
Chapter 8
Entropy Coding in HEVC

Vivienne Sze and Detlev Marpe

Abstract Context-Based Adaptive Binary Arithmetic Coding (CABAC) is a
method of entropy coding first introduced in H.264/AVC and now used in the latest
High Efficiency Video Coding (HEVC) standard. While it provides high coding
efficiency, the data dependencies in H.264/AVC CABAC make it challenging to
parallelize and thus limit its throughput. Accordingly, during the standardization
of entropy coding for HEVC, both aspects of coding efficiency and throughput
were considered. This chapter describes the functionality and design methodology
behind CABAC entropy coding in HEVC.

8.1 Introduction

Context-Based Adaptive Binary Arithmetic Coding (CABAC) [46] is a form of
entropy coding used in H.264/AVC [63] and also in HEVC [64]. Entropy coding is
a lossless compression scheme that uses the statistical properties to compress data
such that the number of bits used to represent the data is logarithmically proportional
to the probability of the data. For instance, when compressing a string of characters,
frequently used characters are each represented by a few bits, while infrequently
used characters are each represented by many bits. From Shannon’s information
theory [72], when the compressed data is represented in bits {0,1}, the optimal
average code length for a character with probability p is � log2 p.

V. Sze (�)
Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
e-mail: sze@mit.edu

D. Marpe
Fraunhofer Institute for Telecommunications Heinrich Hertz Institute (HHI), Berlin, Germany
e-mail: Detlev.Marpe@hhi.fraunhofer.de

V. Sze et al. (eds.), High Efficiency Video Coding (HEVC): Algorithms and Architectures,
Integrated Circuits and Systems, DOI 10.1007/978-3-319-06895-4__8,
© Springer International Publishing Switzerland 2014

209

mailto:sze@mit.edu
mailto:Detlev.Marpe@hhi.fraunhofer.de

210 V. Sze and D. Marpe

Entropy coding is performed at the last stage of video encoding (and first stage
of video decoding), after the video signal has been reduced to a series of syntax
elements. Syntax elements describe how the video signal can be reconstructed at the
decoder. This includes the method of prediction (e.g., spatial or temporal prediction)
along with its associated prediction parameters as well as the prediction error signal,
also referred to as the residual signal. Note that in HEVC only the syntax elements
belonging to the slice segment data are CABAC encoded. All other high level
syntax elements are coded either with zero-order Exponential (Exp)-Golomb codes
or fixed-pattern bit strings. Table 8.1 shows the syntax elements that are encoded
with CABAC in HEVC and H.264/AVC. For HEVC, these syntax elements describe
properties of the coding tree unit (CTU), prediction unit (PU), and transform unit
(TU), while for H.264/AVC, the equivalent syntax elements have been grouped
together along the same categories in Table 8.1. For a CTU, the related syntax
elements describe the block partitioning of the CTU into coding units (CU), whether
the CU is intra-picture (i.e., spatially) predicted or inter-picture (i.e., temporally)
predicted, the quantization parameters of the CU, and the type (edge or band) and
offsets for sample adaptive offset (SAO) in-loop filtering performed on the CTU.
For a PU, the syntax elements describe the intra prediction mode or the motion data.
For a TU, the syntax elements describe the residual signal in terms of frequency
position, sign and magnitude of the quantized transform coefficients.

This chapter describes how CABAC entropy coding has evolved from
H.264/AVC to HEVC. While high coding efficiency is important for reducing
the transmission and storage cost of video, processing speed and area cost also need
to be considered in the development of HEVC in order to handle the demand for
higher resolutions and frame rates in future video coding systems. Accordingly,
both coding efficiency and throughput improvement tools are discussed. Section 8.2
provides an overview of CABAC entropy coding. Section 8.3 explains the design
considerations and techniques used to address both coding efficiency and throughput
requirements. Sections 8.4–8.7 describe how these techniques were applied to
coding tree unit coding, prediction unit coding, transform unit coding and context
initialization, respectively. Section 8.8 compares the coding efficiency, throughput
and memory requirements of HEVC and H.264/AVC for both common conditions
and worst case conditions.

8.2 CABAC Overview

The CABAC algorithm was originally developed within the joint H.264/AVC stan-
dardization process of ITU-T Video Coding Experts Group (VCEG) and ISO/IEC
Moving Picture Experts Group (MPEG). In a first preliminary version, the new
entropy-coding method of CABAC was introduced as a standard contribution [44]
to the ITU-T VCEG meeting in January 2001. CABAC was adopted as one of two
alternative methods of entropy coding within the H.264/AVC standard. The other
method specified in H.264/AVC was a low-complexity entropy coding technique

8 Entropy Coding in HEVC 211

T
ab

le
8.

1
C

A
B

A
C

co
de

d
sy

nt
ax

el
em

en
ts

in
H

E
V

C
an

d
H

.2
64

/A
V

C

212 V. Sze and D. Marpe

Binarizer

Probability
Estimator &

Assigner

Regular
Arithmetic
Encoder

Bypass
Arithmetic
Encoder

syntax
element

regular/bypass
mode switch

bi

A

L

context
derivation

(b1,b2,...,bn)

),(
MPS

tibi ⊕v
),(

LPS
tip

bi−1

),,()1,1(
LPS

)1,1(
MPS1

(t−i−t−i−
i−

i−1,t) pvb=FpLPSbi

Context
Memory

p=0.5

bj

serial processing
of bins

adaptive prob. estimation

Muxbin-by-bin
processing

Fig. 8.1 CABAC block diagram (from the encoder perspective): Binarization, context modeling
(including probability estimation and assignment), and binary arithmetic coding. In red: Potential
throughput bottlenecks, as further discussed from the decoder perspective in Sect. 8.3.2

based on the usage of context-adaptively switched sets of variable-length codes, so-
called Context-Adaptive Variable-Length Coding (CAVLC). Compared to CABAC,
CAVLC offers reduced implementation cost at the price of lower compression
efficiency. Typically, the bit-rate overhead for CAVLC relative to CABAC is in
the range of 10–16 % for standard definition (SD) interlaced material, encoded at
Main Profile, and 15–22 % for high definition (HD) 1080p material, encoded at
High Profile, both measured at the same objective video quality and for the case that
all other used coding tools within the corresponding H.264/AVC Profile remain the
same [46, 48].

CABAC became also part of the first HEVC test model HM1.0 [53] together with
the so-called low-complexity entropy coding (LCEC) as a follow-up of CAVLC.
Later, during the HEVC standardization process, it turned out that to improve the
compression efficiency of LCEC, the complexity of LCEC had to be increased
to a point where LCEC was not significantly lower complexity than CABAC.
Thus, CABAC in its improved form, both with respect to throughput speed and
compression efficiency, became the single entropy coding method of the HEVC
standard.

The basic design of CABAC involves the key elements of binarization, context
modeling, and binary arithmetic coding. These elements are illustrated as the main
algorithmic building blocks of the CABAC encoding block diagram in Fig. 8.1.
Binarization maps the syntax elements to binary symbols (bins). Context modeling
estimates the probability of each non-bypassed (i.e., regular coded) bin based on
some specific context. Finally, binary arithmetic coding compresses the bins to bits
according to the estimated probability.

8 Entropy Coding in HEVC 213

Table 8.2 Examples of different binarizations

Truncated Truncated Exp-Golomb Fixed-Length
Unary (TrU) Rice (TRk) (EGk) (FL)

N Unary (U) cMaxD7 k D 1; cMaxD7 k D 0 cMaxD7

0 0 0 00 1 000
1 10 10 01 010 001
2 110 110 100 011 010
3 1110 1110 101 00100 011
4 11110 11110 1100 00101 100
5 111110 111110 1101 00110 101
6 1111110 1111110 1110 00111 110
7 11111110 1111111 1111 0001000 111

8.2.1 Binarization

The coding strategy of CABAC is based on the finding that a very efficient coding
of non-binary syntax element values in a hybrid block-based video coder, like
components of motion vector differences or transform coefficient level values, can
be achieved by employing a binarization scheme as a kind of preprocessing unit
for the subsequent stages of context modeling and arithmetic coding. In general,
a binarization scheme defines a unique mapping of syntax element values to
sequences of binary symbols, so-called bins, which can also be interpreted in terms
of a binary code tree. The design of binarization schemes in CABAC both for
H.264/AVC and HEVC is based on a few elementary prototypes whose structure
enables fast implementations and which are representatives of some suitable model-
probability distributions.

Several different binarization processes are used in HEVC including k-th
order truncated Rice (TRk), k-th order Exp-Golomb (EGk), and fixed-length (FL)
binarization. Parts of these forms of binarization, including the truncated unary
(TrU) scheme as the zero-order TRk binarization, were also used in H.264/AVC.
These various methods of binarization can be explained in terms of how they would
signal an unsigned value N . Examples are also provided in Table 8.2.

• Unary coding involves signaling a bin string of length N C 1, where the first N

bins are 1 and the last bin is 0. The decoder searches for a 0 to determine when
the syntax element is complete. For the TrU scheme, truncation is invoked for
the largest possible value cMax1 of the syntax element being decoded.

• k-th order truncated Rice is a parameterized Rice code that is composed of a
prefix and a suffix. The prefix is a truncated unary string of value N >> k,
where the largest possible value is cMax. The suffix is a fixed length binary
representation of the least significant bins of N ; k indicates the number of least

1cMax is defined by the standard for each relevant type of syntax element.

214 V. Sze and D. Marpe

significant bins. Note that for k D 0, the truncated Rice is equal to the truncated
unary binarization.

• k-th order Exp-Golomb code is proved to be a robust, near-optimal prefix-free
code for geometrically distributed sources with unknown or varying distribution
parameter. Each codeword consists of a unary prefix of length lN C1 and a suffix
of length lN C k, where lN D blog2..N >> k/ C 1/c [46].

• Fixed-length code uses a fixed-length bin string with length dlog2.cMax C 1/e
and with most significant bins signaled before least significant bins.

The binarization process is selected based on the type of syntax element. In some
cases, binarization also depends on the value of a previously processed syntax ele-
ment (e.g., binarization of coeff_abs_level_remainingdepends on the pre-
viously decoded coefficient levels) or slice parameters that indicate if certain modes
are enabled (e.g., binarization of partition mode, so-called part_mode, depends
on whether asymmetric motion partition is enabled). The majority of the syntax
elements use the binarization processes as listed above, or some combination of
them (e.g., cu_qp_delta_abs uses TrU (prefix) + EG0 (suffix) [98]). However,
certain syntax elements (e.g., part_mode and intra_chroma_pred_mode)
use custom binarization processes.

During the HEVC standardization process, special attention has been put on the
development of an adequately designed binarization scheme for absolute values of
transform coefficient levels. In order to guarantee a sufficiently high throughput,
the goal here was the maximization of bypass-coded bins under the constraint
of not sacrificing coding efficiency too much. This was accomplished by making
the binarization scheme adaptive based on previously coded transform coefficient
levels. More details on that are given in Sect. 8.6.5.

8.2.2 Context Modeling, Probability Estimation
and Assignment

By decomposing each non-binary syntax element value into a sequence of bins,
further processing of each bin value in CABAC depends on the associated coding-
mode decision, which can be either chosen as the regular or the bypass mode (as
described in Sect. 8.2.3). The latter is chosen for bins, which are assumed to be uni-
formly distributed and for which, consequently, the whole regular binary arithmetic
encoding (and decoding) process is simply bypassed. In the regular coding mode,
each bin value is encoded by using the regular binary arithmetic coding engine,
where the associated probability model is either determined by a fixed choice, based
on the type of syntax element and the bin position or bin index (binIdx) in the
binarized representation of the syntax element, or adaptively chosen from two or
more probability models depending on the related side information (e.g., spatial
neighbors as illustrated in Fig. 8.1, component, depth or size of CU/PU/TU, or
position within TU). Selection of the probability model is referred to as context

8 Entropy Coding in HEVC 215

modeling. As an important design decision, the latter case is generally applied to
the most frequently observed bins only, whereas the other, usually less frequently
observed bins, will be treated using a joint, typically zero-order probability model.
In this way, CABAC enables selective adaptive probability modeling on a sub-
symbol level, and hence, provides an efficient instrument for exploiting inter-symbol
redundancies at significantly reduced overall modeling or learning costs. Note that
for both the fixed and the adaptive case, in principle, a switch from one probability
model to another can occur between any two consecutive regular coded bins. In
general, the design of context models in CABAC reflects the aim to find a good
compromise between the conflicting objectives of avoiding unnecessary modeling-
cost overhead and exploiting the statistical dependencies to a large extent.

The parameters of probability models in CABAC are adaptive, which means
that an adaptation of the model probabilities to the statistical variations of the
source of bins is performed on a bin-by-bin basis in a backward-adaptive and
synchronized fashion both in the encoder and decoder; this process is called
probability estimation. For that purpose, each probability model in CABAC can take
one out of 126 different states with associated model probability values p ranging
in the interval Œ0:01875; 0:98125�. The two parameters of each probability model
are stored as 7-bit entries in a context memory: 6 bits for each of the 63 probability
states representing the model probability pLPS of the least probable symbol (LPS)
and 1 bit for �MPS, the value of the most probable symbol (MPS). The probability
estimator in CABAC is based on a model of “exponential aging” with the following
recursive probability update after coding a bin b at time instance t :

p
.tC1/
LPS D

(
˛ � p

.t/
LPS; if b D �MPS; i.e., an MPS occurs

1 � ˛ � .1 � p
.t/
LPS/; otherwise.

(8.1)

Here, the choice of the scaling factor ˛ determines the speed of adaptation: A value
of ˛ close to 1 results in a slow adaptation (“steady-state behavior”), while faster
adaptation can be achieved for the non-stationary case with decreasing ˛. Note
that this estimation is equivalent to using a sliding window technique [4, 65] with
window size W˛ D .1 � ˛/�1. In the design of CABAC, Eq. (8.1) has been used
together with the choice of

˛ D
�

0:01875

0:5

� 1
63

with min
t

p
.t/
LPS D 0:01875; (8.2)

and a suitable quantization of the underlying LPS-related model probabilities into
63 different states, to derive a finite-state machine (FSM) with tabulated transition
rules [46]. This table-based probability estimation method was unchanged in HEVC,
although some proposals for alternative probability estimators [1, 78] have shown
average bit rate savings of 0.8–0.9 %, albeit at higher computational costs.

Each probability model in CABAC is addressed using a unique context index
(ctxIdx), either determined by a fixed assignment or computed by the context

216 V. Sze and D. Marpe

derivation logic by which, in turn, the given context model is specified. A lot of
effort has been spent during the HEVC standardization process to improve the model
assignment and context derivation logic both in terms of throughput and coding
efficiency. More details on the specific choice of context models for selected syntax
elements in HEVC are given in Sect. 8.4–8.6.

8.2.3 Multiplication-Free Binary Arithmetic Coding:
The M Coder

Binary arithmetic coding, or arithmetic coding in general, is based on the principle
of recursive interval subdivision. An initially given interval represented by its lower
bound (base) L and its width (range) R is subdivided into two disjoint subintervals:
one interval of width

RLPS D pLPS � R; (8.3)

which is associated with the LPS, and the dual interval of width RMPS D R �
RLPS, which is assigned to the MPS. Depending on the binary value to encode,
either identified as LPS or MPS, the corresponding subinterval is then chosen as
the new coding interval. By recursively applying this interval-subdivision scheme
to each bin bj of a given sequence b D .b1; b2; : : : ; bN / of bins, the encoder finally
determines a value cb in the subinterval ŒL.N /; L.N / C R.N // that results after the
N th interval subdivision process. The (minimal) binary representation of cb is the
arithmetic code of the input bin sequence b. To ensure that finite-precision registers
are sufficient to represent R.j / and L.j / for all j 2 f1; 2; : : : ; N g, a renormalization
operation is required, whenever R.j / falls below a certain limit after one or more
interval subdivision process(es). By renormalizing R.j /, and accordingly L.j /, the
leading bits of the arithmetic code can be output as soon as they are unambiguously
identified.

On the decoder side, the sequence of encoded binary values can be easily
recovered by tracking the interval subdivision, including renormalization, according
to Eq. (8.3) step-by-step and by comparing the bounds of both subintervals to the
transmitted value representing the final subinterval. Note that the width R.N / of the
final subinterval is proportional to the product

QN
j D1 p.bj / of the individual model

probability p.bj / assigned to the bins bj of the bin sequence, such that for signaling
the final subinterval, the lower bound of the empirical entropy of the bin sequence
given by � log2

QN
j D1 p.bj / D � PN

j D1 log2 p.bj / is approximately achieved.
From a practical implementation point of view, the most costly operation

involved in binary arithmetic coding is given by the multiplication in Eq. (8.3).
Even worse, if probability estimation is based on a simple scaled-count estimator
using scaled cumulative frequency counts of bins, this operation may even involve
an integer division. A solution to this problem was already proposed during the

8 Entropy Coding in HEVC 217

H.264/AVC standardization process by using a design of a family of multiplication-
free binary arithmetic coders, which later became known as the modulo coder
(M coder) [43, 45]. The main innovative features of this design are given by
a table-based interval subdivision coupled with the above-mentioned FSM-based
probability estimation as well as a fast bypass coding mode. The former, which is
also the basis of what is called the regular coding mode of the M coder, will be
briefly reviewed next, followed by a short discussion of the latter aspect.

8.2.3.1 Regular Coding Mode

The basic idea of the M-coder approach of interval subdivision is to quantize the
range of possible interval widths induced by renormalization into a small number of
K cells. To further simplify matters, a uniform quantization with K D 2� is assumed
to be performed, resulting in a set W D fW0; W1; � � � ; WK�1g of representative
interval widths. Together with the representative set of LPS-related probability
values of the FSM given by P D fp0; p1; � � � ; pN �1g, this quantization enables
the approximation of the multiplication on the right-hand side of Eq. (8.3) by means
of a table of K � N pre-calculated product values fWk � pn j 0 � k < KI 0 �
n < N g in a suitable chosen integer precision. The entries of the corresponding
2-D lookup table TabRangeLPS are addressed by the (probability) state index n and
the quantization cell index k.R/ related to the given value of the interval range R.
Computation of k.R/ is easily carried out by a concatenation of a bit shift and a bit-
masking operation, where the latter can be interpreted as a modulo operation using
the operand K D 2� , hence the naming of the family of coders.

In the context of H.264/AVC, the optimal empirical choice of the free parameters
� D 2 and N D 64 was determined under the constraint of a maximum table size
of 2� � N � 256 bytes for the lookup table TabRangeLPS with each of its entries
being represented with 8 bits. This specific M-coder design of using a lookup table
TabRangeLPS with 4 � 64 entries was also adopted for HEVC. Please note that by
choosing a value of � D 0, the 2-D table TabRangeLPS degenerates to a 1-D table,
where for all possible values of R only one single representative interval width value
W is used for each of the N product values pn � R, where 0 � n < N . This choice
is equivalent to the subinterval division operation performed in the Q coder and its
derivatives of QM and MQ coder, as has been standardized in JBIG, JPEG, and
JPEG2000. Thus, the M-coder design can be interpreted as a generalization of the
Q-coder family.2 Compared to the QM/MQ coder, the M coder, being configured as
in H.264/AVC and HEVC, achieves an increase in throughput of 18 %, while at the
same time it provides bit-rate savings of 2–4 %, when evaluated in the CABAC
environment of H.264/AVC [43]. Interestingly, the throughput improvements of

2Please note that apart from the interval subdivision aspect there are some subtle technical
differences between (and also within) the coder families, such as concerning, e.g., probability
estimation, conditional exchange, carry-over handling, and termination.

218 V. Sze and D. Marpe

the M coder can be largely attributed to its unique bypass functionality, as being
reviewed in the next subsection, while its use of a larger lookup table for interval
subdivision generates the main effects in coding-efficiency gain; however, this
increased table size can also adversely affect the overall throughput gain of the
M coder.

8.2.3.2 Bypass Coding Mode

As already mentioned, most of the throughput improvements of the M coder relative
to the Q-coder technology can be attributed to its second innovative feature, which
is given by a bypass of the probability estimation for approximately uniform
distributed bins. In addition, the interval subdivision is substituted by a hard-
wired equipartition in this so-called bypass coding mode. In this way, the whole
encoding/decoding process (including renormalization) can be realized by nothing
more than a bit shift, a comparison, and for half of the symbols an additional
subtraction.

Bypass coding has become an even more important feature during the HEVC
standardization process. While in H.264/AVC bypass coding was mainly used
for signs and least significant bins of absolute values of quantized transform
coefficients, in HEVC the majority of possible bin values is handled through the
bypass coding mode. As noted above, this is also a consequence of carefully
designed binarization schemes, which already serve as a kind of near-optimal prefix-
free codes of the corresponding syntax elements.

8.2.3.3 Fast Renormalization

One of the major throughput bottlenecks in any arithmetic encoding and decoding
process is given by the renormalization procedure. Renormalization in the M coder
is required whenever the new interval range R after interval subdivision no longer
stays within its admissible domain. Each time a renormalization operation must be
carried out, one or more bits can be outputted at the encoder or, equivalently, have to
be read by the decoder. This process, as it is specified in H.264/AVC and HEVC, is
performed bit-by-bit and is controlled by some conditional branches to check each
time if further renormalization loops are required. Both conditional branching and
bitwise processing, however, constitute considerable obstacles to a sufficiently high
throughput.

As a mitigation of this problem, a fast renormalization policy for the M coder was
proposed in [48]. By replacing the conventionally bitwise performed operations in
the regular coding mode with byte-wise or word-wise processing, a considerably
increased decoder throughput of around 25 % can be achieved. The corresponding
non-normative, fully standard-compliant changes were integrated into the reference
software implementations of both H.264/AVC and HEVC. For more details, please
refer to [47, 48].

8 Entropy Coding in HEVC 219

8.2.3.4 Termination

For termination of the arithmetic codeword in the M coder a special, non-adapting
probability state is reserved. The corresponding probability state index is given
by n D 63 and the corresponding entries of TabRangeLPS deliver a constant
value of RLPS D 2. As a consequence, for each terminating syntax element, such
as end_of_slice_segment_flag, end_of_sub_stream_one_bit, or
pcm_flag, 7 bits of output are generated in the renormalization process. Two
more bits are needed to be flushed in order to properly terminate the arithmetic
codeword. Note that the least significant bit in this flushing procedure, i.e., the
last written bit at the encoder, is always equal to 1 and thus, represents the so-
called rbsp_stop_one_bit. Before packaging of the bitstream, the arithmetic
codeword is filled up for byte alignment with zero-valued alignment bits.

8.3 Design Considerations

Most of the proposals submitted to the joint Call for Proposals on HEVC in April
2010 already included some form of advanced entropy coding. Some of those
techniques were based on improved versions of CAVLC or CABAC, others were
using alternative methods of statistical coding, such as V2V (variable-to-variable)
codes [31] or PIPE (probability interval partitioning entropy) codes [50, 51, 102],
and a third category introduced increased capabilities for parallel processing on
a bin level [84], syntax element level [94, 96], or slice level [25, 28, 105]. In
addition, improved techniques for coding of transform coefficients, such as zero-
tree representations [2], alternate scanning schemes [40], or template-based context
models [55, 102], were proposed.

After an initial testing phase of video coding technology from the best perform-
ing HEVC proposals, it was decided to start the first HEVC test model (HM1.0)
[53] with two alternate configurations similar to what was given for entropy
coding in H.264/AVC: a high efficiency configuration based on CABAC and a
low-complexity configuration based on LCEC as a CAVLC surrogate. Interestingly
enough, the CABAC-based entropy coding of HM1.0 already included techniques
for improving both coding efficiency and throughput relative to its H.264/AVC-
related predecessor. To be more specific, a template-based context modeling scheme
for larger transform block sizes [49, 55] and a parallel context processing technique
for selected syntax elements of transform coefficient coding [10] were already
part of HM1.0. During the subsequent collaborative HEVC standardization phase,
more techniques covering both aspects of coding efficiency and throughput were
integrated, as will be discussed in more details in the following.

While CABAC inherently is targeting at high coding efficiency, its data depen-
dencies can cause it to be a throughput bottleneck, especially at high bit rates as was
already analyzed in the context of H.264/AVC [95]. This means that, without any
further provision, it might have been difficult to support the growing throughput

220 V. Sze and D. Marpe

requirements for future video codecs. Furthermore, since high throughput can
be traded-off for power savings using voltage scaling [14], the serial nature
of CABAC may limit the battery life for video codecs that reside on mobile
devices. This limitation is a critical concern, as a significant portion of video
codecs today are running on battery-operated devices. Accordingly, both coding
efficiency and throughput improvement tools as well as the trade-off between these
two requirements were investigated in the standardization of entropy coding for
HEVC. The trade-off between coding efficiency and throughput comes from the
fact that, in general, dependencies are a result of removing redundancy which, in
turn, improves coding efficiency; however, increasing dependencies usually makes
parallel processing more difficult which, as a consequence, may degrade throughput.
This section describes the various techniques used to improve both coding efficiency
and throughput of CABAC entropy coding for HEVC.

8.3.1 Brief Summary of HEVC Block Structures and CABAC
Coding Efficiency Improvements

In the evolutionary process from H.264/AVC to HEVC, improved coding efficiency
for CABAC entropy coding was addressed in a number of proposals, such as
[24, 102, 106]. The majority of coding-efficiency related CABAC proposals in the
HEVC standardization process was oriented towards transform coefficient coding,
since at medium to high bit rates the dominant part of bits is consumed by syntax
elements related to residual coding. As a consequence, this subsection will focus on
considerations that were made with regards to the specific CABAC design for those
syntax elements. Note, however, that due to the more consistent design of HEVC
in terms of tree structures for both partitioning of prediction blocks and transform
blocks, special care has also been taken to ensure an efficient modeling and coding
of the corresponding tree structuring elements. In addition, for new coding tools in
HEVC, such as block merging and sample adaptive offset (SAO) in-loop filtering,
additional assignments of binarization and context modeling schemes were needed.

Transform coding in HEVC is based on a tree-structured variable block size
approach with the corresponding quadtree structure referred to as residual quadtree
(RQT) [49, 102]. RQTs are nested into the leaves of another quadtree, the so-
called coding quadtree (CQT), which determines the subdivision of each block of
2N � 2N luma samples, referred to as a coding tree block (CTB) [49, 102]. The
block partitioning for both prediction and transform coding is the same for luma
and chroma picture component samples,3 and hence, a common coding and residual
quadtree syntax is used to signal the partitioning. As a result, the blocks of luma and
chroma samples and associated syntax elements are grouped together in a so-called
unit.

3There is one exception to this general rule in HEVC, which is discussed in more detail in Chap. 3.

8 Entropy Coding in HEVC 221

A transform unit (TU) aggregates the transform blocks (TBs) of luma and chroma
samples as well as the syntax elements used to represent the associated transform
coefficient levels. Each TU and the related luma and two chroma TBs are determined
as a leaf of the corresponding RQT. Supported TB sizes for both luma and chroma
are in the range from 4 � 4 to 32 � 32 samples, where the corresponding core
transforms are separable applications of a fixed-point approximation of the 1-D
Discrete Cosine Transform (DCT) for dyadically increasing lengths from 4 to 32
points [26]. An exception is given for 4 � 4 luma TBs of residual signals resulting
from intra-picture predicted blocks, where instead of the DCT-like core transform
a separable fixed-point approximation of the 1-D Discrete Sine Transform (DST) is
used [100].

Note that a prediction unit (PU) aggregates the prediction blocks (PBs) of
luma and chroma samples and the associated syntax elements like motion data.
A coding unit (CU) encapsulates the luma and chroma coding block (CB) samples
and the so-called prediction mode, i.e., the decision whether the corresponding
samples are coded using intra-picture or inter-picture prediction, as well as some
additional syntax elements. On the top level of the hierarchy, a coding tree unit
(CTU) comprises the CTBs of luma and chroma samples, the associated CQT syntax
structure and all CUs at the CQT leaves.

8.3.1.1 Coefficient Grouping into Subblocks

Given the larger variety of TB sizes, one of the primary goals of CABAC entropy
coding for transform coefficient data in HEVC was to achieve a design that uses
for all block sizes as much of the same logic and the same procedures as possible.
Although at first glance this objective seems to be somehow unrelated to coding
efficiency, it turns out that at least one particular element leading to such a unified
design is also crucial for achieving high coding efficiency. This coding element is
given by the grouping of coefficients into so-called subblocks of size 4 � 4 for
transform blocks with size greater than 4 � 4: Subblocks were first proposed in
[49, 55, 102] and became part of HM1.0. In the subsequent HEVC development
process, their use was iteratively refined and extended in a way as will be explained
in more detail in Sect. 8.6.

8.3.1.2 Hierarchy of Significance Flags

Since for most common coding conditions, a large portion of transform coefficients
is quantized to zero, or equivalently, the representation of the residual signal in the
DCT-/DST-like basis functions is supposed to be sparse, a hierarchical structured set

222 V. Sze and D. Marpe

of four different significance flags4 is introduced in HEVC to reduce the number of
individual significance flags to be transmitted. This hierarchy of syntax elements
also reflects the hierarchical processing of TBs within the RQT as well as the
processing of subblocks within a given TB.

The use of so-called coded block flags (CBF), indicating the occurrence of
significant, i.e., nonzero transform coefficients in a TB, was already part of
H.264/AVC CABAC-based residual coding. In HEVC, this concept was extended
to also cover the RQT root on the top level of the hierarchy as well as the subblock
on a lower level of the hierarchy. Consequently, there are a rqt_root_cbf, at
least for RQT roots in inter-predicted CUs, cbf_luma, cbf_cb, and cbf_cr for
the visited TBs of the three color components, and a coded_sub_block_flag
(CSBF) for each visited subblock in a TB. On the lowest level of the hierarchy, for
each visited subblock a so-called significance map indicates the location of nonzero
coefficients for each scan position in a subblock.

This hierarchy of significance flags is complemented by the syntax elements
indicating the last significant scan position in a TB, which somehow serve as
an entry point into each significant TB and which is equivalent to signaling the
insignificance of a partial area of a TB. The latter concept differs from H.264/AVC,
where for each significant_coeff_flag (SIG) with a value of one, a last
_significant_coefficient_flag (LAST) is signaled indicating if the
current scan position is the last nonzero coefficient inside the TB. Note that this
latter signaling scheme is equivalent to using a TrU binarization (with inverted bin
values) for the number of nonzero coefficients in a TB, such that each bin of the
resulting bin sequence is intertwined with the corresponding nonzero significance
flag. This design aspect of mixing two flags on a bin level in H.264/AVC was later
found to be critical in terms of throughput, as will be discussed in Sect. 8.6.

8.3.1.3 Context Modeling for Coding of Significance Flags

Particular care has been taken to properly specify the context models for coding
of significance flags. For instance, modeling of the CBF is based on the RQT
depth, while that for the CSBF is using neighboring CSBF information. For coding
of the significance map, which typically consumes most of the bits in HEVC
transform coding, additional dependencies between neighboring elements have been
exploited, at least for TBs larger than 4 � 4: Initially, for that purpose a local
template was proposed [49, 55, 102] and adopted for HM1.0. Although this design
provides high coding efficiency, it introduces some critical data dependencies.
As a solution to this problem, a combination of position-based information (as
used in H.264/AVC) and template-based neighborhood information was finally
adopted for context modeling of significance map entries [41, 77]. This particular

4Note that the term “significance flag” is interpreted here and in the following in a much broader
sense than originally used in the context of H.264/AVC.

8 Entropy Coding in HEVC 223

probability Context
Modeler

Arithmetic
Decoder

bitstream

De-
Binarizer

bin syntax
elements

range
update

3
1

context update 2

binIdx 4

Fig. 8.2 Three key operations in CABAC (from a decoder perspective): Binarization, Context
Modeling/Selection and (Binary) Arithmetic Coding. Feedback loops in the decoder are high-
lighted with dashed lines

example also illustrates how both aspects of coding efficiency and throughput were
considered during the HEVC standardization process in a balanced way. More on
the throughput aspects is given in the next subsection, while the details of context
modeling for all syntax elements related to residual coding are provided in Sect. 8.6.

8.3.2 CABAC Throughput Bottlenecks

CABAC, as originally designed for H.264/AVC and also, as initially selected for
the HEVC standardization starting point in HM1.0, has some serious throughput
issues (particularly for decoder implementations at higher bit rates) [80, 95]. The
throughput of CABAC is determined based on the number of binary symbols (bins)
that it can process per second. The throughput can be improved by increasing the
number of bins that can be processed in a cycle. However, the data dependencies
in CABAC make processing multiple bins in parallel difficult and costly to achieve.
These dependencies result in feedback loops in the CABAC decoder as shown in
Fig. 8.2, and can be described as follows:

1. The updated range is fed back for recursive interval subdivision.
2. The updated context is fed back for probability estimation.
3. The context modeler selects the probability model based on the type of syntax

element and, as already noted above, for selected syntax elements, based on some
derivation process that involves other previously decoded bin values or other
relevant side information. At the decoder, for non-binary syntax elements, the
decoded bin value is fed back to determine whether to continue processing the
same syntax element or to switch to another syntax element. If a switch occurs,
the value of the decoded bin may also be used to determine which syntax element
to decode next.

4. The context modeler may also select the probability model based on the bin
position in the syntax element (binIdx). At the decoder, the decoded bin value
is fed back to determine whether to increment binIdx and continue to decode
the current syntax element, or set binIdx equal to 0 and switch to another syntax
element.

224 V. Sze and D. Marpe

SIG(i)

0 1 LAST(i)

SIG(i+1)

EOB

EOB

0

1

i>= i1

i < i1

0
1

LAST(i)

SIG(i+2)

EOB

EOB

0

1

(i+1)>= i1

(i+1) < i1

0 1
LAST(i)

SIG(i+3)

EOB

EOB

0

1

(i+2)>= i1

(i+2)< i1

1
LAST(i)

0

(i+3)>= i1

(i+3)< i1
SIG(i+4)

EOB

Fig. 8.3 Context speculation required to achieve 5� parallelism when processing the sig-
nificance map in H.264/AVC. Notation: i = coefficient position; i1 = MaxNumCoeff
(BlockType)�1; EOB = end of block; SIG = significant_coeff_flag; LAST = last_
significant_coeff_flag

Note that the feedback loops have different degrees of impact on throughput.
The range update (1) and context update (2) feedback loops are simpler than the
context modeling loops (3, 4) and thus do not affect throughput as severely. If the
context of a bin depends on the value of another bin being decoded in parallel,
then speculative computations are required, which increases area cost and critical
path delay [94]. The amount of speculation can grow exponentially with the number
of parallel bins, which limits the throughput that can be achieved [80]. Figure 8.3
shows an example of the speculation tree for significance map in H.264/AVC. Thus
the throughput bottleneck is primarily due to the context modeling dependencies.

8.3.3 Summary of Techniques for CABAC Throughput
Improvements

Several techniques were used to improve the throughput of CABAC in HEVC [88].
There was a lot of effort spent in determining how to use these techniques with
minimal coding loss. They were applied to various parts of entropy coding in HEVC
and will be referred to throughout the rest of this chapter.

8.3.3.1 Reduce Regular Coded Bins

The throughput is limited for regular coded bins due to the data dependencies
described in Sect. 8.3.2. However, it is easier to process bypass coded bins in parallel
since they do not have the data dependencies related to context modeling (i.e.,
feedback loops 2, 3 and 4 in Fig. 8.2). In addition, arithmetic coding for bypass bins
is simpler as it only requires a right shift versus a table look up for regular coded
bins. Thus, the throughput can be improved by reducing the number of regular coded
bins and using bypass coded bins instead [16, 54, 58, 59].

8 Entropy Coding in HEVC 225

8.3.3.2 Group Bypass Coded Bins

Multiple bypass bins can be processed in the same cycle only if they occur
consecutively within the bitstream. Thus, bins should be reordered such that bypass
coded bins are grouped together in order to increase the likelihood that multiple bins
are processed per cycle [19, 67, 87].

8.3.3.3 Group Bins with Same Context

Processing multiple regular coded bins in the same cycle often requires specula-
tive calculations for context modeling. The amount of speculative computations
increases if bins using different contexts and context modeling logic are interleaved,
since numerous combinations and permutations must be accounted for. Thus, to
reduce speculative computations, bins should be reordered such that bins with the
same contexts and context modeling logic are grouped together so that they are
likely to be processed in the same cycle [9, 10, 73]. This also reduces context
switching resulting in fewer memory accesses, which also increases throughput
and reduces power consumption. This technique was first introduced in [10] and
was referred to as parallel context processing (PCP) throughout the standardization
process.

8.3.3.4 Reduce Context Modeling Dependencies

Speculative computations are required for multiple bins per cycle decoding due to
the dependencies in the context modeling. For instance, this is an issue when the
context modeling for the next bin depends on the decoded value of the current bin.
Reducing these dependencies simplifies the context modeling logic and reduces the
amount of speculative calculations required to process multiple bins in parallel [18,
80, 85].

8.3.3.5 Reduce Total Number of Bins

In addition to increasing the throughput, it is desirable to reduce the workload itself
by reducing the total number of bins that need to be processed. This can be achieved
by changing the binarization, inferring the value of some bins,5 and sending higher
level flags to avoid signaling redundant bins [12, 56, 59].

5The benefit of inferring bins must be traded-off with a potential increase in context selection
complexity.

226 V. Sze and D. Marpe

8.3.3.6 Reduce Parsing Dependencies

As parsing with CABAC may constitute a throughput bottleneck, it is important to
minimize any dependency on other video decoding processes, which could cause
CABAC to stall or may even prevent a successful parsing process in case of picture
loss due to transmission errors [7, 79, 108] (see Sect. 8.5.1.1). Ideally the parsing
process should be decoupled from all other decoding processes, which actually is the
case for CABAC in H.264/AVC. Decoupling parsing from the sample reconstruction
process is also important when entropy decoupling is used, i.e., when a large frame
level buffer is inserted between the entropy decoder and the rest of the decoder to
absorb the variance in the bit-rate and pixel-rate workloads, respectively.

8.3.3.7 Reduce Memory Requirements

Memory accesses often contribute to the critical path delay. Thus, reducing memory
storage requirements is desirable as fewer memory accesses increases throughput as
well as reduces implementation cost and power consumption [81, 90].

8.4 Coding Tree Unit and Coding Unit Syntax Elements

In HEVC, a picture is partitioned into a regular grid of disjoint square blocks of
2N � 2N luma samples and, in case of 4:2:0 color sampling, corresponding square
blocks of 2N �1 � 2N �1 chroma samples. The parameter N D 4; 5, or 6 can be
chosen by the encoder and transmitted in the sequence parameter set (SPS), such
that the corresponding coding tree units represent luma CTBs of size 16 � 16,
32 � 32, or 64 � 64 samples, respectively. The CTU syntax elements describe how
the corresponding CTBs can be further partitioned into smaller coding blocks by use
of the coding quadtree and how the method of sample adaptive offset (SAO) in-loop
filtering is performed on the reconstructed luma and chroma samples belonging to
the CTU.

Within a picture, an integer number of CTUs can be grouped into a slice.
Each slice itself consists of one (leading) independent slice segment and zero
or more subsequently ordered dependent slice segments. A flag called end_of
_slice_segment_flag is sent to indicate the last CTU in a slice segment.
In addition, tiles and wavefront parallel processing, which are introduced in
Chap. 3, can be used to fragment the slice segment into multiple substreams,6 each
being represented by its own CABAC codeword. Therefore, if end_of_slice
_segment_flag indicates that it is not the last CTU in a slice segment, a flag
called end_of_sub_stream_one_bit is used to indicate whether it is the

6Slice segments can also be used to fragment tiles and wavefronts into substreams.

8 Entropy Coding in HEVC 227

1

a b
2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

25 26 27 28

29 30 31 32

33 34 35 36

37 38 39 40

41 42 42 44

45 46 47 48

substreams

1 2 3 4

9 10 11 12

17 18 19 20

25 26 27 28

33 34 35 36

41 42 43 44

5 6 7 8

13 14 15 16

21 22 23 24

29 30 31 32

37 38 39 40

45 46 47 48

substreams

Fig. 8.4 These two examples illustrate which CTUs are terminated when slice segments
are divided into substreams using tiles and wavefront parallel processing. Values of
(end_of_slice_segment_flag, end_of_sub_stream_one_bit) are given for each
configuration. (a) Tiles: CTU 12, 24, and 36 have (0, 1); CTU 48 (1, not signaled); and the rest
of the CTUs have (0,0). (b) Wavefront parallel processing: CTU 8, 16, 24, 32 and 40 have (0, 1);
CTU 48 (1, not signaled); and the rest of the CTUs have (0,0)

start code CTU 1-12 BA CTU 13-24 BA CTU 25-36 BA CTU 37-48 BA BA 3 entry points

slice_segment_header() slice_segment_data() rbsp_slice_segment_trailing_bits()

substream substream substream substream

Fig. 8.5 Ordering of the bitstream for the tiles example in Fig. 8.4a. CABAC needs to be
terminated before byte alignment (BA) as shown by the black boxes. Entry points for substreams
are sent in slice_segment_header()

last CTU of the corresponding substream.7 An example of this is illustrated in
Fig. 8.4. Both end_of_slice_segment_flag and end_of_sub_stream
_one_bit are coded using the terminating mode of the arithmetic coding engine.
This is required since at the end of a slice segment or a substream, the arithmetic
coding engine must be flushed and the resulting CABAC codeword must be byte
aligned before, at least in the former case, inserting the startcode for the next slice or
entry point for the next slice segment. Figure 8.5 shows an example of the locations
of CABAC termination within a bitstream.

8.4.1 Coding Block Structure

The coding block structure is determined by the coding quadtree which is signaled
by a flag called split_cu_flag at each of its nodes to indicate whether a given
coding block should be further subdivided into four smaller CBs. There is a strong
spatial correlation between the chosen CQT depth of neighboring CBs, i.e., the

7Note that the value of end_of_sub_stream_one_bit is always 1 and it is only sent for the
last CTU of a substream.

228 V. Sze and D. Marpe

block sizes of neighboring CBs, thus the context selection for split_cu_flag
depends on the relative depth of the top and left neighboring CBs compared to that of
the current CB. Note that in H.264/AVC the partitioning information is sent together
with other data as aggregated syntax elements mb_type and sub_mb_type with
different ranges of allowed values and hence different binarization schemes for
different slices.8 This kind of aggregating different information in one single syntax
element is mostly due to historical reasons, reflecting the circumstances that earlier
video coding standards (including H.264/AVC) were designed under the regime
of VLC-based entropy coding, where alphabet extensions are used to circumvent
the lower bound of 1 bit per symbol. Thus, by allowing the signaling of a coding
quadtree structure with a one-bin syntax element, i.e., the split_cu_flag
at each node, HEVC is much more flexible and allows many more coding and
prediction block structures than H.264/AVC, even when choosing a CTB size of
16 � 16 luma samples and ignoring the fact that HEVC doesn’t allow for inter-
predicted 4 � 4 luma blocks, as discussed in Chap. 3.

8.4.2 Prediction Mode and Prediction Block Structure

In P and B slices, a cu_skip_flag is sent for each CU to indicate whether
all associated CBs are coded using skip mode, i.e., by using the so-called merge
mode for inter-picture prediction (as explicitly described in Sect. 8.5) and not
sending any residual data. To leverage spatial correlation of neighboring CUs, the
context of the cu_skip_flag depends on whether the top and left neighboring
CUs are also skipped. For every non-skipped CU, a regular coded flag called
pred_mode_flag is sent to indicate the prediction mode, i.e., the decision
whether the CU is either intra coded or inter coded.9

Every non-skipped CU may be further subdivided into PUs, as shown for the
example in Fig. 8.6. The syntax element part_mode indicates if and how each CU
is partitioned for the purpose of prediction. The choice of prediction block structures
for each CU depends on whether the CU is intra-coded or inter-coded; accordingly,
part_mode is binarized and coded differently for intra-coded CUs and inter-coded
CUs, as shown in Fig. 8.7.

Intra-coded CUs can have a single PU (referred to as PART_2Nx2N) equal to the
size of the CU, or be subdivided into four smaller PUs (referred to as PART_NxN).
PART_NxN, however, is only allowed when the CU size is equal to the minimum
allowed CU size. If the CU size is greater than the minimum allowed CU size,

8In H.264/AVC, mb_type and sub_mb_type are used to represent the following equivalent
information in HEVC: split_cu_flag, pred_mode_flag, part_mode, pcm_flag,
inter_pred_idc, coded block pattern (cbf_luma, cbf_cr, cbf_cb) and intra prediction
mode for 16 � 16 intra-coded PU.
9pred_mode_flag is not sent for CUs in I slices since they are all intra-coded.

8 Entropy Coding in HEVC 229

Coding
Tree Unit

(CTU)

skip

Asymmetric
Motion Partition

Divide into
coding units

(CU) with
quad tree

Divide into
prediction
units (PU)

Fig. 8.6 A coding tree unit is subdivided into CUs along the associated coding quadtree. Each
resulting CU may be further subdivided into PUs. The intra-coded CUs are in blue while inter-
coded CUs are in orange. Note that the figure only shows the corresponding CTB, CBs, and PBs
of the luma component

split_cu_flag is used instead of part_mode to avoid redundant signaling.
For instance, if the minimum CU size is 8 � 8 in terms of luma samples, a CU
of size 16 � 16 with four 8 � 8 PUs is signaled with split_cu_flagD 1,
and part_modeDPART_2Nx2N rather than split_cu_flagD 0 and part
_modeDPART_NxN. Accordingly, part_mode is not signaled but inferred to be
PART_2Nx2N when the CU size is greater than the minimum allowed CU size. If
the CU size is equal to the minimum allowed CU size, part_mode is coded using
a flag with a fixed context for a given slice type.

Inter-coded CUs have more prediction partitioning options than intra-coded
CUs. In addition to PART_2Nx2N and PART_NxN, inter-coded CU can also
be subdivided into two rectangular PUs in either horizontal (PART_Nx2N) or
vertical directions (PART_2NxN). In case of enabling the so-called asymmetric
motion partitioning (AMP), the additional prediction partitioning possibilities
PART_2NxnU, PART_2NxnD, PART_nLx2N, and PART_nRx2N are supported.
Custom binarization is used for part_mode as shown in Fig. 8.7b. The first bin
indicates whether or not the CU is partitioned into smaller PUs. If the CU size is
greater than the minimum allowed CU size, the second bin indicates the direction
of the partition (vertical or horizontal), the third bin indicates whether AMP is used
and if so, then a fourth bin is sent to indicate which asymmetric partition is used in

230 V. Sze and D. Marpe

part_mode CU Size > min CU Size CU Size = min CU Size

PART_2Nx2N Inferred 1

PART_NxN Not Allowed 0

part_mode
CU Size > min CU Size CU Size = min CU Size

AMP
disabled

AMP enabled
CU Size =

8x8
CU Size >

8x8

PART_2Nx2N 1 1 1 1

PART_Nx2N 0 1 0 1 1 0 1 0 1

PART_2NxN 0 0 0 0 1 0 0 0 0 1

PART_NxN 0 0 0

PART_2NxnU 0 1 0 0

PART_2NxnD 0 1 0 1

PART_nLx2N 0 0 0 0

PART_nRx2N 0 0 0 1

Partition into smaller PU
Direction of PU

Use Asymmetric Partitions (AMP)

P
ar

ti
ti

o
n

 in
to

 s
m

al
le

r
P

U

P
ar

ti
ti

o
n

 in
to

 s
m

al
le

r
P

U

D
ir

ec
ti

o
n

 o
f

P
U

D
ir

ec
ti

o
n

 o
f

P
U

Select AMP

Tr
u

n
ca

te
d

 u
n

ar
y

fo
r

P
U

 s
iz

e

P
ar

ti
ti

o
n

 in
to

 s
m

al
le

r
P

U

a

b

Fig. 8.7 Context selection and binarization of part_mode. Underlined symbols are bypass
coded. (a) Intra-coded CU, (b) inter-coded CU

the given direction. If the CU size is equal to the minimum allowed CU size, AMP
is not allowed and truncated unary coding is used to indicate if the partitions are
PART_Nx2N, PART_2NxN, and PART_NxN, respectively.10 A different context is

10Note that the minimum allowed inter-coded PART_NxN size is 8 � 8, so for CU size equal to
8 � 8, the only allowed partitions are PART_2NxN and PART_Nx2N, and cMax of 2 is used for
truncated unary.

8 Entropy Coding in HEVC 231

used for the first and second bin to estimate the probabilities of whether the PU is
partitioned into smaller PUs, and the direction of the PU. Two different contexts
are used for the third bin depending on when the CU size is greater or equal to the
minimum allowed CU size. In the former, the context is based on the probability
of whether asymmetric partitions are used, while in the latter, the context is based
on the probability of whether PART_NxN is used. To reduce the number of regular
coded bins, the fourth bin (for AMP) is bypass coded.

8.4.3 Signaling of Special Coding Modes

HEVC supports two special coding modes, which are invoked on a CU level: the
so-called I_PCM mode and the lossless coding mode. Both modes, albeit similar in
appearance to some degree, serve different purposes and hence, use different syntax
elements for providing different functionalities.

A pcm_flag is sent to indicate whether all samples of the whole CU are coded
with pulse code modulation (PCM), such that prediction, transform, quantization,
and entropy coding as well as their counterparts on the decoder side are simply
bypassed. This I_PCM mode, however, is only allowed for intra-coded CUs with
prediction partitioning mode PART_2Nx2N.11 The pcm_flag is coded with the
termination mode of the arithmetic coding engine, since in most cases I_PCM mode
is not used, and if it is used, the arithmetic coding engine must be flushed and the
resulting CABAC codeword must be byte aligned before the PCM sample values can
be written directly into the bitstream with fixed length codewords.12 This procedure
also indicates that the I_PCM mode is in particular useful in cases, where the
statistics of the residual signal would be such that otherwise, an excessive amount of
bits would be generated when applying the regular CABAC residual coding process.

The option of lossless coding, where for coding of the prediction residual both the
transform and quantization (but not the entropy coding) are bypassed, is also enabled
on a CU level and indicated by a regular coded flag called cu_transquant_
bypass_flag. The resulting samples of the losslessly represented residual signal
in the spatial domain are entropy coded by the CABAC residual coding process
(see Sect. 8.6), as if they were conventional transform coefficient levels. Note that
in lossless coding mode, both in-loop filters are also bypassed in the reconstruction
process (which is not necessarily the case for I_PCM), such that a mathematically
lossless (local) reconstruction of the input signal is achieved.

11I_PCM is not allowed for intra-coded 4 � 4 blocks.
12Note that the PCM sample bit depth (i.e., wordlength) for luma and chroma samples can be
specified independently in the SPS.

232 V. Sze and D. Marpe

8.4.4 Signaling of Block-Based Quantization Parameter
Change

In the regular, i.e., lossy residual coding process, a different quantizer step size
can be used for each CU to improve bit allocation, rate control, or both. Rather
than sending the absolute quantization parameter (QP), the difference in QP steps
relative to the slice QP is sent in the form of a so-called delta QP. This functionality
can be enabled in the picture parameter set (PPS) by using the syntax element cu
_qp_delta_enabled_flag.

In H.264/AVC, mb_qp_delta is used to provide the same instrument of delta
QP at the macroblock level. The value of mb_qp_delta can range from �.26 C
QpBdOffsetY=2) to 25 C QpBdOffsetY=2. For 8-bit video, this is �26 to 25, while
for 10-bit video this is �32 to 31. mb_qp_delta is unary coded and thus requires
up to 53 bins for 8-bit video and 65 bins for 10-bit video. All bins are regular coded.

In HEVC, delta QP is represented by the two syntax elements cu_qp_delta
_abs and cu_qp_delta_sign_flag, if cu_qp_delta_enabled_flag
in the PPS indicates so. The sign is sent separately from the absolute value, which
reduces the average number of bins by half [23]. cu_qp_delta_sign_flag
is only sent if the absolute value is non-zero. The absolute value is binarized with
TrU (cMax=5) as the prefix and EG0 as the suffix [98]. The prefix is regular coded
and the suffix is bypass coded. The first bin of the prefix uses a different context
than the other four bins in the prefix (which share the same context) to capture the
probability of having a zero-valued delta QP. Note that syntax elements for delta
QP are only signaled for CUs that have non-vanishing prediction errors (i.e., at least
one non-zero transform coefficient). Conceptually, the delta QP is an element of
the transform coding part of HEVC and hence, can also be interpreted as a syntax
element that is always signaled at the root of the RQT, regardless which transform
block partitioning is given by the RQT structure. Table 8.3 shows examples of how
delta QP is signaled for H.264/AVC and HEVC.

8.4.5 Signaling of SAO Parameters

SAO is a form of in-loop filtering that was introduced in HEVC. It is used to process
the output of samples from the deblocking filter process and is the last step of the
decoding process. SAO involves sample based processing rather than block based
processing. There are two types of filtering: edge offset and band offset.

Edge offset (EO) involves comparing the sample and its neighboring sample
values in one of four angular directions (horizontal, vertical, 45ı, 135ı).13 The
sample is compared to its neighbors in the selected direction (e.g., the sample has
a lower value than both its neighbors); based on the comparison, the sample is

13Direction is also referred to as class in the HEVC specification.

8 Entropy Coding in HEVC 233

Table 8.3 Coding of delta QP in HEVC and H.264/AVC

Underlined symbols are bypass coded

assigned to a category, which determines the offset that is added to the sample.
The value of the offset for a given category is set by the encoder. Band offset (BO)
involves dividing the intensity range into four bands and then adding a different
offset to the sample depending which band its sample intensity belongs to. For more
details on SAO, please refer to Chap. 7.

The type, direction and offsets used to define the SAO filter can change for each
CTB; however, all samples belonging to a CTB are processed with the same SAO
filter (but luma and chroma CTBs may use different SAO filters). The SAO type is
signaled using sao_type_idx_luma and sao_type_idx_chromawith TrU
binarization. The first bin indicates whether the SAO filter is enabled and is regular
coded, while the second bin indicates if edge or band offset is used and is bypass
coded.

If edge offset is used, the direction of the edge is signaled using sao_eo
_class_luma and sao_eo_class_chromawith FL binarization of two bins,
all of which are bypass coded. If band offset is used, four sao_band_position
syntax elements are signaled to indicate the start position of each band with a FL
binarization of five bins, all of which are bypass coded.

For both types of SAO filtering, four sao_offset_abs are signaled (one for
each category or band) using TrU with cMax computed by Eq. (8.4) and all bins are
bypass coded.

cMax D .1 << .min.bitDepth; 10/ � 5// � 1 (8.4)

234 V. Sze and D. Marpe

Table 8.4 Differences in signaling between CTU/CU layer in HEVC and MB layer in H.264/AVC

HEVC H.264/AVC

Prediction and Coding
Block Structure and
Prediction Mode

cu_skip_flag,
split_cu_flag,
pred_mode_flag,
part_mode

mb_skip_flag, mb_type,
sub_mb_type

Maximum number of
bins for delta QP

5 (regular), 10 (bypass) 53 (regular)

Maximum number of
bins for SAO
parameters

4 (regular), 113 (bypass) n/a

For the band offset, the sao_offset_sign is signaled only when the offset is
non-zero to reduce the total number of bins [36], while for edge offset the sign is
inferred from the category [40].

To leverage the spatial correlation across CTBs, sao_merge_left_flag and
sao_merge_up_flag are used to indicate if SAO parameters can be inherited
from neighboring CTBs, which reduces signaling overhead. Both of these flags are
regular coded using separate context models.

Significant effort was made to reduce the number of regular coded bins required
to represent SAO filter syntax elements. As a result, the only regular coded bins are
the merge flags and the first bin of the sao_type_idx_luma and sao_type
_idx_chroma with the latter indicating whether SAO is enabled for luma and
chroma CTBs, respectively.

8.4.6 Comparison of HEVC and H.264/AVC

Table 8.4 highlights the differences in signaling between the CTU/CU layer in
HEVC and the macroblock (MB) layer in H.264/AVC, when processing 8-bit video.
For a comparable block partitioning, HEVC typically produces fewer regular coded
bins than H.264/AVC. At the same time, some of those regular coded bins in
addition to those of the skip flag are adaptively selected based on CU depth, size
and neighbors in HEVC, which improves coding efficiency relative to H.264/AVC.
In general, however, the total amount of bits spent for signaling at the CTU/CU or
MB layer is lower by more than an order of magnitude compared to the total amount
of bits spent for transform coefficient level coding. As already discussed above and
summarized in Table 8.4, the majority of bypass bins for the SAO parameters are due
to the signaling of the offsets, while for H.264/AVC an excessive number of bins is
only generated in the rare cases where large delta QP values have to be transmitted.

8 Entropy Coding in HEVC 235

8.5 Prediction Unit Syntax Elements

The prediction unit (PU) syntax elements describe how the prediction is performed
in order to reconstruct the samples belonging to each PU. Coding efficiency
improvements have been made in HEVC for both modeling and coding of motion
parameters and intra prediction modes. While H.264/AVC uses a single motion
vector predictor (unless direct mode is used) and a single most probable mode
(MPM), HEVC uses multiple candidate predictors or MPMs together with an index
or flag for signaling the selected predictor or MPM, respectively. In addition,
HEVC provides a mechanism for exploiting spatial and temporal dependencies with
regard to motion modeling by merging neighboring blocks with identical motion
parameters. This has been found to be particularly useful in combination with
quadtree-based block partitioning, since a pure hierarchical subdivision approach
may lead to partitionings with suboptimal rate-distortion behavior [32, 49, 102].
Also, due to the significant increased number of angular intra prediction modes
relative to H.264/AVC, three MPMs for each PU are considered in HEVC.

This section will discuss how the various PU syntax elements are processed
in terms of binarization, context modeling, and context assignment. Also, aspects
related to parsing dependencies and throughput for the various prediction parame-
ters are considered.

8.5.1 Motion Data Coding

In HEVC, motion data can be either signaled using merge mode or directly using
motion vector differences, reference indices, and inter-prediction direction.

8.5.1.1 Signaling of Merge Mode

In HEVC, merge mode enables motion data (i.e., prediction direction, reference
index and motion vectors) to be inherited from a spatial or temporal (co-located)
neighbor. A list of merge candidates are generated from these neighbors. merge
_flag is signaled to indicate whether merge is used in a given PU. If merge is
used, then merge_idx is signaled to indicate from which candidate the motion
data should be inherited. merge_idx is coded with truncated unary, which means
that the bins are parsed until a zero bin value is reached or when the number of bins
is equal to the cMax, the max allowed number of bins.

Determining how to set cMax involved evaluating the throughput and coding
efficiency trade-offs in a core experiment [7]. For optimal coding efficiency, cMax
should be set to equal the merge candidate list size of the PU. Furthermore,
merge_flag should not be signaled if the list is empty. However, this makes
parsing depend on list construction, which is needed to determine the list size.

236 V. Sze and D. Marpe

Constructing the list requires a large amount of computation since it involves
reading from multiple locations (i.e., fetching the co-located neighbor and spatial
neighbors) and performing several comparisons to prune the list; thus, dependency
on list construction would significantly degrade parsing throughput [33, 108].

To decouple the list generation process from the parsing process such that
they can operate in parallel in HEVC, cMax is signaled in the slice header using
five_minus_max_num_merge_cand and does not depend on list size. To
compensate for the coding loss due to the fixed cMax, combined bi-predictive and
zero motion vector candidates are added when the list size is less than the maximum
number of allowed candidates as defined by cMax [79]. This also ensures that the
list is never empty and that merge_flag is always signaled [107]. For more details
on candidate list construction please refer to Chap. 5.

8.5.1.2 Signaling of Motion Vector Differences, Reference Indices,
and Inter-Prediction Direction

If merge mode is not used, then the motion vector is predicted from its neighboring
blocks and the difference between motion vector (mv) and motion vector prediction
(mvp), referred to as motion vector difference (mvd), is signaled:

mvd.x; y/ D mv.x; y/ � mvp.x; y/

In H.264/AVC, a single predictor is calculated for mvp from the median of the left,
top and top-right spatial 4 � 4 neighbors.

In HEVC, advanced motion vector prediction (AMVP) is used, where several
candidates for mvp are determined from spatial and temporal neighbors [38]. A list
of mvp candidates is generated from these neighbors, and the list is pruned to
remove redundant candidates such that there is a maximum of two candidates.
A syntax element called mvp_l0_flag (or mvp_l1_flag depending on the
reference list) is used to indicate which candidate is used from the list as the mvp. To
ensure that parsing is independent of list construction, mvp_l0_flag is signaled
even if there is only one candidate in the list. The list is never empty as the zero
motion vector is used as the default candidate.

In HEVC, improvements were also made on the coding process of mvd itself.
In H.264/AVC, the first nine bins of mvd are regular coded truncated unary bins,
followed by bypass coded 3rd order Exp-Golomb bins. In HEVC, the number of reg-
ular coded bins for mvd is significantly reduced [58]. Only the first two bins are reg-
ular coded (abs_mvd_greater0_flag, abs_mvd_greater1_flag), fol-
lowed by bypass coded first-order Exp-Golomb (EG1) bins (abs_mvd_minus2).

In H.264/AVC, context selection for the first bin in mvd depends on whether
the sum of the motion vectors of the top and left 4 � 4 neighbors are greater
than 32 (or less than 3). This requires 5-bit storage per neighboring motion vector,
which accounts 24,576 of the 30,720-bit CABAC line buffer needed to support a
4k �2k sequence. The need to reduce the line buffer size in HEVC by modifying

8 Entropy Coding in HEVC 237

the context selection logic was highlighted in [90]. Accordingly, all dependencies
on the neighbors were removed and the context is selected based on the binIdx (i.e.,
whether it is the first or second bin) [82, 91].

To maximize the impact of fast bypass coding, the bypass coded bins for both
the horizontal (x) and vertical (y) components of mvd are grouped together in
HEVC [67]. For instance, for a motion vector difference of mvd.x; y/ D .2; 2/,
the coding order is 11110000, where underlined values are bypass coded. Without
bypass grouping, the coding order is 11001100. If four bypass bins can be processed
in a single cycle, enabling bypass grouping reduces the number of cycles required
to process the motion vector by one.

In HEVC, reference indices ref_idx_l0 and ref_idx_l1 are coded with
truncated unary regular coded bins, which is the same as for H.264/AVC; the
maximum length of the truncated unary binarization, cMax, is dictated by the
reference picture list size. However, in HEVC only the first two bins are regular
coded [71], whereas all bins are regular coded in H.264/AVC. In both HEVC and
H.264/AVC, the regular coded bins of the reference indices for different reference
picture lists share the same set of contexts. The inter-prediction direction (list 0, list
1 or bi-directional) is signaled using inter_pred_idcwith custom binarization.

8.5.2 Intra Prediction Mode Coding

Similar to motion data coding, a most probable mode (MPM) is calculated for intra
mode coding. In H.264/AVC, the minimum mode of the top and left neighbors is
used as MPM. prev_intra4x4_pred_mode_flag (or prev_intra8x8_
pred_mode_flag) is signaled to indicate whether the most probable mode is
used. If the MPM is not used, the remainder mode rem_intra4x4_pred_mode
_flag (or rem_intra8x8_pred_mode_flag) is signaled.

In HEVC, additional MPMs are used to improve coding efficiency. A candidate
list of most probable modes with a fixed length of three is constructed based on the
left and top neighbors. The additional candidate modes (DC, planar, vertical) can
be added if the left and top neighbors are the same or unavailable. Note that the top
neighbors outside the current CTU are considered unavailable in order to avoid the
need for a line buffer.14 The prediction flag prev_intra_pred_mode_flag
is signaled to indicate whether one of the most probable modes is used. If an MPM
is used, a most probable mode index (mpm_idx) is signaled to indicate which
candidate to use. It should be noted that in HEVC, the order in which the coefficients
of the residual are parsed (e.g., diagonal, vertical or horizontal) depends on the
reconstructed intra mode (i.e., the parsing of the TU data that follows depends on
list construction and intra mode reconstruction). Thus, the candidate list size was
limited to three for reduced computation to ensure that it would not affect entropy
decoding throughput [22, 83].

14For more details on MPM list construction please refer to Chap. 4.

238 V. Sze and D. Marpe

Table 8.5 Differences between prediction unit coding in HEVC and H.264/AVC

HEVC H.264/AVC

Properties Intra Mode AMVP Merge Intra Mode MVP

Max number of
candidates in list

3 2 5 1 1

Spatial neighbor used used used used used
Temporal co-located

neighbor
not used used used not used not used

Number of contexts 2 10 2 6 20
Max regular coded bins

per PU
2 16 2 7 98

The number of regular coded bins was reduced for intra mode coding in HEVC
relative to the corresponding part in H.264/AVC, where both the flag and the 3 fixed-
length bins of the remainder mode are regular coded using two separate context
models. In HEVC, the flag is regular coded as well, but the remainder mode is
a fixed-length 5-bin value that is entirely bypass coded. The most probable mode
index (mpm_idx) is also entirely bypass coded. The number of contexts used to
code intra_chroma_pred_mode is reduced from 4 to 1 for HEVC relative
to H.264/AVC. To maximize the impact of fast bypass coding, the bypass coded
bins for luma intra prediction mode coding within a CU are grouped together in
HEVC [19]. This is beneficial when the partition mode is PART_NxN, and there are
four sets of prediction modes.

8.5.3 Comparison of HEVC and H.264/AVC

The differences between H.264/AVC and HEVC in signaling of syntax elements
at the PU layer are summarized in Table 8.5. HEVC uses both spatial and temporal
neighbors as predictors, while H.264/AVC only uses spatial neighbors (unless direct
mode is enabled). In terms of the impact of the throughput improvement techniques,
HEVC has around 6� fewer maximum regular coded bins per inter-predicted PU
than H.264/AVC. HEVC also requires around 2� fewer contexts for PU syntax
elements than H.264/AVC.

8.6 Transform Unit Syntax Elements

In video coding, both intra and inter prediction are used to reduce the amount of data
that needs to be transmitted. In addition, rather than sending the original samples of
the prediction signal, an appropriately quantized approximation of the prediction
error is transmitted. To this end, the prediction error is blockwise transformed

8 Entropy Coding in HEVC 239

Table 8.6 Distribution of bins in CABAC for HEVC and H.264/AVC under common test
conditions [6, 101] and for the worst case

HEVC H.264/AVC

Common
conditions

AI LP LB RA worst worst
MAIN MAIN MAIN MAIN case HierB HierP case

CTU/CU bins 5.4% 15.8% 16.7% 11.7% 1.4% 27.0% 34.0% 0.5%
PU bins 9.2% 20.6% 19.5% 18.8% 5.0% 23.4% 26.3% 15.8%
TU bins 85.4% 63.7% 63.8% 69.4% 94.0% 49.7% 39.7% 83.7%

Generated bins are discriminated along the HEVC categories CTU/CU, PU, and TU as well as
their corresponding counterparts in H.264/AVC

from spatial to frequency domain, thereby decorrelating the residual samples and
performing an energy compaction in the sense that, after quantization, the signal can
be represented in terms of a few non-vanishing coefficients. The method of signaling
the quantized values and frequency positions of these coefficients is referred to as
transform coefficient coding.

Syntax elements related to transform coefficient coding account for a significant
portion of the bin workload as shown in Table 8.6. At the same time, those
syntax elements also account for a significant portion of the total number of bits
for a compressed video, and as a result the compression of quantized transform
coefficients significantly impacts the overall coding efficiency. Thus, transform
coefficient coding with CABAC must be carefully designed in order to balance
coding efficiency and throughput demands. Accordingly, as part of the HEVC
standardization process, a core experiment on coefficient scanning and coding was
established to investigate tools related to transform coefficient coding [97].

This section describes how transform coefficient coding evolved from
H.264/AVC to the first test model of HEVC (HM1.0) to the Final Draft International
Standard (FDIS) of HEVC (HM10.0), and discusses the reasons behind design
choices that were made. Many of the throughput improvement techniques were
applied, and new tools for improved coding efficiency were simplified. As a
reference for the beginning and end points of the development, Figs. 8.8 and 8.9
show examples of transform coefficient coding for 4 � 4 blocks in H.264/AVC and
HEVC, respectively.

8.6.1 Transform Block Structure

As already discussed in Sect. 8.3.1, transform coding in HEVC involves a tree-
structured variable block-size approach with supported transform block sizes of
4 � 4; 8 � 8; 16 � 16; and 32 � 32: This means that the actual transform block
sizes, used to code the prediction error of a given CU, can be selected based on
the characteristics of the residual signal by using a quadtree-based partitioning,
also known as residual quadtree (RQT), as illustrated in Fig. 8.10. While this larger

240 V. Sze and D. Marpe

9 0 0 −1

−6 0 0 0

3 1 0 0

0 0 0 0

significant_coeff_flag 1 0 1 1 0 0 1 0 1

last_significant_coeff_flag 0 0 0 0 1

coeff_abs_level_minus1 8 5 2 0 0

coeff_sign_flag 0 1 0 1 0

Zig-zag Scan
(forward for significance

map, reverse for coefficient
level & sign)

0 1 5 6

2 4 7 12

3 8 11 13

9 10 14 15

Signaling order

1 0 0 1 0 1 0 0 0 0 1 0 0 1 1 1

Significance map

0 0 0 1 2 0 5 1 8 0

Coefficient level and sign

Fig. 8.8 Example of CABAC-based transform coefficient coding for a 4 � 4 transform block
in H.264/AVC. Note, however, that the corresponding bins for signaling of the absolute level (in
yellow) are not explicitly shown

variety of transform block partitioning relative to H.264/AVC provides significant
coding gains, it also has implications in terms of implementation costs, both in terms
of memory bandwidth and computational complexity. To address this issue, HEVC
allows to restrict the RQT-based transform block partitioning by four parameters,
signaled by corresponding syntax elements in the SPS: the maximum and minimum
allowed transform block size (in terms of block width) nmax and nmin, respectively,
and the maximum depth of the RQT dmax, with the latter given both individually
for intra-picture and inter-picture prediction. Note, however, that there is a rather
involved interdependency between these parameters (and other syntax elements),
such that, for instance, implicit subdivisions or implicit leaf nodes of the RQT may
occur. For more details, please refer to Chap. 3.

The signaling of the transform block structure for each CU is similar to that of
the coding block structure at the CTU level. For each node of the RQT, a flag called
split_transform_flag is signaled to indicate whether a given transform
block should be further subdivided into four smaller TBs. Context modeling for
the coding of this flag involves three different contexts with its related context
increment equal to 5 � log2.TrafoSize/, where TrafoSize denotes the block width
of the corresponding luma transform block at the given RQT depth. Note that for
the choice of a luma CTB size of 64, nmax D 32, nmin D 4, and dmax D 4, an
implicit leaf node is implied for the case of TrafoSize D 4, whereas an implicit

8 Entropy Coding in HEVC 241

9 0 0 −1

−6 0 0 0

3 1 0 0

0 0 0 0

last_sig_coeff_x 3

last_sig_coeff_y 0

sig_coeff_flag 1* 0 1 0 0 0 1 0 1 1

coeff_abs_level_greater1_flag 0 0 1 1 1

coeff_abs_level_greater2_flag 1

coeff_abs_level_remaining 0 4 7

coeff_sign_flag 0 1 0 1 0

15 13 10 6

14 11 7 3

12 8 4 1

9 5 2 0

Diagonal Scan
(same direction for all)

1 3 0 1 0 0 0 0 1 0 1 1

Significance map

0 0 0 1 4 0 7

Coefficient level and sign

x

y

1 1 1 1 0 1 0

Bypass coded bins Regular coded bins

*inferred

Fig. 8.9 Example of transform coefficient coding for a 4 � 4 transform block in HEVC. Note,
however, that the corresponding bins for signaling of the “last” information (in red) and absolute
level remaining (in yellow) are not explicitly shown

subdivision is given for a luma CB size of 64 at RQT depth equal to 0. Table 8.7
and Fig. 8.11 illustrate an example of this configuration. Therefore, even if up to
five different RQT levels are permitted, only up to three different context models
are required for coding of split_transform_flag. Note that the signaling of
split_transform_flag at the RQT root is omitted if the quantized residual
of the corresponding CU contains no non-zero transform coefficient at all, i.e., if the
corresponding coded block flag at the RQT root (see Sect. 8.6.3) is equal to 0.

8.6.2 Transform Skip

For regions or blocks with many sharp edges (e.g., as typically given in screen
content coding), coding gains can be achieved by skipping the transform [42, 61].
When the transform is skipped for a given block, the prediction error in the spatial
domain is quantized and coded in the same manner as for transform coefficient
coding (i.e., the quantized block samples of the spatial error are coded as if they
were quantized transform coefficients). The so-called transform skip mode is only

242 V. Sze and D. Marpe

Coding
Tree Unit

(CTU)

Divide into
coding units

(CU) with
quad tree

Divide into
transform units
(TU) with quad

tree

skip

Fig. 8.10 Illustration of residual quadtrees (one for each CU) used to signal transform units for
residual coding of CUs. Note that the same relationships and comments as given in Fig. 8.6 apply
here as well

allowed for 4 � 4 TUs and only if the corresponding functionality is enabled by
the transform_skip_enabled_flag in the PPS. Signaling of this mode is
performed by using the transform_skip_flag, which is coded using a single
fixed context model.

8.6.3 Coded Block Flags

At the top level of the hierarchy of significance flags, as already explained in
Sect. 8.3.1, coded block flags (CBFs) are signaled for the RQT root, i.e., at the CU
level in the form of the rqt_root_cbf and for subsequent luma and chroma
TBs in the form of cbf_luma and cbf_cb, cbf_cr, respectively. rqt_root
_cbf is only coded and transmitted for inter-predicted CUs that are not coded in
merge mode using a single PU (PART_2Nx2N)15; for that a single context model
is used. While signaling of cbf_luma is only performed at the leaf nodes of the
RQT, provided that a non-zero rqt_root_cbf was signaled before, the chroma
CBFs cbf_cb and cbf_cr are transmitted at each internal node as long as a
corresponding non-zero chroma CBF at its parent node occurred. For coding of both

15Intra-predicted CUs typically have nonzero residual, so rqt_root_cbf is not used.

8 Entropy Coding in HEVC 243

rqt_root_cbf=1

cbf_cb,
cbf_cr,
cbf_luma

split_transform_flag=0 split_transform_flag=0 split_transform_flag=1 split_transform_flag=0

cbf_cb=1,
cbf_cr=0

cbf_cb=1 cbf_cb
cbf_luma

cbf_cb

split_transform_flag=1 split_transform_flag=0

cbf_cb,
cbf_cr,
cbf_luma

cbf_cb
cbf_luma

cbf_cb
cbf_luma

cbf_cb
cbf_luma

cbf_cb
cbf_luma

cbf_cb
cbf_luma

cbf_lumacbf_lumacbf_lumacbf_luma

split_transform_flag=1

split_transform_flag=0

split_transform_flag=0

cbf_cb=1,
cbf_cr=1

RQT
depth = 0

RQT
depth = 1

RQT
depth = 2

RQT
depth = 3

RQT
depth = 4

cbf_cb,
cbf_cr,
cbf_luma

split_transform_flag=0
for each
TB

Fig. 8.11 Illustration of signaling of split_transform_flag, cbf_luma, cbf_cb, and
cbf_cr for an RQT with depth 4. Note that at RQT depth = 0, no split_transform_flag
is signaled since an implicit transform split occurs for CU of 64 as nmax D 32. cbf_luma is only
signaled for leaf transform blocks (highlighted in red). cbf_cb and cbf_cr are signaled for the
root node and all nodes where the corresponding CBF at the parent node is non-zero, except for
the nodes related to TrafoSize D 4

cbf_cb and cbf_cr, four contexts are used such that the corresponding context
increment depends on the RQT depth (with admissible values between 0 and 3, since
for the case of TrafoSize D 4 no chroma CBFs are transmitted), whereas for cbf
_luma only two contexts are provided with its discriminating context increment
depending on the condition RQT depth D 0. For more background on the use of
RQT and related syntax elements, please refer to Chap. 3.

8.6.4 Significance Map

In H.264/AVC, the significance map for each transform block is signaled by
transmitting a significant_coeff_flag (SIG) for each position to indicate
whether the coefficient is non-zero. The positions are processed in an order based
on a zig-zag scan. After each non-zero SIG, an additional flag called last
_significant_coeff_flag (LAST) is immediately sent to indicate whether

244 V. Sze and D. Marpe

Table 8.7 Derivation of context increment (ctxInc) for split_transform_flag,
cbf_luma, cbf_cb, and cbf_cr for the example in Fig. 8.11

RQT Transform split_transform_flag cbf_luma cbf_cb, cbf_cr
depth Size (ctxInc) (ctxInc) (ctxInc)

0 n/a n/a 1 0
1 32 � 32 0 0 1
2 16 � 16 1 0 2
3 8 � 8 2 0 3
4 4 � 4 n/a 0 n/a

0 1 4 5

2 3 4 5

6 6 8 8

7 7 8 8

Fig. 8.12 Context index
assignment for
sig_coeff_flag in
4 � 4 TBs

it is the last non-zero SIG; this prevents unnecessary SIG from being signaled.
Different contexts are used depending on the position within the 4 � 4 and 8 � 8

transform blocks, and whether the bin represents an SIG or LAST. Since SIG
and LAST are interleaved, the context selection of the current bin depends on the
immediate preceding bin. The dependency of LAST on SIG results in a strong bin
to bin dependency for context selection of significance map entries in H.264/AVC
as illustrated in Fig. 8.3.

8.6.4.1 sig_coeff_flag (SIG)

While in HEVC position based context assignment for coding of sig_coeff_
flag (SIG) is used for 4 � 4 TBs as shown in Fig. 8.12, new forms of context
assignment for larger transforms were needed. In HM1.0, additional dependencies
were introduced in the context selection of SIG for 16 � 16 and 32 � 32 TBs to
improve coding efficiency. Specifically, the context selection of SIG was calculated
based on a local template using 10 (already decoded) SIG neighbors as shown in
Fig. 8.13a [57, 102]. By using this template-based context selection bit rate savings
of 1.4–2.8 % were reported [57].

To reduce context selection dependencies and storage costs, Sze and Budagavi
[85] proposed using fewer neighbors and showed that this could be done without
severely sacrificing coding efficiency. For instance, using only a maximum of 8
neighbors (removing neighbors A and D as shown in Fig. 8.13b) had negligible
impact on coding efficiency, while using only six neighbors (removing neighbors
A, B, D, E and H as shown in Fig. 8.13c) results in a coding efficiency loss of
only 0.2 %. This was further extended in [18] for HM2.0, where only a maximum
of five neighbors was used by removing dependencies on positions G and K, as

8 Entropy Coding in HEVC 245

D

a b

c d

e

H J

A E I K

B F X

C G

H J

E I K

B F X

C G

J
I K

F X

C G

H
E I

B F X

H
EI
BFX

Fig. 8.13 Local templates
for SIG context selection.
X (in blue) represents the
current position of the bin
being processed. (a) Ten
neighbors (HM1.0), (b) eight
neighbors, (c) six neighbors,
(d) 5 neighbors (HM3.0), and
(e) inverted for reverse scan
(HM4.0)

a bFig. 8.14 Scans used to
process SIG. Diagonal scan
avoids dependency on the
most recently processed bin.
Context selection for blue
positions is affected by values
of the neighboring grey
positions. (a) Zig-zag scan
and (b) diagonal scan

shown in Fig. 8.13d. In HM2.0, the significance map was scanned in zig-zag order,
so removing the diagonal neighbors G and K is important since those neighbors
pertain to the most recently decoded SIG.

Despite reducing the number of SIG neighbors in HM2.0, dependency on the
most recently processed SIG neighbors still existed for the positions at the edge of
the transform block as shown in Fig. 8.14a. The horizontal or vertical shift that is
required to go from one diagonal to the next in the zig-zag scan causes the previously
decoded bin to be one of the neighbors (F or I) that is needed for context selection.
In order to address this issue, in HM4.0, a diagonal scan was introduced to replace
the zig-zag scan [86] as shown in Fig. 8.14b. Changing from zig-zag to diagonal
scan had negligible impact on coding efficiency, but removed the dependency on
recently processed SIG for all positions in the TB. In HM4.0, the scan was also
reversed (from high frequency to low frequency) [74]. Accordingly, the neighbor
dependencies were inverted from top-left to bottom-right, as shown in Fig. 8.13e.

Dependencies in context selection of SIG for 16 � 16 and 32 � 32 TBs
were further reduced in HM7.0, where 16 � 16 and 32 � 32 TBs are divided
into 4 � 4 subblocks. This will be described in more detail in Sect. 8.6.4.3 on

246 V. Sze and D. Marpe

DC
Low Frequency

(DC 4x4 subblock)

Mid to High
Frequency

(Non-DC subblock)

X
F
B

H I
E

Fig. 8.15 Regions in 8 � 8;

16 � 16 and 32 � 32 TBs map
to different context sets for
SIG

0 = diagonal 1 = horizontal 2 = vertical

Fig. 8.16 Diagonal, vertical, and horizontal scans for 4 � 4 TBs

Table 8.8 Mode dependent coefficient scanning: Mapping of intra prediction mode to scans
(0 D Diagonal, 1 D Horizontal, 2 D Vertical) for different TB sizes and components

Intra Prediction Mode 0 (Planar) 1 (DC) 2 3 4 5 6 to 14 15 to 21 22 to 30 31 to 34

8 � 8 (luma) 0 0 2 0 1 0
4 � 4 (luma or chroma) TB 0 0 2 0 1 0
Otherwise 0

coded_sub_block_flag (CSBF). In HM8.0, 8 � 8 TBs were also divided into
4 � 4 subblocks such that all TB sizes above 4 � 4 are based on a 4 � 4 subblock
processing for a harmonized design [77].

The 8 � 8; 16 � 16 and 32 � 32 TBs are divided into three regions based on
frequency, as shown in Fig. 8.15. The DC, low-frequency and mid/high-frequency
regions all use different sets of contexts. To reduce memory size, the contexts for
coding the SIG of 16 � 16 and 32 � 32 TBs are shared [81, 99].

For improved coding efficiency for intra predicted CUs, so-called mode depen-
dent coefficient scanning (MDCS) is used to select between vertical, horizontal,
and diagonal scans based on the chosen intra prediction mode [106], as illustrated
in Fig. 8.16. Table 8.8 shows how the scans are assigned based on intra prediction
mode, TB size, and component. As mentioned in Sect. 8.5.2, this requires the intra
mode to be decoded before decoding the corresponding transform coefficients.
MDCS is only used for 4 � 4 and 8 � 8 TBs and provides coding gains of up
to 1.2 %. Note that for TBs larger than 8 � 8; and for TBs of inter predicted CUs,
only the diagonal scan is used.

8 Entropy Coding in HEVC 247

Table 8.9 Binarization of coordinate values of the last position

Bins belonging to the bypass coded suffixes are underlined

8.6.4.2 Last Position Coding

As mentioned earlier, there are strong data dependencies between significant
_coeff_flag (SIG) and last_significant_coeff_flag (LAST) in
H.264/AVC due to the fact that they are interleaved. Budagavi and Demircin
[10] proposed grouping several SIG together by transmitting a LAST only once
per N number of SIG. If all of the N SIG are zero, LAST is not transmitted.
Sole et al. [73] avoids interleaving of SIG and LAST altogether. Specifically, the
horizontal (x) and vertical (y) position of the last non-zero SIG in a TB is sent in
advance rather than LAST by using the syntax elements last_sig_coeff_x
and last_sig_coeff_y, respectively. For instance, in the example shown in
Fig. 8.9, last_sig_coeff_x equal to 3 and last_sig_coeff_y equal to 0
are sent before processing the TB rather than signaling LAST for each SIG with
value of 1. Signaling the (x, y) position of the last non-zero SIG for each TB was
adopted into HM3.0. Note that the SIG in the last scan position is inferred to be 1.

The last position, given by its coordinates in both x and y direction, is composed
of a prefix and suffix as shown in Table 8.9. The prefixes last_sig_coeff
_x_prefix and last_sig_coeff_y_prefix are both regular coded using
TrU binarization with cMax D 2 � .log2 TrafoSize/ � 1 [70]. A suffix is present
when the corresponding prefix is composed of more than four bins. In that case, the
suffixes last_sig_coeff_x_suffix and last_sig_coeff_y_suffix
are bypass coded using FL binarization. Some of the contexts are shared across the
chroma TB sizes to reduce context memory, as shown in Table 8.10. To maximize
the impact of fast bypass coding, the bypass coded bins (i.e., the suffix bins) for
both the x and y coordinate of the last position are grouped together for each TB in
HEVC.

248 V. Sze and D. Marpe

Table 8.10 Context selection for regular coded prefix bins of the
coordinates of the last position last_sig_coeff_x_prefix and
last_sig_coeff_y_prefix

Bin Index 0 1 2 3 4 5 6 7 8

4 � 4 luma TB 0 1 2
8 � 8 luma TB 3 3 4 4 5
16 � 16 luma TB 6 6 7 7 8 8 9
32 � 32 luma TB 10 10 11 11 12 12 13 13 14
4 � 4 chroma TB 15 16 17
8 � 8 chroma TB 15 15 16 16 17
16 � 16 chroma TB 15 15 15 15 16 16 16

1 1

1 0

coded_sub_block_flag

inferred
(DC)

inferred
(last)

0
0
0

0
0

0
0
0
0

0
0
0
0

0
0
0
0

0 1 0
0 0 0

1 1 0
1 0 0
0 0 0
0 0 1

0
0

0
0

0
0
0
0

0
1
0
0

0
0

0
0

0
0

0 0 0
0 0 0

0
0

0
0

1

sig_coeff_flag

subblock with all
zeros not signaled

last position
(sig_coeff_flag inferred)

Fig. 8.17 Example of the hierarchical signaling of an 8 � 8 significance map

8.6.4.3 coded_sub_block_flag (CSBF)

As already explained in Sect. 8.3.1, the number of bins to be transmitted for signal-
ing the significance map is considerably reduced by using a hierarchical signaling
scheme of significance flags. Part of this hierarchy is the coded_sub_block
_flag (CSBF) that indicates for each 4 � 4 subblock of a TB whether there are
non-zero coefficients in the subblock [56, 60]. If CSBF is equal to 1, the subblock
contains at least one non-zero transform coefficient level and, consequently, SIGs
within the subblock are signaled. No SIGs are signaled for a 4 � 4 subblock that
contains all vanishing transform coefficients, since this information is signaled by a
CSBF equal to 0. For large TB sizes, a reduction in SIG bins of up to a 30 % can
be achieved by the use of CSBFs, which corresponds to an overall bin reduction of
3–4 % under common test conditions. To avoid signaling of redundant information,
the CSBF for the subblocks containing the DC and the last position are inferred to
be equal to 1. Figure 8.17 shows an example of the hierarchical signaling of an 8�8

significance map.
In HM7.0, the CSBF was additionally used to further reduce dependencies in the

context selection of SIG for 16 � 16 and 32 � 32 TBs. Specifically, the neighboring
subblocks and their corresponding CSBFs (Fig. 8.18) are used for context selection
rather than the individual SIG neighbors, as shown in Fig. 8.13e [41]. This context
selection scheme was extended to 8 � 8 TBs in HM8.0 [77]. According to this

8 Entropy Coding in HEVC 249

CSBFright

CSBFbottom

Fig. 8.18 Neighboring
CSBFs (right, bottom) used
for SIG context selection

2

a b c d
1 1 0

1 1 0 0

1 0 0 0

0 0 0 0

2 2 2 2

1 1 1 1

0 0 0 0

0 0 0 0

2 1 0 0

2 1 0 0

2 1 0 0

2 1 0 0

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

Fig. 8.19 4 � 4 position based mapping for SIG context selection based on CSBF of neighboring
subblocks. (a) Pattern 1, (b) pattern 2, (c) pattern 3 and (d) pattern 4

scheme, the CSBF of the neighboring right and bottom subblocks (CSBFright ,
CSBFbot tom) are used to select one of four patterns shown in Fig. 8.19: (0,0) maps
to pattern 1, (1,0) to pattern 2, (0,1) to pattern 3 and (1,1) to pattern 4. The pattern
maps each position within the 4 � 4 subblock to one of three contexts. As a result,
there are no intrinsic dependencies for context selection of SIG within each 4 � 4

subblock.
Reverse diagonal scanning order is used within the subblocks and for the

processing order of the subblocks themselves, as shown in Fig. 8.20 [76]. Both
significance map and coefficient levels are processed in this order. As an exception
to this rule, for 4 � 4 and 8 � 8 TBs to which MDCS is applied, reverse vertical
and horizontal scanning orders are used within the subblocks as well as for the
processing order of the subblocks themselves. Furthermore, as shown in Table 8.11,
different sets of contexts for coding of SIG are used for diagonal and non-diagonal
(vertical and horizontal) scans in both 4 � 4 luma and chroma TBs, and 8 � 8 luma
TBs [77].

8.6.4.4 Summary of Significance Map Coding in HEVC

Figure 8.21 summarize the steps required to code the significance map. This process
is repeated for every non-zero TB in HEVC. Table 8.11 summarizes the multiple
steps of classification used to assign the 42 contexts of sig_coeff_flag.
Contexts 0 to 26 are used for luma coded TBs, while 27 to 41 used for chroma TBs.
The contexts are further mapped based on the TB size, the scan direction, whether
the subblock is DC or non-DC, CSBF of neighboring subblocks, and position within

250 V. Sze and D. Marpe

0 = diagonal

b

a
1 = horizontal 2 = vertical

diagonal

Fig. 8.20 Subblock scans. Scan for 4 � 4 TB shown in Fig. 8.16. (a) Subblock scan for 8�8 TB.
(b) Subblock scan for 16 � 16 TB. Scan for 32 � 32 TB is also all diagonal

Table 8.11 Context selection of sig_coeff_flag based on component, TB size, scan order
(Table 8.8), position of subblock within the TB (Fig. 8.15), and position based context index within
4 � 4 TB or subblock (SubIdx) (Fig. 8.12 or 8.19, resp.)

8 Entropy Coding in HEVC 251

Last Position X, Y
(last_sig_coeff_x_prefix,
last_sig_coeff_y_prefix)

Truncated Unary binarization (cMax
based on TB size), and bypass coded
[Tab. 8.9 & 8.10]

Select Diagonal, Vertical,
Horizontal Scan

Scan order based on Intra/Inter, intra
prediction mode, TB size, luma/
chroma [Tab. 8.8, Fig. 8.16]

Coded Sub Block Flag
(coded_sub_block_flag)

Inferred for DC or last position.
Otherwise, context depends on 4x4
neighbors (bottom and right) and
luma/chroma [Fig. 8.17]

Significant coefficient flag
(sig_coeff_flag)

Inferred for last position or if all other
sig_coeff_flag non-zero in 4x4
subblock. Otherwise, context depends
on 4x4 neighbors (bottom and right),
luma/chroma, scan, position within
TB, and position within 4x4 subblock
[Tab. 8.11]

Fixed Length binarization, and context
based on TB size, luma/chroma, bin
Index [Tab. 8.9]

Last Position X, Y
(last_sig_coeff_x_suffix,
last_sig_coeff_y_suffix)

If last 4x4, repeat <16x
Otherwise, repeat 16x

Repeat for number of
4x4 subblocks based

on last position

Coefficient Level and Sign Coding
(see Fig. 8.25)

Start Transform Block

End Transform Block

Fig. 8.21 Flow chart for coding the syntax elements of a TB in HEVC

the subblock. Note that context 0 is used to code the sig_coeff_flag of the DC
position of all luma TBs, and context 27 is used for the DC position of all chroma
TBs.

8.6.5 Absolute Coefficient Level and Coefficient Sign

In HEVC, parsing of transform coefficient level information is performed subblock-
by-subblock using up to five scan passes for each subblock. The first scan pass is
devoted to the SIG flags, as already explained in Sects. 8.6.4.1 and 8.6.4.3. In the
second and third pass, the two additional flags coeff_abs_level_greater1
_flag (ALG1) and coeff_abs_level_greater2_flag (ALG2) are con-
ditionally parsed, indicating for each relevant scan position if the corresponding
absolute value of the coefficient level, i.e., the absolute level (AL) is greater than 1
and 2, respectively. However, only up to 8 ALG1 flags and one ALG2 flag are
transmitted for each subblock, as will be explained in more detail below. In the third
scan pass, the sign of each significant level is signaled with the possible exception

252 V. Sze and D. Marpe

Truncated
Unary

k-th order Truncated
Rice

0 ... B0

(B0 + 1) ... B1

(B1 + 1) ...

(k+1)-th order Exp-
Golomb

variable
threshold

variable
threshold

B0

B1

Using SIG, ALG1,
and ALG2 flags

Absolute Level

z

Fig. 8.22 Illustration of the adaptive binarization scheme for absolute levels in HEVC consisting
of a concatenation of the three elementary binarizations TrU, TRk, and EGk, the latter two with
varying order k and k C 1, respectively (0 � k � 4). The two variable thresholds B0 and B1

specify the (variable) transition points between them

of the last non-zero coefficient in the subblock in reverse scanning order, as will be
discussed in more detail in Sect. 8.6.5.2. Finally, in the last and fifth scan pass, the
remaining information of absolute levels in the subblock (if present) is transmitted
by using the syntax element coeff_abs_level_remaining (ALRem), as will
be further detailed in Sect. 8.6.5.1 below.

8.6.5.1 Coding of Absolute Level

Coding of absolute levels requires the choice of suitable binarization schemes
and, for selected bin indices, the choice of suitable context models. According
to the design considerations, as discussed in Sect. 8.3, both aspects of coding
efficiency and throughput have been properly addressed by the revised CABAC
design of HEVC. This is especially true for the coding of absolute levels which
typically contribute the dominant portion to the total number of generated bins.
In the following, we will first elaborate on how the specific binarization scheme
for absolute levels in HEVC has been designed. Then, in the second part of this
subsection, we will present the context selection rules applied to the (few remaining)
regular coded bins of absolute levels, unless not already done so in Sects. 8.6.4.1
and 8.6.4.3.

Conceptually, the binarization of an absolute level, denoted as z in the following,
relies on a concatenated application of three binarization processes [21, 54, 59]:
truncated unary (TrU), k-th order truncated Rice (TRk), and .k C 1/-th order
Exp-Golomb (EGk). Figure 8.22 illustrates this binarization scheme for arbitrary
z along the (discrete) number line. There are two thresholding parameters B0; B1

with B0 < B1 which separate the three regions from one another for application
of each of the three binarization processes and which also determine the truncation
parameters cMax(TrU) D B0 C 1 and cMax(TRk) D B1 � B0. The selection of the
two parameters B0; B1 together with the choice of the parameter k is performed in
a backward-adaptive manner for each subblock in such a way that the resulting bin
strings are already close to a minimum-redundancy prefix code for the collection of

8 Entropy Coding in HEVC 253

Table 8.12 Binarization of the absolute level z for the choice of parameters B0 D 2, B1 D 6, and
k D 0, corresponding to a concatenation of TrU with cMax D 3, zero-order Truncated Rice (TRk)
with cMax D 4, and first-order Exp-Golomb (EGk)

TrU TRk EGk

z
cMaxD3 k D 0; cMaxD4 k C 1 D 1

SIG ALG1 ALG2 0 1 2 3 0 1 2 3 . . .
0 0
1 1 0

B0 D 2 1 1 0
3 1 1 1 0
4 1 1 1 1 0
5 1 1 1 1 1 0

B1 D 6 1 1 1 1 1 1 0
7 1 1 1 1 1 1 1 0 0
8 1 1 1 1 1 1 1 0 1
9 1 1 1 1 1 1 1 1 0 0 0

10 1 1 1 1 1 1 1 1 0 0 1
11 1 1 1 1 1 1 1 1 0 1 0
. .

all absolute levels z in each subblock. As a consequence, the majority of resulting
bins can be simply bypass coded without compromising coding efficiency.

For each subblock, the initialization and adaptation processes for the parameters
B0; B1, and k is performed, as follows. Before starting the processing of an
subblock, the parameter k is set equal to 0, whereas B0 is set equal to 2. The
second thresholding parameter B1 depends on k and B0 by the fixed relation
B1 D 4�2kCB0, which means that B1 is adapted whenever B0 or k are changed. For
each scan position in the subblock processing, the absolute level z is evaluated after
encoding/decoding and B0 is decremented by 1 after the first occurrence of z > 1,
which corresponds to the first scan position in the subblock for which an ALG2 flag
is signaled. A further adaptation of B0 to its minimum value of 0 is performed after
z > 0, i.e., after an ALG1 flag occurs eight times in the subblock. The parameter k

is set to min.k C1; 4/ after each scan position for which the corresponding absolute
level z fulfills the condition z > 3 � 2k. Note that according to this adaptation rule,
k can take integer values from 0 to 4 inclusive. Tables 8.12 and 8.13 show example
binarizations for two different configurations of the parameters B0; B1, and k. Please
note that the result of the binarization for z can also be interpreted as a concatenation
of a unary prefix and, if present, a fixed-length suffix for different ranges of z [21].
Table 8.14 shows the corresponding binarization of ALRem, which has a maximum
bin length of 32 [12].

As already indicated above, the signaling of the absolute level z involves
four different syntax elements, given as sig_coeff_flag (SIG), coeff_abs
_level_greater1_flag (ALG1), coeff_abs_level_greater2_flag
(ALG2), and coeff_abs_level_remaining (ALRem), such that

z D SIG C ALG1 C ALG2 C ALRem;

254 V. Sze and D. Marpe

Table 8.13 Binarization of the absolute level z for the choice of parameters B0 D 1, B1 D 9, and
k D 1, corresponding to a concatenation of TrU with cMax D 2, first-order Truncated Rice (TRk)
with cMax D 8, and second-order Exp-Golomb (EGk)

TrU TRk EGk

z
cMaxD2 k D 1; cMaxD8 k C 1 D 2

SIG ALG1 0 1 2 3 4 0 1 2 . . .
0 0

B0 D 1 1 0
2 1 1 0 0
3 1 1 0 1
4 1 1 1 0 0
5 1 1 1 0 1
6 1 1 1 1 0 0
7 1 1 1 1 0 1
8 1 1 1 1 1 0 0

B1 D 9 1 1 1 1 1 0 1
10 1 1 1 1 1 1 0 0 0
11 1 1 1 1 1 1 0 0 1
. .

Table 8.14 An alternative representation of coeff_abs_level_remaining (ALRem) bina-
rization as a concatenation of a unary prefix and fixed length suffix

The suffix has a length of k bins when the value N of ALRem is less than .3 << k/; otherwise,
it has a length of blog2...N � .3 << k// >> k/ C 1/c C k bins. In this table, the suffix bins
are shown in terms of x and C, where each x represents a bin, and C represents a fixed length bin
string of length k

8 Entropy Coding in HEVC 255

SIG SIG SIG ALG1 ALG1 ALG2 ALRem ALRem ALRems s s s s

regular coded bypass coded

Fig. 8.23 Grouping same regular coded bins and bypass bins to increase throughput.
s Dcoeff_sign_flag

provided that the values of the corresponding syntax elements are inferred to be
equal to 0, when not explicitly signaled. Note that the flags SIG, ALG1, and ALG2
represent the first and the optional second and third bin indices of the TrU part of
z, respectively. ALRem corresponds to the concatenation of the TRk and EGk part
of z with all of its bin values being bypass coded and with a maximum bin string
length of 32 [12]. Only the values of the three flags are regular coded. However,
due to the adaptation rules for B0, ALG2 can occur only once in each subblock,
while the occurrence of ALG1 is restricted to 8 scan positions per subblock at the
maximum [16]. Together with the maximum of 16 SIG flags per subblock, only up
to 25 regular coded bins can occur in each subblock (without accounting for CSBF).
Thus, the maximum number of regular coded bins per 4 � 4 transform (sub-) block
is reduced by a factor of about 9.6 relative to the corresponding maximum number
of 16 � 14 C 15 D 239 regular coded bins for H.264/AVC CABAC (including SIG
bins but without accounting for LAST) [46]. This change provides obviously the
most substantial reduction to the (worst case) number of regular coded bins in the
entire revision of CABAC.

The rationale behind processing SIG, ALG1, ALG2, and ALRem with individual
syntax elements rather than as conventional bin indices of the adaptive binarization
of z is given by the fact that all values of one syntax element in each subblock
are grouped together and signaled in separate scan passes. This grouping provides
essentially three advantages. First, bins in the coefficient level binarization that
use the same context selection logic are grouped together to reduce the amount
of speculative context selection computations, as shown in Fig. 8.23. Second, by
grouping bypass coded bins together, the throughput advantages of bypass bins
are maximized [87]. Third, the storage for (partially reconstructed) coefficient data
during the parsing process at the decoder can be reduced, as further explained
in Sect. 8.6.5.2 below. Note that the reordering of bins has no impact on coding
efficiency.

Context modeling for coding of the regular coded bins of the absolute level is
restricted to the three flags SIG, ALG1, and ALG2. Since context model selection
for the SIG flag has already been introduced in Sects. 8.6.4.1 and 8.6.4.3, we will
focus in the following on the two flags ALG1 and ALG2. For each of both flags, six
sets of context models are provided: four sets for subblocks of the luma component
and two sets for subblocks of the chroma component. Since only up to one ALG2
flag per subblock is encoded/decoded, each of the six ALG2 related sets contains
only one context model. For the ALG1 flag, each set consists of four context models

256 V. Sze and D. Marpe

Start 4x4 subblock

End 4x4 subblock

ctxInc = 0

ctxInc = 1

ctxInc = 2

bi =0bi =1
b1=0

b0=0
b0=1

b1=0

(repeat up to i=7)ctxInc = 3

Any bi
(repeat up to i=7)

Fig. 8.24 Flow chart for
derivation of context
increment (ctxInc) for up to 8
different events bi

.0 � i � 7/ of ALG1 in a
4 � 4 subblock

and the context increment ctxInc(ALG1) for selecting one of this four models within
each set is quite similar to what is specified for the coding of the first bin of
the syntax element coeff_abs_level_minus1 in H.264/AVC (see [46] for
a motivation of this design choice):

ctxInc.ALG1/ D
�

0; if NumG1 > 0

1 C min.2; NumT1/; otherwise
;

where NumT1 denotes the accumulated number of encoded/decoded trailing 1’s,
i.e., absolute levels equal to 1, and NumG1 denotes the accumulated number of
encoded/decoded levels with absolute value greater than 1, both computed along
the reverse scanning pattern of the subblock up to (but not including) the current
scan position. Note that both NumT1 and NumG1 are initialized with the value of 0
at the beginning of the subblock scan of ALG1 flags. After each encoded/decoded
ALG1 flag with the value of 0, NumT1 is incremented by 1, while after each
encoded/decoded ALG1 flag with the value of 1, NumG1 is incremented by 1.
Figure 8.24 shows the flow chart for context increment computation of ALG1.

Since the statistics of trailing 1’s may differ from subblock to subblock as well
as for subblocks belonging to different components or different locations within
the TB, different sets of context models are provided, both for ALG1 and ALG2,
as already mentioned above. For subblocks belonging to the luma component, 2
separate sets are used for subblocks containing the DC of the TB, i.e., for the top
left subblocks in a TB. Another two sets are given for luma subblocks containing
no DC as well as two additional sets for chroma subblocks. Depending on the value
of ctxInc(ALG1) for the last decoded ALG1 flag in the preceding subblock, the two
members of each of the relevant sets related to luma DC, luma non-DC, and chroma
are selected: One for the case of ctxInc(ALG1) D 0 and the other for the case of
ctxInc(ALG1) > 0. Thus, a total number of 30 context models are used for coding
of ALG1 and ALG2: 6 � 4 D 24 for ALG1 and 6 for ALG2. Interestingly enough,
there was a 4� reduction (from 120 to 30) in the total number of contexts used for
coding of the ALG1 and ALG2 flags during the development from HM3.0 to HM6.0
at virtually no loss in coding efficiency.

8 Entropy Coding in HEVC 257

8.6.5.2 Coding of Sign

To reduce storage cost of the coefficients, as already noted above, the trans-
form coefficient data is grouped for every 4 � 4 subblock and the sign bins
are bypass coded and signaled before coeff_abs_level_remaining bins.
Before coeff_abs_level_remaining is added, the partial value of the
coefficient level can be represented with 4 bits. Thus, CABAC in HEVC only
requires storage of 4 � 4�4 bits for each subblock (as compared to 8�8�9 bits for
a 4 � 4 transform block in H.264/AVC), and the reconstructed transform coefficient
level can be immediately written out once coeff_abs_level_remaining is
parsed.

To improve coding efficiency, the optional sign bit hiding (SBH) technique can
be used [24]. SBH is a technique to hide one bit such as, e.g., a sign of a non-zero
coefficient in a group of non-zero coefficients. For this, the encoder quantizes the
coefficients in the group such that the sum of their absolute level values is even or
odd for the sign bit to be hidden having value 0 or 1, respectively. This inherently
lossy coding technique is based on the idea that in a group of quantized coefficients,
it is likely that there is at least one coefficient level for which the value can be
increased or decreased by 1 with only marginally increased rate-distortion cost.
This is, e.g., the case, when the unquantized coefficient was close to a quantization
decision threshold, such that quantizing the coefficient to the next lower or next
higher possible quantized value are both similarly good decisions.

SBH is enabled by sign_data_hiding_enabled_flag in the PPS and
if it is enabled, it applies to each 4 � 4 subblock for which the number of non-
zero coefficients exceeds a certain threshold. This threshold was chosen in HEVC
to be a value of 3 and the sign bit to be hidden is that of the last significant scan
position in the reverse scanning pattern of each subblock. The condition for SBH
can be checked while parsing the significance map and thus, SBH does not have
a significant impact on the entropy decoding throughput. Average bit rate savings
between 0.6 and 0.9 % were reported for SBH at common test conditions [104].

8.6.5.3 Summary of Absolute Level and Sign Coding in HEVC

Figure 8.25 summarizes the last four out of up to five scan passes required for
parsing the absolute levels and signs for every non-zero 4 � 4 subblock in HEVC.

8.6.6 Comparison of HEVC and H.264/AVC

Table 8.15 summarizes the differences in transform coefficient coding between
HEVC and H.264/AVC as well as across different transform block sizes. In terms
of throughput and memory related aspects, HEVC requires 3� fewer contexts
(121 vs. 359) than H.264/AVC for transform coefficient coding. Note, however,

258 V. Sze and D. Marpe

A
bs

ol
ut

e
le

ve
l g

re
at

er
 th

an
 1

(c
oe

ff
_a

bs
_l

ev
el

_g
re

at
er

1_
fl

ag
)

A
bs

ol
ut

e
le

ve
l r

em
ai

ni
ng

(c
oe

ff
_a

bs
_l

ev
el

_r
em

ai
ni

ng
)

R
ep

ea
t

m
in

im
u

m
 o

f

(n
u

m
b

er
 o

f
n

o
n

-z
er

o
 si

g_
co

ef
f_

fl
ag

, 8
)

R
ep

ea
t

m
in

im
u

m
 o

f

(n
u

m
b

er
 o

f
n

o
n

-z
er

o
 si

g_
co

ef
f_

fl
ag

 -
 8

 +

 n
u

m
b

er
 o

f
n

o
n

-z
er

o
 co

ef
f_

ab
s_

le
ve

l_
gr

ea
te

r1
_f

la
g

 +
 n

u
m

b
er

 o
f

n
o

n
-z

er
o

 co
ef

f_
ab

s_
le

ve
l_

gr
ea

te
r2

_f
la

g,
16

)

A
bs

ol
ut

e
le

ve
l g

re
at

er
 th

an
 2

(c
oe

ff
_a

bs
_l

ev
el

_g
re

at
er

2_
fl

ag
)

R
ep

ea
t

m
in

im
u

m
 o

f

(n
u

m
b

er
 o

f
n

o
n

-z
er

o
 co

ef
f_

ab
s_

le
ve

l_
gr

ea
te

r1
_f

la
g,

1)

C
oe

ffi
ci

en
t s

ig
n

(c
oe

ff
_s

ig
n_

fl
ag

)
R

ep
ea

t
n

u
m

b
er

 o
f

n
o

n
-z

er
o

 si
g_

co
ef

f_
fl

ag
 (

m
in

u
s

o
n

e
if

 s
ig

n

d
at

a
h

id
in

g
 e

n
ab

le
d

)

C
on

te
xt

 d
ep

en
ds

 o
n

lu
m

a/
ch

ro
m

a,

w
he

th
er

 in
 D

C
 s

ub
bl

oc
k,

 n
um

be
r

of

tr
ai

lin
g

on
es

 in
 p

re
vi

ou
s

4x
4

su
bb

lo
ck

[F
ig

. 8
.2

4]

C
on

te
xt

 d
ep

en
ds

 o
n

lu
m

a/
ch

ro
m

a,

w
he

th
er

 in
 D

C
 s

ub
bl

oc
k

If
si

gn
 d

at
a

hi
di

ng
 e

na
bl

ed
, i

nf
er

hi

dd
en

 b
in

 b
as

ed
 o

n
nu

m
be

r
of

no

n-
ze

ro
 c

oe
ffi

ci
en

t b
et

w
ee

n
th

e
fir

st
 a

nd
 la

st
 n

on
-z

er
o

co
ef

fic
ie

nt
s

in

4x
4

su
bb

lo
ck

 is
 g

re
at

er
 th

an
 4

Tr
un

ca
te

d
R

ic
e

bi
na

riz
at

io
n

w
he

re

R
ic

e
pa

ra
m

et
er

 k
 c

an
 in

cr
ea

se

ba
se

d
on

 p
re

vi
ou

s
co

ef
fic

ie
nt

 le
ve

l.
k

re
se

ts
 to

 0
 fo

r
ea

ch
 4

x4
 s

ub
bl

oc
k.

[T

ab
. 8

.1
2,

 8
.1

3,
 8

.1
4]

S
ta

rt
 4

x4
 s

u
b

b
lo

ck

E
n

d
 4

x4
 s

u
b

b
lo

ck

F
ig

.8
.2

5
Fl

ow
ch

ar
tf

or
co

di
ng

th
e

sy
nt

ax
el

em
en

ts
of

ab
so

lu
te

le
ve

lm
in

us
1

an
d

si
gn

fo
r

a
4

�
4

su
bb

lo
ck

in
H

E
V

C

8 Entropy Coding in HEVC 259

that in H.264/AVC CABAC two separate sets of context models are used for
frame-based and field-based coding of SIG and LAST. Furthermore, HEVC has
a 9� lower maximum number of regular coded bins per coefficient (1.9 vs. 17.1)
than H.264/AVC.

8.7 Context Initialization

In HEVC, slices consist of an integer number of CTUs, which collectively form
an independently decodable unit. This implies in particular that at the beginning
of each slice, the parameters of all probability models must be reset to some
predefined values. Typically, without any prior knowledge of the statistical nature of
the source, each probability model would be initialized with the state corresponding
to the uniform distribution (p D 0:5). However, in order to bridge the learning
phase of the adaptive probability models and to enable a kind of preadaptation at
different coding conditions, it was found to be beneficial to provide some more
appropriate initialization value than equi-probable state for each probability model
at the beginning of each slice.

Similar to H.264/AVC, CABAC in HEVC involves a quantization-parameter
dependent initialization process that is invoked at the beginning of each slice. It
generates an initial probability state value representing the LPS probability pLPS

as well as the value of the MPS �MPS depending on the given initial value of the
luma quantization parameter SliceQPY for the slice. For that purpose, a pair of
so-called initialization parameters is stored for each model, from which a linear
relationship between SliceQPY and the model probability p is derived. In contrast
to H.264/AVC, the initialization parameters in HEVC do not directly represent the
slope m and the offset n of the corresponding linear model. Instead, these two
parameters are packed into a single 8 bit table entry in a memory-efficient way,
as will be explained in more detail in the subsequent section.

For each of the three slice types I, P, and B, separate table entries are provided.
However, for P and B slices the encoder can choose between the corresponding two
table entries of initialization parameters and signal its choice to the decoder by use
of the syntax element cabac_init_flag. Note that this mechanism is similar
to that already available in H.264/AVC where, however, the choice between three
instead of two pairs of initialization parameters is given for P and B slices [46, 63].

8.7.1 8-Bit Design

To reduce the memory requirements for context initialization tables, it was proposed
in [52] to use 8-bit values to derive the initialization parameters rather than storing
the pair of 16-bit values .m; n/ of the linear model directly, as in H.264/AVC. From
the high nibble of the 8-bit table entry InitValue, a variable slopeIdx is derived,

260 V. Sze and D. Marpe

T
ab

le
8.

15
D

if
fe

re
nc

es
be

tw
ee

n
C

A
B

A
C

fo
r

di
ff

er
en

t
T

B
si

ze
s

in
H

E
V

C
an

d
H

.2
64

/A
V

C

N
um

be
r

of
co

nt
ex

ts
fo

r
H

.2
64

/A
V

C
in

cl
ud

es
se

pa
ra

te
m

od
el

s
fo

r
bo

th
SI

G
an

d
L

A
ST

in
fr

am
e

an
d

fie
ld

co
di

ng
m

od
e

(d
en

ot
ed

by
“�

2
”

in
th

e
tw

o
ri

gh
tm

os
tc

ol
um

ns
fo

r
th

e
co

rr
es

po
nd

in
g

sy
nt

ax
el

em
en

ts
)

8 Entropy Coding in HEVC 261

while the low nibble of InitValue represents the variable offsetIdx, from which the
slope m and offset n of the linear model are derived using [29]

m D slopeIdx � 5 � 45

n D .offsetIdx << 3/ � 16:

Given the values of m and n, exactly the same initialization procedure as in
H.264/AVC is performed for derivation of the parameters of each probability model
[46,63]. Note that the 8-bit design allows to cut in half the amount of storage needed
for context initialization tables. Further restriction to two instead of three table
entries for P and B slice types reduces the memory requirements for those tables
in HEVC by at least another 12.5–15 % relative to those of an 8-bit equivalent of
H.264/AVC. Since there are 134 contexts for I slices and 154 for each of both slice
types P and B, a total amount of 442 bytes of memory is needed for storage of all
context initialization tables in HEVC.

8.7.2 Context Training

The main purpose of the context initialization tables is to bridge the learning
phase starting from a uniform distribution, i.e., the case of no prior knowledge of
the statistics of the given bin distributions, towards the well-adapted phase of the
probability estimator. Assuming that after processing of a number of N� bins, the
probability estimator that starts from p D 0:5 reaches such a well-adapted state, the
bins for each probability model were tracked for N� bins for each test sequence of
a training set at a particular QP and for a particular slice type. As a result, a model
probability p�;QP was estimated from the relative frequency obtained after coding
the first N� bins for each probability model. This training procedure was performed
separately for each QP and each of the three slice types. To finally determine the
pair of parameters .m; n/ that describe the assumed linear relationship between QP
and model probability p�;QP, a simple linear regression was applied for each slice
type. Note that a choice of N� D 50 was assumed to be appropriate.

8.7.3 Context Memory for Wavefront Parallel Processing
and Dependent Slices

For improving the parallelization and low-delay capabilities beyond the use of
regular slices, as known from H.264/AVC, a partitioning of pictures into tiles,
wavefronts and dependent slices have been introduced in HEVC. Since the use of
regular slices implies in particular that the corresponding CABAC bitstream must
be independently parsable, re-initialization of the CABAC probability models is
required at the beginning of each regular slice. Although the initialization procedure,

262 V. Sze and D. Marpe

as described above, mitigates the effect of such a rigorous partitioning, the loss in
coding efficiency is still too large to be acceptable for certain applications.

Wavefront parallel processing (WPP) is such a technique for picture partitioning
with the focus on improving the capabilities for parallel processing at virtually
no loss in coding efficiency [27, 34]. According to the WPP scheme, a picture
is partitioned into rows of CTUs with each row being represented by its own
CABAC bitstream which, however, is not fully independently parsable except for
the bitstream belonging to first row of CTUs in a picture. Nevertheless, independent
parsing and decoding of the WPP bitstreams is possible, if the processing from
one CTU row to the next complies with an offset of two consecutive CTUs. This
offset guarantees, on the one hand, that all spatial dependencies for the decoding
process are preserved and, on the other hand, it permits inheritance of the adapted
probability models from the first two CTUs in the preceding row of CTUs. The
latter functionality, however, requires to store the content of all probability models
after decoding the second CTU in a row. As already discussed above, the required
memory depends on the slice type: for I slices 134 bytes and for P and B slices each
154 bytes of memory are needed. Note, however, that by using a proper scheduling
and synchronization at the decoder, only one instance of such an additional context
memory is required in addition to the N! context memories required for parsing and
decoding N! CTU rows in parallel.

The same context memory handling applies also to the concept of dependent
slice segments [69]. In HEVC, slices are composed of one initial independent
slice segment and zero or more dependent slice segments, all of which contains an
integer number of CTUs. Compared to regular slices or independent slice segments,
dependent slice segments do not break the coding dependencies within the picture
area to which the corresponding CTUs belong. Although each dependent slice
segment has its own CABAC bitstream, the parsing of this bitstream cannot start
before the parsing of the preceding dependent or independent slice segment has been
finished. In particular, the content of all adapted probability models after parsing the
last CTU in the preceding slice segment needs to be stored and propagated to the
current dependent slice segment. Therefore, the same amount of additional context
memory is required as in the WPP case. Note, however, that WPP and dependent
slices, even though most often used together, are different concepts. While WPP is
targeting at parallel processing, dependent slices cannot be processed in parallel and
are most useful in applications requiring ultra-low delay, since each dependent slice
segment can be put into a separate transport packet. Please refer to Chap. 3 for more
details.

8.8 Overall Performance

This section analyzes the improvements of CABAC in HEVC relative to CABAC
in H.264/AVC. In the first part of this section, the impact of all relevant CABAC
changes in terms of coding efficiency is experimentally evaluated, while in the

8 Entropy Coding in HEVC 263

second part, an assessment of its throughput implications is performed. Finally, the
reduction in memory requirements is analyzed.

Simulations were performed under common test conditions set by the JCT-VC
[6, 101] as well as corresponding settings for H.264/AVC JM [30]. Note that those
common conditions for the HEVC reference software HM [35] are intended to
reflect the typical bitstreams in applications of HEVC. During standardization of
HEVC, this configuration was also used to evaluate the coding efficiency impact of
proposals.

In [6], four different test cases labeled as Intra, Random Access, Low Delay B,
and Low Delay P are specified. The Intra test case specifies that all pictures are
coded as intra pictures. In the Random Access test case, intra pictures are inserted
in regular intervals of approximately 1.1 s in order to enable random access. As a
temporal coding structure, hierarchical B pictures with groups of eight pictures are
employed. Both the Low Delay B and Low Delay P test case specify that the pictures
are coded in display order, so that the resulting structural encoding-decoding delay is
suitable for low-delay communication applications. The latter two coding conditions
differ only in the used slice type. In the Low Delay B test case, B slices are used,
whereas only P slices are used in the Low Delay P test case. Note that in those low-
delay test cases only one intra picture is used at the beginning of each test sequence.

The same set of test sequences as in the standardization process of HEVC has
been used [6]. The test sequences are categorized into different classes, each with
a particular spatial resolution. As an exception, the class labeled as Screen content
in the following represents a special class that contains test sequences with typical
screen and graphics content, but with varying spatial resolutions.

8.8.1 Coding Efficiency

Evaluation of coding efficiency for CABAC has been restricted to the syntax ele-
ments of transform coefficient coding. For that purpose, an extension of the residual
coding scheme, specified for CABAC in H.264/AVC [46], was implemented into the
HM to also cover residual coding of 16 � 16 and 32 � 32 TBs. This straightforward
extension was realized by increasing the number of successive scan positions
sharing the same context model for both SIG and LAST of those TBs. For the
remaining syntax elements related to transform coefficient level coding, the same
rules as defined for CABAC in H.264/AVC are applied [46].

Table 8.16 shows the so-called Bjøntegaard delta bit rate (BD-rate) for the
luma component [5] as a measure of the gain in coding efficiency obtained for
the transform coefficient level coding in HEVC relative to the aforementioned
straightforward CABAC extension. Overall performance gains of 3.4–4.8 % in terms
of averaged BD-rate savings can be attributed to the improved transform coefficient
coding techniques in HEVC. The largest improvements are achieved for the Intra
test case, which is mainly due to the relatively large energy of the corresponding
residual signals.

264 V. Sze and D. Marpe

Table 8.16 BD-rate performance of CABAC transform coefficient coding in HEVC compared to
the extended CABAC transform coefficient coding of H.264/AVC

Resolution and
class of test sequences Intra Random Access Low Delay B Low Delay P

Class A: 2560 � 1600 �4:08 �2:86 n/a n/a
Class B: 1920 � 1080 �4:18 �3:16 �3:17 �2:89

Class C: 832 � 416 �3:79 �2:82 �3:31 �3:13

Class D: 416 � 240 �4:15 �2:61 �2:43 �2:33

Class E: 1280 � 720 �4:92 n/a �2:94 �2:69

Class F: Screen content �7:74 �6:44 �5:79 �5:65

Average �4:78 �3:56 �3:54 �3:35

Table 8.17 Coding efficiency impact of adopted TU coding tools

Tool HM Benefit BD-rate

Neighbor based context selection for SIG [102] 1.0 coding gain �2:8% to �1:4%
Group bypass sign [9] 1.0 throughput 0.0%
Mode dependent coefficient scanning [106] 2.0 coding gain �1:2% to �0:1%
Reduce neighboring dependency for SIG [18] 2.0 throughput �0:1% to 0.0%
Reduce regular coded level bins [54, 59] 3.0 throughput �0:1% to 0.0%
Last position coding [73] 3.0 throughput �0:1% to 0.0%
Group bypass level [87] 4.0 throughput 0.0%
Diagonal Scan [86] 4.0 throughput �0:1% to 0.0%
CSBF & subblock scan [56, 76] 5.0 throughput �0:1% to 0.1%
Reduce regular coded level bins per 4 � 4 [16] 6.0 throughput �0:1% to 0.1%
Sign Bit Hiding [104] 6.0 coding gain �0:9% to �0:6%
Use CSBF of neighboring subblocks for SIG [41] 7.0 throughput 0.1% to 0.2%

Note that positive BD-rate values indicate coding loss and negative BD-rate values indicate coding
gain

Table 8.17 summarizes the individual coding efficiency impact of various
adopted tools for HEVC. Note, however, that the majority of adopted tools focused
on throughput improvements with minimal coding loss, as will be discussed in the
following.

8.8.2 Throughput Analysis

This section describes throughput of HEVC relative to H.264/AVC. The impact of
the techniques, outlined in Sect. 8.3.3, are discussed. Analysis was also done for the
worst case throughput which is defined as the case with the maximum number of
bins per 16�16 coding tree unit (CTU) or macroblock. The results for both common
conditions and worst case are summarized in Tables 8.18 and 8.19, respectively.

8 Entropy Coding in HEVC 265

Table 8.18 Distribution of regular coded, bypass and termination bins
for CABAC in H.264/AVC (JM-16.2) and HEVC (HM8.0) under
common test conditions [6, 101]

Common condition Context Bypass Term
configurations (%) (%) (%)

H.264/AVC Hierarchical B 80.5 13.6 5.9
Hierarchical P 79.4 12.2 8.4

HEVC Intra 67.9 32.0 0.1
Low Delay P 78.2 20.8 1.0
Low Delay B 78.2 20.8 1.0
Random Access 73.0 26.4 0.6

Table 8.19 Reduction of worst case number of bins and memory in HEVC
over H.264/AVC

Metric H.264/AVC HEVC Reduction

Max regular coded bins 7825 882 9�
Max bypass bins 13056 13417 1�
Max total bins 20882 14301 1:5�
Number of contexts 441 154 3�
Line buffer for 4k�2k 30720 1024 30�
Coefficient storage 8 � 8 � 9-bits 4 � 4 � 3-bits 12�
Initialization Table 1746 � 16-bits 442 � 8-bits 8�
Note max total bins includes termination mode bins, but does
not include impact of bit limit per CTU or macroblock

8.8.2.1 Reduce Regular Coded Bins

As mentioned earlier, bypass coded bins can be processed faster than regular coded
bins, since they don’t have data dependencies due to context selection, and their
interval subdivision can be performed by a simple shift. Table 8.18 shows that the
percentage of regular coded bins under common conditions is lower for HEVC than
H.264/AVC. Table 8.19 also shows that in the worst case conditions, there are 9�
fewer regular coded bins in HEVC than H.264/AVC. The reduction in regular coded
bins is primarily due to the improved binarizations of absolute coefficient levels and
components of the motion vector difference.

Using the implementation found in [103], where up to 2 regular coded bins or 4
bypass coded bins can be processed per cycle, HEVC gives 2� higher throughput
than H.264/AVC under the worst case (this includes the impact of 1:5� fewer total
bins in HEVC). This can also be translated into power saving using voltage scaling
as mentioned earlier.

266 V. Sze and D. Marpe

SIG(i) SIG(i+1) SIG(i+2) SIG(i+3) EOB

Fig. 8.26 No context speculation is required to achieve 5� parallelism when processing the
4 � 4 significance map in HEVC. i = coefficient position; EOB = end of block; SIG =
sig_coeff_flag

8.8.2.2 Group Bypass Coded Bins

Grouping bypass bins together into longer chains increases the number of bins
processed per cycle and reduces the number of cycles required to process a single
bypass bin. This is a technique used in coding of syntax elements related to motion
vector difference, intra mode, last position, and coefficient levels. For instance, for
the Kimono sequence, encoded using the RandomAccess configuration, grouping
bypass bins increases the average bypass bin run length from 2.1 to 6.4. In HEVC,
under common test conditions, up to a 30 % reduction in number of cycles can be
achieved compared to the case of no grouping [89].

The benefit of bypass grouping can also be seen in the example of Figs. 8.8 and
8.9. If bypass grouping was not used, it would take five cycles to process the 5 sign
bypass bins. Assuming the architecture of [103], where 4 bypass bins are processed
per cycle, only two cycles are required to process the 5 sign bins.

8.8.2.3 Group Bins with Same Context

Grouping bins with same context together is done for motion vector difference,
significance map and coefficient level. As a results, fewer speculative calculations
are needed to decode multiple bins per cycle since all bins that use the same logic
for context selection are grouped together.

Figure 8.3 showed the speculation required when significant_coeff
_flag and last_significant_coeff_flag are interleaved in H.264/AVC.
In HEVC, no speculation is required for significance map as shown in Fig. 8.26.
Thus for this example, the number of operations are reduced from 14 to 5.

8.8.2.4 Reduce Context Selection Dependencies

Context selection dependencies were reduced such that coding gains could be
achieved without significant penalty to throughput. For instance, the last significant
coefficient position information is sent before the SIG flag to remove a tight bin
to bin data dependency. Relative to HM1.0, the neighboring dependencies for SIG
were reduced from 10 to 5 neighboring SIG bins, and then further modified to only
depend on neighboring 4 � 4 subblocks. The remaining context selection for SIG
is only based on its position within the block as in H.264/AVC.

8 Entropy Coding in HEVC 267

Table 8.20 Summary of throughput improvement techniques with references to related standard
contributions

Technique PU coding TU coding

Reduce regular coded bins [58] [16, 54, 59]
Group bypass bins [19, 67] [87]
Group bins with same context [58] [9, 10, 73]
Reduce context modeling dependencies [18, 80, 85, 86]
Reduce total number of bins [12, 56]
Reduce memory requirements [58, 82, 90, 91] [3, 15, 20, 62, 66, 81, 82, 93, 99]
Reduce parsing dependencies [107, 108]

8.8.2.5 Reduce Total Number of Bins

When comparing the total number of bins in the worst case, and thus the throughput
requirement, HEVC has 1:5� fewer bins than H.264/AVC. Assuming the same
number of cycles per bin are required, HEVC can run at a 1:5� lower clock rate
at a lower voltage for 50 % power savings assuming linear scaling with voltage and
frequency, or it can process at a bin rate that is 1:5� faster than H.264/AVC.

8.8.2.6 Reduce Parsing Dependencies

Parsing dependencies were removed or reduced such that coding gains could
be achieve without significantly sacrificing throughput. Removing the parsing
dependency for merge and mvp enables parsing to be mostly decoupled from the
reconstruction process, as it is the case for H.264/AVC. HEVC does have parsing
dependencies on intra mode reconstruction, which are not present in H.264/AVC;
however, efforts were made to keep intra mode reconstruction simple to avoid
affecting parsing throughput.

8.8.2.7 Summary of Throughput Improvement Techniques

Table 8.20 contains a summary of the techniques for throughput improvement and
related standard contributions. An HEVC CABAC decoder that leverages several of
these improvements to achieve a throughput of over 2 Gbin/s is described in [17].

8.8.3 Memory Requirement Reduction

This section describes how the size and bandwidth requirements of various memo-
ries in CABAC have been reduced in HEVC in order to increase throughput as well
as lower implementation cost and power consumption.

268 V. Sze and D. Marpe

Table 8.21 Context memory
requirements for H.264/AVC
(4:2:0) and HEVC

H.264/AVC

(w/ interlace) (w/o interlace) HEVC

CTU/CU contexts 25 22 16
PU contexts 26 26 14
TU contexts 390 244 124

Total 441 292 154

8.8.3.1 Context Memory

The motivation for context reduction was first proposed in [81], where the number of
contexts was reduced for coeff_abs_level_greater1_flag and coeff_
abs_level_greater2_flagwithout impacting coding efficiency. Subsequent
proposals [3, 66, 93] were made to reduce the number of contexts for other syntax
elements (e.g., sig_coeff_flag). HEVC uses only 154 contexts as compared
to 441 (or 292 without interlaced) used in H.264/AVC as shown in Table 8.21; thus,
a 3� reduction in context memory size is achieved with HEVC.

8.8.3.2 Line Buffer Memory

The motivation to reduce the size of the line buffer in the CABAC was first proposed
in [90,92], where the line buffer size was reduced by changing the context selection
for motion vector difference. Subsequent proposals [15,20,58,68,82,91] were made
to further reduce neighboring dependencies to reduce the line buffer size. Based on
these optimizations, in the worst case, the line buffer only need to store the CU
depth (2-bits) of the top neighbor for context selection of split_cu_flag for
every 8 � 8 block, and to indicate if the top neighbor is skipped (1-bit) for context
selection of cu_skip_flag for ever 4 � 4 block. Assuming a minimum CU size
of 8 � 8 for a 4k � 2k sequence, HEVC only requires a line buffer size of 1,024 bits
versus 30,720 bits in H.264/AVC, which is a 30 � reduction.

8.8.3.3 Coefficient Storage

Large TB sizes have large hardware cost implications. Compared to H.264/AVC,
the 16 � 16 and 32 � 32 TBs in HEVC have 4� and 16� more coefficients
than an 8 � 8 TB, respectively, and consequently require an increase in storage
cost. Several techniques were used to reduce the coefficient storage cost. First, the
sign information is sent before coeff_abs_level_remaining such that only
3-bits storage is required per coefficient for the partial decoded value (if stored as
a 2-bit number with a range from 0 to 3, and a sign bit). Second, the coefficient
information is interleaved at a 4 � 4 subblock level, such that the fully constructed
coefficient can be achieved for every subblock and be sent out to the next module
[75]. Thus, only a coefficient storage of 4 � 4�3-bits is required in HEVC CABAC

8 Entropy Coding in HEVC 269

(compared with 8 � 8 � 9-bit in H.264/AVC) in order to reconstruct the coefficient
levels.

8.8.3.4 Context Initialization Tables

As already discussed in Sect. 8.7, the memory requirements for storing the context
initialization tables in HEVC have been reduced to a large extent when compared to
those of H.264/AVC. Accounting for the reduction in number of contexts, number
of bits per InitValue and number of InitValue sets, HEVC has an 9� smaller context
initialization table than H.264/AVC.

8.9 Conclusions

Entropy coding was a highly active area of development throughout the HEVC
standardization process with proposals for both coding efficiency and throughput
improvement. The trade-off between the two requirements were carefully evaluated
in multiple Core Experiments and Ad Hoc Groups [8,11,13,37,97]. Beside coding-
efficiency improving technology, many techniques were incorporated to improve
throughput including reducing regular coded bins, grouping bypass bins together,
grouping bins that use the same contexts together, reducing context selection
dependencies, and reducing the total number of signaled bins. CABAC memory
requirements were also significantly reduced. The final design of CABAC in
HEVC shows that by accounting for implementation cost and coding efficiency
when designing entropy coding algorithms results in a design that can maximize
processing speed and minimize area cost, while delivering high coding efficiency in
the latest video coding standard.

References

1. Alshina E, Alshin A (2011) Multi-parameter probability up-date for CABAC, Joint Collabo-
rative Team on Video Coding (JCT-VC), Document JCTVC-F254, Torino, July 2011

2. Amonou I, Cammas N, Clare G, Jung J, Noblet L, Pateux S, Matsuo S, Takamura S, Boon
CS, Bossen F, Fujibayashi S, Kanumuri S, Suzuki Y, Takiue J, Tan TK, Drugeon V, Lim CS,
Narroschke M, Nishi T, Sasai H, Shibahara Y, Uchibayashi K, Wedi T, Wittmann S, Bordes P,
Gomila C, Guillotel P, Guo L, François E, Lu X, Sole J, Vieron J, Xu Q, Yin P, Zheng Y (2010)
Video coding technology proposal by France Telecom, NTT, NTT DoCoMo, Panasonic and
Technicolor, Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-A114,
Dresden, Apr. 2010

3. Auyeung C, Xu J, Korodi G, Zan J, He D, Piao Y, Alshina E, Min J, Park J (2011) A combined
proposal from JCTVC-G366, JCTVC-G657, and JCTVC-G768 on context reduction of
significance map coding with CABAC, Joint Collaborative Team on Video Coding (JCT-VC),
Document JCTVC-G1015, Geneva, Nov. 2011

270 V. Sze and D. Marpe

4. Belyaev E, Gilmutdinov M, Turlikov A (2006) Binary arithmetic coding system with
adaptive probability estimation by “virtual sliding window”. In: 2006 IEEE tenth international
symposium on consumer electronics (ISCE ’06), pp 1–5

5. Bjøntegaard G (2001) Calculation of average PSNR differences between RD curves, ITU-T
SG16 Q6 Video Coding Experts Group (VCEG), Document VCEG-M33, Austin, Apr. 2001

6. Bossen F (2012) HM 8 common test conditions and software reference configurations, Joint
Collaborative Team on Video Coding (JCT-VC), Document JCTVC-J1100, Stockholm, July
2012

7. Bross B, Jung J (2011) Description of core experiment CE13: motion data parsing robustness
and throughput, Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-
F913, Torino, July 2011

8. Budagavi M (2010) Tool experiment 8: parallel entropy coding, Joint Collaborative Team on
Video Coding (JCT-VC), Document JCTVC-B308, Geneva, July 2010

9. Budagavi M (2010) TE8: TI parallel context processing (PCP) proposal, Joint Collaborative
Team on Video Coding (JCT-VC), Document JCTVC-C062, Guangzhou, Oct. 2010

10. Budagavi M, Demircin MU (2010) Parallel context processing techniques for high coding
efficiency entropy coding in HEVC, Joint Collaborative Team on Video Coding (JCT-VC),
Document JCTVC-B088, Geneva, July 2010

11. Budagavi M, Martin-Cocher G, Segall A (2010) JCT-VC AHG report: entropy coding, Joint
Collaborative Team on Video Coding (JCT-VC), Document JCTVC-D009, Daegu, Jan. 2010

12. Budagavi M, Sze V (2012) coeff_abs_level_remaining maximum codeword length reduction,
Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-J0142, Stockholm,
July 2012

13. Budagavi M, Segall A (2010) AHG report: parallel entropy coding, Joint Collaborative Team
on Video Coding (JCT-VC), Document JCTVC-B009, Geneva, July 2010

14. Chandrakasan A, Sheng S, Brodersen R (1992) Low-power CMOS digital design. IEEE J
Solid-State Circuits 27(4):473–484. doi:10.1109/4.126534

15. Chen C, Lee T (2011) Simplified context model selection for block level syntax coding, Joint
Collaborative Team on Video Coding (JCT-VC), Document JCTVC-F497, Torino, July 2011

16. Chen J, Chien WJ, Joshi R, Sole J, Karczewicz M (2012) Non-CE1: throughput improvement
on CABAC coefficients level coding, Joint Collaborative Team on Video Coding (JCT-VC),
Document JCTVC-H0554, San Jose, Feb. 2012

17. Y. H. Chen, V. Sze, “A 2014 Mbin/s Deeply Pipelined CABAC Decoder For HEVC,” IEEE
International Conference on Image Processing (ICIP), Oct. 2014

18. Cheung A, Lui W (2011) Parallel processing friendly simplified context selection of
significance map, Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-
D260, Daegu, Jan. 2010

19. Chien WJ, Chen J, Coban M, Karczewicz M (2012) Intra mode coding for INTRA_NxN,
Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-I0302, Geneva,
Apr. 2012

20. Chien WJ, Karczewicz M, Wang X (2011) Memory and parsing friendly CABAC context,
Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-F606, Torino, July
2011

21. ChienWJ, Karczewicz M, Sole J, Chen J (2012) On coefficient level remaining coding, Joint
Collaborative Team on Video Coding (JCT-VC), Document JCTVC-I0487, Geneva, Apr.
2012

22. Chono K (2012) BoG report on intra mode coding cleanup and simplification, Joint
Collaborative Team on Video Coding (JCT-VC), Document JCTVC-H0712, San Jose, Feb.
2012

23. Chono K, Aoki H (2011) Efficient binary representation of cu_qp_delta syntax for CABAC,
Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-F046, Torino, July
2011

24. Clare G, Henry F, Jung J (2011) Sign data hiding, Joint Collaborative Team on Video Coding
(JCT-VC), Document JCTVC-G271, Geneva, Nov. 2011

8 Entropy Coding in HEVC 271

25. Finchelstein D, Sze V, Chandrakasan A (2009) Multicore processing and efficient on-chip
caching for H.264 and future video decoders. IEEE Trans CSVT 19(11):1704–1713

26. Fuldseth A, Bjøntegaard G, Budagavi M, Sze V (2011) CE10: core transform design for
HEVC, Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-G495,
Geneva, Nov. 2011

27. Gordon C, Henry F, Pateux S (2011) Wavefront parallel processing for HEVC encoding and
decoding, Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-F274,
Torino, July 2011

28. Guo X, Huang YW, Lei S (2009) Ordered entropy slices for parallel CABAC, ITU-T SG16
Q6 Video Coding Experts Group (VCEG), Document VCEG-AK25, Yokohoma, Apr. 2009

29. Guo L, Sole J, Joshi R, Karczewicz M, Yeo C, Tan Y, Li Z (2012) CE1 B3: 8-bit linear
initialization for CABAC, Joint Collaborative Team on Video Coding (JCT-VC), Document
JCTVC-H0535, San Jose, Feb. 2012

30. H.264/AVC Reference Software, JM 16.2. http://iphome.hhi.de/suehring/tml/, 2009
31. He D, Korodi G, Martin-Cocher G, Yang EH, Yu X, Zan J (2010) Video coding technology

proposal by research in motion, Joint Collaborative Team on Video Coding (JCT-VC),
Document JCTVC-A120, Dresden, Apr. 2010

32. Helle P, Oudin S, Bross B, Marpe D, Bici M, Ugur K, Jung J, Clare G, Wiegand T
(2012) Block merging for quadtree-based partitioning in HEVC. IEEE Trans CSVT 22(12):
1720–1731

33. Hellman T, Yu Y (2011) Decoder performance restrictions due to merge/MVP index parsing,
Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-F341, Torino, July
2011

34. Henry F, Pateux S (2011) Wavefront parallel processing, Joint Collaborative Team on Video
Coding (JCT-VC), Document JCTVC-E196, Geneva, Mar. 2011

35. HEVC Test Model, HM 8.0. https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/
HM-8.0/, 2012

36. Huang YW, Alshina E (2012) BoG report on integrated text of SAO adoptions on top of
JCTVC-I0030, Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-
I0602, Geneva, Apr. 2012

37. Joshi R, Alshina E, Sasai H, Kirchhoffer H, Lainema J (2011) Description of core experiment
1: entropy coding, Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-
F901, Torino, July 2011

38. Jung J, Laroche G (2006) Competition-based scheme for motion vector selection and coding,
ITU-T SG16 Q6 Video Coding Experts Group (VCEG), Document VCEG-AC06, Klagenfurt,
July 2006

39. Karczewicz M, Chen P, Joshi R, Wang X, Chien WJ, Panchal R (2010) Video coding
technology proposal by Qualcomm, Joint Collaborative Team on Video Coding (JCT-VC),
Document JCTVC-A121, Dresden, Apr. 2001

40. Kim WS, Kwon DK (2011) Non-CE8: method of visual coding artifact removal for SAO,
Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-G0680, Geneva,
Mar. 2011

41. Kumakura T, Fukushima S (2012) Non-CE3: simplified context derivation for significance
map, Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-I0296,
Geneva, Apr. 2012

42. Lan C, Xu J, Sullivan GJ, Wu F (2012) Intra transform skipping, Joint Collaborative Team on
Video Coding (JCT-VC), Document JCTVC-I0408, Geneva, Apr. 2012

43. Marpe D, Wiegand T (2003) A highly efficient multiplication-free binary arithmetic coder
and its application in video coding. In: IEEE international conference on image processing,
pp 263–266

44. Marpe D, Blättermann G, Wiegand T (2001) Adaptive codes for H.26L, ITU-T SG16 Q6
Video Coding Experts Group (VCEG), Document VCEG-L13, Eibsee, Jan. 2001

45. Marpe D, Heising G, Blättermann G,Wiegand T (2002) Fast arithmetic coding for CABAC,
Joint Video Team (JVT), Document JVT-C061, Fairfax, Mar. 2002

http://iphome.hhi.de/suehring/tml/
https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-8.0/
https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-8.0/

272 V. Sze and D. Marpe

46. Marpe D, Schwarz H, Wiegand T (2003) Context-based adaptive binary arithmetic coding in
the H.264/AVC video compression standard. IEEE Trans CSVT 13(7):620–636

47. Marpe D, Marten G, Cycon HL (2006) A fast renormalization technique for H. 264/MPEG4-
AVC arithmetic coding. In: 51st Internationales Wissenschaftliches Kolloquium Technische
Universität Ilmenau

48. Marpe D, Marten G, Wiegand T (2006) Fast CABAC renormalization for H.264/MPEG4-
AVC. Joint Video Team (JVT), Document JVT-U084, Hangzhou, Oct. 2005

49. Marpe D, Bosse S, Bross B, Helle P, Hinz T, Kirchhoffer H, Lakshman H, Oudin S, Schwarz
H, Siekmann M, Sühring K, Winken M, Wiegand T (2010) Video compression using nested
quadtree structures, leaf merging and improved techniques for motion representation and
entropy coding. IEEE Trans CSVT 20(12):1676–1687

50. Marpe D, Schwarz H, Wiegand T (2010) Entropy coding in video compression using
probability interval partitioning. In: Picture coding symposium (PCS), pp 66–69

51. Marpe D, Schwarz H, Wiegand T (2010) Novel entropy coding concept, Joint Collaborative
Team on Video Coding (JCT-VC), Document JCTVC-A032, Dresden, Apr. 2010

52. Marpe D, Kirchhoffer H, Bross B, George V, Nguyen T, PreißM, Siekmann M, Stegemann J,
Wiegand T (2011) Unified PIPE-based entropy coding for HEVC, Joint Collaborative Team
on Video Coding (JCT-VC), Document JCTVC-F268, Torino, July 2011

53. McCann K, Bross B, Sekiguchi S, HanWJ (2010) HEVC test model 1 (HM 1) encoder
description, Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-C402,
Guangzhou, Oct. 2010

54. Nguyen T (2011) CE11: coding of transform coefficient levels with Golomb-Rice codes, Joint
Collaborative Team on Video Coding (JCT-VC), Document JCTVC-E253, Geneva, Mar. 2011

55. Nguyen T, Schwarz H, Kirchhoffer H, Marpe D, Wiegand T (2010) Improved context
modeling for coding quantized transform coefficients in video compression. In: Picture coding
symposium (PCS), pp 378–381

56. Nguyen N, Ji T, He D, Martin-Cocher G, Song L (2011) Multi-level significant maps for large
transform units, Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-
G644, Geneva, Nov. 2011

57. Nguyen T, Marpe D, Schwarz H, Wiegand T (2011) CE11: evaluation of transform coding
tools in HE configuration, Joint Collaborative Team on Video Coding (JCT-VC), Document
JCTVC-D061, Daegu, Jan. 2011

58. Nguyen T, Marpe D, Schwarz H, Wiegand T (2011) Modified binarization and coding of
MVD for PIPE/CABAC, Joint Collaborative Team on Video Coding (JCT-VC), Document
JCTVC-F455, Torino, July 2011

59. Nguyen T, Winken M, Marpe D, Schwarz H, Wiegand T (2011) Reduced complexity
entropy coding of transform coefficient levels using a combination of VLC and PIPE, Joint
Collaborative Team on Video Coding (JCT-VC), Document JCTVC-D336, Daegu, Jan. 2011

60. Nguyen N, Ji T, He D, Martin-Cocher G (2012) Non-CE1: throughput improvement on
CABAC coefficients level coding, Joint Collaborative Team on Video Coding (JCT-VC),
Document JCTVC-H0554, San Jose, Feb. 2012

61. Peng X, Lan C, Xu J, Sullivan GJ (2012) Inter transform skipping, Joint Collaborative Team
on Video Coding (JCT-VC), Document JCTVC-J0237, Stockholm, July 2012

62. Piao Y, Min J, Alshina E, Park JT (2011) Reduced chroma contexts for significance map
coding in CABAC, Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-
G781, Geneva, Nov. 2011

63. ITU-T Rec. H.264 and ISO/IEC 14496-10 (2003) Advanced video coding
64. ITU-T Rec. H.265 and 23008-2 (2013) High efficiency video coding
65. Ryabko BY (1996) Imaginary sliding window as a tool for data compression. Probl Inf

Transm 32(2):156–163
66. Sasai H, Nishi T (2011) CE11: context size reduction for the significance map, Joint

Collaborative Team on Video Coding (JCT-VC), Document JCTVC-E227, Geneva, Mar. 2011
67. Sasai H, Nishi T (2011) Modified MVD coding for CABAC, Joint Collaborative Team on

Video Coding (JCT-VC), Document JCTVC-F423, Torino, July 2011

8 Entropy Coding in HEVC 273

68. Sasai H, Nishi T (2011) Modified context derivation for neighboring dependency reduction,
Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-F429, Torino, July
2011

69. Schierl T, Goerge V, Henkel A, Marpe D (2012) Dependent slices, Joint Collaborative Team
on Video Coding (JCT-VC), Document JCTVC-I0229, Geneva, Apr. 2012

70. Seregin V, Kim IK (2011) Binarisation modification for last position coding, Joint Collabora-
tive Team on Video Coding (JCT-VC), Document JCTVC-F375, Torino, July 2011

71. Seregin V, Sole J, Karczewicz M,Wang X, Sze V, Budagavi M (2012) AHG5: bypass bins
for reference index coding, Joint Collaborative Team on Video Coding (JCT-VC), Document
JCTVC-J0098, Stockholm, July 2012

72. Shannon CE (1948) A mathematical theory of communications. Bell Syst Tech J 27:379–423
73. Sole J, Joshi R, Karczewicz M (2011) CE11: parallel context processing for the significance

map in high coding efficiency, Joint Collaborative Team on Video Coding (JCT-VC),
Document JCTVC-E338, Geneva, Mar. 2011

74. Sole J, Joshi R, Karczewicz M (2011) CE11: unified scans for the significance map and
coefficient level coding in high efficiency, Joint Collaborative Team on Video Coding (JCT-
VC), Document JCTVC-F288, Torino, July 2011

75. Sole J, Joshi R, Karczewicz M (2011) CE11: scanning of residual data in HE, Joint
Collaborative Team on Video Coding (JCT-VC), Document JCTVC-F552, Torino, July 2011

76. Sole J, Joshi R, Karczewicz M (2011) Non-CE11: diagonal sub-block scan for HE residual
coding, Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-G323,
Geneva, Nov. 2011

77. Sole J, Joshi R, Karczewicz M (2012) Removal of the 8x2/2x8 coefficient groups, Joint
Collaborative Team on Video Coding (JCT-VC), Document JCTVC-J0256, Stockholm, July
2012

78. Stegemann J, Kirchhoffer H, Marpe D, Wiegand T (2011) Non-CE1: counterbased probability
model update with adapted arithmetic coding engine, Joint Collaborative Team on Video
Coding (JCT-VC), Document JCTVC-G547, Geneva, Nov. 2011

79. Sugio T, Nishi T (2011) Parsing robustness for Merge/AMVP, Joint Collaborative Team on
Video Coding (JCT-VC), Document JCTVC-F470, Torino, July 2011

80. Sze V (2011) Context selection complexity in HEVC CABAC, Joint Collaborative Team on
Video Coding (JCT-VC), Document JCTVC-D244, Daegu, Jan. 2011

81. Sze V (2011) Reduction in contexts used for significant_coeff_flag and coefficient level, Joint
Collaborative Team on Video Coding (JCT-VC), Document JCTVC-F132, Torino, July 2011

82. Sze V (2011) BoG report on context reduction for CABAC, Joint Collaborative Team on
Video Coding (JCT-VC), Document JCTVC-F746, Torino, July 2011

83. Sze V, Allen R (2011) BoG report on intra mode coding, Joint Collaborative Team on Video
Coding (JCT-VC), Document JCTVC-G1017, Geneva, Nov. 2011

84. Sze V, Budagavi M (2008) Parallel CABAC, ITU-T SG16 Q6, Document COM-16-C-334-E,
Geneva, Apr. 2008

85. Sze V, Budagavi M (2010) Parallelization of HHI_TRANSFORM_CODING, Joint Collabo-
rative Team on Video Coding (JCT-VC), Document JCTVC-C227, Guangzhou, Oct. 2010

86. Sze V, Budagavi M (2011) CE11: parallelization of HHI_TRANSFORM_CODING fixed
diagonal scan, Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-
F129, Torino, July 2011

87. Sze V, BudagaviM(2011) Parallel context processing of coefficient level, Joint Collaborative
Team on Video Coding (JCT-VC), Document JCTVC-F130, Torino, July 2011

88. Sze V, Budagavi M (2012) High throughput CABAC entropy coding in HEVC. IEEE Trans
CSVT 22(12):1778–1791. doi:10.1109/TCSVT.2012.2221526

89. Sze V, Budagavi M (2013) A comparison of CABAC throughput for HEVC/H.265 vs.
AVC/H.264. In: IEEE workshop on signal processing systems

90. Sze V, Chandrakasan AP (2011) Joint algorithm-architecture optimization of CABAC, Joint
Collaborative Team on Video Coding (JCT-VC), Document JCTVC-E324, Geneva, Mar. 2011

274 V. Sze and D. Marpe

91. Sze V, Chandrakasan AP (2011) Simplified MVD context selection (extension of JCTVC-
E324), Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-F133,
Torino, July 2011

92. Sze V, Chandrakasan AP (2011) Joint algorithm-architecture optimization of CABAC to
increase speed and reduce area cost. In: IEEE international conference on acoustics, speech
and signal processing, pp 1577–1580

93. Sze V, Sasai H (2011) Modification to JCTVC-E227 in CE11 for reduced dependency with
MDCS, Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-E489,
Geneva, Mar. 2011

94. Sze V, Budagavi M, Chandrakasan A, Zhou M (2008) Parallel CABAC for low power video
coding. In: IEEE international conference on image processing, pp 2096–2099

95. Sze V, Budagavi M, Demircin MU (2008) CABAC throughput requirements for real-time
decoding, ITU-T SG16 Q6 Video Coding Experts Group (VCEG), Document VCEG-AJ31,
San Diego, Oct. 2008

96. Sze V, Budagavi M, Chandrakasan A (2009) Massively parallel CABAC, ITU-T SG16 Q6
Video Coding Experts Group (VCEG), Document VCEG-AL21, Geneva, July 2009

97. Sze V, Panusopone K, Chen J, Nguyen T, Coban M (2010) Description of core experiment 11:
coefficient scanning and coding, Joint Collaborative Team on Video Coding (JCT-VC),
Document JCTVC-C511, Guangzhou, Oct. 2010

98. Sze V, Budagavi M, Seregin V, Sole J, Karczewicz M (2012) AHG5: bin reduction for delta
QP coding, Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-J0089,
Stockholm, July 2012

99. Terada K, Sasai H, Nishi T (2012) Non-CE11: simplification of context selection for
significant_coeff_flag, Joint Collaborative Team on Video Coding (JCT-VC), Document
JCTVC-H0290, San Jose, Feb. 2012

100. Ugur K, Saxena A (2012) CE1: summary report of core experiment on intra transform mode
dependency simplifications, Joint Collaborative Team on Video Coding (JCT-VC), Document
JCTVC-J0021, Stockholm, July 2012

101. ITU-T SG16 Q6 and ISO/IEC JTC1/SC29/WG11 (2010) Joint call for proposals on
video compression technology. ITU-T SG16 Q6 document VCEG-AM91 and ISO/IEC
JTC1/SC29/WG11 document N11113, Kyoto, 22 Jan. 2010

102. Winken M, Bosse S, Bross B, Helle P, Hinz T, Kirchhoffer H, Lakshman H, Marpe D,
Oudin S, PreißM, Schwarz H, Siekmann M, Sühring K, Wiegand T (2010) Description of
video coding technology proposal by Fraunhofer HHI, Joint Collaborative Team on Video
Coding (JCT-VC), Document JCTVC-A116, Dresden, Apr. 2010

103. Yang YC, Guo JI (2009) High-throughput H.264/AVC high-profile CABAC decoder
for HDTV applications. IEEE Trans CSVT 19(9):1395–1399. doi:10.1109/TCSVT.2009.
2020340

104. Yu X,Wang J, He D, Martin-Cocher G, Campbell S (2012) Multiple sign bits hiding, Joint
Collaborative Team on Video Coding (JCT-VC), Document JCTVC-H0481, San Jose, 2012

105. Zhao J, Segall A (2008) Entropy slices for parallel entropy decoding, ITU-T SG16 Q6,
Document COM-16-C-405-E, Geneva, Apr. 2008

106. Zheng Y, Coban M, Wang X, Sole J, Joshi R, Karczewicz M (2011) CE11: mode dependent
coefficient scanning, Joint Collaborative Team on Video Coding (JCT-VC), Document
JCTVC-D393, Daegu, Jan. 2011

107. Zhou M, Sze V (2011) A study on HM2.0 bitstream parsing and error resiliency issue, Joint
Collaborative Team on Video Coding (JCT-VC), Document JCTVC-E118, Geneva, Mar. 2011

108. Zhou M, Sze V, Mastuba Y (2011) A study on HEVC parsing throughput issue, Joint
Collaborative Team on Video Coding (JCT-VC), Document JCTVC-F068, Torino, July 2011

	8 Entropy Coding in HEVC
	8.1 Introduction
	8.2 CABAC Overview
	8.2.1 Binarization
	8.2.2 Context Modeling, Probability Estimation and Assignment
	8.2.3 Multiplication-Free Binary Arithmetic Coding: The M Coder
	8.2.3.1 Regular Coding Mode
	8.2.3.2 Bypass Coding Mode
	8.2.3.3 Fast Renormalization
	8.2.3.4 Termination

	8.3 Design Considerations
	8.3.1 Brief Summary of HEVC Block Structures and CABAC Coding Efficiency Improvements
	8.3.1.1 Coefficient Grouping into Subblocks
	8.3.1.2 Hierarchy of Significance Flags
	8.3.1.3 Context Modeling for Coding of Significance Flags

	8.3.2 CABAC Throughput Bottlenecks
	8.3.3 Summary of Techniques for CABAC Throughput Improvements
	8.3.3.1 Reduce Regular Coded Bins
	8.3.3.2 Group Bypass Coded Bins
	8.3.3.3 Group Bins with Same Context
	8.3.3.4 Reduce Context Modeling Dependencies
	8.3.3.5 Reduce Total Number of Bins
	8.3.3.6 Reduce Parsing Dependencies
	8.3.3.7 Reduce Memory Requirements

	8.4 Coding Tree Unit and Coding Unit Syntax Elements
	8.4.1 Coding Block Structure
	8.4.2 Prediction Mode and Prediction Block Structure
	8.4.3 Signaling of Special Coding Modes
	8.4.4 Signaling of Block-Based Quantization Parameter Change
	8.4.5 Signaling of SAO Parameters
	8.4.6 Comparison of HEVC and H.264/AVC

	8.5 Prediction Unit Syntax Elements
	8.5.1 Motion Data Coding
	8.5.1.1 Signaling of Merge Mode
	8.5.1.2 Signaling of Motion Vector Differences, Reference Indices, and Inter-Prediction Direction

	8.5.2 Intra Prediction Mode Coding
	8.5.3 Comparison of HEVC and H.264/AVC

	8.6 Transform Unit Syntax Elements
	8.6.1 Transform Block Structure
	8.6.2 Transform Skip
	8.6.3 Coded Block Flags
	8.6.4 Significance Map
	8.6.4.1 sig_coeff_flag (SIG)
	8.6.4.2 Last Position Coding
	8.6.4.3 coded_sub_block_flag (CSBF)
	8.6.4.4 Summary of Significance Map Coding in HEVC

	8.6.5 Absolute Coefficient Level and Coefficient Sign
	8.6.5.1 Coding of Absolute Level
	8.6.5.2 Coding of Sign
	8.6.5.3 Summary of Absolute Level and Sign Coding in HEVC

	8.6.6 Comparison of HEVC and H.264/AVC

	8.7 Context Initialization
	8.7.1 8-Bit Design
	8.7.2 Context Training
	8.7.3 Context Memory for Wavefront Parallel Processing and Dependent Slices

	8.8 Overall Performance
	8.8.1 Coding Efficiency
	8.8.2 Throughput Analysis
	8.8.2.1 Reduce Regular Coded Bins
	8.8.2.2 Group Bypass Coded Bins
	8.8.2.3 Group Bins with Same Context
	8.8.2.4 Reduce Context Selection Dependencies
	8.8.2.5 Reduce Total Number of Bins
	8.8.2.6 Reduce Parsing Dependencies
	8.8.2.7 Summary of Throughput Improvement Techniques

	8.8.3 Memory Requirement Reduction
	8.8.3.1 Context Memory
	8.8.3.2 Line Buffer Memory
	8.8.3.3 Coefficient Storage
	8.8.3.4 Context Initialization Tables

	8.9 Conclusions
	References

