
Chapter 6
HEVC Transform and Quantization

Madhukar Budagavi, Arild Fuldseth, and Gisle Bjøntegaard

Abstract This chapter provides an overview of the transform and quantization
design in HEVC. HEVC specifies two-dimensional transforms of various sizes
from 4 � 4 to 32 � 32 that are finite precision approximations to the discrete cosine
transform (DCT). In addition, HEVC also specifies an alternate 4 � 4 integer
transform based on the discrete sine transform (DST) for use with 4 � 4 luma Intra
prediction residual blocks. During the transform design, special care was taken
to allow implementation friendliness, including limited bit depth, preservation of
symmetry properties, embedded structure and basis vectors having almost equal
norm. The HEVC quantizer design is similar to that of H.264/AVC where a
quantization parameter (QP) in the range of 0–51 (for 8-bit video sequences) is
mapped to a quantizer step size that doubles each time the QP value increases
by 6. A key difference, however, is that the transform basis norm correction factors
incorporated into the descaling matrices of H.264/AVC are no longer needed in
HEVC simplifying the quantizer design. A QP value can be transmitted (in the form
of delta QP) for a quantization group as small as 8 � 8 samples for rate control
and perceptual quantization purposes. The QP predictor used for calculating the
delta QP uses a combination of left, above and previous QP values. HEVC also
supports frequency-dependent quantization by using quantization matrices for all
transform block sizes. This chapter also provides an overview of the three special
coding modes in HEVC (I_PCM mode, lossless mode, and transform skip mode)
that modify the transform and quantization process by either skipping the transform
or by skipping both transform and quantization.

M. Budagavi (�)
Texas Instruments Inc., Dallas, TX, USA
e-mail: madhu072@yahoo.com

A. Fuldseth • G. Bjøntegaard
Cisco Systems Norway, 1366 Lysaker, Norway
e-mail: arild.fuldseth@cisco.com; gbjonteg@cisco.com

V. Sze et al. (eds.), High Efficiency Video Coding (HEVC): Algorithms and Architectures,
Integrated Circuits and Systems, DOI 10.1007/978-3-319-06895-4__6,
© Springer International Publishing Switzerland 2014

141

mailto:madhu072@yahoo.com
mailto:arild.fuldseth@cisco.com
mailto:gbjonteg@cisco.com

142 M. Budagavi et al.

6.1 Introduction

In the block-based hybrid video coding approach, transforms are applied to the
residual signal resulting from inter- or intra-picture prediction as shown in Fig. 6.1.
At the encoder, the residual signal of a picture is divided into square blocks
of size N � N where N D 2M and M is an integer. Each residual block (U) is
then input to a two-dimensional N � N forward transform. The two-dimensional
transform can be implemented as a separable transform by applying an N-point one-
dimensional transform to each row and each column separately. The resulting N � N
transform coefficients (coeff) are then subject to quantization (which is equivalent
to division by quantization step size Qstep and subsequent rounding) to obtain
quantized transform coefficients (level). At the decoder, the quantized transform
coefficients are then de-quantized (which is equivalent to multiplication by Qstep).
Finally, a two-dimensional N � N separable inverse transform is applied to the de-
quantized transform coefficients (coeffQ) resulting in a residual block of quantized
samples which is then added to the intra- or inter-prediction samples to obtain the
reconstructed block.

Typically, the forward- and inverse transform matrices are transposes of each
other and are designed to achieve near lossless reconstruction of the input residual
block when concatenated without the intermediate quantization and de-quantization
steps.

Intra/Inter
prediction

Input block

Entropy
encode

Bitstream

Forward
transform

Quant

C

Qstep

coeff

level

U

Intra/Inter
prediction

Entropy
decode

Bitstream

Inverse
transform

De-quant

C

Qstep

X= coeffQ

level

Reconstructed
block

a b

Fig. 6.1 Block-based hybrid video coding. (a) Encoder, (b) Decoder. C is the transform matrix
and Qstep is the quantization step size. Reproduced with permission from [6]. © IEEE 2013

6 HEVC Transform and Quantization 143

In video coding standards such as HEVC, the de-quantization process and inverse
transforms are specified, while the forward transforms and quantization process are
chosen by the implementer (subject to constraints on the bitstream).

This chapter is organized as follows. Section 6.2 describes the two transform
types used in HEVC: the core transform based on the discrete cosine transform
and the alternate transform based on the discrete sine transform. Design principles
used to develop the transform are also highlighted to provide insight into the
transform design process which considered both coding efficiency and complexity.
In Sect. 6.3, the HEVC quantization process is described. Topics covered in this
section include the actual quantization and de-quantization steps, quantization
matrices, and quantization parameter derivation. Section 6.4 provides an overview
of the three special coding modes in HEVC (I_PCM mode, Lossless mode, and
Transform skip mode) that modify the transform and quantization process by either
skipping the transform or by skipping both transform and quantization. Sections 6.5
and 6.6 provide complexity analysis and coding performance results respectively.

6.2 HEVC Transform1

The HEVC standard [16] specifies core transform matrices of size 4 � 4, 8 � 8,
16 � 16 and 32 � 32 to be used for two-dimensional transforms in the context
of block-based motion-compensated video compression. Multiple transform sizes
improve compression performance, but also increase the implementation complex-
ity. Hence a careful design of the core transforms is needed.

HEVC specifies two-dimensional core transforms that are finite precision
approximations to the inverse discrete cosine transform (IDCT) for all transform
sizes. Note that because of the approximations, the HEVC core transforms are not
the IDCT. The fact that an IDCT is not used does not necessarily make the HEVC
core transforms imperfect. In fact, the finite precision approximations are desirable
as explained in the next two paragraphs. The main purpose of the transform is
to de-correlate the input residual block. The optimal de-correlating transform is
the Karhunen–Loeve transform (KLT) [22] and not necessarily the DCT. This
is especially true for the coding of 4 � 4 luma intra-prediction residual blocks
where HEVC specifies an alternate 4 � 4 integer transform based on the discrete
sine transform (DST) [24]. Note that only the inverse transforms are specified in
the HEVC standard and the forward transforms are not. So an encoder may get
additional coding efficiency benefits by using the actual inverse rather than the
transpose of the inverse transform.

1Portions of this section are © 2013 IEEE. Reprinted, with permission, from M. Budagavi,
A. Fuldseth, G. Bjøntegaard, V. Sze, M. Sadafale, “Core Transform Design in the High Efficiency
Video Coding (HEVC) Standard,” IEEE Journal of Selected Topics in Signal Processing,
December 2013.

144 M. Budagavi et al.

In the H.261, MPEG-1, H.262/MPEG-2, and H.263 video coding standards, an
8-point IDCT was specified with infinite precision. To ensure interoperability and to
minimize drift between encoder and decoder implementations using finite precision,
two features were included in the standards. First, block-level periodic intra refresh
was mandatory. Second, a conformance test for the accuracy of the IDCT using a
pseudo-random test pattern was specified.

In the H.264/MPEG-4 Advanced Video Coding (AVC) standard [15], the
problem of encoder–decoder drift was solved by specifying integer valued 4 � 4
and 8 � 8 transform matrices. The transforms were designed as approximations to
the IDCT with emphasis on minimizing the number of arithmetic operations. These
transforms had large variations of the norm of the basis vectors. As a consequence
of this, non-flat default de-quantization matrices were specified to compensate for
the different norms of the basis vectors [20].

During the development of HEVC, several different approximations of the IDCT
were studied for the core transform. The first version of the HEVC Test Model
HM1 used the H.264/AVC transforms for 4 � 4 and 8 � 8 blocks and integer
approximation of Chen’s fast IDCT [7] for 16 � 16 and 32 � 32 blocks. The HM1
inverse transforms had the following characteristics [23, 28]:

• Non-flat de-quantization matrices for all transform sizes: While acceptable for
small transform sizes, the implementation cost of using de-quantization matrices
for larger transforms is high because of larger block sizes,

• Different architectures for different transform sizes: This leads to increased area
since hardware sharing across different transform sizes is difficult,

• A 20-bit transpose buffer used for storing intermediate results after the first
transform stage in 2D transform: An increased transpose buffer size leads to
larger memory and memory bandwidth. In hardware, the transpose buffer area
can be significant and comparable to transform logic area [30],

• Full factorization architecture requiring cascaded multipliers and intermediate
rounding for 16- and 32-point transforms: This increases data path dependencies
and impacts parallel processing performance. It also leads to increased bit width
for multipliers and accumulators (32 bits and 64 bits respectively in software).
In hardware, in addition to area increase, it also leads to increased circuit delay
thereby limiting the maximum frequency at which the inverse transform block
can operate.

To address the complexity concerns of the HM1 transforms, a matrix multipli-
cation based core transform was proposed in [10] and eventually adopted as the
HEVC core transform. The design goal was to develop a transform that was efficient
to implement in both software on SIMD machines and in hardware. Alternative
proposals to the HEVC core transform design can be found in [1, 9, 17].

The HEVC core transform matrices were designed to have the following
properties [10]:

• Closeness to the IDCT
• Almost orthogonal basis vectors

6 HEVC Transform and Quantization 145

• Almost equal norm of all basis vectors
• Same symmetry properties as the IDCT basis vectors
• Smaller transform matrices are embedded in larger transform matrices
• Eight-bit representation of transform matrix elements
• Sixteen-bit transpose buffer
• Multipliers can be represented using 16 bits or less with no cascaded multiplica-

tions or intermediate rounding
• Accumulators can be implemented using less than 32 bits

6.2.1 Discrete Cosine Transform

The N transform coefficients vi of an N-point 1D DCT applied to the input samples
ui can be expressed as

vi D
N �1X

j D0

uj cij (6.1)

where i D 0, : : : , N �1. Elements cij of the DCT transform matrix C are defined as

cij D Pp
N

cos

�
�

N

�
j C 1

2

�
i

�
(6.2)

where i, j D 0, : : : , N �1 and where P is equal to 1 and
p

2 for i D 0 and
i > 0, respectively. Furthermore, the basis vectors ci of the DCT are defined as
ci D [ci0, : : : , ci(N �1)]T where i D 0, : : : , N �1.

The DCT has several properties that are considered useful both for compression
efficiency and for efficient implementation [22].

1. The basis vectors are orthogonal, i.e. cT
i cj D 0 for i ¤ j. This property is desir-

able for compression efficiency by achieving transform coefficients that are
uncorrelated.

2. The basis vectors of the DCT have been shown to provide good energy
compaction which is also desirable for compression efficiency.

3. The basis vectors of the DCT have equal norm, i.e. cT
i ci D 1 for i D 0, : : : , N �1.

This property is desirable for simplifying the quantization/de-quantization pro-
cess. Assuming that equal frequency-weighting of the quantization error is
desired, equal norm of the basis vectors eliminates the need for quantization/de-
quantization matrices.

4. Let N D 2M. The elements of a DCT matrix of size 2M � 2M is a subset of the
elements of a DCT matrix of size 2M C 1 � 2M C 1. More specifically, the basis
vectors of the smaller matrix is equal to the first half of the even basis vectors of

146 M. Budagavi et al.

the larger matrix. This property is useful to reduce implementation costs as the
same multipliers can be reused for various transform sizes.

5. The DCT matrix can be specified by using a small number of unique elements.
By examining the elements cij of (6.2) it can be shown that the number of
unique elements in a DCT matrix of size 2M � 2M is equal to 2M �1. As
further elaborated in Sect. 6.2.4, this is particularly advantageous in hardware
implementations.

6. The even basis vectors of the DCT are symmetric, while the odd basis vectors
are anti-symmetric. This property is useful to reduce the number of arithmetic
operations.

7. The coefficients of a DCT matrix have certain trigonometric relationships that
allows for a reduction of the number of arithmetic operations beyond what is
possible by exploiting the (anti-)symmetry properties. These properties can be
utilized to implement fast algorithms such as the Chen’s fast factorization [7].

6.2.2 Finite Precision DCT Approximations

The core transform matrices of HEVC are finite precision approximations of the
DCT matrix. The benefit of using finite precision in a video coding standard is that
the approximation to the real-valued DCT matrix is specified in the standard rather
than being implementation dependent. This avoids encoder–decoder mismatch and
drift caused by manufacturers implementing the IDCT with slightly different float-
ing point representations. On the other hand, a disadvantage of using approximate
matrix elements is that some of the properties of the DCT discussed in Sect. 6.2.1
may not be satisfied anymore. More specifically, there is a trade-off between the
computational cost associated with using high bit-depth for the matrix elements and
the degree to which some of the conditions of Sect. 6.2.1 are satisfied.

A straightforward way of determining integer approximations to the DCT matrix
elements is to scale each matrix element with some large number (typically between
25 and 216) and then round to the closest integer. However, this approach does not
necessarily result in the best compression performance. As shown in Sect. 6.2.3, for
a given bit-depth of the matrix elements, a different strategy for approximating the
DCT matrix elements results in a different trade-off between some of the properties
of Sect. 6.2.1.

6.2.3 HEVC Core Transform Design Principles

The DCT approximations used for the core transforms of HEVC were chosen
according to the following principles. First, properties 4–6 of Sect. 6.2.1 were
satisfied without any compromise. This choice ensures that several implementation
friendly aspects of the DCT are preserved. Second, for properties 1–3 and 7 of
Sect. 6.2.1, there were trade-offs between the number of bits used to represent each
matrix element and the degree by which each of the properties were satisfied.

6 HEVC Transform and Quantization 147

Table 6.1 Comparison of transform design methods

HEVC core transforms Scaling and rounding

Orthogonality oij < 0.0029 oij < 0.0037
Closeness to DCT mij < 0.0213 mij < 0.0077
Norm measure ni < 0.0014 ni < 0.0109

To measure the degree of approximation for properties 1–3 of Sect. 6.2.1, the
following measures are defined for an integer N-point DCT approximation with
scaled matrix elements equal to dij and basis vectors equal to di D [di0, : : : , di(N �1)]T

where i D 0, : : : , N �1.

1. Orthogonality measure: oij D dT
i dj/dT

0 d0, i ¤ j
2. Closeness to DCT measure: mij D j˛cij �dijj/d00

3. Norm measure: ni D j1 �dT
i di/dT

0 d0j
where i, j D 0, : : : , N �1, cij are the DCT matrix elements of (6.2), and the scale
factor ˛ is defined as d00N1/2.

As a result of careful investigation, it was decided to represent each matrix
coefficient with 8 bit (including sign bit), and to choose the elements of the first
basis vector to be equal to 64 (i.e. d0j D 64, j D 0, : : : , N �1). Note that this results
in a scale factor of 26 C M/2 for the HEVC transform matrix when compared to the
orthonormal DCT. The remaining matrix elements were hand-tuned (within the
constraints of properties 4–6 of Sect. 6.2.1) to achieve a good balance between
properties 1–3 of Sect. 6.2.1. The hand-tuning was performed as follows. First,
the real-valued scaled DCT matrix elements, ˛cij, were derived. Next, for each
unique number in the resulting matrices, each integer value in the interval [�1.5, 1.5]
around ˛cij was examined and the resulting values of oij, mij, and ni were calculated.
Since there are only 31 unique numbers in the transform matrices (see Sect. 6.2.4),
various permutations can be examined systematically (although not exhaustively).
The final integer matrix elements were chosen to give a good compromise between
all measures oij, mij, and ni. The resulting worst case values of oij, mij, and
ni are shown in the second column of Table 6.1. The norm was considered to be
sufficiently close to 1 (i.e. the norm measure ni is sufficiently close to 0) to justify
not using a non-flat default de-quantization matrix in HEVC (i.e. all transform
coefficients scaled equally).

For comparison purposes, the resulting measures when multiplying the real-
valued DCT matrix elements with 26 C M/2 and rounding to the closest integer are
listed in the third column of Table 6.1. As can be seen from the table, although the
matrix elements of the HEVC transforms are farther from the scaled DCT matrix
elements, they have better orthogonality and norm properties.

Finally, by using only 8 bit representation, property 7 of Sect. 6.2.1 (trigonomet-
ric relationship between matrix elements) was not easily preserved. The authors are
not aware of any trigonometric property of the HEVC core transforms that can be
utilized to reduce the number of arithmetic operations below those required when
using the (anti-) symmetry properties.

148 M. Budagavi et al.

6.2.4 Basis Vectors of the HEVC Core Transforms

The left half of the 32 � 32 matrix specifying the 32-point forward transform is
shown in Fig. 6.2. The right half can be derived by using the (anti-) symmetry
properties of the basis vectors (property 6 of Sect. 6.2.1). The inverse transform
matrix of HEVC is defined as the transpose of the matrix resulting from the figure.
The 32 � 32 matrix contains up to 31 unique numbers as follows.

d 32
i;0; i D 1; : : : ; 31 D

n
90; 90; 90; 89; 88; 87; 85; 83; 82; 80; 78; 75; 73; 70; 67; 64;

61; 57; 54; 50; 46; 43; 38; 36; 31; 25; 22; 18; 13; 9; 4
o

(6.3)

These unique numbers are elements 1–31 of the first column of the forward
transform matrix. Note that although the number 90 occurs three times, this is by
accident and not generally true. The unique numbers property was used in [26] to
enable 25 % area reduction for hardware designs with practical throughput.

Furthermore, the coefficients dN
ij of the smaller transform matrices (N D 4, 8, 16)

can be derived from the coefficients d32
ij of the 32 � 32 transform matrix as:

d N
ij D d 32

i.32=N /;j ; i; j D 0; : : : ; N � 1 (6.4)

Let D4 denote the 4 � 4 transform matrix. By using (6.4) and Fig. 6.2, D4 can be
obtained as:

D4 D

2
6664

d 32
0;0 d 32

0;1

d 32
8;0 d 32

8;1

d 32
0;2 d 32

0;3

d 32
8;2 d 32

8;3

d 32
16;0 d 32

16;1

d 32
24;0 d 32

24;1

d 32
16;2 d 32

16;3

d 32
24;2 d 32

24;3

3
7775 D

2
664

64 64

83 36

64 64

�36 �83

64 �64

36 �83

�64 64

83 �36

3
775

The 8 � 8 transform matrix D8 and the 16 � 16 transform matrix D16 can be
similarly obtained from the 32 � 32 transform matrix as shown in Fig. 6.2 where
different colors are used to highlight the embedded 16 � 16, 8 � 8 and 4 � 4
forward transform matrices. This property allows for different transform sizes to be
implemented using the same architecture thereby facilitating hardware sharing [6].

Note that from the unique numbers property of (6.3) and the (anti-)symmetry
properties, D4 is also equal to:

D4 D

2

6664

d 32
16;0 d 32

16;0

d 32
8;0 d 32

24;0

d 32
16;0 d 32

16;0

� d 32
24;0 �d 32

8;0

d 32
16;0 �d 32

16;0

d 32
24;0 �d 32

8;0

�d 32
16;0 d 32

16;0

d 32
8;0 �d 32

24;0

3

7775 (6.5)

6 HEVC Transform and Quantization 149

64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64
90 90 88 85 82 78 73 67 61 54 46 38 31 22 13 4
90 87 80 70 57 43 25 9 -9 -25 -43 -57 -70 -80 -87 -90
90 82 67 46 22 -4 -31 -54 -73 -85 -90 -88 -78 -61 -38 -13
89 75 50 18 -18 -50 -75 -89 -89 -75 -50 -18 18 50 75 89
88 67 31 -13 -54 -82 -90 -78 -46 -4 38 73 90 85 61 22
87 57 9 -43 -80 -90 -70 -25 25 70 90 80 43 -9 -57 -87
85 46 -13 -67 -90 -73 -22 38 82 88 54 -4 -61 -90 -78 -31
83 36 -36 -83 -83 -36 36 83 83 36 -36 -83 -83 -36 36 83
82 22 -54 -90 -61 13 78 85 31 -46 -90 -67 4 73 88 38
80 9 -70 -87 -25 57 90 43 -43 -90 -57 25 87 70 -9 -80
78 -4 -82 -73 13 85 67 -22 -88 -61 31 90 54 -38 -90 -46
75 -18 -89 -50 50 89 18 -75 -75 18 89 50 -50 -89 -18 75
73 -31 -90 -22 78 67 -38 -90 -13 82 61 -46 -88 -4 85 54
70 -43 -87 9 90 25 -80 -57 57 80 -25 -90 -9 87 43 -70
67 -54 -78 38 85 -22 -90 4 90 13 -88 -31 82 46 -73 -61
64 -64 -64 64 64 -64 -64 64 64 -64 -64 64 64 -64 -64 64
61 -73 -46 82 31 -88 -13 90 -4 -90 22 85 -38 -78 54 67
57 -80 -25 90 -9 -87 43 70 -70 -43 87 9 -90 25 80 -57
54 -85 -4 88 -46 -61 82 13 -90 38 67 -78 -22 90 -31 -73
50 -89 18 75 -75 -18 89 -50 -50 89 -18 -75 75 18 -89 50
46 -90 38 54 -90 31 61 -88 22 67 -85 13 73 -82 4 78
43 -90 57 25 -87 70 9 -80 80 -9 -70 87 -25 -57 90 -43
38 -88 73 -4 -67 90 -46 -31 85 -78 13 61 -90 54 22 -82
36 -83 83 -36 -36 83 -83 36 36 -83 83 -36 -36 83 -83 36
31 -78 90 -61 4 54 -88 82 -38 -22 73 -90 67 -13 -46 85
25 -70 90 -80 43 9 -57 87 -87 57 -9 -43 80 -90 70 -25
22 -61 85 -90 73 -38 -4 46 -78 90 -82 54 -13 -31 67 -88
18 -50 75 -89 89 -75 50 -18 -18 50 -75 89 -89 75 -50 18
13 -38 61 -78 88 -90 85 -73 54 -31 4 22 -46 67 -82 90
9 -25 43 -57 70 -80 87 -90 90 -87 80 -70 57 -43 25 -9
4 -13 22 -31 38 -46 54 -61 67 -73 78 -82 85 -88 90 -90

Fig. 6.2 Left half of the 32 � 32 matrix specifying the 32-point forward transform. Embedded
4-point (green shading), 8-point (pink shading) and 16-point (yellow shading) forward transform
matrices are also shown in the figure. Reproduced with permission from [6]. © IEEE 2013

150 M. Budagavi et al.

Qstep

142

1D column
forward
transform

Quant

1D row
forward
transform

[]×D

[] TD×

1TS×

2TS×

QS×

coeff

level

U

[]×TD

[] D×

1ITS×

2ITS×

Qstep62

level

IQS×

C)(D)26(2 M+=

X (=coeffQ)

1D column
inverse
transform

1D row
inverse
transform

)26(2 M+×C

2D forward
transform De-quant

2D inverse
transform

C)(D)26(2 M+=

)26(2 M+×C

Qstep

142

1D column
forward
transform

1D row
forward
transform

[]×D

[] TD×

1TS×

2TS×

QS×

coeff

[]×TD

[] D×

1ITS×

2ITS×

Qstep6262

IQS×

C))26(2 M+=

1D column
inverse
transform

1D row
inverse
transform

)26(2 M+×)26(2 M+×

C))26(2 M+

)26(2 M+×)26(2 M+×

a b

Fig. 6.3 Additional scale factors ST1, ST2, SIT1, SIT2, SQ, SIQ required to implement HEVC integer
transform and quantization. (a) Forward transform and quantization, (b) inverse transform and
quantization. The 2D forward and inverse transform are implemented as separable 1D column
and row transforms. C is the orthonormal DCT matrix. D is the scaled approximation of the DCT
matrix. M D log2(N) where N is the transform size. Reproduced with permission from [6]. © IEEE
2013

6.2.5 Intermediate Scaling

Since the HEVC matrices are scaled by 2(6 C M/2) compared to an orthonormal
DCT transform, and in order to preserve the norm of the residual block through
the forward and inverse two-dimensional transforms, additional scale factors—
ST1, ST2, SIT1, SIT2 —need to be applied as shown in Fig. 6.3. Note that Fig. 6.3 is
basically a fixed point implementation of the transform and quantization in Fig. 6.1.
While the HEVC standard specifies the scale factors of the inverse transform (i.e.
SIT1, SIT2), the HEVC reference software also specifies corresponding scale factors
for the forward transform (i.e. ST1, ST2). The scale factors were chosen with the
following constraints:

1. All scale factors shall be a power of two to allow the scaling to be implemented
as a right shift.

2. Assuming full range of the input residual block (e.g. a DC block with all samples
having maximum amplitude), the bit depth after each transform stage shall be
equal to 16 bits (including the sign bit). This was considered a reasonable trade-
off between accuracy and implementation costs.

6 HEVC Transform and Quantization 151

3. Since the HEVC matrices are scaled by 2(6 C M/2), cascading of the two-
dimensional forward and inverse transform will results in a scaling of 2(6 C M/2)

for each of the 1D row forward transform, the 1D column forward transform, the
1D column inverse transform, and the 1D row inverse transform. Consequently to
preserve the norm through the two-dimensional forward and inverse transforms,
the product of all scale factors shall be equal to (1/2(6 C M/2))4 D 2�242�2M.

The process of selecting the forward transform scale factors is illustrated using
the 4 � 4 forward transform as an example in Fig. 6.4. When video has a bit depth
of B bits, the residual will be in the range of [�2B C 1, 2B �1] requiring (B C 1)
bits to represent it. In the following worst case bit-depth analysis we will assume a
residual block with all samples having maximum amplitude equal to �2B as input to
the first stage of the forward transform. We believe this is a reasonable assumption
since all basis vectors have almost the same norm. Note also that we are using �2B

instead of �2B C 1 or 2B �1 in the worst case analysis since it is a power of 2. The
scale factor derivation becomes simpler assuming input to be �2B (which still fits
within (B C 1) bits) since all the scale factors are a power of 2. For this worst case
input block, the maximum value of an output sample will be �2B � N � 64. This
corresponds to the dot product of the first basis vector (of length N with all values
equal to 64) with an input vector consisting of values equal to �2B. Therefore, with
N D 2M , for the output to fit within 16 bits (i.e., maximum value of �215) a scaling
of 1/(2B � 2M � 26 � 2�15) is required. Consequently, the scale factor after the first
transform stage is chosen as ST1 D 2�(B C M �9).

The second stage of the forward transform consists of multiplication of the result
of the first transform stage with DT

4 . The input into the second stage of the forward
transform is the output from the first stage which is a matrix with all elements in the
first row having a value of �215. All other elements will be zero as shown in Fig. 6.4.
The output of multiplication with DT

4 will be a matrix with only a DC value equal
to �215 � 2M � 26 and all remaining values equal to 0. This implies that the scaling
required after the second stage of transform is ST2 D 2�(M C 6) in order for the output
to fit within 16 bits.

The first stage of the inverse transform consists of multiplication of the result of
the forward transform with DT

4 . In our example, the input into the first stage of the
inverse transform is the output matrix from the forward transform which is a matrix
with only the DC element equal to �215. The output of multiplication with DT

4 will
be a matrix with first column elements equal to �215 � 26. Consequently, the scaling
required after the first stage of the inverse transform for the output to fit within 16
bits is SIT1 D 2�6.

The second stage of the inverse transform consists of multiplication of the result
of the first stage of the inverse transform with D4. The input into the second
stage of the inverse transform is the output matrix from the first stage of inverse
transform which is a matrix with first column elements equal to �215. The output of
multiplication with D4 will be a matrix with all elements equal to �215 � 26. So the
scaling required after the second stage of inverse transform to get the output values
into the original range of [�2B, 2B �1] is SIT2 D 2�(21 �B).

152 M. Budagavi et al.

−−−−
−−−−
−−−−
−−−−

256256256256

256256256256

256256256256

256256256256

[]×4D

−−−−

0000

0000

0000

65536655366553665536

1>>

−−−−

0000

0000

0000

32768327683276832768

−−−−

0000

0000

0000

32768327683276832768

[] T
4D×

−

0000

0000

0000

0008388608

8>>

−

0000

0000

0000

00032768

First stage of forward transform Second stage of forward transform

ST2 = 2−(M+6) = 2−8ST1 = 2−(B+M−9) = 2−1

a b

Fig. 6.4 Intermediate scaling factor determination for the forward transform so that the interme-
diate and output values fit within 16-bits. B is video bit depth and M D log2(N) where N is the
transform size. Worst case bit-depth analysis is done assuming a residual block with all samples
having maximum amplitude equal to �2B (where B D 8 is the video bit depth), as input to the first
stage of the forward transform. (a) First stage of the forward transform, (b) Second stage of the
forward transform. Reproduced with permission from [6]. © IEEE 2013

In summary the constraints imposed in this section result in the following scale
factors after different transform stages:

• After the first forward transform stage: ST1 D 2�(B C M �9)

• After the second forward transform stage: ST2 D 2�(M C 6)

• After the first inverse transform stage: SIT1 D 2�6

• After the second inverse transform stage: SIT2 D 2�(21 �B)

where B is the bit depth of the input/output signal (e.g. 8 bit) and M D log2(N).
Without quantization/de-quantization, this choice of scale factors ensures a bit

depth of 16 bit after all transform stages. However, quantization errors introduced by
the quantization/de-quantization process might increase the dynamic range before
each inverse transform stage to more than 16 bit. For example, consider the situation
where B D 8 and all input samples to the forward transform are equal to 255. In this
case, the output of the forward transform will be a DC coefficient with value equal to
255 << 7 D 32640. For high QP values and with a quantizer rounding upwards, the
input to each inverse transform stage can easily exceed the allowed 16 bit dynamic
range of [�32768, 32767]. While clipping to 16 bit range was considered trivial
after the de-quantizer, it was considered undesirable after the first inverse transform
stage. In order to allow for quantization error of some reasonable magnitude and at

6 HEVC Transform and Quantization 153

[]×T
4D

000−2097152

000−2097152

000−2097152

000−2097152

7>>

−
−
−
−

00016384

00016384

00016384

00016384

−
−
−
−

00016384

00016384

00016384

00016384

[] 4D×

−−−−
−−−−
−−−−
−−−−

1048576104857610485761048576

1048576104857610485761048576

1048576104857610485761048576

1048576104857610485761048576

12>>

−−−−
−−−−
−−−−
−−−−

256256256256

256256256256

256256256256

256256256256

−

0000

0000

0000

00032768

7
1 2−=ITS 12)20(

2 22 −−− == B
ITS

First stage of inverse transform Second stage of inverse transform
a b

Fig. 6.5 Use of the inverse transform scale factors assuming the input to be the final output of
Fig. 6.4. Video bit depth B D 8 (a) First stage of the inverse transform, (b) Second stage of the
inverse transform. Reproduced with permission from [6]. © IEEE 2013

the same time limit the dynamic range between the two inverse transform stages to
16 bits, the choice of scale factors for the inverse transform was finally modified as
follows2:

• After the first inverse transform stage: SIT1 D 2�7

• After the second inverse transform stage: SIT2 D 2�(20 �B)

The use of the inverse transform scale factors is illustrated in Fig. 6.5 using the
4 � 4 inverse transform as an example assuming the input to be the final output of
Fig. 6.4.

Tables 6.2 and 6.3 summarize the different scaling factors of the forward and
inverse transform, respectively, when compared to the orthonormal DCT.

The HEVC specification specifies an offset value to be added before scaling to
carry out rounding. This offset value is equal to the scale factor divided by 2. The
offset is not explicitly shown in Figs. 6.3, 6.4, and 6.5.

2Note that in the final HEVC specification [16], a clipping operation is introduced after the first
inverse transform stage, mainly to allow for random quantization that could be used to create “evil”
bitstreams used for stress testing video decoders. With the clipping introduced, the modification to
the inverse transform scale factors is not necessary but has been retained in the HEVC specification
and Test Model software for maturity reasons.

154 M. Budagavi et al.

Table 6.2 Scaling in
different stages for the 2D
forward transform

Scale factor

First forward transform stage 2(6 C M/2)

After the first forward transform stage (STI) 2�(B C M �9)

Second forward transform stage 2(6 C M/2)

After the second forward transform stage (ST2) 2�(M C 6)

Total scaling for the forward transform 2(15 �B �M)

Table 6.3 Scaling in
different stages for the 2D
inverse transform

Scale factor

First inverse transform stage 2(6 C M/2)

After the first inverse transform stage (SITI) 2�7

Second inverse transform stage 2(6 C M/2)

After the second inverse transform stage (SIT2) 2�(20 �B)

Total scaling for the inverse transform 2�(15 �B �M)

Finally, two useful consequences of using 8-bit coefficients and limiting the bit-
depth of the intermediate data to 16 bit is that all multiplications can be represented
with multipliers having 16 bits or less and that the accumulators before right shift
can be implemented with less than 32 bits for all transform stages.

Note also a relevant analysis in [18] that studies the dynamic range of the HEVC
inverse transform and provides additional information on the bit depth limits of the
intermediate data in the inverse transform.

6.2.6 HEVC Alternate 4 � 4 Transform

The alternate transform is applied to 4 � 4 Luma intra-prediction residual blocks.
The forward transform matrix is given by:

A4 D

2

664

29 55

74 74

74 84

0 �74

84 �29

55 �84

�74 55

74 �29

3

775

The inverse transform matrix is AT
4 . Elements aij of the alternate transform matrix

A4 are a fixed point representation of Type-7 discrete sine transform (DST) obtained
as follows:

aij D round

�
128 � 2p

2N C 1
sin

�
.2i C 1/ .j C 1/ �

2N C 1

��

The intermediate scaling and quantization/de-quantization used for the alternate
transform is the same as that for the core transform.

6 HEVC Transform and Quantization 155

The alternate transform provides around 1 % bit-rate reduction while coding
intra pictures [25]. In intra-picture prediction, a block is predicted from left and/or
top neighboring samples. The prediction quality is better near the left and/or top
boundary resulting in an intra-prediction residual that tends to have lower amplitude
near the boundary samples and higher amplitudes away from the boundary samples.
The DST basis functions are better than the DCT basis functions in modeling this
spatial characteristic of the intra prediction residual. This can be seen from the first
row (basis function) of the alternate transform matrix which increases from left to
right as opposed to the DCT transform matrix that has a flat first row. A theoretical
analysis of the optimality of DST for intra-prediction residual is provided in [25].

During the course of the development of HEVC, alternate transforms for
transform block sizes of 8 � 8 and higher were also studied. However, only the
4 � 4 alternate transform was adopted in HEVC since the additional coding gain
from using the larger alternate transforms was not significant (also, their complexity
is higher since there is no symmetry in the transform matrix and a full matrix
multiplication is needed to implement them for transform sizes 8 � 8 and larger).

6.3 Quantization and De-quantization

Quantization consists of division by a quantization step size (Qstep) and subsequent
rounding while inverse quantization consists of multiplication by the quantization
step size. Here, Qstep refers to the equivalent step size for an orthonormal transform,
i.e. without the scaling factors of Tables 6.2 and 6.3. Similar to H.264/AVC [27],
a quantization parameter (QP) is used to determine the quantization step size in
HEVC. QP can take 52 values from 0 to 51 for 8-bit video sequences. An increase
of 1 in QP means an increase of the quantization step size by approximately 12 %
(i.e., 21/6). An increase of 6 leads to an increase in the quantization step size by a
factor of 2. In addition to specifying the relative difference between the step-sizes
of two consecutive QP values, there is also a need to define the absolute step-size
associated with the range of QP values. This was done by selecting Qstep D 1 for
QP D 4.

The resulting relationship between QP and the equivalent quantization step size
for an orthonormal transform is now given by:

Qstep.QP / D �
21=6

�QP �4
(6.6)

Figure 6.6 shows how the quantization step size increases non-linearly with QP.
Equation (6.6) can be also be expressed as:

Qstep.QP / D GQP %6 <<
QP

6
(6.7)

156 M. Budagavi et al.

where

G D ŒG0; G1; G2; G3; G4; G5�T D �
2�4=6; 2�3=6; 2�2=6; 2�1=6; 20; 21=6

	T

The fixed point approximation of (6.7) in HEVC is given by

gQP %6 D round
�
26 � GQP %6

�

This results in

g D Œg0; g1; g2; g3; g4; g5�T D Œ40; 45; 51; 57; 64; 72�T

HEVC supports frequency-dependent quantization by using quantization matri-
ces for all transform block sizes. Let W[x][y] denote the quantization matrix weight
for the transform coefficients at location (x, y) in a transform block. A value of
W[x][y] D 1 indicates that there is no weighting. The fixed point representation of
W[x][y] is given by:

w Œx� Œy� D round .16 � W Œx� Œy�/

where w[x][y] is represented using 8-bit values.
For a quantizer output, level[x][y], the de-quantizer is specified in the HEVC

standard as

coeff Q Œx� Œy� D

level Œx� Œy� � w Œx� Œy� �

gQP %6 <<

QP

6

��
C offsetIQ

�

>> shift1
(6.8)

0 5 10 15 20 25 30 35 40 45 50
0

50

100

150

200

250

QP

Q
st

ep

Fig. 6.6 Relationship
between quantization step
size (Qstep) and quantization
parameter (QP)

6 HEVC Transform and Quantization 157

where shift1 D (M �5 C B) and offsetIQ D 1 << (M �6 C B). Note that the quan-
tization matrix weights w[x][y] modulate the quantization step size used for
level at different positions in the transform block leading to a frequency-dependent
quantization.

The scale factor SIQ of Fig. 6.3 is equal to 2�shift1 and is obtained as follows:
When QP D 4 (i.e., Qstep D 1) and there is no frequency dependent scaling (i.e.,
w[x][y] D 16), the combined scaling of the inverse transform and de-quantization in
Fig. 6.3 when multiplied together should result in a product of 1 to maintain the
norm of the residual block through inverse transform and inverse quantization, i.e.,

SIQ � g4 � 16 � 2�.15�B�M/ D 1 (6.9)

This results in SIQ D 2�(M �5 C B) leading to shift1 being equal to right shift by
(M �5 C B). The scale factor 2�(15 �B �M) in (6.9) is obtained from Table 6.3.

For the output sample of the forward transform, coeff [x][y], a straightforward
quantization scheme can be implemented as follows:

level Œx� Œy� D sign .coeff Œx� Œy�/

�

abs .coeff Œx� Œy�/ � fQP %6 � 16
wŒx�Œy�

C offsetQ
�

>>
QP

6

�
>> shift2

�

(6.10)

where shift2 D 29 �M �B, and

f D Œf0; f1; f2; f3; f4; f5�
T D Œ26214; 23302; 20560; 18396; 16384; 14564�T

Note that fQP % 6 � 214/GQP % 6. The value of shift2 is obtained by imposing
similar constraints on the combined scaling in the forward transform and the
quantizater as in (6.9), i.e., SQ � f4 � 215 �B �M D 1, where SQ D 2�shift2.

Finally, offsetQ is chosen to achieve the desired rounding.
To summarize, the quantizer multipliers, fi, and dequantizer multipliers, gi, were

chosen to satisfy the following conditions

• Ensure that gi can be represented with signed 8 bit data type (i.e.,
gi < 27, i D 0, : : : , 5)

• Ensure an almost equal increase in step size from one QP value to the next
(approximately 12 %) (i.e., gi C 1/gi � 21/6, i D 0, : : : , 4 and 2g0/g5 � 21/6)

• Ensure approximately unity gain through the quantization and de-quantization
processes (i.e., fi � gi � 16 � 1 << (shift1 C shift2) D 26 � 214 � 16, i D 0, : : : , 5)

• Provide the desired absolute value of the quantization step size for QP D 4 (i.e.
Qstep(4) D 1, or equivalently, level D coeff � 2�(15 �B �M) for QP D 4).

Note that the quantization equation in (6.10) is not specified in the HEVC
standard and the encoder has flexibility to implement more sophisticated quanti-
zation schemes such as the rate-distortion optimized quantization (RDOQ) scheme
implemented in the HEVC Test Model [13]. The idea behind RDOQ is briefly
described in Chap. 9.

158 M. Budagavi et al.

1 16
1 16
1 16
1 16

(Flat matrix)

Default 4x4 for
IntraLuma, IntraCb,
IntraCr, InterLuma,

InterCb, InterCr

16 16 6
16 16 6
16 16 6
16 16 6

3 29 25 24
3 25 22 21
2 22 19 18
2 20 17 17
2 18 16 16
1 17 16 16
1 16 16 16
1 16 16 16

Def
IntraL

3
3

2
1
1
1

f
L

1 88 65 47 36
 70 54 41 31
6 54 44 35 7
4 41 35 30 4
3 31 27 24 21
2 25 22 20 18
2 22 19 17 16
2 21 18 17 16

ault 8x8 for
Luma, IntraCb,

IntraCr

6

L

15
88
5
7
6
9
5
4

25 24
24 20
20 18
18 17
17 16
16 16
16 16
16 16

 54 41 33 28
 41 33 28 25
 33 28 25 24
 28 25 24 20
 25 24 20 18
 24 20 18 17
 20 18 17 16
 18 17 16 16

Default 8x8 for
InterLuma, InterCb,

InterCr

91 71
71 54
54 41
41 33
33 28
28 25
25 24
24 20

Fig. 6.7 Default quantization matrices for transform blocks of size 4 � 4 and 8 � 8

6.3.1 Quantization Matrix

In HEVC, the encoder can signal whether or not to use quantization matrices
enabling frequency dependent scaling. Frequency dependent scaling is useful to
carry out human visual system (HVS)-based quantization where low frequency
coefficients are quantized with a finer quantization step size when compared to
high frequency coefficients in the transform block [12]. HVS-based quantization
can provide better visual quality than frequency independent quantization on some
video sequences. HEVC uses the following 20 quantization matrices that depend on
the size and type of the transform block:

• Luma: Intra 4 � 4, Inter 4 � 4, Intra 8 � 8, Inter 8 � 8, Intra 16 � 16, Inter 16 � 16,
Intra 32 � 32, Inter 32 � 32

• Cb: Intra 4 � 4, Inter 4 � 4, Intra 8 � 8, Inter 8 � 8, Intra 16 � 16, Inter 16 � 16
• Cr: Intra 4 � 4, Inter 4 � 4, Intra 8 � 8, Inter 8 � 8, Intra 16 � 16, Inter 16 � 16

When frequency dependent scaling is enabled by using the syntax element
scaling_list_enabled_flag, the quantization matrices of sizes 4 � 4 and
8 � 8 have default values as shown in Fig. 6.7. The default quantization matrices
for transform blocks of size 16 � 16 and 32 � 32 are obtained from the default 8 � 8
quantization matrices of the same type by upsampling using replication as shown
in Fig. 6.8. The red colored blocks in the figure indicate that a quantization matrix
entry in the 8 � 8 quantization matrix is replicated into a 2 � 2 region in the 16 � 16
quantization matrix and into a 4 � 4 region in the 32 � 32 quantization matrix. 8 � 8
matrices are used to represent 16 � 16 and 32 � 32 quantization matrices in order to
reduce the memory needed to store the quantization matrices.

Non-default quantization matrices can also be optionally transmitted in the
bitstream in sequence parameter sets (SPS) or picture parameter sets (PPS).
Quantization matrix entries are scanned using an up-right diagonal scan and
DPCM coded and transmitted. For 16 � 16 and 32 � 32 quantization matrices,
only size 8 � 8 matrices (which then get upsampled to the correct size in the

6 HEVC Transform and Quantization 159

8x8

16x16

32x32

Fig. 6.8 Construction of
default quantization matrices
for transform block sizes
16 � 16 and 32 � 32 by using
the default quantization
matrix of size 8 � 8

Table 6.4 Quantization group size for different coding tree unit sizes

diff_cu_qp_delta_depth

Quantization
group size for
64 � 64 CTU

Quantization
group size for
32 � 32 CTU

Quantization
group size for
16 � 16 CTU

0 64 � 64 32 � 32 16 � 16
1 32 � 32 16 � 16 8 � 8
2 16 � 16 8 � 8 –
3 8 � 8 – –

decoder as shown in Fig. 6.8) and the quantization matrix entry at the DC
(zero-frequency) position are transmitted. HEVC also allows for prediction of a
quantization matrix from another quantization matrix of the same size. The use
of quantization matrix (termed as scaling matrix in HEVC) is enabled by setting
the flag scaling_list_enabled_flag in SPS. When this flag is enabled,
additional flags in SPS and PPS control whether the default quantization matrices
or non-default quantization matrices are used.

6.3.2 QP Parameter Derivation

The quantization step size (and therefore the QP value) may need to be changed
within a picture for e.g. rate control and perceptual quantization purposes. HEVC
allows for transmission of a delta QP value at a quantization group (QG) level to
allow for QP changes within a picture. This is similar to H.264/AVC that allows
for modification of QP values at a macroblock level. The QG size is a multiple of
coding unit size that can vary from 8 � 8 to 64 � 64 depending on the coding tree
unit (CTU) size and the syntax element diff_cu_qp_delta_depth as shown
in Table 6.4.

160 M. Budagavi et al.

START

QPLEFT is available?

QPPRED = (QPABOVE + QPLEFT + 1) >> 1

END

QPLEFT = QPPREV

QPABOVE = QPPREV

QPABOVE is available?

YES

YES

NO

NO

Fig. 6.9 QP predictor
calculation using QP values
from the left, above and
previous QGs [21]

The delta QP is transmitted only in coding units with non-zero transform
coefficients. If the CTU is split into coding units that are greater than the QG size,
then delta QP is signaled at a coding unit (with non-zero transform coefficients) that
is greater than the QG size. If the CTU is split into coding units that are smaller
than the QG size, then the delta QP is signaled in the first coding unit with non-zero
transform coefficients in the QG. If a QG has coding units with all zero transform
coefficients (e.g. if the merge mode is used in all the coding units of the QG), then
delta QP will not be signaled.

The QP predictor used for calculating the delta QP uses a combination of QP
values from the left, above and the previous QG in decoding order as shown in
Fig. 6.9 [21]. The QP predictor uses a combination of two predictive techniques:
spatial QP prediction (from left and above QGs) and previous QP prediction. It uses
spatial prediction from left and above within a CTU and uses the previous QP as
predictor at the CTU boundary. This is shown in Fig. 6.9. The spatially adjacent
QP values, QPLEFT and QPABOVE are considered to be not available when they are
in a different CTU or if the current QG is at a slice/tile/picture boundary. When
a spatially adjacent QP value is not available, it is replaced with the previous QP
value, QPPREV, in decoding order. The previous QP, QPPREV, is initialized to the
slice QP value at the beginning of the slice, tile or wavefront.

6 HEVC Transform and Quantization 161

Intra/Inter
prediction

Entropy
decode

Bitstream

Inverse
transform

De-quant

Reconstructed
block

Transform
skip mode

Lossless mode

I_PCM mode

Fig. 6.10 I_PCM, lossless
and transform skip modes in
decoder

The QP derivation process described in this subsection is used for calculating the
luma QP value. The chroma QP values (one for the Cr component and one for the
Cb component) are derived from the luma QP by using picture level and slice level
offsets and a table lookup.

6.4 HEVC Special Coding Modes

HEVC has three special modes that modify the transform and quantization process:
(a) I_PCM mode [8], (b) lossless mode [31], and (c) transform skip mode [19].
These modes skip either the transform or both the transform and quantization.
Figure 6.10 shows these modes on top of the generic video decoder data flow of
Fig. 6.1.

• In the I_PCM mode, both transform and transform-domain quantization are
skipped. In addition, entropy coding and prediction are skipped too and the video
samples are directly coded with the specified PCM bit depth. The I_PCM mode
is designed for use when there is data expansion during coding e.g. when random
noise is input to the video codec. By directly coding the video samples, the data
expansion can be avoided for such extreme video sequences. The IPCM mode is
signaled at the coding unit level using the syntax element pcm_flag.

• In the lossless mode, both transform and quantization are skipped. (The in-loop
filter which is not shown in Fig. 6.1 is skipped too.) Mathematically lossless
reconstruction is possible since the residual from inter- or intra-picture prediction
is directly coded. The lossless mode is signaled at a coding unit level (using
the syntax element cu_transquant_bypass_flag) in order to enable

162 M. Budagavi et al.

mixed lossy/lossless coding of pictures. Such a feature is useful in coding video
sequences with mixed content, e.g. natural video with overlaid text and graphics.
The text and graphics regions can be coded losslessly to maximize readability
whereas the natural content can be coded in a lossy fashion.

• In the transform skip mode, only the transform is skipped. This mode was
found to improve compression of screen-content video sequences generated in
applications such as remote desktop, slideshows etc. These video sequences
predominantly contain text and graphics. Transform skip is restricted to only
4 � 4 transform blocks and its use is signaled at the transform unit level by the
transform_skip_flag syntax element.

6.5 Complexity Analysis

With straightforward matrix multiplication, the number of operations for the 1D
inverse transform is N2 multiplications and N(N �1) additions. For the 2D trans-
form, the number of multiplications required is 2N3 and the number of additions
required is 2N2(N �1). However, by utilizing the (anti-) symmetry properties of
each basis vector inherited from DCT, the number of arithmetic operations can be
significantly reduced. We refer to the algorithm that does this as the Even–Odd
decomposition in this paper (it was also referred to as partial butterfly during HEVC
development) [14]. Even–Odd decomposition is illustrated below using the 4- and
8-point inverse transform.

Consider the 4-point forward transform matrix defined in (6.5). For notational
simplicity the constants d32

i,0 of Eq. (6.5) will be denoted by di. Using the new
notation (6.5) becomes

D4 D

2
664

d16 d16

d8 d24

d16 d16

� d24 �d8

d16 �d16

d24 �d8

�d16 d16

d8 �d24

3
775 (6.11)

The inverse transform matrix is given by DT
4 . Let x D [x0, x1, x2, x3]T be the input

vector and y D [y0, y1, y2, y3]T denote the output. The 1D 4-point inverse transform
is given by the following equation:

y D DT
4 x (6.12)

The Even–Odd decomposition of the inverse transform of an N-point input
consists of the following three steps:

1. Calculate the even part using a N/2 � N/2 subset matrix obtained from the even
columns of the inverse transform matrix (6.13 shows an example).

6 HEVC Transform and Quantization 163

2. Calculate the odd part using a N/2 � N/2 subset matrix obtained from the odd
columns of the inverse transform matrix (6.15 shows an example).

3. Add/subtract the odd and even parts to generate N-point output (6.16 shows an
example).

Even–odd decomposition of the inverse 4-point transform is given by (6.14–
6.16):

Even part:

�
z0

z1

�
D

�
d16 d16

d16 �d16

� �
x0

x2

�
(6.13)

The even part can be further simplified as:

t0 D d16x0

t1 D d16x2�
z0

z1

�
D

�
t0 C t1
t0 � t1

� (6.14)

Odd part:

�
z2

z3

�
D

� �d24 d8

� d8 �d24

� �
x1

x3

�
(6.15)

Add/sub:

2
664

y0

y1

y2

y3

3
775 D

2
664

z0 � z3

z1 � z2

z1 C z2

z0 C z3

3
775 (6.16)

The direct 1D 4-point transform using (6.12) would require 16 multiplications
and 12 additions. The 2D transform will require 128 multiplications and 96
additions. Even–Odd decomposition on the other hand requires a total of six
multiplications and eight additions for 1D transform using (6.14–6.16). The 2D
transform using Even–Odd decomposition will require a total of 48 multiplications
and 64 additions which is 62.5 % savings in number of multiplications and 33.3 %
savings in number of additions when compared to direct matrix multiplication.

The 8-point 1D inverse transform is defined by the following equation:

y D DT
8 x (6.17)

where x D [x0, x1, : : : , x7]T is input and y D [y0, y1, : : : , y7]T is output, and D8 is
given by:

164 M. Budagavi et al.

D8 D

2
666666666664

d16 d16 d16 d16 d16 d16 d16 d16

d4 d12 d20 d28 �d28 �d20 �d12 �d4

d8 d24 �d24 �d8 �d8 �d24 d24 d8

d12 �d28 �d4 �d20 d20 d4 d28 �d12

d16 �d16 �d16 d16 d16 �d16 �d16 d16

d20 �d4 d28 d12 �d12 �d28 d4 �d20

d24 �d8 d8 �d24 �d24 d8 �d8 d24

d28 �d20 d12 �d4 d4 �d12 d20 �d28

3
777777777775

(6.18)

Even–Odd decomposition for the 8-point inverse transform is given by
(6.19–6.21).

Even part:

2

664

z0

z1

z2

z3

3

775 D

2

664

d16 d8

d16 d24

d16 d24

� d16 �d8

d16 �d24

d16 �d8

�d16 d8

d16 �d24

3

775

2

664

x0

x2

x4

x6

3

775 (6.19)

Odd part:

2
664

z4

z5

z6

z7

3
775 D

2
664

�d28 d20

� d20 d4

�d12 d4

� d28 �d12

�d12 d28

� d4 �d12

d4 d20

� d20 �d28

3
775

2
664

x1

x3

x5

x7

3
775 (6.20)

Add/sub:

y D Œz0 � z7; z1 � z6; z2 � z5; z3 � z4; z3 C z4; z2 C z5; z1 C z6; z0 C z7�
T (6.21)

Note that the even part of the 8-point inverse transform is actually a 4-point
inverse transform (by comparing 6.19 with transpose of D4 in 6.11) i.e.,

2

664

z0

z1

z2

z3

3

775 D DT
4

2

664

x0

x2

x4

x6

3

775 (6.22)

So the Even–Odd decomposition of the 4-point inverse transform (6.14–6.16) can
be used to further reduce computational complexity of the even part of the 8-point
transform in (6.19).

The direct 1D 8-point transform using (6.17) would require 64 multiplications
and 56 additions. The 2D transform will require 1,024 multiplications and 896
additions. An even–odd decomposition on the other hand requires 6 multiplications
for (6.22) and 16 multiplications for (6.20) resulting in a total of 22 multiplications.
It requires 8 additions for (6.22), 12 additions for (6.20) and 8 additions for

6 HEVC Transform and Quantization 165

(6.21) resulting in a total of 28 additions. The 2D transform using Even–Odd
decomposition will require a total of 352 multiplications and 448 additions.

The computational complexity calculation for the 4-point and 8-point inverse
transform can be extended to inverse transforms of larger sizes. In general, the
resulting number of multiplications and additions (excluding the rounding opera-
tions associated with the shift operations) for the two-dimensional N-point inverse
transform can be shown to be

Omult D 2N

0

@1 C
log2 NX

kD1

22k�2

1

A

Oadd D 2N

0

@
log2 NX

kD1

2k�1
�
2k�1 C 1

�
1

A

The number of arithmetic operations for the inverse transform can be further
reduced if knowledge about zero-valued input transform coefficients is assumed. In
an HEVC decoder, this information can be obtained from the entropy decoding or
de-quantization process. For typical video content many blocks of size N � N will
have non-zero coefficients only in a K � K low frequency sub-block. For example in
[5] it was found that on average around 75 % of the transform blocks had non-zero
coefficients only in K � K low frequency sub-blocks. Computations can be saved in
two ways for such transform blocks. Figure 6.11 shows the first way. Columns that
are completely zero need not be inverse transformed. So only K 1D IDCTs along
columns needs to be carried out. However, all N rows will need to be transformed
subsequently. The second way to reduce computations is by exploiting the fact that
each of the column and row IDCT is on a vector that has non-zero values only in the
first K locations. For example with K D N/2, x4 D x5 D x6 D x7 D 0, roughly half the
computations for the inverse transformation can be eliminated by simplifying Eqs.
(6.19–6.20) to

Even part:

2
664

z0

z1

z2

z3

3
775 D

2
664

d16 d8

d16 d24

d16 �d24

d16 �d8

3
775

�
x0

x2

�

Odd part:

2
664

z4

z5

z6

z7

3
775 D

2
664

�d28 d20

� d20 d4

�d12 d28

� d4 �d12

3
775

�
x1

x3

�

166 M. Budagavi et al.

NxN

K 1D IDCT
along columns

N 1D IDCT
along rows

KxK

Fig. 6.11 Efficient
implementation of inverse
transform of a block with
non-zero coefficients in only
the K � K low frequency
sub-block. Shaded regions
denote the regions that can
contain non-zero coefficients.
Only K 1D IDCTs are
required along columns

Table 6.5 Arithmetic
operation counts for HEVC
two-dimensional inverse
transforms

N K Omult Oadd

4 4 48 64
8 8 352 448
8 4 132 228

16 16 2,752 3,200
16 8 1,032 1,512
16 4 420 820
32 32 21,888 23,808
32 16 8,208 10,320
32 8 3,400 5,320
32 4 1,476 3,060

In general, the number of multiplications can be reduced approximately by a
factor of (N/K)2 for the first stage and a factor of (N/K) for the second stage.
Table 6.5 shows the number of arithmetic operations for various values of N and K.

Note that the majority of the arithmetic operations listed in Table 6.5 can be
efficiently implemented using SIMD instructions since the operations are matrix
multiply operations. For example, for an 8 � 8 inverse transform implementation,
(6.20) can be efficiently implemented on a 4-way SIMD processor in 4 cycles v/s
16 cycles on a processor without SIMD acceleration. Software performance using
SIMD acceleration on various Intel processor architectures for the 8 � 8, 16 � 16,
and 32 � 32 transform sizes are provided in [3, 11].

Only the Even–Odd decomposition of the inverse transform has been described in
this subsection. However, the Even–Odd decomposition idea can be used to reduce
the complexity of the forward transform too. The article [6] presents analysis of
both the forward and the inverse core transform in more details. It also describes
hardware sharing by the application of property 4 of Sect. 6.2.1 (smaller transforms
being embedded in larger transforms).

6 HEVC Transform and Quantization 167

6.6 Coding Performance

The different transform sizes used in a coding block in HEVC are signaled in a
quadtree structure [29]. The maximum transform size to use in a coding block
is signaled in the sequence parameter set. Table 6.6 compares the coding perfor-
mance of HEVC when all transform sizes (up to 32 � 32) are used to the coding
performance when only 4 � 4 and 8 � 8 transforms are used as in H.264/AVC.
The standard Bjøntegaard Delta-Rate (BD-Rate) metric [2] is used for comparison.
Table 6.6 shows that there is a bit rate savings in the range of 5.6–6.8 % on average
because of the introduction of larger transform sizes (16 � 16 and 32 � 32) in HEVC.
The bit rate savings are higher at larger resolution video such as 4K (2560 � 1600)
and 1080p (1920 � 1080). The HEVC Test Model, HM-9.0.1 [13] was used for the
simulations and the video sequences and coding conditions used were as described
in [4].

Table 6.7 compares the coding performance of the HEVC 4 � 4 and 8 � 8
transforms to that of the corresponding H.264/AVC transforms. The H.264/AVC
4 � 4 and 8 � 8 transforms were converted to 8-bit precision and implemented in the
HM-9.0.1 Test Model. Only the 4 � 4 and 8 � 8 transform sizes were enabled in the
simulations. It can be seen from Table 6.7 that the HEVC 4 � 4 and 8 � 8 transforms
perform better than the corresponding H.264/AVC transforms in terms of coding
performance.

Table 6.6 BD-rate savings of using larger transform sizes (16 � 16 and 32 � 32) on
top of the smaller transform sizes (4 � 4 and 8 � 8)

All Intra (%) Random access (%) Low delay B (%)

4K �9.1 �10.1 n/a
1080p �6.7 �8.0 �9.1
WVGA �2.5 �4.3 �6.0
WQVA �2.2 �2.8 �3.7
720p �7.7 n/a �8.4
Overall �5.6 �6.4 �6.8

Table 6.7 BD-Rate savings of the HEVC 4 � 4 and 8 � 8 transforms versus the
H.264/AVC 4 � 4 and 8 � 8 transforms

All Intra (%) Random access (%) Low delay B (%)

4K �1.2 �0.7 n/a
1080p �0.6 �0.4 �0.3
WVGA �0.2 �0.2 �0.1
WQVA �0.1 0.0 �0.1
720p �0.5 n/a �0.2
Overall �0.5 �0.3 �0.2

168 M. Budagavi et al.

References

1. Alshina E, Alshin A, Lee W, Park J (2011) Full factorization core transforms for HEVC, Joint
Collaborative Team on Video Coding (JCT-VC), Document JCTVC-G737, Geneva, Nov. 2011.

2. Bjøntegaard G (2001) VCEG-M33: calculation of average PSNR differences between RD
curves, ITU-T SG16 Q6 Video Coding Experts Group (VCEG), Document VCEG-M33,
Austin, Apr. 2001.

3. Bossen F (2011) On software complexity, Joint Collaborative Team on Video Coding (JCT-
VC), Document JCTVC-G757, Geneva, Nov. 2011.

4. Bossen F (2012) Common HM test conditions and software reference configurations, Joint
Collaborative Team on Video Coding (JCT-VC), Document JCTVC-K1100, Shanghai, Oct.
2012.

5. Budagavi M (2011) IDCT pruning, Joint Collaborative Team on Video Coding (JCT-VC),
Document JCTVC-E386, Geneva, Mar. 2011

6. Budagavi M, Fuldseth A, Bjøntegaard G, Sze V, Sadafale M (2013) Core transform design in
the High Efficiency Video Coding (HEVC) standard. IEEE Trans Circuits Syst Video Technol
7(6):1029–1041

7. Chen W-H, Smith CH, Fralick S (1977) A fast computational algorithm for the discrete cosine
transform. IEEE Trans Commun COM-25(9):1004–1009

8. Chono K, Aoki H, Wahadaniah V, Lim CS (2011) Proposal of enhanced PCM coding in HEVC,
Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-E192, Geneva, Mar.
2011

9. Dai W, Krishnan M, Topiwala J, Topiwala P, Alshina E (2011) Lossless core transforms
for HEVC, Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-G266,
Geneva, Nov. 2011

10. Fuldseth A, Bjøntegaard G, Sadafale M, Budagavi M (2011) Core transform design for HEVC,
Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-G495, Geneva, Nov.
2011

11. Fuldseth A, Endresen LP, Selnes S, Arbatov V, Franchetti F, Puschel M (2011) SIMD
Optimization of proposed HEVC transforms, Joint Collaborative Team on Video Coding (JCT-
VC), Document JCTVC-G497, Geneva, Nov. 2011

12. Haque M, Tabatabai A, Morigami Y (2011) HVS model based default quantization matrices,
Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-G880, Geneva, Nov.
2011

13. HEVC Test Model HM-9.0.1 Nov. 2012 [Online]. Available https://hevc.hhi.fraunhofer.
de/svn/svn_HEVCSoftware/tags/HM-9.0.1/

14. Hung C-Y, Landman P (1997) Compact inverse discrete cosine transform circuit for MPEG
video decoding. In: Proceedings of IEEE SIPS, Nov. 1997, pp 364–373

15. ITU-T Rec. H.264 and ISO/IEC 14496-10 (2003) Advanced video coding
16. ITU-T Rec. H.265 and ISO/IEC 23008-2 (2013) High efficiency video coding
17. Joshi R, Sole J, Karczewicz M (2011) Scaled integer transform supporting recursive factoriza-

tion structure, Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-G579,
Geneva, Nov. 2011

18. Kerofsky L, Riabtsev S (2012) Dynamic range analysis of HEVC/H.265 inverse transform
operations, Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-L0332,
Geneva, Jan. 2013

19. Lan C, Xu J, Sullivan GJ, Wu F (2012) Intra transform skipping, Joint Collaborative Team on
Video Coding (JCT-VC), Document JCTVC-I0408, Geneva, Apr. 2012

20. Malvar HS, Hallapuro A, Karczewicz M, Kerofsky L (2003) Low complexity transform and
quantization in H.264/AVC. IEEE Trans Circuits Syst Video Technol 13(7):598–603

21. Nakamura H, Nishitani M, Fukushima S (2012) Non-CE4: compatible QP prediction with RC
and AQ, Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-H0204, San
Jose, Feb. 2012

6 HEVC Transform and Quantization 169

22. Rao KR, Yip P (1990) Discrete cosine transform: algorithms, advantages, applications.
Academic, Boston

23. Sadafale M, Budagavi M (2010) Low-complexity configurable transform architecture for
HEVC, Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-C226,
Guangzhou, Oct. 2010

24. Saxena A, Fernandes FC (2011) CE7: mode-dependent DCT/DST without 4 � 4 full matrix
multiplication for intra prediction, Joint Collaborative Team on Video Coding (JCT-VC),
Document JCTVC-E125, Geneva, Mar. 2011

25. Saxena A, Fernandes FC (2013) DCT/DST-based transform coding for intra prediction in
image/video coding. IEEE Trans Image Proc 22(10):3974–3981

26. Tikekar M, Huang C-T, Juvekar C, Chandrakasan A (2011) Core transform property for
practical throughput hardware design. Joint Collaborative Team on Video Coding (JCT-VC),
Document JCTVC-G265, Geneva, Nov. 2011

27. Wiegand T, Sullivan GJ, Bjøntegaard G, Luthra A (2003) Overview of the H.264/AVC video
coding standard. IEEE Trans Circuits Syst Video Technol 13(7):560–570

28. Wiegand T, Han W-J, Ohm J-R, Sullivan GJ (2010) High Efficiency Video Coding (HEVC) text
specification working draft 1, Joint Collaborative Team on Video Coding (JCT-VC), Document
JCTVC-C403, Guangzhou, Oct. 2010

29. Winken M, Helle P, Marpe D, Schwarz H, Wiegand T (2011) Transform coding in the
HEVC Test Model. In: Proceedings of the IEEE international conference image processing,
pp 3693–3696

30. Zhou M, Sze V (2010) TE 12: evaluation of transform unit (TU) size, Joint Collaborative Team
on Video Coding (JCT-VC), Document JCTVC-C056, Guangzhou, Oct. 2010

31. Zhou M, Gao W, Jiang M, Yu H (2012) HEVC lossless coding and improvements. IEEE Trans
Circuits Syst Video Technol 22(12):1839–1843

	6 HEVC Transform and Quantization
	6.1 Introduction
	6.2 HEVC Transform
	6.2.1 Discrete Cosine Transform
	6.2.2 Finite Precision DCT Approximations
	6.2.3 HEVC Core Transform Design Principles
	6.2.4 Basis Vectors of the HEVC Core Transforms
	6.2.5 Intermediate Scaling
	6.2.6 HEVC Alternate 4=4 Transform

	6.3 Quantization and De-quantization
	6.3.1 Quantization Matrix
	6.3.2 QP Parameter Derivation

	6.4 HEVC Special Coding Modes
	6.5 Complexity Analysis
	6.6 Coding Performance
	References

