
Chapter 7
In-Loop Filters in HEVC

Andrey Norkin, Chih-Ming Fu, Yu-Wen Huang, and Shawmin Lei

Abstract The HEVC standard specifies two in-loop filters, a deblocking filter and
a sample adaptive offset (SAO). The in-loop filters are applied in the encoding
and decoding loops, after the inverse quantization and before saving the picture
in the decoded picture buffer. The deblocking filter is applied first. It attenuates
discontinuities at the prediction and transform block boundaries. The second in-loop
filter, SAO, is applied to the output of the deblocking filter and further improves the
quality of the decoded picture by attenuating ringing artifacts and changes in sample
intensity of some areas of a picture. The most important advantage of the in-loop
filters is improved subjective quality of reconstructed pictures. In addition, using the
filters in the decoding loop also increases the quality of the reference pictures and
hence also the compression efficiency.

7.1 Introduction

The in-loop filters constitute an important part of the HEVC video coding standard.
As seen from the name, the in-loop filters are applied in the encoding and decoding
loops, after the inverse quantization but before saving the picture to the decoded
picture buffer. HEVC standard specifies two in-loop filters, a deblocking filter,
which is applied first, and a sample adaptive offset (SAO), which is applied to the
output of the [40] deblocking filter. The deblocking filter attenuates discontinuities
at prediction and transform block boundaries [36, 37]. The SAO further improves

A. Norkin (�)
Ericsson Research, Ericsson, Stockholm, Sweden
e-mail: andrey.norkin@ericsson.com

C.-M. Fu • Y.-W. Huang • S. Lei
MediaTek, Hsinchu, Taiwan
e-mail: chihming.fu@mediatek.com; yuwen.huang@mediatek.com; shawmin.lei@mediatek.com

V. Sze et al. (eds.), High Efficiency Video Coding (HEVC): Algorithms and Architectures,
Integrated Circuits and Systems, DOI 10.1007/978-3-319-06895-4__7,
© Springer International Publishing Switzerland 2014

171

mailto:andrey.norkin@ericsson.com
mailto:chihming.fu@mediatek.com
mailto:yuwen.huang@mediatek.com
mailto:shawmin.lei@mediatek.com

172 A. Norkin et al.

Entropy
Decoding

Intra Mode Information
Inter Mode Information

Residues

Inverse
Quantization

Inverse
TransformReconstruction

Decoded Picture
Buffer

Intra
Prediction

Motion
Compensation

Deblocking Filter

Sample Adaptive Offset Information

Sample Adaptive Offset

Fig. 7.1 Block diagram of HEVC decoder. Reproduced with permission from [13], © 2012 IEEE

the quality of the decoded picture by reducing the ringing artifacts and changes in
the sample intensity of areas of a reconstructed picture. Since the deblocking and
SAO attenuate different artifacts, their benefits are additive when used together. An
HEVC encoder can turn on and off each of the in-loop filters independently.

Modern video coding standards try to remove as much redundancy from the
coded representation of video as possible. One of the sources of redundancy is
the temporal redundancy, i.e. similarity between the subsequent pictures in a video
sequence. This type of redundancy is effectively removed by motion prediction.
Another type of redundancy is spatial redundancy and is removed by intra-
prediction from the neighboring samples and spatial transforms. In HEVC, both
the motion prediction and transform coding are block-based. The size of motion-
predicted blocks varies from 8 � 4 and 4 � 8, to 64 � 64 luma samples, while the
size of block transforms and intra-predicted blocks varies from 4 � 4 to 32 � 32
samples.

These blocks are coded relatively independently from the neighboring blocks and
approximate the original signal with some degree of similarity. Since coded blocks
only approximate the original signal, the difference between the approximations
may cause discontinuities at the prediction and transform block boundaries [27, 36,
37]. These discontinuities are attenuated by the deblocking filter.

Larger transforms used in HEVC can also introduce more ringing artifacts
compared to H.264/AVC that mainly come from quantization error of transform
coefficients [17]. In addition to that, HEVC uses 8 or 7-tap fractional luma sample
interpolation and 4-tap fractional chroma sample interpolation, while H.264/AVC
uses 6-tap and 2-tap for luma and chroma respectively. A higher number of
interpolation taps can also lead to more ringing artifacts. These artifacts are
corrected by a new filter: sample adaptive offset (SAO). As shown in Fig. 7.1, SAO
is applied to the output of the deblocking filter when the deblocking filter is turned
on, otherwise, it is applied to the reconstructed picture

There are several reasons for making in-loop filters a part of the standard. In
principle, the in-loop filters can also be applied as post-filters. An advantage of

7 In-Loop Filters in HEVC 173

using post-filters is that decoder manufacturers can create post-filters that better
suit their needs. However, if the filter is a part of the standard, the encoder has
control over the filter and can assure the necessary level of quality by instructing
the decoder to enable the filter and specifying the filter parameters. Moreover,
since the in-loop filters increase the quality of the reference pictures, they also
improve the compression efficiency. A post-filter would also require an additional
buffer for filtered pictures, while the output of an in-loop filter can be kept in the
decoded picture buffer (DPB). There is also another specific advantage of using
the deblocking filter as an in-loop filter compared to the deblocking post-filter. If
the deblocking is applied as a post-filter, block artifacts can be copied by motion
estimation inside the blocks, which can make the artifacts detection more difficult
and increases the deblocking complexity compared to the in-loop filtering, which
needs to be applied only to the block boundaries [27, 36, 37].

It is known that the deblocking in-loop filter in H.264/AVC constitutes a
significant part of the decoder complexity [27]. Therefore, when designing the in-
loop filters in HEVC, efforts have been spent on reducing the loop filters complexity,
while still achieving improvements of subjective quality. The HEVC in-loop filters
are easily parallelizable, which can bring advantages when running the HEVC
decoders and encoders on multi-core architectures.

This chapter is organized as follows. Section 7.2 of the chapter describes the
HEVC deblocking filter. Section 7.3 describes SAO, in particular, two types of
sample offsets: an edge offset and a band offset. Section 7.4 discusses implementa-
tion and parallelization aspects of the HEVC in-loop filters as well as the details
of CTU-based implementation of the filter operations. Section 7.5 demonstrates
the subjective quality and coding efficiency improvements. Section 7.6 summarizes
the main differences between the in-loop filters in HEVC and H.264/AVC while
Sect. 7.7 concludes the chapter.

7.2 Deblocking Filter

7.2.1 Block Artifacts in Video Coding

As mentioned in Sect. 7.1, in HEVC both the motion prediction and transform
coding are block-based. The size of motion predicted blocks varies from 4 � 8 and
8 � 4 to 64 � 64 luma samples, while the size of block transforms and intra-predicted
blocks varies from 4 � 4 to 32 � 32 samples. These blocks are coded relatively inde-
pendently from their neighboring blocks and approximate the original signal with
some degree of similarity. Since coded blocks only approximate the original signal,
the difference between the approximations may cause discontinuities at the predic-
tion and transform block boundaries. For example, motion prediction of the adjacent
blocks may come from the non-adjacent areas of a reference picture (see Fig. 7.2) or
even from different reference pictures. In case of non-overlapping block transforms,

174 A. Norkin et al.

Current pictureReference picture

Block
artifact

Fig. 7.2 Block artifact may
be created when adjacent
blocks are predicted from
non-adjacent areas in the
reference picture

p3
p2 p1

p0

q3q2q1
q0

PU/TU boundary

Fig. 7.3 Example of block
artifact in one dimension [37]

used in HEVC, coarse quantization can also create discontinuities at the block
boundaries. In highly detailed areas with high-frequency content, such artifacts can
be masked by the human visual system. However, in the smooth areas, discontinu-
ities between the blocks are easily noticed by a viewer and may cause significant
degradation of the perceived video quality. The example of a block artifact in one
dimension is shown in Fig. 7.3. The horizontal axis shows the sample positions
along a horizontal or vertical 1-D line, and the vertical axis shows the sample values.

Deblocking filter attenuates the artifacts in the areas, where they are mostly
visible, i.e. in the smooth, uniform areas. The excessive filtering in the highly
detailed areas should be avoided since it can cause undesirable blurring. The
artifacts in those areas are rarely noticed by the human eye, while it is also more
difficult to determine whether the discontinuity is caused by a block boundary or
belongs to the original signal [27]. Therefore, an important part of the deblocking
filter is the deblocking filtering decisions, which determine whether a particular
part of a block boundary is to be filtered. In these decisions, the HEVC deblocking
filter uses the mode and motion information from the decoded bitstream as well as
analyses the values of reconstructed samples on the sides of the block boundary. The
strength of the deblocking filter can also be adjusted by the encoder on the picture
and the slice basis.

Section 7.2.2 provides a description of the HEVC deblocking filer, while
Sect. 7.5.1 discusses the coding efficiency and subjective quality improvements

7 In-Loop Filters in HEVC 175

first
second
third
fourth

HEVC H.264/AVC

MB 1 MB 2

Fig. 7.4 Order of boundaries processing in HEVC and H.264/AVC deblocking. In each group
(first to fourth), boundaries are processed from left to right and from top to bottom. In HEVC all
vertical (horizontal) boundaries can be processed in parallel

brought by HEVC deblocking filtering. The deblocking filter complexity and
parallelization aspects are addressed in Sect. 7.4.1.

7.2.2 HEVC Deblocking Filter Description

7.2.2.1 Decisions to Filter a Block Boundary

As a compromise between the subjective quality and computational complexity,
the HEVC deblocking filter in case of 4:2:0 chroma subsampling is only applied
to the block boundaries that lie at the luma and chroma sample positions that are
multiples of eight (in H.264/AVC the deblocking is applied on the 4 � 4 luma and
chroma sample grid). Since the deblocking filtering is only applied to the boundaries
between the coding units (CU), prediction units (PU), or transform units (TU) and
not to the inside areas, the average complexity of the HEVC deblocking is further
decreased compared to the H.264/AVC since HEVC can use larger block sizes.

In HEVC deblocking, the vertical boundaries in a picture are filtered first,
followed by the horizontal boundaries. In a coding unit, the vertical boundaries
between the coding blocks are processed starting from the left-most boundary
towards the right-hand side. The horizontal boundaries are processed starting from
the top-most boundary towards the bottom. In contrast to that, the H.264/AVC
deblocking filter operates on a macroblock (MB) basis, where the four vertical
boundaries in an MB are processed sequentially starting from the left-most MB
boundary, and then the four horizontal MB boundaries are processed starting from
the top-most MB boundary. The order of processing of the block boundaries in
HEVC and H.264/AVC is compared in Fig. 7.4. One can see that the filtering
order in HEVC deblocking is more regular than that in H.264/AVC. Moreover,
since the deblocking of one vertical (horizontal) boundary in HEVC does not affect
deblocking of other vertical (horizontal) boundaries because of only filtering the
boundaries on the 8 � 8 sample grid, all the vertical (horizontal) boundaries can be

176 A. Norkin et al.

Table 7.1 Boundary strength
(Bs) derivation [37]

Conditions Bs

At least one of the adjacent blocks is intra 2
At least one of the adjacent blocks has non-zero

transform coefficients
1

Absolute difference between the motion vectors that
belong to the adjacent blocks is greater than or
equal to one integer luma sample

1

Motion prediction in the adjacent blocks refers to
different reference pictures or number of motion
vectors is different

1

Otherwise 0

processed in parallel. This allows better parallelization which is addressed in more
detail in Sect. 7.4.1. The parallelization of H.264/AVC deblocking filtering is more
complicated since filtering of a block boundary affects the deblocking decisions at
a parallel block boundary, and the vertical and horizontal filtering operations are
alternating.

A decision whether to filter a block boundary uses the bitstream information
such as prediction modes and motion vectors. Some coding conditions are more
likely to create strong block artifacts, which are represented by a so-called boundary
strength (Bs) variable that is assigned to every block boundary and is determined
as in Table 7.1. The deblocking is only applied to the block boundaries with
Bs greater than zero for a luma component and Bs greater than 1 for chroma
components. Higher values of Bs enable stronger filtering by using higher clipping
parameter values. The Bs derivation conditions reflect the probability that the
strongest block artifacts appear at the intra-predicted block boundaries. The condi-
tions also enable luma deblocking when there is possibility of block artifacts caused
by quantization and by prediction from non-adjacent areas in a reference picture.
Not filtering block boundaries with Bs equal to zero avoids multiple repetitive
filtering of static areas where the samples are just copied from one picture to another.
In chroma deblocking, only the block boundaries adjacent to intra-predicted blocks
are filtered, which reduces the deblocking complexity while still removing the
strongest block artifacts. The algorithm for Bs derivation is explained in a flowchart
in Fig. 7.5.

For luma block boundaries with non-zero Bs values, the signal on the sides of the
block boundary is evaluated to decide whether the deblocking should be applied.
For chroma block boundaries, no further evaluation is performed.

The deblocking decisions are made separately for each four-sample segment of
a block boundary (see Fig. 7.6). Since the deblocking needs to attenuate visible
artifacts in smooth areas, the deblocking decisions evaluate whether the signal at
the sides of the block boundary is smooth, i.e. if the signal is flat or has a shape of
an inclined plane (ramp) [36, 37, 43]. The deblocking filtering is applied to a block
boundary if the following expression is evaluated to be true:

7 In-Loop Filters in HEVC 177

No

BS = 2

P or Q is intra?

No

P or Q has
non-zero

coefficients?

P and Q
use different ref.

pictures?

No

Abs. difference
between P and Q’s
MVs is ≥1 integer

sample?

No

Bs = 0Bs = 1

Fig. 7.5 Derivation of boundary strength (Bs) for block boundary. P denotes the left (or top) block
and Q denotes the right (or bottom) block at the block boundary

q0,0 q1,0 q2,0 q3,0

q0,1 q1,1 q2,1 q3,1

q0,2 q1,2 q2,2 q3,2

q0,3 q1,3 q2,3 q3,3

p3,0 p2,0 p1,0 p0,0

p3,1 p2,1 p1,1 p0,1

p3,2 p2,2 p1,2 p0,2

p3,3 p2,3 p1,3 p0,3

o o o o

o o o o

o o o o

o o o o

o o o o

o o o o

o o o o

o o o o

o o o o

o o o o

o o o o

o o o o

o o o o

o o o o

o o o o

o o o o

o o o o

o o o o

o o o o

o o o o

o o o o

o o o o

o o o o

o o o o

Block P Block Q

Fig. 7.6 Four-sample segment of vertical block boundary between adjacent blocks P and Q.
Deblocking decision are made based on lines 0 and 3 (dashed)

jp2;0 � 2p1;0 C p0;0j C jp2;3 � 2p1;3 C p0;3j
C jq2;0 � 2q1;0 C q0;0j C jq2;3 � 2q1;3 C q0;3j < “; (7.1)

where the threshold “ depends on the quantization parameters QP and is derived
from a look-up table. Equation (7.1) is used to check how much the signal on each
side of the block boundary deviates from a straight line (ramp). The equations in
this book chapter are given for the case of a vertical block boundary as in Fig. 7.6.
The equations for a horizontal block boundary may be obtained from the equations
for the vertical boundary by swapping the row and column indices.

178 A. Norkin et al.

The HEVC deblocking has two filtering modes: a normal filtering mode and a
strong filtering mode. A decision between these two modes is done for each four-
sample segment of a block boundary. The strong filtering is applied to the block
boundary if all of the following conditions are true for lines i D 0 and i D 3 (see
Fig. 7.6) [32, 37, 43].

jp2;i � 2p1;i C p0;ij C jq2;i � 2q1;i C q0;ij < “=8; (7.2)

jp3;i � p0;ij C jq0;i � q3;ij < “=8; (7.3)

jp0;i � q0;ij < 2:5tC : (7.4)

If all of the (7.2)–(7.4) are true, the strong filtering is applied, otherwise, the
normal deblocking filter is applied. The threshold parameter tC is the clipping
parameter described later in this section. Equation (7.4) makes sure that the step
between the sample values at the sides of the block boundary is small, while (7.2)
checks that there are no significant signal variations at the sides of the boundary,
and (7.3) verifies that the signal on both sides is flat.

The deblocking filtering decisions for a block boundary including the decisions
between the strong and the normal filtering are summarized in a flowchart in
Fig. 7.7.

7.2.2.2 Normal Filtering Mode

When a normal deblocking filtering mode is used, the following conditions are eval-
uated to decide how many samples are modified at each side of the block boundary.
Condition in (7.5) determines how many samples from the block boundary are
modified in block P, while condition in (7.6) determines how many samples are
modified in block Q (see Fig. 7.6) [36]. The decisions use the same principle as
decision (7.1). The smoother the signal on the side of the block boundary, the more
filtering is applied [35].

jp2;0 � 2p1;0 C p0;0j C jp2;3 � 2p1;3 C p0;3j < 3=16 “; (7.5)

jq2;0 � 2q1;0 C q0;0j C jq2;3 � 2q1;3 C q0;3j < 3=16 “: (7.6)

If (7.5) is true, two samples from the block boundary are modified in block P,
otherwise, one sample is modified. If (7.6) is true, two samples from the block
boundary are modified in block Q, otherwise, one sample is modified. The decisions
are made for each side of the block boundary independently, i.e. one sample may be
filtered on one side of the block boundary, and two samples on the other side.

When condition in (7.1) is true for a four-sample segment of the block boundary,
the deblocking filtering operations are subsequently applied to each of the four lines

7 In-Loop Filters in HEVC 179

Boundary is
between PU

or TU?

Boundary
strength
Bs > 0?

Condition (7.1) true?

Conditions
(7.2), (7.3), (7.4)

true?

No

No

No

NoYes

Strong filtering Normal filtering

No filtering

Boundary is
aligned with 8x8

sample grid?

No

Fig. 7.7 Decisions for each
four-sample segment of block
boundary. PU prediction unit,
TU transform unit [37]

crossing the block boundary. Since condition in (7.1) is evaluated true for the signal
that forms a perfect ramp passing across the block boundary (such as a gradual
change in the luma component), the deblocking in the normal filtering mode is
designed to not modify the ramp. The filtered sample values p0

0 and q0
0 (the row

index j is omitted for brevity) are determined by adding or subtracting an offset
value 40 to each of the sample values:

p0
0 D p0 C �0; (7.7)

q0
0 D q0 � �0; (7.8)

where the value of 40 is obtained as in

�0 D Clip3 .–tC ; tC ; •/ ; (7.9)

180 A. Norkin et al.

where tC is a clipping parameter dependent on the QP, and Clip3(a, b, x) function
clips the variable x to the range (a, b), i.e.

Clip3 .a; b; x/ D Max .a; Min .b; x// ; (7.10)

and • is determined as

• D .9 � .q0 � p0/ � 3 � .q1 � p1/ C 8/ >> 4: (7.11)

Neglecting the clipping operation, the impulse response of the filter is (3, 7, 9,
�3)/16. The value of • is proportional to the deviation of the signal at the sides
of the block boundary from a ramp and is equal to zero when the signal across the
boundary has the form of a perfect ramp across the block boundary [35].

Deblocking filtering is only applied to a line of samples across the block
boundary if the absolute value of • is below tC , i.e.

j•j < 10 tC : (7.12)

Expression (7.12) evaluates whether the discontinuity at the block boundary is
likely to be a natural edge or caused by a block artifact.

If two samples are modified in block P, i.e. condition in (7.5) is true, the sample
p1 is modified as

p1
0 D p1 C �p1; (7.13)

and if condition in (7.6) is true, sample q1 is modified as

q1
0 D q1 C �q1; (7.14)

where the p1
0 and q1

0 are new values of samples p1 and q1 respectively, and the
values of 4p1 and 4q1 are obtained as follows:

�p1 D Clip3 .–tC =2; tC =2;p2 C p0 C 1/ >> 1/ � p1 C �0/ >> 1// ;

(7.15)

�q1 D Clip3 .–tC =2; tC =2;q2 C q0 C 1/ >> 1/ � q1 � �0/ >> 1// : (7.16)

The impulse response of the filter is (8, 19, –1, 9, –3)/32 if the clipping operation
is neglected. One can see that the value of the offset obtained in (7.9) is used in
calculation of 4p1 and 4q1. The filtering operations at positions p0, p1, q0, and q1

do not modify the signal that has a form of a perfect ramp across the block boundary.
The deblocking filter decisions done for each line of a four-sample segment of a

block boundary are summarized in a flowchart in Fig. 7.8.
An example of modifications to the block boundary samples in the normal

filtering mode is shown in Fig. 7.9.

7 In-Loop Filters in HEVC 181

Condition (7.12)
true?

Condition (7.5)
true?

No

Modify p1

No filtering

No

Modify
p0 and q0

Condition (7.6)
true?

Modify q1

No

Fig. 7.8 Decisions for
normal filter that are applied
to each line of four-sample
segment of block boundary

q0 q1 q2 q3

p3 p2 p1 p0

Fig. 7.9 Illustration of
normal filtering mode
operations: original block
boundary (solid black line)
and modified block boundary
(dashed gray line)

182 A. Norkin et al.

7.2.2.3 Strong Filtering Mode

The strong deblocking filter in HEVC is applied to smooth flat areas, where block
artifacts are more visible. This filtering mode modifies three samples from the block
boundary and enables strong low-pass filtering. The HEVC strong filter is similar
to the strong filter used by the H.264/AVC video standard [21] except the clipping
operation, which is not present in the H.264/AVC strong filter. The reason for the
clipping operation in HEVC deblocking filter is that the strong filtering decision is
made based on the sample values in only two of the lines in the block, corresponding
to i D 0 and i D 3. The clipping operation limits the amount of filtering in order to
make sure that there is no excessive filtering on the lines which were not evaluated
in the filtering decisions [19]. The filtering for the samples in block P is performed
using the following equations if the clipping operation is neglected:

p0
0 D .p2 C 2p1 C 2p0 C 2q0 C q1 C 4/ >> 3; (7.17)

p1
0 D .p2 C p1 C p0 C q0 C 2/ >> 2; (7.18)

p2
0 D .2p3 C 3p2 C p1 C p0 C q0 C 4/ >> 3; (7.19)

where p0
0, p1

0, and p2
0 are modified values of samples p0, p1, and p2 respectively.

The modified sample values are then clipped to the range [pi � 2tC, pi C 2tC]. The
equations for modification of samples q0, q1, and q2 can be obtained by replacing p
with q in (7.17)–(7.19).

7.2.2.4 Chroma Deblocking

As mentioned in Sect. 7.2.2.1, the deblocking is only applied to the chroma block
boundaries which have boundary strength Bs equal to 2, i.e. when one of the
adjacent blocks is intra-predicted. The block boundary should also be a CU, TU or
a prediction partition boundary and be aligned with the 8 � 8 chroma sample grid.
No further evaluation on the signal is done for chroma block boundaries. Chroma
deblocking only modifies one sample from each side of the block boundary. The
following expression is used to obtain the modification offset for the chroma block
boundary.

�c D Clip3 .�tC ; tC ; ...q0 � p0/ << 2/ C p1 � q1 C 4/ >> 3/ (7.20)

The value of 4c is used for modification of the chroma samples p0 and q0

similarly to luma samples as in (7.7) and (7.8).

7 In-Loop Filters in HEVC 183

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

QP

be
ta

(Q
P

)

Fig. 7.10 Dependency of “ on QP. Reproduced with permission from [37], © 2012 IEEE

7.2.2.5 Deblocking Adaption

Clipping operations are used in deblocking to avoid excessive filtering. The clipping
parameter tC is derived from a look-up table and depends on the average of the
quantization parameter QP of the two adjacent blocks [44], which determines how
coarse the quantization is. Variable tC is obtained from a table as tC (QP) when both
adjacent blocks are inter-predicted (Bs D 1) and tC (QP C 2) when at least one of
the adjacent blocks is intra-predicted (Bs D 2). The deblocking parameter “, which
mainly determines which block boundaries are modified by the deblocking filtering,
also depends on the quantization parameter QP. One can see the dependency of
the parameter “ on the QP in Fig. 7.10 and parameter tC on QP in Fig. 7.11. The
higher the QP, the higher are the values of “ and tC and therefore the more often
the deblocking filtering is applied, and more samples from the block boundary are
modified. In addition, greater modifications to the sample values are allowed for
higher QP. For low QP values, when a reconstructed picture has higher quality, the
deblocking is essentially turned off by setting “ and tC to zero.

The deblocking strength can be further adjusted on a slice or picture level
by sending parameters tc_offset_div2 and beta_offset_div2 in the
slice header or picture parameter set (PPS) [46]. These parameters specify offsets
(divided by two) that are added to a QP value before determining “ and tC from the
look-up tables. This gives an encoder a possibility to adapt the deblocking strength
depending on the sequence characteristics, the encoding mode, and other factors.

Changing the deblocking parameters on a picture level can be used to improve
the subjective quality when using a hierarchical coding structure. An example
of a hierarchical-B GOP8 coding structure, similar to the one used in the HM
common test conditions random-access mode [6] is shown in Fig. 7.12. In this
structure, the encoder can use QP cascading in order to improve the compression

184 A. Norkin et al.

0 10 20 30 40 50 60
0

5

10

15

20

25

QP

tc
(Q

P
)

Fig. 7.11 Dependency of tC

on QP. Reproduced with
permission from [37], © 2012
IEEE

b4 b5

B3

I0

B2

b7 b8

B6

P1
Hier. level 0

Hier. level 1

Hier. level 2

Hier. level 3

Fig. 7.12 Hierarchical-B coding structure with GOP8 illustrating different depth of the picture in
the coding structure [38]

efficiency by applying the base QP to the intra-coded pictures, QP C 1 to the B-
pictures at hierarchy level 0 (e.g. picture P1), QP C 2 to the pictures at hierarchy
level 1. Hierarchy level 2 uses QP C 3 and non-reference b-pictures at level 3 use
QP C 4. The improvement in compression efficiency is achieved by coding with
better quality the pictures at lower hierarchical levels, which are used for prediction
of the pictures at higher hierarchy levels. However, in video sequences with chaotic
motion, e.g. showing water, smoke, fire, rain, or snow, the QP cascading may cause
block artifacts in the pictures at higher hierarchy levels, which is related to using
lower bit budget for those pictures because of higher QP values and coarser mode
decisions.

When the encoder uses hierarchical coding structure and QP cascading, the
deblocking parameters tc_offset_div2 and beta_offset_div2 can be
used to increase the deblocking strength for the pictures at higher hierarchy levels,
which improves the subjective quality on sequences with chaotic motion, while

7 In-Loop Filters in HEVC 185

preserving the subjective quality on other types of video content [33, 38, 39]. An
example of deblocking parameters improving the subjective quality on chaotic con-
tent in the hierarchical-B GOP8 coding structure is setting the tc_offset_div2
to values 0, 3, 3, and 5 for pictures at hierarchy levels 0, 1, 2, and 3 respectively,
while the beta_offset_div2 is set to zero for all levels.

7.3 Sample Adaptive Offset (SAO)

7.3.1 Motivation and Overview of SAO

The key function of the sample adaptive offset is to attenuate ringing artifacts,
which are more likely to appear when larger transform sizes are used. The SAO
reduces sample distortion by first classifying the samples in the region into multiple
categories with as selected classifier and adding a specific offset to each sample
depending on its category. The classifier index and the offsets for each region
are signaled in the bitstream [7, 8]. The SAO encoder is not standardized. It may
minimize the average sample rate-distortion cost, as done in the HM reference
software, or may use another criterion to generate SAO parameters. SAO can use
different sample offsets in a region depending on the sample classification, and SAO
parameters can change from one region of a picture to another. The HEVC uses two
SAO types: edge offset (EO) and band offset (BO) [11]. In EO, the classification of
a sample is based on its neighborhood, i.e. on the comparison between the current
sample and its neighboring samples. In BO, the classification is based on the sample
value.

The best coding efficiency could be achieved by a picture-based region partition-
ing method [11], which would, however, introduce additional encoding latency. In
order to achieve low encoding latency and reduce the buffer requirement, the size
of the region can be fixed and set as small as one coding tree unit (CTU). Multiple
CTUs can share the same SAO parameters by region merging [14] to reduce side
information. In HEVC, a CTU consists of three coding tree blocks (CTBs) of color
components, and each color component can have its own SAO offsets and share the
same EO/BO type for chroma components [10].

7.3.2 Edge Offset

Figure 7.13 shows the Gibbs phenomenon, which can be used to explain the
appearance of ringing artifacts in image and video coding. The horizontal axis shows
the sample position along a 1-D line and the vertical axis denotes the sample value.
The dotted curve represents the original samples while the solid curve represents
the reconstructed samples when the highest frequencies in the signal are discarded
due to quantization of transform coefficients. Local peaks, convex edges/corners,

186 A. Norkin et al.

Fig. 7.13 Gibbs
phenomenon, where the
dotted curve is the original
samples and the solid curve is
the reconstructed samples.
Local peaks, convex corners,
concave corners, and local
valleys are marked with solid
circles and none-of-the-above
samples with empty circles.
Reproduced with permission
from [13], © 2012 IEEE

a c b

a

c

b

a

c

b

a

c

b

Fig. 7.14 Four 1-D directional patterns for EO sample classification: horizontal (EO class D 0),
vertical (EO class D 1), 135ı diagonal (EO class D 2), and 45ı diagonal (EO class D 3). Repro-
duced with permission from [13], © 2012 IEEE

concave edges/corners, and local valleys are marked with solid circles and none-
of-the-above samples with empty circles. One can observe from the figure that the
distortion can be reduced by applying negative offsets to local peaks and convex
corners and positive offsets to concave corners and valleys. The operation of the
edge offset is based on this observation. EO uses four one-directional patterns
for sample classification: horizontal, vertical, 135ı diagonal, and 45ı diagonal, as
shown in Fig. 7.14, where label “c” represents the current sample and labels “a” and
“b” represent the two neighboring samples. These four sample patterns form four
EO classes. Only one EO class can be selected for each CTB that enables EO. Based
on the rate-distortion optimization, one EO class is chosen and an index indicating
which EO class is selected is signaled in the bitstream.

For a given EO class with the specific direction, each sample inside the CTB
is classified into one of five categories. The current sample value, labeled as “c”,
is compared with its two neighbors along the selected 1-D pattern. The category
classification rules for each sample are summarized in Table 7.2. Categories 1 and
4 are associated with a local valley and a local peak, respectively, along the selected
1-D pattern. Categories 2 and 3 are associated with concave and convex corners,
respectively. If the current sample does not belong to any of EO categories 1–4, it is
assigned to category 0 and SAO is not applied. Note that the categories are mutually
exclusive and a sample can belong only to one category.

7 In-Loop Filters in HEVC 187

Table 7.2 Sample category
classification rules for edge
offset

Category Condition

1 c < a && c < b
2 (c < a && cDDb) jj (c DD a && c < b)
3 (c > a && cDDb) jj (c DD a && c > b)
4 c > a && c > b
0 None of the above

sample index
a c b

value
Category 1

sample index
a c b

Category 2

a c b

a c b

Category 3

a c b

a c b

Category 4

sample index

sample index sample index

sample index

value value value

value value

Fig. 7.15 Positive offsets for EO categories 1 and 2 and negative offsets for EO categories 3 and 4
results in smoothing, where the x-axis is sample index and the y-axis is sample value. Reproduced
with permission from [13], © 2012 IEEE

The effect of the positive and negative edge offsets is illustrated in Fig. 7.15
and explained as follows. Positive offsets for categories 1 and 2 result in smoothing
since local valleys and concave corners become smoother, while negative offsets
for these categories result in sharpening. On the contrary, for categories 3 and 4,
the negative offsets result in smoothing and positive offsets result in sharpening.
In HEVC, sharpening in EO is not allowed. Therefore, the absolute values of four
specific offsets are signaled by the encoder—one for each EO category, and the signs
of the signaled offsets are implicitly derived from the corresponding EO categories
[12, 23, 24]. Both EO and BO use four offsets, which limits the number of offsets
to reduce the requirements for a line buffer (the line buffer is explained further in
Sect. 7.4.3).

7.3.3 Band Offset

Another offset used by the HEVC SAO tool is band offset (BO). In band offset,
one offset is added to all samples whose values belong to the same band (range of

188 A. Norkin et al.

band index = k

band index = k+1

band index = k+2

band index = k+3

Fig. 7.16 Example of BO,
where the dotted curve
represents original samples
and the solid curve denotes
reconstructed samples.
Reproduced with permission
from [13], © 2012 IEEE

values). The sample values range is divided into 32 equal bands. For 8-bit samples
in the range from 0 to 255, the width of a band is 8. Thus, sample values from 8k to
8k C 7 belong to band k, where k ranges from 0 to 31. The difference between the
original samples and reconstructed samples in a band (i.e. the offset of a band) can
be signaled to the decoder. There is no constraint on the offset sign for the BO.

Figure 7.16 demonstrates how the BO compensates sample intensity offset of
a region. The horizontal axis denotes the sample position and the vertical axis
denotes the sample value. The dotted curve represents the original samples, while
the solid curve denotes the reconstructed samples, affected by quantization errors of
prediction residues and phase shifts because of the coded motion vectors that deviate
from the true motion. As shown in Fig. 7.16, if there is a phase shift (difference)
between the reconstructed motion vector and the “true” motion vector, a smooth
region with a gradient may be offset with a certain value compared to the original
signal. In this example, the reconstructed samples are shifted to the left compared
to the original samples, which results in a systematic negative error that can be
corrected by BO for bands k, k C 1, k C 2, and k C 3, where the samples ranging
from k * 8 to ((k C 1) * 8) � 1 are classified as belonging to band k, and can be
modified by using the corresponding offset value.

In HEVC, only offsets of four consecutive bands and the starting (or minimum)
band position of the current region are signaled to the decoder [25, 29]. Four offsets
are signaled in the BO, which is equal to the number of signaled offsets in EO (the
number of offsets is limited to reduce the line buffer requirement). The reason for
signaling only four bands is that the range of sample values in a region formed
by CTBs can be quite limited. Therefore, by signaling the starting band position
of current region, BO can identify the minimum sample value to be compensated
in the current region so that the decoder can recover it, as shown in the example
in Fig. 7.17. This is especially true for chroma CTBs. In natural images, chroma
components are often represented by a narrow-band signal, which means that by
several band offsets, the encoder can recover most samples in the region.

7 In-Loop Filters in HEVC 189

signal four offsets from
the first band

first band position x-axis:
sample intensity

y-axis:
number of samples in band

Fig. 7.17 Example of sample distribution in a CTB, where BO sends the offsets of four
consecutive bands. Reproduced with permission from [13], © 2012 IEEE

Merge
Up

Merge
Left

Current
CTU

Cr
CTB

Cb
CTB

Luma
CTB

CTU

Fig. 7.18 CTU consists of three CTBs of color components; the current CTU can reuse SAO
parameters of the left or above CTU. Reproduced with permission from [13], © 2012 IEEE

7.3.4 SAO Parameters Signaling

A syntax element sample_adaptive_offset_enabled_flag signaled
in the Sequence Parameter Set (SPS) indicates whether SAO is enabled
in the current video sequence. In the slice header, two syntax elements,
slice_sao_luma_flag and slice_sao_chroma_flag, indicate if SAO
is enabled for luma and chroma, respectively, in the current slice.

Low-delay applications can use the Coding Tree Unit (CTU) based SAO
encoding algorithm. As shown in Fig. 7.18, a CTU comprises its corresponding
luma CTB, Cb CTB, and Cr CTB. Syntax-wise, the basic unit for SAO parameters
adaptation is always one CTU. If SAO is enabled in the current slice, the SAO
parameters of each CTU are interleaved into the slice data. The SAO data in
the bitstream are signaled in the beginning of each CTU. The CTU-level SAO
parameters consist of SAO merging information, type information, and offset
information.

7.3.4.1 SAO Parameters Merging

A CTU can use three options for signaling SAO parameters: reusing SAO param-
eters of the left CTU (by setting a syntax element sao_merge_left_flag

190 A. Norkin et al.

EO BO

EO

Not applied

Not applied

BO

exit

unsigned Cb offsets

chroma SAO type (EO, BO, not applied)

chroma EO class

unsigned Cr offsets

unsigned luma offsets signed luma offsets

luma EO class luma band position

luma SAO type (EO, BO, not applied)

Cb band position

signed Cb offsets

Cr band position

signed Cr offsets

Fig. 7.19 Illustration of CTU-level SAO information coding when the current CTU is not merged
with the CTU on the left or above. Reproduced with permission from [13], © 2012 IEEE

to 1), reusing SAO parameters of the above CTU (by setting a syntax element
sao_merge_up_flag to 1), or by transmitting new SAO parameters. The SAO
merging information is shared by all three color components. When SAO merge-
left or SAO merge-up mode is indicated, all SAO parameters from the left or above
CTU are copied and no more information is signaled for the current CTU. This
CTU-based SAO information merging effectively reduces the SAO information that
needs to be signaled [31].

7.3.4.2 SAO Type and Offsets Signaling

If merging of SAO information is not used, the information for the current CTU
is signaled as shown in Fig. 7.19. Syntax elements for the luma component are
first sent, followed by the Cb syntax elements and then the Cr syntax elements.
For each color component, the SAO type is transmitted (sao_type_idx_luma
or sao_type_idx_chroma), which indicates EO, BO, or not applied (SAO
turned off). If BO or EO is selected, four offsets are transmitted. If BO
is selected, the starting band position (sao_band_position) is signaled.
Otherwise, if EO is selected, the EO class (sao_eo_class_luma or
sao_eo_class_chroma) is signaled. The Cb and Cr components share the SAO
type (sao_type_idx_chroma) and EO class (sao_eo_class_chroma)

7 In-Loop Filters in HEVC 191

syntax elements to reduce the side information and speed-up SAO processing by
achieving more efficient memory access on certain platforms [4]. These syntax
elements are therefore only coded for the Cb component. The design of the
codewords (including “off”, “EO class selection index”, and “BO band position
index”) is based on the probability distribution to reduce side information.

7.3.4.3 CABAC Contexts and Bypass Coding

All CTU-level, SAO syntax elements including SAO merging information, SAO
type information, and offset information are coded with context-based adaptive
binary arithmetic coding (CABAC). Only the first bin of the SAO type, which
specifies whether SAO is turned on or off in the current CTU, and the SAO merge-
left and merge-up flags use CABAC contexts. All other bins are coded in the bypass
mode, which significantly increases the SAO parsing throughput in CABAC without
much coding efficiency loss [1, 3, 15, 30, 45].

7.4 Implementation and Parallelization Aspects

7.4.1 Deblocking Filter Complexity and Parallelism

When designing the HEVC deblocking filter, a lot of attention was paid to complex-
ity and parallelization aspects. In H.264/AVC video decoders, deblocking takes a
significant part of the computational complexity [27, 28]. Moreover, in H.264/AVC,
the deblocking operations at one block boundary may affect the samples used in
deblocking of the next block boundary, which complicates parallel processing.

7.4.1.1 HEVC Deblocking Filter Complexity

The complexity of the HEVC deblocking filter has been significantly decreased
compared to the H.264/AVC deblocking. First of all, the deblocking is only applied
to the block boundaries on the 8 � 8 luma sample grid. This already decreases
the worst-case complexity of the deblocking compared to H.264/AVC, where the
deblocking is applied on the 4 � 4 sample grid. The average complexity of the
deblocking operation is also decreased compared to H.264/AVC since the prediction
and transform blocks in HEVC are on average larger than those in H.264/AVC,
where the maximum size of prediction blocks is 16 � 16 luma samples and the size
of the transform blocks is 8 � 8 luma samples (if the maximum transform size in
HEVC is not restricted to the same limits resulting in the worst-case scenario).

The filtering decisions constitute a significant part of the deblocking filter
complexity. In order to reduce the complexity of deblocking decisions, the HEVC

192 A. Norkin et al.

deblocking uses decisions for a four-sample segment of the block boundary based
on two lines crossing the block boundary. In contrast, the decisions in H.264/AVC
deblocking are done for every line. The complexity of chroma deblocking filtering
in HEVC has also been reduced compared to H.264/AVC since only chroma block
boundaries with Bs equal to 2 are filtered. Therefore, only block boundaries adjacent
to the intra-predicted blocks are filtered in the chroma components in contrast to
H.264/AVC, where the chroma deblocking is also applied to the block boundaries
between the inter-predicted blocks.

7.4.1.2 Deblocking Filter Parallelization Aspects

HEVC deblocking filter allows easy parallelization on several levels. First, paral-
lelization is possible on the color component level. In HEVC, filtering decisions
for chroma components are only based on the block boundary strength. Therefore,
the only data to be shared between the luma and the chroma deblocking is the
Bs, which depends on the prediction type [43]. This makes it possible to process
chroma components independently of the luma component unlike in H.264/AVC,
where chroma deblocking uses the decisions made for luma deblocking.

The vertical and horizontal block boundaries in HEVC are processed in a
different order than in H.264/AVC. In HEVC, all the vertical block boundaries in
the picture are filtered first, and then all the horizontal block boundaries are filtered
[20, 37]. Since the minimum distance between two parallel block boundaries in
HEVC is eight samples, and HEVC deblocking modifies at most three samples from
the block boundary and uses four samples from the block boundary for deblocking
decisions, filtering of one vertical boundary does not affect filtering of any other
vertical boundary. This means there are no deblocking dependencies across the
block boundaries. In principle, any vertical block boundary can be processed
in parallel to any other vertical boundary. The same holds for the horizontal
boundaries, although the modified samples from filtering the vertical boundaries
are used as the input to filtering the horizontal boundaries.

The deblocking in HEVC can also be performed on the 8 � 8 block basis
[32, 37, 47]. Figure 7.20 illustrates how the deblocking (both for vertical and hori-
zontal boundaries) can be performed independently for each 8 � 8 block of samples.
The deblocking is performed on the 8 � 8 luma sample grid and decisions are done
separately for each four-sample segment of the block boundary, which means that
two parts of the eight-sample block boundary are deblocked independently of each
other [34]. Therefore, the deblocking of the 8 � 8 sample square with the crossing
of vertical and horizontal lines on the 8 � 8 sample filtering grid in the middle of the
block is not dependent on the deblocking in the other parts of the picture. Basically,
the whole picture can be split into such 8 � 8 sample blocks (4 � 8 and 8 � 4 blocks
at the picture boundaries), which can all be processed independently of other blocks.
Since all vertical block boundaries in HEVC are processed before the horizontal

7 In-Loop Filters in HEVC 193

Boundaries where
deblocking applies

8x8 block where deblocking
can be performed

independently

Luma samples

Fig. 7.20 Illustration of picture samples, horizontal and vertical block boundaries on the 8 � 8
grid, and those non-overlapping blocks of 8 � 8 samples (marked with dotted lines), which can be
deblocked in parallel. The dashed lines mark samples used in deblocking decisions (vertical and
horizontal)

block boundaries, the order of deblocking in each of these 8 � 8 deblocking units
is the same: the vertical block boundary is filtered first, which is followed by the
horizontal block boundary.

Since the HEVC deblocking can be easily parallelized, it can be done on a slice
or tile [16] basis. In this case, an encoder or decoder can choose the option to first
apply deblocking to the inner areas of a tile or slice, while leaving the deblocking on
the tile or slice boundaries. When the decoding and deblocking of all tiles or slices
is finished, the tile or slice boundaries can be processed as the last step.

Since the deblocking in HEVC is less computationally expensive and more
parallelizable than the H.264/AVC deblocking, it can be said that the deblocking
in HEVC has a better trade-off between the computational complexity, throughput,
subjective and objective quality improvements than the H.264/AVC deblocking and
is less of a bottleneck when implementing a decoder.

7.4.2 SAO Implementation Aspects and Parameters Estimation

Since SAO requires sample level operations to classify each sample into bands
or categories in both encoder and decoder, the number of operations for each
sample needs be reduced as much as possible to reduce the overall computational
complexity. At encoder-side, there are many SAO types to be tested to achieve a bet-
ter rate-distortion performance at reasonable computational complexity. Therefore,
some efficient encoder algorithms are discussed in the following sections.

194 A. Norkin et al.

7.4.2.1 Fast Edge Offset Sample Classification

Although the sample classification rules of EO in Table 7.2 seem non-trivial, the
EO sample classification can be implemented in a more efficient way by using the
following function and equations:

sign3.x/ D .x > 0/ ‹ .C1/ W .x DD 0/ ‹ .0/ W �1; (7.21)

edgeIdx D 2 C sign3 .c � a/ C sign3 .c � b/ ; (7.22)

edgeIdx2category Œ � D f1; 2; 0; 3; 4g ; (7.23)

category D edgeIdx2category ŒedgeIdx� (7.24)

where, “c” is the current sample, and “a” and “b” are the two neighboring samples,
as shown in Fig. 7.14 and Table 7.2. As a further speed-up, the data obtained in a
previous step can be reused in the classification of the next sample. For example,
assume that the EO class is 0 (i.e., a 1-D horizontal pattern) and the samples in
the CTB are processed in the raster scan order. The “sign3(c � a)” of the current
sample is equal to “�sign3(c � b)” of the neighboring sample to the left. Likewise,
the “sign3(c � b)” of the current sample can be reused by the neighboring sample to
the right. In software implementations, the sign3(x) function can be implemented by
using a bitwise operation or a look-up table to avoid using if-else operation, which
can be time-consuming on certain platforms.

7.4.2.2 Fast Band Offset Sample Classification

The sample range is equally divided into 32 bands in BO. Since 32 is equal to
two to the power of five, the BO sample classification can be implemented as
using the five most significant bits of each sample as the classification result. In
this way, the complexity of BO decreases, especially in hardware that only needs
wire connections without logic gates to obtain the classification result from the
sample value. To reduce the software decoding run time, the BO classification can
be implemented by using bitwise operation or a look-up table to avoid using if-else
operations.

7.4.2.3 Distortion Estimation for Encoder

The rate-distortion optimization process [41] requires multiple calculation of the
distortion between the original and reconstructed sample values. A straightforward
SAO implementation would add offsets to the samples modified by deblocking
and then calculate the distortion between the resulting and the original samples.
To reduce the memory access and the number of operations, a fast distortion
estimation method [9] can be implemented as follows. Let k; s.k/; and x.k/ be

7 In-Loop Filters in HEVC 195

sample positions, original samples, and the reconstructed samples, respectively,
where k belongs to C , the set of samples inside the CTB that belong to a specific
SAO type (i.e., BO or EO), a starting band position or EO class, and a specific band
or category. The distortion between original samples and reconstructed samples can
be described by the following equation:

Dpre D
X

k2C

.s.k/ � x.k//2 (7.25)

The distortion between the original samples and samples modified by SAO can
be described by the following equation

Dpost D
X

k2C

.s.k/ � .x.k/ C h//2 (7.26)

where h is the offset for the sample set. The distortion change is defined by the
following equation:

�D D Dpost � Dpre D
X

k2C

�
h2 � 2h .s.k/ � x.k//

� D N h2 � 2hE (7.27)

where N is the number of samples in the set, and E is the sum of differences
between the original samples and the reconstructed samples (before SAO) as defined
by the following equation:

E D
X

k2C

.s.k/ � x.k// (7.28)

Please note that the sample classification and (7.28) can be calculated right after
the input samples become available after the deblocking filtering. Thus, N and E

can be calculated only once and stored. Then, the delta rate-distortion cost is defined
as follows:

�J D �D C �R (7.29)

where � is the Lagrange multiplier, and R represents the estimated bits of side
information.

For a given CTB with a specific SAO type (i.e., BO or EO), starting band position
or EO class, and a specific band or category, several h values (offsets) close to E/N
are tested, and the offset that minimizes �J is chosen. After offsets for all bands
or categories have been chosen, the �J for each of the 32 bands of BO or each of
the five categories of EO are added to obtain the delta (change) of the rate-distortion
cost of the entire CTB. The distortion of the BO bands using zero offsets and the EO
category 0 can be pre-calculated by (7.25) and stored for subsequent re-use. When
SAO decreases the cost for the entire CTB (i.e. the delta cost is negative), SAO is
enabled for this CTB. Similarly, the best SAO type and the best starting position or
EO class can be found by the fast distortion estimation.

196 A. Norkin et al.

7.4.2.4 Slice-Level On/Off Control

The HM reference software common test conditions [6] use hierarchical quantiza-
tion parameter (QP) settings. As an example, in the random access condition, the
GOP size is eight. Picture can belong to different hierarchy levels depending on
their positions in the GOP (see Fig. 7.12). Normally, the picture is only predicted
from the pictures with a smaller or the same hierarchy level. A picture with at higher
hierarchy level will likely be given a higher QP.

A slice-level on/off decision algorithm [2, 26] is provided as follows. For
hierarchy level 0 pictures, SAO is always enabled in the slice header. Given a current
picture with a nonzero hierarchy level N, the previous picture is defined as the last
picture with hierarchy level (N � 1) in the decoding order. If SAO is disabled in
more than 75 % of the CTBs in the previous picture, the HM reference encoder will
disable SAO in all slice headers of the current picture and skip the SAO encoding
process. This encoder technique not only can decrease the number of syntax to be
parsed, but also provides 0.5 % BD-rate improvement [2, 26]. Please note that luma
and chroma SAO can be enabled or disabled independently in the slice header.

7.4.2.5 SAO Parameters Estimation and Interaction with Deblocking

In the HM reference encoder, SAO parameters are estimated for each CTU. Since
SAO is applied to the output of the deblocking filter, the SAO parameters cannot
be precisely determined until the deblocked samples are available. However, the
deblocked samples of the right columns and the bottom rows in the current coded-
tree block (CTB) may be unavailable because the CTU to the right and the CTU
below the current CTU may not have been reconstructed yet (in a one-pass encoder).
This constraint can be overcome with one of the two options. The first option
[18] estimates the SAO parameters on the available CTB samples, i.e. on the CTB
samples except the three bottom rows of luma samples, one bottom row of Cb
and Cr samples, the rightmost four columns of luma samples, the rightmost two
columns of Cb and Cr samples. The proposed approach does not incur a noticeable
coding efficiency loss when the 64 � 64 CTU size is used. However, for smaller CTU
sizes, the percentage of samples not used in the SAO parameter estimation is higher,
which may cause significant coding efficiency loss. In this case, the second option
[22] uses samples before the deblocking instead of unavailable deblocked samples
during SAO parameter estimation, which can reduce the loss in coding efficiency
for smaller CTU sizes.

7.4.3 CTU-Based Processing and Line Buffer

CTU-based processing is commonly adopted in practical implementations. CTUs
are encoded or decoded one by one in a raster scan order and the in-loop filtering is
applied right after the encoding/decoding of a CTU. The deblocking filtering of the

7 In-Loop Filters in HEVC 197

Horizontal CTU boundary

Unavailable samples

To be modified by deblocking

Can be used in deblocking decisions
and filtering and SAO classification

In-loop filters have been applied

Fig. 7.21 Example of luma samples line buffer. Samples below the dashed line and above the
horizontal CTU boundary should be kept in the line buffer until the unavailable samples have been
reconstructed

bottom horizontal CTU boundary needs samples from the CTU below. Hence, after
the current CTU has been processed, the deblocking cannot be applied yet to the
bottom rows of samples since the reconstructed samples of the CTB to the bottom of
the current CTB are not yet available (see Fig. 7.21). Likewise, since SAO is applied
after the deblocking filter, SAO cannot be applied to the bottom sample rows before
the deblocking is done. In order to decrease memory bandwidth requirements, the
information needed for in-loop filtering over the lower CTU boundary is kept in
the fast on-chip memory until the CTU below has been reconstructed and the in-
loop filters applied. This on-chip memory is usually called a “line buffer” since the
information for horizontal lines of samples typically needs to be kept.

In the deblocking filter, vertical filtering across a horizontal CTU boundary needs
four rows of luma samples, two rows of Cb samples, and two rows of Cr samples
from the upper CTU to be kept in the line buffer for the filtering decisions and
operations. Deblocking can modify up to three rows of luma samples, one row of
Cb samples, and one row of Cr samples from the block boundary.

Let us assume that the deblocking filter needs to keep N rows of the above CTBs,
where N is equal to four for luma and two for Cb and Cr. Since the N-th row above
the horizontal CTB boundary will not to be modified by the vertical deblocking
filtering, the SAO can be applied to the (N C 1)-th row above the horizontal CTB
boundary. However, the bottom N rows of the current CTB should be kept in the line
buffer before the CTB below is reconstructed and deblocking and SAO are applied
(see Fig. 7.21 for luma samples example).

When the CTB below is reconstructed and SAO in the CTB above uses EO with
the class greater than zero, applying SAO for the N-th row above the boundary needs
the (N C 1)-th row above the boundary to be available. A straightforward solution
is to store reconstructed and deblocked samples of the (N C 1)-th row in the line
buffer. However, using the fast EO sample classification, the “sign3” results [the
sign of the difference or 0 value between the N-th row and the (N C 1)-th row] can
be stored instead, which reduces the memory requirements to two bits per sample.

In addition to the described four lines on luma samples, two lines of Cb, two
lines of Cr samples, three lines of two-bit “sign3” values, and some CTU- and
PU-level information need to be stored. The deblocking needs information about

198 A. Norkin et al.

Table 7.3 Size of the
elements of a 16 � 16 CTU
needed to be kept in a line
buffer

Values in line buffer Required bits

Four motion vectors* 128 bits
4 reference picture indices* 16 bits
8 � 8 / 4 � 8 partitions flags* 2 bits
B-/P-prediction flags in 8 � 8 partitions* 2 bits
sign3 64 bits
Luma SAO type 2 bits
Chroma SAO type 2 bits
Starting band positions or EO classes 15 bits
Luma and chroma offsets 48 bits

Total elements 279 bits
64 luma samples 512 bits
32 chroma samples 256 bits

Total samples 768 bits

Total bits for CTU 1047 bits

*This information is also used in motion vector derivation

the motion vectors adjacent to the lower CTU boundary, and SAO needs SAO type
and SAO offsets of the upper CTB row. For an 8-bit 4:2:0 video and the smallest
CTU size (16 � 16 luma and 8 � 8 chroma samples), the information stored per
CTU is 279 bits (this number may depend on the implementation). Among these
279 bits, 128 bits are for four motion vectors (4 � 8 and 8 � 4 partitions can only use
one motion vector), 16 bits are for four indices of reference pictures in the decoded
picture buffer, two bits are for signaling whether 4 � 8 or 8 � 8 partitions are used,
and two bits are for signaling if one or two MVs are used in 8 � 8 partitions. Please
note that this information is also needed for other modules, such as motion vector
derivation. Alternatively, 8 bits with four Bs values may be stored if the information
about motion vectors in the next CTU row is available. Then, 64 bits are for “sign3”
values of 16 luma and 16 chroma samples, two bits are for luma SAO type, two bits
are for chroma SAO type, 15 bits are from starting band positions or EO classes, and
48 bits are from luma and chroma offsets. The sample line buffers for the 16 � 16
CTU keep 64 luma samples and 32 chroma samples, which requires 768 bits (see
Table 7.3 for details). Therefore, the total line buffer size is about 15K bytes for full
HD (i.e. 1920 � 1080) videos.

The line buffer size would be somewhat smaller when larger CTU sizes are used
since the same parameters apply to a larger number of samples. The size of the line
buffer can be further reduced by using vertical tiles, hence splitting the horizontal
“span” of CTUs to be processed before the bottom CTU is encoded/decoded.

7.4.4 Error Resilience

In order to provide additional error resilience, HEVC allows an encoder to
disable in-loop filters over tile and slice boundaries. A flag slice_loop_

7 In-Loop Filters in HEVC 199

filter_across_slices_enabled_flag equal to 1 indicates that the in-
loop filters are applied across the left and upper boundaries of the current slice.
When the flag is equal to 0, in-loop filtering operations are not applied across the left
and upper boundaries of the current slice. When the flag is not present, it is inferred
to be equal to pps_loop_filter_across_slices_enabled_flag.

A picture parameters set (PPS) flag loop_filter_across_tiles_
enabled_flag equal to 1 specifies that in-loop filters are applied across tile
boundaries. When the flag is equal to 0, it specifies that in-loop filtering operations
are not performed across tile boundaries. When the flag is not present, the value of
loop_filter_across_tiles_enabled_flag is inferred to be equal to 1.

These flags provide additional error resilience since an error created because of a
slice or tile loss will not propagate into neighboring slices or tiles of the same picture
(however, it may propagate to other slices or tiles of subsequent pictures because of
inter-picture prediction).

7.5 Coding Efficiency and Subjective Quality Improvements

The HEVC in-loop filters improve both the objective and subjective quality. The
objective quality improvement is achieved due to increasing the quality of the
reconstructed pictures. There is also an additional effect due to better quality of
reference pictures, which improves motion prediction and therefore the coding
efficiency.

In this section, the compression efficiency improvements have been evaluated on
the JCT-VC video sequences test set. The results are provided for several classes
of sequences and under different coding conditions defined in the HEVC common
test conditions document [6]. These configurations are: All Intra where only intra-
prediction is used; Random Access which uses intra pictures over certain time
intervals and hierarchical-B coding structure; and two low-delay configurations,
which have only one intra-picture, and where motion-compensated prediction uses
only temporally preceding pictures. The Low Delay P (LP) configuration does
not use bi-directional motion-compensated prediction. The BD-rate is used in the
HEVC standardization as a measure for the average bit rate reduction at the same
mean squared error [5]. The HEVC reference software HM11.0 was used in all
experiments. The reported decoding time has been evaluated by decoding the
bitstreams on a Windows 7 (64bit) PC with i7-920 CPU and 8GB of RAM without
writing the reconstructed pictures to the disk.

7.5.1 Deblocking Coding Efficiency and Subjective
Quality Improvements

The results for objective performance of the deblocking filter are provided in
Table 7.4. The results show that applying HEVC deblocking leads to the 1.3–3.2 %

200 A. Norkin et al.

Table 7.4 Luma BD-rates evaluating objective effects of using deblocking filtering under various
coding conditions

Anchor: disable
deblocking
Test: enable
deblocking

Y BD-rate

All Intra
(AI)

Random
Access
(RA)

Low
Delay B
(LB)

Low
Delay P
(LP)

Class A Traffic �2.3 % �2.7 % n/a n/a
Cropped 4K � 2K PeopleOnStreet �2.0 % �4.4 % n/a n/a

Nebuta �1.1 % �1.1 % n/a n/a
SteamLocomotive �2.3 % �5.4 % n/a n/a

Class B Kimono �4.1 % �5.7 % �5.9 % �8.0 %
1080p ParkScene �1.4 % �1.9 % �2.0 % �2.8 %

Cactus �1.3 % �3.4 % �3.7 % �4.5 %
BasketballDrive �1.8 % �3.9 % �3.7 % �4.9 %
BQTerrace �0.3 % �1.1 % �0.6 % �2.3 %

Class C BasketballDrill �0.7 % �2.1 % �2.1 % �2.8 %
WVGA BQMall �1.5 % �2.5 % �2.6 % �3.1 %

PartyScene �0.4 % �0.8 % �0.8 % �0.9 %
RaceHorses �1.2 % �2.6 % �2.9 % �3.2 %

Class D BasketballPass �1.4 % �2.5 % �2.5 % �2.9 %
WQVGA BQSquare �0.1 % 0.0 % 0.6 % 0.3 %

BlowingBubbles �0.4 % �0.9 % �0.8 % �1.1 %
RaceHorses �0.9 % �2.3 % �2.4 % �2.7 %

Class E FourPeople �2.3 % n/a �4.9 % �6.6 %
720p Johnny �2.2 % n/a �2.2 % �5.8 %

KristenAndSara �2.1 % n/a �4.0 % �6.0 %
Class F BasketballDrillText �0.6 % �2.0 % �1.9 % �2.5 %

ChinaSpeed �0.7 % �1.8 % �1.9 % �2.3 %
SlideEditing �0.3 % �0.3 % �0.5 % �0.7 %
SlideShow �0.8 % �0.9 % �0.8 % �1.1 %

Class summary Class A �1.9 % �3.4 % n/a n/a
Class B �1.8 % �3.2 % �3.2 % �4.5 %
Class C �0.9 % �2.0 % �2.1 % �2.5 %
Class D �0.7 % �1.4 % �1.3 % �1.6 %
Class E �2.2 % n/a �3.7 % �6.1 %
Class F �0.6 % �1.2 % �1.3 % �1.6 %

Overall summary All �1.3 % �2.3 % �2.3 % �3.2 %
Decoding time (%) 107 % 104 % 104 % 105 %

bit rate decrease at the same quality depending on the configuration. For certain
classes of sequences, 6 % decrease of bit rate is achieved.

Figure 7.22 compares a part of a decoded picture from the BasketballDrive
sequence (1080p, 50 fps) in Random Access configuration at QP D 32 where
the deblocking was applied with the configuration where the deblocking was
turned off. Figure 7.23 shows same comparison for the sequence KristenAndSara

7 In-Loop Filters in HEVC 201

Fig. 7.22 Sequence BasketballDrive, Random Access, QP32: (a) deblocking turned off, (b)
deblocking turned on

Fig. 7.23 Sequence KristenAndSara, Low Delay, QP37: (a) deblocking turned off, (b) deblocking
turned on

(720p@60 fps) coded in Low Delay B configuration at QP D 37. It can be seen that
the deblocking filter effectively attenuates block artifacts.

202 A. Norkin et al.

7.5.2 SAO Coding Efficiency and Subjective Quality
Improvement

This section illustrates the subjective and objective performance of the SAO tool.
Table 7.5 reports the sequence-wise luma BD-rates and the average luma BD-rates
and run-times for different encoding structures and CTU sizes equal to 64 � 64 in
luma using the skipping boundary samples algorithm as described in Sect. 7.4.2.5.
For BQTerrace in the LP condition, the SAO coding gain reaches 18.9 %. It is
noted that SAO is particularly effective for Class F sequences, which mostly contain
computer graphics and screen content rather than natural video. One could also
notice that SAO shows higher coding gains in the LP configuration without bi-
directional prediction. Regarding the computational complexity, SAO increases the
average decoding time by less than 2–3 %.

The subjective quality improvements due to reduction of ringing artifacts are
shown in Figs. 7.24 and 7.25. Figure 7.24 shows an example of the coded computer-
generated sequence SlideEditing. SAO significantly improves visual quality by
suppressing ringing artifacts near objects edges. Figure 7.25 shows examples of
natural video sequences RaceHorses and BasketballPass where the edges of objects
are much cleaner when SAO is enabled. According to viewing tests, SAO improves
subjective quality [42].

7.5.3 Combined Effect of In-Loop Filters on Coding Efficiency

Table 7.6 demonstrates objective compression efficiency improvements due to both
in-loop filters compared to the configuration where both the deblocking filter and
SAO are turned off. One can see that the compression efficiency improvements
are 2.6–15 % depending on coding configurations. The decoding time increase is
about 10 % and depends on the coding conditions. The encoding complexity mostly
depends on a particular encoder implementation and is not significant in the HM11.0
encoder operating in common test conditions (on the order of 1 % encoding time
increase [13]). These numbers indicate that the in-loop filters are an efficient tool in
improving the HEVC compression efficiency.

7.6 Main Differences between HEVC and H.264/AVC
In-Loop Filters

This section summarizes key differences between the HEVC and H.264/AVC in-
loop filters. There is only a deblocking in-loop filter in H.264/AVC, while the HEVC
standard defines two in-loop filters: the deblocking filter and the sample adaptive
offset, SAO.

7 In-Loop Filters in HEVC 203

Table 7.5 Luma BD-rates evaluating objective effects of using SAO under various coding
conditions

Anchor: disabling
SAO Test: enabling
SAO CTU Size in
luma: 64 � 64 CTU
boundary: option 1

Y BD-rate

All Intra
(AI)

Random
Access
(RA)

Low
Delay B
(LB)

Low
Delay P
(LP)

Class A Traffic �0.9 % �1.2 % n/a n/a
Cropped 4K � 2K PeopleOnStreet �1.3 % �2.1 % n/a n/a

Nebuta �0.1 % �2.3 % n/a n/a
SteamLocomotive �0.2 % �2.6 % n/a n/a

Class B Kimono �0.5 % �0.6 % �0.8 % �7.8 %
1080p ParkScene �0.7 % �0.8 % �1.3 % �9.1 %

Cactus �0.4 % �2.4 % �2.9 % �10.4 %
BasketballDrive �0.2 % �1.5 % �1.5 % �9.0 %
BQTerrace �0.5 % �4.8 % �3.8 % �18.9 %

Class C BasketballDrill �1.0 % �1.7 % �2.7 % �6.4 %
WVGA BQMall �0.3 % �0.9 % �1.7 % �8.2 %

PartyScene �0.1 % 0.2 % �0.7 % �4.0 %
RaceHorses �0.5 % �1.9 % �1.8 % �9.7 %

Class D BasketballPass �0.2 % �0.6 % �1.3 % �4.7 %
WQVGA BQSquare �0.5 % �0.0 % �0.7 % �3.9 %

BlowingBubbles �0.2 % 0.4 % 0.0 % �2.9 %
RaceHorses �0.5 % �1.2 % �1.3 % �6.4 %

Class E FourPeople �0.7 % n/a �2.9 % �9.1 %
720p Johnny �0.4 % n/a �1.9 % �13.3 %

KristenAndSara �0.6 % n/a �2.3 % �11.4 %
Class F BasketballDrillText �1.1 % �2.0 % �3.9 % �6.7 %

ChinaSpeed �1.3 % �3.6 % �6.9 % �9.3 %
SlideEditing �1.5 % �3.0 % �4.5 % �5.0 %
SlideShow �1.9 % �2.2 % �5.4 % �6.4 %

Class summary Class A �0.6 % �2.0 % n/a n/a
Class B �0.4 % �2.0 % �2.0 % �11.1 %
Class C �0.5 % �1.1 % �1.7 % �7.1 %
Class D �0.4 % �0.3 % �0.8 % �4.5 %
Class E �0.6 % n/a �2.6 % �11.3 %
Class F �1.5 % �2.7 % �5.2 % �6.8 %

Overall summary All �0.7 % �1.7 % �2.4 % �9.2 %
Decoding time (%) 103 % 102 % 102 % 103 %

204 A. Norkin et al.

Fig. 7.24 Example of test sequence SliceEditing in LP condition, POC D 100, QP D 32: (a) SAO
is disabled, (b) SAO is enabled

Fig. 7.25 Subjective quality comparison of RaceHorses test sequence, POC D 20, QP D 32, LP
condition: (a) SAO is disabled, (b) SAO is enabled, (c) original (uncoded) sequence

The computational complexity of the HEVC deblocking is lower than that of
the H.264/AVC. Reduction of the HEVC deblocking complexity is achieved by
restricting the filtering to the 8 � 8 sample grid in contrast to the 4 � 4 sample grid in
the H.264/AVC deblocking. Additional complexity reduction in HEVC is achieved
by making the sample-based filtering decisions based on a subset of lines across the
block boundary in contrast to the line-based decisions in H.264/AVC deblocking.
Moreover, the HEVC deblocking of chroma components is only applied to the intra-
predicted block boundaries. The HEVC deblocking is also more suitable for parallel
implementation than the H.264/AVC deblocking since each 8 � 8 sample block in
HEVC can be deblocked independently of other 8 � 8 blocks and the order of the
vertical and horizontal filtering operations in HEVC deblocking is always the same.
The processing order for the horizontal and vertical block boundaries is therefore
different in HEVC and H.264/AVC. When applying the HEVC deblocking on the
CU basis, right after the CU reconstruction, filtering of four right-most samples of
horizontal block boundaries in a CU should be delayed until the next CU to the right
is reconstructed and the vertical boundary between the CUs is filtered.

HEVC and H.264/AVC deblocking filters are also different in terms of criteria
that evaluate the signal (reconstructed sample values) at the sides of a block
boundary to decide whether the deblocking is applied to this block boundary. In
H.264/AVC, the deblocking is typically applied to the block boundary when the

7 In-Loop Filters in HEVC 205

Table 7.6 Luma BD-rates evaluating the objective effects of using deblocking filter and SAO
under various coding conditions

Y BD-rate

Anchor: disable deblocking
and SAO Test: enable
deblocking and SAO

All
Intra
(AI)

Random
Access
(RA)

Low
Delay B
(LB)

Low
Delay P
(LP)

Class A Traffic �4.4 % �5.0 % n/a n/a
Cropped 4K � 2K PeopleOnStreet �4.4 % �8.1 % n/a n/a

Nebuta �1.5 % �4.9 % n/a n/a
SteamLocomotive �3.3 % �9.5 % n/a n/a

Class B Kimono �6.1 % �7.7 % �8.1 % �22.0 %
1080p ParkScene �2.9 % �3.5 % �4.2 % �18.1 %

Cactus �2.3 % �6.7 % �7.2 % �18.9 %
BasketballDrive �2.7 % �6.5 % �6.1 % �18.2 %
BQTerrace �1.0 % �6.7 % �5.3 % �25.7 %

Class C BasketballDrill �2.4 % �4.5 % �5.4 % �11.9 %
WVGA BQMall �2.3 % �4.0 % �5.2 % �15.2 %

PartyScene �0.7 % �1.0 % �2.0 % �7.7 %
RaceHorses �2.4 % �5.8 % �5.9 % �16.0 %

Class D BasketballPass �2.3 % �3.7 % �4.8 % �10.4 %
WQVGA BQSquare �0.7 % �0.1 % �0.3 % �5.2 %

BlowingBubbles �0.9 % �0.7 % �1.2 % �6.3 %
RaceHorses �2.1 % �4.4 % �4.9 % �12.0 %

Class E FourPeople �3.8 % n/a �8.4 % �20.6 %
720p Johnny �3.4 % n/a �5.3 % �28.2 %

KristenAndSara �3.4 % n/a �6.9 % �23.9 %
Class F BasketballDrillText �2.3 % �4.6 % �6.2 % �11.6 %

ChinaSpeed �2.3 % �5.9 % �9.6 % �13.2 %
SlideEditing �1.8 % �3.4 % �5.5 % �5.6 %
SlideShow �2.8 % �3.3 % �6.9 % �8.4 %

Class summary Class A �3.4 % �6.9 % n/a n/a
Class B �3.0 % �6.2 % �6.2 % �20.6 %
Class C �2.0 % �3.8 % �4.6 % �12.7 %
Class D �1.5 % �2.2 % �2.8 % �8.5 %
Class E �3.5 % n/a �6.9 % �24.2 %
Class F �2.3 % �4.3 % �7.1 % �9.7 %

Overall summary All �2.6 % �4.8 % �5.5 % �15.0 %
Decoding time (%) 113 % 107 % 107 % 109 %

signal on both sides of the boundary is flat. Therefore in HEVC, the deblocking is
also applied when the signal on each side of the block boundary approximates a
ramp or a slope, which can happen in smooth areas with changing luma intensity.

The SAO in-loop filter attenuates ringing artifacts, which can be more pro-
nounced in HEVC when larger transform sizes are used by the encoder. Moreover,
SAO can also be applied to the inside samples of the large blocks, which cannot be
corrected by the deblocking filter. This is especially important for HEVC because
of the large transform sizes allowed in the standard.

206 A. Norkin et al.

In case of a CTU-based processing, four lines of samples for the luma component
and two lines for the chroma components should be kept in a line buffer for in a
line buffer both the HEVC and H.264/AVC deblocking. The fourth line of samples
would also be modified by SAO in HEVC and is therefore delayed to be written
to the memory compared to H.264/AVC. Some additional memory is required for
keeping the SAO parameters (see Table 7.3).

7.7 Conclusions

HEVC defines two in-loop filters, deblocking and sample adaptive offset (SAO),
which significantly improve the subjective quality of decoded video sequences
as well as compression efficiency by increasing the quality of the reconstruct-
ed/reference pictures. The deblocking filter attenuates discontinuities on the block
boundaries, while SAO mainly corrects ringing artifacts caused by large transforms
and quantization and sample value offsets in certain regions of a picture caused
by coding of motion vectors. The complexity of the HEVC deblocking has
been significantly reduced compared to the H.264/AVC. Moreover, the HEVC
deblocking filter is highly parallelizable with parallelization down to 8 � 8 sample
blocks. Having lower computational complexity and being highly parallelizable,
the HEVC deblocking is less of a bottleneck in the decoder implementation than
the H.264/AVC deblocking and provides better trade-off between the computational
complexity and coding efficiency (subjective and objective quality). SAO is a new
in-loop filter, not present in H.264/AVC, which provides significant reduction of
ringing artifacts at relatively low decoding complexity. The deblocking and SAO
can also be implemented in the same processing unit, which simplifies CTU-based
encoding and decoding and reduces cost in hardware implementations.

References

1. Alshina E, Alshin A, Park JH (2012) AHG5: on bypass coding for SAO syntax elements, Joint
Collaborative Team on Video Coding (JCT-VC), Document JCTVC-J0043, Stockholm, July
2012

2. Alshina E, Alshin A, Park JH (2012) Encoder modification for SAO, Joint Collaborative Team
on Video Coding (JCT-VC), Document JCTVC-J0044, Stockholm, July 2012

3. Alshina E, Alshin A, Park JH, Fu C-M, Huang Y-W, Lei S (2012) AHG5/AHG6: on reducing
context models for SAO merge syntax, Joint Collaborative Team on Video Coding Coding
(JCT-VC), Document JCTVC-J0041, Stockholm, July 2012

4. Alshina E, Alshin A, Park JH, Laroche G, Gisquet C, Onno P (2012) AHG6: on SAO type
sharing between U and V components, Joint Collaborative Team on Video Coding (JCT-VC),
Document JCTVC-J0045, Stockholm, July 2012

5. Bjøntegaard G (2001) Calculation of average PSNR differences between RD-curves, ITU-T
SG16 Q6 Video Coding Experts Group (VCEG), Document VCEG-M33, Austin, Apr. 2001

7 In-Loop Filters in HEVC 207

6. Bossen F (2013) Common test conditions and software reference configurations, Joint Collab-
orative Team on Video Coding (JCT-VC), Document JCTVC-L1100, Geneva, Jan. 2013

7. Fu C-M, Chen C-Y, Huang Y-W, Lei S (2010) TE10 Subtest 3: Quadtree-based adaptive offset,
Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-C147, Guangzhou,
Oct. 2010

8. Fu C-M, C-Y Chen, Huang Y-W, Lei S (2011) CE8 Subset 3: picture quadtree adaptive offset,
Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-D122, Daegu, Jan.
2011

9. Fu C-M, Chen C-Y, Huang Y-W, Lei S (2011) Sample adaptive offset for HEVC. In: IEEE 13th
international workshop on multimedia signal processing (MMSP) 2011

10. Fu C-M, Chen C-Y, Huang Y-W, Lei S, Park S, Jeon B, Alshin A, Alshina E (2011) Sample
adaptive offset for chroma, Joint Collaborative Team on Video Coding (JCT-VC), Document
JCTVC-F057, Torino, July 2011

11. Fu C-M, Chen C-Y, Tsai C-Y, Huang Y-W, Lei S (2011) CE13: sample adaptive offset with
LCU-independent decoding, Joint Collaborative Team on Video Coding (JCT-VC), Document
JCTVC-E049, Geneva, Mar. 2011

12. Fu C-M, Huang Y-W, Lei S, Chong IS, Karczewicz M (2011) Non-CE8: offset coding in SAO,
Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-G222, Geneva, Nov.
2011

13. Fu C-M, Alshina E, Alshin A, Huang Y-W, Chen C-Y, Tsai C-Y, Hsu C-W, Lei S, Park JH,
Han W-J (2012) Sample adaptive offset in the HEVC standard. IEEE Trans Circuits Syst Video
Technol 22(12):1755–1764

14. Fu C-M, Chen C-Y, Tsai C-Y, Huang Y-W, Lei S, Chong IS, Karczewicz M, Alshina E, Alshin
A (2012) E8.a.3: SAO with LCU-based syntax, Joint Collaborative Team on Video Coding
(JCT-VC), Document JCTVC-H0273, San Jose, Feb. 2012

15. Fu C-M, Huang Y-W, Lei S (2012) Non-CE1: bug-fix of offset coding in SAO interleaving
mode, Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-I0168,
Geneva, Apr. 2012

16. Fuldseth A, Horowitz M, Xu S, Segall A, Zhou M (2011) Tiles, Joint Collaborative Team on
Video Coding (JCT-VC), Document JCTVC-F335, Torino, July 2011

17. Han W-J, Min J, Kim IK, Alshina E, Alshin A, Lee T, Chen J, Seregin V, Lee S, Hong YM,
Cheon MS, Sklyakhov N, McCann K, Davies T, Park JH (2010) Improved video compression
efficiency through flexible unit representation and corresponding extension of coding tools.
IEEE Trans Circuits Syst Video Technol 20(12):1709–1720

18. Huang Y-W, Alshina E, Chong IS, Wan W, Zhou M (2012) Description of core experiment 1
(CE1): sample adaptive offset filtering, Joint Collaborative Team on Video Coding (JCT-VC),
Document JCTVC-H1101, San Jose, Feb. 2012

19. Ikeda M, Suzuki T (2012) Non-CE10: introduction of strong filter, Joint Collaborative Team
on Video Coding, Document JCTVC-H0275, San Jose, Feb. 2012

20. Ikeda M, Tanaka J, Suzuki T (2011) CE12 Subset2: parallel deblocking filter, Joint Collabora-
tive Team on video coding (JCT-VC), Document JCTVC-E181, Geneva, Mar. 2011

21. ITU-T Rec. H.264 and ISO/IEC 14496-10 (2003) Advanced Video Coding
22. Kim W-S (2012) AHG6: SAO parameter estimation using non-deblocked pixels, Joint Collab-

orative Team on Video Coding (JCT-VC), Document JCTVC-J0139, Stockholm, July 2012
23. Kim W-S, Kwon D-K (2012) Non-CE8: method of visual coding artifact removal for SAO,

Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-G680, Geneva,
Nov. 2012

24. Kim W-S, Kwon D-K (2012) CE8 Subset c: necessity of sign bits for SAO offsets, Joint Col-
laborative Team on Video Coding (JCT-VC), Document JCTVC-H0434, San Jose, Feb. 2012

25. Laroche G, Poirier T, Onno P (2011) On additional SAO band offset classifications, Joint
Collaborative Team on Video Coding (JCT-VC), Document JCTVC-G246, Geneva, Nov. 2011

26. Laroche G, Poirier T, Onno P (2012) Non-CE1: encoder modification for SAO interleaving
mode, Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-I0184,
Geneva, Apr. 2012

208 A. Norkin et al.

27. List P, Josh A, Lainema J, Bjøntegaard G, Karczewicz M (2003) Adaptive loop filter. IEEE
Trans Circuits Syst Video Technol 13:614 -619

28. Lou J, Jagmohan A, He D, Lu L, Sun M-T (2009) H.264 deblocking speedup. IEEE Trans
Circuits Syst Video Technol 19(8):1178–1182

29. Maani E, Nakagami O (2012) Flexible band offset mode in SAO, Joint Collaborative Team on
Video Coding (JCT-VC), Document JCTVC-H0406, San Jose, Feb. 2012

30. Minezawa A, Sugimoto K, Sekiguchi S (2012) Non-CE1: improved edge offset coding for
SAO, Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-I0066, Geneva,
Apr. 2012

31. Minoo K, Baylon D (2012) AHG6: coding of SAO merge left and merge up flags, Joint Col-
laborative Team on Video Coding (JCT-VC), Document JCTVC-J0355, Stockholm, July 2012

32. Narroschke M, Esenlik S, Wedi T (2011) CE12 Subtest 1: results for modified decisions for
deblocking, Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-G590,
Geneva, Nov. 2011

33. Norkin A (2012) Non-CE1: non-normative improvement to deblocking filtering, Joint Collab-
orative Team on Video Coding (JCT-VC), Document JCTVC-K0289, Shanghai, Oct. 2012

34. Norkin A (2012) CE10.3: deblocking filter simplifications: Bs computation and strong filtering
decision, Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-H0473,
San Jose, Feb. 2012

35. Norkin A, Andersson K, Sjöberg R, Huang Q, An J, Guo X, Lei S (2011) CE12: Ericsson’s and
MediaTek’s deblocking filter, Joint Collaborative Team on Video Coding (JCT-VC), Document
JCTVC-F118, Torino, July 2011

36. Norkin A, Andersson K, Fuldseth A, Bjøntegaard G (2012) HEVC deblocking filtering and
decisions. In: Proc. SPIE. 8499, Applications of Digital Image Processing XXXV, no. 849912,
Oct. 2012

37. Norkin A, Bjøntegaard G, Fuldseth A, Narroschke M, Ikeda M, Andersson K, Zhou M,
Van der Auwera G (2012) HEVC deblocking filter. IEEE Trans Circuits Syst Video Technol
22(11):1746–1754

38. Norkin A, Andersson K, Kulyk V (2013) Two HEVC encoder methods for block artifact
reduction. In: Proceedings of the IEEE international conference on visual communications
and image processing (VCIP) 2013, Kuching, Sarawak, 17–20 Nov. 2013

39. Norkin A, Andersson K, Sjöberg R (2013) AHG6: on deblocking filter and parameters
signaling, Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-L0232,
Geneva, Jan. 2013

40. ITU-T Rec. H.265 and ISO/IEC 23008-2 (2013) High efficiency video coding
41. Sullivan GJ, Wiegand T (1998) Rate-distortion optimization for video compression. IEEE

Signal Processing Magazine, pp 74–90
42. Tan TK, Fujibayashi A, Suzuki Y, Takiue J (2012) AHG8: objective and subjective evaluation

of HM5.0, Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-H0116,
San Jose, Feb. 2012

43. Ugur K, Andersson KR, Fuldseth A (2010) Video coding technology proposal by Tandberg,
Nokia, and Ericsson, Joint Collaborative Team on Video Coding, Document JCTVC-A119,
Dresden, Apr. 2010

44. Van der Auwera G, Wang X, Karczewicz M, Narroschke M, Kotra A, Wedi T (2011) Support
of varying QP in deblocking, Joint Collaborative Team on Video Coding (JCT-VC), Document
JCTVC-G1031, Geneva, Nov. 2011

45. Xu J, Tabatabai A (2012) AHG6: on SAO signaling, Joint Collaborative Team on Video Coding
(JCT-VC), Document JCTVC-J0268, Stockholm, July 2012

46. Yamakage T, Asaka S, Chujoh T, Karczewicz M, Chong IS (2011) CE12: deblocking filter
parameter adjustment in slice level, Joint Collaborative Team on Video Coding (JCT-VC),
Document JCTVC-G174, Geneva, Nov. 2011

47. Zhou M, Sezer O, Sze V (2011) CE12 subset 2: test results and architectural study on de-
blocking filter without parallel on/off filter decision, Joint Collaborative Team on Video Coding
(JCT-VC), Document JCTVC-G088, Geneva, Nov. 2011

	7 In-Loop Filters in HEVC
	7.1 Introduction
	7.2 *-6pt
	7.2.1 Block Artifacts in Video Coding
	7.2.2 HEVC Deblocking Filter Description
	7.2.2.1 Decisions to Filter a Block Boundary
	7.2.2.2 Normal Filtering Mode
	7.2.2.3 Strong Filtering Mode
	7.2.2.4 Chroma Deblocking
	7.2.2.5 Deblocking Adaption

	7.3 Sample Adaptive Offset (SAO)
	7.3.1 Motivation and Overview of SAO
	7.3.2 Edge Offset
	7.3.3 Band Offset
	7.3.4 SAO Parameters Signaling
	7.3.4.1 SAO Parameters Merging
	7.3.4.2 SAO Type and Offsets Signaling
	7.3.4.3 CABAC Contexts and Bypass Coding

	7.4 *-7pt
	7.4.1 Deblocking Filter Complexity and Parallelism
	7.4.1.1 HEVC Deblocking Filter Complexity
	7.4.1.2 Deblocking Filter Parallelization Aspects

	7.4.2 SAO Implementation Aspects and Parameters Estimation
	7.4.2.1 Fast Edge Offset Sample Classification
	7.4.2.2 Fast Band Offset Sample Classification
	7.4.2.3 Distortion Estimation for Encoder
	7.4.2.4 Slice-Level On/Off Control
	7.4.2.5 SAO Parameters Estimation and Interaction with Deblocking

	7.4.3 CTU-Based Processing and Line Buffer
	7.4.4 Error Resilience

	7.5 Coding Efficiency and Subjective Quality Improvements
	7.5.1 Deblocking Coding Efficiency and Subjective Quality Improvements
	7.5.2 SAO Coding Efficiency and Subjective Quality Improvement
	7.5.3 Combined Effect of In-Loop Filters on Coding Efficiency

	7.6 Main Differences between HEVC and H.264/AVC In-Loop Filters
	7.7 Conclusions
	References

