this case Dj4, D;3, Dixand D;; represent demand of i'" jtem for the
years 2012, 2011, 2010, and 2009, respectively. Ordering cost per order (C,) =

Rs (10300499004 10700+ 12900)

1
(0.09+0.0861—0.075+0.07) = 0.080.

= Rs. 10,950 and holding cost in percentage (C;) =

We develop an exchange curve and coverage curve by using this forecasted data
set of items and we see that the results obtained from the exchange curve and
coverage curve are same as that obtained from the results calculated by the method

given in 3.
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Table 9 Calculations of forecasted demand (Fs), unit cost, orders per year, LT per month

Estimated level Ly= Unit cost Orders LT per
SL no. Raw materials (WF Fs (C;)inRs. peryear month
1. Coking coal 37 471.20 3 1.5
2. Noncoking coal 18 365.05 2 1.1
3. Calcium ammoniate 12 259.46 1 2
4. Hot metal 42 535.66 2 1.8
5. Iron ore 22 273.35 2 1
6. Coal 13 160.74 1 2.5
7. Silicon manganese 33 358.97 2 1
8. Ferro manganese 33 436.94 2 1.1
9. Aluminum 15 567.08 2 0.5
10. Coke 18 522.94 2 1.8
11. Limestone 19 385.59 2 0.6
12. Dolomite 16 450.84 2 0.9

4 Discussions and Conclusions

According to Table 6, in the year 2012, the total number of orders (T.O.) = 24, at
the current operating point A at which the total stock value (TS) is 64,152. If the
management desires to keep T.O. at 24, he can reduce TS to 25,000 in the coming
years (as shown in Fig. 1). Hence the possible reduction in TS value of inventory
for the same service level is Rs. (64, 152 —25,000) = Rs. 39,152. We calculate the
savings for different stock investments with respect to the desired operating point B.
Total savings thus calculated is Rs. 1, 52,530 and the possible reduction in TS value
of inventory for the same service level is about 23.7 %, but in the year 2013 the total
savings = Rs. 2, 23,119 and the possible reduction in TS value of inventory for the
same service level is about 25.1 %.

The optimal policy curve shows how orders and inventory investment can be
traded one for the other. The executive can quickly converge on the optimal point
on the curve for the company without having had to convert his knowledge into
the form of carrying costs and ordering costs. The curve shows that the average
saving against each item was found to be around 20-25 % with respect to the desired
operating point. This curve finds its optimal ordering policy for each raw material.
Optimal policy curve or an exchange curve can be considerably more useful than
simply as a geometrical analogy to an already completed mathematical argument. It
shows exactly that how orders and inventory investment can be traded one for other.
It is the most valuable tool in the frequently occurring and difficult cases where
satisfactory estimates of the relevant costs are not available.

Coverage analysis can be measured as a scientific analysis for planning and
controlling stock levels so that the inventory investment can be optimized from a
financial point of view.

Our future plan is to investigate various planning models that will allow inclusive
planning of coverage. The idea will also investigate the nature of the causes of
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coverage and how the appropriate measurement and control may be applied. We
can extend our knowledge for the optimal policy for any possible combination of
values of ordering cost (C,) and holding cost (C;,) for a given set of data items.

References

1. Starr, M.K., Miller, D.W.: Inventory Control: Theory and Practice. Prentice Hall, Englewood
Cliffs, NJ (1962)

2. Murdoch, J.: Coverage Analysis New Technique for Optimizing the Stock Ordering Policy.
Proceeding from one day conference held at Cranfield, UK (1965)

3. Chopra, S., Meindl, P.: Supply Chain Management Strategy, Planning and Operation. Prentice-
Hall of India, Delhi (2004)

4. Dutta, S.K.: Better inventory management through exchange curves. The Icfai J. Oper. Manage.
VI(3), 18 (2007)

5. Tsou, C.S. et al.: Estimating exchange curve For inventory management through evolutionary
multi-objective Optimization. Afr. J. Bus. Manage. 5(12), 48474852 (2011)



Modelling Combustion Process in Circulating
Fluidised Bed Boiler: A Fuzzy Graph Approach

Razidah Ismail, Sumarni Abu Bakar, and Nurul Syazwani Yusof

Abstract Integration of fuzzy graph and autocatalytic set theory plays an important
role in the emergence of a new concept of fuzzy autocatalytic set (FACS). This
concept was successfully used to describe the chemical reactions in the clinical
waste incineration process. Therefore, this paper aimed to extend the application
of FACS in modelling combustion process in circulating fluidised bed boiler
(CFB). Fifteen important chemical substances known as species are represented
as nodes, V, and its catalytic relationships between nodes are represented by the
edges, E, in the graph G g (V, E). The membership value of fuzzy edge connectivity
between two nodes in the graph is calculated using material chart balance based
on simulated data. The fuzzy graphical model of the combustion process provides
more information on the strength of connection of its catalytic relationship between
species. Analysis of dynamics in the combustion process gives reasonable and
equitable results in terms of sequence of depleting species over time and the end
products as compared to the real process. Some characteristics related to the graph
dynamics of the combustion process in CFB are also highlighted.

Keywords Autocatalytic set ¢ Directed graph ¢ Fuzzy modelling ¢ Perron—
Frobenius eigenvalue

1 Introduction

Circulating fluidised bed boiler (CFB) is a device used to generate high-pressure
steam which is then used to spin turbine in a steam turbine to produce electricity.
The steam is generated by burning fossil fuels, namely coal and limestone, in a
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Fig. 1 Relationship of H,
O, and H,O as a graph

furnace which operates under a special hydrodynamic condition [1, 2]. The burning
or combustion process involves complex interactions of chemical substances that
exist during the process. Due to this reason, not many researchers had attempted
to model the combustion process in CFB [3]. Recently, a crisp graphical model,
G(V,E), and its modification, Gy (V, E), which is based on graph theoretical
approach were developed [4—6]. In these models, V' denotes a set of chemical
substances or species that has significant role in the combustion process and E is
a set of links or edges which described interactions among the species according
to autocatalytic set (ACS) concept. The species are then represented as node in the
graph and edge between two nodes is constructed if there is a catalytic relationship
among the nodes. For example, H,, O, and H,O are identified as species for reaction
equation of H, 4+ O, — H,0. The formations of species H,O are being catalysis by
H; and O,. Thus the graph representing these relationships is depicted in Fig. 1. In
graph theoretic perspective, ACS is a subgraph where each of whose nodes has
at least one incoming link from a node belonging to the same subgraph [7, 8].
A link from vertex j to vertex i indicates that species j catalyses the production
of species i. Figure 2 illustrates the crisp graphical ACS model with 15 species and
46 edges.

However dynamical nature of the combustion process is not well explained from
both of these models. For example, end product of the combustion process which
is determined through Graph Dynamical Algorithm [4] reveals a similar output,
namely carbon dioxide (CO,) and carbon monoxide (CO). The value of O or 1 which
was given to the link of a crisp graph could have contributed to such results. This
has motivated further exploration to modify the model using fuzzy graph approach
specifically fuzzy autocatalytic set (FACS) of fuzzy graph Type-3.
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Fig. 2 Graphical ACS model of combustion process in CFB

2 Fuzzy Autocatalytic Set

FACS is a concept emerged from integration of autocatalytic set (ACS) and fuzzy
graph theory. A clinical waste incineration process in Malacca, Malaysia, was
successfully modelled using FACS of fuzzy graph Type-3 [9] whereby its theoretical
foundation was first laid in [10]. Meanwhile, fuzzy graph of Type-3 involved crisp
vertex and edge, but the edge has fuzzy connectivity in which it involved fuzzy heads
and fuzzy tails [11]. The formal definition of FACS and fuzzy edge connectivity are
stated in Definitions 1 and 2 respectively. The membership value that constitutes to
the entry of adjacency matrix of fuzzy graph is stated in Definition 3.

Definition 1 ([10]). FACS was defined as a subgraph where each of whose nodes
has at least one incoming link with membership value i (e;) € (0,1), Ve; € E.

Definition 2 ([10]). The fuzzy head h(e;) and the fuzzy tail ¢ (e;) are functions of
e;suchthath : E — [0,1] and ¢ : E — [0, 1] for ¢; € E. Fuzzy edge connectivity
is a tuple (¢(e;),h(e;)) and the set of all fuzzy edge connectivity is denoted as
C ={(t(e;), h(e;)) : e; € E}. The membership value of fuzzy edge connectivity is
denoted as u(e;) = min{z(e;), h(e;)}.

Definition 3 ([9]). The entries for adjacency matrix of FACS of fuzzy graph
Type-3; Cp;, is

0 fori = jande, € E

- u(e) € (0,1 fori # jande; € E )

Cr,

These definitions are referred to in the analysis of the proposed graphical FACS
model of the combustion process in CFB.
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3 Determination of Membership Value of Fuzzy
Edge Connectivity

Aforementioned, Fig.2 is a crisp graphical model Gy (V, E) with 15 chemical
substances or species and 46 edges. Thus, V' = {vi,v,,...,v5} is the set of
nodes for the graph where vi = coal, v, = hydrogen (Hy), v3 = oxygen (O;),
vy = water (H,O), vs = carbon (C), v¢ = nitrogen (N3), v; = carbon dioxide
(COy), v¢ = carbon monoxide (CO), vg¢ = methane (CHy4), vip = ethylene
(CoHy), vi1 = hydrogen sulphide (H,S), vi» = sulphur (S), vi3 = sulphur dioxide
(SO3,), vi4 = sulphur trioxide (SO3) and v;5 = pollution. Based on the catalytic
relationship between the species, 46 edges are identified which are denoted by set
E where E = {e; = (v, );r,k =1,2,...,15and r # k}fori = 1,...,46.

The rationale made for every edge of this particular graph is published in [5].
Calculation of the fuzzy membership value for each edge in Fig. 2 is based on the
physical measurement method [9]. This method is used in determining fuzzy value
in many applications of fuzzy logic and is commonly used in chemical industry and
engineering where huge amount of raw information are obtained from experiments.
Here, the membership value for every edge in the graph is calculated using material
chart balance based on 100 kg of coal [12] as in Table 1.

The weight (in kg) in column input of Table 1 is the product of mol. vol
and its relative atomic mass (RAM) and relative molecular mass (RMM). Next,
membership value for each edge denoted by p(e;) fori = 1,2, ..., 46is determined
through percentage of composition of coal, assumptions, ratio and calculation of
material chart balance. The derivation of fuzzy membership value for edges leaving
node v; is shown in Table 2, whereas the explanation for each edge for the rest of
these nodes in the set of V' can be found in [6].

For edges ey, e;, e4 and eg the calculation of membership values are based on
the total input weight of solid fuel (coal) and air which is 1,073.883 kg. Thus, the

Table 1 Material chart balance for 100 kg of coal

Input Output
Mol.vol RAM  Weight (kg) Flue gas Mol.vol RMM  Weight (kg)
(A) Fuel
C 5.916 12 70.99 CO, 5916 44 260.304
H, 2.5312 2 5.062 H,O 2.75 18 49.5
H,O 0.2188 18 3.938 SO, 0.0375 64 2.4
N 0.0446 32 1.2 N, 27.2028 28 761.678
(B) Air
0O, 7.2191 32 231.0112
N, 7.2191 28 760.4311

1,073.883 1,073.882
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Table 2 Fuzzy membership value for edges leaving node v;

Input of Hy = 5.062 kg (thus, p(e;) = 0.0047) Output of HoO = 49.5kg (thus, (e3) = 0.0461)

Input of O, = 231.0112kg Output of Ny = 761.678 kg (thus, (es) = 0.7093)
(thus, p(ez) = 0.2151)

Input of C = 70.99kg (thus, i(eq) = 0.0661)  Output of CO, = 260.304 kg (thus, p(eg) = 0.2424)

Input of S = 1.2kg (thus, p(eg) = 0.0011) Output of SO, = 2.4kg (thus, u(e9) = 0.0022)

Y
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Fig. 3 Graphical FACS model of combustion process in CFB

membership value for ey, e;, e4 and eg is calculated using the ratio of the weight
of chemical substance (species), namely H,, O,, C and S with respect to total input
weight. For edges es, es, eg and ey, the fuzzy membership values are based on the
ratio of the output weight of flue gas, namely H,O, N,, CO, and SO, with total
product of flue gas which is 1,073.882 kg.

Now, every edge in Gy (V, E) has various strengths of connection which is
determined by membership values. The greater the membership value, the stronger
is the connection between two species in the graph. The new model, G (V, E), is
shown in Fig. 3, where different thicknesses of the link are used to differentiate the
membership value that represents the strength of connection between two vertices.

Thus, the graphical FACS model is represented as Gg(V, E) where V =
{vi,v2,...,vi5} denotes the species involved in the combustion process and
E = {u(er), n(ez), ..., u(ess)} denotes the membership value of fuzzy edge
connectivity between the species.
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4 Graph Dynamics of Gp(V, E)

Subsequently, the adjacency matrix of Gg(V, E) is obtained as shown in matrix
Cr. The entry of adjacency matrix is a fuzzy membership value which represents
strength of connection between two species, whereas in Gy (V, E), the entry of
value 1 of its adjacency matrix is only representing the existence of connection
between two species [6]. This adjacency matrix Cr is a type of non-negative
matrix which can be related to Perron—Frobenius Theorem [13].The graphical model
Gr(V, E) obtained is a static graph. The actual dynamical nature of the combustion
process can only be investigated if an assumption is made to the species. In this
study, assumption is made where all the species are thought of as “living” on the
nodes of the graph while undergoing evolution process after certain time ¢. Real
combustion process in CFB is dynamic in nature.

[ 0 00055 0.035 0.1755 071 0.0125 0 0 0 0 0 0.012 0 0 [
0.0047 0 0 053 0.155 0 0 0 0 0 0 0 0 0 0
02151 0 0 0 0 0 0 0 0 0 0 0 0 0
0.0461 0.7524 0.1753 0 0 0 0 0 0.1214 0.1262 0.0012 0 0 0 0.99999
0.0661 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.7093 0 0 0 0 0 0 0 0 0 0 0 0 0 0
02424 0 0.8195 0 0.99999 0 0 0.8386 0.0524 0.1090 0 0 0 0 0.99999

CF = 0 0 0.00001 0.29 0.00001 0 0.00001 0 0 0 0 0 0 0 0
0 0 0 0 0.025 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0.00001 0 0 0 0 0 0 0 0 0 0

0.0024 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.0011 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.0022 0  0.00519 0 0 0 0 0 0 0 0.0012 0.99999 0 0 0

0 0 0.00001 0 0 0 0 0 0 0 0 0 0.00001 0 0

0 0 0.00001 0.00001 0 0.00001 0.00001 0 0 0 0 0 0.00001 0.00001 (U

This situation leads to further investigation on the evolution process of the graph in a
long run. In order to explore this process, graph dynamics of G ¢ (V, E) after certain
time ¢ is presented, based on Perron—Frobenius eigenvalue (PFE) of the adjacency
matrix and the Graph Dynamic Algorithm [4].

Table 3 shows the comparison of graph dynamics for Gy (V, E) and Gg(V, E)
in terms of end product of the combustion process and the sequence of depleted
species. The end product of combustion for G(V, E) is carbon dioxide (CO;) and
carbon monoxide (CO) while the end product for Gg(V, E) is hydrogen (H,)
and water (H,0). According to Bruner [14], the by-products of any combustion
process include CO,, water and pollution. Here, both graphs give significant
by-product. In the formation of water, hydrogen (H,) is needed while carbon
monoxide (CO) is a type of flue gas which is considered as pollution. The sequence
of depleted species for Gy (V, E) and G (V, E) is different at certain time ¢. For
example, in sequence of depleted species shown in Table 3, oxygen (O,) is depleted
atn = 61in Gy (V, E), but it is depleted when n = 9in Gp(V, E).

This result is reasonable to graph dynamics of Gg(V, E) as compared to
G (V, E) since oxygen (O,) is needed to complete the combustion. Therefore, the
result of G (V, E) is equitable to describe the real process in CFB.
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Table 3 Comparison of graph dynamics between G (V, E) and Gg(V, E)

Gy (V,E) Gr(V,E)
Sequence of depleted 1. Methane (CHy) 1.Ethylene (C,Hy)
species
2. Ethylene (C,Hy) 2. Sulphur trioxide (SO3)
3. Sulphur trioxide (SO3) 3. Pollution
4. Carbon (C) 4. Methane (CHy)
5. Sulphur (S) 5. Sulphur (S)
6. Oxygen (O3) 6. Hydrogen sulphide
(HaS)
7. Hydrogen sulphide 7. Sulphur dioxide (SO,)
(H>S5)
8. Nitrogen (N,) 8. Carbon (C)
9. Sulphur dioxide (SO;) 9. Oxygen (O3)
10. Coal 10. Coal
11. Hydrogen (H,) 11. Nitrogen (N;)
12. Water (H,0) 12. Carbon monoxide (CO)
13. Pollution 13. Carbon dioxide (CO5)
End product of Carbon dioxide (CO,) and Water (H,O) and
combustion Carbon monoxide (CO) Hydrogen (H;)

5 Conclusion

The crisp graph of the combustion process in CFB has been refined to graphical
FACS model, Gp(V, E), using the fuzzy graph approach. In this model, all
the edges linking the vertices or species have fuzzy membership value between
0 and 1. Analysis on the dynamical behaviour of combustion process by using
Graph Dynamic Algorithm through graph updates reveals that the end product of
the combustion is water (H,O) and hydrogen (H;). Since water (H,O) is part of
by-product of any combustion, therefore this result is also reasonable to describe
the real process in CFB, but in terms of sequence of depleted species, Gg(V, E)
gives significant result as compared to Gy (V, E). Even though the membership
value of fuzzy edge connectivity between two nodes in the graph is calculated
using material chart balance based on simulated data since real data is almost
impossible to find, the graph G (V, E) is found to be more realistic to describe
the real combustion process in CFB as compared to Gy, (V, E). It is hoped that
the fuzzy graph approach utilised in this work will provide more opportunities
for future research especially in applying FACS to optimisation problem in other
complex systems such as optimisation of human resources which could be related to
enhance the performance of an organisation or in optimisation of variables identified
in incineration-related industries for reducing air pollution and energy saving. It
could be possibly applied in the identification of important materials (waste) to
be recycled in recycling industries so that it could eventually reduce land waste
(garbage and trash).
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