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Abstract This paper assesses the accuracy and convergence of the bond-based
Peridynamic model with brittle failure, known as the prototype micro-brittle
(PMB) model. We investigate the discrete equations of this model, suitable for
numerical implementation. It is shown that the widely used discretization approach
incurs rather large errors. Motivated by this observation, a correction is proposed,
which significantly increases the accuracy by cancelling errors associated with the
discretization. As an additional result, we derive equations to treat the interactions
between differently sized particles, i.e., a non-homogeneous discretization spacing.
This presents an important step forward for the applicability of the PMB model
to complex geometries, where it is desired to model interesting parts with a fine
resolution (small particle spacings) and other parts with a coarse resolution in
order to gain numerical efficiency. Validation of the corrected Peridynamic model
is performed by comparing longitudinal sound wave propagation velocities with
exact theoretical results. We find that the corrected approach correctly reproduces
the sound wave velocity, while the original approach severely overestimates this
quantity. Additionally, we present simulations for a crack growth problem which can
be analytically solved within the framework of Linear Elastic Fracture Mechanics
Theory. We find that the corrected Peridynamics model is capable of quantitatively
reproducing crack initiation and propagation.

Keywords Meshless • Simulation • Peridynamics • Crack growth

1 Introduction

Peridynamics (PD), originally devised in 1999 by S. A. Silling [1] is is a relatively
new approach to solve problems in solid mechanics. In contrast to the most popular
numerical methods for solving continuum mechanics problems, namely the Finite
Element Method or the Finite Volume Method, PD does not require a topologically
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connected mesh of elements. Additionally, PD incorporates the description of
damage and material failure from the outset. Within the context of mesh-free
methods, Peridynamics can be classified as a Total-Lagrangian collocation method
with nodal integration. PD features two classes of interaction models, so called
bond-based materials and state-based materials. In the bond-based case, interactions
exist as spring-like forces between pairs of particles. The interactions only depend
on the relative displacement (and potentially its history) of the interacting particle
pair and are thus independent of other particles. This is in contrast to the state-based
model where pair-wise interactions also depend on the cumulative displacement
state of all other particles within the neighborhoods of the two particles which form
the pair.

The scope of this paper is to assess the accuracy and convergence of the
linear-elastic, bond-based PD model with brittle failure, known as the prototype
micro-brittle (PMB) model in the literature. We investigate the discrete equations of
this model, suitable for numerical implementation. It is shown that the widely used
discretization approach incurs rather large errors. Motivated by this observation, a
new discretization scheme is proposed, which significantly increases the numerical
accuracy. As an additional result, we derive equations to treat the interactions
between differently sized particles, i.e., a non-homogeneous discretization spacing.
This presents an important step forward for the applicability of the PMB model
to complex geometries, where it is desired to model interesting parts with a fine
resolution (small particle spacing) and other parts with a coarse resolution in order
to gain numerical efficiency.

We begin by introducing the basic terminology of bond-based PD. In order to
be consistent with the major part of the existing PD literature, we use the following
symbols: a coordinate in the reference configuration is denoted with X , deformed
(current) coordinates are denoted by x, such that the displacement is given by u D
X � x. Bold mathematical symbols like the preceding ones denote vectors, while
the same mathematical symbol in non-bold font refers to its Euclidean norm, e.g.
x D jxj.

The governing equation for a PD continuum is given by

W.X ; t/ D 1

2

Z

Hı

!.X 0 � X/ w
�
u.X 0; t/ � u.X ; t/; X 0 � X

�
dVX 0 ; (1)

where W.X ; t/ is the energy density at a point located at X in the reference config-
uration, and displaced at time t by an amount u.X ; t/. w Œu.X 0; t/ � u.X ; t/� is the
micropotential, which describes the strain energy due to the relative displacement of
a pair of points located at X and X 0. The assumption that the strain energy density
depends only on pairs of interacting volume elements leads to the restriction of a
fixed Poisson ratio [2] of 1=3 in 2D (1/4 in 3D). The function !.X 0 � X/ is a
weight function which modulates the pair interaction strength depending on spatial
separation, and VX 0 is the volume associated with a point.

Referring to Fig. 1, the integration domain Hı is the full disc (full sphere in 3D)
around X described by the radial cutoff ı, and is termed the horizon. Within the PD
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Fig. 1 Peridynamics is a method for solving problems in solid mechanics. A body is discretized
with a set of integration nodes, which form the reference configuration. Within this reference
configuration, each source node interacts with other nodes that are located within a finite horizon
Hı , centered on the source node. The interactions are termed bonds. Peridynamics is a non-local
method, because not only nearest, or, adjacent, neighbors are considered. The figure above depicts
a single source node i with a horizon given by the radial cutoff ı. Bonds exist between node i and
all other nodes j which are inside Hı . Upon deformation of the bonds, forces are projected along
the reference bond vectors �ij such that solid material behavior is obtained

picture, the strain energy is conceptually stored in bonds that are defined between
all pairs of points .X ; X 0/ located within Hı. Thus, a bond vector in the reference
configuration is given by � D X 0 � X , and the relative bond displacement due to
some deformation at time t is �.t/ D u.X 0; t/ � u.X ; t/. The bond distance vector
in the current configuration is therefore written as r.t/ D �.t/ C �.

With this notation, and dropping the explicit dependence on time, Eq. (1) is
written in a more compact form as

W.X/ D 1

2

Z

Hı

!.�/w.r ; �/dVX 0 ; (2)

The factor of 1=2 in the above equation arises because each bond is defined
twice, once originating at X and pointing to X 0, and again via its antisymmetric
counterpart pointing from X 0 to X 0. The forces within the bond-based PD contin-
uum are obtained by taking the derivative of the micropotential with respect to the
bond distance vector. The microforce between two bonded points is thus

f .r ; �/ D �@w.r ; �/

@r
; (3)
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yielding the acceleration a.X/ of a point with mass density � due to all its neighbors
within Hı:

�a.X/ D
Z

Hı

!.�/f .r ; �/dVX 0 : (4)

For implementation in a computer code, Eqs. (2) and (4) need to be discretized.
This process requires the division of the continuous body to be simulated into a
number of distinct nodes with a given subvolume, subject to the constraint that the
sum of all subvolumes equals the total volume of the body. These nodes are termed
particles henceforth and the Peridynamic bonds exist between these particles. The
most straightforward discretization approach is nodal integration, which is used in
almost all publications dealing with PD up to date. Referring to Fig. 1, particle i is
connected to all neighbors j within the horizon ı. Dropping the explicit dependence
on X , the discrete expression for the energy density of a particle i reads:

Wi D
X

j 2Hı

!.�ij/Vj wij.r ij; �ij/; (5)

and

ai D 1

mi

X
j 2Hı

!.�ij/Vi Vj f ij.r ij; �ij/: (6)

These discretizations represent simple Riemann sums, i.e., piecewise constant
approximations of the true integrals. The object of this work is to quantify the errors
incurred by this approach, but before doing so, we introduce a specific form of the
pairwise force function which is compatible with linear elastic continuum behavior
and supports a brittle fracture mechanism.

2 Linear Elasticity in Peridynamics

In order to establish the link with linear elasticity, i.e., a Hookean solid, Silling [2]
introduced the Prototype Microbrittle Material (PMB) model, with a microforce
that depends linearly on the bond stretch s D j� C �j=j�j. The bond stretch can be
thought of as a pairwise one dimensional strain description of the material, and a
full strain tensor can indeed be derived from an ensemble of bond stretches [3]. A
microforce which is linear in s is therefore in agreement with Hooke’s law.

Here, we employ the following microforce which:

f .s; �/ D �cs=�; (7)
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with proportionality constant c. The corresponding micropotential is obtained by
integrating the microforce w.r.t. displacement.

w.s/ D �
Z

f .s; �/d� D 1

2
cs2: (8)

Note that the expressions for the microforce and the micropotential differ from
Silling’s original work by a factor of �. This change is purely for consistency
reasons, because, in our opinion, the energy density should not contain a reference
to a length scale. The modification will be absorbed into the proportionality constant
c which is yet to be determined.

The weight function is chosen as a simple step function,

!.�ij/ D
(

1 if �ij � ı

0 if �ij > ı
; (9)

which allows for a compact notation as it can be absorbed into the summation
operator of the discretized expressions, i.e.,

P
j 2Hı

!.�ij/ D P
j 2Hı

1. The effects of

using different weight functions have been studied in detail [4]. No significant
benefits were observed when using different forms of the weight function for the
purpose of simulating structural response problems, however, the weight function
affects the dispersion of waves.

Damage and failure are incorporated by keeping track of the history of a bond
stretch state. We fail individual bonds by permanently and irreversibly deleting them
once they are stretched beyond a critical stretch value sc .

The remaining constant c is determined by requiring the Peridynamic expression
for the energy density, Eq. (2) to be consistent with the result from linear elasticity
theory, Wel::

1

2

Z

Hı

!.�ij/w.s/dVX 0 D Wel:; (10)

In the 3D case of pure dilation or compression, cf. Eq. (32) in the Appendix, we have
W 3D

el: D 9Ks2=2, where K is the bulk modulus and s is the strain along any of the
Cartesian directions. Note that for isotropic strain field, the strain and the stretch of
any bond coincide. Integrating the Peridynamic energy density expression for this
strain field in spherical coordinates, we have

1

2

Z

Hı

!.�ij/w.s/dV D 1

2

ıZ

0

�Z

0

2�Z

0

!.�ij/
1

2
cs2�2d� sin.�/d�d� D �cs2ı3

6
: (11)
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Equating this result with the continuum theory expression for the elastic strain
energy, the constant c is obtained as:

c D 6K

�ı3
: (12)

This approach of determining c is correct for the continuous integral expressions
upon which PD theory is based. However, in combination with the discrete expres-
sion given by Eq. (5), the results of a numerical computation of the energy density
are inaccurate, as exact analytic integration is combined with piecewise constant
approximation of the integrals. Furthermore, the analytic integration performed
in Eq. (11) assumes that each node is completely contained in the bulk of the
body, such that a spherical integration domain exists around the central node. This
assumption is certainly not true at the boundaries of the body. The errors incurred
by this approach are rather large and, what is worse, does not converge to zero
upon increasing ı. This behaviour would be expected, as more as an increase in ı at
fixed particle spacing means that more integration nodes are used to sample the field
variables. Before we quantify these errors, we introduce an alternative approach to
determine c which relies on exact error cancellation such that the energy density is
exactly reproduced for a given strain field.

2.1 An Improved Route for Determining the PMB
Proportionality Constant

Instead of deriving the proportionality constant c by exact analytic integration,
we propose to use the same integral approximation as is used for discretizing the
PD energy density integral or acceleration expression. This means that we use a
piecewise constant approximation for Eq. (10), as shown in Fig. 2:

1

2

Z

Hı

w.s/dVX 0 � 1

2

X
j 2Hi

w.s/Vj D Wel: (13)

Inserting the micropotential and the 3D pure dilation result for the continuum strain
energy density in the above equation, we obtain the proportionality constant as

ci D 18KP
j 2Hi

Vj

: (14)

In this formulation, the dependence of ci on the horizon ı is now only implicit
through the number of particles contributing to the sum in the denominator. A parti-
cle at a free surface of a body will have a different number of neighbors compared to
a particle in the bulk. This effect is accounted for with our discrete expression for ci ,
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j
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Hδ

δ

Fig. 2 Piecewise constant approximation of the Peridynamic neighborhood volume. In the
original derivation of Peridynamics, the neighborhood boundary Hı is defined as a smooth region
in space given by the radial cutoff ı. For a piecewise constant approximation of the integrals of
the Peridynamic theory suitable for computer implementation, the neighborhood also needs to be
defined in a discrete manner: here, we define the piecewise constant neighborhood approximation
as the volume of all particles touched by the radial cutoff ı

as opposed to the original expression, Eq. (12), which is only valid for the bulk. This
normalization is similar to a Shepard correction of the shape functions encountered
in other meshless methods such as Smooth-Particle Hydrodynamics [5, 6], where it
restores C 0 consistency, i.e., the ability to approximate a constant field. At the same
time, it is this local dependence which allows us to easily introduce different spatial
resolutions and horizons. It is important at this point to discuss the conservation
of momentum. In the original formulation of the PMB model, the proportionality
constant c is the same for all interacting particles. Therefore, f ij D �f ji, and, as
the forces are aligned with the distance vector between particles i and j , both linear
and angular momentum are conserved. In the approach proposed here, f ij is not
necessarily equal to �f ji, as the particle volume sum over Hi is not guaranteed to
equal the particle volumes sum over Hj . Thus ci ¤ cj , in general. We therefore
enforce symmetry in the following manner:
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cij D ci C cj

2
(15)

The full expressions for the potential energy of a particle and its acceleration, as
required for implementation in a computer code, are then

Ei D
X

j 2Hi

Vi Vj cijs
2
ij; (16)

and

ai D 1

mi

X
j 2Hi

Vi Vj cijsij
1

�ij

r ij

rij
: (17)

We note that the existing body of publications on Peridynamics recognizes that
the analytic integration approach for determining the proportionality constant, cf.
Eq. (12), is not exact when used together with a discrete set of nodes. Different
approaches have been taken to address this problem: Parks et al. [7] describe an
algorithm which approximately accounts for the fact that particles near the edge
of the horizon have a volume which is only partially within the horizon. Bobaru
and Ha [8] describe a similar, yet slightly more accurate algorithm, which rests
on the assumption that nodes are placed on quadratic or cubic lattices. Neither of
these corrections is able to calculate the sum of volumes enclosed by the horizon
exactly. Below, exemplary comparison is made between the algorithm described by
Parks et al. and the approach proposed here, which calculates this volume exactly,
regardless of whether a regular grid is employed or not.

3 Results

3.1 Comparison of the Original PMB Model with the Improved
Model

This section presents two examples to assess the accuracy of the original PMB
model and the normalization procedure proposed in this work. We show that the
energy density and speed of sound are exactly reproduced using our method, while
the original method yields considerable errors. Finally, we investigate a mode-I
crack opening example with our modified PD scheme, where a failure criterion
based on the Griffith energy release rate correctly reproduces results from Linear
Elasticity Fracture Mechanics Theory.
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3.1.1 Energy Density

The ability to reproduce the correct strain energy for a homogeneous deformation
is the most basic task any simulation method for solid mechanics should be able
to handle with good accuracy. We consider a cube of a material under periodic
boundary conditions. The bulk modulus is 1 GPa, and the material is discretized
using a cubic lattice with spacing 	x D 1 m. In order to effect a homogeneous
deformation, all directions are scaled using a factor of l D 1:05, leading to volume
change of 15.8 %. We measure the Peridynamic strain energy density, WPD by
summing over all bond energies and dividing by the cube volume. The exact strain
energy density is calculated using Eq. (32), such that a relative error can be defined:

	W D WPD � W 3D
el:

W 3D
el:

: (18)

Figure 3 shows the relative errors for a range of different horizon cutoffs ı 2
Œ2	x : : : 6	x�, such that the number of particles within the horizon varies from 32
to 924, while the total number of particles in the system is kept constant. This type
of convergence is denoted m-convergence in the Peridynamics literature [9]. Two
different methods with analytic expressions for the proportionality constant c are
compared against the normalization approach proposed here: the original method,
cf. Eq. (12), and the volume correction first presented by Parks et al. [7], which
approximately accounts for the fact that finite volume region of particles near the

Fig. 3 This graph shows relative errors of the Peridynamic strain energy density for a pure dilation
strain field. Black disks denote results obtained with the original PMB method [2] which uses
analytic integration for the determination of the micropotential proportionality constant. Black
squares denote the results obtained with the original PMB method and the volume correction
approach due to Parks et al. [7]. Red symbols show the results obtained using the here proposed
normalization approach for the micropotential constant
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edge of the horizon are only partially within within the horizon. We observe that
the original approach shows relative errors in excess of 30 %. What is worse, is that
the errors do not converge monotonously as one increases the horizon. As more
particles are within the horizon, the accuracy of the numerical integration should
increase, because the strain field is sampled using more integration points. In this
particular case, the horizon is the only discretization resolution variable available
due to the scale invariance implied by the absence of free surfaces. The volume
correction approach due to Parks et al. fares only slightly better, but generally
underestimates the strain energy density. We note that Hu et al. [10] describe
similar observations for the strain energy density in bond based Peridynamics with
the constant micromodulus function. In contrast, the normalization proposed here
reproduces the strain energy density exactly for any micromodulus.

3.1.2 Wave Propagation

The second example investigates the propagation of a pressure pulse. To this end,
we consider a bar of size 500 � 4 � 4 m3, discretized using a cubic lattice with
	x D 1 m. We set K D 1 Pa, � D 1 kg=m3 and ı D 2:5	x. Periodic boundaries
are applied along the y- and z-direction in order to suppress free surface effects. The
pulse is initiated by a displacement perturbation of Gaussian shape at one end,

x D X C 0:02 m � exp

�
� X � X

100 m2

�
ex; (19)

where ex is the unit vector in the Cartesian x-direction. The simulation is then run
until the pressure pulse has reached the right end of the bar. The time-step is set
to 	t D 0:1 s, which is stable according to CFL analysis. Following [11], the
theoretical value for the longitudinal speed of sound is

cl D
s

K C 3
4
G

�
; (20)

where G D 3K.1�2
/=Œ2.1C
/� is the shear modulus, and 
 is Poisson’s ratio. As
the 3D Peridynamic model under consideration has a fixed Poisson ratio 
 D 1=4

[1], we obtain cl D 4:24 m=s. Figure 4 compares this theoretical prediction with
the results of Peridynamics simulation that employ the original analytic integration
approach for determining the amplitude constant c of the micropotential, and the
normalization approach proposed here. It is evident from this comparison that
the original approach severely overestimates the wave propagation speed. This is
in agreement with the observation, that the original approach overestimates the
energy density, leading to a system which is effectively too stiff. In contrast,
the normalization procedure for determining c reproduces the theoretical wave
propagation speed very well.
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Fig. 4 Sound wave propagation. A horizontally oriented bar of dimensions 500 * 4 * 4 m is loaded
using a Gaussian shaped displacement at the left. This initial perturbation causes a Gaussian-shaped
pressure pulse to travel to the right at the longitudinal speed of sound. Shown above are theoretical
values (vertical dashed lines), where the center of the pressure pulse should be located after elapsed
time periods of 50 and 94 s, respectively. The results of the Peridynamics simulations, (i) using the
original approach, and (ii) using the normalization for the micropotential amplitude are shown as
black and red lines, respectively. We note that the original approach over-predicts the speed of
sound by 13 %, while the here proposed normalization approach agrees with the theoretical result
within an error margin of less than 1 %

To investigate the performance of the normalization approach in the case of non-
uniform particle spacing, we now consider a mesh of the same bar as above, which is
generated via a stochastic procedure. We use a Delaunay-based meshing algorithm
to generate tetrahedral elements. These elements are subsequently replaced by
particles. Each particle is assigned the volume of the tetrahedron it replaces. The
particle’s mass is obtained from the volume and the mass density, m D V�. Figure 5
shows a section of the bar in both the tetrahedron and particle representation. To
realize a challenging test, the tetrahedral mesh was intentionally generated such
that small angles and large variations in the tetrahedron volumes are achieved. The
resulting particle configuration is therefore strongly polydisperse with a ratio of
smallest to largest radius of 100. Because no characteristic length-scale (such as
the lattice spacing above) is now present, we adjust the Peridynamic horizon for
each particle separately, such that the neighborhood contains 30 neighbors. Three
different initial tetrahedron meshes of different resolutions are used to conduct
a convergence study for our PMB normalization approach. The coarsest mesh
contains 17,211 tetrahedrons, and two more finely resolved meshes are obtained
by repeated splitting of the elements, such that the finest mesh has 70,381 elements.

The results are given in Fig. 6. We observe that pressure pulse is much broader
when compared to the results of the uniform particle configuration shown in Fig. 4,
and that oscillations travelling behind the main pulse are more pronounced. This is
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Fig. 5 Generation of non-uniform particle configurations. Top: a volume is meshed using regular
tetrahedrons. Form this mesh, a particle configuration is obtained by placing particles at the
tetrahedron barycenter, and assigning the tetrahedron’s volume and mass to the particles. Color
coding represents volume, increasing from blue to red

not surprising, as it is well known that wave propagation is affected by discretization
effects: partial reflections occur always when a wave is transmitted between regions
of space that are discretized using different resolutions. These reflections cause
dispersion and reduction in the observed wave speed propagation speed. As the
discretization length scale becomes small compared to the wavelength, these effects
disappear. We therefore expect convergence of the location of the pressure pulse
to its theoretical position at a given time, and return of its shape back to the
initial Gaussian shape, as the particles are more finely resolved. The simulation
results shown in Fig. 6 support these statements: as the resolution is enhanced,
the wave speed tends towards its theoretical value and the pressure pulse shows
less oscillations. We therefore conclude that our approach of handling interactions
between Peridynamic particles of different size is correct.
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Fig. 6 Propagation of a pressure pulse in a long bar which is discretized using irregular particle
positions and polydisperse particle size distributions. The geometry and parameters are the same
as for Fig. 4, but instead of a regular mesh we employ the discretization approach via a stochastic
tetrahedral mesh outlined in Fig. 5. The vertical dashed line indicates the position where the
pressure pulse should be, according to the exact wave propagation speed. The Peridynamic
simulations show convergence to this exact result upon increasing the number of particles used
for discretizing the bar

3.2 Fracture Energy

Traditionally, continuum mechanics is formulated using a set of partial differential
equations which describe temporal and spatial evolution. These equations require
smooth solutions with well defined gradients. Therefore, discontinuities in the
material, such as cracks, cannot emerge naturally within the solution manifold.
In contrast, Peridynamics circumvents this problem by employing an integral
description for the evolution equations. Due to its simple form, the PMB model
in particular is well suited to model arbitrary crack initiation and propagation
phenomena. A number of studies have used the PMB model to study crack
propagation speed, crack branching as well as coalescence of individual cracks [12–
15]. However, to the best of these authors’ knowledge, no quantitative assessment
of the accuracy of PMB simulations relative to analytic solutions for modelling
crack initiation and propagation has been published to date. The main reason for
this shortcoming is probably the fact that the original formulation of the PMB
model using the analytic integration approach for determining the micropotential
amplitude inflicts unacceptably large errors already for the energy density. This
implies that no quantitatively correct modelling of crack processes could be carried
using the original PMB approach. However, the above cited studies demonstrate that
the original PMB model is very well suited to qualitatively model complex crack
growth phenomena, including the interaction of multiple cracks with each other. In
this section, we demonstrate the our normalization approach for determining the
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micropotential amplitude can be used to quantitatively reproduce analytic solutions
obtained from Linear Elastic Fracture Mechanics (LEFM) Theory.

A useful crack propagation theory for numerical simulations must be based on
criteria which are independent of the discretization length scale. If length scale-
dependent measures such as stress are used instead, no convergence of the loads
required to propagate a crack can be achieved because finer resolution always
implies a higher stress concentrations. One useful criterion is the Griffith energy
release rate, i.e., the energy required to separate a body by generating two free
surfaces, one to either side of a crack area. The energy release rate is defined as
energy divided by area and is therefore an intensive measure for the resistance
of a body against cracking. In the discrete setting of a numerical simulation, the
energy release rate incorporates the discretization length scale and thus provides
a failure criterion which is independent of discretization. This implies that a crack
growth simulation based on such a failure criterion can converge upon discretization
refinement. A Peridynamic failure criterion based on the Griffith energy release rate
has been first published by Silling and Askari [2]. Here, we roughly follow their
approach, but restrict ourselves to plane-strain conditions as LEFM Theory provides
useful analytic solutions to compare against in this case.

Because PMB interactions are formulated in terms of bond-wise micropotentials,
a failure criterion is required which links the micropotential to the energy release
rate. Such an expression can be obtained by considering a pure dilation stretch state
of a Peridynamic material and summing the energy stored in all those bonds which
cross a hypothetical unit fracture surface. The resulting normalized energy per area,
which is a function of the bond stretch and the bulk modulus, can be equated with
the energy release rate. From this relation a critical bond stretch can be obtained at
which the bond should fail in order to yield a given energy release rate. Figure 7
shows how Peridynamic bonds which are connected to a particular central node
interact across a hypothetical fracture surface. An interaction volume is defined
as as the spatial volume occupied by these bonds. For a given fracture surface, a
manifold of interaction volumes exist. The magnitude of these volumes depends on
the distance of the central node away from the fracture surface. Thus, we obtain the
Peridynamic energy release rate, GI;PD, by integrating the product of micropotential
and interaction volume over all values of the distance of the central node to the
fracture surface. Referring to Fig. 7, this integral is given by:

GI;PD D 2

ıZ

hD0

w.s/ Vc.h; ı/dh

D 2

ıZ

hD0

�
1

2
cs2 tı2 arccos

�
ı � h

ı

�
� .ı � h/

p
2 ıh � h2

�
dh

D 2

3
cs2tı3: (21)
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Fig. 7 Peridynamic bond interactions across a hypothetical fracture surface in a 2D plane strain
model. Configurations (a) and (b) show two examples for bonds which traverse a hypothetical
fracture surface. The total energy which is set free if the hypothetical fracture surface becomes real
is the sum of the energies stored in all the bonds between the red and black particle half-spaces.
While it is in principle possible to enumerate these bonds and perform an explicit summation,
this approach is cumbersome in practice. Instead, we consider the interaction volume to either
side of the fracture surface, which is given by the plane thickness multiplied with the circular
segment (gray), Vc.h; ı/ D tı2 arccos

�
ı�h

ı

	 � .ı � h/
p

2 ıh � h2. The energy density of each
configuration is given by the product of the the micropotential and the interaction volume. Finally,
the energy release rate is obtained by integrating the energy density over all configurations by
varying h

Note that the factor of 2 in front of the integral stems from the fact that we have
two interaction volumes, one to either side of the hypothetical fracture surface.
The factor t above is the thickness of the plane-strain model. Requiring that the
Peridynamic energy release rate matches a specified energy release rate, GI;PD D
GI we obtain the critical bond stretch at failure as:

sc D
r

3GI

2ctı3
: (22)

A useful test for the above expression is delivered by LEFM Theory, which provides
analytic solutions that predict the onset of crack growth for some simple models.
One such model is a rectangular patch of an elastic material with an existing sharp
crack on one side, which is stretched by applying tractions, see Fig. 8. For prescribed
values of the energy release rate and the Young’s modulus, a critical traction is
predicted by LEFM Theory when failure should occur by abrupt propagation of the
initial crack through the entire patch. For this geometry, the critical traction that
leads to failure is known to be [16]
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Fig. 8 Sketch of the
geometry used for the crack
propagation analysis. A
rectangular patch of a
linear-elastic material is
stretched by applying
tractions to the top and
bottom side. The patch
features an initial crack which
serves to effect stress
concentration at the crack tip.
This geometry and loading
scenario can be solved
analytically solved for a
critical traction which causes
the crack to grow using
Linear Elastic Fracture
Mechanic Theory

�F D KI

1p
� a

�
1:12 � 0:23

a

L
C 10:6

a2

L2
� 21:7

a3

L3
C 30:4

a4

L4

��1

: (23)

Here, �F is the traction applied to the top and bottom of the patch which causes the
crack to propagate, a is the initial length of the crack, L is the width of the patch, and
KI is the fracture toughness. In plane strain, the fracture toughness can calculated
from the Griffith energy release rate GI , the Young’s modulus of the system, and
the Poisson ratio:

KI D
r

GI E

1 � 
2
(24)

With the values E D 104 Pa, 
 D 1=3, GI D 1 J=m2, L D 1 m and a D L=8,
we obtain the failure traction as �F D 146:9 Pa. This result will serve as the
reference solution against which the normalized PMB model presented in this work
will be compared. Peridynamic simulations were carried out using a square lattice
discretization of this geometry with seven different lattice constants ranging from
0.005 to 0.04 m, resulting in total particle numbers from 1,250 to 80,000. Tractions
were realized by gradually applying opposite forces to the top and bottom row of
particles, effecting a gradual stretch of the patch. The forces were ramped up in
time such that a displacement velocity 104 times slower than the speed of sound
in the patch was achieved. Under these conditions, the simulation can be effectively
considered quasi-static. Figure 9 shows a snapshot of the simulation with the highest
resolution, just before the crack starts to grow. In Fig. 10, the traction values are
reported for each resolution, when the crack starts to grow. These data points suggest
linear convergence of the critical traction towards the analytic result from above: the
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Fig. 9 Peridynamic simulation of crack propagation. Shown is a snapshot of the simulation with
the finest resolution. The color-coding represents the yy-component of the stress tensor. The
zoomed-in area shows the stress concentration at the crack tip

extrapolated infinite-resolution simulation value is 144:4˙1:5 Pa, while the analytic
result is 146.9 Pa. The agreement between these results is very good and we attribute
the remaining difference to the fact that the initial crack does not, depending on the
actual particle spacing, align perfectly with the particles. This observation can also
explain the scattering of the data points around the linear fit, because, the simulated
initial crack is sometimes shorter or longer by one lattice constant when compared
to what it should be. Nevertheless, we note that the simple normalized PMB model
is highly successful at predicting the correct stress at the crack tip which causes the
crack to grow.
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Fig. 10 Convergence of the
critical tractions required to
cause abrupt crack
propagation. As the particle
spacing is reduced, linear
convergence towards the
exact result �F D 146:9 PA
is observed

4 Discussion

We have shown that the discrete implementations of the original formulation
of the Prototype-Microbrittle Model of linear elasticity in Peridynamics suffers
from severe inaccuracies. The origin of this deficiency is traced back to the way
how the micropotential proportionality constant is derived. The original approach
employs exact analytic integration for this quantity. In a numerical implementation,
however, field variables depending on the micropotential are evaluated using non-
exact integration rule, e.g., piecewise constant integration via the Riemann sum.
The inconsistency between these different integration approaches causes inaccu-
racies. To resolve this problem, we have modified the PMB model such that the
same numerical integration rule is used for determining both the micropotential
proportionality constant and the field variables. As an additional result, interactions
between particles with different sizes and different Peridynamic horizons can be
natively treated using our modification. The correctness of the new approach
is validated by simulating the propagation of sound waves, where very good
agreement with the theoretical prediction is observed. It is instructive to interpret
our modification as a normalization procedure, which performs so well because it
effects error cancellation. The modified PMB scheme bears strong similarity to other
meshless simulation methods such as Smooth-Particle Hydrodynamics, where such
a normalization is known as the Shepard correction. Because Peridynamics is most
useful for dealing with material discontinuities, we also consider a crack initiation
and propagation example. Here, a patch of an elastic material with a pre-existing
crack is pulled apart. Once a critical traction is reached, the stress concentration at
the existing crack tip cause the crack to grow abruptly and cause complete separation
of the patch. Peridynamic simulations of this experiment with the modified PMB
model show linear convergence to the exact critical traction as the discretization
resolution is enhanced. Much praise has been granted in advance to Peridynamics
as a method specifically apt to handle complex crack growth phenomena. The
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simulations reported herein constitute the the first quantitative demonstration that
Peridynamics is indeed able to correctly predict failure in agreement with exact
analytic solutions.

Appendix

Strain Energy Density

In the continuum theory of linear elasticity, the stress tensor � is obtained from a
linear relationship between the stiffness tensor C and the strain tensor �,

�ij D Cijkl�kl: (25)

Employing Voigt notation [17] to reduce the dimensionality of the above tensors,
the stiffness tensor is expressed as a 6 � 6 matrix in terms of bulk modulus K and
Poisson’s ratio 
 as,

C D 3K

1 C 


2
66666664

1 � 
 
 
 0 0 0


 1 � 
 
 0 0 0


 
 1 � 
 0 0 0

0 0 0 1=2 � 
 0 0

0 0 0 0 1=2 � 
 0

0 0 0 0 0 1=2 � 


3
77777775

; (26)

and the symmetric stress and strain tensors reduce to vectors with six entries:

� D

2
66666664

�xx

�yy

�zz

�xy

�xz

�zx

3
77777775

I � D

2
66666664

�xx

�yy

�zz

�xy

�xz

�zx

3
77777775

(27)

For a general strain state, the energy density is then obtained from a simple dot-
product as

W D 1

2
� � �: (28)

In the following, the volumetric strain energy densities for 3D and 2D plane strain
will be derived.
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Pure Dilatation Under Plane Strain Conditions

In the case of pure dilatation by an amount s under plane strain conditions, neither
shear nor strain along the z-direction is present. The corresponding strain tensor in
Voigt notation is

� D

2
66666664

s

s

0

0

0

0

3
77777775

(29)

The plane-strain energy density is therefore

W 2D
el: D 1

2
� � � D 9Ks2

4
; (30)

where the fixed Poisson ratio 
 D 1=3, which is applicable to a 2D bond-based
Peridynamic model, has been substituted.

Pure Dilatation in 3D

In the case of 3D pure dilatation no shear is present. Thus,

� D

2
66666664

s

s

s

0

0

0

3
77777775

; (31)

and the volumetric energy density is

W 3D
el: D 9Ks2

2
; (32)

Note that this result is independent of 
.
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